
February 2019 UM1721 Rev 3 1/27

UM1721
User manual

Developing applications on STM32Cube™ with FatFs

Introduction

The STM32Cube™ is an STMicroelectronics original initiative to make developers’ lives
easier by reducing development effort, time and cost. STM32Cube™ covers the whole
STM32 portfolio.

STM32Cube™ includes:

• STM32CubeMX, a graphical software configuration tool that allows the generation of C
initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per Series (such as
STM32CubeF4 for STM32F4 Series)

– The STM32Cube™ HAL, STM32 abstraction layer embedded software ensuring
maximized portability across the STM32 portfolio,

– A consistent set of middleware components such as RTOS, USB, TCP/IP,
Graphics,

– All embedded software utilities, delivered with a full set of examples.

A file system is the way in which files ares named and where they are placed logically for
storage and retrieval. Its primary objective is to manage access to the data of files, and to
manage the available space of the device(s) which contain it. Using a file system allows
user to ensure reliability and to organize data in an efficient manner.

This user manual is intended for developers who use STM32Cube™ MCU Package on
STM32 microcontrollers. It provides a full description of how to use the STM32Cube™
firmware components with a generic FAT file system (FatFs); this user manual comes also
with description of a set of examples based on common FatFs provided APIs. Please refer
to the release notes of the STM32Cube™ MCU Package to know the version of FatFs
firmware component used.

This document is applicable to all STM32 devices; however for simplicity reason, the
STM32F4xx devices and STM32CubeF4 are used as reference platform. To know more
about supported physical media disk and the examples implementation on your STM32
device, please refer to the readme file provided within the associated STM32Cube™.

Table 1. Application products

Type Part numbers

STM32Cube MCU
Packages

STM32CubeF0, STM32CubeF1, STM32CubeF2, STM32CubeF3,
STM32CubeF4, STM32CubeF7, STM32CubeL0, STM32CubeL1,
STM32CubeL4, STM32CubeG0, STM32CubeH7, STM32CubeWB

www.st.com

http://www.st.com

Contents UM1721

2/27 UM1721 Rev 3

Contents

1 Acronyms and definitions . 6

2 General information . 7

3 FAT File System overview . 8

3.1 FAT overview . 8

3.1.1 Master Boot Record . 8

3.1.2 FAT partitions . 9

3.1.3 FAT license . 9

4 FatFs File System . 11

4.1 FatFs overview .11

4.2 FatFs architecture .11

4.3 FatFs license . 12

4.4 FatFs features . 12

4.4.1 Duplicate file access . 12

4.4.2 Reentrancy . 12

4.4.3 Long file name . 13

4.5 FatFs APIs . 13

4.6 FatFs low level APIs . 14

4.7 FatFs into STM32CubeF4 . 15

4.7.1 FATFS_LinkDriver() . 16

4.7.2 FATFS_UnlinkDriver() . 16

4.7.3 FATFS_GetAttachedDriverNbr() . 17

4.8 Interface your own disk to FatFs . 17

5 FatFs applications . 20

5.1 HAL drivers configuration . 20

5.2 FatFs File System configuration . 21

5.2.1 Reentrancy . 21

5.2.2 Long file name . 21

5.3 FatFs sample application . 22

UM1721 Rev 3 3/27

UM1721 Contents

3

6 Conclusions . 24

7 FAQ . 25

8 Revision history . 26

List of tables UM1721

4/27 UM1721 Rev 3

List of tables

Table 1. Application products . 1
Table 2. Acronyms and definitions . 6
Table 3. "Diskio_drv_TypeDef" structure . 15
Table 4. "Disk_drv_TypeDef" structure. 15
Table 5. Examples of FatFs middleware utilization . 20
Table 6. Document revision history . 26

UM1721 Rev 3 5/27

UM1721 List of figures

5

List of figures

Figure 1. High level view of an MBR . 8
Figure 2. Two FAT partitions on a device . 9
Figure 3. FatFs architecture. 11
Figure 4. FatFs license . 12
Figure 5. FatFs Middleware module architecture. 15

Acronyms and definitions UM1721

6/27 UM1721 Rev 3

1 Acronyms and definitions

Table 2. Acronyms and definitions

Acronym Definition

ANSI American national standards institute

API Application programming interface

BPB BIOS parameter block

BSP Board support package

CPU Central Processing Unit

CMSIS Cortex™ microcontroller software interface standard

DBCS Double byte char string

DOS Disk operating system

EFI Extensible firmware interface

FAT File allocation table

HAL Hardware abstraction layer

LFN Long file name

MBR Master boot record

MSD Micro secure digital

OEM Original equipment manufacturer

RAM Random access memory

RTC Real-time clock

RTOS Real-time operating system

SD Secure digital

SDRAM Synchronous dynamic random access memory

SFN Short file name

SRAM Static random access memory

USB Universal serial bus

UM1721 Rev 3 7/27

UM1721 General information

26

2 General information

STM32Cube™ FatFs middleware runs on STM32 32-bit microcontrollers based on the
Arm®(1) Cortex®-M processor.

1. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and or elsewhere.

FAT File system overview UM1721

8/27 UM1721 Rev 3

3 FAT File system overview

3.1 FAT overview

The File allocation table (FAT) file system was developed by Bill Gates and Marc McDonald.
It is a format and some software which stores and organizes files on a storage device, such
as a disk drive or a memory device. It is used to facilitate access to files and directories.

The FAT file system provides a way to time stamp when a file is created or changed and
provides a way to identify the size of the file. This system provides a mechanism to store
other attributes of a file, such as whether a file is read-only, whether the file should be
hidden in a directory display, or whether a file should be archived at the next disk backup.

The FAT file system is ideal for removable Flash media used in consumer electronic
devices, such as digital cameras, media players and Flash drives.

The FAT file system can be helpful in the following scenarios:

• Due to the backward compatibility of the FAT file system, users can employ memory
stick media or floppy disks to transfer files between a consumer electronic device and a
computer that uses an outdated operating system;

• The FAT file system lets users quickly remove files from electronic devices, as in
professional broadcast media;

• The file system versions, FAT16 or FAT32, may be suitable for a hard disk drive
volume.

These versions would also be useful to a user who wants to boot a computer by using a
floppy disk to access data (typically, system recovery tools) on a hard disk drive volume.

3.1.1 Master boot record

The Master boot record (MBR) is located on one or more sectors at the physical start of the
device. The boot region of the MBR contains DOS boot loader code, which is written when
the device is formatted (but is not otherwise used by the Dynamic C FAT file system). The
partition table follows the boot region. It contains four 16-byte entries, which allow up to four
partitions on the device.

Partition table entries contain some critical information: the partition type (Dynamic C FAT
recognizes FAT12 and FAT16 partition types) and the partition's starting and ending sector
numbers. There is also a field denoting the total number of sectors in the partition. If this
number is zero, the corresponding partition is empty and available.

Figure 1. High level view of an MBR

UM1721 Rev 3 9/27

UM1721 FAT File system overview

26

Some devices are formatted without an MBR and, therefore, have no partition table. This
configuration is not currently supported in the Dynamic C FAT file system.

3.1.2 FAT partitions

The first sector of a valid FAT file system partition contains the BIOS Parameter Block
(BPB), followed by the File Allocation Table (FAT), and then the Root Directory. The figure
below shows a device with two FAT partitions.

Figure 2. Two FAT partitions on a device

BIOS Parameter Block

The fields of the BPB contain information describing the partition:

• The number of bytes per sector;

• The number of sectors per cluster;

• The total count of sectors on the partition;

• The number of root directory entries.

FAT Allocation Table

The file allocation table is the structure that gives the FAT file system its name. The FAT
stores information about cluster assignments. A cluster is either assigned to a file, is
available for use, or is marked as bad. A second copy of the FAT immediately follows the
first one.

Root directory

The root directory has a predefined location and size. It has 512 entries of 32 bytes each.
An entry in the root directory is either empty or contains a file or subdirectory name (in 8.3
format), file size, date and time of last revision and the starting cluster number for the file or
subdirectory.

Data area

The data area takes up most of the partition. It contains file data and subdirectories. Note
that the data area of a partition must, by convention, start at cluster 2.

For more details, refer to the Microsoft® EFI FAT32 File System Specification.

3.1.3 FAT license

The Microsoft Extensible Firmware Initiative FAT32 File System Specification, rev. 1.03,
December 6, 2000, is available as an Office Word document (268 Kbytes).

FAT File system overview UM1721

10/27 UM1721 Rev 3

The download license agreement allows using the Microsoft EFI FAT32 File System
Specification only in connection with a firmware implementation of the Extensible Firmware
Initiative Specification, v. 1.0. If you plan to implement the FAT32 File System specification
for other purposes, you must obtain an additional license from Microsoft.

For example, you must obtain an additional license in order to create a file system for
reading, or reading and writing FAT32 in digital cameras recording to Flash media, in
computer operating systems reading and writing internal/external hard disks or Flash media,
or in set-top boxes reading FAT-formatted media.

For more details about FAT and applicable licenses and/or copyrights, refer to Microsoft web
site.

UM1721 Rev 3 11/27

UM1721 FatFs File System

26

4 FatFs File System

4.1 FatFs overview

FatFs is a generic FAT file system module for small embedded systems. The FatFs is
written in compliance with ANSI C and completely separated from the disk I/O layer.
Therefore it is independent of hardware architecture, and has the following features:

• Windows compatible FAT file system.

• Very small footprint for code and work area.

• Various configuration options:

– Multiple volumes (physical drives and partitions).

– Multiple ANSI/OEM code pages including DBCS.

– Long file name support in ANSI/OEM or Unicode.

– RTOS support.

– Multiple sector size support.

– Read-only, minimized API, I/O buffer.

– FAT sub-types: FAT12, FAT16 and FAT32.

– Number of open files: Unlimited, depends on available memory.

– Number of volumes: Up to 10.

– File size: Depends on FAT specs. (up to 4G-1 bytes)

– Volume size: Depends on FAT specs. (up to 2T bytes on 512 bytes/sector)

– Cluster size: Depends on FAT specs. (up to 64K bytes on 512 bytes/sector)

– Sector size: Depends on FAT specs. (up to 4K bytes)

4.2 FatFs architecture

FatFs module is a middleware which provides many functions to access the FAT volumes,
such as f_open(), f_close(), f_read(), f_write(), etc (refer to ff.c).

There is no platform dependence in this module, as long as the compiler is compliant with
ANSI C.

A low level disk I/O module is used to read/write the physical drive,

An RTC module is used to get the current time.

The low level disk I/O and the RTC module are completely separate from the FatFs module.
They must be provided by the user, which is the main task of porting FatFs module to other
platforms.

Figure 3. FatFs architecture

FatFs File System UM1721

12/27 UM1721 Rev 3

4.3 FatFs license

Figure 4 is a copy of the FatFs license document included in the source codes.

Figure 4. FatFs license

Therefore FatFs license is one of the BSD-style licenses, but there is a big difference.
Because FatFs is for embedded projects, the conditions for redistributions in binary form,
such as embedded code, hex file and binary library, are not specified to increase its
usability. The documentation of the distributions need not include about FatFs and its
license document, and it may also. Of course FatFs is compatible with the projects under
GNU GPL. When redistribute it with any modification, the license can also be changed to
GNU GPL or BSD-style license.

4.4 FatFs features

4.4.1 Duplicate file access

FatFs module does not support the sharing controls of duplicated file access in default. It is
permitted when open method to a file is only read mode. The duplicated open in write mode
to a file is always prohibited and open file must not be renamed, deleted, or the FAT
structure on the volume can be collapsed.

The file sharing control can also be available when _FS_LOCK is set to 1 or greater. The
value specifies the number of files to manage simultaneously. In this case, if any open,
rename or remove that violates the file sharing rule that described above is attempted; the
file function will fail with FR_LOCKED. If the number of open files gets larger than
_FS_LOCK, the f_open() function will fail with FR_TOO_MANY_OPEN_FILES.

4.4.2 Reentrancy

The file operations to the different volumes are always reentrant and can work
simultaneously. The file operations to the same volume are not reentrant but it can also be
configured to thread-safe with _FS_REENTRANT option. In this case, also the OS
dependent synchronization object control functions, ff_cre_syncobj(), ff_del_syncobj(),
ff_req_grant() and ff_rel_grant() must be added to the project.

When a file function is called while the volume is in use by any other task, the file function is
suspended until that task leaves file function. If the wait time exceeded a period defined by
_TIMEOUT, the file function will abort with FR_TIMEOUT. The timeout feature might not be
supported on some RTOS.

UM1721 Rev 3 13/27

UM1721 FatFs File System

26

There is an exception on f_mount() and f_mkfs() functions. These functions are not
reentrant to the same volume. When using these functions, all other tasks must close the
corresponding file on the volume and avoid accessing the volume.

Note that this section describes the reentrancy of the FatFs module itself, but also the low
level disk I/O layer must be reentrant.

4.4.3 Long file name

The FatFs module has started to support long file name (LFN) at revision 0.07. The two
different file names, SFN and LFN, of a file is transparent in the file functions except for
f_readdir() function. To enable LFN feature, set _USE_LFN to 1, 2 or 3, and add a Unicode
code conversion function ff_convert() and ff_wtoupper() to the project. The LFN feature
requires a certain working buffer in addition. The buffer size can be configured by
_MAX_LFN corresponding to the available memory size. The size of long file name will
reach up to 255 characters so that the _MAX_LFN should be set to 255 for full featured LFN
operation. If the size of working buffer is insufficient for the given file name, the file function
fails with FR_INVALID_NAME. When enabling the LFN feature with reentrant feature,
_USE_LFN must be set to 2 or 3. In this case, the file function allocates the working buffer
on the stack or heap. The working buffer occupies (_MAX_LFN + 1) * 2 bytes.

When the LFN feature is enabled, the module size will be increased depending on the
selected code page. Right table shows how many bytes increased when LFN feature is
enabled with some code pages.

4.5 FatFs APIs

The FatFs APIs layer implements file system APIs. It uses disk I/O interface to communicate
with the appropriate physical drive. The set of APIs is divided into four groups:

• Group of APIs that operates with logical volume or partition.

• Group of APIs that operates with directory.

• Group of APIs that operates with file.

• Group of APIs that operates with both file and directory.

The following list describes what FatFs can do to access the FAT volumes:

• f_mount(): Register/Unregister a work area

• f_open(): Open/Create a file

• f_close(): Close a file

• f_read(): Read a file

• f_write(): Write a file

• f_lseek(): Move read/write pointer, Expand a file size

• f_truncate(): Truncate a file size

• f_sync(): Flush cached data

• f_opendir(): Open a directory

• f_readdir(): Read a directory item

• f_getfree(): Get free clusters

• f_stat(): Check if the object is exist and get status

• f_mkdir(): Create a directory

FatFs File System UM1721

14/27 UM1721 Rev 3

• f_unlink(): Remove a file or directory

• f_chmod(): Change an attribute

• f_utime(): Change timestamp

• f_rename(): Rename/Move a file or directory

• f_chdir(): Change the current directory

• f_chdrive(): Change the current drive

• f_getcwd(): Retrieve the current directory

• f_getlabel(): Get volume label

• f_setlabel(): Set volume label

• f_forward(): Forward file data to the stream directly

• f_mkfs(): Create a file system on the drive

• f_fdisk(): Devide a physical drive

• f_gets(): Read a string

• f_putc(): Write a character

• f_puts(): Write a string

• f_printf(): Write a formatted string

• f_tell(): Get the current read/write pointer

• f_eof(): Test for end-of-file on a file

• f_size(): Get the size of a file

• f_error(): Test for an error on a file

4.6 FatFs low level APIs

Since the FatFs module is completely separate from the disk I/O and RTC module, it
requires some low level functions to operate the physical drive: read/write and get the
current time. Because the low level disk I/O functions and RTC module are not a part of the
FatFs module, they must be provided by the user.

The FatFs Middleware solution provides low level disk I/O drivers for some supported disk
drives (RAMDisk, microSD, USBDisk).

An additional interface layer diskio.c has been added to add/remove dynamically (link)
physical media to the FatFs module, providing low level disk I/O functions as mentioned
below:

• disk_initialize(): Initializes the physical disk drive

• disk_status(): Returns the selected physical drive status

• disk_read(): Reads sector(s) from the disk

• disk_write(): Writes sector(s) to the disk

• disk_ioctl(): Controls device-specified features

• get_fattime(): Returns the current time

Application program MUST NOT call these functions, they are only called by FatFs file
system functions such as, f_mount(), f_read() or f_write().

UM1721 Rev 3 15/27

UM1721 FatFs File System

26

4.7 FatFs into STM32CubeF4

In the STM32CubeF4 solution, an additional interface layer has been added to add/remove
dynamically physical media to/from the FatFs module. To link FatFs module with a low level
disk I/O driver, user can use FATFS_LinkDriver() and FATFS_UnLinkDriver() to add or
remove dynamically a disk I/O driver; the application may need to know the number of
current attached disk I/O drivers, this is done through the FATFS_GetAttachedDriversNbr()
API.

Figure 5. FatFs Middleware module architecture

The generic low level driver ff_gen_drv.c/h is located in the root directory of the FatFs
modules. Two disk I/O driver type definition structures are used to help dynamic
management of attached disk drives under the ff_gen_drv.h file, as mentioned below:

Table 4. "Disk_drv_TypeDef" structure

Table 3. "Diskio_drv_TypeDef" structure

Field Description

DSTATUS (*disk_initialize)(void); Initialize Disk Drive

DSTATUS (*disk_status)(void); Get Disk Status

DRESULT (*disk_read)(BYTE*, DWORD, BYTE); Read Sector(s)

DRESULT (*disk_write)(const BYTE*, DWORD,
BYTE);

Write Sector(s)

_USE_WRITE should be = 0

DRESULT (*disk_ioctl)(BYTE, void*); I/O control operation

_USE_IOCTL should be = 1

Field Description

Diskio_drvTypeDef *drv[_VOLUMES]; Diskio_drv_TypeDef structure

uint8_t nbr; Number of the attached drives

FatFs File System UM1721

16/27 UM1721 Rev 3

To link FatFs module with a low level disk I/O driver, user can use the following APIs:

• FATFS_LinkDriver(): to add dynamically a disk I/O driver,

• FATFS_UnLinkDriver(): to remove dynamically a disk I/O driver,

• FATFS_GetAttachedDriversNbr(): to know the number of current attached disk I/O
drivers

4.7.1 FATFS_LinkDriver()

This function links a compatible disk I/O driver and increments the number of active linked
drivers. It returns 0 in case of success, otherwise it returns 1.

Note: Due to FatFs limits the MAX number of attached disks (_VOLUMES) is up to 10

Implementation of FATFS_LinkDriver:

uint8_t FATFS_LinkDriver(Diskio_drvTypeDef *drv, char *path)

{

 uint8_t ret = 1;

 uint8_t DiskNum = 0;

 if(disk.nbr <= _VOLUMES)

 {

 disk.drv[disk.nbr] = drv;

 DiskNum = disk.nbr++;

 path[0] = DiskNum + '0';

 path[1] = ':';

 path[2] = '/';

 path[3] = 0;

 ret = 0;

 }

 return ret;

}

4.7.2 FATFS_UnlinkDriver()

This function unlinks a disk I/O driver and decrements the number of active linked drivers. It
returns 0 in case of success, otherwise it returns 1.

Implementation of FATFS_UnLinkDriver:

uint8_t FATFS_UnLinkDriver(char *path)

{

 uint8_t DiskNum = 0;

 uint8_t ret = 1;

 if(disk.nbr >= 1)

 {

 DiskNum = path[0] - '0';

 if(DiskNum <= disk.nbr)

 {

UM1721 Rev 3 17/27

UM1721 FatFs File System

26

 disk.drv[disk.nbr--] = 0;

 ret = 0;

 }

 }

 return ret;

}

4.7.3 FATFS_GetAttachedDriverNbr()

This function returns the number of linked drivers to the FatFs module.

Implementation of FATFS_GetAttachedDriversNbr:

uint8_t FATFS_GetAttachedDriversNbr(void)

{

 return disk.nbr;

}

4.8 Interface your own disk to FatFs

If a working storage control module is available, it should be attached to the FatFs via a glue
function rather than modifying it. User can interface any new disk by developing the
appropriate disk I/O low level driver (mynewdisk_diskio.c/.h), and save these driver files
under: \Middlewares\Third_Party\FatFs\src\drivers.

It is worth noting that the provided FatFs disk I/O low level drivers are dependent on the
board BSP drivers. To remove this BSP dependency the user can just replace “BSP_...”
APIs' calls by his own code ensuring the appropriate functionality.

To develop a disk I/O low level driver from scratch, the user can start from the skeleton of
glue functions below to attach the existing storage control module to the FatFs with a
defined API.

Low level disk I/O module skeleton for FatFs:

/*---*/

/* mynewdisk_diskio.c: Low level disk I/O module skeleton for FatFs */

/*---*/

/* Includes ---*/

#include <string.h>

#include "ff_gen_drv.h"

/* Private define ---*/

#define BLOCK_SIZE 512 /* Block Size in Bytes */

/* Private variables --*/

static volatile DSTATUS Stat = STA_NOINIT; /* Disk status */

/* Private function prototypes --*/

DSTATUS mynewdisk_initialize (void);

FatFs File System UM1721

18/27 UM1721 Rev 3

DSTATUS mynewdisk_status (void);

DRESULT mynewdisk_read (BYTE*, DWORD, BYTE);

#if _USE_WRITE == 1

 DRESULT mynewdisk_write (const BYTE*, DWORD, BYTE);

#endif /* _USE_WRITE == 1 */

#if _USE_IOCTL == 1

 DRESULT mynewdisk_ioctl (BYTE, void*);

#endif /* _USE_IOCTL == 1 */

Diskio_drvTypeDef mynewdisk_Driver =

{

 mynewdisk_initialize,

 mynewdisk_status,

 mynewdisk_read,

#if _USE_WRITE == 1

 mynewdisk_write,

#endif /* _USE_WRITE == 1 */

/*------------------------ Initialize a Drive ---------------------------*/

DSTATUS mynewdisk_initialize (void)

{

 Stat = STA_NOINIT;

 // write your own code here to initialize the drive

 Stat &= ~STA_NOINIT;

 return Stat;

}

/*------------------------- Get Disk Status -----------------------------*/

DSTATUS mynewdisk_status (void)

{

 Stat = STA_NOINIT;

 // write your own code here

 return Stat;

}

/*-------------------------- Read Sector(s) -----------------------------*/

DRESULT mynewdisk_read (BYTE *buff, /* Data buffer to store read data */

 DWORD sector, /* Sector address (LBA) */

 BYTE count) /* Number of sectors to read (1..128) */

{

 DRESULT res = RES_ERROR;

 // write your own code here to read sectors from the drive

 return res;

}

/*--------------------------- Write Sector(s) ---------------------------*/

#if _USE_WRITE == 1

DRESULT mynewdisk_write (const BYTE *buff, /* Data to be written */

UM1721 Rev 3 19/27

UM1721 FatFs File System

26

 DWORD sector, /* Sector address (LBA) */

 BYTE count) /* Number of sectors to write (1..128) */

{

 DRESULT res = RES_ERROR;

 // write your own code here to write sectors to the drive

 return res;

}

#endif /* _USE_WRITE == 1 */

/*------------------------ Miscellaneous Functions ----------------------*/

#if _USE_IOCTL == 1

DRESULT mynewdisk_ioctl (BYTE cmd, /* Control code */

 void *buff) /* Buffer to send/receive control data */

{

 DRESULT res = RES_ERROR;

 // write your own code here to control the drive specified features

 // CTRL_SYNC, GET_SECTOR_SIZE, GET_SECTOR_COUNT, GET_BLOCK_SIZE

 return res;

}

#endif /* _USE_IOCTL == 1 */

Header Low level disk I/O module:

/*---*/

/* mynewdisk_diskio.h: Header for Low level disk I/O module */

/*---*/

/* Define to prevent recursive inclusion ----------------------------------*/

#ifndef __MYNEWDISK_DISKIO_H

#define __MYNEWDISK_DISKIO_H

extern Diskio_drvTypeDef mynewdisk_Driver;

#endif /* __MYNEWDISK_DISKIO_H */

FatFs applications UM1721

20/27 UM1721 Rev 3

5 FatFs applications

In the STM32CubeF4 solution, many applications are provided based on FatFs
middleware. The table below gives you insight on how the FatFs middleware
component is used in different examples which are classified by complexity and
depending on used physical drive interfaced (uSD, RAMDisk, USBDisk):

The FatFs applications listed above provided within STM32CubeF4 solution are a set of
firmware available in two modes:

• Standalone mode

• RTOS mode, using FreeRTOS middleware component.

It is worth noting that user must guarantee appropriate values of stack and heap, when
using or developing FatFs applications based on ST provided disk I/O low level drivers.

Thus, stack value must be incremented by the handled maximum sector size _MAX_SS
value, available within ff_conf.h file, when using USB Disk application based on USB Host
Mass Storage Class (MSC) for scratch alignment reasons.

Heap value must be also adjusted when developing any FatFs application in RTOS mode,
using FreeRTOS middleware component based on CMSIS-OS wrapping layer common
APIs.

5.1 HAL drivers configuration

FatFs applications provided within STM32CubeF4 solution is a set of firmware used to
interface different physical disk drives (uSD, RAM Disk, USB Disk). User needs some HAL
drivers which are essential to run the FatFs application. The correspond HAL drivers are
enabled through the HAL configuration file stm32f4xx_hal_conf.h, by uncommenting the
right modules used in the HAL driver.

Table 5. Examples of FatFs middleware utilization

Example class Examples Description

Getting started
FatFs on single Logical Unit

(RAMDisk)

Link FatFs module to a dummy disk I/O driver
in RAM and perform mount, open, write, read,

Close operation through a static buffer.

Features

FatFs on single Logical Unit
Link FatFs module to a uSD disk I/O driver
and perform mount, open, write, read, close

operations through a static buffer.

FatFs on Multi Logical Unit
Link FatFs module to uSD and RAM disk I/O
driver and perform mount, open, write, read,

close operations through a static buffer.

Integrated
FatFs on single Logical Unit

(USB Disk)

Link FatFs module to USB Host diskI/O driver
and perform mount, open, write, read, close

operations through a static buffer.

UM1721 Rev 3 21/27

UM1721 FatFs applications

26

The main difference in HAL configuration files, between the supported disk drivers is the
definition of the right HAL driver corresponding to the used disk drive. The following defines
must be available depending on each drive:

• FatFs_uSD:

– #define HAL_SD_MODULE_ENABLED

• FatFs_RAMDisk:

– #define HAL_SDRAM_MODULE_ENABLED or

– #define HAL_SRAM_MODULE_ENABLED

• FatFs_USBDisk:

– #define HAL_HCD_MODULE_ENABLED

5.2 FatFs File System configuration

FatFs module contains various configuration options. At this level we provide information to
help user select proper options depending on the interfaced physical disk drives his
requirement to reach the highest performance.

5.2.1 Reentrancy

Reentrancy is the key difference between the Standalone and the RTOS modes’
configurations, which can be set on FatFs configuration file ffconf.h:

• Reentrancy is disabled in Standalone mode:

– #define _FS_REENTRANT 0

• Reentrancy is enabled in RTOS mode:

– #define _FS_REENTRANT 1

Once enabled, user must provide the OS dependent type of synchronization object (#define
_SYNC_t osSemaphoreId)

RTOS mode applications’ projects need to include the syscall.c file providing the OS
depending functions, and found under: \Middlewares\Third_Party\FatFs\src\option

5.2.2 Long file name

The FatFs module supports long file name (LFN) and 8.3 format file name (SFN).

Note that the LFN feature on the FAT file system is a patent of Microsoft Corporation. This is
not the case on FAT32 but most FAT32 drivers include the LFN feature. FatFs can switch
the LFN feature by configuration option. When enable LFN feature on the commercial
products, a license from Microsoft may be required depends on the final destination. The
LFN can be used when LFN feature is enabled, which can be set on FatFs configuration file
ffconf.h: (_USE_LFN > 0) within FatFs configuration file ffconf.h:

• LFN feature is disabled:

– #define _USE_LFN 0

• LFN feature is enabled, when 3 ≥ _USE_LFN > 0:

Once enabled on ffconf.h configuration file, the application project needs to include the
syscall.c/unicode.c files providing memory management functions, and found under:
\Middlewares\Third_Party\FatFs\src\option

FatFs applications UM1721

22/27 UM1721 Rev 3

User can enable LFN feature either on standalone mode applications or in RTOS mode
ones.

5.3 FatFs sample application

If user has already attached its own disk, developing the appropriate disk I/O low level driver
(mynewdisk_diskio.c/.h), refer to Section 4.8: Interface your own disk to FatFs, linking this
driver to FatFs module and using its logical disk can be done as follows:

/*---*/

/* main.c: Main program body */

/*---*/

/* Includes ---*/

#include "main.h"

/* Private variables --*/

FATFS mynewdiskFatFs; /* File system object for User logical drive */

FIL MyFile; /* File object */

char mynewdiskPath[4]; /* User logical drive path */

int main(void)

{

 uint32_t wbytes; /* File write counts */

 uint8_t wtext[] = "text to write logical disk"; /* File write buffer */

if(FATFS_LinkDriver(&mynewdisk_Driver, mynewdiskPath) == 0)

 {

 if(f_mount(&mynewdiskFatFs, (TCHAR const*)mynewdiskPath, 0) == FR_OK)

 {

 if(f_open(&MyFile, "STM32.TXT", FA_CREATE_ALWAYS | FA_WRITE) == FR_OK)

 {

 if(f_write(&MyFile, wtext, sizeof(wtext), (void *)&wbytes) == FR_OK);

 {

 f_close(&MyFile);

 }

 }

 }

 }

 FATFS_UnLinkDriver(mynewdiskPath);

}

User must include the generic drive, ff_gen_drv.h, header file and also the disk IO module
header file, mynewdisk_diskio.h

/*---*/

/* main.h: Header for main.c module */

/*---*/

UM1721 Rev 3 23/27

UM1721 FatFs applications

26

/* Includes ---*/

#include "ff_gen_drv.h"

#include "mynewdisk_diskio.h"

Conclusions UM1721

24/27 UM1721 Rev 3

6 Conclusions

This User Manual explains how to integrate the FatFs middleware components within the
STM32Cube™ HAL drivers.

A set of examples have been described to help users who develop applications based on
FatFs File System within STM32Cube™ solution.

UM1721 Rev 3 25/27

UM1721 FAQ

26

7 FAQ

How to use LFN feature with FatFs?

The FatFs module supports long file name (LFN). For more details on how to use LFN
feature with FatFs refer to Section 4.4.3: Long file name and Section 5.2.2: Long file name.

What’s the difference between FatFs Multi-partitions and Multi-drives
applications?

Multi-partitions application can use multi logical drivers that can be bound to partitions on
the specified physical drive, otherwise Multi-drives applications use different logical drives at
the same time (uSD, RAMDisk…). User can choose the number of logical drives (volumes)
to be used through _VOLUMES definition within FatFs ffconf.h configuration file.

Can user interface any new Disk to FatFs?

Yes, the user can interface a new disk to FatFs. For more details, refer to Section 4.8:
Interface your own disk to FatFs.

Does FatFs support Multi-instances?

No, it doesn’t. STM32CubeF4 solution provides the multi instance feature for HAL drivers,
but, concerning FatFs middleware component, it cannot really support physical drivers
multi-instances. In other words, the user can’t hold an application using more than one
instance of a logical drive.

What FAT sub-types does FatFs support?

FatFs refers to all three major variants of Microsoft FAT sub-types: FAT12, FAT16 and
FAT32. The FAT sub-type is determined by number of clusters on the volume and nothing
else, according to the FAT specification issued by Microsoft. Thus which FAT sub-type is
selected, is depends on the volume size and the specified cluster size.

Revision history UM1721

26/27 UM1721 Rev 3

8 Revision history

Table 6. Document revision history

Date Revision Changes

04-Mar-2014 1 Initial release.

23-Jun-2014 2

On cover page updated:

– document title

– reference at STM32CubeF4 into STM32Cube

20-Feb-2019 3

Updated Introduction and STM32Cube logo on cover page. Added
Table 1: Application products and trademark on STM32Cube.

Changed ‘STM32Cube firmware’ into ‘STM32Cube MCU Package’ in
the whole document.

Added Section 2: General information.

UM1721 Rev 3 27/27

UM1721

27

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	1 Acronyms and definitions
	2 General information
	3 FAT File system overview
	3.1 FAT overview
	3.1.1 Master boot record
	3.1.2 FAT partitions
	3.1.3 FAT license

	4 FatFs File System
	4.1 FatFs overview
	4.2 FatFs architecture
	4.3 FatFs license
	4.4 FatFs features
	4.4.1 Duplicate file access
	4.4.2 Reentrancy
	4.4.3 Long file name

	4.5 FatFs APIs
	4.6 FatFs low level APIs
	4.7 FatFs into STM32CubeF4
	4.7.1 FATFS_LinkDriver()
	4.7.2 FATFS_UnlinkDriver()
	4.7.3 FATFS_GetAttachedDriverNbr()

	4.8 Interface your own disk to FatFs

	5 FatFs applications
	5.1 HAL drivers configuration
	5.2 FatFs File System configuration
	5.2.1 Reentrancy
	5.2.2 Long file name

	5.3 FatFs sample application

	6 Conclusions
	7 FAQ
	8 Revision history

