
Develop Android applications with Eclipse
Get started with Google's Android Development Tools Eclipse
plug-in

Skill Level: Intermediate

Frank Ableson (fableson@msiservices.com)
Software designer

26 Feb 2008

Android is Google's oft-discussed mobile, wireless, computer, and communications
platform. You can take advantage of the powerful Eclipse environment to build
Android applications using the Android Eclipse plug-in. This tutorial introduces
Android application development with the Eclipse plug-in, otherwise known as
Android Development Tools. The tutorial provides an introduction to Android
development with a quick introduction to the platform, a tour of Android Development
Tools, and includes the construction of two example applications.

Section 1. Before you start

This tutorial introduces Android application development within the Eclipse
environment, including the construction of two example applications. The first is a
basic starter application, complete with all phases of building and debugging. The
second application examines more complex features of Android, including contacts
searching and Google Maps address lookup. To get the most from this tutorial,
mobile-development experience is helpful, but not required. Java™ programming
skills are required for Android applications, but are not an explicit requirement for
this tutorial.

About this tutorial

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 35

mailto:fableson@msiservices.com
http://www.ibm.com/legal/copytrade.shtml


Why do we care about Android? Android is an important platform for two reasons.
First, the fact that Google is introducing it and the mind-share Android has garnered
in such a small amount of time. Google is flexing its muscles and attempting to make
a play for the crowded mobile market. Its first salvo into this market, Android and the
Open Handset Alliance, is an impressive starting point. The second reason Android
is important is because it isn't just another mobile platform with a phone, menus, and
a touchscreen. As you will learn in this tutorial, Android takes a different approach to
applications. The architecture of Android permits a highly customizable software
environment thanks to its runtime binding of requested actions and the code to
satisfy those requests. Whether it's market-driven considerations or the technical
aspects of Android, it is a platform worth examination.

This tutorial is organized in the following sections:

• Android basics and required tools

• The Android software developer kit

• Building and debugging the SaySomething Android application

• Creating the content provider and Google Maps application

System requirements

This tutorial requires several technologies that work together. You need all of them
for this tutorial.

Eclipse Platform
Eclipse is the platform upon which the plug-in runs. Get the latest version of
Eclipse Classic (V3.3.1 was used in this tutorial).

Android Developer Tools
The Android Developer Tools (the Eclipse plug-in) may be installed by following
the instructions found at Installing the Android SDK.

Source code
Source code snippets in this tutorial include:

• AndroidManifest.xml snippet — This file is the application deployment
descriptor for Android applications.

• IntentReceiver — This demonstrates the implementation of an
IntentReceiver, which is the class that processes intents as
advertised by the IntentFilter tag in the AndroidManifest.xml file.

• SaySomething.java — This implements an Android activity, the primary
entry point to the sample application of this tutorial.

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 2 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.eclipse.org/downloads/
http://code.google.com/android/intro/installing.html#developingwitheclipse
http://code.google.com/android/intro/installing.html
http://www.ibm.com/legal/copytrade.shtml


• Main.xml — This contains the visual elements, or resources, for use by
Android activities.

• R.java — This file is automatically generated by Android Developer Tools
and "connects" the visual resources to the Java source code.

• AndroidManifest.xml complete — This lists a full AndroidManfest.xml file,
along with a description of each of the important elements.

• MobileServiceCallContacts.java — This contains the code necessary to
display contacts as well as react to user input to subsequently perform a
Google Maps address lookup.

Section 2. Introduction to Android

Before diving right into the ins and outs of the Eclipse plug-in and developing
Android applications, let's have a look at the architecture of Android and some of the
key terms that will be helpful in the tutorial and beyond, as you begin to build
Android applications for yourself.

Android terminology

Android application development under the Eclipse environment requires knowledge
of the Eclipse environment and the Android platform. An understanding of the terms
below is helpful in Android application development with the Eclipse plug-in.

Open Handset Alliance
This is the organization led by Google Inc., consisting of numerous public and
private organizations.

Android
The flagship product of the Open Handset Alliance. This is an open source
operating environment targeted for mobile devices.

Emulator
A software tool representative of another system — This is often an
environment that runs on a personal computer (IBM®, Mac, Linux®) that
emulates another environment, such as a mobile-computing device.

Linux
An open source operating system kernel at the heart of many computing

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 35

http://www.ibm.com/legal/copytrade.shtml


platforms, including servers, desktop computers, networking appliances, and
mobile-computing devices. Android runs on top of a Linux kernel.

Dalvik Virtual Machine
The Dalvik VM is an operating environment found in the Android stack, which
interprets application code at runtime. The Dalvik VM is similar to a compliant
Java VM, but the two are not compatible.

Android basics and required tools

Android is an open source operating system targeted for mobile platforms. At the
time of this writing, it is a software-only platform with no publicly available hardware
devices.

The Android platform is best described as a stack because it is a collection of
components, including:

• Linux kernel-based operating system

• Java programming environment

• Tool chain, including compiler, resource compiler, debugger, and
emulator

• Dalvik VM for running applications

Now that we've briefly introduced the Android platform architecture, let's look at
some important characteristics of the platform from a market perspective.

Why is Android important?

The computer technology press has lavished attention on Android since its
announcement and initial SDK release. Android is important as a platform for two
disparate, yet compelling, reasons, among many others.

Android is a market-mover. The mobile-application space is crowded and difficult to
gain footing for a newcomer. Google has the resources and the mind-share to make
a splash in any market it puts in its sights. Google's entry into the mobile space has
been in the works for a few years. Android was a separate and distinct company
purchased by Google to give it a jump-start on a mobile presence. Anything Google
is doing gets attention, and publicity is good for introducing new platforms. Score
one for Android.

The second reason Android is important is because of its application model. Android
applications are not monolithic, menu-laden applications that require a great deal of

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 4 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


clicking and tapping to operate. Sure, there are menus and buttons to be tapped, but
Android has an innovative design element to its architecture known as an intent.

The intent

An intent is a construct that permits an application to issue a request, which is
somewhat like a help-wanted sign. It might look like this:

"Wanted: An application to help me look up a contact" or "Wanted: An application to
help me display this image" or "Wanted: An application to perform this
geographic-based search."

In a similar and complementary fashion, applications can register themselves as
capable and interested in performing satisfying various requests or intents. To follow
the classified advertising paradigm, these might look like this:

"Available: Application ready and willing to present contact records in clear, concise
manner," or "Available: Application ready and willing to perform a geographic
search."

These are examples of IntentFilters, which are discussed next.

The IntentFilter

Applications announce their availability to perform these types of operations via a
construct known as an IntentFilter. The IntentFilter is either registered at
runtime or is enumerated in the AndroidManifest.xml file. The following snippet
comes from an Android application that responds to incoming SMS (text) messages:

Listing 1. Android application responding to incoming SMS

<receiver class=".MySMSMailBox" >
<intent-filter>

<action android:value="android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>
</receiver>

After this brief introduction to the intent and IntentFilter, the next section
introduces the four main types of Android applications.

Section 3. Android applications A quick survey

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 35

http://www.ibm.com/legal/copytrade.shtml


Let's take a moment to examine the four main types of Android applications: activity,
services, receivers, and ContentProvider. We will also take a look at the views to
display the user-interface (UI) elements.

Activity

The activity is the most visible and prominent form of an Android application. An
activity presents the UI to an application, along with the assistance of a class known
as a view. The view class is implemented as various UI elements, such as text
boxes, labels, buttons, and other UIs typical in computing platforms, mobile or
otherwise.

An application may contain one or more activities. They are typically on a one-to-one
relationship with the screens found in an application.

An application moves from one activity to another by calling a method known as
startActivity() or startSubActivity(). The former method is used when
the application desires to simply "switch" to the new activity. The latter is used when
a synchronous call/response paradigm is desired. In both cases, an intent is passed
as an argument to the method.

It is the operating system's responsibility to determine the best-qualified activity to
satisfy the specified intent.

Services and receivers

Like other multitasked computing environments, there are applications running "in
the background" that perform various duties. Android calls these types of
applications "services." The service is an Android application that has no UI.

The receiver is an application component that receives requests to process intents.
Like the service, a receiver does not, in normal practice, have a UI element.
Receivers are typically registered in the AndroidManifest.xml file. The snippet shown
in Listing 1 is an example of a receiver application. Note that the class attribute of
the receiver is the Java class responsible for implementing the receiver. Listing 2 is
an example of receiver code.

Listing 2. Receiver code

package com.msi.samplereceiver;

import android.content.Context;
import android.content.Intent;
import android.content.IntentReceiver;

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 6 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


public class myreceiver extends IntentReceiver
{

public void onReceiveIntent(Context arg0, Intent arg1)
{

// do something when this method is invoked.
}

}

Data management with ContentProvider

The ContentProvider is the Android mechanism for data-store abstraction. Let's
look at a specific type of data found on a mobile device: the address book or
contacts database. The address book contains all the contacts and phone numbers
a person might require when using a mobile phone. The ContentProvider is a
mechanism to abstract access to a particular data store. In many ways, the
ContentProvider acts in the role of a database server. Operations to read and
write content to a particular data store should be passed through an appropriate
ContentProvider, rather than accessing a file or database directly. There may be
both "clients" and "implementations" of the ContentProvider.

The next section introduces Android views, the UI mechanism for putting things on
the screen of an Android device.

Views

The Android activity employs views to display UI elements. Views follow one of the
following layout designs:

LinearVertical
Each subsequent element follows its predecessor by flowing beneath it in a
single column.

LinearHorizontal
Each subsequent element follows its predecessor by flowing to the right in a
single row.

Relative
Each subsequent element is described in terms of offsets from the prior
element.

Table
A series of rows and columns similar to HTML tables. Each cell can hold one
view element.

Once a particular layout (or combination of layouts) has been selected, individual
views are used to present the UI.

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 35

http://www.ibm.com/legal/copytrade.shtml


View elements consist of familiar UI elements, including:

• Button

• ImageButton

• EditText

• TextView (similar to a label)

• CheckBox

• Radio Button

• Gallery and ImageSwitcher for displaying multiple images

• List

• Grid

• DatePicker

• TimePicker

• Spinner (similar to a combo box)

• AutoComplete (EditText with auto text-complete feature)

Views are defined in an XML file. Listing 3 shows an example of a simple
LinearVertical layout.

Listing 3. Simple LinearVertical layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Activity 1!"
/>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Activity 1, second text view!"
/>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Switch To Activity 2"

id="@+id/switchto2"
/>

</LinearLayout>

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 8 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Note that each element has one or more attributes in the Android name space.

The next section walks through obtaining the Android SDK and configuring it for use
with Eclipse.

Section 4. Android Software Developer Kit

Now that we have a feel for the Android platform, let's get the Eclipse environment
set up for Android development so we can create our example applications. This
section walks through obtaining the Android SDK and configuring it for use with
Eclipse.

Obtaining and installing Eclipse

If Eclipse is not installed, download it and install the latest stable release of the
Eclipse IDE from the Eclipse Foundation (see Resources). The installation is a
compressed folder. Extract the contents of the folder to a convenient place on your
computer. The installer does not create any icons or shortcuts on Windows®. For
purposes of this tutorial, the Eclipse folder will be located in the c:\software\eclipse
directory.

To start Eclipse, double-click on eclipse.exe found in the eclipse installation
directory. This will start the IDE. The software prompts for a "workspace" and
suggests a default location, such as c:\documents and
settings\username\workspace. Choose this location or specify an alternative
workspace location.

Once Eclipse is loaded, click the Workbench - Go to the workbench icon on the
main screen.

Now it's time to obtain the Android SDK.

Obtaining and installing the Android SDK

Find the Android downloads in Resources.

There are SDK installation versions available for Windows, Mac OS X (Intel® only),
and Linux (i386). Select the latest version of the SDK for the desired platform. Note
that at the time of this writing, the latest Android SDK version is marked m3-rc37a.

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 35

http://www.ibm.com/legal/copytrade.shtml


The Android SDK is a compressed folder. Download and extract the contents of this
file to a convenient place on your computer. For purposes of this tutorial, the SDK is
installed to c:\software\google\android_m3-rc37a. Obviously, if you are installing this
on Mac OS X and Linux, you should install the SDK where you usually put your
development tools.

Both Eclipse and the Android SDK are installed. It's time to install the Eclipse plug-in
to take advantage of the Eclipse environment.

Obtaining and installing the Eclipse plug-in

The following steps demonstrate the installation of the Eclipse plug-in, officially
known as Android Developer Tools. Note that alternative installation directions are
available from the Android Web site. See Resources for more information.

Install the Android Developer Tools:

1. Run the "Find and Install" feature in Eclipse, found under the Help >
Software Updates menu.

2. Select the Search for new features to install option.

3. Select New Remote Site. Give this site a name, such as "Android
Developer Tools," for example. Use the following URL in the dialog:
https://dl-ssl.google.com/android/eclipse. Please note the HTTPS in the
URL. This is a secure download.
Figure 1. New Update Site

4. A new entry is added to the list and is checked by default. Click Finish.
The search results display the Android Developer Tools. Select the
Developer Tools and click Next.

5. After reviewing and accepting the license agreement, click Next. Note

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 10 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

https://dl-ssl.google.com/android/eclipse
http://www.ibm.com/legal/copytrade.shtml


that the license agreement includes a special requirement for use of the
Google Maps API.

6. Review and accept the installation location, then click Finish.

The plug-in is now downloaded and installed. The plug-in is not signed (at the time
of writing), so proceed at your own comfort level by clicking on Install All, then
restart Eclipse.

Configuring the Eclipse plug-in

Once Eclipse is restarted, it is time to connect the plug-in to the SDK installation.
Select Preferences under the Window menu. Click on the Android item in the tree
view to the left. In the right-hand pane, specify the SDK installation location. The
value used for this tutorial is c:\software\google\android\m3-rc37a (again, use
appropriate locations in Mac OS X and Linux installations).

Once the SDK location is specified, there are three other sections that may be
configured. They are mentioned here briefly:

• The Build section has options for rebuilding resources automatically.
Leave this checked. The Build option can change the level of verbosity.
Normal is the default.

• DDMS — Dalvik Debug Monitor Service is used for peering into a running
VM. These settings specify TCP/IP port numbers used for connecting to a
running VM with the debugger and various logging levels and options.
The default settings should be just fine.

• LogCat — This is a log file created on the underlying Linux kernel. The
font is selectable in this dialog. Adjust this as desired.

Congratulations! The Eclipse environment is ready to create Android applications.

Section 5. Building the SaySomething Android
application

This section creates a basic Android application, called SaySomething, using the
Android Developer Tools. Once the application is created, we will debug and run it.

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 35

http://www.ibm.com/legal/copytrade.shtml


New project wizard

The first step is to create a new project. Select the wizard for Android project, as
shown below.

Figure 2. New project wizard

The requirements for the application are:

• Name

• Location

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 12 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


• Package name

• Activity name — Think of this as the main "form" or screen of the
application

• Application name

Take a look at the new project.

Figure 3. New Android project

This will create a default application ready to be built and run. The components may
be seen in the Package Explorer, which we discuss next.

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 35

http://www.ibm.com/legal/copytrade.shtml


The Package Explorer

The Package Explorer (found in the Java perspective in Eclipse) displays all the
components of the sample Android application (see Figure 4).

Figure 4. Package Explorer

Items of note include:

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 14 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


src folder
Includes the package for the sample application, namely
com.msi.ibmtutorial

R.java
The Android Developer Tools create this file automatically and represents the
constants needed to access various resources of the Android application. More
on the relationship between the R class and resources is found below.

SaySomething.java
Implementation of the application's primary activity class.

Referenced libraries
Contains android.jar, which is the Android runtime class jar file, found in the
Android SDK.

res folder
Contains the resources for the application, including:

• Icons

• Layout files

• Strings

AndriodManifest.xml
Deployment descriptor of the sample application.

Next, we'll examine the source code in further detail.

The primary activity of the application

The sample application consists of a single activity, namely SaySomething. As
described above, the SaySomething class is implemented in the file
SaySomething.java.

Listing 4. SaySomething.java

package com.msi.ibmtutorial;

import android.app.Activity;
import android.os.Bundle;

public class SaySomething extends Activity
{

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle)

{

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 35

http://www.ibm.com/legal/copytrade.shtml


super.onCreate(icicle);
setContentView(R.layout.main);

}
}

Things to note about this source snippet:

• SaySomething is a normal Java class, with a package and imports, as
expected.

• SaySomething extends a base Android class named Activity, which is
located in the android.app package.

• The onCreate() method is the entry point to this activity, receiving an
argument of type Bundle. The Bundle is a class which is essentially a
wrapper around a map or hashmap. Elements required for construction
are passed in this parameter. This tutorial does not examine this
parameter.

• The setContentView(..) is responsible for creating the primary UI
using the R.layout.main argument. This is an identifier representing the
main layout found in the resources of the application.

The next section reviews the resources for the sample application.

Resources for the application

Resources in Android are organized into a subdirectory of the project named res, as
described previously. Resources fall into three primary categories:

Drawables
This folder contains graphics files, such as icons and bitmaps

Layouts
This folder contains XML files that represent the layouts and views of the
application. These will be examined in detail below.

Values
This folder contains a file named strings.xml. This is the primary means for
string localization for the application.

The next section dissects the main.xml file to review the sample application's
primary UI resources.

main.xml

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 16 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The sample application contains a single activity and a single view. The application
contains a file named main.xml that represents the visual aspects of the primary UI
of the activity. Note that there is no reference in the main.xml where the layout is
used. This means it may be used in more than one activity, if desired. Listing 5
contains the content of the layout file.

Listing 5. Layout file

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, SaySomething"
/>

</LinearLayout>

This is the most simplistic of layouts. There is a single linear layout, which is oriented
as a vertical layout, meaning all contained elements are in a single column. There is
a single TextView element, which can be likened to a label in other development
environments. A TextView represents static text that is not editable.

Note that each view element (layout and TextView in this example) have
attributes in the Android name space. Some attributes are common to all views —
the android:layout_width and android:layout_height attributes, for
example. The values available for these attributes are:

Fill Parent
This extends the view element to take the maximum space available. This can
also be thought of as meaning "stretch."

Wrap Content
This value tells Android to paint the elements one after the next without
stretching.

During the build process, all resources are compiled. One of the products of that
process is the R.java file, which represents the resources to the remainder of the
application. The R.java file is discussed next.

R.java

The R.java file is created upon build automatically, so be sure to not modify it by
hand as all changes will be lost. Listing 6 contains the R.java file for the sample
application.

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 35

http://www.ibm.com/legal/copytrade.shtml


Listing 6. R.java file

/* AUTO-GENERATED FILE. DO NOT MODIFY.
*
* This class was automatically generated by the
* aapt tool from the resource data it found. It
* should not be modified by hand.
*/

package com.msi.ibmtutorial;

public final class R {
public static final class attr {
}
public static final class drawable {

public static final int icon=0x7f020000;
}
public static final class layout {

public static final int main=0x7f030000;
}
public static final class string {

public static final int app_name=0x7f040000;
}

}

The R class contains anonymous subclasses, which each contain identifiers for the
various resources previously described. Note that all of these classes are static.

Note the element represented by: R.layout.main. This identifier represents the layout
defined by main.xml. Recall that this value is used in the onCreate method of the
activity as follows: setContentView(R.layout.main);. This is the point at
which a specific activity (in this case, SayAnything) and a specific layout (main)
are bound together at runtime.

Building applications

Files are compiled every time they are saved by default.

Figure 5. Error pane

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 18 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


We introduced an error into the source code where we added an extra space
between setContent and View. When the file is saved, it is compiled and any
errors appear in the Problems pane at the bottom of the screen. Upon fixing the
error in the source code, the application builds properly and the errors are removed
from the problems list.

AndroidManifest.xml

The AndroidManifest.xml file represents the deployment descriptor for an Android
application. The file lists any activity, service, content provider, or receiver contained
in the application, along with the appropriate IntentFilters supported by the
application. Here is the complete AndroidManifest.xml file for the sample application:

Listing 5. AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.msi.ibmtutorial">
<application android:icon="@drawable/icon">

<activity class=".SaySomething" android:label="@string/app_name">
<intent-filter>

<action android:value="android.intent.action.MAIN" />
<category android:value="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 35

http://www.ibm.com/legal/copytrade.shtml


</manifest>

Things to note:

• The package name from the source file is represented here. This follows
a similar pattern to a Java source file and imports. The <manifest> tag
is in essence "importing" classes from this package. All non-fully qualified
classes in this file are found in the package identified in the package
attribute.

• The <application> tag has an attribute that references a resource
from the application's resources. Note the @ symbol preceding the
drawable identifier. This is a hint for the file to look in the drawable folder
of the application's resources for a resource called "icon."

• The <activity> tag contains the following attributes and values of note:

• class represents the Java class implementing this activity

• android:label is the name of the application. Note that it is coming
from one of the string resources. The string.xml file contains localized
strings for the application.

• <intent-filter> represents the IntentFilter available in the
sample application. This is the most common IntentFilter seen in
Android applications. This filter essentially says that it implements the
"main" action (or entry point) and is located in the launcher of the OS.
In English, this means it can be started as an application from the
primary list of applications on an Android device.

The next section describes starting the application on the Android Emulator from
within Eclipse.

Running the application

Now that the application has compiled successfully, it's time to run the sample
application. Select Open Run Dialog or shortcut on the toolbar within Eclipse. This
opens a dialog where startup configurations are created. Highlight the Android
Application option and click the icon for New.

Figure 6 show the values used for the tutorial sample.

Figure 6. Run dialog

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 20 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Give the configuration a name. The tutorial sample uses the name Tutorial
Configuration. Select the ibmtutorial project from the list of available projects (click
Browse to see available projects). Select the startup activity in the drop-down. Now
select the Emulator tab to specify Emulator settings, as desired. The default can be
left alone. There are a couple of items to note, as described in Figure 7.

Figure 7. Run dialog, Emulator tab

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 35

http://www.ibm.com/legal/copytrade.shtml


There are a few screen sizes and orientations to choose from, as well as network
choices. The network choices are important when building applications that employ
Internet connectivity as mobile devices have varying network speed capabilities.
Choose full network speed and no latency when prototyping an application. Once
the main functionality is present, it's a good idea to test with less-than-ideal network
conditions to see how the application responds in situations with suboptimal network
connectivity.

Select Run to see the sample application in action.

Figure 8. Emulator

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 22 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Now that the application is running on the Emulator, it's time to see what's
happening behind the scenes. The Dalvik Debug Monitor Service (DDMS) will assist
with this.

Debugging the application

To see what is happening with a running application, it is helpful to tap into the
running Dalvik VM. To enable this from Eclipse, select Window > Open
Perspective > Other. This displays a dialog box where the DDMS may be selected.
This opens a new perspective in Eclipse with a number of interesting windows. Here
is a quick introduction to the available resources in the DDMS perspective:

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 35

http://www.ibm.com/legal/copytrade.shtml


The LogCat is a running log file of activity taking place in the VM. Applications can
make their own entries to this list with a simple line of code as follows:
Log.i(tag,message);, where tag and message are both Java strings. The Log
class is part of the android.util.Log package.

Figure 9 shows the LogCat in action.

Figure 9. LogCat in action

Another handy tool in the DDMS is the file explorer, which permits file system
access of the Emulator. Figure 10 shows where the tutorial's sample application is
deployed on the Emulator.

Figure 10. Sample application deployed on the Emulator

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 24 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


User applications are deployed in /data/app while Android built-in applications are
found in the /system/app directory.

A running process list is also available in the DDMS.

Figure 11. Running process list

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 35

http://www.ibm.com/legal/copytrade.shtml


Full-scale debugging of an Android application is beyond the scope of this tutorial.
For more information, see Resources.

Section 6. Building the content provider and Google
Maps example

Now that you have seen a complete application example, let's take a quick look at a
more complex application.

Content provider and Google Maps

This second application examined in this tutorial is built with a theme of a mobile
service professional (perhaps an appliance repair technician) who must map his way
to the next service call. The application leverages Android's built-in contacts
database as a record store. This tutorial will give you a feel for accessing data from
a content provider, as well as a glance at an intent in action as we use the address
data found in the contacts database to perform a Google Maps search. For this
tutorial to work properly on your Android Emulator, be sure to have one or more

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 26 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


contacts recorded and be sure to populate the home address field. Figure 12 shows
the Emulator with a few entries in the contact application.

Figure 12. Emulator with entries in contact application

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 27 of 35

http://www.ibm.com/legal/copytrade.shtml


developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 28 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Here is the first of two code snippets for the second application. Note that this
application's main Activity class extends the ListActivity. This is because
we're going to display information in a list.

Listing 6. First snippet of second application

public class MobileServiceCallContacts extends ListActivity
{

final String tag = "MSCC";
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle icicle)
{

super.onCreate(icicle);
setContentView(R.layout.main);

// Get a cursor with all people
Cursor c = getContentResolver().query(People.CONTENT_URI, null, null,

null, null);
startManagingCursor(c);

ListAdapter adapter = new SimpleCursorAdapter(this,android.R.
layout.simple_list_item_1,c,new String[] {People.NAME} ,new int[]
{android.R.id.text1});

setListAdapter(adapter);

}
...
}

Note the use of the cursor class to query the contacts database. This "result set"
cursor is linked to the UI via a class known as a ListAdapter. Figure 13 shows the
application in action as it presents the contacts available on the device. Note that
there is no sort order in use in this display.

Figure 13. Application in action

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 29 of 35

http://www.ibm.com/legal/copytrade.shtml


Any one of the contacts may be selected by a tap (click of the mouse), the center
button on the emulator, or by pressing the Enter key on your keyboard. Once this
entry is selected, the code must perform a lookup to obtain the address of the
selected contact. This is where the onListItemClick() overridden method
comes into play. This method's implementation has four important arguments. The
one of most interest here is the dbidentifier method. Because the cursor was
bound to the UI, when this method is invoked, it actually receives an identifier to the
underlying data source. The dbidentifier field may be used to query the
contacts database for desired information. It can also be used to simply launch the
contacts application using an intent as shown in the commented-out code in Listing
7.

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 30 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Listing 7. The onListItemClick() overridden method

@Override
protected void onListItemClick(ListView list,View view,int position,long

dbidentifier)
{

super.onListItemClick(list,view,position,dbidentifier);

try
{

// this commented out code below will launch the Contacts application
// and "view" the contact Intent myIntent = \

new Intent(android.content.
// Intent.VIEW_ACTION,new ContentURI("content://contacts/people/"
// + dbidentifier)); startSubActivity(myIntent,position);

// let's lookup specifics on this record
ContentURI theContact = \

new ContentURI(android.provider.Contacts.ContactMethods.CONTENT_URI.toURI());

// IMPORTANT
// in order to use this sample application, you need to have at least

// one Contact record on your Android emulator\
// and be sure to have populated the 'Home Address field'
//

// this "where clause" is for HOME address and for the person record
// selected in the GUI (id, dbidentifier)

Cursor c = managedQuery(theContact,null," type = 1 and person = " +
dbidentifier,null);

if (!c.first())
{

showAlert("MSCC","No Contact Methods Available!","",true);
return;

}

String address = c.getString(c.getColumnIndex("data"));

address = address.replace("\n","");
address = address.replace(",","");
address = address.replace(" ","+");

Intent geoIntent = new Intent("android.intent.action.VIEW",
new ContentURI\

("geo:0,0?q=" + address));
startActivity(geoIntent);

}
catch (Exception ee)
{

Log.i(tag,ee.getMessage());
}

}

Once the address has been obtained, a few simple string operations are required to
clean up the data to prepare it for a query to Google Maps. The geoIntent is a
new Intent created to perform a geo search, which in the default Android Emulator
image is satisfied by a call to Google Maps.

All of the major elements of the first application still hold true for this application.

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 31 of 35

http://www.ibm.com/legal/copytrade.shtml


There is a single activity launched from the main application screen. There is, of
course, the AndroidManifest.xml file identifying our new application. Remember,
complete source code is available in the Download section.

There is one final piece of information that is important to this second example
application. In the AndroidManifest.xml file, there is an additional entry that gives the
application permission to read the contacts database: <uses-permission
id="android.permission.READ_CONTACTS" />. Without this explicit
permission, the Linux kernel will prevent the application from accessing the contacts
database.

Section 7. Summary

This tutorial introduced the Android platform, the Android Developer Tools, and the
key elements of Android development in Eclipse. The Android Developer Tools
allows you to leverage the rich Eclipse development environment for building and
testing Android applications. You should now be ready to create your own Android
applications.

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 32 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Downloads

Description Name Size Download method

Example source code os-eclipse-android.examples.zip67KB HTTP

Information about download methods

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 33 of 35

http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/os-eclipse-android.examples.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• The author's Android book is available in part online at Manning Publications.

• The authoritative Android information source is Google's Android Web site,
where you can find project documentation and links to download the Android
SDK.

• Check out the "Recommended Eclipse reading list."

• Read the tutorial "Build a mobile RSS reader" to learn how to read, parse, and
display RSS or other XML data in mobile apps, including your own mash-ups,
using the Android Developer Tools.

• Browse all the Eclipse content on developerWorks.

• New to Eclipse? Read the developerWorks article "Get started with Eclipse
Platform" to learn its origin and architecture, and how to extend Eclipse with
plug-ins.

• Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

• To listen to interesting interviews and discussions for software developers,
check out check out developerWorks podcasts.

• Stay current with developerWorks' Technical events and webcasts.

• Watch and learn about IBM and open source technologies and product
functions with the no-cost developerWorks On demand demos.

• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

• Check out the latest Eclipse technology downloads at IBM alphaWorks.

• Install the Eclipse Android Development Tools (ADT) plug-in using Eclipse
software update. You can also download the Android SDK and learn how to
install, configure, and use the Android SDK.

• Download Eclipse Platform and other projects from the Eclipse Foundation.

• Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,

developerWorks® ibm.com/developerWorks

Develop Android applications with Eclipse
Page 34 of 35 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.manning.com/
http://code.google.com/android/ 
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/edu/x-dw-x-androidrss.html
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://code.google.com/android/intro/installing.html#installingplugin
http://code.google.com/android/download.html
http://code.google.com/android/intro/installing.html
http://www.eclipse.org/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/legal/copytrade.shtml


Tivoli®, and WebSphere®.

• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

• The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

• The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

• Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

Frank Ableson
Frank Ableson is an entrepreneur and software developer in northern New Jersey,
specializing in mobile and embedded application software. He is currently authoring a
book about Android application development for Manning Publications. His
professional interests are embedded systems, wireless communications, and
automotive electronics. His biggest fans are his wife, Nikki, and their children.

ibm.com/developerWorks developerWorks®

Develop Android applications with Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 35 of 35

http://www.ibm.com/developerworks/downloads/
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	System requirements

	Introduction to Android
	Android terminology
	Android basics and required tools
	Why is Android important?
	The intent
	The IntentFilter
                

	Android applications  A quick survey
	Activity
	Services and receivers
	Data management with ContentProvider
                
	Views

	Android Software Developer Kit
	Obtaining and installing Eclipse
	Obtaining and installing the Android SDK
	Obtaining and installing the Eclipse plug-in
	Configuring the Eclipse plug-in

	Building the SaySomething Android application
	New project wizard
	The Package Explorer
	The primary activity of the application
	Resources for the application
	main.xml
	R.java
	Building applications
	AndroidManifest.xml
	Running the application
	Debugging the application

	Building the content provider and Google Maps example
	Content provider and Google Maps

	Summary
	Downloads
	Resources
	About the author

