

SICOMPONENTS®

TsiLang® Components Suite

Developer’s
Guide

T S I L A N G ® C O M P O N E N T S S U I T E

Developer’s Guide

Copyright © 1998-2021 Igor Sitikov, SiComponents https://www.sicomponents.com.

TsiLang®, SiComponents® and Resource Builder® are registered trademarks or
trademarks of Igor Sitikov.

Other product and brand names are trademarks of their respective owners.

https://www.sicomponents.com/

Copyright © 1998-2021 Igor Sitikov, SiComponents https://www.sicomponents.com

Table of Contents

INTRODUCTION 6

Welcome! 6

How to Use This Manual 8

Contact Information 9

GETTING STARTED 10

Installation 10
Trial Version 10
Registered Version 11

Components Review 12
Main Components 12
Dispatcher 13

Tutorial 15
Which components to use? 15
Setting properties 15
Using siDialogs 16
Delphi: 16

“Hard-Coded” Strings 16
C++ Builder: 17
Language Switching 17
Delphi: 18
C++ Builder: 18
Editing Translation Data 18

Translations Editor 18

SIL Editor 19

COMMON TASKS 20

Using TsiLang Expert 20
Using Translation Wizard 21
Search for Hard-Coded Strings 22
Using TSI:IGNORE tags 24
Working with External Files 25
Other Functions 25

Checking Identifiers 25
Search and Replace 26
Excluding Properties 26
Clearance Translations 26
TsiLang Type Changing 26

Expert Options 26
General Options 27
Source Strings 27

https://www.sicomponents.com/
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532605
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532606
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532607
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532608
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532609
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532610
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532611
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532612
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532613
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532614
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532624
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532625
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532626
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532627
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532628
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532630
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532631

Copyright © 1998-2021 Igor Sitikov, SiComponents https://www.sicomponents.com

Exclude & Skip 29
Save & Load 29

Using Translation Editor 30

Using Extended Translations 34

Using ExtendedTranslations under different DPIs 36

Using Translations Stored in External Files 38

Using Exclude from Translations Editor 40
Components to Exclude 40
Properties to Exclude 41
Component’s Properties to Exclude 42

FireMonkey Support 44

Linux Support 46

Using Translation Memory 47

EXTERNAL TOOLS 48

Dictionary Manager 48
Dictionary Manager Automation Server 49

SIL Editor 51
Displayed Properties 51
Fixed Languages 51

Automation Server 52

Resource Strings Wizard 54
Translate resource strings by ID 56

COMPONENTS REFERENCE 57

Core Components 57
TsiLang 57

Properties 57
Methods 62
Methods to work with SIL files 63
Methods to work with SIB files 65
Methods to work with streams 66
Methods to work with message boxes 66
Other methods 67
Events 68

TsiLangLinked 68
TsiLangRT 68

Methods 69
Properties 69

https://www.sicomponents.com/
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532632
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532633
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532649
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532650
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532657
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532658
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532659
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532660
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532661
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532662
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532663
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532664
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532667
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532668

Copyright © 1998-2021 Igor Sitikov, SiComponents https://www.sicomponents.com

TsiLangRTSE 70
Properties 70
Methods 70

TsiLangTLV 70
Properties 71

TsiLangDispatcher 71
Methods 72
Properties 72
Events 74

TsiInternetTranslator 74
Methods 75
Properties 76

TsiLangCombo 78
Properties 79

Dialogs 80
Properties 80

USEFUL INFORMATION 81

Tips and Tricks 81
Exclude not used components and properties 81
Use TSI: tags to skip hard-coded strings that should not be translated 82
Create multilanguage dialog boxes with custom controls 82
Creating Unicode multilanguage dialog boxes 83
Configuring Default Fonts for TsiLang 83
Performing custom modifications during language changing 84
Translating 3rd party forms without sources 85
How to make TsiLang message boxes “styled” when VCL Style applied. 86

TranslationData as Text in DFM 88

Frequently Asked Questions 89
How to translate resource strings? 89
I am using C++Builder. How do I translate string tables coded into .rc and .rh files? 89
Why some of my string constants don’t appear in found strings form when translating
sources? 89
How to translate TDBGrid columns? 90
How to translate InfoPower’s DBGrid component? 90
How to translate arrays of strings 90
How to translate TActionMainMenuBar or TActionToolBar 90
How to modify button widths in standard dialogs? 91
Are TsiLang components compatible with IntraWeb? 91
Is it possible to translate menu shortcuts? 92
Why TDBNavigator hints are not translated at start-up? 92
Why Developer Express components translations are displayed incorrect under XP
Theme enabled? 92
How to detect OS default language and switch to it? 92
How to properly load file at run-time? 93
Main menu gets white background after language switching 93

Version History 95
Version 7.9: 95

https://www.sicomponents.com/
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532670
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532671
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532673
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532675
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532676
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532677
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532679
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532680
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532682
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532684

Copyright © 1998-2021 Igor Sitikov, SiComponents https://www.sicomponents.com

Version 7.8.5: 95
Version 7.8.4: 96
Version 7.8.3: 97
Version 7.8.2: 98
Version 7.8.1: 98
Version 7.8: 98
Version 7.7: 99
Version 7.6.0: 100
Version 7.5.9: 100
Version 7.5.8: 100
Version 7.5.7: 100
Version 7.5.6: 101
Version 7.5.5: 101
Version 7.5.4: 101
Version 7.5.3: 101
Version 7.5.2: 101
Version 7.5.1: 101
Version 7.5: 102
Version 7.4: 102
Version 7.3.3: 102
Version 7.3: 102
Version 7.2: 102
Version 7.1.1 102
Version 7.1 103
Version 7.0 103
Version 6.5.5 103
Version 6.5.4 103
Version 6.5.3 104
Version 6.5.2 104
Version 6.5 105
Version 6.4 105
Version 6.3 106
version 6.2 107
version 6.1 107
version 6.0.3 108
version 6.0.2 109
version 6.0.1 110
version 6.0 111
version 5.3.2 112
version 5.3.1 112
version 5.3.0 113
version 5.2.4 114
version 5.2.3 114
version 5.2.2 114
Version 5.2 114
Version 5.1 115
Version 5.0 116

LIST OF TABLES 118

LIST OF FIGURES 119

https://www.sicomponents.com/
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532736
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532737
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532738
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532739
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532740
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532741
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532742
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532743
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532744
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532745
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532746
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532747
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532748
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532749
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532750
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532751
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532752
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532753
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532754
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532755
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532756
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532757
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532758
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532759
file:///D:/Lib6_0/Help_and_Guide/Manual/Manual.docx%23_Toc85532760

Copyright © 1998-2021 Igor Sitikov, SiComponents https://www.sicomponents.com

INDEX 120

https://www.sicomponents.com/

TsiLang® Components Suite Developer’s Guide

6

Introduction

Welcome!

The problem of globalization is sooner or later arising for all software companies and
developers, who intend to distribute their applications worldwide and wish to create
localized versions for the different foreign markets. Using the TsiLang Components Suite
for the applications developed in the framework of Embarcadero RAD Studio,
Delphi™ or C++Builder™ is the best solution of the problem in many aspects.

TsiLang Components Suite includes a number of highly professional, easy-to-use VCL
components, wizards and tools for building multilingual applications. From the one
hand our product radically simplifies the entire process of globalization and from the
other hand it allows you to provide your customers with elegant, user-friendly
applications that can switch from one locale to another on-the-fly. Some TsiLang
Components Suite features that make it’s a distinguished product are the following:

 Our suite brings you the opportunity to localize all that should be localized:

string-type properties of components, “hard-coded” string constants, resource

strings, system locales’ and standard dialog’s strings, as well as other properties

that may affect on visual appearance of controls (for example, geometrical

sizes and positions of labels can be made different for each language when it’s

necessary).

 You have the choice where to store the translation data: either internally

(ideally suits for lightweight applications – single EXE file, no DLLs,

databases, etc.) or externally in special files (this approach allows to change

translations without recompiling the project so even your end-user may update

translations in the run-time).

 Such essential tools as TsiLang Expert and Resource Strings Wizard included in the

suite help you to manage the translation process of you projects by simple and

convenient way. So, a large project might be prepared for the globalization

literally in a few minutes. The TsiLang Expert adds TsiLang components to the

project’s forms and data modules, adjusts their properties, and scans the

project files for “hard-coded” strings. The Resource Strings Wizard allows you to

extract and add to translation data the resource strings of your project even

they are buried somewhere in a .dcu (.obj) without the source.

Chapter

1

TsiLang® Components Suite Developer’s Guide

7

 A specialized tool shipped with the suite, namely the SIL Editor can be freely

redistributed and allows you to separate the translation process from the

project development.

 And the Dictionary Manager helps to store common translations such as dialog’s

captions and frequently used phrases that can be repeatedly used in many

projects. Also this tool serves as an automation server so its data can be easily

loaded by the SIL Editor or TsiLang property editors.

Since the first version release in 1998 the TsiLang Components Suite has been
continuously developing and improving, so today it represents a mature product with
the excellent ratio quality/price. The evidence of growing its popularity and customer
satisfaction are the readers’ choice awards “Best Globalization Tool” in 2004, “Runner-
up Best Globalization Tool” in 2003 and 2002 by the Delphi Informant Magazine.

TsiLang® Components Suite Developer’s Guide

8

How to Use This Manual

If you are using the TsiLang Components Suite for the first time we recommend you to
read thoroughly the Chapter 2, which contains instructions on the installation of the
suite, the brief review of core components, and tutorial on internalization of a sample
application.

Chapter 3 describes the most common tasks in the process of working with the Suite:
using the TsiLang Expert for automation routine work; editing translation data and
using extended translations.

Chapter 4 contains guides on using external tools included in the suite: Dictionary
Manager which holds and manages common translations databases; SIL Editor which
used for editing translation data in .SIL (.SIB) files; Resource Strings Wizard which
helps to import and use resource strings.

Chapter 5 describes in detail all components used in the Suite.

And Chapter 6 contains additional information that could be useful to you: tips and
tricks, FAQ and version history.

TsiLang® Components Suite Developer’s Guide

9

Contact Information

If you have any questions, suggestions to improve the Suite, or bug report feel

free to contact us via e-mail support@sicomponents.com or our web site

https://www.sicomponents.com/contacts/. For the most current information

and updates of TsiLang Components Suite visit product’s web site:

https://www.tsilang.com.

mailto:support@sicomponents.com
https://www.tsilang.com/

TsiLang® Components Suite Developer’s Guide

10

Getting Started

Installation

The TsiLang Components Suite consists of the following parts:

1. VCL libraries containing all required components, property editors and the
TsiLang Expert. The trial version includes compiled packages and units whereas
the registered version all necessary source files (in case Full Source license
purchased) or compiled version of registered sources.

2. The SIL Editor is a convenient tool for editing translation data in external files.
This tool can be freely redistributed so you can separate the project
development and translation processes.

3. The Dictionary Manager is a standalone application for storing and managing
common translation databases. This program is widely used by other tools and
helps automate the translation process.

4. The Resource Strings Wizard - tool for importing resource strings from
executables.

5. The INI File Strings Wizard - tool for importing strings from INI File.

6. The SI2DFM Wizard – tool for loading SIL/SIB files into DFM without IDE.

7. Demo Applications - a few sample projects that illustrate using the Suite.

8. Help Files.

Trial Version

 Close all running instances of RAD Studio, Delphi or C++ Builder.

 Run installation application called TSILANGTRIALSETUP.EXE and just
follows the instructions.

 Once the installation script is completed the TsiLang Components Suite will be
automatically installed into selected IDEs.

Chapter

2

TsiLang® Components Suite Developer’s Guide

11

Registered Version

Note: If you have previously installed a trial copy of the TsiLang
Components Suite, then uninstall it from your PC. Make sure all its files are
deleted completely. Also please be sure to uninstall previous registered

version in case of upgrading to newest one.

 Close all running instances of RAD Studio, Delphi or C++ Builder.

 Run installation application called SISETUP.EXE (or SIBINARY.EXE in case
of DCU-Only license) and follows the instructions. The installation script will
install source files to the destination folder and adjust library path for the
selected IDEs. Install script needs license key to complete. This key is included
in REGKEY.KEY file located in the same ZIP archive as installation EXE.
Please be sure to place this file into the same folder where installation EXE
located or just double-click on it to merge it into the Registry.

 Once installation is completed you will find components installed into selected
IDEs.

Note: In case of error message about loading TsiLang package in IDE
startup, please try to copy TsiLang_XXr.bpl file into [XX]\Projects\BPL
folder (where XX- is your Delphi or C++Builder version).





TsiLang® Components Suite Developer’s Guide

12

Components Review

In the base of the TsiLang Components Suite there are several classes built on VCL
technology. These classes provide the storage for the application’s data to be translated
as well the methods for managing those translations.

Main Components

These classes like many other ones are VCL components and are being registered in
the IDE palette during the installation (by default on the “SiComponents” page).

Figure 1 Core components hierarchy

The above figure represents the five main components that are derived from the
TsiCustomLang component. Hereinafter we will call all these types “TsiLang” if not
specified evidently. All these components have the ability to hold and handle the
following data:

 The string-type properties of components such as “Caption”, “Hint”,
“DisplayLabel”, and other particular string-based properties like “HelpFile” for
TForm or “SimpleText” for TStatusBar.

TsiCustomLang

Base class

TsiLang

Stores and manages translations (general component)

TsiLangLinked

The same as TsiLang, but doesn't store Dialogs and Locales translations

TsiLangRT

Provides run-time editing with built-in Translations Editor

TsiLangRTSE

The same as TsiLangRT, but uses SIL Editor application to edit translations.

TsiLangTLV

Provides ability to handle TTreeView and TListView items.

TsiLang® Components Suite Developer’s Guide

13

 The TStrings-type properties of components like “Items” for TComboBox and
TListBox, or “Lines” for TMemo, etc.

 “Hard-Coded” string constants in the source.

Note: If you explicitly declare string constants in const sections, your

project should allow assignments to typed constants. This option can be set
via “Project | Options | Compiler | Assignable typed constants” or by the

conditional {$J+} in the project source code. Or you can just change declaration from
const to var.

 Strings used in Standard Dialogs and such functions as MessageDlg,
InputBox, and other.

Tip: TsiLang Components Suite also contains the set of dialog components (by
default they are installed on the “SiDialogs” palette page. These components
are identical to standard dialogs except the “siLang” property, which links

the dialog with translation data storage. We recommend using the SiDialogs components
instead of the standard ones, so that your dialogs would display strings according to your
application’s active language.

 System-wide locale settings, in particular months and weekdays names.

 All other non-string properties of components that may affect visual appearance
of your application. For example, labels on a form might have different
positions and sizes for every supported language.

 For the best results fonts and charsets might alter for different languages.

TsiLang components have no limitations on the number of supported languages and
give you the choice where to store the translation data: either internally in the executable
(since translations are managed as published properties of the TsiLang component, they
are stored in the respective .dfm/.nfm file) or in external files (TsiLang components
have corresponding methods to save and load external data).

The “LangNames” property of TsiLang components contains the list of supported
languages and the “ActiveLanguage” property corresponds to 1-based index of the
current language among of supported ones. Therefore, to switch from one language to
another, it is enough to assign respective index number to the TsiLang
“ActiveLanguage” property (both in design- and run-time).

Dispatcher

Every form of the application must contain a TsiLang component in order to be
properly displayed for each supported language. However, for large projects with many
forms it is quite a complicated task to handle all TsiLang components individually. The
special component named “TsiLangDispatcher” is intended to simplify multiple TsiLang
components management through centralized control.





TsiLang® Components Suite Developer’s Guide

14

Figure 2 Multiple TsiLang components are linked to a single TsiLangDispatcher.

All TsiLang components have “LangDispatcher” property that allows them to be linked
with a TsiLangDispatcher component placed on the main (or other “auto-created”)
form of the application. Using TsiLangDispatcher reduces the code necessary for
language switching in the whole application literally to a single line, like this:

...

procedure TForm1.ChangeLanguageClick(Sender: TObject);

begin

 siLangDispatcher1.ActiveLanguage := TMenuItem(Sender).Tag;

end;

...

Form 3

TsiLang

Form 2

TsiLang

Form 1

TsiLang

Main Form
TsiLangDispatcher

TsiLang

TsiLang® Components Suite Developer’s Guide

15

Tutorial

This tutorial takes you through the internationalization process of a sample application
with a few forms. In order to minimize the spade-work we suggest using the sample
“MDI Application” from the Delphi/C++ Builder repository (Select IDE menu “File |

New | Other… | Projects | MDI Application”).

1. We should decide where to store translation data: either internally or
externally. For the most applications the best results are reached with the usual
TsiLang components that do not require additional files and provide fast
language switching. So, simply place a TsiLang component on the application’s
main form.

2. Our application has other two forms. Although we can also use TsiLang-type
components, it is often good practice to use TsiLangLinked components on the
secondary forms. The latter ones have no such properties as “Dialogs” or
“Locales” instead they retrieve the data from a common container (another
TsiLang component). Place a TsiLangLinked component on every secondary
form.

3. As our application has several forms so for the centralized management of
TsiLang components it is convenient to use a TsiLangDispatcher component.
Place a TsiLangDispatcher on the main form.

Figure 3 Forms with a TsiLangDispatcher and TsiLang components

Now our application has a TsiLangDispatcher and a TsiLang component on the

Which
components to
use?

Setting
properties

TsiLang® Components Suite Developer’s Guide

16

main form, a TsiLangLinked on the MDIChild, and a TsiLangLinked on the AboutBox.
We need to link the components to each other and set their properties.

1. For the TsiLangLinked on the MDIChild in the Object Inspector set the
property “LangDispatcher” to the MainForm’s TsiLangDispatcher; and the
“CommonContainer” to the MainForm’s TsiLang component (unit “Main”
must be in uses clause of the current unit.

2. Repeat step 1 for the AboutBox form.

3. Also set the “LangDispatcher” property of the MainForm’s TsiLang component
also set to the TsiLangDispatcher.

4. Now we must define supported languages. As all the TsiLang components are
linked to the TsiLangDispatcher, it is enough to adjust “LangNames” property
only for the dispatcher. Select the TsiLangDispatcher and in the Object
Inspector open “LangNames” property editor. Type names of desired languages
in arbitrary form, for example “English”, “German”, “French”. The number
and names of languages for the all linked TsiLang components will be
constituted automatically.

Tip: We described all the steps above in order to provide you with the ability
to better understand what and how should be done. You can use
Translation Wizard available in TsiLang Expert and it will do all these steps

for you automatically. So you will be able to translate your project in few minutes.

If we don’t want our application dialogs depend on the Operating System
language all the standard dialogs shall be replaced with their siDialogs
counterparts.

1. Place on the MainForm a TsiOpenDialog component and remove the old
TOpenDialog. Rename the TsiOpenDialog to “OpenDialog”, set its “Filter”
property to “Text Files (*.txt) | *.txt | All files (*.*) | *.*” and “siLang”
property to the MainForm’s TsiLang component.

2. In the application a TSaveDialog is absent but we can add the function to save
files, so place on the MainForm a TsiSaveDialog and set its properties: “Name”
:= SaveDialog, “Filter” := “Text File (*.txt) | *.txt | All files (*.*) | *.*”, and
“siLang” := MainForm’s TsiLang component.

Usually a lot of strings are used immediately in the source code. In the MDI
Application a new MDI child window caption is determined by the following

code in Main.pas (main.cpp):

procedure TMainForm.FileNew1Execute(Sender: TObject);

begin

 CreateMDIChild('NONAME' + IntToStr(MDIChildCount + 1));

end;



Using siDialogs

“Hard-Coded”

Strings

Delphi:

TsiLang® Components Suite Developer’s Guide

17

void __fastcall TMainForm::FileNew1Execute(TObject *Sender)

{

 CreateMDIChild("NONAME" + IntToStr(MDIChildCount + 1));

}

Such “hard-coded” strings as the above “NONAME” we shall also include to the
translation list. The easiest way to do it is to use the TsiLang Expert:

1. Launch the TsiLang Expert (from the IDE’s menu select “Tools | TsiLang
Expert”.

2. From the Expert’s list of forms select the MainForm and choose from the
Expert’s menu “File | Source | With Form…”

Figure 4 Strings constants found by the Expert

3. The above window shows all “hard-coded” strings found in the unit. Push the
“Modify Source” button to add “NONAME” to the translation list. All
occurrences of this string constant will be automatically replaced with a
respective TsiLang method call.

In order to switch the current language in design-time just assign to the
TsiLangDispatcher property “ActiveLanguage” another value. For run-time we
should provide the respective code. We suggest adding corresponding menu

items to the MainForm’s menu:

C++ Builder:

Language
Switching

TsiLang® Components Suite Developer’s Guide

18

Figure 5 Menu items for language switching

1. Create menu items like the above in the MainForm’ menu.

2. Assign to their “Tag” properties values corresponding the language index (first
language has index 1). Make the menu items grouped and set “AutoCheck”
property to True.

3. Select all these menu items and create a common OnClick handler, for example
“ChangeLanguage”. In the event handler type the code:

procedure TMainForm.ChangeLanguage(Sender: TObject);

begin

 siLangDispatcher1.ActiveLanguage := TMenuItem(Sender).Tag;

end;

void __fastcall TMainForm::ChangeLanguage(TObject *Sender)

{

 siLangDispatcher1->ActiveLanguage =

dynamic_cast<TMenuItem *>(Sender)->Tag;

}

In fact, you have finished all required work as a software developer and now
only translator’s job is remaining! There are two ways to provide TsiLang
components with translation data:

Translations Editor

First, you can immediately enter and edit translation data in the IDE using the TsiLang
component editor (Translation Editor) or specialized property editors.

Delphi:

C++ Builder:

Editing
Translation
Data

TsiLang® Components Suite Developer’s Guide

19

Figure 6 Translation Editor displays “translation-aware” properties

In order to launch the Translation Editor double click on a TsiLang component. As you
can see, all translation data is divided into several categories that are displayed in the left-
pane tree view. You can also open this editor from the Object Inspector as a property
editor for the specified property (i.e. “Captions”, “Hints”, etc.). The Translation Editor has
many useful features and functions that will be considered later in the Section “Using
Translation Editor”.

SIL Editor

You can export all the current data (now it contains only default (“English”) strings) to
an external file and transfer this file along with the SIL Editor to a third-party translator.
The SIL Editor is a light-weight application and can be freely redistributed. It has the
convenient user interface and allows entering and editing translations. After the
translator returns the file you can import its data back to the project.

 To export the project data to an external file launch the TsiLang Expert, from its’
menu select “File | Save/Load Translations | Save Project…” and save the file.

 To import translation data from an external file launch the TsiLang Expert, from
its’ menu select “File | Save/Load Translations | Load Project…” and select
the file.

TsiLang® Components Suite Developer’s Guide

20

Common Tasks

Using TsiLang Expert

One of the most exciting tools of the TsiLang Components Suite is the TsiLang Expert, an
IDE add-in that dramatically facilitates the entire process of application
internationalization and carries out most of the routine work. By default, the Expert is
installed into IDE under the “Tools” menu.

Figure 7 TsiLang Expert

When you launch the Expert it enumerates all forms in the active project and displays
their status in the list view. If a form has no TsiLang component you can quickly add a
TsiLang to this form via the Expert menu “File | Translate” or by double click on the
corresponding list view item.

Tip: You can set the default type of a TsiLang component to be added as
well as default language names in the Expert Options Dialog (“Tools |
Options | General…”). See below for details.

To add TsiLang components to all project forms select all items in the list view and
choose from the Expert menu “File | Translate” or just press “Enter” key.

Chapter

3



TsiLang® Components Suite Developer’s Guide

21

Using Translation Wizard

TsiLang Expert provides a Translation Wizard in order to simplify and guide you
through the translations of your forms and to help you configuring components and
settings in the most appropriate way.

To launch the Wizard just select forms you need to translate or configure in TsiLang
Expert and select in Expert’s menu “File | Wizard”.

Figure 8 Translation Wizard (First step)

At the first step of the Wizard you need to specify what type of component to use for
each form for translations. The most recommended scheme to use is available for
preview by clicking the bottom link (highlighted in blue). After finishing selection of
components types click Next button to go to the next step of the Wizard.

On the second step of the Wizard (see picture below) you need to define languages
settings for selected forms and define which TsiLang to use as CommonContainer if
you’ve used any TsiLangLinked on selected forms.

To define languages settings, you can either use TsiLangDispatcher on one of the
project forms or configure languages manually. The recommended way is to use
TsiLangDispatcher since this will dramatically simplify language switching and
management for your project.

TsiLang® Components Suite Developer’s Guide

22

Figure 9 Translation Wizard (Second Step)

If no form in the project holds TsiLangDispatcher you can create one by clicking Create
new button. If the project already has a TsiLangDispatcher you can configure it by
clicking Configure button.

To set language settings manually for selected forms activate Set languages settings
manually options and edit languages by clicking Configure button near the option.

After clicking Next button the Wizard will provide you with the details of actions to be
performed and after your confirmation will configure your forms according to the
provided settings.

Search for Hard-Coded Strings

Besides string properties of components, applications usually contain a lot of “hard-
coded” strings that also need translation. The TsiLang Expert has an ability of scanning
your project in order to find and collect string constants. Selected string constants are
added to the “Strings” property of corresponding TsiLang component. When the active
language is changed all those strings are substituted with the respective translations.

There are four menu items related with translation of hard-coded strings:

 File | Source | With form…

TsiLang® Components Suite Developer’s Guide

23

 File | Source | Without form…

 File | Const section | With form…

 File | Const section | Without form…

The first two commands scan selected unit for strings used immediately in the source,
like this:

...

 ShowMessage(‘Hello World!’);

...

At that the first command treats the unit corresponding to the form selected in the list
view, and the second command does any unit of the project.

The second pair of commands is responsible for the treatment of strings declared
explicitly as constants, like this:

...

const

 sHello = ‘Hello World!’;

...

 ShowMessage(sHello);

...

Like the above pair the first command scans the selected form, whereas the second one
does an arbitrary unit.

If the Expert finds any strings in the selected unit the results are displayed in the below
dialog:

Figure 10 Hard-coded strings found by the Expert

In the above dialog box, you can delete strings that should not be translated (select rows
and press the “Delete” button) and change the start number for identifiers (“Start ID”
button). If some of the found strings should not be never translated (i.e. ‘.txt’), select
these strings and press “Exclude” button. Next time the Expert will ignore all
occurrences of ‘.txt’. If all the information is correct, press the “Modify Source” button
to add them to the translation data and to replace their occurrences in the unit with
TsiLang methods.

TsiLang® Components Suite Developer’s Guide

24

Using TSI:IGNORE tags

You can use ignore tags in your source code to mark some lines for skipping while
performing scan for hard-coded strings. These tags include:
{TSI:IGNORE}

{TSI:IGNORE ON}

{TSI:IGNORE OFF}

{TSI:IGNORE NEXT}

{TSI:TRANSLATE NEXT}

{TSI:IGNORE VALUE}

(Pascal notation)
/*TSI:IGNORE*/

/*TSI:IGNORE ON*/

/*TSI:IGNORE OFF*/

/*TSI:IGNORE NEXT*/

/*TSI:TRANSLATE NEXT*/

/*TSI:IGNORE VALUE*/

(C++ notation)

 TSI:IGNORE tag could be placed anywhere in a source line to skip this line in
scanning.

 TSI:IGNORE ON shall be placed on separate line and will mark all source lines
below to skip.

 TSI:IGNORE OFF shall be placed on separate line and will deactivate
TSI:IGNORE ON tag.

 TSI:IGNORE NEXT shall be placed on separate line and will mark the next
line to skip.

 TSI:TRANSLATE NEXT shall be placed on separate line and will include the
next source line in scanning even if it is inside TSI:IGNORE ON/OFF block.

 TSI:IGNORE VALUE shall be placed exactly before the single string value that
you wish to exclude. String value started right after this tag will be skipped while
scanning.

Sample code:

begin

 ShowMessage('This will be skipped!'); {TSI:IGNORE}

 ShowMessage('This won''t be skipped!');

{TSI:IGNORE ON}

 ShowMessage('This will be skipped!');

{TSI:TRANSLATE NEXT}

 ShowMessage('This won''t be skipped!');

 ShowMessage('This will be skipped!');

{TSI:IGNORE OFF}

{TSI:IGNORE NEXT}

 ShowMessage('This will be skipped!');

 ShowMessage({TSI:IGNORE VALUE}'This will be skipped!');

end.

TsiLang® Components Suite Developer’s Guide

25

Working with External Files

The TsiLang Expert has the ability to export the translation data of the whole project or
selected forms to an external .SIL (.SIB) files that can be used for editing by third-party
translators, or distributed to your end-users which might wish to edit or modify them.
And vice-versa, the Expert is able to update current translations through the import data
from external .SIL (.SIB) files.

Under “File | Save/Load Translations”, there are the following commands:

 Save form(s): Saves all translation information for the form(s) selected to an
external file.

 Load form(s): Loads all translation information for the form(s) selected from an
external file.

 Save form(s) properties: Saves selected properties to an external file.

 Save project: Saves all translation information for all project forms to an external
file.

 Load project: Loading all translation information for all project forms from an
external file.

 Merge form(s): Merges all translation information for the form(s) selected from
an external file.

 Merge project: Merges all translation information for all project forms from an
external file.

Other Functions

Under Expert “Tools” menu, there are two commands “Check Bad String IDs”
and “Check Bad String IDs in Unit(s)…” that search selected units for unused
string identifiers as well as check whether all used identifiers are included in the

translation data.

Checking
Identifiers

TsiLang® Components Suite Developer’s Guide

26

Figure 11 Bad string identifiers found by the Expert

Any illegal or unused identifiers found by the Expert are displayed in the above dialog
box. Double click on a line to jump to the relevant place in the source code or

Translation Editor.

These features are accessible through the Expert menu “Tools | Find
Phrase…” or “Tools | Replace Phrase…” and allow finding and replacing any
words in the translation data of selected form(s).

The command “Exclude Properties…” under “File” menu allows excluding
specified properties from the translation lists of selected form(s).

The command “Clear Translations” removes all translation data from the
selected form(s). This feature is useful for applications built with external
translation storage. During the development process, you can store translations

internally to adjust application layout for different languages in the design-time, but
before the deployment, you can quickly remove all unnecessary internal translations to
load them from external file or other storage. To clear translations for all project forms,

there is a “Clear Project Translations” command.

The command “Tools | Change TsiLang Type to…” allows quickly change one
TsiLang type to another on the selected form(s). It can be useful, for example, if

you decide to alternate data storage mechanism and change all TsiLang components
with TsiLangRT, without translation data losses.

Expert Options

To adjust the Expert’s default settings to your needs select the command “Tools |
Options”.

Search and
Replace

Excluding
Properties

Clearance
Translations

TsiLang Type
Changing

TsiLang® Components Suite Developer’s Guide

27

Figure 12 TsiLang Expert options dialog

The Expert Options dialog box is used to modify the following parameters:

 IDE Options: By default, the Expert is installed into IDE under
“Tools” menu and has an IDE shortcut “Ctrl+L”. You can change these
settings. Upon installing TsiLang package into IDE, there will be added Code
Editor popup-menu items for translating the selected code. If you experience
any problems caused by these items you can activate “Don’t install Code Editor
popup-menu items” option and they will be removed.

 Project Options: Specifies the default type for auto-created TsiLang
components; if the flag “Open all project forms at startup”, the Expert will open
all project forms when launched.

 Default Language Options: Specifies the default number, names and order of
languages for auto-created TsiLang components.

General Options

Source Strings

TsiLang® Components Suite Developer’s Guide

28

 Replacement Options:

o Get Text method: indicates the method name of TsiLang that will be
inserted into sources for replacing hard-coded strings. Using
“GetTextOrDefault” is more preferable since when you have no
provided translation for a string you always get the default value, not
empty value, as in the case of “GetText” method. To be able to get
default values for the “GetText” method too, just set the
“TranslateType” property of TsiLang to ttGetDefault. Methods with
“xxxC” names are replacements for respective methods without “C” at
the end, but return PChar (char *) as result value. Methods with
“xxxW” names are replacements for respective methods without “W” at
the end but return WideString as result value.

o Add form name: Indicates whether to add or not a form name to
“GetText” or “GetTextOrDefault” method calls when replacing hard-
coded strings in source. This is useful while using these methods inside
“OnCreate” event since the object with such is not yet created and
reference to it will cause “Access Violation…” error.

o Ignored string length: Specifies the minimal length of hard-coded
strings that should be added to the translation list when scanning a unit.
For example: in most cases the string with only one character shouldn't
be translated so you can set 1 in this option to skip such strings. To
translate all strings just set 0 for this option.

o Comments length: Configures the length of the original string to be
placed in place of replacement in comments to preserve the visibility
and readability of source code.

o No comments at all: Activate this option if you don't need to place
comments in sources after replacement.

o Pascal comments use: Select what comments style to use in Pascal
code while doing replacement.

 Hard-coded strings: “Default prefix” defines the string to be used as prefix for
auto-generated string identifiers when replacing strings in sources.

 Strings in const sections: “Default prefix” is the string to be added to the

constant name forming the string identifier; “Permanent part options” allows
changing constant name to upper case when adding it to string identifier.

 Empty values after replacement: activate this option to empty the value of a
constant after replacement. Although this will slightly reduce the size of EXE,
we highly recommend to not use this option and leave the variables values as is.

 Source preview lines: configures amount of source preview lines displayed in
Found Strings window when you select any string collected for replacement.

TsiLang® Components Suite Developer’s Guide

29

 Exclude strings containing only special characters: this option
allows skipping strings in sources that consist of only special characters.

 Skip lines containing: Specifies the phrases that will cause skipping of the
source lines by the Expert, even if there is any string to translate. This option is
useful, if you need to skip certain common source strings like assignment to
TableName or Database property of components.

 Skip words and phrases: Specifies list of phrases that must be always skipped
in the source by the Expert. Additionally, you can activate “Use Regular
Expression to skip phrases” option and use Regular Expressions in this
option to specify a set of phrases to skip.

Use this page to configure template settings for project save/load
translations commands from Project Manager popup-menu.

 Folder: define folder name to use for project save/load translations
commands.

 File name template: define file name template. The list of available
template tags are listed below of this field.

 Remember these settings and don't ask for file name: activate this
option to use settings defined on this page and skip file name/template
dialog while executing project save/load translations command from the
Project Manager popup-menu.

Exclude & Skip

Save & Load

TsiLang® Components Suite Developer’s Guide

30

Using Translation Editor

The Translation Editor is the tool for editing translation data of a component in both,
design-time (for all types of TsiLang) and run-time (for TsiLangRT).

Figure 13 Translations Editor

The main functions of the tool are the following:

 Direct editing of translations in the string grid;

 Working with external .SIL or .SIB files (for example, you can save all
translation data into a .SIL file, transfer it to a third-party translator, and after the
file is translated, load it back);

 Working with the Dictionary Manager (that is adding and retrieving
translations).

Use the Dictionary Toolbar for:

 Show/Hide Dictionary Manager.

 Add Row - adds translations from the selected row to the Dictionary.

 Add All translations to the Dictionary.

 Translate Cell - finds and inserts translation from the dictionary into the
selected cell. The choice is based on the languages that already have translations.

 Translate Language - automatically translates selected language only.

TsiLang® Components Suite Developer’s Guide

31

 Translate All - automatically translates the entire grid. The program will prompt
you to select the base language for translation.

 Suggest - use this feature in case you can't find an exact translation. TsiLang will
analyze the dictionary and give you a list of suggestions according to the
sensitivity level you set: the lower the value, the more suggestions you get.

Note: These buttons could be disabled if Dictionary Manager is not installed
on your system.

When Dictionary Manager is active Translation Editor will try to automatically find a
translation for the empty cell when you start editing it.

Tip: If you don’t want this automation, close Dictionary Manager upon
Translation Editor closing, then just open Dictionary Manager manually
before opening Translation Editor.

Tip: If you specify project’s default dictionary in “Project Translations
Settings” in TsiLang Expert be sure that TsiLang Expert is open in IDE
before opening the Translation Editor. Otherwise, the Translation Editor

won’t be able to use these settings.

Use Editor Toolbar to perform general actions with translations:

 Load /Export button will load/save currently selected translations property
to/from external file. To load/save whole translation data just select the top-
level tree node (Translations).

 Clipboard group contains actions to cut, copy and paste content.

 Add row and Remove row commands will add new row or delete the selected
one. These commands are only available in the Strings section and for Extended
Translations.

 Multiline button will open a multi-line editor for the currently selected cell.
Ctrl+Enter on any cell will open a multiline editor.

 Clear button deletes all translations in the currently selected list.

 Find command will open Find Dialog to perform a search for the specified
text.

Use Tools Toolbar to perform additional actions, such as:

 Default Fonts will open the configuration dialog for the default font and
charset settings for the different languages.

 Languages command allows renaming current languages.







TsiLang® Components Suite Developer’s Guide

32

 Statistics command displays statistical data for the current translations.

 Exclude Empty command adds all component’s properties that have no any
values in all languages to an exclusion list. This will reduce the size of
translations. The excluded component properties are stored into the
SmartExcludeProps.

 Delete Duplicates command will empty translations that are equal to the first
(default) language. This is used to reduce the translations size when
TranslateType property of TsiLang is set to ttGetDefault. If translations size
is not critical it is not recommended to use this.

 Find in Source command will try to find the currently selected string ID in
source code. Available only when editing Strings section.

 Check % Strings command is used to verify that all formatting strings are
properly translated.

The Comments Toolbar contains commands for working with translations comments:

 File Name command allows selecting of file name to be used for storing
comments. If you select the existing file it will be loaded and you can view the
available comments. This action shall be used at first to enable all other
comments functionality.

 View command displays comment for the selected item if such comment is
available.

 Edit command allows you to add or edit the comment for the selected item.

 Delete command will delete a comment for the selected item.

Note: Translation Comments require SIL Editor to be installed! Translation
Comments are available in both, the SIL Editor and the Translation Editor. If
you use translation comments, be sure to send your comments XML file

among with SIL/SIB files to your translators.

The Options Toolbar contains configuration settings that will help to adjust look and
feel of Translation Editor:

 Filter allows to filter current view by:

o Translated - all translations for all languages are done.

o Un-translated - only the base language string entered.

o Partially Translated - you have more than one translation, but still
have empty cells.



TsiLang® Components Suite Developer’s Guide

33

o Incomplete- hides all translated items.

 Sort drop-down could be used for sorting by particular column.

 Highlight Duplicate IDs – rows in the Strings section that have the same
string ID will be highlighted.

 Highlight Mismatched Multilines – rows in Multilines section with different
amount of lines in translations and original value will be highlighted.

 Font Size drop-down menu allows to configure the font size used for the
editor. This is useful when working on High DPI monitors.

 Toolbar Size drop-down allows to use larger images for toolbar buttons.

 Auto-use default fonts data – if checked then editor will automatically insert
font name and charset for languages in Fonts and Charsets sections if any cell is
empty there.

 Show widths tooltip – if checked then editor will display tooltip window with
widths of translations for the currently editing cell.

 String ID prefix – allows to specify what string ID prefix was used on Strings
section. Editor will try to remove it when sorting so IDs could be fixed as
integer values.

Some additional functions are available through a pop-up menu (right-click the
translation grid to pop-up):

 Exclude - exclude translations:

a) excludes selected component from current section;

b) excludes selected component from all sections;

c) excludes all components from current section;

Note: The excluded component properties are actually automatically stored
into the SmartExcludeProps list. To get the excluded properties back remove
them from the SmartExcludeProps list.

Translations Editor allows editing both general and extended translations. Please read
Using Extended Translations topic to learn the details of working with Extended
Translations property.



TsiLang® Components Suite Developer’s Guide

34

Using Extended Translations

Process of application’s internationalization sometimes requires translating not only
strings and string properties of components but “translating” other properties that can
affect on visual appearance of application, first of all size and position of controls. For
example, compare these two screenshots:

One can see that lengths of labels “User name:” and “Benutzername” are different so if
focused TEdit on the right hand form had the same width and position as one on the
left hand form the label would be overlapped. You can either redesign the form layout
or use “ExtendedTranslations” property of TsiLang component. Extended Translations
can be edited using Translations Editor. This includes components' non-string
properties, such as Left, Right, Width, Tag, Align etc. as well as all properties of any
sub-level components such as TLabeledEdit on Extended Translations tab. This could
be very useful, for instance, for repositioning or rescaling controls, when you translate
your application into a language with phrase length more than in original language.

Figure 14 Extended Translations property editor

Translating
To include a component's property into the list of translated properties:

TsiLang® Components Suite Developer’s Guide

35

1. Find the component in the Tree (left side of the window), expand the node
(pressing the 'plus' sign at the left of the node), then select the property to
be translated.

2. Move the property to the Translations list (center of the window) clicking
Add or selecting the appropriate popup-menu item.

3. Select it in the Translations list and enter the translations into the cells for
every language in a manner you used to do in Delphi Object Inspector.

4. It is very useful to use Update Translation in order to populate the values
for extended translations. To perform this just follow the next steps:

4.1. Add components' properties that need to be translated into Extended
Translations.

4.2. Close Translations Editor.
4.3. Switch to another language by changing ActiveLanguage property of

TsiLang.
4.4. Re-design your components as you would like to see them under this

language.
4.5. Right-click on TsiLang and select Update Translations from appeared

popup-menu.
4.6. As you will notice TsiLang will populate the values for selected

extended properties with current settings.
4.7. Switching back and forth between languages will show you how your

design will look like under it.
To remove a property from the Translations: select it and click Remove or select
the appropriate popup-menu item.

TsiLang® Components Suite Developer’s Guide

36

Using ExtendedTranslations under different DPIs

Declaration

TExtendedItemChangingEvent = procedure(Sender: TObject; const

NewLanguage:

 Integer; const Item: TsiExtendedItem; var NewValue: string) of

object;

property OnExtendedChanging: TExtendedItemChangingEvent;

Description
OnExtendedChanging event occurs before the change of any extended item is
performed due to language switching. NewLanguage indicates the language that
will be used. Item contains information about translation item. You can use
Identifier field of Item to identify the property being updated. NewValue
contains the new value for property to be set. If you need to change the value to set
just modify NewValue parameter.

Tip:
Using of this event may be useful if you use ExtendedTranslations to reposition
controls under different languages. You need to take care the fact that users my use
different font sizes like 100%, 125% or 150% under high DPI displays. In this case
the forms will be automatically scaled (if Scaled property is set to True) and
positions/sizes stored in ExtendedTranslations will be incorrect. Please see code
snippet below that will help you to manage this case:

procedure TForm7.siLang_Form7ExtendedChanging(Sender: TObject;

 const NewLanguage: Integer; const Item: TsiExtendedItem;

 var NewValue: string);

const

 // this is the DPI under application developed

 DefaultPPI = 96;

 // this is the Text Height under default DPI you can detect it

by

 // using Canvas.TextHeight('0')

 DefaultTextHeight = 13;

var

 NewPos: Integer;

 NewTextHeight: Integer;

begin

 if Screen.PixelsPerInch = DefaultPPI then

 Exit;

 if Item.Identifier = 'Edit1.Left' then

 begin

 NewPos := StrToIntDef(NewValue, 0);

 if NewPos <> 0 then

 begin

 NewTextHeight := Canvas.TextHeight('0');

// using PixelsPerInch won't help because VCL performs scaling

using TextHeight

// NewPos := Round(NewPos * PixelsPerInch / DefaultPPI);

TsiLang® Components Suite Developer’s Guide

37

 NewPos := MulDiv(NewPos, NewTextHeight, DefaultTextHeight);

 NewValue := IntToStr(NewPos);

 end;

 end;

end;

TsiLang® Components Suite Developer’s Guide

38

Using Translations Stored in External Files

You must decide first which type if file to use as your storage: either SIB or SIL file
format. When using SIB file the data will be stored in binary format and loading speed
will be very fast. Using SIL file allows you having data stored in text file (SIL is actually
INI file) but loading time will be much longer than using SIB file. SIL Editor works
perfectly with both file formats as well as components themselves. Using SIL files may
be convenient when using any Version Control System (VCS), because many of them
can operate only with textual files. Also you may consider using SIL file during
development under VCS and convert it to SIB right before release of your project. SIB
files provide much more internal data integrity checks and are much more stable than
SIL files.

The following ways are available for loading translations from external files during run-
time:

1. Set TsiLangDispatcher property FileName to your SIL/SIB file. This is the
easiest and the most convenient way. In this case dispatcher will automatically
load this file into all TsiLang components “linked” to it when needed.

Note: Be sure to check the path settings for FileName property when using
this method.

2. Manually load translations at run-time into components. The following methods
could be used to load SIL file:

 LoadAllFromFile () - loads all translations for current form from file.

 LoadAllFromFileDNC () - loads all translations for current form from file
and doesn’t update translations in UI controls.

 LoadFromFile () - loads specified property from file.

 LoadLanguage () - loads specified language from file.

 LoadLanguageByExt () - loads specified language into ExtendedTranslations
property from file.

 LoadLanguageByProp () - loads specified language into selected property
from file.

 LoadExtendedFromFile () - loads ExtendedTranslations property from file.

The following methods could be used to load SIB file:

 LoadAllFromBinaryFile () - loads all translations for current form from file.

 LoadPropFromBinaryFile () - loads specified property from file.



TsiLang® Components Suite Developer’s Guide

39

 LoadAllFromBinaryStream () – loads all translation for current form from
binary stream.

TsiLang® Components Suite Developer’s Guide

40

Using Exclude from Translations Editor

It is very good practice to exclude untranslatable components and properties from
translations. Please read Exclude not used components and properties topic from
Tips and Tricks section for common tips for excluding components and properties
from translations.

Using Exclude from Translations Editor you can exclude any component or
component’s properties from your form at one place. At the left side of the window you
have components tree and properties tree. Properties tree updated each time you select
any specific component. Use Sorted button to make a list sorted alphabetically; button
Clear All will clear all lists; Clear- clears current list and Delete- deletes selected item
from current list.

The Editor has three “working modes”:

Components to Exclude

This mode is used to exclude whole components from translations. Switch to
Components to Exclude mode by clicking on Components tab in the right side of
the window. To add component to exclusion list simple select it in components tree or
in components combo-box and click Add Component button. Additionally, you can
add type of the selected component to exclude using All <Type Name>
Components. This command will force TsiLang to skip all components of specified
type. Add Child Controls command will add all child controls of the selected
component to the exclusion list. Also you can use Add All having <Property Name>
command to add all components that have property called the same as selected in
Available Properties tree.

TsiLang® Components Suite Developer’s Guide

41

Figure 15 Exclude components from translations

All these commands are also available in components tree’s popup-menu.

Properties to Exclude

This mode is used to exclude properties for all components by property name. Switch to
Properties to Exclude mode by clicking on Properties tab in the right side of the
window. To add particular property name to exclusion list select it in the properties tree
and click Add Property button. When adding property name like Caption, Hint or
others included into TsiLang’s standard properties it will be displayed in red and bold
indicating that the respective list of TsiLang will be empty at all. To add all properties of
particular type click Add by Type command and specify property type to exclude. You
can also use just a part of the type name and Editor will add all properties with type
containing provided value. Use Add all <Type Name> Properties command to add
all properties with the same type as selected one. This could be useful, for example,
when it is needed to exclude all properties of Char type like PasswordChar and others.
Use Add by Name command to add all properties with the name containing the
specified value. All these commands are also available in the properties tree’s popup-
menu.

TsiLang® Components Suite Developer’s Guide

42

Figure 16 Exclude properties from translations

You can also add some particular properties to Default list. Default list is stored and
can be used later for other forms and projects. Default list operations are available
through properties list popup-menu and Default toolbar button’s drop-down menu.
Use Add to Default List command to add selected property to Default list. To insert
some property from Default list use Insert from Default List command and select
needed property or use Insert All to insert all not yet included properties to the list.
Activate Auto-save Default List option available in Default menu to automatically
save Default list on any changing. Save Default List command saves Default list to
registry.

Component’s Properties to Exclude

This mode is used to exclude particular properties for specified components. Switch
to Components’ Properties to Exclude mode by clicking on Components’
Properties tab in the right side of the window. To add particular component’s
property name to exclusion list select it in properties tree and click Add Property
button. To add all components’ properties of particular type click Add by Type
command and specify property type to exclude. You can also use just a part of the
type name and Editor will add all properties with type containing provided value.
Use Add all <Type Name> Properties command to add all components’
properties with the same type as selected one. Use Add by Name command to add

TsiLang® Components Suite Developer’s Guide

43

all properties with the name containing the specified value. All these commands are
also available in properties tree’s popup-menu.

Figure 17 Exclude components’ properties from translations

TsiLang® Components Suite Developer’s Guide

44

FireMonkey Support

TsiLang Components Suite version 7.0 introduced FireMonkey (all versions)
support.

Note: Please note the following while using TsiLang components in
FireMonkey projects:

 FMX global conditional define is required to build TsiLang units under

FireMonkey projects. If you just link pre-compiled TsiLang units to your
FireMonkey project this define is not required.

Figure 18 Add FMX define when building Firemonkey projects

 OS dialogs such as File Open/Save, Print and other can't be translated.

 FireMonkey 2 and later displays message dialog boxes (such as
ShowMessage(), MessageDlg()) using OS's API and doesn't allow to
interact to UI controls on these dialogs. This is the reason why TsiLang
is unable to translate them.

 Only the following components available under FireMonkey applications:
TsiLang, TsiLangLinked and TsiLangDispatcher. Since other
components designed for specific tasks which are applicable only under
Windows OS.

 Compiled units (DCU) are provided ONLY for Win32, Win64,
Android, Android64, Linux64 and OSX32 platforms. If you need to



TsiLang® Components Suite Developer’s Guide

45

build your projects for other target platforms you will need to re-build
your project using sources of TsiLang Components Suite units.

 To compile your FireMonkey projects with compiled units of TsiLang
components you need to add path to TsiLang DCUs to your project's
search path. For example, while building project for OSX32 platform
under Delphi XE 4 add {TsiLang Folder}\Units\ERS XE4\OSX32
folder. For building Win32 project add {TsiLang Folder}\Units\ERS
XE4\Win32\FMX folder to project's search path settings.

 Disable FMX define if you build for Linux64 target platform. It is not
used while building for Linux64.

TsiLang® Components Suite Developer’s Guide

46

Linux Support

Starting since version 7.8 TsiLang Components Suite introduced Linux support for
RAD Studio 10.3.2 and later.

Figure 19 Translated application with TsiLang under Linux

You can use TsiLang components when building Linux applications in either
FireMonkey or regular applications. If you use FireMonkey and FmxLinux to build
visual Linux application don't define FMX define for Linux platform in case you use
sources of TsiLang units.

TsiLang® Components Suite Developer’s Guide

47

Using Translation Memory

Translation Memory helps translating at run-time items that might be translated onto
one form but are not translated on other. For example you have translation for "Open"
string in Dialogs property of one of the TsiLang components and you have a button on
some other form with the same caption but it is not translated on this form. If
Translation Memory is active then TsiLang will try to translate the untranslated button
caption with the translation from another similar entry.

Translation Memory is accessible only at run-time. TranslationMemoryOptions
property of TsiLangDispatcher configures the behavior for Translation Memory.

 TranslationMemoryOptions.Active - set this to True to enable Translation
Memory at run-time.

 TranslationMemoryOptions.AutoUseForComponents - set this to True to
enable auto-translation of untranslated items at run-time.

 TranslationMemoryOptions.ReturnEmptyForUntranslated - set this to
True if you wish the TranslationMemory() method to return empty for
untranslated items. Otherwise it will return the BaseValue.

TsiLangDispatcher's method TranslationMemory() is used to translate items at run-time
using Translation Memory.

function TranslationMemory(const BaseValue,

TargetLanguageName: string; var Translation: string):

Boolean;

You can use this method to try to translate items added/created at run-time using
Translation Memory.

 BaseValue - the value that needs to be translated. BaseValue is value in "base
language" (the first one in the list of TsiLangDispatcher's languages).

 TargetLanguageName - the name of the target language.

 Translation - the result of translation. If there is no translation found then this
will be empty if TranslationMemoryOptions.ReturnEmptyForUntranslated set
to True or the BaseValue otherwise.

 Return value - True if translation was found and False otherwise.

Note: using Translation Memory will slow down the first loading of the form
at run-time as it will add translations into the memory. 

TsiLang® Components Suite Developer’s Guide

48

External Tools

Dictionary Manager

TsiLang Dictionary Manager is a powerful tool, which dramatically accelerates the
translation process for several applications with the common vocabulary. TsiLang
Translation Editor is connected with TsiLang Dictionary Manager via COM interface
and can easily import necessary translations from the TsiLang Dictionary Manager and
insert them in the places you want. Necessary translations can be exported to the
TsiLang Dictionary Manager as well. The idea of Dictionary Manager is to accumulate all
the translations from your different projects and to use them instantly exactly where it is
needed.

Figure 20 Dictionary Manager

Screenshot above illustrates the Dictionary Manager completed with possible
translations.

You can use Dictionary Manager from TsiLang Translation Editor and SIL Editor.

Chapter

4

TsiLang® Components Suite Developer’s Guide

To launch automatic translation of current cell click the Find Translation button.

Button Auto Translate will start automatic translations of all empty cells. To add

translations to dictionary use Add All button on toolbar.

From the Dictionary Manager you can export dictionary content to the widely spread file
formats: (*.html, *.htm, *.xml, *.csv, *.doc, *.xls, or import the dictionary content from
the files of all above mentioned formats.

Export/Import features of the Dictionary Manager allow you to organize the work of
project translators in the best way making possible usage of convenient widely spread
word processors.

Note: You can distribute Dictionary Manager to your translators absolutely
free.

Dictionary Manager Automation Server

Some Dictionary Manager methods can be accessed via COM interface. Dictionary
Manager’s COM server embedded into application provides this possibility. You can
import COM server type library using “Projects-> Import Type Library -> dicmngr"
from the main Borland C++ Builder or Borland Delphi menu. The files
“dicmngr_TLB.cpp” and “dicmngr_TLB.h” will be included in your project. The
following Dictionary Manager’s COM server's methods are available:

Table 1 Dictionary Manager Automation Server

Nr Interface Description

1. virtual HRESULT STDMETHODCALLTYPE

OpenFile(

BSTR FileName/*[in]*/,

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [1]

Loads *.dic file with the
name FileName into the
Dictionary Manager.

Value parameter is
reserved.

2. virtual HRESULT STDMETHODCALLTYPE

GetDefaultDict(

BSTR* Value/*[out,retval]*/) = 0; //

[2]

Returns in Value the name
of the file, from which the
dictionary will be taken by
default

3. virtual HRESULT STDMETHODCALLTYPE

Save(

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [3]

Saves dictionary in the file,
from which data were
taken.

4. virtual HRESULT STDMETHODCALLTYPE

Clear(void) = 0; // [4]

Clears the dictionary



TsiLang® Components Suite Developer’s Guide

Nr Interface Description

5. virtual HRESULT STDMETHODCALLTYPE

IsStrIncluded(

BSTR AStr/*[in]*/,

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [5]

Searches for the string AStr
in the dictionary, Value is
set to true if desired string
is found, to false otherwise.

6. virtual HRESULT STDMETHODCALLTYPE

GetTranslation(

BSTR BaseLang/*[in]*/,

BSTR ActLang/*[in]*/,

BSTR Item/*[in]*/,

BSTR* Value/*[out,retval]*/) = 0; //

[6]

The translation of the Item
given by the language
BaseLang is searched in the
dictionary for the language
ActLang. The string found
is returned in the Value
parameter. In the case if the
translation was not found,
an empty string in Value is
returned.

7. virtual HRESULT STDMETHODCALLTYPE

AddLanguage(

BSTR LangName/*[in]*/) = 0; // [7]

Adds language with the
name LangName into the
dictionary

8. virtual HRESULT STDMETHODCALLTYPE

RemoveLanguage(

BSTR LangName/*[in]*/) = 0; // [8]

Removes language with the
name LangName from the
dictionary

9. virtual HRESULT STDMETHODCALLTYPE

IsVisible(

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [10]

Checks if the Dictionary
Manager is visible at the
desktop. Returns true if
visible, otherwise false.

10. virtual HRESULT STDMETHODCALLTYPE

SetVisible(

TOLEBOOL Value/*[in]*/) = 0; // [11]

Makes the Dictionary
Manager visible at the
desktop.

11. virtual HRESULT STDMETHODCALLTYPE

IndexOfLang(

BSTR LangName/*[in]*/,

short* Value/*[out,retval]*/) = 0; //

[12]

Returns language index in
the Value, based on the
language name LangName.

12. virtual HRESULT STDMETHODCALLTYPE

AddTranslation(

BSTR BaseLang/*[in]*/,

BSTR ActLang/*[in]*/,

BSTR BaseItem/*[in]*/,

BSTR ActItem/*[in]*/,

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [13]

Adds translation ActItem
for the string BaseItem into
the dictionary with respect
to correspondent pair of
languages BaseLang and
ActLang.

TsiLang® Components Suite Developer’s Guide

51

SIL Editor

SIL Editor is a convenient tool for *.sil and *.sib files modification. The tool is
designated for convenient work of project translator, who is not obliged to install
Borland Delphi or C++ Builder with the only purpose of introducing translations into
the TsiLang component and as a consequence he/she is not obliged to pay license for
Borland software. Now translator can use only TsiLang files editor in order to work with
.sil (.sib) files exactly in the way it is done in TsiLang component editor.

Figure 21 SIL Editor

When the translator finishes his work, he provides the software developer with the *.sil
(*.sib) file, containing project translation which can be loaded into the project using
TsiLang Expert. Standard text editor features are integrated here as well, such as cut,
copy and paste, find, replace, save, print, etc.

From the SIL Editor you can export translation information to widely spread file
formats: (*.html, *.htm, *.csv, *.doc, *.xls), or import the translation information from
the files of all above mentioned formats. Additionally, there is realized Merge Wizard,

so you can combine translations from several SIL/SIB files.

In case you want to work with the selected properties rather than with all of
them, you can temporary suppress some properties in order not to be displayed
in the editor screen. When saving modified translations in the *.sil (*.sib) file all
hidden properties will be saved as well however.

In case you want to protect some columns from being occasionally modified
you can use “Fixed languages” option of SIL Editor. Columns, belonging to the
languages chosen will be displayed with no possibility for being modified.

Displayed
Properties

Fixed
Languages

TsiLang® Components Suite Developer’s Guide

52

Note: You can distribute SIL Editor to your translators absolutely free.

Automation Server

Some SIL Editor methods can be accessed via COM interface. This possibility is
provided by SIL Editor’s COM server embedded into SIL Editor application. You can
import COM server type library using “Projects | Import Type Library | SILEditor”
from the main Borland C++Builder or Borland Delphi menu. The files
“SILEditor_TLB.cpp” and “SILEditor_TLB.h” will be included in your project. The
following SILEditor COM server's methods are available:

Table 2 Methods of SIL Editor Automation Server

Nr Interface Description

1. virtual HRESULT STDMETHODCALLTYPE

EditFile(

BSTR AFileName/*[in]*/,

BSTR PropName/*[in,def]*/,

TOLEBOOL DoPrompt/*[in,def]*/,

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [1]

Loads new file with the
name AFileName into the
editor. Default property is
set to PropName.
DoPrompt indicates
whether or not to prompt
user about modifications
performed before exit.

Value parameter is
reserved.

2. virtual HRESULT STDMETHODCALLTYPE

ShowProperty(

BSTR PropName/*[in,def]*/,

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [2]

Retreives the translations
for the property indicated
in PropName

Value parameter is
reserved.

3. virtual HRESULT STDMETHODCALLTYPE

ExportTo(

BSTR FileName/*[in]*/,

Sileditor_tlb::TExportType

ExportKind/*[in]*/,

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [3]

typedef enum TExportType

{

 etCSV = 0,

 etHTML = 1,

 etDOC = 2,

 etXLS = 3,

 etSIB = 4

} TExportType;

Exports translation
information to the
FileName with respect to
the format given by
ExportKind.

Value parameter is
reserved.



TsiLang® Components Suite Developer’s Guide

53

Nr Interface Description

4. virtual HRESULT STDMETHODCALLTYPE

get_EditingFinished(

TOLEBOOL* Value/*[out,retval]*/) = 0;

// [4]

When editing is finished
Value is set to true,
otherwise false

5. virtual HRESULT STDMETHODCALLTYPE

set_EditingFinished(

TOLEBOOL Value/*[in]*/) = 0; // [4]

Set Value to true if you
want to inform SILEditor
about termination of the
editing process.

TsiLang® Components Suite Developer’s Guide

54

Resource Strings Wizard

Since Version 5.1 TsiLang Components Suite allows handling resource strings of your
project even they are “hidden” somewhere in a .dcu (.obj) file and you don’t have its
source. If you want to display language dependent resource strings in your application,
first, you need to set TsiLang component’s property “HandleResourceStrings” to True
and ResourceLanguageIndex to value that corresponds to resource language number in
TsiLang LangNames property index.

How it works? Every time a resource string is about to be used in application the one of
the following functions LoadStr(), FmtLoadStr() or LoadResString() is implicitly
called. But if TsiLang property HandleResourceStrings is True, any resource string
before loading will be replaced by its translation corresponding to the active language of
the TsiLang.

Second, you need add resource strings that should be translated to “Strings” list of
TsiLang component. The simplest way to do both steps is to use “Resource Strings”
wizard that supplied along with TsiLang Components Suite. This is a standalone
application but also can be launched from the TsiLang Expert’s menu Tools | Wizards
| PE Import.

Let’s go through the process with “Resource Strings Wizard”. Open the wizard:

Figure 22 Resource Strings Wizard - Step 1

On the first step you need to select an executable that stores resource strings (if the
wizard is launched from TsiLang Expert it is already done).

Adjust available options to configure Wizard’s behavior.

TsiLang® Components Suite Developer’s Guide

55

Figure 23 Resource Strings Wizard - Step 2

On the second step you need to specify a unit with a TsiLang component that will hold
imported strings. After that you can translate those strings by the same way as other
hard-coded strings in TsiLang Translation Editor.

Figure 24 Resource Strings Wizard - Step 3

And at last, you select all resource strings that should be handled by a TsiLang
component. Most of them are never displayed so we recommend importing only really
needed strings. The source code of your application doesn’t need any modifications.

TsiLang® Components Suite Developer’s Guide

56

Translate resource strings by ID

Version 6.0 of TsiLang Components Suite has introduced the ability to translate
resource strings by their identifier not by their value. This is very useful for resource
strings that were added to the project resources not from Delphi or C++Builder units
but from your own RC or RES files.

Note: This is not applicable for resource strings created with
resourcestring keyword.

When using resourcestring keyword Delphi’s compiler changes resource string

identifier every time you re-build your application and usually assigned identifiers are at
the highest limit of resource string identifiers (the maximum allowed identifier for
resource string is 65535 (0xFFFF or $FFFF in HEX)). But when you explicitly use the
RC or RES files in your application the resource identifiers used will be kept
permanently.

Unit SiComp has the HighestInternalResourceID global variable that helps you to
translate resource strings by their identifier instead of value. Initially its value is set to 0
and this indicates to translate all resource strings (if required) by value. But you can set it
to the highest value of your resource string identifier in order to translate your strings by
identifier. For example, if your highest identifier is 999 set it to this value and all resource
strings with identifier less or equal to 999 will be translated by identifier and others by
their values as usually.

This is very useful in cases when you use in your resource strings different translations
for the same base phrase. For example, in some cases the same English phrase like File
can be translated differently for menu item caption and for document term or other.
Using translation by identifier will help you in such cases but translation by value will
always return first occurrence of File in translations string.



TsiLang® Components Suite Developer’s Guide

57

Components Reference

Core Components

The core components group includes the following components:

 TsiCustomLang Descendants:

o TsiLang

o TsiLangLinked

o TsiLangRT

o TsiLangRTSE

o TsiLangTLV

 TsiLangDispatcher

Below you will find a comprehensive list of the above components’ properties, methods,
and events.

TsiLang

Most of properties and methods for all TsiLang types are implemented in the base class
“TsiCustomLang” and therefore are common. The TsiLang has no additional properties

or methods in comparison to the TsiCustomLang but only publishes the
relevant ones.

The TsiLang (TsiCustomLang) properties can be grouped as follows:

Table 3 TsiLang translation-aware properties

Property Name Data Type Description

Captions TStrings Keeps translation information for Captions

DisplayLabels TStrings Keeps translation information for DisplayLabels

Chapter

5

Properties

TsiLang® Components Suite Developer’s Guide

Property Name Data Type Description

ExtendedTranslations TsiExtendedItems This property allows to include in translation list
not only strings but any other properties that can
affect on visual appearance of controls, for
example, such properties as width or height. From
the other hand some composite components such
as TLabeledEdit contain child components whose
string properties cannot be translated by usual way.
The ExtendedTranslations property allows to
process composite components too.

Hints TStrings Keeps translation information for Hints

Strings TStrings Keeps translation information for text strings

Fonts TStrings Keeps translation information for font names

Charsets TStrings This property contains char set values for all
components. You shall set them up only in the case
if you need to change any char set of the
component, when language is being changed.

Multilines TStrings Keeps translation information for Memo-like texts

DlgsCaptions TStrings Keeps translation information for dialog captions

OtherStrings TStrings Keeps translation information for Edit’s text,
ImeName and other information

Locales TStrings Keeps translation information for local settings
(date and time format, money format, etc.)

Collections TStrings Keeps translation information for collections

Table 4 TsiLang behavior-aware properties

Property Name Data
Type

Description

ActiveLanguage Integer Range: [1-NumOfLanguages]. By setting this property to
the desired value, you force the TsiLang to retrieve
necessary text translations from its translation-aware
properties and to apply them to all the components in
your form for which respective translation-aware
properties were created.

AutoSkipEmpties Boolean If True TsiLang will automatically skip components
which have no translations defined for any language.

TsiLang® Components Suite Developer’s Guide

Property Name Data
Type

Description

ChangeLocales Boolean This property indicates whether system local constants
should be changed or not when new user interface
language is being selected.

DefaultLanguage Integer Use this property to indicate which language shall be used
as "default" when you use UseDefaultLanguage set to
True. “Default” language is necessary when using
methods like GetTextOrDefault or component has
empty translation for active language but TranslateType
property is set to ttGetDefault.

DoNotTranslate TStrings

DoNotTranslate property contains the list of component
names that shouldn't be translated. It is useful if you want
to exclude some components from translation list for
decreasing the translation speed

ExcludedProperties TStrings This property contains names of properties that should
be excluded from translation. For example, here could be
included TNotebook.ActivePage property.

HandleResourceStrings Boolean If this property is True any resource string of the module
is replaced with its translation after string is loaded.

LangNames TStrings Language names, ex: English, German, etc.

Language String The same as ActiveLanguage but uses the values from
LangNames rather then integer constants.

NumOfLanguages Integer Indicates the total number of languages for which
translation is possible to be done.

SmartExcludeProps TStrings This property contains list of specified component
properties that should be excluded from translation. For
example, it is necessary sometimes to exclude the Text
property of some edit components.

TranslateExtendedFirst Boolean Indicates to change language for ExtendedTranslations
before other properties. This is useful in some rare cases.

UseDefaultLanguage Boolean UseDefaultLanguage property indicates if TsiLang
component to use translations specified for
DefaultLanguage as values if no translation available for
current language. This is very useful if your translations
for some language are not complete and you wish to use
values from other language as translation for missing
items.

TsiLang® Components Suite Developer’s Guide

Table 5 Other properties of TsiLang

Property Name Data Type Description

ChangingCursor TCursor This property allows changing the
application's cursor during switching
languages.

DoRaiseExceptions Boolean Allows raising exceptions on using
GetText method with string identifier
that is not included in component.

IsInheritedOwner Boolean This property is introduced to inform
TsiLang component that it is placed on
inherited form/module or frame for
better handling inherited modules. Set it
to True for all TsiLang components
that are placed on inherited modules.

LangDelim Byte This property indicates the symbol that
is used in order to separate translations
stored in TsiLang. The default value is
1.

LangDispatcher TsiLangDispatcher This property contains a reference to
the TsiLangDispatcher component.
When this property is not empty then
TsiLangDispatcher manages the
language changing. So, if you have
several forms you can set up this
property for each TsiLang per form to
the same TsiLangDispatcher
component and manipulate the
properties of TsiLangDispatcher
"NumOfLanguages" and
"ActiveLanguage". When you will
change "ActiveLanguage" property of
TsiLangDispatcher it will change this
property for all TsiLang components
linked with it.

NeedAllDlgs Boolean Specifies TsiLang to maintain list for all
dialog captions including strings for
dialogs like TOpenDialog, TSaveDialog
and others.

TsiLang® Components Suite Developer’s Guide

Property Name Data Type Description

Options TsiLangOption;

TsiLangOption =
(loUseExtUDStrings,
loUseExtCommonStrings);

Options property indicates how to
share translations for specified
properties.

loUseExtUDStrings- invokes the
search for specified user defined string
translation through other TsiLangs.

loUseExtCommonStrings- invokes the
search for translation of Dialogs or
Locales properties through other
TsiLangs.

The search is done through all
TsiLangs that have the LangDispatcher
property pointed to the same
TsiLangDispatcher component. In the
case if LangDispatcher property is nil
no searching will be performed.

TranslateType TTranslateType;

TTranslateType =
(ttNoChange, ttGetDefault);

This property indicates how to translate
non-translated items in user interface. If
this property value is ttNoChange then
UI item's property such as caption, title,
etc. is not changed when no
translations are available for the current
language. The ttGetDefault indicates
that the value for the first language will
be used (default value).

TsiLang® Components Suite Developer’s Guide

Property Name Data Type Description

OnlineTranslation TOnlineTranslateOptions =
class(TPersistent)
 published
 property
AutoTranslateEmptyItems:
Boolean;
 property
BaseLanguageIndex:
Integer;
 property
LanguageNamesAreExts:
Boolean;
 property Translator:
TsiInternetTranslator;
 end;

This property is a published property of
TsiCustomLang class which makes it
available for all its descendants such as
TsiLang, TsiLangLinked etc. Use this
property if you wish to get on-line
translations for untranslated items in
TsiLang translations. Assign Translator
property to any configured
TsiInternetTranslator component, set
BaseLanguageIndex to the index of
language that will be used as base for
translations and set
AutoTranslateEmptyItems to True to
force TsiLang to try to get on-line
translations for untranslated items
during language changing. Language
names from LangNames property of
TsiLang component will be used to get
the on-line translations. So be sure that
language names in TsiLang component
are matched with names from
CurrentServiceLanguages list of
TsiInternetTranslator component. In
case language names in TsiLang
component are just languages'
extensions then set
LanguageNamesAreExts property to
True.

 function AddString(TextID: string; const AStrings: array
of string): boolean;

AddString method adds string constants AStrings to Strings property with ID equal
to TextID. This method can be used for existing constants editing. The method
replaces old constants with new ones in the case if TextID is the same. Returns True
if method finished successfully otherwise False.

 function DeleteString(TextID: string): boolean;
DeleteString method removes constants with ID equal to TextID. Returns True if
method finished successfully otherwise False.

 procedure ReplaceStringValue(AStrings: pStrings; Value,
AName: string; ALang: integer); virtual;
ReplaceStringValue method is used for run-time translations replacement.
AStrings: pointer to TsiLang TStrings property. For ex. "@siLang1.Captions".
Value: string value that should be placed into the translations list.
AName: string identifier of the translation. For instance, for the following properties
such as Captions, Hints, etc. this value represents the name of the component that

Methods

TsiLang® Components Suite Developer’s Guide

should be translated.
ALang: language number the Value (translation) is associated with.

 function GetText(const TextID: string): string;
GetText method returns string constant by TextID depending on ActiveLanguage
property.

 function GetTextOrDefault(const TextID: string): string;
GetTextDefault method returns string constant by TextID depending on
ActiveLanguage property. If there is no translation for TextID in active language the
return value is taken for default language (number 1).

 function GetTextC(TextID: string): PChar;

function GetTextOrDefaultC(TextID: string): PChar;

function GetTextW(const TextID: string): WideString;

function GetTextOrDefaultW(const TextID: string): WideString;

function GetTextOrDefined(const TextID: string; const

ADefined: Integer): string;

function GetTextOrDefinedW(const TextID: string; const

ADefined: Integer): WideString;

Methods with C postfix are useful for C++Builder programmers since most
methods in C++ expect char * (PChar) as input. Methods wih W postfix are useful
for creating Unicode applications since they return WideString as result.

Note: AnsiString returned by TsiLang is converted to the WideString using
Charset settings for current language. So be sure if you use these methods
you have specified Charset settings for each language, otherwise the

conversion may be incorrect.

GetTextOrDefined works the same as GetTextOrDefault but returns the value
for ADefined language in case no translation for active language available.

 function GetTextByInt(ID: Integer): string;
GetTextByInt method returns string constant by ID from "Strings" property
depending on ActiveLanguage property. The difference between GetText and
GetTextByInt is so, that the later uses an integer value as an input parameter. Integer
IDs for "Strings" property should be introduced prior to method invocation.

 function LoadStringsFromFile(AFileName: string;
CanRewrite: boolean): integer;



Methods to
work with SIL
files

TsiLang® Components Suite Developer’s Guide

LoadStringsFromFile method loads string constants from file AFileName.
CanRewrite indicates desired action to be done: append or rewrite string constants.
Return value is equal to the count of loaded strings if no error, otherwise it is equal
to 1.

 function LoadFromFile(PropType: TStringsType; AFileName:
string; CanRewrite: boolean): integer;

LoadFromFile method loads property defined by PropType from the file named
AFileName. In the case if CanRewrite is set to True then the translation information
stored in PropType property will be removed. Otherwise, if CanRewrite is set to
False then the translation information stored in the file AFileName will be added to
the end of the translation list. With CanRewrite set to True you should not
obligatory delete all previous translation information if you want to use new
translations. Otherwise (when CanRewrite is set to False) you should be aware of the
fact that if there are several translation strings for the component with the same
name (for ex. "Label1"), then the first translation string found will be used for the
following translation. If you want to avoid this situation you should delete old
translation information prior to LoadFromFile invocation.

 procedure LoadAllFromFile(AFileName: string; CanRewrite:
boolean);

LoadAllFromFile method loads all TsiLang properties (Captions, Hints, Font etc.)
from the file named AFileName and if CanRewrite is set to True then all translation
information will be removed before loading translations from file.

 function SaveStringsToFile(AFileName: string; Delimiter:
char): integer;
SaveStringsToFile method saves Strings property in the file AFileName. Delimiter
symbol is used in order to separate string constants of different languages. Return
value is equal to the count of saved strings or -1 if any error occurs.

 function SaveToFile(PropType: TStringsType; AFileName:
string; Delimiter: string): integer;

 SaveToFile method saves property defined by PropType in the file named
AFileName and uses the delimiter defined by Delimiter. Delimiter is used in order to
separate strings, written in different languages. Beginning from version 4.9.1 the
string can be used as a delimiter instead of the single char as it was done in the earlier
versions.

 procedure SaveAllToFile(AFileName: string; Delimiter:
string);

SaveAllToFile method saves all TsiLang properties (like Captions, Hints, Fonts and
etc.) in the file named AFileName and uses delimiter defined by Delimiter in order
to separate strings in different languages.

 function MergeFromFile(PropType: TStringsType; AFileName:
string): boolean;

MergeFromFile method merges the translation information stored in the file named
AFileName to the property defined by PropType.
Method reads string translations from the file and adds them to the end of the

TsiLang® Components Suite Developer’s Guide

respective list in the PropType property. In the case if the file AFileName does not
contain the complete set of translations for any of the components, then missing
information is taken from TsiLang.
The return value is set to True if merging was done successfully; otherwise it is set to
False.

 function MergeAllFromFile(AFileName: string): boolean;
MergeAllFromFile method executes MergeFromFile method for all TsiLang
properties (Captions, Hints, Font etc.) from the file named AFileName. The return
value is set to True if merging was done successfully otherwise it is set to False.

 procedure LoadAllFromFileDNC(AFileName: string; CanRewrite:
boolean);

LoadAllFromFileDNC method is similar to LoadAllFromFile method except the
fact that it does not change the language that is currently active after loading.

 function MergeAllFromFileDNC(AFileName: string): boolean;
MergeAllFromFileDNC method is similar to MergeAllFromFile method except the
fact that it doesn't change language after merging.

 procedure LoadExtendedFromFile(const FileName: Tstring; const
CanRewrite: boolean);

LoadExtendedFromFile method loads ExtendedTranslations from the file named
AFileName. In the case if CanRewrite is set to True then the translation information
stored in ExtendedTranslations property will be removed

 procedure SaveExtendedToFile(const FileName, Delimiter:
TString);

SaveExtendedToFile method saves TsiLang ExtendedTranslations property in the
file named AFileName and uses delimiter defined by Delimiter in order to separate
translations in different languages.

 procedure LoadLanguageByProp(PropType: TStringsType; const

AFileName: Tstring; const LangName: Tstring);

Loads specified language LangName into property specified by PropType.

 procedure LoadLanguageByExt(const AFileName: Tstring; const

LangName: Tstring);

Loads language LangName into extended translations.

 procedure LoadLanguage(const AFileName: Tstring; const

LangName: Tstring);

Loads specified language from the external file.

 procedure LoadPropFromBinaryFile(PropType:

TStringsType; const FileName: string);

Loads selected property from binary (SIB) file.

 procedure LoadAllFromBinaryFile(const FileName: string);

Loads all translations from binary file.

Methods to
work with SIB
files

TsiLang® Components Suite Developer’s Guide

 procedure LoadAllFromBinaryStream(AStream: TStream);
Loads all translations from binary stream. Can be used to load translation from the
different storage like database and so on.

 procedure SaveAllToBinaryFile(const FileName: string);

Saves all translations into binary file.

Methods listed below are the same as above except they use stream to load or save
translations. Please not the stream format must be SIL format.

 function LoadFromStream(PropType: TStringsType;

AStream: TStream; CanRewrite: Boolean): Integer;

 function SaveToStream(PropType: TStringsType; AStream:

TStream; const Delimiter: Tstring): Integer;

 procedure LoadAllFromStream(AStream: TStream; CanRewrite:

Boolean);

 procedure SaveAllToStream(AStream: TStream; const Delimiter:

Tstring);

 procedure LoadExtendedFromStream(const AStream: TStream;

const CanRewrite: Boolean);

 procedure SaveExtendedToStream(const AStream: TStream; const

Delimiter: Tstring);

 function MergeFromStream(const PropType: TStringsType; const

AStream: TStream): Boolean;

 function MergeAllFromStream(AStream: TStream): Boolean;

 function MergeAllFromStreamDNC(AStream: TStream): Boolean;

Methods listed below are the replacements of the standard Delphi or C++ Builder
methods, which are generally the same, excluding the fact that button caption values are

taken from the translation data.

 function InputBox(const ACaption, APrompt, ADefault:
string): string;

 function InputQuery(const ACaption, APrompt: string;
var Value: string): Boolean;

 function MessageDlg(const Msg: string; DlgType: TMsgDlgType;
Buttons: TMsgDlgButtons; HelpCtx: Longint; const DefaultBtn:

TMsgDlgBtn = mbOK; const CancelBtn: TMsgDlgBtn = mbCancel):

Integer;

 function MessageDlgPos(const Msg: string; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons; HelpCtx: Longint; X, Y:

Methods to
work with
streams

Methods to
work with
message boxes

TsiLang® Components Suite Developer’s Guide

Integer; const DefaultBtn: TMsgDlgBtn = mbOK; const

CancelBtn: TMsgDlgBtn = mbCancel): Integer;

 function MessageDlgPosHelp(const Msg: string; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons; HelpCtx: Longint; X, Y:

Integer; const HelpFileName: string; const DefaultBtn:

TMsgDlgBtn = mbOK; const CancelBtn: TMsgDlgBtn = mbCancel):

Integer;

 procedure ShowMessage(const Msg: string);

 procedure ShowMessageFmt(const Msg: string; Params: array of
const);

 procedure ShowMessagePos(const Msg: string; X, Y: Integer);

 function CreateMessageDialog(const Msg: Tstring; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons; const DefaultBtn:

TMsgDlgBtn = mbOK; const CancelBtn: TMsgDlgBtn = mbCancel):

TForm;

 function MessageDlgTimeOut(const Msg: Tstring; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons; HelpCtx: Longint; const

DefaultBtn: TMsgDlgBtn = mbOK; const CancelBtn: TMsgDlgBtn =

mbCancel; const TimeOutms: Cardinal = 0): Integer;

 function MessageDlgPosTimeOut(const Msg: Tstring; DlgType:

TMsgDlgType; Buttons: TMsgDlgButtons; HelpCtx: Longint; X, Y:

Integer; const DefaultBtn: TMsgDlgBtn = mbOK; const

CancelBtn: TMsgDlgBtn = mbCancel; const TimeOutms: Cardinal =

0): Integer;

 function MessageDlgPosHelpTimeOut(const Msg: Tstring;

DlgType: TMsgDlgType; Buttons: TMsgDlgButtons; HelpCtx:

Longint; X, Y: Integer; const HelpFileName: Tstring; const

DefaultBtn: TMsgDlgBtn = mbOK; const CancelBtn: TMsgDlgBtn =

mbCancel; const TimeOutms: Cardinal = 0): Integer;

TimeOut methods are the extension of the respective MessageDlg methods with
time-out functionality. The message box will be closed automatically after TimeOutms
milliseconds expire. The return value will be respective to the DefaultBtn parameter. If
there is no button equal to DefaultBtn then the mrTimeOut(32000) value will be

returned.

 procedure MoveLanguage(const FromIndex, ToIndex:

Integer);

Moves language from FromIndex to ToIndex.

 procedure InsertLanguage(const Index: Integer; const

ALanguage: string);

Inserts new language with name ALanguage into Index position.

Other methods

TsiLang® Components Suite Developer’s Guide

 procedure GetLanguageNamesFromFile(const FileName: string;

const LanguageList: TStrings);

Gets available language names in SIL or SIB file into LanguageList list.

Table 6 TsiLang events

Event Name Type Description

OnChangeLanguage procedure (Sender:

TObject)

Fired every time after active
language changed.

OnLanguageChanging procedure (Sender:

TObject; const

NewLanguage:

Integer; var

AllowChange:

Boolean)

Fired every time before language
change. Set AllowChange to False
to cancel change.

OnExtendedChanging procedure (Sender:

TObject; const

NewLanguage:

Integer; const Item:

TsiExtendedItem; var

NewValue: string)

Fired every time the value of
extended item is going to change.

TsiLangLinked

In order to achieve better performance and to reduce memory usage as well as the size
of application file it is better to use TsiLangLinked component. It is “linked” with the
existing TsiLang component and shares with it the translation information that is
potentially common for the several forms in your application (see the scheme below).

The difference between “TsiLang” and “TsiLangLinked” is that the properties
“DlgsCaptions” and “Locales” are run-time only in TsiLangLinked while they are
design-time properties in TsiLang class.

Table 7 TsiLangLinked specific properties

Property Name Data Type Description

CommonContainer TsiCustom
Lang

Indicates the component to be used in order to retrieve
information about project wide strings such as standard
dialog strings and locales information

TsiLangRT

You know already that it is enough to use TsiLang in order to internationalize your
application, but to do this you must involve a person who knows well the foreign
language your project is translated to. Sometimes it is difficult or inconvenient to do and
in this case you can delegate the translation of your project to your end-level user. This is

Events

TsiLang® Components Suite Developer’s Guide

possible to perform using TsiLangRT (TsiLang Run-Time). For allowing end-user to
translate text strings from your form you must use EditAll() method. Unit siLangRT
contains two global variables that could be used for providing your end-user the
localized version of Translations Editor:

RT_SILFile- Translations Editor will load its translations from this SIL file if defined
and points to existing SIL file. The initial SIL file for Translations Editor is included
into standard delivery set and called RT.SIL. So you can translate this file and ship it
with your application in order to provide your end-users with localized version of built-
in editor.

RT_ActiveLanguage- Translations Editor will switch to this language if applicable
on activation.

function EditProperty(PropType: TStringsType): Boolean;

“EditProperty” method of TsiLangRT is invoked with appropriate property type as
one of the following:

TStringsType = (stCaptions, stHints, stDisplayLabels, stFonts,

stMultiLines, stDialogs, stStrings, stOther, stLocales,

stCollections, stCharSets, stListView_TreeView_Items);

This method calls built-in property editor, providing end-user with the possibility to
translate text strings by him. You must only take care about the appropriate
internationalization user interface in your application.

function EditAll: Boolean;

Also you might try to use “EditAll” method to perform editing of all translation
properties at once. To translate ExtendedTranslations property you should use
“EditExtended” method.

function EditExtended: Boolean;

All methods above return True when user saved translations on close and False when
user decided to cancel changes.

All properties of TsiLangRT are identical to TsiLang’s ones, except the
following:

Table 8 TsiLangRT specific properties

Property Name Data Type Description

LoadOnCreate Bool
LoadOnCreate property indicates whether or not to load
the translation information stored in the file named
StorageFile on component creating.

StorageDelimiter String
StorageDelimiter property indicates the delimiter to be used
when translation is stored in StorageFile.

Methods

Properties

TsiLang® Components Suite Developer’s Guide

Property Name Data Type Description

StorageFile TFileName
StorageFile property indicates the name of the file, which
keeps the translation information

TsiLangRTSE

TsiLang RTSE component is very similar to TsiLangRT. The difference is in the editor
that is used for translation information modification and in the way of its invocation.
TsiLangRT uses built-in translation editor, whereas TsiLangRTSE uses SIL Editor -
stand-alone application and automation server. While using TsiLangRTSE your
application is communicating with SILEditor via the COM interface.

TsiLangRTSE “EditStrings” method is used instead of “EditProperty” method
(TsiLangRT) in order to invoke automation server (embedded in SIL Editor) for

translation information modification. :

 procedure EditStrings(DefPropty: string; FDelim:
string);

EditStrings method saves all translation stored in itself into SILFile, then
activates automation server object embedded in SIL Editor application for
translating it and after that loads translation information from the file named
SILFile. The DefPropty indicates which property will be activated in SIL Editor
by default. The FDelim parameter indicates the delimiter that will be used for
saving translation in the file.

All properties of TsiLangRTSE are identical to TsiLang’s ones, except the
following:

Table 9 TsiLangRTSE specific properties

Property Name Data Type Description

LoadOnCreate Bool Indicates whether or not to load the translation
information stored in the file named SILFile on
component creating.

SILEditor string Indicates the automation server object name for activating
SIL Editor.

SILFile TFileName Indicates the name of the file, which keeps the translation
information

TsiLangTLV

TsiLangTLV component is an enhanced version of TsiLang component, which
provides you with the possibility of TTreeView and TListView items translation.

Methods

Properties

TsiLang® Components Suite Developer’s Guide

Since TTreeView.Items and TListView.Items are objects, derived from TObject, they
are not supported by RTTI system and TsiLangTLV cannot trace Items modification
such as Items removal and other changes in Items structure. Thus, you can use this
component properly only if you are sure that contents of your TTreeView and
TListView will not be changed at run-time. For editing translation just edit
"ListView_TreeView_Items" property of TsiLangTLV in the same manner as all other

properties of TsiCustomLang descendants.

All properties of TsiLangTLV are identical to TsiLang’s ones, except the
following

Table 10 TsiLangTLV specific properties

Property Name Data
Type

Description

ListView_TreeView_Items TStrings Contains translation information of TTreeView and
TListView items

TsiLangDispatcher

In the case, when your application contains more than one form, you need to use more
than one TsiLang component, because TsiLang component is aware of text strings to be
translated only within the form it is placed at. Thus, each form in your project needs in
one TsiLang component, i.e. the number of TsiLang components in your project should
be equal to the number of forms to be translated in it. When the number of forms is big
enough then it is rather complicated to manipulate and manage all the TsiLang’s
manually. For instance, when you have 12 forms, you should write 12 lines of the above
code in order to change an active language for all forms.

In order not to do it manually and in order not to keep in mind all your TsiLang’s with
their properties, you can delegate TsiLang’s management process to the
TsiLangDispatcher component.

The way of TsiLangDispatcher using is very simple. You must do the following:

 Place TsiLangDispatcher on a form (it should be the Application’s main form or
some DataModule which is “auto-created” and could be accessed from all
project forms);

 Link each of your Application’s TsiLang components with that
TsiLangDispatcher. It can be done easily by setting TsiLangDispatcher property
of TsiLang.

 Set LangNames property of the TsiLangDispatcher by the same way as it
described for a TsiLang component;

Properties

TsiLang® Components Suite Developer’s Guide

 Set ActiveLanguage property of the TsiLangDispatcher;

Every TsiLang component linked with a TsiLangDispatcher component reads the values
of “ActiveLanguage”, “NumOfLanguages” and “LangNames” properties from the latter
one and receives notifications about changing these properties. Therefore it is enough to
perform only one assignment like this:

...

 MainForm.siLangDispatcher1.ActiveLanguage := 3;

...

In order to all Application’s TsiLang components consistently change their
ActiveLanguage property.

 procedure LoadAllFromFile(FileName: string): This
method allows to load the specified file into all TsiLang components linked with
this dispatcher.

 procedure SaveAllToFile(const FileName, Delimiter:
string): This method allows to save the translation content of all TsiLang
components linked to this dispatcher.

 procedure LoadAllFromStream(AStream: TStream): This method
allows to load translations for the specified stream into all TsiLang components
linked with this dispatcher.

 procedure SaveAllToBinaryFile(const FileName: string): This
method allows to save the translation content of all TsiLang components linked
to this dispatcher to binary (SIB) file.

Table 11 TsiLangDispatcher properties

Property Name Data Type Description

ActiveLanguage Integer Range: [1-NumOfLanguages].

Automatically sets ActiveLanguage property of all
TsiLangcomponents, connected with
TsiLangDispatcher

NumOfLanguages Integer Indicates the total number of languages for which
translation is possible to be done.

LangNames TStrings Language names, ex: English, German, etc.

Language String The same as ActiveLanguage, but uses the values
from LangNames rather then integer constants.
Automatically sets Language property of all TsiLang
components, connected with TsiLangDispatcher

Methods

Properties

TsiLang® Components Suite Developer’s Guide

Property Name Data Type Description

Filename String This property contains the name of SIL file that
should be used for loading into all TsiLang
components linked to this dispatcher. It is useful to
use this property when you don't want to call
LoadAllFromFile method directly. When this
property contains value all TsiLang components
linked to this dispatcher even placed on dynamically
created forms will load translations from the specified
file.

SiLangsCount Integer Indicates the amount of TsiLang components linked
with current TsiLangDispatcher.

SiLangs[Index:
Integer]

TsiCustomLang Allows accessing to specified TsiLang component
linked to current TsiLangDispatcher. This property is
useful when you need to perform the loading or
saving for all TsiLangs at once.

TestModeInfo TTestModeInfo Allows to configure and set dispatcher into “Test”
mode. This is useful if you wish to test translations
before the actual translations done. Please see
description of TTestModeInfo type below.

DefaultLanguage Integer Use this property to set DefaultLanguage property for
all TsiLang components linked to this dispatcher.

UseDefaultLanguage Boolean Use this property to set UseDefaultLanguage property
for all TsiLang components linked to this dispatcher.

TranslationMemory
Options

TTranslationMe
moryOptions

TranslationMemoryOptions.Active - set this to True
to enable Translation Memory at run-time.

TranslationMemoryOptions.AutoUseForComponent
s - set this to True to enable auto-translation of
untranslated items at run-time.

TranslationMemoryOptions.ReturnEmptyForUntran
slated - set this to True if you wish the
TranslationMemory() method to return empty for
untranslated items. Otherwise it will return the
BaseValue.

Table 12 TTestModeInfo fields

Property Name Data Type Description

Active Boolean Indicates if test mode is active.

TsiLang® Components Suite Developer’s Guide

Property Name Data Type Description

Kind TTestModeKin
d

Indicates how the initial translation (default
value) will be modified for test mode:
tmkExpandWidth- expand the default value by
ExpandWidthPercent percent.
tmkFlipCase- fLIP cASE for all characters in
the default value.
tmkExpandChars- the default value will be
expanded on ExpandCharsPercent percent
using PaddingChar character.

ExpandWidthPercent Integer Percent value to expand the width of the default
value.

ExpandCharsPercent Integer Percent value to expand the width of the default
value by PaddingChar.

PaddingChar Char Char that will be used for expanding.

Table 13 TsiLangDispatcher events

Event Name Type Description

OnLinkToDispatcher procedure(Sender:

TObject; ASiLang:

TsiCustomLang)

Fired every time any TsiLang gets
linked to this dispatcher.

OnLanguageChanged procedure (Sender:

TObject)

Fired every time after active
language changed.

OnLanguageChanging procedure (Sender:

TObject; const

NewLanguage:

Integer; var

AllowChange:

Boolean)

Fired every time before language
change. Set AllowChange to False
to cancel change.

TsiInternetTranslator

Using the TsiInternetTranslator component can provide you with more flexibility to
automate translations. With this component, you can set it up to translate your
application or anything else, using any of the most popular online translators (for
example DeepL or Google Translate) at run time.

Events

TsiLang® Components Suite Developer’s Guide

In order to use TsiInternetTranslator, you need to drop the component onto your
form, and then you can set up the respective properties either using Object
Inspector, or through hard code.

 function GetExtByLanguageName(const LanguageName:

string): string;

This method returns language extension by its name from the list of current
service’s languages. You can use this method to get extensions for the
languages to use with “TranslateByLanguageExt” method, which is faster
than “TranslateByLanguageName” because it does not perform the search
for the language extensions.

 function IsValidLanguageName(const LanguageName:

string): Boolean;

This method returns True if the language specified by the “LanguageName”
could be found in the list of current service’s languages. You can use this
method to perform preliminary check for validity of language names to use
for online translations.

 function TranslateByLanguageName(const Text,

SourceLanguage, TargetLanguage: string): string;

This method translates the text, specified by the “Text” property, from the
source language, specified by the “SourceLanguage”, to the target language,
specified by the “TargetLanguage”, using the current translation service
defined by the “ActiveService” property. As online translator services use
language extensions for language translations instead of the language names,
this method first finds the matches for the specified languages in the list of
current service’s languages, and then uses the languages’ extensions and
“TranslateByLanguageExt” method to perform the translation. If need to
perform bulk translations, it is recommended to use
“GetExtByLanguageName” method to get language’s extension and then
use “TranslateByLanguageExt” method. If the returned value is empty and
no error was raised, then you can check the “LastError” property to get
additional information about the problem.

 function TranslateByLanguageExt(const Text,

SourceLanguageExt, TargetLanguageExt: string): string;

This method translates text, that is specified by “Text” parameter, from the
source language, specified by “SourceLanguageExt”, to the target language
specified by “TargetLanguageExt”, using the current translation service
defined by the “ActiveService” property. As online translator services use
language extensions for language translations instead of the language names,
both source and target languages must be specified by their extensions
defined in the service. If you do not know the language’s extension, you can
use the “TranslateByLanguageName” method to translate by language’s

Methods

TsiLang® Components Suite Developer’s Guide

name or use “GetExtByLanguageName” method to get the language's
extension. If the returned value is empty and no error was raised, then you
can check the “LastError” property to get additional information about the
problem.

Table 14 TsiInternetTranslator properties

Property Name Data Type Description

ActiveService TAutoTranslateService ActiveService property is
used to select which
translator service to use.
Currently, there are four
possible choices: Google,
DeepL, BING and
MSTerminology

LastError TTranslateError Use this property to detect
the possible reason for
online translation failing.
You can find a table that
describes the meaning of
the error below.

FixFormatStrs Boolean When this property is set
to True the online
translation result will be
checked to contain the
same format specifiers
(%s, %d), as the original
value.

BINGSettings TBingTranslatorOptions This property is used to
set up the settings for
BING Translator, if it was
chosen as the translation
service for the
“ActiveService” property.
Use this property to
provide your BING
APIKey so the program
can make on-the-go
translations via BING.

DeepLSettings TDeepLTranslateOptions This property is used to
set up the settings for
DeepL Translate, if it was
chosen as the translation
service for the
“ActiveService” property.
Use this property to

Properties

TsiLang® Components Suite Developer’s Guide

provide your DeepL
APIKey, so the program
can make on-the-go
translations via DeepL.
Additionally, you can
modify the UsePro
settings to state whether
you have the Pro version
of DeepL or the standard
free one.

GoogleSettings TGoogleTranslateOptions This property is used to
set up the settings for
Google Translator, if it
was chosen as the
translation service for the
“ActiveService” property.
If you use Google Cloud
Translate then set
UseCloudTranslate
property to True and
provide your Google
APIKey. However, it is
not necessary and is
optional for Google. If
you use the free version of
Google Translate, then
set the
UseCloudTranslate
property to False.
FreeTranslateDelaySecs
property sets the delay
between translate requests
in order to prevent getting
banned from Google due
to very frequent requests.

MSTerminologySettings TMSTerminologyTranslateOptions This property is used to
set up the settings for
Microsoft Terminology
Translator, if it was
chosen as the translation
service for the
“ActiveService” property.
You do not need to
provide the APIKey and it
can be neglected for
MSTerminology.
Additionally, you can
modify the
MSTerminology specific
settings, such as
Sensitivity,
OperatorKind, and

TsiLang® Components Suite Developer’s Guide

SeekSource. Sensitivity
determines if the
translation will be case
sensitive or not.
OperatorKind determines
if the translation should be
made via the exact phrase,
exact word, or where it is
contained. SeekSource
determines where to look
for the translation, either
in just Terms, User
Interface Strings or both
combined.

Find the LastError values table below:

Value Meaning

teNoError There were no errors and all operations completed
smoothly.

teServiceUndefined ActiveService property is set to atsUndefined, so no
operation is available

teInvalidSourceLanguage Source language name was not found in the list of
current service’s languages.

teInvalidTargetLanguage Target language name was not found in the list of
current service’s languages.

teUndefinedSourceExt Source language extension is empty.

teUndefinedTargetExt Target language extension is empty.

TsiLangCombo

This component inherits all standard methods and properties from the TComboBox
component, but allows displaying and selecting languages of a corresponding TsiLang
(TsiLangDispatcher) component but in an advanced mode. For example, you can
specify for each supported language its own graphic image, font and charset (to display
language name), as well as custom title.

TsiLang® Components Suite Developer’s Guide

Table 15 TsiLangCombo Properties

Property Name Data Type Description

ChangeLanguage Boolean TsiLangCombo will automatically change the
“ActiveLanguage” property of “siLang” or
“siLangDispatcher” assigned component when
user changes the selected language, if this
property is set to true.

LanguageInfos TLanguageInfos It is a collection of TLanguageInfo items that
describe display settings for the languages
displayed in the combo box.

siLang TsiCustomLang Use this property to link the combo-box with a
TsiLang component.

siLangDispatcher TsiLangDispatcher Use this property to link the combo-box with a
TsiLangDispatcher component

Properties

TsiLang® Components Suite Developer’s Guide

80

Dialogs

Dialogs are often used components in your application and they are very important for
convenient and habitual user interface. It is evident, that powerful multilingual tools,
such as TsiLang must provide user with the possibility of translating dialog text
elements. TsiLang provide you with such a possibility and contains dialog elements
translation information in its DlgsCaptions property, but it cannot translate standard
dialogs directly because all standard dialogs do not publish their text elements as a set of
properties. Issuing a new set of dialog components with included multilingual support
solves the problem. The following dialog components are included into the TsiLang
Component Suite:

 TsiOpenDialog

 TsiSaveDialog

 TsiColorDialog

 TsiFontDialog

 TsiPrinterSetupDialog

 TsiPrintDialog

 TsiFindDialog

 TsiReplaceDialog

 TsiOpenPictureDialog

 TsiSavePictureDialog

 TsiBrowseForFolder

All dialog components listed above (except for TsiBrowseForFolder, which is a
component wrapper for Windows API function SHBrowseForFolder) are descendants
of standard Delphi's or C++ Builder's dialogs with added siLang property and
overridden “DoShow” private method. Just link them to the TsiLang component and
type translation of all their strings in DlgsCaptions property. All user defined dialog

elements will be displayed in language that is currently active in the linked
TsiLang.

Table 16 siDialogs specific properties

Property Name Data Type Description

siLang TsiCustomLang
Specifies a TsiLang to be used for multilingual string
constants retrieving while dialogs executing.

Properties

TsiLang® Components Suite Developer’s Guide

81

Useful Information
If you have any questions about usage the TsiLang Components Suite feel free to send
us e-mail on support@sicomponents.com. Also you can visit our Forum at
https://www.sicomponents.com/forum/ where you can share experience with other
TsiLang customers and find answers on many questions.

Tips and Tricks

Exclude not used components and properties

First, some components (for example, TTable, TQuery) do not need translations at all.
Include such components in the “DoNotTranslate” property of corresponding TsiLang
component. Second, some properties (for example, “FieldName”) should not be
translated for all components. Add these properties to “ExcludedProperties” property of
the TsiLang. And at last, if specific properties of a single component should not be
translated add them to “SmartExcludeProps” of the TsiLang. Using these rules might
significantly improve performance of TsiLang components (especially on Data Modules)
and will not confuse your translator with needless data.

TsiLang will add automatically most often and commonly used for exclusion property
names, such as TableName, DatabaseName and others to “ExcludedProperties”
property. To switch off this functionality you will need to edit manually SI.INC file,
disable compiler directive {$DEFINE ADDCOMMONEXCLUDE} (to disable just
change it to {.$DEFINE ADDCOMMONEXCLUDE}) and rebuild the TsiLang
package. In case you need to remove some automatically added property names from
this list just select them in the “ExcludedProperties” list and remove.

Note: Some components and properties shall be always excluded from
translations! The examples of such components are:

1. TWebBrowser and its descendants (“translating” it at run-time
raises EOleException)

2. Properties like TableName and DatabaseName for data sets
(cannot be changed while data sets are active)

3. Usually, properties like SQL, PickList, FieldName, IndexName,
LookupDisplayFields and others.

Chapter

6



mailto:support@sicomponents.com
https://www.sicomponents.com/forum/

TsiLang® Components Suite Developer’s Guide

82

Use TSI: tags to skip hard-coded strings that should not be translated

{TSI:IGNORE} – ignores single line. Add this tag anywhere in the line with hard-coded
string.

{TSI:IGNORE ON} – indicates that all lines after this line should be skipped when
searching for hard-coded strings. All lines will be skipped till OFF tag found. Note: this
tag should be in separate line and there should be no any other text in this line.

{TSI:IGNORE OFF} – indicates to stop skipping lines when searching for hard-coded
strings. Note: this tag should be in separate line and there should be no any other text in
this line.

{TSI:IGNORE NEXT} – excludes one following line of code from the translation
regardless of {TSI:IGNORE ON/OFF}.

{TSI:TRANSLATE NEXT} – translates one following line of code from regardless of
{TSI:IGNORE ON/OFF}.

{TSI:IGNORE VALUE} – ignores the string value right after the tag.

Create multilanguage dialog boxes with custom controls

Sometimes you need to use the modified version of standard message boxes functions in
order to display custom controls, for example “Don’t Ask Me Again” checkbox in
MessageDlg function. In order to achieve this you can use CreateMessageDlg() method
of TsiLang. It returns the instance of created form but won’t display it. So you can use

something like the following:

function DontAskMessageDlg(const siLang: TsiCustomLang; const

Text: string; const MsgType: TMsgDlgType; MsgButtons:

TMsgDlgButtons): TModalResult;

var

 MessageForm: TForm;

 CheckBox: TCheckBox;

begin

 Assert(Assigned(siLang), 'No TsiLang instance passed!');

 MessageForm := siLang.CreateMessageDialog(Text, MsgType,

MsgButtons);

 try

 CheckBox := TCheckBox.Create(MessageForm);

 CheckBox.Parent := MessageForm;

 CheckBox.Caption := siLang.GetTextOrDefault('IDS_0');

 CheckBox.Left := 4;

 CheckBox.Top := MessageForm.Top - CheckBox.Height - 8;

 Result := MessageForm.ShowModal;

 finally

 MessageForm.Free;

 end;

end;

Delphi Sample

TsiLang® Components Suite Developer’s Guide

83

Creating Unicode multilanguage dialog boxes

Note: This tip applies ONLY to non-Unicode version of IDE such as RAD
Studio 2007 or earlier.

If you create Unicode applications in Delphi or C++Builder you will use
some 3rd party replacement for standard controls. TsiLang Components Suite works fine
with Unicode properties so you will be able to translate such controls as usual. But if you
will just use message dialog methods of TsiLang it will use standard (ANSI) Delphi
controls to build message forms. In order to build 100% Unicode application you will
need to use Unicode controls in these methods as well. To achieve this you will need to
“tell” TsiLang which controls to use to build forms for message boxes. Unit
siComp.pas has global class variables that indicate what control classes will be used to
build message forms. To change them to Unicode you just change these class variables
to Unicode classes. If you use TNT Controls the code will look like the following:

initialization

 InitTntEnvironment;

 MsgDlgFormClass := TTntForm;

 MsgDlgLabelClass := TTntLabel;

 MsgDlgEditClass := TTntEdit;

 MsgDlgButtonClass := TTntButton;

MsgDlgFormClass = __classid(TTntForm);

MsgDlgLabelClass = __classid(TTntLabel);

MsgDlgEditClass = __classid(TTntEdit);

MsgDlgButtonClass = __classid(TTntButton);

Configuring Default Fonts for TsiLang

Note: This tip applies ONLY to non-Unicode version of IDE such as RAD
Studio 2007 or earlier.

In order to properly view and edit all available languages in TsiLang
Translation Editor and SIL Editor, be sure to configure Fonts and Default Fonts for
TsiLang. To configure Default Fonts open Translation Editor and select in menu Tools
| Default Fonts. In appeared dialog enter language name (Note: TsiLang uses language
names to detect necessary font and Charset, so be sure to use same language names in
the project and in Default Fonts.), font name (in most cases Tahoma is enough) and
Charset for this language.

Delphi Sample

C++ Sample





TsiLang® Components Suite Developer’s Guide

84

Figure 25 Configuring Default Fonts

After you’ve set Default Fonts you can set Auto-Use Default Fonts option in TsiLang
Translation Editor (menu Tools | Settings) and Translation Editor will automatically
fill Fonts and Charsets sections using data from Default Fonts (if available).

Performing custom modifications during language changing

You may need to perform custom modifications on values that TsiLang apply to
controls upon language changing. As an example of such case could be some 3rd party
controls that use UTF8-encoded string properties. To handle such case unit
siComp.pas introduces global variable siInterceptStringChange of a type:

type

 TsiInterceptStringChange = procedure (const AObject: TObject;

const PInfo: PPropInfo; var APropValue: string);

TsiLang will call this procedure if it is assigned and this will allow you to perform custom
modifications on the string being applied on control’s property. AObject parameter
indicates the object (or component) whose property will be modified to APropValue
value. Property could be determined by PInfo parameter of a PPropInfo type.
PPropInfo type is declared in TypInfo Delphi’s unit.

Delphi Sample

TsiLang® Components Suite Developer’s Guide

85

procedure ConvertToUTF8(const AObject: TObject; const PInfo:

PPropInfo; var APropValue: string);

var

 WS: WideString;

 S: string;

begin

 if AObject is TControl then // checking if this is UTF8 control

 begin

 if PInfo.Name = 'UTF8Caption' then // checking if this is UTF8
property

 begin

 WS := AnsiStringToWideStringCP(APropValue,

YOURFORM.siLang1.CurrentCharset); // convert ANSI string from TsiLang to
Unicode

 S := UTF8Encode(WS); // Convert Unicode string to UTF8

 APropValue := S; // Pass UTF8 string back to TsiLang to apply to
control's property

 end;

 end;

end;

initialization

 siInterceptStringChange := ConvertToUTF8; // Assign procedure
variable

Translating 3rd party forms without sources

Sometimes if you don’t have full source code of 3rd party components but they use
some built-in dialogs you won’t be able to translate them in “usual” way. To handle such
case and be sure your application is 100% multilanguage we can advise you the following
way:

1. Detect the type name of this dialog form.
2. Add the following code for Screen.OnActiveFormChange:

procedure TForm1.ScreenFormChange(Sender: TObject);

var

 siLang: TsiLangLinked;

begin

 if Screen.ActiveCustomForm is TYOUR_DIALOG_FORM then

 begin

 siLang := TsiLangLinked.Create(Screen.ActiveCustomForm);

 try

 siLang.BuildList;

 siLang.SaveAllToBinaryFile('C:\SOMEFILENAME.SIB');

 finally

 siLang.Free;

 end;

 end;

end;

3. Run your application and activate this dialog.

Delphi Sample

TsiLang® Components Suite Developer’s Guide

86

4. Translate created SIB file and decide if you will use it as external or built-in into
your application.

5. If you decide to use it as external storage then change
Screen.OnActiveFormChange to the following:

procedure TForm1.ScreenFormChange(Sender: TObject);

var

 siLang: TsiLangLinked;

begin

 if Screen.ActiveCustomForm is TYOUR_DIALOG_FORM then

 begin

 siLang := TsiLangLinked.Create(Screen.ActiveCustomForm);

 siLang.LoadAllFromBinaryFile('C:\SOMEFILENAME.SIB');

 siLang.LangDispatcher := MainForm.siLangDispatcher1;

 end;

end;

6. If you decide to use it built-in into your application then just create RC-file (you

can use our Resource Builder http://www.resource-builder.com) and place this
SIB file as RCDATA resource. Load this translation using TResourceStream
and LoadFromStream() method of TsiLang:

7. That’s all, now when this dialog appears it will be automatically translated.

Note: Example code provided above are for reference only! For your
particular case it could be different.

How to make TsiLang message boxes “styled” when VCL Style applied.

When you use VCL Styles to apply styles to your RAD studio applications the message
boxes displayed by TsiLang are not styled in case the UseTaskDialog property of
TsiLang is set to True. To prevent this you can just set this property to False, but in
case you would like to have message boxes based on Task Dialog when no application
style is active, you can use the following trick:

1. We set the UseTaskDialog property to True by default.
2. Upon application active form change (inside the Screen.OnActiveFormChange

event) we check if it is styled and then set this property to False.

The following code sample demonstrates this:

procedure TForm1.ScreenFormChange(Sender: TObject);

 procedure ProcessActiveForm(AForm: TCustomForm);

 var

 I: Integer;

 begin

 for I := 0 to AForm.ComponentCount - 1 do

 if AForm.Components[I] is TsiCustomLang then

 begin

 Delphi Sample



 Delphi Sample

http://www.resource-builder.com/

TsiLang® Components Suite Developer’s Guide

87

 TsiCustomLang(AForm.Components[I]).UseTaskMsgDlg :=

StyleServices(AForm).IsSystemStyle;

 Exit;

 end;

 end;

begin

 if Screen.ActiveCustomForm <> nil then

 ProcessActiveForm(Screen.ActiveCustomForm);

end;

TsiLang® Components Suite Developer’s Guide

88

TranslationData as Text in DFM

By default the TranslationData property is stored in DFM (FMX) in binary format. This
allows to use the same DFM under different versions of IDE, for example under Delphi
7 and RAD Studio XE or others, without loosing translations when opening form file in
IDE. Although this feature brings some inconvenience when using Version Control
System and textual DFM files.

 In case you want to use textual representation of TranslationData in DFM and ONLY
if you don't use your projects with older IDE versions you can do the following:

 Full Source edition is required.

 Open SI.INC file located in {TsiLang}\Units folder.

 Activate USETEXTDATA define by removing the space before $DEFINE.
So the line will look like:

{$DEFINE USETEXTDATA}

 Open TsiLang run-time package (the one with _r postfix) into IDE and re-build
it.

 Open TsiLang design-time package (the one without _r postfix) into IDE and
re-build it.

Next time you open your DFM files into IDE and save it the TranslationData property
will be converted to text and you will be able to effectively use Version Control System.

Note: you will need to perform these actions every time upon downloading
of a new version of TsiLang Components Suite. This shall be done after
installing new version and BEFORE opening and saving your project in

IDE. Otherwise the TranslationData property will be converted back to binary
representation as by default TsiLang packages are built with this option deactivated in
order to support the full range of IDE versions.



TsiLang® Components Suite Developer’s Guide

89

Frequently Asked Questions

How to translate resource strings?

If several strings are declared in resourcestring sections of your project the best
solution is simply to replace the resourcestring with const keyword and handle
the strings as usually. If the resource strings are declared in external units (for example, in
third-party VCL libraries) you need to set “HandleResourceStrings” property of the
TsiLang component to “True” and to add these strings to the translation data (see
Resource Strings Wizard).

I am using C++Builder. How do I translate string tables coded into .rc and
.rh files?

We recommend you the following workaround:

1. Declare a new function for loading strings from resources, for ex.:

AnsiString LoadStr2(int Ident);

2. Add the body of the functions as follows:

extern PACKAGE AnsiString __fastcall LoadStr2(int Ident)

{

 TResStringRec ResRec;

 ResRec.module = (long *) &HInstance;

 ResRec.ident = Ident;

 return (LoadResString(&ResRec));

}

3. Replace LoadStr() calls to LoadStr2() calls in all your units.

4. Compile your application.

5. Run TsiLang Resource Strings Wizard (available from TsiLang Expert's
Tools|Wizards menu) and import all strings from your executable that need to be
translated.

6. All these strings (selected in wizard) will be imported into TsiLang and will be
available for translation.

7. Enter the translations for these strings and re-build the project.

Why some of my string constants don’t appear in found strings form when
translating sources?

The following declaration of string constant:

const

 constname =

TsiLang® Components Suite Developer’s Guide

90

 'stringvariable';

should be changed to:

const

 constname = 'stringvariable';

How to translate TDBGrid columns?

It is preferable to make fields of your datasets persistent and translate their property
“DisplayLabel” in design-time. Then TDBGrid column titles are updated automatically
and don’t depend on their order (when moved). Additionally, you can use Collections
property of TsiLang to translate columns.

How to translate InfoPower’s DBGrid component?

For translating InfoPower’s DBGrid component: use “Multilines” property of TsiLang
and translate grid’s “Selected” property. Note: Be careful with this property translation;
be sure to keep the format and places of tabulation TAB character.

How to translate arrays of strings

If you are using data structures like the below

const

 str1 = 'My String constant 1';

 str2 = 'My String constant 2';

 str3 = 'My String constant 3';

 StrArr: array[0..2] of string = (str1, str2, str3);

You need to replace the StrArr declaration with the following one:

 StrArr: array[0..2] of PString = (@str1, @str2, @str3);

Also, all references in code on the array’s elements like

...StrArr[Index]...

must be replaced with the:

...StrArr[Index]^...

How to translate TActionMainMenuBar or TActionToolBar

Usually every TActionClientItem is linked to a corresponding TAction which provides
string data for its clients. TsiLang components maintain Action's string properties such

TsiLang® Components Suite Developer’s Guide

91

as Caption or Hint, so all visual controls linked to the Action are updated when the
active language is changed.

However, those TActionClientItems that not linked with any action, for example top-
level items of TActionMainMenuBar, have no published string properties and cannot be
handled directly. For such TActionClientItems we would recommend the following
trick:

1. For every TActionClientItem without a TAction create a "fake" Action and link
them. For example, if your TActionMainMenuBar has a top-level menu item
'&File', create a new action FileFile1, set its Caption property to '&File', and link
them.

2. Enter translation data for this Action in the Translation Editor.

3. If an action has no event handler it is permanently disabled, so set the
OnUpdate event handler of all "fake" actions to a procedure like this:

...

procedure TForm1.FakeActionUpdate(Sender: TObject);

begin

 TAction(Sender).Enabled := True;

end;

...

How to modify button widths in standard dialogs?

Unfortunately, there is no easy way to do this. But may be you can hack this by writing
something like this in OnShow event of for example siFindDialog:

procedure TForm1.siFindDialog1Show(Sender: TObject);

var

 hnd: THandle;

 R: TRect;

begin

 if (siFindDialog1.siLang = nil) or

(siFindDialog1.siLang.Language <> 'Dutch') then Exit;

 GetWindowRect(siFindDialog1.Handle, R);

 SetWindowPos(siFindDialog1.Handle, 0, 0, 0, R.Right - R.Left

+ 26, R.Bottom - R.Top, SWP_NOMOVE or SWP_NOZORDER);

 hnd := GetDlgItem(siFindDialog1.Handle, 1);

 SetWindowPos(hnd, 0, 0, 0, 100, 23, SWP_NOMOVE or

SWP_NOZORDER);

 hnd := GetDlgItem(siFindDialog1.Handle, IDCANCEL);

 SetWindowPos(hnd, 0, 0, 0, 100, 23, SWP_NOMOVE or

SWP_NOZORDER);

end;

Are TsiLang components compatible with IntraWeb?

TsiLang® Components Suite Developer’s Guide

92

Yes, you can use TsiLang components in IntraWeb applications in the same way as in
usual VCL applications.

Is it possible to translate menu shortcuts?

Yes, although it requires some tricks. Find the details at our forum at
http://www.sicomponents.com/forum/viewtopic.php?t=112

Why TDBNavigator hints are not translated at start-up?

There is small bug (or as designed) in TDBNavigator component. To fix it you may
use the following sample code:

procedure TForm1.FormCreate(Sender: TObject);

begin

 DBNavigator1.Hints.CommaText :=

 siLang1.GetStringValue(@siLang1.MultiLines,

 'DBNavigator1.Hints', siLang1.ActiveLanguage);

end;

Why Developer Express components translations are displayed incorrect
under XP Theme enabled?

When XP Theme enabled Developer Express components convert AnsiString to
WideString using application default locale. You can fix this by changing application's
thread locale on language changing event. For example:

procedure TForm1.siLang1ChangeLanguage(Sender: TObject);

begin

 if siLang1.ActiveLanguage = 1 then

 SetThreadLocale(LANG_ENGLISH)

 else

 SetThreadLocale(LANG_JAPANESE);

end;

How to detect OS default language and switch to it?

In later version of Delphi and C++Builder could be used SysLocale global variable:

procedure TForm1.FormCreate(Sender: TObject);

begin

 if SysLocale.PriLangID = LANG_ENGLISH then

 siLangDispatcher1.ActiveLanguage := 1

 else if SysLocale.PriLangID = LANG_GERMAN then

 siLangDispatcher1.ActiveLanguage := 2

 else if SysLocale.PriLangID = LANG_FRENCH then

 siLangDispatcher1.ActiveLanguage := 3

TsiLang® Components Suite Developer’s Guide

93

 else

 siLangDispatcher1.ActiveLanguage := 1;

end;

Also you can use WinAPI to detect OS default language:

procedure TForm1.FormCreate(Sender: TObject);

var

 LangID: DWORD;

begin

 LangID := GetUserDefaultLangID;

 case Byte(LangID and $03FF) of

 LANG_ENGLISH: siLangDispatcher1.ActiveLanguage := 1;

 LANG_GERMAN: siLangDispatcher1.ActiveLanguage := 2;

 LANG_FRENCH: siLangDispatcher1.ActiveLanguage := 3;

 else

 siLangDispatcher1.ActiveLanguage := 1;

end;

How to properly load file at run-time?

You must just assign FileName property of the dispatcher component and call
LoadAllFromFile() method:

procedure TForm1.FormCreate(Sender: TObject);

begin

 siLangDispatcher1.FileName := "YourSILorSIBFileName.SIL";

 siLangDispatcher1.LoadAllFromFile(siLangDispatcher1.FileName);

end;

Main menu gets white background after language switching

Sometimes under Windows XP with themes enabled main menu background becomes
white after changing languages. This is known XP bug and as workaround could be used
the following:

1. Set Images property to nil before switching language
2. Switch active language
3. Restore the value of Images property

The following Delphi code demonstrates this:

MainMenu1.Images := nil;

siLangDispatcher.ActiveLanguage := (computed value);

MainMenu1.Images := ImageList1;

TsiLang® Components Suite Developer’s Guide

94

More FAQ entries could be found online at :
https://www.tsilang.com/tsilang-faq/

https://www.tsilang.com/tsilang-faq/

TsiLang® Components Suite Developer’s Guide

95

Version History

The history of new features added and improvements in the last versions of TsiLang
Components Suite is listed below.

V E R S I O N 7 . 9 :

Core Components:

 Embarcadero RAD Studio 11 Alexandria support!

 New component created: TsiInternetTranslator- translates any text using on-line
services.

 TsiLang components can now use TsiInternetTranslator to translate terms on-fly.

 Improved work with SIL files.

 Some minor improvements.

TsiLang Expert:

 Improved stability.

 Fixed error on opening expert when no project is open in IDE and no Welcome
page.

 Other improvements.

Dictionary Manager:

 Added DeepL on-line translation service support.

 Added feature to manage stored language associations for on-line translate
services.

 Added Favorites feature.

 Other minor changes and improvements.

SIL Editor:

 Improved import and export functionality.

 Added feature to auto-translate the selected language for the whole file.

 Added Favorites feature.

 Fixed incorrect deleting of language in SIL file with more than 9 languages.

 Italian translation updated.

 Minor fixes.

V E R S I O N 7 . 8 . 5 :

Core Components:

 Translations Editor improved:

TsiLang® Components Suite Developer’s Guide

96

 Added replace feature.

 Added Insert Row feature.

 Added Display leading and trailing spaces option.

 TsiLangCombo component improved:

 Added ChangeLanguage property to automatically switch active language upon
selecting it in the combo-box.

 Other minor imporvements.

 Some minor improvements.

TsiLang Expert:

 Improved stability for operations with large number of forms.

 Improved source-code scanning feature.

 Other improvements.

Dictionary Manager:

 Some UI fixes.

 Improved French language.

 Other minor changes and improvements.

SIL Editor:

 Improved import and export functionality.

 Added feature to remove multiple forms from SIB file.

 Minor fixes.

Wizards:

 Resource strings Wizard updated.

 INI file strings Wizard updated.

V E R S I O N 7 . 8 . 4 :

Core Components:

 TsiMemIniFIle updated.

 Translations Editor improved.

 Some other improvements.

TsiLang Expert:

 Minor improvements.

Dictionary Manager:

TsiLang® Components Suite Developer’s Guide

97

 UI re-branding.

 Large toolbar images support.

 Microsoft Terminology Internet translate service support.

 Support for visual themes, including dark and light themes.

 Improved multiline editor.

 Improved Find dialog.

 Spanish UI language.

 Other minor changes and improvements.

SIL Editor:

 UI re-branding.

 Large toolbar images support.

 Improved multiline editor.

 Improved source file text editor.

 Improved Find dialog.

 Improved actions to interact with Dictionary Manager.

 Added option to share the last used file path with the IDE's TsiLang Expert.

 Support for visual themes, including dark and light themes.

 Spanish UI language.

 Minor fixes.

V E R S I O N 7 . 8 . 3 :

Core Components:

 Some improvements.

TsiLang Expert:

 Improved UI.

 Minor improvements.

Dictionary Manager:

 Fixed Clipboard error.

 Other minor changes and improvements.

SIL Editor:

 Fixed Clipboard error.

TsiLang® Components Suite Developer’s Guide

98

 Improved Find dialog.

 Fixed Pseudo-Translation and Statistics wizards.

 Improved Diff wizard.

 Minor fixes.

V E R S I O N 7 . 8 . 2 :

Core components:

 Embarcadero RAD Studio 10.4 support!

V E R S I O N 7 . 8 . 1 :

Core components:

 Translation Memory - new feature that allows run-time translating by using
existing translations.

 Some improvements in code for FireMonkey support.

Translations Editor:

 Improved UI to simplify editing of Extended Translations.

Dictionary Manager:

 Improved CSV and HTML import\export.

 Added: remember association for Internet Translate language selection.

 Added: preview and life-time editor panel for the selected cell.

 Improved: Internet Translate services.

 Added: Yandex.Translator support for Internet Translate services.

 Improved: Find dialog, added option to find by selected language only.

 Added: Fixed language(s) feature- now you can set any language to be fixed in
order to prevent occasional changes.

 Other minor changes and improvements.

SIL Editor:

 Support for Yandex.Translator.

 Minor fixes.

V E R S I O N 7 . 8 :

Core components:

 Support for RAD Studio 10.3.3 Rio and Android 64bit target platform!

 Linux support! Now you can build multilanguage applications for Linux
target platform the same way as for any other FMX target platform.

 Option to use TranslationData as text in DFM.

 MessageDlgPosHelpTimeOut, MessageDlgPosTimeOut and
MessageDlgTimeOut methods.

TsiLang® Components Suite Developer’s Guide

99

Translations Editor:

 Re-designed UI for the editor.

 Multilanguage: German, Russian and Spanish languages added.

TsiLang Expert:

 Added Configuration Wizard that will help you to configure step-by-step
TsiLang Expert's settings with detailed descriptions.

 Added new TSI:IGNORE VALUE tag to skip single string value while
scanning.

 TsiLang Expert and all TsiLang editors are now multilingual. German, Russian
and Spanish languages added.

 Improved support for national characters in string constants name.

 Improved integration to RAD Studio's 10.3.x Code Editor popup-menu.

Dictionary Manager:

 Minor fixes.

SIL Editor:

 Minor fixes.

V E R S I O N 7 . 7 :

Core components:

 Support for RAD Studio 10.3.2 Rio and MAC OSX64bit!

Translations Editor:

 Loading speed optimized. No more any delay on loading editor for forms with
huge amount of components.

 Added option to increase editor's font size. You can set custom font size when
working on High DPI monitors to improve visibility.

 Added large toolbar images for improved support High DPI monitors.

TsiLang Expert:

 Fixed possible problem when working with frames in FMX projects.

 Added TsiLang Expert menu items to code editor's popup-menu to perform
operation on selected source code.

 Improved saving/loading project to/from external file.

Dictionary Manager:

 Added Merge Wizard. Now you can smartly merge two dictionaries.

 Added option to configure editor's font size. This will allow to use custom font
size on High DPI monitors.

 Improved support for High DPI monitors.

 Some minor fixes.

SIL Editor:

 Some minor fixes and improvements.

TsiLang® Components Suite Developer’s Guide

100

V E R S I O N 7 . 6 . 0 :

Core components:

 Support for Embarcadero RAD Studio 10.3 Rio.

V E R S I O N 7 . 5 . 9 :

Core components:

 Several improvements implemented

Dictionary Manager:

 Added support for BING Translator in Internet Automatic Translation Services.

 Improved Excel import/export functionality.

 Some minor fixes.

SIL Editor:

 Added feature to translate selected cell using Internet translation services through
Dictionary Manager.

 Improved all import/export functionality.

 Some minor fixes and improvements.

V E R S I O N 7 . 5 . 8 :

 SI2DFM Wizard– added feature to enforce update of DFM upon opening them
in IDE (actual when updating the active language translations).

TsiLang Expert:

 Improved source scanning and small fixes.

V E R S I O N 7 . 5 . 7 :

 SI2DFM Wizard ANSI – created ANSI version of SI2DFM tool to load
SIL/SIB file to DFM without IDE for DFMs created with Delphi 2007 or earlier.

Core components:

 OnExtendedChanging event added to TsiLang to help proper resizing and
reposition of controls under different DPIs.

 Dialog components:

 Code updated to fix show hidden controls when application is running under
VCL styles.

TsiLang® Components Suite Developer’s Guide

101

TsiLang Expert:

 Added option to configure Pascal style of comments.

 Added options for template file and folder for load and save operations from
Project Manager popup-menu.

 Fixed incorrect character encoding while replacing sources through code editor
popup-menu.

 Added Clear commands to clear project’s translations in Project Manager popup-
menu.

V E R S I O N 7 . 5 . 6 :

 SI2DFM Wizard - new tool to load SIL/SIB file to DFM without IDE.

Core components:

 Fixed incorrect behavior of ExtendedTranslations under mobile platforms
(Andriod and iOS).

V E R S I O N 7 . 5 . 5 :

Core components:

 Support for RAD Studio 10.2 Tokyo.

 Internal fixes.

V E R S I O N 7 . 5 . 4 :

Core components:

 Small fix for FMX and Android.

 Implemented workaround for C++ and UniGUI.

V E R S I O N 7 . 5 . 3 :

Core components:

 Small fix for FMX and Android.

 Implemented workaround for C++ and UniGUI.

V E R S I O N 7 . 5 . 2 :

Core components:

 Support for Embarcadero RAD Studio XE 10.1 Berlin.

V E R S I O N 7 . 5 . 1 :

Core components:

 Added small fix for clipboard Unicode support in CreateMessageDlg method.

TsiLang® Components Suite Developer’s Guide

102

 Improved translation of File Open\Save dialogs under non-English OS.

V E R S I O N 7 . 5 :

Core components:

 Support for Embarcadero RAD Studio XE 10 Seattle.

V E R S I O N 7 . 4 :

Core components:

 Support for Embarcadero RAD Studio XE 8.

V E R S I O N 7 . 3 . 3 :

Core components:

 Added "Force empties" option to "Add to Dictionary" dialog to allow adding
items without translation to dictionary.

 Added Project Manager extension to Load\Save translations for all projects in
project group.

SIL Editor and Dictionary Manager:

 Improved UTF-8 support in export/import operations.

 Support for "Force empties" option.

V E R S I O N 7 . 3 :

Core components:

 Support for Embarcadero RAD Studio XE 7.

 Fixed problem with UTF-8 encoding and Multilines property.

V E R S I O N 7 . 2 :

Core components:

 Support for Embarcadero RAD Studio XE 6.

Dictionary Manager:

 Fixed problem with Google Translate.

Core components:
 Fixed problem with language changing on fly under Android.

V E R S I O N 7 . 1 . 1

TsiLang® Components Suite Developer’s Guide

103

 Support for Embarcadero RAD Studio XE 5 Update 2.

Core components:
 Support for Embarcadero RAD Studio XE 5.
 Support for Android and iOS target platforms.
 Fixed problem with local characters corruption in units sources when translating

CONST section.
 Other minor fixes and improvements.

SIL Editor:
 Minor fixes and improvements.

Core components:
Support for Embarcadero RAD Studio XE 4.
FireMonkey all versions support. Please add FMX global conditional define in
your FireMonkey projects that use TsiLang. Please see FireMonkey Support topic
for details.
Fixed problem with Unicode conversions under Windows Embedded.
Other minor fixes and improvements.

SIL Editor:
Fixed bugs on SIL <-> SIB conversions.
Fixed problem with Update Manager.
Other minor fixes and improvements.

Dictionary Manager:
Fixed several bugs.
Other minor improvements.

Core components:
Support for Embarcadero RAD Studio XE 3 (Win32 and Win64 applications).
Other minor fixes and improvements.

SIL Editor:
New UI design

Dictionary Manager:
New UI design
Support for TMX (Translation Memory Exchange) files.

V E R S I O N 7 . 1

V E R S I O N 7 . 0

V E R S I O N 6 . 5 . 5

V E R S I O N 6 . 5 . 4

TsiLang® Components Suite Developer’s Guide

104

Core components:
Support for Embarcadero RAD Studio XE 2 (Win32 and Win64 applications).
Few minor fixes and improvements.

Core components:
Fixed: bug with Unicode strings for Windows Dialogs controls under Delphi
2009+.
Other minor fixes and improvements.

Translation Editor:
Added information about item length in chars to translation widths tool-tip
window.

TsiLang Expert
Added an option to prevent insertion of comments with initial string when
translating source code.
Fixed: TsiLang Expert won't start when only a package project opened in IDE.

SIL Editor:
New feature: Highlight multi-line items with different number of lines in
translations.
Improved SIL file validation speed.
Fixed: bug with navigation when using global search in SIB files.
Improved sorting by String ID column.
Improved Update Manager.
Fixed: exporting to another format has used the incorrect header value.
Fixed: Locales section not imported when importing from XML.

Dictionary Manager:
Improved Update Manager

Core components:
Support for Embarcadero RAD Studio XE
Fixed: bug with UTF-8 and dialog buttons captions.
Fixed: char corruption issue under Chinese locales.
Fixed: Collections translations lost if there are trailing spaces.
Fixed: Help button click in MessageDlg() methods.
Fixed: Saving and loading UTF8 SIL files and Delphi 2009+.
Other minor fixes and improvements.
SIL Editor:
New feature: Diff wizard for comparing two SIL or SIB files.
New feature: Short-Cuts Manager.
Global Search is much faster now.
Fixed: Error in export SIL to SIB when incorrect form name in a row.

V E R S I O N 6 . 5 . 3

V E R S I O N 6 . 5 . 2

TsiLang® Components Suite Developer’s Guide

105

Fixed: Incorrect SIL to SIB exporting for UTF-8 files.
Fixed: Chinese chars lost when converting to UTF-8 <-> ANSI under Chinese
Default Locale.
Dictionary Manager:
"Display leading and trailing spaces" option

Core components:
Embarcadero RAD Studio 2010 support!
Small fixes and improvements.
TsiLang Expert:
Fixed problem with Unicode preview in Skipped Strings window.
Other minor fixes and improvements.
SIL Editor:
Fixed several problems and few improvements made.
Updated German translation.
Dictionary Manager:
Fixed several problems and few improvements made.
Updated German translation.

Core components:
OnLanguageChanging event. New event designed, which will be fired before

language changing.
Feature: exclude property of particular component class. This will allow you to

exclude the specified property for all components of the particular class.
Fixed bug with loading SIB and IsInheritedOwner=true.
Fixed: StoreAsUTF8 and Delphi 2009 conflicts.
siLang_Def_UsedInCpp global variable to provide ability to handle properly

escape sequences under C++Builder projects for BDS2006 and later.
Several other improvements and some bug fixes applied.
Translation Editor:
Support for Project Translation Settings.
Close button on tool-bar changes to Close Saved when there were made any

changes to translations.
Improved pasting of text range from clipboard.
Small fixes and tweaks.
TsiLang Expert:
Project Translation Settings. This will allow you to define Dictionary and

translation related settings for your projects. TsiLang Expert and Translation
Editor will use them when working with Dictionary and other wizards.

Found Strings improved: added Ignore button on tool-bar.
Improved speed and algorithm of source scanning.
Fixed bug: ID wasn't renamed in TsiLang after it was renamed in the grid of the

found strings form.
Fixed Index Out of Bounds error, which appears occasionally for some units under

Delphi(BCB) 6 and earlier.

V E R S I O N 6 . 5

V E R S I O N 6 . 4

TsiLang® Components Suite Developer’s Guide

106

Fixed AV errors upon exit from Delphi(BCB)6 and earlier.
Other minor fixes and improvements.
SIL Editor:
Copy Language feature. Now you can copy one language to another with couple

of mouse clicks.
String ID column is selectable now, which allows to copy IDs as well.
Improved pasting of text range from clipboard.
Fonts combo-box allows to enter custom font name, like Ms Shell Dlg 2.
Add language to Dictionary. New feature allows you to add only the selected

language to Dictionary.
Fixed: command-line merge of SIL files didn't add new language from merged file.
Fixed problem with entering Japanese characters.
Hungarian language for user interface.
Other small improvements and fixes.
Dictionary Manager:
Multilanguage Support! Dictionary Manager now multilingual as well as SIL

Editor.
Fixed: Add All to Dictionary incorrectly places item.

Core components:
CodeGear RAD Studio 2009 support!
Single packages for Delphi and C++Builder!
TaskMessageDlg support in TsiLang message box methods.
Better support for actions linked to components.
SIL files load speed improved.
Titles of Print, Print Setup, Find, Replace and Color dialogs and Network button in
Print Setup dialog now supported and translated by TsiLang.
UTF-8 support for internal translations storage.
CTRL+C support in message dialogs.
Exclude component item now available in design-time component's popup-menu.
A lot of improvements and some bug fixes applied.
Translation Editor:
Translations Comments support.
Remove duplicates functionality.
Smart auto-translate of multi-line text with dictionary.
Sorting by string ID improved.
TsiLang Expert:
Translation Wizard now able to configure additional properties.
User Interface for some dialogs improved to be nicely displayed under Windows
VISTA.
Source scanning for hard-coded strings and strings in CONST section was
dramatically improved and now it will handle most of the declarations used.
Found strings form improved in order to provide better preview of source code
where string constant is used.
Several improvements implemented into other TsiLang Expert functions.
SIL Editor:
Translations Comments.

V E R S I O N 6 . 3

TsiLang® Components Suite Developer’s Guide

107

Fully Unicode!
UTF-8 support for SIL and SIB files.
XML support.
Auto-initialize Fonts and Charsets for languages.
Command-line support for SIB files auto-translation.
Display of leading and trailing spaces.
Dictionary Manager:
DIX (XML) dictionaries!
Custom auto-translate services

 C++Builder 2007 support.

 Added global siInterceptStringChange procedure that will be
called by TsiLang upon changing any UI element. May be used to perform
custom modification to translations.

 Several improvements and bug fixes applied to core components.

 Translation Editor:

 Multiform editing for run-time Translation Editor.

 Few minor improvements and fixes applied.

 Several improvements implemented to TsiLang-TNT components.

 Delphi 2007 support.

 Vista Dialogs Support. New component TsiTaskDialog created
that provides multilanguage functionality to TTaskDialog.
TsiOpenDialog and TsiSaveDialog components now handle translation
for new Vista look as well. Available only under Delphi 2007!

 Exclude by Type Name: It is possible now to add the type name to the
exclusion list and TsiLang will skip all components of such type.

 Improved MergeFromFile method: it will check the order of languages in
merging SIL/SIB file and properly merge the translations.

 Several improvements and bug fixes applied to core components and
dialogs.

 Translation Editor:

o Additional options when adding to dictionary: Case sensitive and
Care of & options added to Add to Dictionary dialog.

o Highlight Mismatched Multilines option added that allows to
highlight any entry in Multilines that has improper amount of items
in translations.

o Few minor improvements and fixes applied.

 TsiLang Expert:

o Regular Expressions to configure string content that must be
skipped. So from now on you can define the smarter rules for
skipping strings in sources.

V E R S I O N 6 . 2

V E R S I O N 6 . 1

TsiLang® Components Suite Developer’s Guide

108

o View Skipped Strings feature added that allows to see the strings
that Expert skipped while searching. This allows you to check if you
didn't miss any important string for translation.

o Const section scanning bug fixed. This bug incorrectly replaced
multi-line string constants in CONST section of unit.

 SIL Editor:

o Vista compatible.SIL Editor updated with several new
functionality and it is now Vista compatible.

o Update Manager will allow to automatically check for updates and
update application from our web site. This way you will be sure that
your translators have the latest version to use.

o Global Search and Replace functionality will allow you to find and
(or) replace any text globally through the whole SIL (SIB) file with
user-friendly interface.

o German language added to available UI languages. Unfortunately,
German translation is the not 100% complete. If you're native
German speaker and wish to help us and other SIL Editor users you
can translate German language in SILEDITOR.SIB file and send it
to us. We will add it and all German speaking users will be able to
use it.

o A lot of minor improvements introduced.

 Dictionary Manager:

o Vista compatible. Dictionary Manager updated it is now Vista
compatible.

o Fixed bug with Add to Dictionary functionality.

o Improved Spell Checking Dialog.

 Resource Strings Wizard improved to handle command-line interface and
also create pure console version of such wizard. Now you can use it in
automatic build and scripting tools.

 INI File Import Wizard. We've created new wizard that allows you to
translate strings stored in INI files. This wizard will import strings from INI
file into TsiLang and provide you with code templates to translate them
easily.

 New property AutoSkipEmpties: allows to automatically skip
properties that have no values for translation at all. This will reduce the size
of the translations and resource used.

 Preview window caption in TsiOpen[Save]PictureDialog translated.
 Run-time and design-time packages: we've divided TsiLang package to

run-time and design-time only. This will allow you to be able to use run-
time packages functionality with TsiLang as well.

 Translation Editor:

V E R S I O N 6 . 0 . 3

TsiLang® Components Suite Developer’s Guide

109

 Auto-translate selected language feature added that allows to
automatically translate the selected language only. This is useful when you
want to translate only particular language and leave other untouched.

 Fixed bug with incorrect behavior of context popup-menu.
 TsiLang Expert:
 Added new menu items to source code Editor's popup-menu. These items

include:
 Scan selected source- allows to scan selected source code and extract all

found strings.
 Mark to skip- allows to mark selected block of code to be ignored by

TsiLang Expert while scanning source.
 View translation- allows to jump from source code to the selected string

ID in TsiLang.
 Improved and fixed bug in source code scanning.
 SIL Editor:
 Auto-translate selected language- allows to automatically translate the

selected language only. This is useful when you want to translate only
particular language and leave other untouched.

 Fixed problem with SIB files containing TNT and ElPack TsiLang
components.

 Command-line merging for files extended- additional command-line
switch added:

-mlang [all] - specifies to merge all languages into original file

 Dictionary Manager improved.

 TNT Controls and LMD ElPack support components-
created new components (analogues for all existing TsiLang components)
which add support for Unicode TWideStrings and other specific properties
of TNT Controls and LMD ElPack controls.

 Improved and fixed bug with file loading. SIB loading is even faster now.

 Improved speed of reading translations for inherited forms.

 Improved source parsing in TsiLang Expert.

 SIL Editor:

 Pseudo Translation Wizard- SIL Editor now provides you the wizard that
will allow to generate pseudo translations for your items in order to be able
to test the appearance of you applications for different languages with non-
English letters and umlauts, like German, French, East Europe and others.

 Delete form from SIB file- it is possible to delete forms directly from SIB
file using SIL Editor .

 Command-line merging for files- it is possible to use command-line
switches to perform merging of different files. To merge files using
command-line please use the following switches:

-morig [file_name] - specifies the original file for merging

V E R S I O N 6 . 0 . 2

TsiLang® Components Suite Developer’s Guide

110

-mnew [file_name] - specifies the file that must be merged into original file
-mlang [language_name] - specifies the name of language that must be

merged into original file
-msuperfl - if presents forces to merge superfluous entries into original file

 Dictionary Manager improved and fixed small bugs.

 New methods GetTextW() and GetTextOrDefaultW() that
return WideString as result. Useful when building Unicode

applications.

 New methods GetTextOrDefined() and GetTextOrDefinedW() that
return translation of user defined strings for specified language if no
translations for active language available.

 New properties UseDefaultLanguage and DefaultLanguage allow to use
specific language as default while switching languages and no translation
available for active language.

 Improved support for inheritance, thanks to Andreas Brodbeck from
Mindclue GmbH for his code and help.

 It is possible now to save ExtendedTranslations property in Save
Properties dialog from TsiLang Expert

 Extended message dialog functions:
o Default button receives input focus if you specify the default button

in MessageDlg() functions.
o Global classes for dialog controls- there is defined global classes to

use for dialog controls and initialized with default values like:

MsgDlgFormClass: TFormClass = TForm;
MsgDlgLabelClass: TControlClass = TLabel;
MsgDlgEditClass: TControlClass = TEdit;
MsgDlgButtonClass: TControlClass = TButton;
This allows you to use additional classes in dialog functions instead of
Delphi’s standard classes. This functionality is useful also when building
fully Unicode application, you can replace standard classes with Unicode
and even your message boxes will be fully Unicode.

 SIL Editor:
o Statistics Wizard- SIL Editor now provides you the statistics so you

can count how many words and items to translate and other
information.

o Encryption and Decryption- SIL Editor provides ability to encrypt
string IDs, in order to "hide" application structure. Also added
option to hide first column.

o Some internal improvements.

 Some minor bugs and improvements.

V E R S I O N 6 . 0 . 1

TsiLang® Components Suite Developer’s Guide

111

 New user interface for editors and tools.

 Exclude from Translations Editor- new editor that handles and
helps to manage all exclusions from translations at one place and with very
convenient interface.

 Automatic addition of most often used property names for exclusion, like
TableName, DatabaseName, Category and others.

 Better translation of Unicode components and properties.

 Handling of LoadStr() and FmtLoadStr() functions when translating
resource strings.

 Handling resource strings by identifier instead of value. This would be very
useful while translating own resource strings stored and linked as RC file(s)
to your applications.

 ExtendedTranslations property updates values from components when
updating translations. This is very useful for visually designing different
layouts for different languages.

 DefaultBtn and CancelBtn parameters for all MessageDlg() methods to
provide ability to specify which button to use as default and cancel button.

 Translation Editor:
o Translation Editor now handles ExtendedTranslations property as

well. This provides full functionality of Translation Editor available
while editing Extended Translations.

o Tool tip for width and height of translations while editing content.
o Navigation directly to first occurrence in source code of string while

editing Strings property.
o Improved sorting when sorting by ID under Strings section.
o When translating multi-line contents using Dictionary Translation

Editor will try to translate line-by-line if no translation for all lines at
once available. This is useful when translating combo-box, radio-
group and similar items.

o Translation Editor will try to find a similar translation when
translating phrases with special symbols at the end, like: ":", "...",
" " and so on.

 TsiLang Expert:
o Improved source scanning.
o When checking for Bad String IDs it is possible to delete strings

directly from TsiLang.
o Translation Wizard allows translating selected form(s) with step-

by-step detailed instructions and help as well as configures already
translated forms.

o Some internal improvements.

 Dictionary Manager:
o Improved XML import Wizard
o Added ability to delete multiple selected rows at once.
o Added ability to delete any language (previously only the last one

could be deleted).
o Fixed some bugs and implemented other minor improvements.

 SIL Editor:

V E R S I O N 6 . 0

TsiLang® Components Suite Developer’s Guide

112

o Multilanguage interface- SIL Editor now supports multilanguage
interface and you can easily translate it into your own language.

o Some internal improvements.

 TsiLang Expert Improvements:
o New source scanning tags introduced {TSI:IGNORE

NEXT} and {TSI:TRANSLATE NEXT}. To ignore/translate just
next line.

o Improved source scanning.
o Fixed some bugs.

 Translations Editor:
o New filter to show incomplete translations only.
o Sorting by property name.
o Automatically handle colon ":" character when translating with

Dictionary Manager.
o Automatically split multiline items into single terms when translating

with Dictionary Manager.

 Dictionary Manager:
o Improved import from Excel
o Fixed bug whit "Invalid character..." error when using BabelFish

feature.

 SIL Editor:
o Improved error dialog in order to display more user friendly

messages.
o Added support for SIB in ExportTo method of SIL Editor COM

server.

 Resource Strings Wizard: added feature to skip checking for existing
resource strings IDs.

 TsiLang Expert Improvements:
o Ability to mark particular hard-coded strings as

untranslatable so it does not show up again in the next source scan.
o Ability to exclude strings containing specified sub-strings.
o Ability to skip source lines containing specified words.
o Ability to skip strings that includes only special characters.
o Ability to leave existing string constants values when translating

CONST section.

 Hijri2Gregorian and Gregorian2Hijri Routines to convert Arabic dates to
Gregorian and vice versa.

 New property TestModeInfo for dispatcher: New property allows to use
extended functionality when generating translations in test mode. TestMode
and TestPercentage properties are deprecated now!

 New feature Statistics: TsiLang Translations Editor now allows to see the
detailed translations statistics.

V E R S I O N 5 . 3 . 2

V E R S I O N 5 . 3 . 1

TsiLang® Components Suite Developer’s Guide

113

 SIL Editor and Dictionary Manager Improved

 Other Improvements: There were made some minor improvements and
bugs fixing.

 New IDEs support: TsiLang Components Suite includes packages
for Delphi 8 (VCL Edition). No any additional changes are required to port

your existing projects into Delphi 8.

 Improved Extended Translations support: The Extended Translation property
editor is fully redesigned and improved. New functions Save, Load, and Find
significantly simplify using extended translations with TsiLang components.

 Property Editors Improvements: All property editors are updated and
improved. Exclude Properties from Translation property editor now allows
to save and load data to/from external text files.

 New component: TsiLangCombo is a new auxiliary component, which
allows displaying all supported languages with specific graphic and font
settings for each language.

 SIL Editor Improvements: New command line switch -E added to export
file using command line.

 Unicode Clipboard Support: Now Translation Editor allows to copy and
paste unicode strings to/from the clipboard.

 Resource Strings Wizard improved: There were made a lot of improvements
in wizard so you will be able now to easily skip existing strings from
importing, delete obsolete strings which shall no be longer translated and
many others.

 Other Improvements:
o In the Translation Editor a switch added in menu for disabling

duplicate IDs highlighting.
o Added property editor for Language property of TsiLang and

TsiLangDispatcher to use combo box with language names listed.
o Added ability to translate unit's source directly from TsiLang

component design-time menu.
o Locales will be stored only when ChangeLocales=True.
o Added flag to change language for extended before others

(TranslateExtendedFirst property). For fixing Delphi's bug with
RightToLeft <-> LeftToRight and menus.

o New property TestPercentage allows to set length for preview
testing.

o Test mode - new property for TsiLangDispatcher to test
translations.

o Fixed problem with translating QuickReport Font and Charset.
o Load/Save From/To Stream methods for TsiLangXX components.
o Improved Found Strings form in TsiLang Expert.
o SIL Editor and Dictionary Manager improved.

V E R S I O N 5 . 3 . 0

TsiLang® Components Suite Developer’s Guide

114

 Automatic translation using BabelFish web services in the
Dictionary Manager is implemented.

 Various improvements and optimizations are implemented in the VCL, SIL File
Editor, and Dictionary Manager.

 A few minor bugs are fixed.

 New command "Check Format Strings" is added to the Translation
Editor. This function helps you to verify that all format strings are coincided

for all translations. For example, if a format string in the base language looks like
"%s - report from %s" then in other languages its translation also should
contain two tags "%s", otherwise the "Format" function raises an exception. To
launch this command select the "Strings" category and click the menu
"Tools|Check Format strings".

 TsiLang Files Editor: exporting .sil-files to .sib format and vice versa.

 Some minor bugs are fixed.

 Dictionary Manager is Unicode: The Dictionary Manager is re-
designed for Unicode support. Now under Windows NT/2k/XP you can

simultaneously edit translations in any language.

 Translation Editor gets Translation: The Translation Editor might be translated
itself if you deploy it along with your application. All you need is to enter
translation data into a .SIL file (the template file 'RT.SIL" is provided), and
before opening Translation Editor in run-time assign appropriate values to the
global variables "RT_SILFile" and “RT_ActiveLanguage".

 Minor Improvements: A few small bugs are fixed.

 New IDEs support: TsiLang Components Suite includes packages for
Delphi 7 (both VCL and CLX Editions) as well for Kylix 3 (both for Delphi

C++ versions). No any additional changes are required to port your existing
projects into above IDEs.

 Translation data streaming: The dfm-streaming method is changed for
"translation-aware" properties of TsiLang components. Now you can edit
translations in TsiLang components without changing the default locale on your
system.

 Other Improvements:

o Number of optimizations is made to make the library smaller and faster.

V E R S I O N 5 . 2 . 4

V E R S I O N 5 . 2 . 3

V E R S I O N 5 . 2 . 2

V E R S I O N 5 . 2

TsiLang® Components Suite Developer’s Guide

115

o User interface of the Translation Editor is changed so that design-time
property editors, run-time Translation Editor and SIL Editor have
consistent feel and look.

o Multiple cells selection in the Translation Editor is implemented (for
Copy/Cut/Paste/Delete treatment).

o Ignore/Check Removals command is added for TsiLang component
editor. This is useful when you move controls on your form via Cut-
>Paste in design-time. It is good idea before cutting a control to set
"Ignore removals" flag for the TsiLang component, so that any
references to this control would not lost in the TsiLang properties.

o The new method "ClearTranslations" is introduced for TsiLang
components and corresponding command is added to the TsiLang
Expert. This removes all translation data from the component.

 C++Builder™ 6 support. TsiLang Components Suite successfully
compiled under C++Builder™ 6.

 VCL and CLX Editions: For the best support of CLX technology TsiLang
Components Suite is divided into two editions: VCL and CLX. The latter one
allows you to create true CLX Multilanguage applications under Windows with
Delphi™ 6 and C++Builder™ 6 as well as under Linux with Kylix™ 1 and 2.

 Extended Translations: New property "ExtendedTranslations" is introduced for
all TsiCustomLang's descendants. Using this property you can internationalize
not only strings but any properties of components that can affect an
application's appearance after language switching; for example, a label's width
and height now may have different values for different languages.

 Binary Storage: Besides the traditional technology for storing external
translations in .SIL files the new one based on binary .SIB files has brought into
operation. This technology is specifically designed for using with TsiLangRT
component and allows loading and saving translations at run-time a few times
faster than from/to .SIL files.

 Resource Strings Handling: With this sophisticated improvement a TsiLang
component can handle all resource strings of your application even if they are
hidden in some .dcu or .obj and you do not have the source. All you need is to
set the property HandleResourceStrings to True.

 Other Improvements:

o Checking for duplicate ID when adding new ID in Strings Editor.

o Renaming ID in sources when changing it in Strings Editor.

o Possibility to exclude blank values in Translation Editor.

V E R S I O N 5 . 1

TsiLang® Components Suite Developer’s Guide

116

o Suggest translation feature.

o Default language names.

o TsiLang Files Editor (SIL Editor): Support for binary .SIB files;
Redesigned user's interface; Suggest translation feature; Improved
export/import;

o Dictionary Manager: Spell checking; Improved export/import;

 Kylix™ 2 support! TsiLang Components Suite successfully compiled
under Kylix™ 2.

 Improvement: components with ParentFont property set to True are not longer
listed in the Fonts and Charsets properties.

 Improvement: it is now possible to exclude particular properties or components
directly from Translation Editor.

 Improvement: it is now possible to filter untranslated/partially translated
properties from Translation Editor.

 Improvement: When Dictionary Manager is activated from either Translation
Editor or SIL Editor, entering an empty cell in Editor will automatically look up
and suggest a translation for the given language.

 TsiLang Expert Improvement: it is now possible to check bad string identifiers
used in units without forms.

 TsiLang Expert Improvement: it is now possible to configure the minimal
length of string in source to be handled by Source Translation feature.

 TsiLang Expert Improvement: TsiLang Expert will now suggest smarter string
identifiers under Source Translation feature.

 SIL Editor Improvement: Translation Info tips - when entering a cell an info tip
displaying values from all the languages pops up. This is very useful when there
is not enough room to display all columns.

 SIL Editor Improvement: Improved HTML import/export.

 SIL Editor Improvement: Columns can now be sorted both ascending and
descending.

 Dictionary Manager Improvement: when using Auto-translation feature, strings
with accelerators are handled more correctly.

 Dictionary Manager Improvement: Auto-translation feature now uses a base
language selected by user.

V E R S I O N 5 . 0

TsiLang® Components Suite Developer’s Guide

117

TsiLang® Components Suite Developer’s Guide

118

List of Tables
Table 1 Dictionary Manager Automation Server .. 49
Table 2 Methods of SIL Editor Automation Server ... 52
Table 3 TsiLang translation-aware properties .. 57
Table 4 TsiLang behavior-aware properties ... 58
Table 5 Other properties of TsiLang .. 60
Table 6 TsiLang events .. 68
Table 7 TsiLangLinked specific properties .. 68
Table 8 TsiLangRT specific properties ... 69
Table 9 TsiLangRTSE specific properties .. 70
Table 10 TsiLangTLV specific properties .. 71
Table 11 TsiLangDispatcher properties .. 72
Table 12 TTestModeInfo fields ... 73
Table 13 TsiLangDispatcher events .. 74
Table 14 TsiInternetTranslator properties ... 76
Table 15 TsiLangCombo Properties ... 79
Table 16 siDialogs specific properties ... 80

TsiLang® Components Suite Developer’s Guide

119

List of Figures
Figure 1 Core components hierarchy .. 12
Figure 2 Multiple TsiLang components are linked to a single TsiLangDispatcher. . 14
Figure 3 Forms with a TsiLangDispatcher and TsiLang components 15
Figure 4 Strings constants found by the Expert .. 17
Figure 5 Menu items for language switching ... 18
Figure 6 Translation Editor displays “translation-aware” properties 19
Figure 7 TsiLang Expert ... 20
Figure 8 Translation Wizard (First step) ... 21
Figure 9 Translation Wizard (Second Step) .. 22
Figure 10 Hard-coded strings found by the Expert .. 23
Figure 11 Bad string identifiers found by the Expert ... 26
Figure 12 TsiLang Expert options dialog ... 27
Figure 13 Translations Editor... 30
Figure 14 Extended Translations property editor ... 34
Figure 15 Exclude components from translations .. 41
Figure 16 Exclude properties from translations .. 42
Figure 17 Exclude components’ properties from translations 43
Figure 18 Add FMX define when building Firemonkey projects 44
Figure 19 Translated application with TsiLang under Linux 46
Figure 20 Dictionary Manager .. 48
Figure 21 SIL Editor .. 51
Figure 22 Resource Strings Wizard - Step 1 ... 54
Figure 23 Resource Strings Wizard - Step 2 ... 55
Figure 24 Resource Strings Wizard - Step 3 ... 55
Figure 25 Configuring Default Fonts .. 84

TsiLang® Components Suite Developer’s Guide

120

Index

C

Component’s Properties to Exclude ..42
Components to Exclude ..40
Contacting Information ...9

D

Dialogs ...80
Dictionary Manager ...48
Dictionary Manager Automation Server ...49

E

Events
TsiLangDispatcher ..74

Expert Options...26
ExtendedTranslations .. 58, 65

Using .. 34, 38

F

FireMonkey Support..44
Frequently Asked Questions ...89

G

GetText .. 28, 63
GetText C ...63
GetTextByInt ...63
GetTextOrDefault .. 28, 63
GetTextOrDefaultC ..63
GetTextOrDefaultW ..63
GetTextOrDefined ...63
GetTextOrDefinedW..63
GetTextW ..63

H

Hard-coded strings
Prefix ..28
Search ..22

I

Installation...10
Registered Version ...11
Trial Version ...10

L

Language switching ...17
Linux64 ..45
LoadAllFromFile

TsiLang ...64
LoadFromFile

TsiLang® Components Suite Developer’s Guide

121

TsiLang ...64

M

Methods
TsiLang ...62
TsiLangDispatcher ..72
TsiLangRT ...69

P

Properties
TsiLang ...60
TsiLangDispatcher ..72
TsiLangLinked ...68
TsiLangRT ...69

Properties to Exclude ..41

R

Resource strings
Importing ...54

S

SaveAllToFile
TsiLang ...64

SaveToFile
TsiLang ...64

SIL Editor ...51
SIL Editor Automation Server ..52

T

Tips and Tricks ...81
Translate resource strings by ID ..56
TranslationData as Text in DFM ..88
TsiCustomLang .. 12, 68
TsiLang ... 10, 11, 16, 18, 28, 57, 72

Properties ...57
Review ..12

TsiLang events ...68
TsiLang Expert

Using ..20
TsiLangDispatcher ...71

Review ..13
TsiLangLinked ..68

Properties ...68
TsiLangRT...68

Methods ...69
Properties ...69

TsiLangRTSE ...70
Methods ...70
Properties ...70

TsiLangTLV ...70
Tutorial ..15

U

Using Exclude from Translations Editor ..40
Using ExtendedTranslations under different DPIs ..36

TsiLang® Components Suite Developer’s Guide

122

Using Translation Editor ..30
Using Translations Stored in External Files ...38
Using TSI:IGNORE tags...24
Using TsiLang Expert ...20

V

Version History ..95

W

Welcome ...6

