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Abstract 

Mathematical competence rests on developing knowledge of concepts and of procedures (i.e. 

conceptual and procedural knowledge). Although there is some variability in how these 

constructs are defined and measured, there is general consensus that the relations between 

conceptual and procedural knowledge are often bi-directional and iterative. The chapter reviews 

recent studies on the relations between conceptual and procedural knowledge in mathematics and 

highlights examples of instructional methods for supporting both types of knowledge. It 

concludes with important issues to address in future research, including gathering evidence for 

the validity of measures of conceptual and procedural knowledge and specifying more 

comprehensive models for how conceptual and procedural knowledge develop over time. 
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Introduction 
When children practise solving problems, does this also enhance their understanding of the 

underlying concepts? Under what circumstances do abstract concepts help children invent or 

implement correct procedures? These questions tap a central research topic in the fields of 

cognitive development and educational psychology: the relations between conceptual and 

procedural knowledge. Delineating how these two types of knowledge interact is fundamental to 

understanding how knowledge development occurs. It is also central to improving instruction. 

The goals of the current paper were: (1) discuss prominent definitions and measures of 

each type of knowledge, (2) review recent research on the developmental relations between 

conceptual and procedural knowledge for learning mathematics, (3) highlight promising research 

on potential methods for improving both types of knowledge, and (4) discuss problematic issues 

and future directions. We consider each in turn. 

 

Defining Conceptual and Procedural Knowledge 
Although conceptual and procedural knowledge cannot always be separated, it is useful to 

distinguish between the two types of knowledge to better understand knowledge development. 

 First consider conceptual knowledge. A concept is ‘an abstract or generic idea 

generalized from particular instances’ (Merriam-Webster’s Collegiate Dictionary, 2012). 

Knowledge of concepts is often referred to as conceptual knowledge (e.g. Byrnes & Wasik, 

1991; Canobi, 2009; Rittle-Johnson, Siegler, & Alibali, 2001). This knowledge is usually not tied 

to particular problem types. It can be implicit or explicit, and thus does not have to be 

verbalizable (e.g. Goldin Meadow, Alibali, & Church, 1993). The National Research Council 

adopted a similar definition in its review of the mathematics education research literature, 

defining it as ‘comprehension of mathematical concepts, operations, and relations’ (Kilpatrick, 

Swafford, & Findell, 2001, p. 5). This type of knowledge is sometimes also called conceptual 

understanding or principled knowledge. 

At times, mathematics education researchers have used a more constrained definition. 

Star (2005) noted that: ‘The term conceptual knowledge has come to encompass not only what is 

known (knowledge of concepts) but also one way that concepts can be known (e.g. deeply and 

with rich connections)’ (p. 408). This definition is based on Hiebert and LeFevre’s definition in 

the seminal book edited by Hiebert (1986): 

‘Conceptual knowledge is characterized most clearly as knowledge that is rich in 

relationships. It can be thought of as a connected web of knowledge, a network in which the 

linking relationships are as prominent as the discrete pieces of information. Relationships 

pervade the individual facts and propositions so that all pieces of information are linked to some 

network’ (pp. 3–4). 

After interviewing a number of mathematics education researchers, Baroody and 

colleagues (Baroody, Feil, & Johnson, 2007) suggested that conceptual knowledge should be 

defined as ‘knowledge about facts, [generalizations], and principles’ (p. 107), without requiring 



that the knowledge be richly connected. Empirical support for this notion comes from research 

on conceptual change that shows that (1) novices’ conceptual knowledge is often fragmented and 

needs to be integrated over the course of learning and (2) experts’ conceptual knowledge 

continues to expand and become better organized (diSessa, Gillespie, & Esterly, 2004; Schneider 

& Stern, 2009). Thus, there is general consensus that conceptual knowledge should be defined as 

knowledge of concepts. A more constrained definition requiring that the knowledge be richly 

connected has sometimes been used in the past, but more recent thinking views the richness of 

connections as a feature of conceptual knowledge that increases with expertise. 

Next, consider procedural knowledge. A procedure is a series of steps, or actions, done to 

accomplish a goal. Knowledge of procedures is often termed procedural knowledge (e.g. Canobi, 

2009; Rittle-Johnson et al., 2001). For example, ‘Procedural knowledge … is ‘knowing how’, or 

the knowledge of the steps required to attain various goals. Procedures have been characterized 

using such constructs as skills, strategies, productions, and interiorized actions’ (Byrnes & 

Wasik, 1991, p. 777). The procedures can be (1) algorithms—a predetermined sequence of 

actions that will lead to the correct answer when executed correctly, or (2) possible actions that 

must be sequenced appropriately to solve a given problem (e.g. equation-solving steps). This 

knowledge develops through problem-solving practice, and thus is tied to particular problem 

types. Further, ‘It is the clearly sequential nature of procedures that probably sets them most 

apart from other forms of knowledge’ (Hiebert & LeFevre, 1986, p. 6). 

As with conceptual knowledge, the definition of procedural knowledge has sometimes 

included additional constraints. Within mathematics education, Star (2005) noted that 

sometimes: ‘the term procedural knowledge indicates not only what is known (knowledge of 

procedures) but also one way that procedures (algorithms) can be known (e.g. superficially and 

without rich connections)’ (p. 408). Baroody and colleagues (Baroody et al., 2007) 

acknowledged that: 

‘some mathematics educators, including the first author of this commentary, have 

indeed been guilty of oversimplifying their claims and loosely or inadvertently 

equating “knowledge memorized by rote … with computational skill or 

procedural knowledge” (Baroody, 2003, p. 4). Mathematics education 

researchers (MERs) usually define procedural knowledge, however, in terms of 

knowledge type—as sequential or “step-by-step [prescriptions for] how to 

complete tasks” (Hiebert & Lefevre, 1986, p. 6’ (pp. 116–117). 

Thus, historically, procedural knowledge has sometimes been defined more narrowly within 

mathematics education, but there appears to be agreement that it should not be. 

Within psychology, particularly in computational models, there has sometimes been the 

additional constraint that procedural knowledge is implicit knowledge that cannot be verbalized 

directly. For example, John Anderson (1993) claimed: ‘procedural knowledge is knowledge 

people can only manifest in their performance …. procedural knowledge is not reportable’ (pp. 

18, 21). Although later accounts of explicit and implicit knowledge in ACT-R (Adaptive Control 

of Thought—Rational) (Lebiere, Wallach, & Taatgen, 1998; Taatgen, 1999) do not repeat this 



claim, Sun, Merrill, and Peterson (2001) concluded that: ‘The inaccessibility of procedural 

knowledge is accepted by most researchers and embodied in most computational models that 

capture procedural skills’ (p. 206). In part, this is because the models are often of procedural 

knowledge that has been automatized through extensive practice. However, at least in 

mathematical problem solving, people often know and use procedures that are not automatized, 

but rather require conscious selection, reflection, and sequencing of steps (e.g. solving complex 

algebraic equations), and this knowledge of procedures can be verbalized (e.g. Star & Newton, 

2009). 

Overall, there is a general consensus that procedural knowledge is the ability to execute 

action sequences (i.e. procedures) to solve problems. Additional constraints on the definition 

have been used in some past research, but are typically not made in current research on 

mathematical cognition. 

 

Measuring Conceptual and Procedural Knowledge 
Ultimately, how each type of knowledge is measured is critical for interpreting evidence on the 

relations between conceptual and procedural knowledge. Conceptual knowledge has been 

assessed in a large variety of ways, whereas there is much less variability in how procedural 

knowledge is measured. 

Measures of conceptual knowledge vary in whether tasks require implicit or explicit 

knowledge of the concepts, and common tasks are outlined in Table 1. Measures of implicit 

conceptual knowledge are often evaluation tasks on which children make a categorical choice 

(e.g. judge the correctness of an example procedure or answer) or make a quality rating (e.g. rate 

an example procedure as very-smart, kind-of-smart, or not-so-smart). Other common implicit 

measures are translating between representational formats (e.g. symbolic fractions into pie 

charts) and comparing quantities (see Table 1 for more measures). 

 

 

  



Table 1: Range of tasks used to assess conceptual knowledge. 

Type of task Sample task Additional citations 

Implicit measures 

a. Evaluate 

unfamiliar 

procedures 

Decide whether ok for puppet to 

skip some items when counting 

(Gelman & Meck, 1983) 

(Kamawar et al., 2010; LeFevre et 

al., 2006; Muldoon, Lewis, & 

Berridge, 2007; Rittle-Johnson & 

Alibali, 1999; Schneider et al., 2009; 

Schneider & Stern, 2010; Siegler & 

Crowley, 1994) 

b. Evaluate 

examples of 

concept 

a. Decide whether the number 

sentence 3 = 3 makes sense 

(Rittle-Johnson & Alibali, 1999); 

b. 45 + 39 = 84, Does puppet 

need to count to figure out 39 + 

45? (Canobi et al., 1998) 

(Canobi, 2005; Canobi & Bethune, 

2008; Canobi, Reeve, & Pattison, 

2003; Patel & Canobi, 2010; Rittle-

Johnson et al., 2001; Rittle-Johnson 

et al., 2009; Schneider et al., 2011) 

c. Evaluate quality 

of answers given 

by others 

Evaluate how much someone 

knows based on the quality of 

their errors, which are or are not 

consistent with principles of 

arithmetic (Prather & Alibali, 

2008) 

(Dixon, Deets, & Bangert, 2001; 

Mabbott & Bisanz, 2003; Star & 

Rittle-Johnson, 2009) 

d. Translate 

quantities between 

representational 

systems 

a. Represent symbolic numbers 

with pictures (Hecht, 1998) 

b. Place symbolic numbers on 

number lines (Siegler & Booth, 

2004; Siegler, Thompson, & 

Schneider, 2011) 

(Byrnes & Wasik, 1991; Carpenter, 

Franke, Jacobs, Fennema, & 

Empson, 1998; Cobb et al., 1991; 

Hecht & Vagi, 2010; Hiebert & 

Wearne, 1996; Mabbott & Bisanz, 

2003; Moss & Case, 1999; Prather & 

Alibali, 2008; Reimer & Moyer, 

2005; Rittle-Johnson & Koedinger, 

2009; Schneider et al., 2009; 

Schneider & Stern, 2010) 

e. Compare 

quantities 

Indicate which symbolic integer 

or fraction is larger (or smaller) 

(Hecht, 1998; Laski & Siegler, 

2007) 

(Durkin & Rittle-Johnson, 2012; 

Hallett et al., 2010; Hecht & Vagi, 

2010; Laski & Siegler, 2007; Moss 

& Case, 1999; Murray & Mayer, 

1988; Rittle-Johnson et al., 2001; 

Schneider et al., 2009; Schneider & 

Stern, 2010) 

f. Invent principle-

based shortcut 

procedures 

On inversion problems such as 12 

+ 7–7, quickly stating the first 

number without computing 

(Rasmussen, Ho, & Bisanz, 

2003) 

(Canobi, 2009) 



g. Encode key 

features 

Success reconstructing examples 

from memory (e.g. a chess board 

or equations), with the 

assumption that greater 

conceptual knowledge helps 

people notice key features and 

chunk information, allowing for 

more accurate recall (Larkin, 

McDermott, Simon, & Simon, 

1980) 

(Matthews & Rittle-Johnson, 2009; 

McNeil & Alibali, 2004; Rittle-

Johnson et al., 2001) 

h. Sort examples 

into categories 

Sort 12 statistics problems based 

on how they best go together 

(Lavigne, 2005) 

Mainly used in other domains, such 

as physics 

Explicit measures 

a. Explain 

judgements 

On evaluation task, provide 

correct explanation of choice 

(e.g. ‘29 + 35 has the same 

numbers as 35 + 29, so it equals 

64, too.’ (Canobi, 2009) 

(Canobi, 2004, 2005; Canobi & 

Bethune, 2008; Canobi et al., 1998, 

2003; Peled & Segalis, 2005; Rittle-

Johnson & Star, 2009; Rittle-Johnson 

et al., 2009; Schneider et al., 2011; 

Schneider & Stern, 2010) 

a. Generate or 

select definitions 

of concepts 

Define the equal sign (Knuth, 

Stephens, McNeil, & Alibali, 

2006; Rittle-Johnson & Alibali, 

1999) 

(Star & Rittle-Johnson, 2009; 

Vamvakoussi & Vosniadou, 2004) 

(Izsák, 2005) 

b. Explain why 

procedures work 

Explain why ok to borrow when 

subtract (Fuson & Kwon, 1992) 

(Berthold & Renkl, 2009; Jacobs, 

Franke, Carpenter, Levi, & Battey, 

2007; Reimer & Moyer, 2005; Stock, 

Desoete, & Roeyers, 2007) 

c. Draw concept 

maps 

Construct a map that identifies 

main concepts in introductory 

statistics, showing how the 

concepts are related 

to one another (Lavigne, 2005) 

(Williams, 1998) 

 

 

 

  



Explicit measures of conceptual knowledge typically involve providing definitions and 

explanations. Examples include generating or selecting definitions for concepts and terms, 

explaining why a procedure works, or drawing a concept map (see Table 1). These tasks may be 

completed as paper-and-pencil assessment items or answered verbally during standardized or 

clinical interviews (Ginsburg, 1997). We do not know of a prior study on conceptual knowledge 

that quantitatively assessed how richly connected the knowledge was. 

Clearly, there are a large variety of tasks that have been used to measure conceptual 

knowledge. A critical feature of conceptual tasks is that they be relatively unfamiliar to 

participants, so that participants have to derive an answer from their conceptual knowledge, 

rather than implement a known procedure for solving the task. For example, magnitude 

comparison problems are sometimes used to assess children’s conceptual knowledge of number 

magnitude (e.g. Hecht, 1998; Schneider, Grabner, & Paetsch, 2009). However, children are 

sometimes taught procedures for comparing magnitudes or develop procedures with repeated 

practice; for these children, magnitude comparison problems are likely measuring their 

procedural knowledge, not their conceptual knowledge. 

In addition, conceptual knowledge measures are stronger if they use multiple tasks. First, 

use of multiple tasks meant to assess the same concept reduces the influence of task-specific 

characteristics (Schneider & Stern, 2010). Second, conceptual knowledge in a domain often 

requires knowledge of many concepts, leading to a multi-dimensional construct. For example, 

for counting, key concepts include cardinality and order-irrelevance, and in arithmetic, key 

concepts include place value and the commutativity and inversion principles. Although 

knowledge of each is related, there are individual differences in these relationships, without a 

standard hierarchy of difficulty (Dowker, 2008; Jordan, Mulhern, & Wylie, 2009). 

Measures of procedural knowledge are much less varied. The task is almost always to 

solve problems, and the outcome measure is usually accuracy of the answers or procedures. On 

occasion, researchers consider solution time as well (Canobi, Reeve, & Pattison, 1998; LeFevre 

et al., 2006; Schneider & Stern, 2010). Procedural tasks are familiar—they involve problem 

types people have solved before and thus should know procedures for solving. Sometimes the 

tasks include near transfer problems—problems with an unfamiliar problem feature that require 

either recognition that a known procedure is relevant or small adaptations of a known procedure 

to accommodate the unfamiliar problem feature (e.g. Renkl, Stark, Gruber, & Mandl, 1998; 

Rittle-Johnson, 2006). 

There are additional measures that have been used to tap particular ways in which 

procedural knowledge can be known. When interested in how well automatized procedural 

knowledge is, researchers use dual-task paradigms (Ruthruff, Johnston, & van Selst, 2001; 

Schumacher, Seymour, Glass, Kieras, & Meyer, 2001) or quantify asymmetry of access, that is, 

the difference in reaction time for solving a practiced task versus a task that requires the same 

steps executed in the reverse order (Anderson & Fincham, 1994; Schneider & Stern, 2010). The 

execution of automatized procedural knowledge does not involve conscious reflection and is 

often independent of conceptual knowledge (Anderson, 1993). When interested in how flexible 



procedural knowledge is, researchers assess students’ knowledge of multiple procedures and 

their ability to flexibly choose among them to solve problems efficiently (e.g. Blöte, Van der 

Burg, & Klein, 2001; Star & Rittle-Johnson, 2008; Verschaffel, Luwel, Torbeyns, & Van 

Dooren, 2009). Flexibility of procedural knowledge is positively related to conceptual 

knowledge, but this relationship is evaluated infrequently (see Schneider, Rittle-Johnson & Star, 

2011, for one instance). 

To study the relations between conceptual and procedural knowledge, it is important to 

assess the two independently. However, it is important to recognize that it is difficult for an item 

to measure one type of knowledge to the exclusion of the other. Rather, items are thought to 

predominantly measure one type of knowledge or the other. In addition, we believe that 

continuous knowledge measures are more appropriate than categorical measures. Such measures 

are able to capture the continually changing depths of knowledge, including the context in which 

knowledge is and is not being used. They are also able to capture variability in people’s thinking, 

which appears to be a common feature of human cognition (Siegler, 1996). 

 

Relations Between Conceptual and Procedural Knowledge 
Historically, there have been four different theoretical viewpoints on the causal relations between 

conceptual and procedural knowledge (cf. Baroody, 2003; Haapasalo & Kadijevich, 2000; Rittle-

Johnson & Siegler, 1998). Concepts-first views posit that children initially acquire conceptual 

knowledge, for example, through parent explanations or guided by innate constraints, and then 

derive and build procedural knowledge from it through repeated practice solving problems (e.g. 

Gelman & Williams, 1998; Halford, 1993). Procedures-first views posit that children first learn 

procedures, for example, by means of explorative behaviour, and then gradually derive 

conceptual knowledge from them by abstraction processes, such as representational re-

description (e.g. Karmiloff-Smith, 1992; Siegler & Stern, 1998). A third possibility, sometimes 

labelled inactivation view (Haapasalo & Kadijevich, 2000), is that conceptual and procedural 

knowledge develop independently (Resnick, 1982; Resnick & Omanson, 1987). A fourth 

possibility is an iterative view. The causal relations are said to be bi-directional, with increases in 

conceptual knowledge leading to subsequent increases in procedural knowledge and vice versa 

(Baroody, 2003; Rittle-Johnson & Siegler, 1998; Rittle-Johnson et al., 2001). 

The iterative view is now the most well-accepted perspective. An iterative view 

accommodates gradual improvements in each type of knowledge over time. If knowledge is 

measured using continuous, rather than categorical, measures, it becomes clear that one type of 

knowledge is not well developed before the other emerges, arguing against a strict concepts- or 

procedures-first view. In addition, an iterative view accommodates evidence in support of 

concepts-first and procedures-first views, as initial knowledge can be conceptual or procedural, 

depending upon environmental input and relevant prior knowledge of other topics. An iterative 

view was not considered in early research on conceptual and procedural knowledge (see Rittle-

Johnson & Siegler, 1998, for a review of this research in mathematics learning), but over the past 

15 years there has been an accumulation of evidence in support of it. 



First, positive correlations between the two types of knowledge have been found in a 

wide range of ages and domains. The domains include counting (Dowker, 2008; LeFevre et al., 

2006), addition and subtraction (Canobi & Bethune, 2008; Canobi et al., 1998; Jordan et al., 

2009; Patel & Canobi, 2010), fractions and decimals (Hallett, Nunes, & Bryant, 2010; Hecht, 

1998; Hecht, Close, & Santisi, 2003; Reimer & Moyer, 2005), estimation (Dowker, 1998; Star & 

Rittle-Johnson, 2009), and equation solving (Durkin, Rittle-Johnson, & Star, 2011). In general, 

the strength of the relation is fairly high. For example, in a meta-analysis of a series of eight 

studies conducted by the first author and colleagues on equation solving and estimation, the 

mean effect size for the relation was 0.54 (Durkin, Rittle-Johnson, & Star, 2011). Further, 

longitudinal studies suggest that the strength of the relation between the two types of knowledge 

varies over time (Jordan et al., 2009; Schneider, Rittle-Johnson, & Star, 2011). The strength of 

the relation varies across studies and over time, but it is clear that the two types of knowledge are 

often related. 

Second, evidence for predictive, bi-directional relations between conceptual and 

procedural knowledge has been found in mathematical domains ranging from fractions to 

equation solving. For example, in two samples differing in prior knowledge, middle-school 

students’ conceptual and procedural knowledge for equation solving was measured before and 

after a 3-day classroom intervention in which students studied and explained worked examples 

with a partner (Schneider et al., 2011). Conceptual and procedural knowledge were modelled as 

latent variables to better account for the indirect relation between overt behaviour and the 

underlying knowledge structures. A cross-lagged panel design was used to directly test and 

compare the predictive relations from conceptual knowledge to procedural knowledge and vice 

versa. As expected, each type of knowledge predicted gains in the other type of knowledge, with 

standardized regressions coefficients of about 0.3, and the relations were symmetrical (i.e. they 

did not differ significantly in their strengths). Similar bi-directional relations have been found for 

elementary-school children learning about decimals (Rittle-Johnson & Koedinger, 2009; Rittle-

Johnson et al., 2001). Overall, knowledge of one type is a good and reliable predictor of 

improvements in knowledge of the other type. 

The predictive relations between conceptual and procedural knowledge are even present 

over several years (Cowan et al., 2011). For example, elementary-school children’s knowledge 

of fractions was assessed in the winter of Grade 4 and again in the spring of Grade 5 (Hecht & 

Vagi, 2010). Conceptual knowledge in Grade 4 predicted about 5% of the variance in procedural 

knowledge in Grade 5 after controlling for other factors, and procedural knowledge in Grade 4 

predicted about 2% of the variance in conceptual knowledge in Grade 5. 

In addition to the predictive relations between conceptual and procedural knowledge, 

there is evidence that experimentally manipulating one type of knowledge can lead to increases 

in the other type of knowledge. First, direct instruction on one type of knowledge led to 

improvements in the other type of knowledge (Rittle-Johnson & Alibali, 1999). Elementary-

school children were given a very brief lesson on a procedure for solving mathematical 

equivalence problems (e.g. 6 + 3 + 4 = 6 + __), the concept of mathematical equivalence, or were 



given no lesson. Children who received the procedure lesson gained a better understanding of the 

concept, and children who received the concept lesson generated correct procedures for solving 

the problems. Second, practice-solving problems can support improvements in conceptual 

knowledge when constructed appropriately (Canobi, 2009; McNeil et al., 2012). For example, 

elementary-school children solved packets of problems for 10 minutes on nine occasions during 

their school mathematics lessons. The problems were arithmetic problems sequenced based on 

conceptual principles (e.g. 6 + 3 followed by 3 + 6), the same arithmetic problems sequenced 

randomly, or non-mathematical problems (control group). Solving conceptually sequenced 

practice problems supported gains in conceptual knowledge, as well as procedural knowledge. 

Together, this evidence indicates that there are causal, bi-directional links between the two types 

of knowledge; improving procedural knowledge can lead to improved conceptual knowledge and 

vice versa, especially if potential links between the two are made salient (e.g. through 

conceptually sequencing problems). 

An iterative view predicts that the bi-directional relations between conceptual and 

procedural knowledge persist over time, with increases in one supporting increases in the other, 

which in turn supports increases in the first type of knowledge. Indeed, prior conceptual 

knowledge of decimals predicted gains in procedural knowledge after a brief problem-solving 

intervention, which in turn predicted gains in conceptual knowledge (Rittle-Johnson et al., 2001). 

In addition, iterating between lessons on concepts and procedures on decimals supported greater 

procedural knowledge and equivalent conceptual knowledge compared to presenting concept 

lessons before procedure lessons (Rittle-Johnson & Koedinger, 2009). Both studies suggest that 

relations between the two types of knowledge are bi-directional over time (i.e. iterative). 

Overall, there is extensive evidence from a variety of mathematical domains indicating 

that the development of conceptual and procedural knowledge of mathematics is often iterative, 

with one type of knowledge supporting gains in the other knowledge, which in turn supports 

gains in the other type of knowledge. Conceptual knowledge may help with the construction, 

selection, and appropriate execution of problem-solving procedures. At the same time, practice 

implementing procedures may help students develop and deepen understanding of concepts, 

especially if the practice is designed to make underlying concepts more apparent. Both kinds of 

knowledge are intertwined and can strengthen each other over time. 

However, the relations between the two types of knowledge are not always symmetrical. 

In Schneider, Rittle-Johnson, and Star (2011), the relations were symmetrical—the strength of 

the relationship from prior conceptual knowledge to later procedural knowledge was the same as 

from prior procedural knowledge to later conceptual knowledge. However, in other studies, 

conceptual knowledge or conceptual instruction has had a stronger influence on procedural 

knowledge than vice versa (Hecht & Vagi, 2010; Matthews & Rittle-Johnson, 2009; Rittle-

Johnson & Alibali, 1999). Furthermore, brief procedural instruction or practice solving problems 

does not always support growth in conceptual knowledge (Canobi, 2009; Perry, 1991; Rittle-

Johnson, 2006), and increasing school experience is associated with gains in procedural 



knowledge for counting and arithmetic, but much less so with gains in conceptual knowledge 

(Canobi, 2004; LeFevre et al., 2006). 

How much gains in procedural knowledge support gains in conceptual knowledge is 

influenced by the nature of the procedural instruction or practice. For example, in Canobi (2009) 

and McNeil et al. (2012), sequencing arithmetic practice problems so that conceptual relations 

were easier to notice supported conceptual knowledge, while random ordering of practice 

problems did not. In Peled and Segalis (2005), instruction that encouraged students to generalize 

procedural steps and connect subtraction procedures across whole numbers, decimals, and 

fractions led to greater conceptual knowledge than instruction on individual procedures. In 

general, it is best if procedural lessons are crafted to encourage noticing of underlying concepts. 

The symmetry of the relations between conceptual and procedural knowledge also varies 

between individuals. Children in Grades 4 and 5 completed a measure of their conceptual and 

procedural knowledge of fractions (Hallett et al., 2010). A cluster analysis on the two measures 

suggested five different clusters of students, with clusters varying in the strength of conceptual 

and procedural knowledge. For example, one cluster had above-average conceptual knowledge 

and below-average procedural knowledge, another cluster was the opposite, and a third cluster 

was high on both measures. These cluster differences suggest that, although related in all 

clusters, the strength of the relations varied. Similar findings were reported for primary-school 

children’s knowledge of addition and subtraction (Canobi, 2005), including a meta-analysis of 

over 14 studies (Gilmore & Papadatou-Pastou, 2009). At least in part, these individual 

differences may reflect different instructional histories between children. 

Overall, the relations between conceptual and procedural knowledge are bi-directional, 

but sometimes they are not symmetrical. At times, conceptual knowledge more consistently and 

strongly supports procedural knowledge than the reverse. Crafting procedural lessons to 

encourage noticing of underlying concepts can promote a stronger link from improved 

procedural knowledge to gains in conceptual knowledge. 

 

Promising Methods for Improving Both Types of Knowledge 
Given the importance of developing both conceptual and procedural knowledge, instructional 

techniques that support both types of knowledge are critical. Here, we highlight examples of 

general instructional methods that are promising. 

Promoting comparison of alternative solution procedures is one effective instructional 

approach. In a series of studies, students studied pairs of worked examples illustrating two 

different, correct procedures for solving the same problem and were prompted to compare them 

or studied the same examples one at a time and were prompted to reflect on them individually. 

For students who knew one of the solution procedures at pre-test, comparing procedures 

supported greater procedural knowledge (Rittle-Johnson & Star, 2007; Rittle-Johnson, Star, & 

Durkin, 2009) or greater conceptual knowledge (Rittle-Johnson & Star, 2009; Rittle-Johnson et 

al., 2009; Star & Rittle-Johnson, 2009). For novices, who did not know one of the solution 

procedures at pre-test, no benefits were found for conceptual or procedural knowledge (although 



comparison did improve procedural flexibility; see Rittle-Johnson et al., 2009; Rittle-Johnson, 

Star, & Durkin, 2011). In addition, having students compare incorrect procedures to correct ones 

aided conceptual and procedural knowledge and reduced misconceptions (Durkin & Rittle-

Johnson, 2012). Overall, comparing procedures can help students gain conceptual and procedural 

knowledge, but its advantages are more substantial if students have sufficient prior knowledge. 

A second approach is to encourage self-explanation when studying solution procedures. 

For example, prompting primary-school children to explain why solutions to mathematical 

equivalence problems were correct or incorrect supported greater procedural transfer (Rittle-

Johnson, 2006). Similarly, prompting high-school students to self-explain when studying worked 

examples of probability problems supported greater conceptual knowledge of probability 

(although it seemed to hamper procedural knowledge; Berthold & Renkl, 2009). 

A third approach is to offer opportunities for problem exploration before instruction 

(Schwartz, Chase, Chin, & Oppezzo, 2011). For example, primary-school children solved a set 

of unfamiliar mathematics problems and received a lesson on the concept of equivalence, and the 

order of problem solving and the lesson was manipulated (DeCaro & Rittle-Johnson, 2011). 

Children who solved the unfamiliar problems before the lesson made greater gains in conceptual 

knowledge, and comparable gains in procedural knowledge, compared to children who solved 

the problems after the lesson. Similarly, middle-school students who explored problems and 

invented their own formula for calculating density before instruction on density gained deeper 

conceptual and procedural knowledge of density than students who received the lessons first 

(Schwartz et al., 2011). Initial problem exploration fits with the recommendation from the 

mathematics education literature that students have opportunities to struggle—to figure out 

something that is not immediately apparent (Hiebert & Grouws, 2009). 

Comparison, self-explanation, and exploration are all promising instructional methods for 

promoting conceptual and procedural knowledge, as are sequencing problems so that conceptual 

relations are more apparent (Canobi, 2009) and iterating between lessons on concepts and 

procedures (Rittle-Johnson & Koedinger, 2009). These are just some examples of effective 

methods; certainly there are numerous others (e.g. McNeil & Alibali, 2000) and more need to be 

identified. 

 

Future Directions 
Considerable progress has been made in understanding the development of conceptual and 

procedural knowledge of mathematics over the past 15 years. An important next step is to 

develop a more comprehensive model of the relations between conceptual and procedural 

knowledge. Some components that need to be considered in such a model are shown in Figure 1. 

To flesh out such a model, we will need a better understanding of numerous components. For 

example, are conceptual and procedural knowledge stored independently in long-term memory 

and does this change with expertise? How do age and individual differences impact the relations 

between conceptual and procedural knowledge and the effectiveness of different instructional 

methods? What additional instructional methods can be integrated into learning environments 



and what student behaviours and mental activities do they support? How do differences across 

topics impact the model (e.g. learning about counting vs. algebra)? What are alternative models 

for understanding the relations between conceptual and procedural knowledge? 

 

 

Figure 1: Potential components of an information-processing model for the relations between 

conceptual and procedural knowledge. 

 

 
 

 

However, before more progress can be made in understanding the relations between 

conceptual and procedural knowledge, we must pay more attention to the validity of measures of 

conceptual and procedural knowledge. Currently, no standardized approaches for assessing 

conceptual and procedural knowledge with proven validity, reliability, and objectivity have been 

developed. This is deeply problematic because knowledge is stored in memory and has to be 

inferred from overt behaviour. However, human behaviour arises from a complex interplay of a 

multitude of cognitive processes and usually does not reflect memory content in a pure and direct 

form. This makes it difficult to attribute learners’ answers exclusively to one type of knowledge. 

Each potential measure of conceptual or procedural knowledge has at least four different 

variance components (Schneider & Stern, 2010). First, if the measure has been developed 

carefully, it can be assumed to reflect the amount of the kind of knowledge it is supposed to 

assess. Second, each assessment task also requires task-specific knowledge. For example, when 

children answer interview questions, their answers reflect not only their conceptual knowledge, 

but also their vocabulary in the respective domain and more general verbal abilities. A diagram 

task designed to assess procedural knowledge about fractions reflects not only knowledge about 

fractions but also knowledge of and experience with the specific diagrams used in that task. 



Third, under many circumstances, learners can derive new procedures from their 

conceptual knowledge (Gelman & Williams, 1998) and they can abstract new concepts from 

their procedural experience (Karmiloff-Smith, 1992). Thus, measures of conceptual knowledge 

often reflect some procedural knowledge and measures of procedural knowledge might also 

reflect conceptual knowledge to some degree. 

Finally, random measurement error is present in virtually all psychological measures. 

This makes it hard to interpret findings about conceptual and procedural knowledge. For 

example, when a measure of conceptual knowledge and a measure of procedural knowledge 

show a low inter-correlation, is this due to a dissociation of conceptual and procedural 

knowledge, due to task-specific knowledge, or due to high measurement error? 

A confirmatory factor analysis (Schneider & Stern, 2010) demonstrated that this problem 

is not just theoretical. Four commonly used hypothetical measures of conceptual knowledge and 

four commonly used hypothetical measures of procedural knowledge were completed by fifth 

and sixth graders. Conceptual and procedural knowledge were modelled as latent factors 

underlying these eight measures. However, each latent factor explained less than 50% of the 

variance of the measured variables, indicating that the measures reflected measure-specific 

variance components and random measurement error to a higher degree than the kind of 

knowledge they were supposed to assess. 

Very little attention has been given to measurement validity in the literature on 

conceptual and procedural knowledge. Clearly, attention to validity is greatly needed. Future 

studies will have to validate tasks and measures to ensure that we are using good measures of 

conceptual and procedural knowledge. As noted by Hill and Shih (2009): 

‘Without conducting and reporting validation work on key independent and 

dependent variables, we cannot know the extent to which our instruments tap 

what they claim to. And without this knowledge, we cannot assess the validity of 

inferences drawn from studies’ (p. 248). 

Likely progress will require some mixture of traditional psychometric approaches, newer 

approaches based on item-response theory, and perhaps innovations in alternative ways to 

validate measures, especially of conceptual knowledge. 

 

Conclusion 
Mathematical competence rests on developing both conceptual and procedural knowledge. 

Although there is some variability in how these constructs are defined and measured, there is 

general consensus that the relations between conceptual and procedural knowledge are often bi-

directional and iterative. Instructional methods for supporting both types of knowledge have 

emerged, such as promoting comparison of alternative solution methods, prompting for self-

explanation, and providing opportunities for exploration before instruction. Future research 

needs to focus on more rigorous measurement of conceptual and procedural knowledge, 

providing evidence for the validity of the measures, and specify more comprehensive models for 

understanding how conceptual and procedural knowledge develop. 
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