
Oracle® Cloud
Developing for Oracle Application Container
Cloud Service

E64989-32
October 2018

Oracle Cloud Developing for Oracle Application Container Cloud Service,

E64989-32

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Rebecca Parks, Marilyn Beck, Rob Gray, Michael W. Williams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Resources v

Conventions vi

1 Getting Started with Oracle Application Container Cloud Service

About Your Application and Oracle Application Container Cloud Service 1-1

Typical Workflow for Developing Applications 1-3

Compare Oracle Cloud Services for Deploying Java Applications 1-5

2 Creating Your Application

Design Considerations 2-1

Make the Application Configurable at Runtime 2-2

Service to Service Communication 2-3

Compile Native Libraries for Your Application 2-4

Service Bindings 2-4

Clustered Applications 2-5

Worker Applications 2-5

Docker Images 2-6

Install Linux Packages for Your Application 2-6

Caching Capability for Your Application 2-7

Secure Applications 2-7

Network File System 2-8

Select a Load Balancer Policy 2-9

3 Packaging Your Application

Typical Workflow for Packaging Process 3-1

Make a Standalone Application 3-2

Select the Launch Command 3-5

iii

Create Metadata Files 3-8

Create the manifest.json File 3-8

Create the deployment.json File 3-10

Create the Deployment-Ready Archive 3-12

Prepare a Java EE Web Application for Deployment 3-12

Prepare a Cloud Foundry Application for Deployment 3-13

Prepare a Clustered Application for Deployment 3-14

Prepare an Application Stored on GitHub for Deployment 3-16

Deploy an Application 3-17

4 Sample Applications

5 Monitoring Your Application

Java Mission Control and Java Flight Recorder 5-1

Retrieve the Application Logs 5-1

6 Troubleshooting Oracle Application Container Cloud Service

iv

Preface

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
This guide is for developers who want to create new or modify existing applications so
that they can be deployed on Oracle Application Container Cloud Service.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources
See these Oracle resources:

• Oracle Public Cloud

• Java SE

Java Standard Edition (SE) lets you develop and deploy Java applications to
desktop and server environments. See Java Platform, Standard Edition (Java SE).

• Oracle Developer Cloud Service

Oracle Developer Cloud Service is a cloud-based software development Platform
as a Service (PaaS) and a hosted environment for your application development
infrastructure. It provides an open source standards-based solution to develop,
collaborate, and deploy applications within Oracle Cloud. When you subscribe to
Oracle Application Container Cloud Service, you also get a free entitlement to
Oracle Developer Cloud Service. You can use Oracle Developer Cloud Service to

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://cloud.oracle.com
http://docs.oracle.com/javase/

run application builds and then deploy to Oracle Application Container Cloud
Service. See Deploying an Application to Oracle Application Container Cloud in
Using Oracle Developer Cloud Service.

• Java Flight Recorder

Java Flight Recorder (JFR) generates on-demand detailed recordings of the Java
Virtual Machine (JVM) and the embedded application it’s running. The recorded
data includes an execution profile, garbage collection statistics, optimization
decisions, object allocation, heap statistics, and latency events for locks and I/O.
See Java Flight Recorder Runtime Guide in Java Components Documentation.

• Java Mission Control

Java Mission Control (JMC) is a set of tools that runs on the Java Development Kit
(JDK) and interacts with a JVM to deliver advanced, unobtrusive Java monitoring
and management. See Java Mission Control User’s Guide in Java Components
Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

https://docs.oracle.com/javacomponents/
https://docs.oracle.com/javacomponents/
https://docs.oracle.com/javacomponents/

1
Getting Started with Oracle Application
Container Cloud Service

Learn how to design and package applications for Oracle Application Container Cloud
Service.

Topics:

• About Your Application and Oracle Application Container Cloud Service

• Typical Workflow for Developing Applications

• Compare Oracle Cloud Services for Deploying Java Applications

About Your Application and Oracle Application Container
Cloud Service

Oracle Application Container Cloud Service lets you deploy Java SE, Node.js, PHP,
Python, Ruby, Go, and .NET Core applications to Oracle Cloud. You can also deploy
Java EE web applications.

Subscribing to Oracle Application Container Cloud Service makes all languages
available when you deploy your application.

Each application instance you deploy to Oracle Application Container Cloud Service
runs in its own Docker container. A container is like a very lightweight virtual machine.
Your application runs in its own isolated execution space, with its own memory, file
system, and network access. Access to these operating system resources takes place
without the cost of having to implement an entire virtual operating system.

1-1

https://www.docker.com/

You can use these key features of Oracle Application Container Cloud Service:

• An open, Docker based, ployglot, cloud native application development platform.

• A preconfigured environment for Java SE, Java EE, Node.js, PHP, Python, Ruby,
Go, and .NET Core applications.

– Support for Java Virtual Machine (JVM) based languages such as JRuby. Any
language that uses the JVM can run on this service.

– Java SE advanced features such as Java Flight Recorder, Java Mission
Control, advanced memory management, and ongoing and timely security
updates.

• Create, manage your applications using Web-based user interface, REST API,
and PSM CLI.

• Bind you applications to the Oracle PaaS services like Oracle Database Cloud
Service, Oracle MySQL Cloud Service, Oracle Event Hub Cloud Service, etc.

• Secure your applications using Oracle Identity Cloud Service.

• Cluster your applications to communicate privately, process background jobs with
worker applications and enable caching for your services.

• You can incorporate DevOps, Continuos Integration, and Continuos Deployment
(CI/CD) for your applications with Oracle Developer Cloud Service or continue
using your existing CI/CD tools.

• Easy to use runtime upgrade and monitoring capabilities.

• Enterprise-grade technical support from Oracle.

In addition, Oracle Application Container Cloud Service is fully integrated with other
Oracle Cloud services.

A subscription to Oracle Cloud Infrastructure Object Storage Classic is included and
must be activated before you can deploy applications to Oracle Application Container
Cloud Service.

Chapter 1
About Your Application and Oracle Application Container Cloud Service

1-2

Typical Workflow for Developing Applications
To manage the life cycle of Oracle Application Container Cloud Service applications,
consider the typical workflow described in the following table..

Task Description More Information

Design your application Make sure that your new
or existing application
meets a few simple
design requirements for
this service.

Design
Considerations

Compile native libraries If you have an application
with native libraries, then
run your build on Oracle
Developer Cloud Service,
or on your own system
that runs Oracle Linux or
a compatible distribution.

Compile Native
Libraries for Your
Application

Make a standalone application In order to deploy your
application to Oracle
Application Container
Cloud Service you must
make your application
self-contained. Your
application must contains
all the required
dependencies and run
independently.

Make a Standalone
Application

Create the metadata files You can define the
configuration of your
application by using the
manifest.json and
thedeployment.json
files. Use the descriptor
files to specify
information such as:
• The launch

command
• How many instances

of your application to
deploy

• How to connect to a
database

• Environment
variables

Create Metadata
Files

Package your application To deploy your
application, you
compress the application
files along with the
dependencies and
required configuration
information in a .zip, .tgz,
or .tar.gz archive file.

Create the
Deployment-Ready
Archive

Chapter 1
Typical Workflow for Developing Applications

1-3

Task Description More Information

Deploy your application to the service You can deploy your
application by using the
following methods:

• The user interface
console

• The REST API
• The command-line

interface (CLI)
• From Oracle

Developer Cloud
Service

To deploy from the
user interface, see
Creating an
Application in Using
Oracle Application
Container Cloud
Service.

To learn about the
REST API, see REST
API for Managing
Applications.

To deploy from
Oracle Developer
Cloud Service, see
Deploying an
Application to Oracle
Application Container
Cloud in Using
Oracle Developer
Cloud Service.

Monitor your application (only Java
applications)

If you have a Java
application, then you can
monitor it using Java
Mission Control and Java
Flight Recorder.

See Java Mission
Control and Java
Flight Recorder.

Get the application’s logs After the application is
deployed you can
retrieve the application’s
logs using the Oracle
Application Container
Cloud Service console,
the command-line
interface, or the REST
API.

Retrieve the
Application Logs

Chapter 1
Typical Workflow for Developing Applications

1-4

Task Description More Information

Manage your application As your application is
running, you can:
• Change the number

of instances.
• Alter the amount of

memory allocated to
each instance.

• Download and
review application
logs.

• Upload a new
version of the
application.

• Upload a new
manifest.json
file or
deployment.jso
n file.

• Add or change the
values of
environment
variables.

• Update service
bindings.

To learn more about
the REST API, see
REST API for
Managing
Applications.

To learn more about
the user interface,
see Using the
Applications Page
and Using the
Application Console
in Using Oracle
Application Container
Cloud Service.

Compare Oracle Cloud Services for Deploying Java
Applications

Choose an Oracle Cloud service that best meets the needs of your Java application
and development process.

Oracle offers two main cloud services that support Java deployments: Oracle Java
Cloud Service and Oracle Application Container Cloud Service. In general, Oracle
Java Cloud Service provides a Java solution that is more flexible and customizable,
while Oracle Application Container Cloud Service offers a simpler, automated and
managed solution for Java applications.

Both services share common capabilities:

• Host your application in a highly-available environment

• Easily scale your application in response to changing capacity requirements

• Cache and retrieve frequently-used data

• Automate deployment though REST APIs, CLI commands, or Oracle Developer
Cloud Service

There are important differences between the services:

• Oracle Application Container Cloud Service supports Java Standard Edition
applications and Java Enterprise Edition web applications (WAR). Oracle Java
Cloud Service supports the full Java EE specification, including enterprise
applications (EAR) and Java Message Service (JMS).

Chapter 1
Compare Oracle Cloud Services for Deploying Java Applications

1-5

• With Oracle Application Container Cloud Service, you can deploy applications that
are developed in a variety of languages, including Java, PHP, Python, and Ruby.

• Oracle Application Container Cloud Service cannot be deployed to Oracle Cloud
Infrastructure regions. Oracle Java Cloud Service supports both Oracle Cloud
Infrastructure and Oracle Cloud Infrastructure Classic regions.

• Oracle Java Cloud Service gives administrators access to Oracle WebLogic
Server and the operating system. Oracle Application Container Cloud Service
hides this infrastructure from users, and automatically keeps it up-to-date with the
latest software and patches.

• When you create an Oracle Java Cloud Service instance, you choose from a list of
specific Oracle WebLogic Server releases, including older ones like 11g. With
Oracle Application Container Cloud Service, you don’t have to worry about the
details of the container.

• Deploying your code to Oracle Application Container Cloud Service is fast and
easy, but Oracle Java Cloud Service also integrates with popular Integrated
Development Environments (IDE).

• Oracle Java Cloud Service offers tools to automate the migration of existing
Oracle WebLogic Server environments to the cloud.

• With Oracle Application Container Cloud Service, you can quickly integrate your
Java application with other Oracle Cloud resources like databases and message
queues. Oracle Java Cloud Service does not offer a similar data binding feature,
but does provide out-of-the-box integration with Oracle Database Cloud Service.

If neither of these services meets your exact requirements, you can create basic
compute instances or containers in Oracle Cloud:

• Oracle Cloud Infrastructure Compute

• Oracle Cloud Infrastructure Compute Classic

• Oracle Cloud Infrastructure Container Service Classic

• Oracle Container Engine for Kubernetes

• Oracle Weblogic Server Kubernetes Operator

These infrastructure cloud solutions give you the most flexibility, but you must install,
configure, and maintain all of the Java software components.

Decision Tree

Answer the following series of questions to help you choose between Oracle Java
Cloud Service and Oracle Application Container Cloud Service.

Chapter 1
Compare Oracle Cloud Services for Deploying Java Applications

1-6

1. In which language(s) is your application written?

If the components of your application are written in multiple languages, then use
Oracle Application Container Cloud Service.

2. Which regions are available in your Oracle Cloud account?

If your account has access to Oracle Cloud Infrastructure regions only, then use
Oracle Java Cloud Service. Oracle Cloud Infrastructure regions include us-
phoenix-1, us-ashburn-1, eu-frankfurt-1, and uk-london-1.

3. What type of Java EE application are you developing or migrating?

Chapter 1
Compare Oracle Cloud Services for Deploying Java Applications

1-7

If your application is packaged as an Enterprise Application (EAR), then use
Oracle Java Cloud Service.

4. Are you migrating an existing Oracle WebLogic Server application? Would you
prefer tools to help automate the migration of your applications and supporting
resources?

If your answer is yes, then use Oracle Java Cloud Service.

5. Do you require administrative access to Oracle WebLogic Server or the operating
system, in order to customize the default configuration?

If your answer is yes, then use Oracle Java Cloud Service.

If your answer is no, then use Oracle Application Container Cloud Service.

Chapter 1
Compare Oracle Cloud Services for Deploying Java Applications

1-8

2
Creating Your Application

When creating your application for deployment on Oracle Application Container Cloud
Service, you must make sure it listens on the correct port, is configurable at runtime,
and includes all dependent classes, including library classes.

Topics:

• Design Considerations

• Make the Application Configurable at Runtime

• Service to Service Communication

• Compile Native Libraries for Your Application

• Service Bindings

• Clustered Applications

• Worker Applications

• Docker Images

• Install Linux Packages for Your Application

• Caching Capability for Your Application

• Secure Applications

• Network File System

• Select a Load Balancer Policy

Design Considerations
If you’re developing a new application or deploying an existing one to run on Oracle
Application Container Cloud Service, keep these requirements in mind.

• Applications must be configurable at runtime. Most application types must
listen on the port provided in the PORT environment variable. Applications can also
read user-defined environment variables and environment variables from other
services. See Make the Application Configurable at Runtime.

• Applications must include all dependencies. If your application requires a
library to execute, that library must be included in the application when it is
deployed. See Make a Standalone Application.

If your application needs to maintain or share state, use Oracle Cloud Infrastructure
Object Storage Classic or Oracle Database Cloud Service for storing data. To use
Oracle Database Cloud Service, you must configure a service binding, which you can
do in the user interface or the deployment.json file. See Create Metadata Files.

Other than these requirements, the application and the command that launches it are
entirely under your control.

2-1

Make the Application Configurable at Runtime
Your application must be able to read settings from environment variables in the
application’s container. All applications except Java EE web applications and worker
applications must read the HOSTNAME and PORT environment variables, and use the
values dynamically.

Up to three types of environment variables are available to all instances of your
application:

1. Your application is running inside a Docker container that has a generated host
name and port. These are made available to the application in the HOSTNAME and
PORT environment variables.

If the application is required to listen on the specified port but doesn’t, then the
application creation and deployment will fail. After deployment, the service pings
the application on that port to determine if it’s running. The load balancer and
application ports are different. The load balancer accepts SSL traffic on port 1443,
then directs requests to each application according to the port in the PORT
environment variable.

2. If your application uses other Oracle Cloud services, then service connection
details (such as ports) can also be made available in environment variables.

3. You can also add your own environment variables using the user interface or the
deployment.json file. See Create Metadata Files.

Note:

The PORT and ORA_PORT environment variables have the same value. Your
application can read the port using either one.

If you’re programming in Java 8, then you can use the Optional class to retrieve the
environment variables without having to use if blocks to check for null values, as
shown in this code snippet from the Grizzly Jersey sample application:

/**
 * Main class
 */
public class Main{

 // Base URI the Grizzly HTTP server will listen on
 public static final String BASE_URI;
 public static final String protocol;
 public static final Optional<String> host;
 public static final String path;
 public static final Optional<String> port;

 static{
 protocol = "http://";
 host = Optional.ofNullable(System.getenv("HOSTNAME"));
 port = Optional.ofNullable(System.getenv("PORT"));
 path = "myapp";
 BASE_URI = protocol + host.orElse("localhost") + ":" + port.orElse("8080") +
"/" + path + "/";

Chapter 2
Make the Application Configurable at Runtime

2-2

 }
}

Service to Service Communication
Service to service communication is crucial when you build microservices. A
microservice-based application typically runs on a single process, and they can
interact with each other using a communication protocol, for example, HTTP or TCP.
Oracle Application Container Cloud Service allows you to interconnect your
applications using different methods depending on the type of application.

Oracle Application Container Cloud Service supports two types of applications:

• Web Applications

• Worker Applications

Web Applications

A web application is a public application that you can access with a public URL. By
default, all applications on Oracle Application Container Cloud Service are web
applications.

Web applications can be invoked from another web or worker application by using one
of the two options:

• Using the public URL. For example, a REST API exposed by application 'appB'
can be invoked by another service 'appA' by making use of the public URL.

• Using the internal overlay network. Applications can communicate with each other
over a secure internal network if all of the applications are marked asisClustered .
The application name is used as the host name:

– If the application binds to the \PORT environment variable., then it can be
accessed on port 8080 over HTTP. The URL format is http://
<application_name>:8080.

– If an application binds to a custom port (for example, 9090) in addition to the
PORT environment variable and a different protocol, then it can be accessed by
using that port and protocol over which it has exposed its service (for example,
TCP or HTTP). The URL format is http://<application_name>:<custom_port>.

Worker Applications

A worker application is a private application that doesn’t have a public URL.

Worker applications can only be invoked from another web or worker application by
using an internal overlay network. They can talk to each other over a secure internal
network if all of them are marked as isClustered.

To invoke a worker application, the application name is used as the host name and it
can be accessed by using the port and the protocol where the service is exposed. For
example, a REST API over 8082 or a TCP service over 9090. The URL format
is http://<application_name>:<port>.

Communication Patterns

A combination of the different application types and clustering capability leads to
following access communication patterns:

Chapter 2
Service to Service Communication

2-3

Access Pattern Description Public Network
Access (Internet)

Internal (overlay)
Network Access
(Clustered)

web-web A web application that
invokes another web
application.

Yes Yes

web-worker A web application that
invokes a worker
application.

No Yes

worker-web A worker application
that invokes a web
application.

Yes Yes

worker-worker A worker application
that invokes another
worker application

No Yes

Tutorial - Invoke a worker application from a web application

For more information, see Design Considerations and Clustered Applications.

Compile Native Libraries for Your Application
When you deploy your application, it runs in a Docker container, which comes from an
Oracle or Docker Hub image source. If your application has native libraries, those
libraries must be compiled on a system that runs on Oracle Linux or a compatible
distribution before the application can be deployed.

If your Node.js application only includes JavaScript .js files and no native libraries, or
if your Java application uses no native libraries, then you can skip this section.

You can build the libraries on your own system if it runs Oracle Linux or a compatible
distribution. You can also build your libraries on Oracle Developer Cloud Service. An
entitlement for it is included with your subscription. For details about builds, see
Managing Project Jobs and Builds in Oracle Developer Cloud Service in Using Oracle
Developer Cloud Service.

You don’t need to compile the Oracle node-oracledb driver, it shouldn’t be included
in the local node_modules folder that is included in the application archive. The driver
is provided in the Oracle Application Container Cloud Service Node Docker image.

To learn more about the Docker image sources, see Docker Images.

Service Bindings
A service binding provides seamless communication over a private overlay network
within your identity domain between Oracle Application Container Cloud Service and
another Oracle Cloud service. Also a service binding coordinates to the bound service
using environment variables.

A service binding is not necessary to connect to an Oracle Public Cloud service that
provides a publicly accessible endpoint (such as Oracle Database Exadata Express
Cloud Service) or a REST API (such as Oracle Cloud Infrastructure Object Storage
Classic or Oracle Messaging Cloud Service).

Chapter 2
Compile Native Libraries for Your Application

2-4

https://apexapps.oracle.com/pls/apex/f?p=44785:112:116775813499740::::P112_CONTENT_ID:23648

In Oracle Application Container Cloud Service, you can add service bindings to other
subscribed Oracle Cloud services from the Deployments page of the Application
Console or configure them using the deployment.json file. To learn more about how to
define service bindings in the deployment.json file, see Creating Metadata Files.

Clustered Applications
Clustering is a property that can be added to your application. To do this,
add isClustered: true to the application’s manifest.json file, for example:

Example 2-1 Enable clustering capability in your application

{
 "runtime": {
 "majorVersion": "8"
 },
 "command": "java -jar myapp.jar",
 "isClustered" : true
}

Setting this property places the application on a shared overlay network. As a result,
applications can use this networking support to communicate directly over a private IP
network. This enables applications to collaborate and provide services to each other,
and also makes it possible to expose APIs that are accessible only to other
applications and not to external clients.

Some of the clustering benefits include:

• Improved performance: Applications don’t need to route request through the public
internet and through the load balancer.

• Flexibility: Applications can use any port and any protocol to communicate
privately among themselves on the internal overlay network.

See Prepare a Clustered Application for Deployment and Service to Service
Communication.

Worker Applications
You can deploy a worker application to Oracle Application Container Cloud Service.
Applications deployed within your identity domain can access a worker application
over a private overlay network. A worker application can’t be accessed by end users.

You can’t access a worker application using a public URL, a public REST API, or the
PaaS Service Manager command-line interface. The worker application doesn’t need
to read the PORT environment variable, although it can. Similar to a public application, a
worker application can use environment variables and service bindings, and it can be
scaled and monitored.

To specify a worker application, set the following parameters in the manifest.json
file:

• "type":"worker" – (Required) Specifies a worker application.

• "isClustered":"true" – (Optional) Specifies that the application is clustered, which
is often necessary for a worker application to communicate with a public
application.

Chapter 2
Clustered Applications

2-5

You can’t change a worker application to a public application by redeploying it. You
must delete the application, make the change, and then deploy it as a new application.
For more information about how to deploy a worker application, see Deploying an
Application.

Docker Images
When you deploy your application, it runs in a Docker container based on a Docker
image that´s specified by your application. Docker images are available. Some are
Oracle curated images, and others come from Docker Hub.

These are the available images for a Docker container.

Image Source Operating System
Java SE Oracle Oracle Linux

Java EE Oracle Oracle Linux

Node.js Oracle Oracle Linux

PHP Oracle Oracle Linux

Python Docker Hub Debian

Ruby Docker Hub Debian

Go Docker Hub Debian

.Net Docker Hub Debian

Note:

Oracle Application Container Cloud Service automatically gets the latest
minor releases for the containers from Docker Hub.

Install Linux Packages for Your Application
To make your application work, install additional packages in a Java SE, PHP, Node.js
or Java EE application container. The packages install at runtime from the Oracle
Linux 7 YUM repository.

1. Create the linux-packages.txt text file in a text editor.

2. Add one of the available installation options on a new line in the file. The following
table describes the install options:

Option Description Format Example

package_i
nstall

Install an individual
package; it is equivalent to
the “yum install -y pkg-
name” Linux command.

package_install:pack
age_name

package_install:lynx-2.8.6
-27.el6.x86_64

group_ins
tall

Install a set of related
packages in the specified
group, it is equivalent to
the “yum -y groupinstall
group_name” Linux
command.

group_install:group_n
ame

group_install:x11

Chapter 2
Docker Images

2-6

3. Repeat Step 2 as needed.

4. Save and close the file.

5. Add the file to the root of the compressed file that you use to package your
application. See Packaging Your Application.

6. Deploy your application. See Creating the Deployment-Ready Archive.

7. In the recent application logs, search for "Summary of Package Installation" and
review if the packages installed successfully. See Exploring the Application
Administration Page in Using Oracle Application Container Cloud Service.

Example 2-2 linux-packages.txt

package_install:make-3.82-23.el7.x86_64
package_install:gcc-4.8.5-4.el7.x86_64
package_install:lynx-2.8.6-27.el6.x86_64
group_install:x11

Caching Capability for Your Application
Oracle Application Container Cloud Service features clustered, scalable, in-memory
caching with data backup. Data is replicated among cluster members in the cache
service to avoid data lost in case of a member failure. If a member fails, data is
redistributed among the remaining members to ensure resiliency.

Common use cases for caches are:

• Reducing how often a data source is accessed, which results in better
performance and scalability for applications.

• Sharing state information among multiple applications, which can be of different
types.

When you add an application cache to your application the clustering capability is
enable automatically in your application, that means you don’t have to specify the
isClustered:true parameter in the manifest.json file but is added automatically by
Oracle Application Container Cloud Service.

 Tutorials - Create Applications Using a Cache Application Learning Series

You can create service bindings to caches in Oracle Application Container Cloud
Service. See Typical Workflow for Creating and Using Caches in Using Caches in
Oracle Application Container Cloud Service.

Secure Applications
Oracle Application Container Cloud Service can use Oracle Identity Cloud Service to
authenticate administrators and application users. During deployment, you can create
a security application in Oracle Identity Cloud Service to control who can access your
application in Oracle Application Container Cloud Service.

When you deploy a Java SE 7 or 8, Node.js, or PHP application in Oracle Application
Container Cloud Service, you can secure your application using Oracle Identity Cloud
Service with one of these types of authentication:

• Basic — Prompts for a username and password set up in Oracle Identity Cloud
Service.

Chapter 2
Caching Capability for Your Application

2-7

https://apexapps.oracle.com/pls/apex/f?p=44785:24:111603457864939::NO:24:P24_CONTENT_ID:24334

• OAuth — Creates a corresponding application in Oracle Identity Cloud Service to
control who can access your application, and redirects to Oracle Identity Cloud
Service for authentication.

If you are using the REST API, setting the authType form parameter to basic or oauth is
equivalent to selecting Basic or OAuth in the web interface. See Create an Application
in REST API for Managing Applications.

Tutorial - Secure an application with Oracle Identity Cloud Service

See Using Oracle Identity Cloud Service with Oracle Application Container Cloud
Service in Using Oracle Application Container Cloud Service.

Network File System
The Network File System (NFS) is a distributed file system that allows a client
computer to access files over a network as though the files were on local storage.
Oracle Application Container Cloud Service supports mounting of NFS volumes into
the application containers running on Oracle Cloud Infrastructure Classic accounts.

To specify the NFS volumes, set the following parameters in the deployment.json file:

• volumes – Represents the list of volumes. This element can contain more than
one block of sub-elements. Each block specifies one volume.

– name – (required) Mounted volume name.

– type – (required) Type of the volume. Currently only nfs is supported.

– device – (required) Defines the IP address and the path of the volume. For
example, x.x.x.x:/shares/nfs1

– mount_options – (optional for Oracle Cloud Infrastructure Classic) If the
mount_options parameter isn’t specified, it takes the default values. If it’s
present all sub-elements must be specified.

* vers=<value> – Oracle Application Container Cloud Service supports NFS
4 for Oracle Cloud Infrastructure Classic accounts. The default value is 4.

* soft/hard – Specifies whether the program using a file via an NFS
connection should stop and wait (hard) for the server to come back online,
if the host serving the exported file system is unavailable, or if it should
report an error (soft). The default value is soft.

* timeo=<value> – Specifies the number of seconds to pass before the error
is reported.

* bg – This is known as a background mount. It does the mount in the
background if it fails the first time and thus lets the system continue
booting even if there are NFS problems. With this option, a time out or
failure causes the mount(8) command to fork a child which continues to
attempt to mount the export. The parent immediately returns with a zero
exit code.

* tcp – Specifies to use the TCP protocol.

* rw– Specifies read and write access.

Example 2-3 deployment.json

{
 "memory": "1G",

Chapter 2
Network File System

2-8

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:23154:23154

 "instances": 1,
 "environment": {},
 "secureEnvironment": [],
 "system_properties": {},
 "services": [],
 "volumes": [{
 "name": "vol1",
 "type": "nfs",
 "device": "100.100.64.47:/fss",
 "mount_options": ["vers=4", "soft", "timeo=180", "bg", "tcp", "rw"]
 }
]
}

It's customer's responsibility to make sure the NFS server is accessible from the
Oracle Application Container Cloud Service application.

Select a Load Balancer Policy
Load Balancing provides automated traffic distribution from one entry point to multiple
servers. A load balancer improves resource utilization, facilitates scaling, and helps
ensure high availability. Oracle Application Container Cloud Service supports two
primary policy types:

• Round Robin. Distributes incoming traffic sequentially to each server in a
backend set list. After each server has received a connection, the load balancer
repeats the list in the same order. Round Robin s the default load balancer policy.

• IP Hash. Uses an incoming request's source IP address as a hashing key to route
non-sticky traffic to the same backend server. The load balancer routes requests
from the same client to the same backend server as long as that server is
available. IP Hash ensures that requests from a particular client are always
directed to the same backend server, as long as it is available.

Note:

The load balancing policy is set during the creating of the application and it
can’t be updated after the application is created.

To specify the load balancing policy in your application set the loadBalancingPolicy
parameter in the manifest.json file. The loadBalancingPolicy parameter accepts two
values: ROUND_ROBIN and IP_HASH.

Example 2-4 Round Robin Load Balancing Policy

{
 "runtime": {
 "majorVersion": "8"
 },
 "command": "java -jar myapp.jar",
 "loadBalancingPolicy" : "ROUND_ROBIN"
}

Chapter 2
Select a Load Balancer Policy

2-9

Example 2-5 IP Hash Load Balancing Policy

{
 "runtime": {
 "majorVersion": "8"
 },
 "command": "java -jar myapp.jar",
 "loadBalancingPolicy" : "IP_HASH"
}

Tutorial - Select a Load Balancing Policy

Chapter 2
Select a Load Balancer Policy

2-10

3
Packaging Your Application

After your application has been tested locally, create an archive file (.zip, .tgz, .tar.gz)
that includes the application and any dependent libraries. You must also create a
manifest.json file if you need to specify a launch command or other parameters.

When you have your archive, you can upload it, plus an optional deployment.json
file, using the user interface or the REST API.

See Typical Workflow for Packaging Process to get started, then see other sections
that apply to your application type.

Topics:

• Typical Workflow for Packaging Process

• Make a Standalone Application

• Select the Launch Command

• Create Metadata Files

• Create the Deployment-Ready Archive

• Prepare a Java EE Web Application for Deployment

• Prepare a Cloud Foundry Application for Deployment

• Prepare a Clustered Application for Deployment

• Prepare an Application Stored on GitHub for Deployment

• Deploy an Application

Typical Workflow for Packaging Process
Depending on your application, you might need to perform most or all of these tasks to
prepare it for deployment to Oracle Application Container Cloud Service.

Task Description More Information

Make your application self-
contained

The application must include
everything it needs to run
independently. For Java
applications, this means all
referenced classes must be
included.

Make a Standalone
Application

3-1

Task Description More Information

Select the launch command For PHP applications, a
launch command is optional:
By default a PHP application
is launched from its index file.
For Java EE web applications,
a launch command is
unnecessary. For other
application types, you must
specify the launch command.
Depending on your
application, this could be a
Java, JavaScript, or shell
command.

Select the Launch Command

Create the metadata files Applications that require a
launch command must include
a manifest.json file. This
file specifies information that
Oracle Application Container
Cloud Service requires to run
your application properly.
Optionally, you can also
specify additional information
about instance scaling,
environment variables, and
service bindings in a
deployment.json file.

Create Metadata Files

Archive your application Applications must be archived
in a .zip, .tgz, or tar.gz
file with the
manifest.json file at the
root if present. This ensures
that Oracle Application
Container Cloud Service can
find the manifest.json
file. You don’t need to include
a Java EE web application in
a .zip, .tgz, or .tar.gz file
unless you need to set values
in the manifest.json file,
which is optional.

Create the Deployment-Ready
Archive

Make a Standalone Application
After you develop your application, you need to decide how to include or reference any
dependent libraries. See the details for each language.

Java

If your Java application doesn’t depend on library classes, then you can create a JAR
file. By default, a JAR file includes only the class files generated from the source files.

If your Java application depends on library classes, then your package must include
them when it’s deployed. You can accomplish this in one of two ways:

Chapter 3
Make a Standalone Application

3-2

• Create an uber JAR. When create your application, include all dependent libraries
in the JAR file with the application. If you’re using Maven, then you can use the
Maven build tool and either the assembly or shade plug-in to copy the required
libraries into the JAR file. Instructions for creating an uber JAR file with the

assembly plug-in are in this tutorial: Creating a Basic REST Web Service
using Grizzly, Jersey, and Maven.

• Use the classpath. All dependent libraries are included in separate JAR files, but
the path to each file is included in the -classpath option on the command line. If
you include a lot of libraries in your application, then the classpath can get long. If
that’s the case, then you can put the command line into a Bash shell script and
execute that. If you’re using Maven, then you can use the appassembler plugin to
write the Bash script.

Java EE

Your web application must include all dependent classes that aren’t included in
WebLogic Server. To deploy your application, you can create either a single .war file or
a .zip, .tar, or .tar.gz file with an optional manifest.json file and a single .war file at
the root.

Node

If your application doesn’t use any third-party libraries or have any NPM
dependencies, then you can compress your project files the code and the
manifest.json file. If your application has dependencies, then your application and its
dependencies must be bundled in a .zip, .tar, or .tar.gz file. You must install the
libraries in a local directory (node_module) and then compress your code, the
manifest.json, the package.json files, and the node_module directory.

PHP

Compress your project in a .zip, .tar, or .tar.gz file that contains your code, the
manifest.json, script files, and the dependencies (if any).

Python

If your application doesn’t depend on any third-party libraries, then compress your
project in a .zip, .tar, or .tar.gz file that contains the .py, manifest.json, and script
files. If your application uses third-party libraries, then you must first install the libraries
in a local directory, and then compress your project files along with the manifest.json
file, scrip files, and the directory with the dependencies.

Example 3-1 Sample start.sh Script for a Python Application

#!/bin/sh
export PYTHONPATH=modules
python app.py

Ruby

If your application doesn’t depend on third-party libraries, then it must be compressed
in a .zip, .tar, or .tar.gz file that contains the .rb, manifest.json, and script files. If
your application has dependencies, then you must specify them in the Gemfile file and
create a script to install the dependencies specified in the Gemfile file.

After you do that, you can compress your project (.rb and script files, and the
dependencies directory) and the manifest.json file.

Chapter 3
Make a Standalone Application

3-3

https://apexapps.oracle.com/pls/apex/f?p=44785:112:::::P112_CONTENT_ID:11835
https://apexapps.oracle.com/pls/apex/f?p=44785:112:::::P112_CONTENT_ID:11835

Example 3-2 Sample start.sh Script for a Ruby Application

#Install the dependencies specified in the Gemfile
bundle install
#Run the database migration to create the Employee table.
bundle exec rake db:migrate
#Run the Sinatra application. Your application must run on the port specified in the
PORT environment variable and in the 0.0.0.0 host.
rackup -p ${PORT} --host 0.0.0.0

Go

If your application has dependencies, then you must specify them in a script file and
Oracle Application Container Cloud Service manages them when you deploy your
application.

Compress your project in a .zip, .tar, or .tar.gz file that contains your code, the
manifest.json file and script files.

Example 3-3 Sample start.sh Script for a Go Application

Extract LIBAOI libs from Debian package (into ./lib/x86_64-linux-gnu)
dpkg-deb -R libaio1_0.3.110-1_amd64.deb ${APP_HOME}
export PKG_CONFIG_PATH=${APP_HOME}/Oracle/instantclient_12_2

Add OCI and LIBAIO to shared library path
export LD_LIBRARY_PATH=${APP_HOME}/Oracle/instantclient_12_2:${APP_HOME}/lib/x86_64-
linux-gnu

Finalize OCI installation by creating required softlink
ln -s -f ${APP_HOME}/Oracle/instantclient_12_2/libclntsh.so.12.1 ${APP_HOME}/Oracle/
instantclient_12_2/libclntsh.so
ln -s -f ${APP_HOME}/Oracle/instantclient_12_2/libocci.so.12.1 ${APP_HOME}/Oracle/
instantclient_12_2/libocci.so

Install Go dependencies
go get github.com/mattn/go-oci8
go get github.com/ant0ine/go-json-rest/rest

Launch the application
go run oracle-db.go

.Net

To make your standalone application you need to update the project's dependencies
and tools:

dotnet restore

Create a debug build of your application:

dotnet build

Create a self-contained deployment for the Linux platform:

dotnet publish -c Release -r linux-x64

Compress your project in a .zip, .tar, or .tar.gz file that contains your code, the
manifest.json file, and the publish directory.

Chapter 3
Make a Standalone Application

3-4

Select the Launch Command
You have total control over how you launch an application. You can launch directly by
invoking the specific language command or use a shell script. The application is
executed in a Linux container, so most of the rules that apply to running a command in
Linux apply.

For Java, Node, PHP, Python, Ruby, Go, and .Net applications you can specify the
launch command in the manifest.json metadata file that you include with the
application. See Creating the manifest.json File.

For more details, see the launch command for each language.

Java

The examples that follow are based on the following assumptions:

• The home directory for your application is stored in the $APP_HOME environment
variable.

• Your application execution code is stored in a JAR file named app.jar, which is
located in $APP_HOME.

• All required Java libraries are stored in the lib directory. The lib directory is
included as part of the final archive as a subdirectory from the archive root
directory.

• The lib directory contains the following JAR libraries: web.jar, rest.jar,
media.jar.

If the lib directory isn’t included in the application JAR file, then you must specify the
classpath so the JVM can find all the classes necessary to run the application.

Example 3-4 Setting the Classpath in the Manifest.mf File

Given these assumptions, this java command could launch your application.

java -jar app.jar

The JAR must include a Manifest.mf file with the Main-Class attribute set to the
main class and the Class-Path attribute set to the lib/web.jar lib/rest.jar lib/
media.jar directory.

Example 3-5 Setting the Classpath Using the -cp Option

You can use the -classpath or -cp option to specify the location of the main application
JAR and the dependent JAR files. This option is incompatible with the –jar option, so
you execute the main class directly. For example:

java -cp $APP_HOME/app.jar:$APP_HOME/lib/* com.example.Main

Note that on Linux, the path separator is a colon, not a semicolon as on Windows.

Example 3-6 Using an Uber JAR

If the application is packaged as an uber JAR called uber-app.jar, with all the
dependencies available in the JAR, then an external classpath isn’t needed. The uber
JAR must include a Manifest.mf with the main class. To run the application:

java -jar uber-app.jar

Chapter 3
Select the Launch Command

3-5

Java EE

For a Java EE applications, a launch command is unnecessary. If it is present, then it
is ignored.

Node

Configure the launch command in the manifest.json file, for example:

Example 3-7 Sample manifest.json File for a Node Application

{
 "runtime":{
 "majorVersion":"4"
 },
 "command": "node server.js",
 "release": {},
 "notes": ""
}

PHP

A PHP application typically doesn’t need a launch command. Unless another file is
specified in the application URL, the index file opens first, whether the extension
is .htm, .html, or .php. If you use a launch command because you need to run a
script before starting your application, the last command in the script must be apache2–
run.

PHP depends on the Apache HTTP server and Oracle Application Container Cloud
Service doesn’t start your application automatically if a launch command is present.

Python

Configure the launch command in the manifest.json file, for example:

Example 3-8 Sample manifest.json File for a Python Application

{
 "runtime": {
 "majorVersion": "3.6.0"
 },
 "command": "python app.py",
 "notes": "Simple REST Service"
}

Ruby

Configure the launch command in the manifest.json file, for example:

Example 3-9 Sample manifest.json File for a Ruby Application

{
 "runtime":{
 "majorVersion":"2.4.1"
},
 "command": "ruby app.rb",
 "mode": "rolling"
}

Chapter 3
Select the Launch Command

3-6

Go

Configure the launch command in the manifest.json file, for example:

Example 3-10 Sample manifest.json File for a Go Application

{
 "runtime":{
 "majorVersion":"1.8.3"
},
 "command": "go run app.go",
 "mode": "rolling"
}

.Net

Configure the launch command in the manifest.json file, for example:

Example 3-11 Sample manifest.json File for a .Net Application

{
 "runtime":{
 "majorVersion":"2.0.0-runtime"
 },
 "command": "dotnet publish/sample-app.dll"
}

Executing the Application with a Shell Script

As an alternative, you can execute your application using a shell script.

Example 3-12 Sample start.sh Script for a Python Application

#!/bin/sh

Define PYTHONPATH as local modules folder
export PYTHONPATH=${APP_HOME}/modules

Extract LIBAOI libs from Debian package (into ./lib/x86_64-linux-gnu)
dpkg-deb -R libaio1_0.3.110-1_amd64.deb ${APP_HOME}

Finalize OCI installation by creating required softlink
ln -s ${APP_HOME}/lib/instantclient_12_2/libclntsh.so.12.1 ${APP_HOME}/lib/
instantclient_12_2/libclntsh.so

Add OCI and LIBAIO to shared library path
export LD_LIBRARY_PATH=${APP_HOME}/lib/instantclient_12_2:${APP_HOME}/lib/x86_64-
linux-gnu

Install Python packages into local modules folder
pip --no-cache-dir install -r requirements.txt -t ${PYTHONPATH} --upgrade

python ${APP_HOME}/app.py

Example 3-13 Sample manifest.json File for a Python Application

{
 "runtime": {
 "majorVersion": "3.6.0"
 },

Chapter 3
Select the Launch Command

3-7

 "command": "sh ./start.sh"
}

Create Metadata Files
You can specify deployment information, such as the launch command, the number of
application instances to create, and service bindings, in one or two metadata files that
you upload with your application.

When you upload your application to Oracle Application Container Cloud Service using
the user interface, you must include a file called manifest.json if your application
requires a launch command. This file can be included at the root of the archive or
specified separately.

The other file, deployment.json, is optional and isn’t included in the archive. You
can specify the values in this file via the user interface, or you can upload the file using
the REST API.

Topics:

• Create the manifest.json File

• Create the deployment.json File

Create the manifest.json File

The manifest.json file specifies how to launch your application. Optionally, you can
include the runtime version and other parameters.

manifest.json Syntax

Syntax

• runtime

– majorVersion – (Optional) Major version of the runtime environment. Each
language has its own numbering system.

* For Java SE, use 7, 8, 9, or 10.

* For Java EE, use 7.

* For Node.js, use 0.10 , 0.12, 4, 6, or 8.

* For PHP, use 5.6, 7.0, or 7.1.

* For Python, use 2.7.13, 3.6.0, 3.6.1.

* For Ruby, use 2.3.4, 2.4.1.

* For Go, use 1.7.6, 1.8.3.

* For .NET, use 1.1.2–runtime or 2.0.0–runtime.

• type – (Optional) Determines whether an application is public or private:

– web (the default) – Specifies a public application, which you can access using a
public URL, the public REST API, or the command-line interface.

Chapter 3
Create Metadata Files

3-8

– worker – Specifies a worker application, which is private and runs in the
background. The isClustered parameter should be set to true in some cases.
See Worker Applications.

• command – (Required except for Java EE and PHP) Launch command to
execute after the application has been uploaded.

Most PHP applications don’t need a launch command. Unless another file is
specified in the application URL, the index file opens first, whether the extension
is .htm, .html, or .php. See Select the Launch Command.

For a Java EE web application, the launch command, if present, is ignored.

• startupTime – (Optional) Maximum time in seconds to wait for the application to
start. Allowed values are between 10 and 600. The default is 30. If the application
doesn’t start in the time specified, the application is deemed to have failed to start
and is terminated. For example, if your application takes two minutes to start, set
startupTime to at least 120.

• shutdownTime – (Optional) Maximum time in seconds to wait for the application
to stop. Allowed values are between 0 and 600. The default is 0. This allows the
application to close connections and free up resources gracefully. For example, if
your application takes two minutes to shut down, set shutdownTime to at least
120.

• release – (Optional)

– build – User-specified value of build.

– commit – User-specified value of commit.

– version – User-specified application version.

• notes – (Optional) Comments.

• mode – (Optional) Restart mode for application instances when the application is
restarted. The only allowed option is rolling for a rolling restart. Omit this
parameter to be prompted for a rolling or concurrent restart. See Stopping,
Starting, and Restarting an Application in Using Oracle Application Container
Cloud Service.

• isClustered – (Optional) Must be set to true for application instances to act as a
cluster, with failover capability. See Prepare a Clustered Application for
Deployment.

• home – (Optional) Context root of the application. The value of the home parameter
is appended to the application URL.

• healthcheck – (Optional) Allows you to define a URL for your application that the
system uses for health checks. The URL must return an HTTP response of 200 OK
to indicate that the application is healthy. This parameter is only available for cloud
accounts with Oracle Identity Cloud Service.

– http-endpoint – Defines the URI that is appended to the application URL to
create the health check URL. For example, if the application URL is http://
myapp.example.com and the end point is set to {"http-endpoint":"/health"}.
Then the health check will test http://myapp.example.com/health.

Chapter 3
Create Metadata Files

3-9

Note:

The default URL used for health checks is the application root. If no
value is set for http-endpoint, then the system will use the
application root for health checks. The root application URL must
return 200 OK for the application to be considered "healthy" by the
health check feature.

Example 3-14 Sample manifest.json for a Java application

{
 "runtime": {
 "majorVersion": "7"
 },
 "type": "web",
 "command": "java -jar myapp.jar",
 "startupTime": "120",
 "release": {
 "build": "150520.1154",
 "commit": "d8c2596364d9584050461",
 "version": "15.1.0"
 },
 "notes": "notes related to release",
 "mode": "rolling",
 "home": "/home.jsp",
 "healthCheck": {
 "http-endpoint": "/health"
 }
}

Create the deployment.json File

The deployment.json file specifies how much memory to allocate to the
application, how many application instances to create initially, additional environment
variables, and service bindings to other Oracle Cloud services. You can specify these
same options from the user interface, or you can upload this file using the REST API.
If no values are specified or the file is omitted, then memory and instance defaults are
used. This file is optional.

deployment.json Syntax

• memory – The amount of memory in gigabytes made available to the application.
Values range from 1G to 20G. The default is 2G.

• instances – Number of application instances. The default is 2. The maximum is
64.

• notes – Free-form comment field. It can be used, for example, to describe the
deployment plan.

• environment – Environment variables used by the application. This element can
contain any number of name-value pairs.

– name – Environment variable name.

– value – Environment variable value.

Chapter 3
Create Metadata Files

3-10

• secureEnvironment – List of environment variables marked as secured on the
user interface. The environment variables to be secured must be present in the
environment property.

• java_system_properties – Java EE system properties used by the application.
This element can contain any number of name-value pairs.

– name – Property name.

– value – Property value.

• services – Service bindings for connections to other Oracle Cloud services. This
element can contain more than one block of sub-elements. Each block specifies
one service binding.

– identifier – User-specified identifier.

– type – Type of the service: JAAS for Oracle Java Cloud Service, DBAAS for
Oracle Database Cloud Service, MYSQLCS for MySQL Cloud Service, OEHCS for
an Oracle Event Hub Cloud Service topic, OEHPCS for an Oracle Event Hub
Cloud Service cluster, DHCS for Oracle Data Hub Cloud Service, or caching for a
cache.

– name – Name of the service, the name of an existing Oracle Java Cloud
Service instance, Oracle Database Cloud Service database, MySQL Cloud
Service database, Oracle Event Hub Cloud Service topic or cluster, Oracle
Data Hub Cloud Service instance, or cache name.

– username – Username used to access the service.

– password – Password for the username.

Note:

The username and password are not automatically used to authenticate
against the target service. The values are placed in the
SERVICE_USER_NAME and SERVICE_USER_PASSWORD environment
variables, which your application can access. If the target service requires
authentication, then your application must handle it. If the target service
doesn’t require authentication, you can’t omit the username and password
from the services element, but you can specify any values.

Note:

If you download a deployment.json file from a deployed application that
has a service binding, then you see an additional id element under services.
The value of this element is system-generated. For a new application, do not
upload a deployment.json file that includes this element. For an existing
application, do not change the value of this element.

Example 3-15 deployment.json

{
 "memory": "2G",
 "instances": "2",

Chapter 3
Create Metadata Files

3-11

 "environment": {
 "NO_OF_CONNECTIONS":"25",
 "TWITTER_ID":"JAVA",
 "user": "joe.smith@example.com"
 },
 "secureEnvironment": [
 "user"
],
 "services": [{
 "identifier": "ProdService",
 "type": "JAAS",
 "name": "Jaas Service",
 "username": "username",
 "password": "password"
 },
 {
 "identifier": "DBService",
 "type": "DBAAS",
 "name": "MyDB",
 "username": "username",
 "password": "password"
 }]
}

Create the Deployment-Ready Archive
Finally, create an archive that includes your application and its manifest.json file, if
present, at the root. Use a zip or tar utility.

You don’t need to include a Java EE web application in a .zip, .tgz, or .tar.gz file
unless you need to set values in the manifest.json file, which is optional for this
application type.

Don’t include deployment.json in your compressed archive.

For example, create an archive called myapp.zip using zip.

zip myapp.zip manifest.json myapp.jar

Here’s an example using tar command.

tar cvfz myapp.tgz manifest.json myapp.jar

Prepare a Java EE Web Application for Deployment
You can deploy a Java EE web application to Oracle Application Container Cloud
Service with minimal changes to how it’s packaged.

Your Java EE web application must meet some standard Oracle Application Container
Cloud Service requirements, while others are optional or not applicable.

• Only Java EE version 7 is supported.

• Your web application doesn’t need to read the APP_HOME and PORT
environment variables.

• Your web application doesn’t use a launch command.

• Your web application must include all dependent classes that are not included in
WebLogic Server.

Chapter 3
Create the Deployment-Ready Archive

3-12

• A manifest.json file is optional. You can deploy either a single .war file or
a .zip, .tar, or .tar.gz file with an optional manifest.json file and a
single .war file at the root. The isClustered parameter is not supported.

• If your web application requires a service binding to a DBCS or MySQLCS
database, you must specify it in a deployment.json file. A WebLogic data
source is automatically created with the default name jdbc/service-binding-
nameDS. You can specify database driver and data source parameters in this file if
necessary. Names of data source properties align with WebLogic data source
MBean properties.

• You can define any needed environment variables and system properties in a
deployment.json file.

• Your web application can interact with a cache using the Java API or the REST
API.

For details about the manifest.json and deployment.json files, see Create
Metadata Files.

After deployment, your web application has these features:

• Your web application is deployed to WebLogic Server on the back end.

• You can scale memory and instances just as you can with any application.

• You can stop, start, and restart just as you can with any application.

Most standard web application features are supported, with a few exceptions.

• XA and RAC integration are not supported.

• ADF is not supported.

• Although a weblogic.xml file isn’t required, it is used if present.

To learn more about how to deploy an application, see Deploy an Application.

Prepare a Cloud Foundry Application for Deployment
You can deploy a Cloud Foundry application to Oracle Application Container Cloud
Service with minimal changes to how it’s packaged, using your existing
manifest.yml file.

You can deploy your Cloud Foundry application to Oracle Application Container Cloud
Service as is, if it meets all of these conditions:

• The manifest.yml file contains information for only one application.

• The manifest.yml file contains no service bindings to databases.

• The manifest.yml file is located in the root directory of the application ZIP file to
be uploaded.

• All dependencies are included in a single file, either the application main class or a
JAR file. Unlike Cloud Foundry, Oracle Application Container Cloud Service
doesn’t download dependencies.

If your application requires a service binding to a database, you must specify it in a
deployment.json file. See Create Metadata Files. All other conditions are
requirements.

Chapter 3
Prepare a Cloud Foundry Application for Deployment

3-13

Oracle Application Container Cloud Service interprets the manifest.yml file as
follows:

• Supported manifest.yml attributes are name, memory, instances, path, env, and
timeout.

• The launch command is automatically generated based on the path attribute.

• The memory value is rounded up to the nearest gigabyte.

• Service bindings and unsupported options are ignored.

• If present, manifest.json and deployment.json files override equivalent
options in the manifest.yml file.

To learn more about how to deploy an application, see Deploy an Application.

Prepare a Clustered Application for Deployment
Configuring the Metadata Files and Creating the Archive

Set the following parameters in the manifest.json file using the launch command
you need:

{
 "runtime": {
 "majorVersion": "8"
 },
 "command": "./start.sh",
 "isClustered" : "true"
}

Set the following parameters in the deployment.json file using the values you
need:

{
 "memory": "1G",
 "instances": "2",
 "environment": {
 "MIP":"228.0.0.4",
 "MPORT":"45565"
 }
}

For details about other possible parameters in the manifest.json and
deployment.json files, see Create Metadata Files.

You can include the manifest.json file at the root of the application archive, or you
can reference it separately at deployment time. Do not include the
deployment.json file, which must be referenced separately.

To learn more about how to deploy an application, see Deploy an Application.

Setting the Mulitcast IP Address and Port

Your clustered instances must be able to discover each other in order to share session
data. One way they can do this is to use multicasting.

To use multicasting, you must select the multicast IP address and port that your
clustered application will use. For example, the default values used by Apache Tomcat

Chapter 3
Prepare a Clustered Application for Deployment

3-14

are 228.0.0.4 and 45564 respectively. Valid multicast IP addresses are described at
the IPv4 Multicast Address Space Registry.

It’s very important that the multicast IP address and port combination be unique in your
identity domain. If different clusters use the same combination, they behave like a
fused cluster, causing problems for all applications involved.

To avoid having to set the multicast IP address and port manually in each application
instance, set them as environment variables in the deployment.json file and pass
them to the application instances in the launch command. This is recommended as a
best practice.

Like most Oracle Application Container Cloud Service applications, a clustered
application must read the standard PORT environment variable, which is different from
the multicast port.

For example, Tomcat stores the multicast IP address, multicast port, and standard
PORT in the server.xml file. You can create a template of this file and use the
launch command to copy this file for each instance and substitute environment
variable values in each copy.

Copy the conf/server.xml file and create a new file named conf/
server.template.xml. Edit the <Service name="Catalina"> section to reference the
standard PORT environment variable:

<Connector port="__PORT__" protocol="HTTP/1.1" connectionTimeout="20000" ... >

Edit the <Engine name="Catalina" ... > subsection to reference the multicast IP
address and port:

<Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster">
 <Channel className="org.apache.catalina.tribes.group.GroupChannel">
 <Membership className="org.apache.catalina.tribes.membership.McastService"
 address="__MIP__"
 port="__MPORT__"
 frequency="500"
 dropTime="3000"/>
 </Channel>
</Cluster>

Use a sed command in the launch script that replaces the multicast address and port
and the standard PORT with environment variables:

sed "s/__PORT__/${PORT}/g; s/__MIP__/${MIP}/g; s/__MPORT__/${MPORT}/g" conf/
server.template.xml > conf/server.xml

Note:

For local testing, you can omit the sed command from the launch script and
use the actual PORT, multicast IP, and multicast port values in the
application.

For a full tutorial of how to create an example clustered application that uses

multicasting based on Tomcat, see Creating a Tomcat Cluster with TCP Session
Replication.

Chapter 3
Prepare a Clustered Application for Deployment

3-15

http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0:::265:P265_CONTENT_ID:18875
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0:::265:P265_CONTENT_ID:18875

Configuring a Web Application

For failover to work, a web application must have <distributable/> set in its web.xml
file.

You can download a useful sample application based on Tomcat at clusterjsp.zip.

Prepare an Application Stored on GitHub for Deployment
Oracle Application Container Cloud Service GitHub integration allows you to deploy
your applications directly from GitHub. Applications are deployed using the Oracle
command line interface or REST API.

To deploy an application from GitHub, follow these steps:

1. Obtain the GitHub URL for the Git repository containing your application. (This
would be the URL you use to clone the repository).

2. Execute a deployment command for you application (see the following sample
commands).

3. Observe the deployment in the Oracle Application Container Cloud Console.

The GitHub integration has the following limitations.

• Builds are only supported from the master branch.

• Only Java SE, Java EE, and Node.js applications are supported.

– Java SE and Java EE applications:

* Builds are Maven based.

* Your pom.xml file must be in the root directory of your master branch.

– Node.js applications:

* The application must have a package.json file in the root directory.

• Applications must deployed using the command line interface or REST API.

Deploying Using the Command-Line Interface

To deploy your web application using the command-line interface, use the accs push
command. See psm accs push in PaaS Service Manager Command Line Interface
Reference.

Example 3-16 Deploying a Java Application from a GitHub Repository by Using
the Command-Line Interface

psm accs push -n MyJavaApp -r java -s Monthly \
-g https://github.com/YourGitProject/MyRepoName.git \
-m /local-path-to-manifest.json -d /local-path-to-deployment.json

After you execute the command, you are asked if the repository is public. If you
answer no, you will be prompted for your user name and password for the private
repository.

Chapter 3
Prepare an Application Stored on GitHub for Deployment

3-16

http://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/apaas/java/tomcat-tcp-cluster/files/clusterjsp.zip

Note:

Two factor authentication is currently not supported.

Running the PSM command again generates a build based on the files in the
repository. If the source has changed, a new version of the application is deployed.

Tutorial - Deploy an application from GitHub by using the command-line interface

Deploying Using the REST API

To deploy your web application using the REST API, use the gitRepoUrl option to
specify the git repository. This example shows how to deploy a Java application called
MyJavaApp by submitting a POST request using cURL.

Example 3-17 Deploying a Node.js Application from a GitHub Repository by
Using the REST API

curl -X POST -u joe@example.com:password\
 https://apaas.oraclecloud.com/paas/service/apaas/api/v1.1/apps/
ExampleIdentityDomain \
 -H "X-ID-TENANT-NAME:ExampleIdentityDomain" \
 -H "Cache-Control: no-cache" \
 -H "content-type: multipart/form-data;" \
 -F "name=MyNodeApp" \
 -F "runtime=node" \
 -F "subscription=MONTHLY" \
 -F "deployment=@Local-path-to-deployment-json\deployment.json" \
 -F "gitRepoUrl=https://github.com/YourGitProject/hello-world.git" \
 -F "manifest=@Local-path-to-manifest-json\manifest.json" \
 -F "gitUserName=YourUserName" \
 -F "gitPassword=YourPassword"

Both gitUserName and gitPassword are optional. Only provide these values if your
repository is private on GitHub.

Any option on the command line (such as subscription or name) takes precedence
over the same option in a metadata file, if there is a difference.

Tutorial - Deploy an application from GitHub by using the REST API

For more information about the REST API, see REST API for Oracle Application
Container Cloud Service.

Deploy an Application
You can deploy an application to Oracle Application Container Cloud Service by using
the service user interface console, the command-line interface, or by using the REST
API.

Deploying the Archive by Using the Service User Interface Console

To deploy your application by using the Oracle Application Container Cloud Service
console, see Creating an Application in Using Oracle Application Container Cloud
Service

Chapter 3
Deploy an Application

3-17

https://apexapps.oracle.com/pls/apex/f?p=44785:112:26976859000252::::P112_CONTENT_ID:24269
https://apexapps.oracle.com/pls/apex/f?p=44785:112:26976859000252::::P112_CONTENT_ID:23934

 Tutorial - Deploy a Java application to Oracle Cloud

Deploying the Archive by Using the Command-line Interface

To deploy your application using the command-line interface, use the accs push
command.

Example 3-18 Deploying a Java Application by Using the Command-line
Interface

psm accs push -n MyJavaApp -r java -s Monthly \
-p /home/myapp.zip \
-m /local-path-to-manifest.json -d /local-path-to-deployment.json

To learn more, see psm accs push in PaaS Service Manager Command Line Interface
Reference.

Tutorial - Deploy an application by using the command-line interface

Deploying the Archive by Using the REST API

To deploy your application by using the REST API, create your archive and place it in
your Oracle Cloud Infrastructure Object Storage Classic account.

Example 3-19 Creating a Storage Container

curl -i -X PUT -H -u joe@example.com:password \
https://ExampleIdentityDomain.storage.oraclecloud.com/v1/Storage-
ExampleIdentityDomain/MyPrivateApp

Example 3-20 Uploading the Archive to the Storage Container

curl -i -X PUT -u joe@example.com:password \
https://ExampleIdentityDomain.storage.oraclecloud.com/v1/Storage-
ExampleIdentityDomain/MyPrivateApp/MyPrivateApp.zip \
-T local-path/MyPrivateApp.zip

Example 3-21 Deploying a Java Application by Using the REST API

curl -X POST -u joe@example.com:password \
-H "X-ID-TENANT-NAME:ExampleIdentityDomain" \
-H "Content-Type: multipart/form-data" -F "name=MyPrivateApp" \
-F "runtime=java" -F "subscription=Monthly" \
-F "deployment=@deployment.json" \
-F "archiveURL=mydomain/binaries/myprivapp.zip" \
-F "notes=notes for deployment" \
https://apaas.oraclecloud.com/paas/service/apaas/api/v1.1/apps/ExampleIdentityDomain

Tutorial - Deploying an Express application to Oracle Application Container Cloud
Service
Any option on the command line (such as subscription or name) takes precedence
over the same option in a metadata file, if there is a difference.

To learn more, see Create an Application in REST API for Oracle Application
Container Cloud Service.

Chapter 3
Deploy an Application

3-18

https://apexapps.oracle.com/pls/apex/f?p=44785:112:11033074175771::::P112_CONTENT_ID:20210
https://apexapps.oracle.com/pls/apex/f?p=44785:112:11033074175771::::P112_CONTENT_ID:22070
https://apexapps.oracle.com/pls/apex/f?p=44785:112:110134738640177::::P112_CONTENT_ID,P112_EVENT_ID:19757
https://apexapps.oracle.com/pls/apex/f?p=44785:112:110134738640177::::P112_CONTENT_ID,P112_EVENT_ID:19757

4
Sample Applications

Use these tutorials with their sample applications to help you develop and customize
your own applications.

The following pages in the Oracle Help Center list tutorials for various languages and
topics.

• Create Your First Applications

• Create Java SE Applications

• Create Java EE Applications

• Create Node.js Applications

• Create PHP Applications

• Create Python Applications

• Create Ruby Applications

• Create Go Applications

• Create Caching Applications

• Create .Net Applications

4-1

5
Monitoring Your Application

You can monitor your Java applications using Java Flight Recorder and Java Mission
Control. Additionally, applications can write to log files that are stored on Oracle Cloud
Infrastructure Object Storage Classic.

Topics:

• Java Mission Control and Java Flight Recorder

• Retrieve the Application Logs

Java Mission Control and Java Flight Recorder
Java Flight Recorder and Java Mission Control are included in your subscription.

Java Mission Control (JMC) allows you to monitor and manage Java applications
without introducing the performance overhead normally associated with these types of
tools. JMC uses data collected for normal adaptive dynamic optimization of the Java
Virtual Machine (JVM). Besides minimizing the performance overhead, this approach
eliminates the problem of the observer effect, which occurs when monitoring tools alter
the execution characteristics of the system.

Java Flight Recorder (JFR) collects and saves detailed performance characteristics for
historic analysis and profiling. When used as a plug-in for the JMC client, JFR
presents diagnostic information in logically grouped tables, charts, and dials.

You can record 60 seconds of information at a time on each application. If you have
multiple instances, then each instance generates a recording. Then you can examine
the data retrieved using Java Mission Control, and make necessary adjustments
based on that data.

See Java Mission Control User’s Guide and Java Flight Recorder Runtime Guide in
Java Components Documentation.

Retrieve the Application Logs
You may want to check your application logs to monitor the application or troubleshoot
a problem. Information that your application sends to stdout or stderr is captured in
the logs. The logs are stored on Oracle Cloud Infrastructure Object Storage Classic.
You can download the logs using the user interface console, the command-line
interface or the REST API.

Using the User Interface Console

To learn how to get your application’s logs by using the Oracle Application Container
Cloud Service console, see Retrieving the Application Logs in Using Oracle
Application Container Cloud Service

5-1

https://docs.oracle.com/javacomponents/

Using the Command-line Interface

To download the logs by using the command-line interface first you need to generate
the logs by using the psm accs get-logs command then you can get the logs of each
instance with the psm accs log command or all of them with the psm accs logs
command.

Example 5-1 Generating the Logs for the Application

psm accs get-logs -n employees-app -i web.1 -of json

Example 5-2 Getting the Logs for the web.1 Instance

psm accs log -n employees-app -i web.1 -of json

Example 5-3 Getting the Logs for all Instances

psm accs logs -n employees-app -of json

To get more information about the psm accs commands, see psm accs Commands in
PaaS Service Manager Command Line Interface Reference

Using the REST API to Retrieve a Log

To download the log for an application from Oracle Cloud Infrastructure Object
Storage Classic, use the following command as a reference. You will need the cURL
utility and the storage service information that you received when you subscribed to
the service.

First you will need an authentication token. Here’s an example of a cURL command for
requesting an authentication token:

Example 5-4 Requesting an Authentication Token

curl -v -X GET \
 -H "X-Storage-User: myService-myIdentityDomain:myUsername" \
 -H "X-Storage-Pass: myPassword" \
 https://storage.us2.oraclecloud.com/auth/v1.0

After you have the token, you can request the log, as in this example:

Example 5-5 Requesting the Logs

curl -v -X GET \
 -H "X-Auth-Token: AUTH_tkb4fdf39c92e9f62cca9b7c196f8b6e6b" \
 -o destinationFileName \
 https://storage.us2.oraclecloud.com/v1/Storage-myIdentityDomain/myContainer/
myApplicationLog

To learn more about the Oracle Cloud Infrastructure Object Storage Classic REST
API, see REST API for Standard Storage in Oracle Storage Cloud Service.

Chapter 5
Retrieve the Application Logs

5-2

6
Troubleshooting Oracle Application
Container Cloud Service

This section describes common problems that you might encounter when using Oracle
Application Container Cloud Service and explains how to solve them.

Topics

• My application doesn’t deploy

• My application failed to deploy.

• My application deploys but doesn't run.

• My clustered application deploys but doesn't connect.

• My REST request fails with a 403 error.

My application doesn’t deploy

Your application is of a type that requires a requires a launch command. You upload
your application archive in the Create Application dialog but nothing happens. The
following error message flashes on the screen:

Unsuccessful upload, because the manifest file named manifest.json could not be
found.

Here are some common causes of this problem:

• The manifest.json file is actually missing. It wasn’t at the root of the archive or
specified during deployment.

• There is a typo in the name of the manifest.json file.

• The manifest.json file isn’t located in the root directory of the archive. This is
the most common reason for this problem.

Typically, when you zip something to share, you put all the files in a subdirectory
and then zip the subdirectory. However, this results in a root directory that
contains the subdirectory. Oracle Application Container Cloud Service won’t be
able to find the manifest file and therefore will be unable to deploy your
application. See Create the Deployment-Ready Archive.

My application failed to deploy.

You upload your application file to Oracle Application Container Cloud Service and it
starts to deploy then it shows the “Application failed to deploy” message.

You application failed to deploy. To find out why, do the following:

1. Go to the Applications page. See Using the Applications Page in Using Oracle
Application Container Cloud Service.

2. Click the application name.

3. Click the Administration tab then click Logs.

6-1

4. Expand Log Capture History to view the log history.

Here are the most common causes of this problem:

• Your launch command is incorrect, possibly due to a typo. See Select the Launch
Command.

• Your application archive is missing a dependent library. Make sure your
application can launch stand-alone, separate from your build environment. See
Make a Standalone Application.

You can redeploy your application. See Redeploying an Application in Using Oracle
Application Container Cloud Service.

My application deploys but doesn't run.

Your application runs locally and has deployed successfully, but when you try to test it
in Oracle Application Container Cloud Service, you get no response.

The most common cause of this problem is that your application is of a type that is
required to read the PORT environment variable provided by the Oracle Application
Container Cloud Service container but doesn’t read them. This results in your
application listening on the wrong port, unavailable for testing. Oracle Application
Container Cloud Service typically listens on SSL port 443 (HTTPS). See Make the
Application Configurable at Runtime.

My clustered application deploys but doesn't connect.

Your clustered application deploys successfully, but it can't connect to other cluster-
enabled applications.

When you look at the log, you may see a java.net.UnknownHostException error.

The most common cause of this problem is that your application doesn’t have
isClustered set to true in the manifest.json file. The isClustered parameter cannot
be reset once an application is deployed, so you must delete the application, set the
isClustered parameter in the manifest.json file to true, and deploy the application
as if it were new.

For descriptions of all the parameters in the manifest.json file, see Create
Metadata Files.

My REST request fails with a 403 error.

You submit an Oracle Application Container Cloud Service REST API request and get
a 403 Forbidden response.

The most common cause of this error is forgetting to include the user name and
password in the request. In a cURL command, you specify these using the -u or --user
option. See the Use cURL section in REST API for Managing Applications.

Chapter 6

6-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Getting Started with Oracle Application Container Cloud Service
	About Your Application and Oracle Application Container Cloud Service
	Typical Workflow for Developing Applications
	Compare Oracle Cloud Services for Deploying Java Applications

	2 Creating Your Application
	Design Considerations
	Make the Application Configurable at Runtime
	Service to Service Communication
	Compile Native Libraries for Your Application
	Service Bindings
	Clustered Applications
	Worker Applications
	Docker Images
	Install Linux Packages for Your Application
	Caching Capability for Your Application
	Secure Applications
	Network File System
	Select a Load Balancer Policy

	3 Packaging Your Application
	Typical Workflow for Packaging Process
	Make a Standalone Application
	Select the Launch Command
	Create Metadata Files
	Create the manifest.json File
	Create the deployment.json File

	Create the Deployment-Ready Archive
	Prepare a Java EE Web Application for Deployment
	Prepare a Cloud Foundry Application for Deployment
	Prepare a Clustered Application for Deployment
	Prepare an Application Stored on GitHub for Deployment
	Deploy an Application

	4 Sample Applications
	5 Monitoring Your Application
	Java Mission Control and Java Flight Recorder
	Retrieve the Application Logs

	6 Troubleshooting Oracle Application Container Cloud Service

