
 

Escola Tècnica Superior d’Enginyeria de Telecomunicació 
de Barcelona 

 
Universitat Politècnica de Catalunya 

 
 
 
 

 
 
 
 
 
 

Development and  
Comparison of Image Encoders Based 
on Different Compression Techniques 

 
 

 
 
 
 
 
 
 

Marc Rosanes Siscart 
Thesis Advisor: Marta Casar 

 
Barcelona, February 2010 

 
 
 
 



 

 
 
 
 
Acknowledgments 
 
I would like to thank my family, friends and my new flat-mates that are my 
second family in Barcelona this year. 
 
 
I would also like to thank Marta Casar, who has supervised this project and 
has always advised me when I have needed it. Finally I would like to 
acknowledge Lluís Torres, who has given me the opportunity to do this 
project.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

CONTENTS 
 

 
 
 

ABSTRACT  
 
 
1- INTRODUCTION________________________________ 1 
 

1.1- Introduction………………………………………. 1 
 
1.2- Motivation…………………………………………. 1 

 
 
2- IMAGES________________________________________ 2 
 
 
3- LOSSLESS COMPRESSION________________________4 
 

3.1- Introduction……………………………………….. 4 
 
3.2- Entropy Coding…………………………………… 4 
 3.2.1- THEORY AND ALGORITHM ▪ 4 

  3.2.2-RESULTS ▪ 5 
 
3.3- Laplace Pyramid………………………………...... 8 
 3.3.1- THEORY AND ALGORITHM ▪ 8 

  3.3.2- RESULTS ▪ 11 
   
 
 
 
 
 
 
 
 
 
 
 
 



 

 
4- LOSSY COMPRESSION__________________________ 12 
 

4.1- Introduction…………………………………………12  
 
4.2- Measures of image quality……………………….....12 

  4.2.1- MEAN SQUARE ERROR ▪ 12 
4.2.2- PSNR ▪ 13   

 
4.3- Quantization………………………………………14  

  
4.4- Fractal compression……………………………….15 
 4.4.1- FRACTAL DEFINITION AND CONCEPTS ▪ 15 

  4.4.2- FIRST FRACTAL ALGORITHM ▪ 16 
   4.4.2.1- THEORY AND ALGORITHM ▪ 16  

4.4.2.2- RESULTS ▪ 18 
4.4.3- SECOND FRACTAL ALGORITHM ▪ 21 

4.4.3.1- THEORY AND ALGORITHM ▪ 21 
   4.4.3.2- RESULTS ▪ 24 

 
4.5- JPEG compression………………………………..28 

4.5.1- CORRELATION AND DPCM ▪ 28 
4.5.2- DCT: DISCRETE COSINE TRANSFORMATION ▪ 31  
4.5.3- QUANTIZATION ▪ 33 
4.5.4- ZERO-RUN ▪ 33 
4.5.5- JPEG ALGORITHM: THE ENCODER ▪ 34 
4.5.6- JPEG ALGORITHM: THE DECODER ▪ 36 
4.5.7- RESULTS ▪ 37 
 

5- COMPARATIVE ANALISYS _______________________45 
 
6- CONCLUSION___________________________________52 
 
ANNEX 1: Fractal 1 numerical developments 54 
ANNEX 2: Fractal 2 numerical developments 58 
ANNEX 3: Encoding time prediction for Fractal 2 61 
ANNEX 4: JPEG numerical developments  62 
ANNEX 5: Index of algorithms 66 
 
BIBLIOGRAPHY 67 
 
INDEX OF FIGURES 69 
 
INDEX OF TABLES 71 



 

 
 
 
 
ABSTRACT 
 
 
In this project we present some of the most relevant image compression methods of the 
digital era. From lossless compression techniques like Laplacian Pyramid, to the current 
and frequently used lossy JPEG compression techniques, going through techniques that 
have been very influential in the past, as Fractal compression. The project is organized 
by chapters describing briefly the algorithms and presenting the results obtained when 
applied to three different test images. Finally we perform a comparative analysis 
synthesizing the main results. In this analysis we see the large difference in compression 
ratios between lossy and lossless compression algorithms. We also compare our 
developed lossy algorithms, observing that the first Fractal algorithm gives poor PSNR 
results, while our second Fractal algorithm and the JPEG algorithm give quite better 
qualities of compression; the latter achieving results comparable to present day JPEG 
algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

 
ABSTRACT 
 
 
 
Este proyecto presenta algunos de los más relevantes métodos de compresión de imagen 
de la era digital. Desde métodos de compresión sin pérdidas como es la compresión por 
Pirámide de Laplace, hasta las bases de las actuales y altamente utilizadas técnicas de 
JPEG, pasando por otras que alcanzaron su punto álgido en el pasado como es el caso 
de la compresión Fractal. El proyecto está organizado por capítulos que describen 
brevemente los algoritmos y presentan los resultados obtenidos con ellos, usándolos en 
la compresión de tres imágenes diferentes. Para acabar presentamos un análisis 
comparativo de los principales resultados. En este análisis vemos la gran diferencia en 
las tasas de compresión obtenidas con compresión sin pérdidas i aquellas obtenidas en 
la compresión con pérdidas. También comparamos entre ellos los algoritmos con 
pérdidas desarrollados, observando que el primer algoritmo Fractal nos da resultados 
bastante pobres en términos de PSNR, mientras que el segundo algoritmo fractal y el 
algoritmo JPEG nos dan resultados mucho mejores; el último de ellos logrando 
resultados comparables a aquellos obtenidos por los algoritmos JPEG utilizados a hoy 
en día. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 

 
ABSTRACT 
 
 
 
Ce projet présente quelques unes des méthodes de compression d’images digitales qui 
ont eu plus d’influence pendant les dernières années.  Depuis des méthodes de 
compression sans pertes comme la Pyramide de Laplace, jusqu’aux actuels et hautement 
utilisées techniques de compression JPEG, en passant par des techniques qui ont eu leur 
point algide dans le passé comme est le cas de la compression Fractale. Le projet est 
organisé par chapitres qui décrivent brièvement les algorithmes développés et présentent 
les résultats obtenus avec eux, en les utilisant dans la compression de trois images 
différentes. Vers la fin du projet on donne une analyse comparative des principaux 
résultats obtenus avec les différentes méthodes. Dans cette analyse on voit  la grande 
différence entre les taux de compression obtenus avec la compression sans pertes et 
ceux obtenus en utilisant techniques de compression avec des pertes. On compare aussi 
entre eux les algorithmes avec des pertes développés, en observant que le premier 
algorithme Fractal développé nous donné des résultats assez pauvres en termes de 
PSNR, n’étant pas le cas pour le deuxième algorithme Fractal et pour l’algorithme 
JPEG pour lesquels on obtient des beaucoup mieux résultats; le dernier d’entre eux 
réussissant des résultats comparables a ceux obtenus avec les algorithmes JPEG 
utilisées dans l’actualité.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

 
 
ABSTRACT 
 
 
 
Aquest projecte presenta alguns dels mètodes més rellevants utilitzats per la compressió 
d’imatges durant l’era digital. Des de mètodes de compressió sense pèrdues com la 
compressió per Piràmide de Laplace, fins a mètodes de compressió amb pèrdues com 
les actuals i altament utilitzades tècniques de JPEG, passant per altres que van tenir el 
seu punt àlgid en el passat, com és el cas de la compressió Fractal. El projecte ha estat 
organitzat per capítols que descriuen breument els algoritmes i presenten els resultats 
obtinguts amb ells utilitzant-los per comprimir tres imatges diferents. Per acabar, donem 
un anàlisis comparatiu dels principals resultats. En aquest anàlisis veiem la gran 
diferencia existent entre les taxes de compressió obtingudes amb la compressió sense 
pèrdues i en aquelles obtingudes utilitzant compressió amb pèrdues.  També comparem 
entre ells els algoritmes amb pèrdues desenvolupats, observant que el primer algoritme 
Fractal ens dona resultats de PSNR bastant pobres, metres que el segon algoritme 
Fractal i l’algoritme JPEG ens donen resultats molt millors; l’últim d’ells aconseguint 
resultats comparables a aquells obtinguts amb els algoritmes JPEG utilitzats avui dia.  
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1- INTRODUCTION  
 

1.1- Introduction  
 
With the growth of Networks and the rising amount of information that we live with 
nowadays, new strategies of information processing are emerging in order to optimize 
the transmission and the storage of information. The capacity of transmission and 
storage is growing, but so are the amounts of information with which we are dealing. It 
is here, where compression becomes necessary. 
 
When considering data compression, we find some of the most important applications to 
the fields of images and video. This is because those files contain high amounts of 
information; as such, engineers are searching for efficient ways to reduce it.  
 
In this project we focus on image compression. The project is subdivided into six 
chapters: in chapter two we present the images that we will compress with our 
developed algorithms. In chapters three and four we present the lossless and lossy 
compression techniques from which our algorithms have been inspired. In chapter five 
we present a comparative analysis displaying the main results and detailing the 
advantages and disadvantages of each one of our algorithms. We finish the project in 
chapter six by presenting the main conclusions.  
 
All our developed algorithms have been attached to the project in computer support. In 
Annex 5 we present its organization in the computer folder named: ‘Compression 
Algorithms’. Both Lossless and Lossy algorithms have been developed, and they have 
been organized following the project index. Those algorithms have been implemented 
using Matlab, and we have named the main functions as Encoder and Decoder for easy 
execution. 

 
 

1.2- Motivation 
 
With this project I had the objective to deepen my knowledge about such a broad 
subject as image compression. One of the main goals at the beginning was to learn more 
about Fractal compression, and fractals in general, as I was attracted to the subject. 
After that, I thought that it could be interesting to develop a JPEG algorithm, as 
nowadays it is one of the most widely used compression techniques. My goal was to 
compare those two lossy compression schemes and other lossless compression 
techniques in order to get a global vision of the subject. People interested in the subject 
can get a first idea of the compression achieved when using each one of the 
compression schemes and reach conclusions based on the comparative analysis.   
 
This is a subject that touches a wide spectrum of different strategies with the final 
objective of compressing images. This is one of the most attractive aspects, because a 
lot of the concepts used here are found in many other fields, such as signal processing, 
audio compression and computer vision, to name a few. This has been of vital 
importance, because being personally involved in a robotics project, I realize the high 
amount of knowledge that is common between those two disciplines, which has come to 
benefit my work in this new context.  
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2- IMAGES 
 
After a short introduction in chapter 1 we present the images which have been used to 
test our developed compression algorithms in Figures 2.1 to 2.3.  
 
The first is an image of Lenna. It has many features that allow us to check the 
advantages and the weaknesses of different compression algorithms. We can see that 
some parts of the image have very good resolution, as is the case of the details in her hat 
or her hair. Other parts such as the background or the reflection in the mirror are blurry. 
Lenna is an image with different degrees of contrast and brightness; the illumination 
comes from different points, and we can see this in the hat and her face. The image 
contains a nice mixture of details, and for all those reasons, this image is largely used in 
the world of image compression [1]. Moreover it is beneficial to have a common image 
to compress in the scientific community in order to test the algorithms. Thanks to Lenna 
it is easy to evaluate the results and the efficiency of a given algorithm because we have 
the opportunity to compare the results of this algorithm with the results of other 
important algorithms that has been used to compress exactly the same image. 

 

 
 
Figure 2.1: LENNA image (512x512 pixels) 
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Smaller images have also been used (Figures 2.2 and 2.3). The two main reasons of this 
choice are that, on one hand, fractal algorithms are very time consuming [2], and big 
images prolong the encoding process to many days. The other reason is that small 
images have, in general, higher spatial frequencies, and the relation between the image 
size and the block size (often, 8x8 pixels) that we will use for our algorithms is smaller. 
We can say that for such images our resolution will be smaller. Because of that, we can 
appreciate in a more accurate way the faults of the compression algorithms used.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: PARROT (192X128)               Figure 2.3: TOUCAN (216X160) 
 
 
The transformations that an image undergoes in order to be compressed are shown in 
Figure 2.4 [3]. The first block prepares the image in order to quantize it, later on. In the 
quantization step we lose information, but it is in this step that we can compress the 
most; quantization is only present in lossy techniques. After that, we have the entropy 
coding that allows us to compress without losing additional information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: Image compression diagram (Extracted from [3])  
 
In the following chapters we will describe in more detail the different steps of the 
compression process, analyzing our developed algorithms. We will also put these 
algorithms in relation with the theory and the results. 
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3- LOSSLESS COMPRESSION 
 

3.1- Introduction 
 
In this chapter we present the concept of lossless compression, developing algorithms 
which have been used to compress the images presented in chapter two. This kind of 
compression is used to store an image with fewer bits while keeping the image without 
any modification in its pixels [4]. Lossless compression is often used, even in lossy 
schemes where it is used as the last step in the compression chain to further improve 
compression without losing additional information [5]. This step is called entropy 
coding. Different types of entropy coding exist, the two most important being probably, 
Huffman coding and arithmetic coding [6], both are forms of variable length codewords 
encoding. The point number two presents a short introduction to entropy coding based 
on Huffman coding. Other algorithms of lossless compression exist, and here we will 
develop the Laplace Pyramid method in order to illustrate one of them.  
 
It is important to emphasize that lossless compression is indispensable in some 
applications where high degrees of security and fidelity are required. One example of 
this is medical imagering, a technology that is evolving rapidly nowadays and where 
artifacts in images could lead to a mistaken diagnosis. It is for this reason that lossy 
compression is not used in this discipline.  

 
 

3.2- Entropy Coding 
   

3.2.1- THEORY AND ALGORITHM 

   
When working with images, it is very useful to know the number of pixels of each color 
that composes them. This is because when we code an image it is interesting to assign 
short codewords to the colors that are more present in the image, and longer codewords 
to the color pixels that are in a lower quantity. Huffman coding consists of this method 
[7]. Thus, we reduce the amount of information that we have to store, without any loss 
of image quality. We have to underline that it is not only possible to use entropy coding 
to code pixel color values, but also symbols representing other features of the image that 
have variable probabilities of appearing. 
 
The histogram allows us to compute the number of pixels of each color contained in an 
image. Entropy is computed from to the data that furnishes the histogram, that is, the 
probabilities of the appearance of each symbol in the image. The entropy is a scalar 
quantity that indicates the smaller length of an average codeword that we could use 
without getting losses in the image (Formula 3.2.1). If we code an image using a good 
entropy coding algorithm, and we compute the average codeword length, we will obtain 
a scalar that will approach, but never pass below the entropy value. Otherwise that 
would mean that we are losing relevant image information and we would distort the 
image. 
 

 
Formula 3.2.1: Entropy 
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3.2.2-RESULTS 
  

In Figures 3.2.2.1 to 3.2.2.4 we display the histograms of our images as well as the 
histogram of a mathematically generated ‘random’ image in which each pixel color 
value is randomized. The computed entropies have been displayed near the histograms.     
 
Parrot image entropy:  7.7457 bpp 
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Figure 3.2.2.1: Parrot image histogram  
 
 
Toucan image entropy: 7,4795 bpp 
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Figure 3.2.2.2: Toucan image histogram 
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Figure 3.2.2.3: Lenna image histogram 
 
 
 
 
Randomized image entropy: 7.9937 bpp 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.2.2.4: Random image histogram 
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Images: Parrot Toucan Lenna Random 
Compression 
Ratios (CR) 

8/7.75=1.032 8/7.48=1.070 8/7.43=1.077 8/7.99=1.001 

Table 3.2.2.1: CR achieved using entropy coding 
 
 
 
 
When we interpret the results in Table 3.2.2.1 we see that the typical entropy of an 
image oscillates around 7.5. If we are working with a good entropy coding algorithm we 
will find that the average codeword length for an image will approach its entropy, but it 
will never be greater than 8 bpp for images coded with 256 colors. In the image 
histograms we appreciate that some images have high concentrations of few colors 
while others have a more homogenous distribution of colors (e.g. the parrot image and 
the randomized image). For the last ones the entropy is greater because we have to code 
every color using almost the same number of bits. On the other hand, for images that 
have high concentrations of certain colors, we will code the color pixels with higher 
probability with fewer bits than the other pixels. Doing so we reduce the total number of 
bits needed to code exactly the same image. We can see that for a totally random image 
the entropy approaches 8 (CR: 1.001); knowing that we are working with images in 256 
colors, 8bpp is the maximum reachable value; thus the result is coherent with the 
theory.  
 
The compression ratio obtained using only entropy coding is quite poor; we observe this 
fact in the results displayed in Table 3.2.2.1. However, the compression is totally 
lossless and we can reconstitute the original image, thereby storing less information.  
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3.3- Laplacian Pyramid 
 

 
3.3.1- THEORY AND ALGORITHM 

   
Laplacian pyramid is a lossless compression technique based upon scaling an image 
many times. We do so smoothing, with a low pass filter, and downsample the images by 
a factor 2. This method takes advantage of the redundancy in the image, in other words, 
the similarity between local colors pixels. When we subsample we lose information that 
can be restored afterwards thanks to the storage of a difference image. This image is 
found by upsampling the downsampled image and subtracting this image from the 
original. With all that process we no longer need to store the original image; instead, we 
will store the downsampled image and the difference image. That process allows 
compression, given that, even having higher number of pixels to encode, the histogram 
of the difference image has a very low standard deviation. That is because the original 
image and the upsampled smaller image are similar, and the difference values will be 
small and not very distant. A low standard deviation in the histogram represents that 
pixel colors are grouped in high probabilities for a few of them and low probabilities for 
most of them. Thanks to that fact, entropy encoding reduces the average codeword 
length. This process can be iterated many times reducing even more the information 
stored.     
 
We have illustrated the Laplacian Pyramid technique by scaling and compressing the 
Toucan image. If we downsample an image with sharp contours, the downsampled 
image will have sharp discontinuities in forms.  To avoid that fact we apply a low-pass 
filtering to the original image, and only afterwards we apply the downsampling. In 
Figures 3.3.1.1 to 3.3.1.3, the results of those three steps are represented. 
 

  
 
 
 
 
 
 
 
 

Figure 3.3.1.1:  
Original image  

Figure 3.3.1.2: 
Filtered image  

 Figure 3.3.1.3: 
Downsampled image 
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The next step consists of upsampling the preceding downsampled image (Figure 
3.3.1.4), and subtracting this image from the original image (Figure 3.3.1.5). With that 
we obtain a difference image (or error image) that will help us to reconstruct the 
original image when the steps are followed in reverse.   
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3.1.4: Upsampled image 
 

Figure 3.3.1.5: Difference image 

 
 
The preceding steps can be followed in an iterative mode, using for the second iteration 
the downsampled image as departure point and so on. Doing so, we find several 
difference images of different sizes, and a smaller image that will be the base of the 
process for restoring the initial image. The compression is achieved thanks to the 
smaller entropy of the stored images in comparison with the original image entropy. 
Even having to store a higher number of pixels, the total amount of stored information 
is lower. We appreciate the low variance of the Toucan difference image in its 
histogram, represented in Figure 3.3.1.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.3.1.6: Difference image histogram  
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In Figure 3.3.1.7 we display a scheme representing the iterative Laplacian pyramid 
method to obtain the successive ‘difference images’ and the smaller image of the chain. 
Those are the images which will be used in the decoding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3.1.7: Laplacian pyramid images 

 
 
To decode, we only need to take the smaller image that we get after the last iteration, 
upsample it, and add the corresponding difference image. With the obtained image we 
repeat the same process. To get back the original image we iterate this process as many 
times as we have done in the encoding.  
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3.3.2- RESULTS 
 

 A) Entropy: 
bits per pixel 

B) Number of 
pixels 

Stored information: 
A*B 

CR 

Original image 
entropy: 

7.4795 bpp 34560 258492 1 

Coded images  
1 iteration 

5.4094 bpp 43200 233687 1.11 

Coded images  
2 iterations: 

4.7855 bpp 45360 217071 1.19 

Coded images  
3 iterations: 

4.6402 bpp 45900 212986 1.21 

Coded images  
6 iterations: 

4.5875 bpp 46087 211425 1.22 

Coded images  
7 iterations: 

4.5863 bpp 46091 211388 1.22 

Coded images  
10 iterations: 

4.5854 bpp 46094 211360 1.22 

Coded images  
12 iterations: 

4.5853 bpp 46096 211364 1.22 

Table 3.3.2.1: Results from Laplace Pyramid compression  
 
 
Results from applying the Laplacian Pyramid to compress the Toucan image are 
displayed in Table 3.3.2.1. Entropies of the difference image together with the stored 
small image have been computed. Multiplying it by the total number of pixels stored we 
obtain the information stored after coding. To compute the compression ratio we divide 
this amount by the information needed to store the original image without Laplacian 
encoding. 
 
We observe that the total amount of information stored after applying the Laplacian 
pyramid together with entropy coding is smaller than the information needed to store 
the original image. We also see that by incrementing the number of iterations we reduce 
the overall quantity of information. At the end the entropy tends to a limit, and, as we 
cannot divide the image size an infinite amount of times, each additional iteration only 
adds irrelevant one pixel size images. This fact is appreciable when we code this image 
with 12 iterations.  
 
For the Toucan image the maximum compression is achieved with 10 iterations for 
which we obtain a compression ratio of 1,22. The compression ratio achieved with 
Laplacian Pyramid is higher than for a simple entropy coding and as it is a lossless 
method, we can reconstruct the exact original image. The conclusion that we reach is 
that, finally, we can store an image by only storing a pyramid of difference images with 
low standard deviation. 
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4- LOSSY COMPRESSION 
 

4.1- Introduction 
 
In contrast with the previous chapter, this part of the project presents lossy compression 
techniques. Lossy compression is made up of a big group of compression methods, 
more efficient than lossless techniques in compression terms; this is the reason for 
which lossy algorithms are used presently in most applications. This kind of 
compression takes advantage of the incapacity of our vision to sense all the image 
details. This fact, allows us to store images that, not being exactly equal from the 
original ones, they are very similar. Storing those similar images allows us to reduce the 
amount of information used.  

 
In this chapter we will introduce some important concepts that did not exist in the 
lossless compression world but have relevance when speaking about lossy methods. 
Those tools will allow us to measure in some way the quality of the resulting images 
after encoding.  
 
Next we present the concept of quantization. Quantization exists almost always in the 
lossy compression chains. Normally it is in this step when the loss of information takes 
place and is in this step where the maximum amount of compression is achieved. 
Entropy coding always closes the compression chain, after quantization.  

 
Afterwards we will develop two important methods of lossy compression. One of them 
is the fractal compression, a method that had its apogee in the 80’s but, because of some 
disadvantages such as a high encoding time, it did not have a big impact in the market. 
The other presented algorithm will be a personal approach of JPEG, a very important 
compression method used currently in most of image applications. Those image 
compression algorithms have been implemented in a simple scheme with the two main 
functions being Coder and Decoder (algorithms annexed in the Matlab computer files). 

 
 

4.2- Image quality measures 
 

4.2.1- MEAN SQUARE ERROR 

 
The mean square error (MSE) measures the squared differences between the pixels of 
two different images or image subblocks that have the same size. We compare the 
pixels located in the same position in both images to evaluate it. Many times, in order to 
find nice correspondences between the original image and the corresponding encoded 
image, we search to minimize such mean square error and different algorithms use this 
concept in its implementation. Using squared differences we are sure that all the 
quantities are positive, so when we add them we get always a bigger difference. If we 
worked without squared measures, the pixel differences could cancel each other, 
resulting in a low MSE and thus, in a bad measure of difference.  
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The formula 4.2.1.1 represents the mean square error between two images: 
 

 
 

Formula 4.2.1.1: MSE 
 

Where: ‘I*J’  represents the total number of pixels in the image. 
 ‘i’  represents the different pixel rows. 
  ‘j’  represents the different pixel columns. 
 ‘x(i, j)’  represents the pixels of an image X. 
 ‘y(i,j)’  represents the pixels of another image Y of the same size as Y. 
 
In images codified with 8 bits, that is to say 256 different colors, the MSE between two  

images is placed some part between 0, if both images are exactly the same, and the  

maximum value:                                                   if the difference between each pixel is  

the biggest one. 

 
 

4.2.2- PEAK SIGNAL TO NOISE RATIO   
 

The Peak Signal to Noise Ratio (PSNR) takes advantage of the MSE calculation in 
order to provide a value to the quality of a noisy approximation of an original image. 
The higher the PSNR is, the higher the quality of the encoded image is and more similar 
to the original one. 
   

 
 
 

Formula 4.2.2.1: PSNR 
 
Where: ‘MAX’  represents the maximum possible pixel color. 
 ‘MSE’  represents the Mean Square Error. 

 
 

In the case of two identical images as said before the MSE is equal to 0 and replacing it 
in the formula 4.2.2.1 we get a PSNR that goes towards infinity. PSNRs oscillating 
between 30 and 50dB normally implies very good visual results, but acceptable images 
can have values around 24 dB or higher.  
 
Even though those two evaluation techniques are used frequently, the best way to 
evaluate an encoded image is with our vision. Sometimes two different ways of coding, 
can give, as a result, two different PSNRs, and not necessarily, the higher one will be 
more pleasant to the eye. If it is true that very high PSNRs result in image almost 
indistinguishable from original ones, the visual quality of images having PSNRs 
oscillating between 20 and 30dB is not as objective, and higher doesn’t always mean 
better. The best way to evaluate those subjectivities is to make statistics of the image 
quality perception by different people using a given algorithm, and to draw conclusions 
from there.   
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4.3- Quantization 
 
Quantization is one of the most important steps in lossy image compression. To 
quantize means to give a finite number of values to represent image data. In digital 
systems the information is always quantized, even without compression, but when using 
quantizers we reduce the possible set of values. Those values can represent directly the 
color pixel values or some other features in relation with the image pixels. In the case of 
scalar quantization [8] or PCM, we reduce the range of possible color values.  
 
Another kind of quantization is the vector quantization [9], where the stored values 
represent groups of pixels in an image. In this case we use a codebook with different 
blocks which combination and organization can approach an original image. In a vector 
quantization, rather than store the pixel values, we provide a codebook of ‘vectors’ and 
we store the vector positions, from the codebook, that works well to restore an image 
reducing the losses and thus increasing the PSNR as much as possible.  
 
The quantization step is normally implemented after some image preprocessing, and it 
is in this step when we lose information, so after quantizing, the restitution of the 
original image is no longer possible if before we did not store the differences between 
the non-quantized and quantized data. 
 
On Figure 4.3.1 we show a simple PCM quantization, consisting of coding with fewer 
bits an image initially coded with 8 bits. The number of grey scale colors is related with 
the number of bits per pixels by the relation: different grey scale values = 2^bpp (bpp: 
number of bits per pixel). We observe that beyond a certain number of bits per pixel, we 
cannot distinguish differences between the original image and the quantized one, 
because our eye does not have such precision. This threshold varies from one person to 
another but normally it oscillates between six and seven bits per pixel. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.3.1: Scalar quantization images (from 1 to 8bpp) 
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4.4- Fractal compression 
 

In this section we have implemented two different fractal compression algorithms 
giving an impression of what fractal compression is about. Both algorithms are based on 
fractal compression literature and they try to show the most important concepts related 
with this kind of compression. The first one is a very simplified view and the second 
one goes more deeply into the iterative fractal approach.  
 
 

4.4.1- FRACTAL DEFINITION AND CONCEPTS  

  
A fractal is a mathematical object that has resolution at all levels, and which has self 
similarity at different scales. This self similarity is achieved using affine 
transformations: rotation, stretching, compression and translation of an input image 
[10]. In order to find fractal images with a computer we can use the iterated function 
systems (IFS). Such a system takes an image as input, and applies to that image some 
affine transformations, until we get an output image. We iterate by using this output 
image as input and applying to it the same affine transformations. Little by little we 
approach an image which receives the name of attractor. The attractor doesn’t depend 
on the input image; it only depends on the affine transformations defined at the 
beginning.    
 
To see more precisely the precedent concepts, in Figure 4.4.1.1 we have implemented 
an IFS and we have applied it to two different input images. We observe how after some 
iterations we get the same attractor because, as said before, the attractor only depends 
on the affine transformations used.  
 
Fractal image compression relies on the fact that some parts of an image are similar to 
other parts. Applying a certain number of affine transformations to the different parts of 
the image and iterating, the fractal algorithm leads to an image attractor which 
approaches the original image [11, 12].  
 
 
Original image 1 iteration 4 iterations 6 iterations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.1.1:  IFS applied to two different input images. 



LOSSY COMPRESSION 
 

 16 

1) Division of the 
image in regions 

(e.g: 32*32 
pixels) 

4)Division of the image 
in range blocks 
(e.g:8*8 pixels) 

3)Taking one domain block for each 
region, called reference blocks. 

They are the blocks keeping most 
similarity with the other domain 

blocks of the region. 

6) Storage of codebook 
and positions found 
when searching matches 
between reference and 
range blocks.  

2) Division of the 
regions in 

domain blocks 
(e.g:16*16 

pixels) 

5)For every range block 
we search the reference 
block of the codebook 
that matches the best 

4.4.2- FIRST FRACTAL ALGORITHM 
 

4.4.2.1- THEORY AND ALGORITHM 
 

The first of our developed algorithms is based in the paper ‘A simplified fractal image 
compression algorithm’ [13]. It is an algorithm that takes only a few ideas of fractal 
compression, but important concepts like the iterations leading to an attractor, are not 
present here. On the other hand, it shows well how to code an image searching self-
similarities within it, which is a very important feature of the fractal procedure. Another 
well shown method in the algorithm which schema is displayed in Figure 4.4.2.1.1 is 
the implementation of vector quantization. For this reason we have considered it 
appropriate to place this chapter after the quantization part (Chapter 4.3) that already 
showed the principle of scalar quantization, but in which the vector quantization was 
not illustrated. 
 
In this algorithm, which organization is showed in Figure 4.4.2.1.1, we are interested in 
searching self-similarities within an image and to store the best possible codebook, 
formed by a pool of blocks similar to many other parts of the image; those blocks are 
called reference blocks. That will allow us to restitute the image after decoding, 
organizing the blocks of the stored codebook to form an image approaching the original 
one. The stored codebook is smaller in size than the entire image, and at the end of the 
encoding we only need to store it and the positions that will occupy those reference 
blocks when decoding the image.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4.2.1.1: First fractal algorithm scheme 
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As we can see in Figures 4.4.2.1.1 and 4.4.2.1.2, the first step in the algorithm is based 
on a region division of the original image (dark blue blocks). In the second step, we 
divide all the regions in domain blocks (blue sky blocks). After that we perform a 
search for each region in order to find the domain block that best describe the region, 
that is to say, the most similar domain block to the other domain blocks of the region. 
This search is done looking for the minimum MSE between blocks. Such blocks 
(orange blocks, one by region) will make up the codebook with which we will 
reconstitute the image regions in the decoding phase. 
 
Now we only need to find where the small blocks forming the reference blocks (yellow 
blocks) must be placed to match with the different range blocks of the image (green 
blocks). We do so, by dividing the original image in range blocks, and for each of them, 
searching the small block from the codebook that best match with it, by means of 
reducing the MSE. The codebook from each region is formed by the small blocks from 
the found reference block representing the region.  
 
In the decoding we only have to place the different small blocks from the codebook in 
the positions that we have stored (positions that indicate the best match with the range 
blocks from the original image). Doing so, we use the self-similarity property, to make 
up a decoded image thanks to the only translation of a subset of blocks. This technique 
consists of storing a codebook of blocks (vectors), and the positions that must occupy 
those blocks at the decoding, is the form of vector quantization. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.2.1.2: First fractal algorithm diagram 
 
 

EEnnccooddiinngg  

  

DDeeccooddiinngg  

  

… … 

…  … 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 



LOSSY COMPRESSION 
 

 18 

4.4.2.2- RESULTS  
 
Hereafter we present the results for two different images: Lenna and Toucan images. 
First of all we give an introduction to the calculated features and the calculation method. 
After that we present the most relevant results organized in tables, and two coded 
images are displayed for better visualization. The numerical developments are presented 
in Annex 1. 
 
 
Calculated Features: 
 
A) Coding elapsed time  
B) Decoding elapsed time:  
Time that it takes the coding/decoding algorithm to reach a result using an INTEL 
processor at 1,80GHz. 
 
C) PSNR: Power Signal to Noise Ratio (see Chapter 4.2) 
 
D) Compression Ratio (CR): 
The ratio between the bits used to code the original image and the bits used to store the 
compressed image is called compression ratio (CR). This ratio is the division of the total 
amount of bits used to store the original image and the bits used to store the compressed 
image.  
 
To compute it we need to know the total amount of pixels stored in the codebook, the 
bits that we need to store every pixel of the codebook (codebook entropy), the total 
amount of stored positions, and the bits that we need to store every position. We have to 
remember that to decode each region we are restricted to the usage of only a reference 
block, so it is as if we had a small codebook for every region, corresponding to the 
reference block of the region. This fact greatly limits the bits that we need to store a 
position. 
 
 d1) Codebook size (in bits)= Nº of pixels in codebook* codebook entropy 
 
 d2) Stored positions for block decoding= Range blocks=  
 Number of regions*Number of small blocks in a region 
 
 d3) Bits per stored position=  
 Log2 (nº of pixels in a ref block / nºof pixels in a small block) 
 
 Total Bits Stored (TBS)= d1+d2*d3 bits 
 
 CR= (TBS) / (Original image size in bits) 
  
E) Bits per pixel in decoded image = TBS / nº of pixels 
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Other important information that has to be stored is the size of the image and three input 
parameters corresponding to the region size, the reference block size and the range 
block size. The space on bits occupied by this information is very small compared with 
the rest of stored data, so it will be neglected in our compression calculations. On the 
other hand those parameters are indispensable because the coding results depend solely 
on them. For that reason the results are organized by coding parameters following the 
notation: Coding parameters: -region size, reference block size, range block size-. 
 

   
 
Synthesis of results: 
 

Coding parameters A B PSNR CR BPP 
1:  -32, 16, 4- 
 

~1.58s ~0.56s 21.21 3.56 2.1 

2: -16, 8, 4- ~0.72s ~0.52s 19.79 3.69 2.03 
3: -8, 4, 2- ~1.23s ~0.44s 22.56 3.19 2.35 
4: -16, 4, 2- ~1.81s ~0.59s 19.22 7.64 0.98 

Table 4.4.2.2.1: First Fractal algorithm results synthesis (Toucan) 
 
 

Coding parameters A B PSNR CR BPP 
1: -32, 16, 4- ~7.02s ~2.27s 22.58 3.54 2.1 
2: -32, 16, 4- ~2.82s ~2.24s 23.13 3.77 1.97 
3: -32, 16, 4- ~9.30s ~3.08s 27.15 3.16 2.35 
4: -32, 16, 4- ~12.95s ~4.26s 22.77 7.77 0.95 

Table 4.4.2.2.2: First Fractal algorithm results synthesis (Lenna) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.2.2.1: 
Decoded Toucan with CP: 8,4,2 

Figure 4.4.2.2.2: 
Decoded Lenna with CP: 8,4,2 
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From the results displayed in Tables 4.4.2.2.1 and 4.4.2.2.2 we can draw the conclusion 
that the algorithm used is quite poor in terms of quality/compression. The PSNRs are 
situated around 19-23 in most of cases, and only with Lenna and the coding parameters 
in case number 3 we achieve a PSNR of 27. The block effect derived from this coding is 
highly visible. To get better visual results we could for example apply a low pass filter 
in order to smooth the block effect. Another thing that we could do is code the 
difference image between the original one and the decoded one, but in that case the 
compression ratio would decrease substantially.   
 
On the other hand we can see that the algorithm is fast and the image can be coded in a 
few seconds. The most time consuming part of the algorithm is the research of reference 
blocks that represents at best the domain blocks from each region, so when we have 
many domain blocks in a region, the coding time increases. We also observe that the 
decoding is faster than the coding phase, having times which oscillate between 0.5 and 
5 seconds for images going until 512x512 pixels. 
 
Another result that we can draw is that in general we obtain better qualities coding a big 
image than coding a small one. Lenna image is bigger than Toucan image and we obtain 
higher PSNRs for the same coding parameters; we observe that in images 4.2.2.1 and 
4.2.2.2. In fact, for bigger images the block resolution is higher, because we continue 
using blocks of the same size while the detail dimensions are bigger; so the relation 
‘(details size)/(block size)’ is also bigger.  
 
The last conclusion is that we obtain very similar compression ratios when we work 
with the same coding parameters with different images. This is logical because we are 
using the same algorithm and doing the calculations for two images helps us to verify 
this fact. 
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1) Division of the 
image into 16x16 

overlapping 
blocks  

4) Division of the image 
into non-overlapping 

range blocks 
(8*8 pixels) 

3) Apply rotations and mirror 
symmetries to the subsampled 

blocks (domain blocks) 

6) Apply contrast ‘s’ and 
brightness ‘o’ minimizing 

the MSE distance 
between both range and 

domain blocks 

2) Subsample of 
the previous 

blocks 

5) For every range 
block, we find the 
domain block that 

matches the best, by 
means of MSE 

7) We store the positions, the rotation transformations, the contrasts and the 
brightness that we have found allowing us to decode the image. 

4.4.3- SECOND FRACTAL ALGORITHM 
 

4.4.3.1- THEORY AND ALGORITHM 

  
The second fractal algorithm developed is based on the steps described in the first 
chapter of the book: Fractal Image Compression, theory and applications [14]. In this 
algorithm, new based fractal features not seen in the chapter 4.4.2 are implemented. The 
concept of iterations used to approach more and more the attractor, geometrical 
transformations as rotations of the codebook blocks [15], and other transformations as 
contrast and brightness are applied to find the best possible match between the original 
image and the coded one.  
 
With this algorithm we see the real power of the fractal approach, allowing us to 
reconstitute an entire image without storing any specific codebook and storing only 
block transformations. When decoding, those transformations are applied iteratively to 
an arbitrary image, of the same size of the coded one, used as input in the decoder.  
 
 
The organization of the coding algorithm is showed in the Figure 4.4.3.1.1:  

 
 

 
  
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

Figure 4.4.3.1.1: Second fractal algorithm scheme 
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In the scheme showed in Figure 4.4.3.1.1 we see the steps followed to accomplish the 
encoding of the image. The first step of the algorithm consists of dividing the image in 
overlapping blocks of 16x16 pixel size. Those blocks will be subsampled reducing its 
size to 8x8 and we will apply all the possible rotations and mirror effects to each block 
in order to achieve eight different symmetric configurations of a single block. Those 
blocks will be called domain blocks and they will form our data base from where we 
will find the image attractor when encoding. The attractor is the image that approaches 
the original image using its own self similarities.  
  
In Figures 4.4.3.1.2 we can see the division in overlapping blocks (left) which are 
subsampled and transformed afterwards by applying eight different symmetries to each 
one of them in order to find the domain blocks (right).  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.3.1.2: Domain blocks for one of the overlapping blocks. 
 
On the other hand we will divide the image in non-overlapping range blocks of 8x8 
pixel size, as described in step four. For each one of the range blocks we will search the 
domain block that best matches it. We do so by means of finding the minimum MSE 
between a given range block and the domain blocks.  
 
In Figure 4.4.3.1.3 we have made a diagram where we show, for an original image 
(left), the process of coding. We search the domain blocks that once subsampled and 
rotated best matches each one of the range blocks (center and right). In the diagram, the 
white square boundaries represent the distribution of overlapping domain blocks 
(center) and the non-overlapping range blocks (right). 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4.3.1.3: original image (left). Matching block research (right). 
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Once we have found the best possible match, we will try to get the domain blocks very 
close visually to the correspondent range blocks. We do that by applying contrast ‘s’ 
and brightness ‘o’ transformations to the domain blocks. Those parameters are applied 
to all the pixels (ai) from a domain block in order to get a new block (ai’) that 
approaches as much as possible a given range block (Formula 4.4.3.1.1).  
 
 

 
 

Formula 4.4.3.1.1: contrast and brightness block transformation. 
 
 
Contrast and brightness are two scalar quantities optimized to minimize the MSE 
between domain and range blocks (Formula 4.4.3.1.2). The minimum of MSE occurs 
when the partial derivatives with respect to ‘s’ and ‘o’ are zero, from that fact we find 
the Formulas 4.4.2.1.3 [14]. 
 
 
 

 
Formula 4.4.3.1.2: contrast and brightness block transformation. 

 
 
 
 
  
 
 

Formula 4.4.3.1.3: contrast and brightness block transformation. 
 
 
The last step is to store all the found parameters, that is to say, the overlapping block 
position and geometrical transformation (one among eight) that best matches every 
range block, and the two transformations ‘s’ and ‘o’ that we have to apply to those 
domain blocks, allowing us to minimize the MSE with every range block.   
 
After storing all those features, the image is entirely encoded in the form of a collection 
of transformations. To decode the image we input an arbitrary image of the same size of 
the encoded image to the decoder. The other decoder inputs are the outputs of the 
encoder, that is to say, all the stored positions and transformations. When decoding, 
those transformations will be applied to the arbitrary decoder image input. 
 
In the decoding step we will apply many iterations approaching little by little the 
attractor that we had found in the encoding step. We could say that, in fractal 
compression, all the necessary information to decode an image is stored in form of 
transformations that we apply to a random input image in order to decode the original 
image.      
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4.4.3.2- RESULTS  
 
In this subchapter we present the numerical results and the images obtained with the 
Fractal 2 algorithm. The calculation method used to compute the CR and some more 
images obtained with this compression algorithm, are presented in Annex 2.  
 
Working with the parrot image, we observe that we get a low resolution because the 
image is quite small and the details are big compared with the domain block size. 
Because of that fact we get quite low values of PSNR (around 23dB) for this image. In 
Figure 4.4.3.2.1 we have displayed different iterations from the decoding phase, and we 
see that even taking very different images as decoder input, at the end we get good 
approximations of the original coded image, the limit always being the attractor; in that 
case, the parrot attractor. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
 
 
 
 
 
 

 
Figure 4.4.3.2.1: Fractal coded parrot image 

 
      1 iteration 

 
  8 iterations 

 
Decoder input 
 
 

 
 
 

 
 

  

 
    2 iterations 
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In Figure 4.4.3.2.4 we observe the evolution of visual image quality when increasing the 
number of decoding iterations. In fact, we can get a good approximation of the attractor 
PSNR (31dB) with only eight iterations. The image series from this figure have been 
decoded using as input a 512x512 grey image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 iteration      2 iterations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 iteration      5 iterations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8 iterations      15 iterations 

Figure 4.4.3.2.2: Fractal compressed Lenna image decoding 
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In Figure 4.4.3.2.3 we have displayed the Lenna attractor image. The PSNR of the 
Lenna attractor is around 30dB. We observe that, in general, the PSNR improves for 
bigger images because with them we have a better detail resolution. 
 
 

 
Figure 4.4.3.2.3: Lenna attractor 

 
 
 
In Table 4.4.3.2.1 we display the synthesis of the obtained results after coding and 
decoding every one of the three images using the Fractal algorithm. In it, the results of 
encoding time (T), power signal to noise ratio (PSNR), compression ratio (CR) and 
amount of bits per pixel (BPP) are presented. The PSNR results are given for the image 
attractors. We find it by decoding when using the original image as decoder input image 
and applying an only iteration.  
 
We observe that for big images the CR tends to be a little smaller, because we need 
more bits to store every one of the domain blocks position. On the other hand the bits 
used to store the rotations and the color transformations are linearly proportional to the 
image size. Comparing the achieved CRs results with literature results [14] where they 
obtain a CR of 16.5 for an image of 256*256 pixels, we observe that for similar image 
sizes, we obtain similar CRs (CR of 15.44 for Toucan image).    
 
 

IMAGES T PSNR CR BPP 
Parrot ~25min 23.71dB 15.99 ~0.48bpp 
Toucan ~65min 29dB 15.44 ~0.48bpp 
Lenna ~52h 31.83dB 14.40 ~0.52bpp 

Table 4.4.3.2.1: Main results from Fractal compression algorithm 
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Table 4.4.3.2.2 displays the decoding times and the PSNRs in function of the number of 
iterations. We observe that after a certain number of iterations, the PSNR approaches a 
limit and stops to increase. This limit is close to the attractor image PSNR. From those 
results we can draw the conclusion that this algorithm is capable to achieve acceptable 
compression ratios and PSNRs, which improves when coding big images because of the 
better detail resolution. Using this algorithm the block effect is still visible but very 
reduced, the transitions between one range block to the next one being quite soft. Even 
so, the encoded images have not a perfect visual quality and it is still very difficult to 
confound the original image with the compressed one. To improve even more the image 
quality it would be possible to store the quantized difference image obtained when 
subtracting the encoded image to the original one. 
 
 

Table 4.4.3.2.2: Fractal decoding results for different iterations 
 
 
 
One of the main disadvantages of this Fractal algorithm is the high encoding time 
needed to find the attractor; not being the case in the decoding step. Coding the parrot 
image takes 25 minutes, and coding Lenna (512x512 pixels) goes up to 2 days. It is for 
this reason that it would interesting to have a way to predict the time that a big image 
takes to be encoded. We present a method to compute such a prediction in Annex 3 and 
we use it to predict the time of the Lenna encoding time in function of the Parrot 
encoding time. 
 
A possible solution to reduce the encoding time could be to use a MSE threshold when 
searching good matches between range and domain blocks. Doing so, the research for 
the current range block would stop when the found MSE would be inferior to the MSE 
threshold.  

 
 
 
 
 

 Parrot image Toucan image Lenna image 

Iterations 
Decoding 
time (s) 

PSNR  
(dB) 

Decoding 
time 
(s) 

PSNR (dB) 
Decoding 

time 
(s) 

PSNR 
(dB) 

1 ~0.12 11.42 ~0.19 14.88 ~1.34 15.23 
2 ~0.18 13.82 ~0.41 16.9 ~2.32 17.40 
3 ~0.25 16.36 ~0.42 19.26 ~3.61 20.04 
4 ~0.32 18.83 ~0.47 21.45 ~4.73 22.86 
5 ~0.38 20.60 ~0.64 23.35 ~5.72 25.58 
6 ~0.45 21.67 ~0.87 24.68 ~6.70 27.78 
7 ~0.51 22.25 ~0.93 25.66 ~8.35 29.31 
8 ~0.58 22.53 ~1.16 26.29 ~8.52 30.15 
15 ~1.15 22.76 ~1.78 27.19 ~15.08 30.80 
20 ~1.38 22.76 ~2.56 27.21 ~29.63 30.80 



LOSSY COMPRESSION 
 

 28 

 
4.5- JPEG Compression  

 
In this section we expose an algorithm developing the main features of a JPEG 
compression algorithm. We have tried to apply the most relevant aspects of JPEG with a 
MATLAB algorithm performing the functions of coding and decoding. Nowadays, 
JPEG is one of the most used techniques for image coding, because this technique gives 
good compression factors and PSNRs, at the same time that it is a very fast technique 
compared with fractal coding.  
 
JPEG compression is a method that collects many image processing and compression 
techniques as different as “differential pulse code modulation” (DPCM) or “discrete 
cosine transform” (DCT). The base of JPEG consists on eliminate the high color 
frequencies of the image, those that are less evident to our eyes, and keep only the lower 
frequencies. In the following sections we analyze the different parts which make up 
JPEG and afterwards we will see how they are organized together in the whole JPEG 
coder/decoder algorithm.  

 
 

4.5.1- CORRELATION AND DPCM  
 

DPCM is one of the compression techniques used in JPEG [16]. This method exploits 
the high color intensity correlation that exists in the same regions of an image, having 
variations between one pixel and the following one that can be approximated by a linear 
prediction. This approximation is very imprecise and for that reason, after applying 
linear prediction to an image, we have to code the difference image too, to be able to 
restitute the original image. To store the difference image requires few memory when it 
is entropy coded, because of its low entropy. To decode, we apply the predictor to the 
initial coefficients to create the predicted image and then adding the difference image 
we get the decoded original image.  
 
A linear predictor consists in some coefficients that applied to some image pixels 
returns a new pixel that conserves the intensity color evolution trend.  
 
A simple linear predictor would be deduced assuming the fact that the difference 
between a pixel and the precedent one must be equal to the following pixel minus the 
current one. Doing so we have: 
 
 
 
 

Formula 4.5.1.1 
 
Using the Formula 4.5.1.1 we can deduce a linear approximation of a pixel i having the 
value of the two precedent pixels. In this case the linear predictor coefficients are 2 and 
-1.  
 
 
 
 

Pixel(i-1)-Pixel(i-2)=Pixel(i)-Pixel(i-1) => 
Pixel (i)= 2*Pixel(i-1) - 1*Pixel(i-2) 
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The information that we have to store in order to apply DPCM is formed by the linear 
predictor coefficients, some initial pixel values from the original image that we use to 
apply the linear prediction, and the pixel values of the difference image that we get 
subtracting the linear predicted image to the original image. The lossy or lossless 
character of DPCM technique is given by the existence or not of difference image 
quantization.  
 
The linear predictor presented in formula 4.5.1.1 is used for 1 dimension linear 
prediction, but when working with images we can use information coming from two 
dimensions. One of the easiest forms to make a prediction is to use an average of the 
pixels surrounding the pixel for which we want to deduce its value. Knowing that the 
pixels of a same region have tendency to get similar values, that kind of prediction  
allow us to reduce the entropy of the difference matrix, and thus, reduce the amount of 
information to store. 
 
The Formula 4.5.1.2 describes the behavior of the presented predictor: 

 
 

 
Formula 4.5.1.2 

 
Applying the precedent predictor with the Toucan image we obtain the results presented 
in Figures 4.5.1.1 to 4.5.1.4. 
 

 
 
 
 
 
 
 
Figure 4.5.1.1: 
‘Initial image’: 
Pixels used for 
the prediction 

 

Figure 4.5.1.2: 
Predicted image 
 
 
 

Figure 4.5.1.3: 
‘Difference image’  
(original-predicted) 

 
 

Figure 4.5.1.4: 
Initial+difference 

 

Using such predictor and storing the difference image plus the initial pixels, the Toucan 
image that normally needs 2.5849*105 bits to be stored, would need 2.1274*105 bits; 
resulting in a CR of 1.215. In fact the image formed by the initial pixels plus the 
difference image (that are the stored pixels) has an entropy of 6.16 while the original 
image has an entropy of 7.4795.  
 
Operations: 
Original image: 216*160*7.4795=2.5849*105 bits  
Coded image:    216*160*6.16=2.1274*105 bits 

0.25*Pixel (i ,j-1) + 0.25*Pixel(i-1, j) + 0.25*Pixel(i-1, j-1) + 0.25*Pixel(i-1, j+1)]= Pixel(i,j) 
Predictor Coefficients: [0.25, 0.25, 0.25, 0.25] 
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We have also tried to use a 2D linear predictor with four coefficients but the obtained 
results, in terms of the stored data entropy, were worse that using an average predictor, 
so we have used the average one for our JPEG algorithm.  
 
Our four coefficient linear predictor had the coefficients: 
 
 
 
 
 
 
And so, calculating the prediction in three directions of our image (diagonally, by rows 
and by columns), the predicted pixels responded to the formula 4.5.1.3: 
 
 

 
 
 
 

Formula 4.5.1.3 
 
 
The performed prediction took 4 rows and 4 columns every 10, like first coefficients.  
Applying such predictor with the Toucan image we obtained the results in Figures 
4.5.1.6 to 4.5.1.8. 
 
Using such predictor the stored bits for Toucan image had been 2.5849*105; resulting in 
a CR of 1.012. We have computed this result using the entropy of 7.39 from the stored 
image (initial pixels + difference image).  We can see that we obtain better results with 
the average predictor, because with a linear predictor the errors increase when we are 
far from the given initial values. Such error is reduced with an average predictor where 
the value of the researched pixel is always delimited by the higher and the lower pixel 
values that we have used to calculate it.  
 
 
 

 
 
 
 
 
 
Figure 4.5.1.5: 
‘Initial image’: 
Pixels used for 
the prediction 

 

Figure 4.4.5.1.6: 
Predicted image 

 
 

 

Figure 4.5.1.7: 
‘Difference image’ 
(original-predicted) 

 
 

Figure 4.5.1.8: 
Initial+differentce 

 

a=pixel(i,j-1)*p(1) + pixel(i,j-2)*p(2) + pixel(i,j-3)*p(3) + pixel(i,j-4)*p(4);  by columns    
b=pixel(i-1,j)*p(1) + pixel(i-2,j)*p(2) + pixel(i-3,j)*p(3) + pixel(i-4,j)*p(4);  by rows 
c=pixel(i-1,j-1)*p(1) + pixel(i-2,j-2)*p(2) + pixel(i-3,j-3)*p(3) + pixel(i-4,j-4)*p(4); 

=> Predictedpixel=(1/3)*(a+b+c) 

Linear predictor coefficients 
P(i) = [1.2, 0.8, -0.75, -0.25] 
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4.5.2- DISCRETE COSINE TRANSFORMATION 
 
Discrete Cosine Transform, more commonly called DCT, is at the heart of JPEG 
compression. In fact, this technique allows us to decompose the image information in its 
intensity color frequencies (Figure 4.5.2.1), keeping only the real part of a Discrete 
Fourier Transform (DFT) [17]. This decomposition allows us to filter the image in a 
very simple way. In fact, the DCT tends to concentrate the information in the first 
coefficients and keeping only few DCT coefficients we can restitute a good 
approximation of an image losing little information.  
 
 

 
Figure 4.5.2.1: Intensity color frequencies  

 
 
The DCT is defined by the Formula 4.5.2.1 [18], where B is the DCT output of an 
image A. In this formula, M and N are the dimensions in pixels of the image: 
 

 
 

Formula 4.5.2.1: DCT of an image A 
 
 
 
Formula 4.5.2.2 is used to compute the inverse discrete cosine transform iDCT, which is 
used to restitute an image from its DCT spectrum. 
 

 
 

Formula 4.5.2.2: Inverse DCT of a DCT spectrum B 
 
 



LOSSY COMPRESSION 
 

 32 

When working with images, the DCT transformation is applied in two dimensions and 
normally by small blocks of 8x8 pixels or more. After applying it, we get new blocks of 
the same size, containing the block frequencies. Lower frequencies are located at top 
left of the new blocks, while higher frequencies are located at bottom right.  
 
In Figure 4.5.2.2 we have displayed the complete DCT of an image. In Figures 4.5.2.4 
and 4.5.2.5 we have displayed the DCT spectrums of the Parrot image by 8x8 pixel 
blocks and by organized DCT coefficients, respectively. The black and white colors 
from the DCT spectrums represent higher magnitude DCT coefficients when grey color 
represents lower coefficients. In Figure 4.4.2.3 we observe that, normally, higher 
magnitude coefficients are placed at the top left corner of the 8x8 pixel blocks. When 
we organize the block spectrums by its DCT coefficient number it becomes very clear 
that first coefficients have much more energy that the rest. That means that keeping only 
the first coefficients, that is to say the lower frequencies, we could restore the original 
image with few losses. This is the principle of JPEG which stores only the more 
energetic DCT coefficients and restitutes the image using the iDCT with those stored 
coefficients. 
 
 
 
 
 
 

 
Figure 4.5.2.2: Detail from Parrot image and its DCT spectrum 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5.2.3: Parrot DCT spectrum 
by 8x8 pixel blocks 

Figure 4.5.2.4: Parrot DCT spectrum 
with the coefficients grouped 
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4.5.3- QUANTIZATION 
 
In JPEG the quantization is performed by 8x8 pixel blocks, and it is not directly applied 
to the image blocks, but to the block spectrum that we get after DCT image 
transformation.  For the block quantization we can use different 8x8 matrices. One of 
the most used is the quantization matrix presented in Figure 4.5.3.1: 
 
 
 
 

 
 
 
 

 
Figure 4.5.3.1: JPEG quantization matrix 

 
 
In JPEG, once we have performed the DCT with each 8x8 pixel block, we divide every 
DCT block coefficient by the corresponding quantization matrix coefficient and we 
round the resulting values. Doing so, a lot of the DCT quantized coefficients becomes 
null, and at the same time we reduce the block standard deviation and thus we reduce its 
entropy. This matrix can also be multiplied by a quality coefficient ‘Q’  which allows 
tuning the quantization, reaching higher compression but lower quality when it is high, 
and higher quality but lower compression when it is low.  

 
 
 
 

4.5.4- ZERO-RUN 
 
Zero run encoding (ZRE) is a form of run length encoding (RLE) consisting into code a 
long stream of zero values with a simple symbol representing the number of consecutive 
zeros. In fact when quantizing the DCT coefficients with JPEG we obtain a high 
number of zero coefficients and it is often interesting to use zero-run, instead of coding 
every zero using the same codeword repeated as many times as consecutive zeros we 
have. Frequently this technique reduces the amount of stored information. 
 
Example of zero-run encoding: 
Stream:   50,    0,    0,    0,    0,    0,    0,    4,    5,    0,    0,    0,    0,    9 
 
The precedent stream would be coded like: 
1,   50,   6,   0,   1,   4,   1,   5,   4,   0,   1,   9 
 
Where the italic characters represent the number of zero values coded from the initial 
stream. We can appreciate the reduction in the number of symbols to be coded, after 
applying the zero run encoding. 

 
 
 

Q= 
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4.5.5- JPEG ALGORITHM: THE ENCODER 
 
In order to develop a JPEG encoder, we have to put together all the concepts previously 
seen in this subchapter 4.5. First of all, we give a diagram where we can see how the 
image processing techniques must be organized (Figure 4.5.5.1) [19], and after that we 
explain how our encoder has been implemented. 
 
 
Following, the organization of our developed JPEG algorithm is presented: 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5.5.1: JPEG algorithm scheme 
 
 
 
As shown in the Figure 4.5.5.1 to encode an image using JPEG first of all we divide the 
original input image into 8x8 pixel blocks and we apply the DCT to every one of those 
blocks. Then, we quantize the blocks by dividing every one of the block coefficients by 
the quantization matrix coefficients multiplied by the quality factor, as described in 
section 4.5.3.  
 
 
 
 

Input: image 
1) We work by 
blocks of 8 by 8 

pixels  

4) We organize the 
coefficients of every 

block in vectors, 
following a diagonal 
zig-zag configuration 

3) We quantize the DCT blocks, 
using the quantization matrix and 
the quality factor given as input to 

the  coder 

7) We apply zero-run 
coding to the AC 

coefficients, and we 
remove the last zero 
coefficients of each 

vector 

2) We apply the 
DCT transform 
to each block 

5) We put together the 
DC coefficient of each 
one of the vectors in a 

matrix 

6) We apply the DPCM 
compression technique 

to the DC matrix 
coefficients 

Outputs: DPCM outputs 

8) We store the AC coefficients coded with zero-run or 
not, depending on the vector. Only coded with ZLC if 

it diminishes the number of stored values.  
Outputs: coded AC vectors 
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After quantization, we get smaller coefficients presenting a smaller standard deviation 
between them and a lot of them became null. If we use a high quality factor, the 
quantization matrix coefficients will be high and after dividing the DCT blocks by this 
matrix, we will get very low coefficients that, after rounding, will become null in most 
cases, thus the compression achieved will be higher. The next step consist into organize 
the gotten coefficients in a vector, following a zigzag ordering [20] that allows us to 
group the higher coefficients together and leave the null coefficients at the end of the 
vector (Figure 4.5.5.2). 
 
 
 
 

 
 
 
 
 
 

Figure 4.5.5.2: JPEG coded coefficients organization 
 

 
After organizing the block coefficients into vectors the algorithm is shared into two 
main tasks: 
 
In one hand we group together all the DC coefficients in a matrix. Those coefficients are 
the continuous color component of each block (color offset), that are situated in the first 
component of each DCT block. After grouping, we apply the DPCM compression 
described in section 4.5.1 to the DC coefficient matrix. In our algorithm we have used 
the averaging predictor for the DPCM, and we have stored one row and one column 
each five like a subset of initial coefficients. After that, we have performed the 
prediction using this coefficient subset and the averaging predictor; subtracting it from 
the original DC coefficients we got the difference matrix that we will use in the 
decoding together with the subset of initial coefficients to reconstitute the coefficients 
DC. 
 
On the other hand we work with the AC coefficients to store them using the lower 
possible amount of bits. First of all, we eliminate the null coefficients at the end of the 
vectors representing the DCT quantized blocks. The null coefficients can be 
reconstituted in the decoding phase adding zeros until reaching 64 coefficients per 
vector. We use the described zero-run technique to diminish the number of coefficients 
to be coded, when possible. We only have used zero-run with the vectors that becomes 
shorter when applying it, otherwise we transmit the AC coefficients without ZRE.  
 
In short, at the end of the JPEG coding, our outputs are the AC vectors coded with zero-
run or not, depending on the vector; the initial DC coefficients allowing us to perform 
the linear prediction, and a difference matrix allowing us to restitute the DC 
coefficients. Those three data structures, entropy coded [21], will be passed as input to 
the JPEG decoder in order to find the decoded image.    
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1) We take as 
input the outputs 

of the JPEG 
coding funtion  

4) We add zeros to the 
vectors until reaching 

64 coefficients per 
vector (8x8) 

7) Reorganization of the 
vectors coefficients into 

8x8 DCT blocks 

2) Reconstitution of 
the DC components 
matrix using DPCM 

4) Reconstitution of the 
vectors with the first 

component being a DC 
coefficient and the others 
being the AC coefficients 

3) Decoding of the 
vectors containing the 
AC coefficients that 

were coded using zero-
run coding 

8) Dequantizing using 
the JPEG quantization 
matrix and the same 

quality factor that has 
been used in the 

encoding 

3) We apply the iDCT to 
the obtainded 

dequantized blocks, to 
get the colour pixel 

blocks 

3) Reorganization of the 
blocks to get the 

decoded image in output 

4.5.6- JPEG ALGORITHM: THE DECODER 
 
The JPEG decoder follows the same steps of the encoder in reverse order. The scheme 
showed in Figure 4.5.6.1 represents the organization of the decoder algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5.6.1: JPEG algorithm decoding scheme 
 
In order to decode we have to reconstitute the vectors that will form the DCT decoded 
blocks. In the first place, we use the DPCM method to reconstitute the DC coefficients 
thanks to the initial DC coefficients and the difference matrix passed as input argument 
to the decoder.  
 
After doing so and knowing that the encoder used two different codewords to know if a 
vector was coded using zero-run or not, we decode the AC vectors that had been 
codified using zero-run, we concatenate each DC coefficient with every one of the AC 
vectors and we add zeros at the end of the vectors until getting 64 coefficients per 
vector. With that, we can reconstitute the 8x8 blocks reorganizing the vector 
coefficients inside the blocks using the zig-zag JPEG configuration.  
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The next step consists into dequantize the blocks using the same quality factor and 
matrix quantization as we have used in the encoder, but this time multiplying each term 
of the 8x8 block, instead of dividing them by the quantization matrix coefficients. The 
blocks that we obtain when decoding are not exactly the same blocks that we had 
obtained applying the DCT in the encoding step, because we have lost information in 
the quantization step. 
 
Once we have reconstituted the 8x8 DCT blocks, we apply the iDCT transform to those 
blocks and we reorganize them in order to get the decoded image. The decoded image 
quality will depend on the quality factor that we have used to encode and decode the 
image. With a very low quality factor we will have almost no loses and our PSNR will 
go towards infinity. On the contrary if the used quality factor is high, the PSNR will be 
small and the CR will increase because we are storing less coefficients, and the stored 
ones will own a lower standard deviation, so a lower entropy.  

 
 

 
4.5.7- RESULTS  

 
The outputs and results that have been found using our developed JPEG algorithm are 
organized in tables in this part, with an explanation of the calculations done as well as 
other important results presented in Annex 4. Images bearing witness to the encoded 
image quality using different quality factors will be also displayed. Results are given for 
the three studied images:  
 
 
Parrot image 
 
Original image size in bits: (Size in pixels)*(Entropy) = 192*144*7.75=214272bits  
 
Results obtained applying the JPEG algorithm for different quality factors: 

Table 4.5.7.1: JPEG compression results (Parrot) 
 

Initial DC 
coefficients 

entropy 
(bps) 

Difference 
DC vector 
entropy 

(bps) 

 
Quality  
factor 

 
Encoding 
time (s) 

 
Decoding  
time(s) 

 
PSNR 
(dB) 

Vector  
length: 166 

Vector 
length: 266 

AC coded 
coefficients 

entropy (bps) 
with its vector 

length 

0.0003 ~1.37 ~0.61 51.39 6.62 6.08 6.50  26721 
0.001 ~1.07 ~0.60 47.76 6.71 6.13 5.27  23558 
0.005 ~1.36 ~0.60 38.84 6.70 6.15 4.13  16128 
0.01 ~0.97 ~0.66 35.53 6.66 6.09 3.82  12370 
0.05 ~1.37 ~0.59 28.90 5.20 4.16 3.23  5660 
0.1 ~0.96 ~0.59 26.02 4.36 3.24 3.35  3560 
0.2 ~0.99 ~0.59 22.66 3.37 2.29 2.96  2014 
0.4 ~0.96 ~0.58 19.14 2.50 1.48 2.58  992 
0.7 ~1.00 ~0.58 16.10 1.91 0.93 1.80  627 
1 ~0.97 ~0.65 15.00 1.28 0.56 1.07  505 
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In table 4.5.7.1 we display the results of time, PSNR and entropies, calculated directly 
with our algorithms. The entropy is given in bits per symbol (bps), the vector lengths in 
symbols and the encoding times in seconds.  
 
The measures of encoding/decoding times are only a reference. In fact, they are 
calculated by the Matlab function ‘tic, toc’, which returns an approximated time, but 
which varies a little between one encoding and another using exactly the same input 
parameters.  In table 4.5.7.2 we see the encoding times for the parrot image using a 
quality factor of 0.01. For an image of similar size to Parrot image, the elapsed time is 
around 1 second for the encoding and around 0.60s for the decoding.  
 

 First 
execution 

Second 
execution 

Third 
execution 

Fourth  
execution 

Encoding times 
for a 0.01 

quality factor 

0.97 1.12 1.06 0.99 

Table 4.5.7.2: Matlab encoding time variations   
 
Using the entropies and the vector sizes from gotten results (Table 4.5.7.1), we can 
deduce the compression ratio achieved with the different quality factors. The calculation 
method is presented in Annex 4.  
 
Two different calculations of CR are performed. One is represented in Table 4.5.7.3, 
where DPCM is not applied to the DC coefficients. The other, is displayed in table 
4.5.7.4, where we calculate the CR with all our developed techniques, DPCM included.  
 

Table 4.5.7.3: JPEG compression results without DC prediction (Parrot) 
 
 
 
 
 
 

DC coefficients 
without prediction  

(vector length: 
24*18=432 
symbols) 

 
 

Quality  
factor 

Entropy (bps) 

Bits to store the 
DC coefficients 
without DPCM  

Bits to store 
the AC 

coefficients  

Size in bits 
of encoded 

image  
without DC 
prediction  

 
 

CR 

0.0003 8.61  3720 173687 177407 1,21 
0.001 8.45 3651 124151 127802 1,68 
0.005 7.79 3366 66609 69975 3,06 
0.01 7.19 3107 47253 50360 4,25 
0.05 5.29 2286 18282 20568 10,42 
0.1 4.37 1888 11926 13814 15,51 
0.2 3.36 1452 5961 7413 28,90 
0.4 2.48 1072 2559 3631 59,01 
0.7 1.87 808 1128 1936 110,68 
1 1.34 579 540 1119 191,49 
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Using DPCM the DC coefficients are calculated thanks to the prediction done when 
starting with some initial coefficients, and adding the ‘difference matrix’ afterwards. 
The size in bits of the AC coefficients is exactly the same as before. 
 
In Figure 4.5.7.1 we can see that, for small quality factors, the number of bits used to 
store the DC coefficients is negligible compared to the bits used to store the AC 
coefficients; thus, for those quality factors, the CR depends almost exclusively from the 
AC coefficients (left). However when we increases the quality factor, the number of bits 
used to store the AC coefficients decreases and become comparable to the bits used to 
store the DC coefficients. Here is when the DC prediction with DPCM becomes 
important because it is here when it really helps to increase the CR (zoom at right).    
 
 
 

Table 4.5.7.4: JPEG compression results with DC prediction (Parrot) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5.7.1: Bits to store the coefficients in function of Q 
 
 
 
 
 

 
Quality  
factor 

Bits to  
store the DC 

coefficients using  
DPCM 

Bits to store 
the AC 

coefficients 
 

Size in bits of 
coded image  

With DC 
prediction  

 
 

CR 

 
Bits per 

pixel (bpp) 

0.0003 2716 173687 176403 1.21 6,38 
0.001 2744 124151 126895 1.69 4,59 
0.005 2748 66609 69357 3.09 2,51 
0.01 2726 47253 49979 4.29 1,81 
0.05 1970 18282 20252 10.58 0,73 
0.1 1586 11926 13512 15.86 0,49 
0.2 1169 5961 7130 30.05 0,26 
0.4 809 2559 3368 63.62 0,12 
0.7 565 1128 1693 126.56 0,06 
1 362 540 902 237.55 0,03 
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bits to store the DC coefficients=f(Q)
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In Figure 4.5.7.2, we display the compression ratios, using DC coefficient prediction 
(blue) and not using it (red). We can see that for small quality factors (high PSNR and 
small compression) our curves takes almost the same values because the bits used to 
store the DC coefficients are negligible compared with the bits used to store the AC 
coefficients. However this is not the case for higher quality factors when the AC and 
DC stored bits begins to be comparable. 
 
In Figure 4.5.7.3 we display the PSNR in function of the bits per pixel of the encoded 
image when using DC prediction. PSNRs between 30 and 40dB give quite good image 
qualities and for such PSNRs we obtain BPP between 0.73bpp and 2.51bpp.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5.7.2: Compression ratio in function of the quality factor Q. 
 
 
 

 
Figure 4.5.7.3: PSNR in function of bits per pixel (Parrot). 
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The Figure 4.5.7.4 gives the Parrot image results after coding it with three different 
quality factors: 
  
- With a quality factor Q of 0.01 we can almost not distinguish any difference 

between the coded and the original image. This image has a PSNR of 35.53 and is 
coded with 1.81bpp (left).  

 
- With a quality factor of 0.05 we get a PSNR of 28.90 and we begin to see a blurred 

image and some artifacts. This image can be encoded with only 0.73bpp (center).  
 
- With a quality factor of 0.4, the JPEG artifacts are very visible and the image is 

almost unrecognizable (PSNR of 22.66). The high spatial frequencies are eliminated 
and we almost only get the offset color for each 8x8 pixel block. Coding using the 
DCT by blocks and keeping only the DC coefficient return this kind of results with a 
block effect (right).   

 
 
 

Original Image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q=0.01  
PSNR=35.53 dB  
BPP=1.81 bpp 

Q=0.05  
PSNR=28.90 dB  
BPP=0.73 bpp 

Q=0.4  
PSNR=22.66 dB  
BPP=0.12 bpp 

    
Figure 4.5.7.4: JPEG coded Parrot image 
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Toucan image 
 
In Figure 4.5.7.5 we observe the CRs obtained using DPCM to predict the DC 
coefficients and the CRs obtained without using DPCM. As in the Parrot image we see 
that for low quality factors, the compression ratios are almost the same, but when Q 
increases, the difference between CRs obtained when using DPCM or not using it, 
increases. The graphic in this figure and in the next ones are calculated using the results 
from applying the JPEG algorithm presented in Annex 4.  
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Figure 4.5.7.5: Compression ratio in function of quality factor. 

 
 
In Figure 4.5.7.6 we present the results in terms of PSNR in function of the average bits 
per pixel that we use to store a coded image. Instead of 7.48bpp needed to code the 
original image, the JPEG coded image with a Q of 0.01 only needs 1.16bpp to be coded, 
getting an image of almost perfect quality, visually speaking (PSNR of 38dB). 
 
 
 

 
Figure 4.5.7.6: PSNR in function of bits per pixel (Toucan) 
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Three JPEG encoded Toucan images are shown in Figure 4.5.7.7 in order to get an 
outline of the visual quality in function of the obtained CR. We observe that for images 
encoded with almost perfect quality we can compress the original image 6 times, for 
images with quite good quality we can compress by a factor close to 16, and 
compressing by a factor close to 100, the image gets very big artifacts that makes it 
almost unrecognizable. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Q=0.01  
PSNR=35.53 dB  

CR=6.44 
BPP=1.16 bpp 

Q=0.05  
PSNR=28.90 dB 

CR= 16.73 
BPP=0.45 bpp 

Q=0.4  
PSNR=22.66 dB 

CR=87.01  
BPP=0.09 bpp 

 
Figure 4.5.7.7: JPEG coded Toucan image 

 
 
Lenna image 
 
In Figure 4.5.7.8 we appreciate the high augmentation in compression done for high 
quality factors when using DC prediction, thanks to the high diminution of bits used to 
store AC coefficients for such Qs.  For example, for a Q of 0.1, we have a CR of 33:1 
without using DC prediction, and a CR of 35:1 using such prediction. At 0.4 the CR 
passes from 105:1 to 130:1 but at those Q (PSNR=21.83), the distortion and the 
compression artifacts begin to be very high.  
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Figure 4.5.7.8: Compression ratio in function of quality factor. 
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Figure 4.5.7.9 shows the PSNR evolution in function of the number of bits per pixel. 
We observe that 0.2 bits per pixel are enough in order to obtain PSNRs higher than 
30dB, and so, images with quite good quality.  
 
 

 
Figure 4.5.7.9: PSNR in function of bits per pixel (Lenna) 

 
 
 
In Figure 4.5.7.10 the results for two different encodings are displayed. With a quality 
factor of 0.01 we can almost no appreciate any difference with the original image, but 
with a quality factor of 0.05, even if the image still has a good visual quality, the 
artifacts from JPEG begin to be quite visible.  
 

 
 
 
 
 
 
 
 
 

 
Q: 0.01 

PSNR: 39.78 
BPP: 0.98 

Q: 0.05 
PSNR: 33.30 

BPP: 0.35 
 

Figure 4.5.7.10: JPEG coded Lenna image 
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5- COMPARATIVE ANALYSIS  
 
We arrive at the last part of the study and we do so by comparing and analyzing 
similarities, differences, advantages and disadvantages of the techniques presented in 
the preceding chapters. With this we will be able to establish which algorithms are more 
efficient in terms of compression ratio, PSNR, time of encoding/decoding and each 
feature used to qualify the compression quality. This can be a reference to decide 
whether an algorithm is a good choice or not for a given application.  
 
The first and most important observed difference appears when comparing lossless and 
lossy compression. In fact, the compression ratios achieved by lossless techniques are 
much lower than those achieved by lossy techniques as the latter only stores the most 
relevant information when encoding an image, while the former are able to reconstruct 
the exact original image after decoding.  
 
In Table 5.1 we examine the orders of magnitude of the compression ratios that result 
when we encode an image with the goal of getting a very good visual quality image 
output. In fact, when using lossless compression we get PSNRs approaching infinity, 
because with the stored information we can reconstitute the original image without any 
difference. With a lossless method however, it would be difficult to obtain compression 
ratios higher than 1.5.  
 
Using JPEG to code the Toucan image with a quality factor of 0.01 we get a PSNR of 
35.53dB for which it is difficult to observe any difference between the original image 
(Figure 5.1) and the coded one (Figure 5.2). With that, we obtain a CR of 6.44 and we 
could codify the image with only 1.16 bpp instead of 4.59 bpp that we would need to 
code it using Laplace Pyramid and far from 7.75 bpp that we need to code it using 
Huffman entropy coding. 
 
Using other lossy methods such as uniform scalar quantization, we would code the 
image with at least 6 bpp (Figure 5.3) to get a high quality output image, but the 
compression achieved doing so is quite low, being comparable to the CR of lossless 
compression algorithms.  
 
In Figure 5.4 we have coded the Toucan image with 5 bpp and we still observe the 
different scaled color levels even having a PSNR of 35.68. Here, the subjectivity of the 
PSNR measure becomes evident, because for lower PSNRs using JPEG coding (with 
Q=0.01) we get better visual image results than using 5 bits uniform scalar quantization. 
In the end however, the most important judge of visual quality will always be our eyes.   
 

LOSSLESS LOSSY TOUCAN 
IMAGE Huffman 

Coding 
Laplace 
Pyramid 

Scalar 
Quantization 

JPEG with 
Q=0.01 

PSNR 
(dB) 

+infinity +infinity 42.70 35.53 

CR 1.032 1.22 1.29 6.44 
BPP (bpp) 7.75 4.59 6 1.16 
Table 5.1: Comparison between Lossless and Lossy compression for high PSNRs. 
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Figure 5.1: Original image or image 
compressed using lossless methods 

Figure 5.2: JPEG compressed image 
(Q=0.01) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: 
6bpp uniform scalar quantization 

Figure 5.4: 
5bpp uniform scalar quantization

 
 
 
Some of the used algorithms cannot reach values of PSNR getting very high visual 
quality output images. For example, for the simple fractal algorithm explained in 
chapter 4.4.2 we have seen that it was difficult to achieve PSNRs of 30 dB, being this 
an approximated threshold for which we begin to get high visual quality images. For the 
second fractal algorithm presented in chapter 4.4.3 we got a PSNR of 30.80 dB when 
decoding Lenna with 15 iterations. The visual quality is good at those PSNR, but we 
still can observe the effect of the fractal encoding [22]. In Table 5.1 we have not 
included the results of fractal images because, even when obtaining high compression 
ratios with them, those algorithms cannot get output images that could be confounded 
with the original ones. From our developed algorithms, only JPEG algorithm can 
compete with the lossless algorithms in terms of visual quality. 
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If in Table 5.1 the common feature was the high visual quality of the outputted images, 
in Table 5.2 we compare algorithms having as common denominator they belonging to 
the group of lossy techniques. In it we compare our developed JPEG and Fractal 
algorithms. We will refer to the Fractal algorithm described in chapter 4.4.2 as Fractal 
1, and the Fractal algorithm in chapter 4.4.3 as Fractal 2.  
 
On the displayed results in Tables 5.2, we have worked with -8, 4, 2- coding parameters 
for Fractal 1, because it is with them that we have obtained the higher values of PSNR 
for this algorithm and they give us an insight of the algorithm compression capacity. For 
Fractal 2 we work with 15 iterations, because this value gives us a good equilibrium 
between a PSNR close to the attractor and a low decoding time. For JPEG we give the 
results in terms of ranges, using as extremums the quality factors (Q) 0.4 and 0.003.  
For such Q values we get PSNRs between 20dB and 50dB approximately, that are the 
values for which we begin to appreciate the shape of the image, until we get a very high 
visual quality image, respectively.  
  
Parrot  Fractal 2  

(15 iterations) 
JPEG 
(Q: from 0.003 to 0.4) 

PSNR (dB) 23.71 From 50 down to 19 dB 
BPP (bpp) 0.48 From 6.38 down to  0.12 
CR 15.99 From 1.21 up to   63 
Encoding time  ~ 25 min ~ 1 s 
Decoding time  ~ 1 s ~ 0.6 s 
 
Toucan  Fractal 1 

(8, 4, 2) 
Fractal 2 
(15 iterations) 

JPEG  
(Q: from 0.003 to 0.4) 

PSNR (dB) 22.56 27.19 From 50 down to 20 dB 
BPP (bpp) 2.35 0.48 From 5.22 down to 0.09 
CR 3.19 15.44 From 1.43 up to 87 
Encoding time  ~ 1.5 s ~ 65 min ~ 1.5 s 
Decoding time  ~ 0.5 s ~ 2 s ~ 1 s 
 
Lenna  Fractal 1 

(8, 4, 2) 
Fractal 2 
(15 iterations) 

JPEG 
(Q: from 0.003 to 0.4) 

PSNR (dB) 27.15 30.80 From 53 down to 22 dB 
BPP (bpp) 2.35 0.45 From 5.09 down to 0.06 
CR 3.16 16.40 From 1.46 up to 130 
Encoding time  ~ 9 s ~52 h ~ 9 s 
Decoding time  ~ 3 s ~ 15 s ~ 5 s 
 
Tables 5.2: Comparison between our 3 lossy compression algorithms   
 
From Table 5.2 and comparing between both Fractal algorithms, we conclude that 
Fractal 2 is more efficient than Fractal 1 in terms of relation PSNR/BPP, but it is not in 
terms of encoding time. In fact the encoding time for Fractal 2 is more than an hour for 
images of Toucan image size, and more than two days for image with sizes comparable 
to Lenna image size. In terms of visual quality we also get better results with Fractal 2.  
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In Figures 5.5 to 5.7 we observe a comparison between the Lenna original image, and 
the coded images with Fractal 1 (Coding parameters 8,4,2) and Fractal 2. We can see 
that even obtaining a PSNR of 27.15 with Fractal 1, the block effect is very visible, and 
that give us an image that is not visually grateful. Using Fractal 2 (PSNR of 30.80) we 
obtain a smoother image, with a small granularity. Visually speaking the quality is 
much better.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Original image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6: Fractal 1 compressed image 
            
 

Figure 5.7 Fractal 2 compressed image 
 
 

JPEG give us the possibility to play with the CR and PSNR parameters (Table 5.2), in 
such a way that, if we want to increase the PSNR, the CR decreases and viceversa. The 
flexibility of this algorithm makes it useful for many applications. We can see that the 
JPEG algorithm obtains quite low coding and decoding times. It also has the 
characteristic of having quite robust encoding times, that is to say, we can encode an 
image with different qualities and get similar times. The encoding times of our 
developed JPEG algorithm are of the same order than Fractal 1 algorithm.  
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In Tables 5.3 to 5.6 we compare Fractal 2 with JPEG. In fact, those two algorithms are 
those which give us the best results in terms of PSNR. Two different comparisons have 
been established. First, in Tables 5.3 and 5.4, we have analyzed the compression ratio of 
both algorithms taking similar PSNRs as starting point. Secondly, in Table 5.5 and 5.6, 
we compare the quality image outputs of both algorithms in terms of PSNR, when we 
take similar compression ratios as the common characteristic. Those comparisons 
become possible thanks to the flexibility of JPEG that allows us to tune the CR in 
function of the PSNR and viceversa. Contrarily, the compression ratio gotten from 
Fractal 2 is fixed by a given image. We could diminish the encoding time by using 
MSE thresholds or diminish the decoding time by decoding with fewer iterations, but 
the amount of bits used to store the compressed image wouldn’t change.  
 
Analyzing the results of Table 5.3 we see that for similar PSNRs (around 27- 28 dB), 
we obtain much higher CR for JPEG than for Fractal 2. In fact we almost obtain a 
difference of a factor two between CR’s.  
 
 
TOUCAN IMAGE Fractal 2 

(15 iterations) 
JPEG 
(Q: 0.1) 

PSNR 27.19 28.54 
BPP 0.48 0.27 
CR 15.44 27.43 
 
Tables 5.3: Comparison by similar PSNRs (Toucan) 
 
 
In Figures 5.8 and 5.9 we observe that even when working with similar PSNRs the 
artifacts in compressed images using both algorithms are quite different. The JPEG 
encoded image (Figure 5.9) presents a clear block effect, while Fractal 2 gives us a 
more homogeneous image, but it has an effect similar to pointillism and the small 
details are not so clear than in JPEG. That is very visible in the Toucan eye. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8: Fractal 2 coded Toucan image 

(PSNR=27.19) 
Figure 5.9: JPEG coded Toucan image 

(PSNR=28.54) 
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In Tables 5.4 we analyze the results from coding Lenna. With similar PSNRs (around 
29.5 dB) in Fractal 2 and JPEG, we get, as in the case of Toucan image, CRs much 
higher for JPEG than for Fractal 2. We also almost get a difference of a factor two 
between them.  
 
The effects of the artifacts in the image for JPEG are exactly the described for Toucan 
image, but this time, the Fractal 2 coded image has a higher quality and we don’t 
observe so much the pointillism effect. The details are always clearer in the JPEG coded 
image, we appreciate it in the plume of her had and in her eyes, but the Fractal coded 
image is smoother and visually it is more pleasing.   
 
 
LENNA Fractal 2 

(7 iterations) 
JPEG 
(Q: 0.1) 

PSNR 29.31 29.84 
BPP 0.45 0.21 
CR 16.40 35.56 
Tables 5.4: Comparison by similar PSNRs (Lenna) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10: Fractal 2 coded Lenna 
image (PSNR=29.31) 

Figure 5.11: JPEG coded Lenna image 
(PSNR=29.84) 

 
 
In Tables 5.5 and 5.6, comparing the PSNRs in function of similar CRs, we observe the 
advantage of JPEG upon Fractal 2.  
 
TOUCAN Fractal 2 

(15 iterations) 
JPEG 
(Q: 0.05) 

CR 15.44 16.73 
BPP 0.48 0.45 
PSNR 27.19 31.85 
Tables 5.5: Comparison by similar compression ratios (Toucan) 
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When compressing Lenna with both algorithms using a CR around 16, we obtain a 
resulting PSNR around 30dB when compressing with Fractal 2 and a PSNR around 
35dB when compressing with JPEG, that is to say, a difference of 5dB between them 
(Table 5.6). With this comparison we clearly see that even having a quite important 
difference between PSNRs, we get a quite similar visual quality (Figures 5.14 and 5.15). 
We observe that fact above all in Lenna image, where the details and the brightness of 
the Fractal 2 coded image are not so clear and intense, but the image is smoother than in 
the JPEG coded image where we appreciate sharper color changes. 
 

Tables 5.6: Comparison by similar compression ratios (Lenna) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12: Fractal 2 coded Toucan 
image (PSNR=27.19) 

Figure 5.13: JPEG coded Toucan 
image (PSNR=31.85)

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 5.14: Fractal 2 coded Lenna 
(PSNR=30.80) 

Figure 5.15: JPEG coded Lenna 
(PSNR=34.98) 

LENNA Fractal 2 
(15 iterations) 

JPEG 
(Q: 0.035) 

CR 16.40 16.98 
BPP 0.45 0.44 
PSNR 30.80 34.98 
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6- CONCLUSION 
 
In this project we have presented an overview of the main techniques that have been 
used in the digital image compression discipline over the last decades. Algorithms based 
on the described techniques have been implemented with the purpose of presenting a 
guide for people interested in the subject. 
 
One of the most important points in image compression is the fact that it is very difficult 
to obtain high compression ratios without lose image information. Thus, with the 
exception of some specific disciplines where images without losses are required, as in 
medical imagery, most of the techniques used nowadays are lossy compression 
techniques.  
 
The two primary lossy techniques we have studied were Fractal and JPEG compression. 
Fractal compression had its apogee in the 1980’s as a compression technique which was 
capable of quite acceptable PSNRs and compression ratios. As a counterpoint, it is a 
very time consuming technique; we have seen it with the implementation of our second 
Fractal algorithm. Currently, Fractal compression techniques have lost favor in place of 
JPEG compression, a method that gives similar results as Fractal compression, but with 
much lower coding and decoding compression times. Those times are quite robust and 
don’t vary as much when coding with higher or lower quality factors.  
 
JPEG is a very flexible algorithm that allows us to obtain one or another PSNR as a 
function of the compression ratio that we want to achieve. Working with this algorithm 
we have had the opportunity to go into other techniques widely used in the world of 
image compression. Such is the case of the discrete cosine transform, which is at the 
heart of JPEG, or other compression techniques as zero-run or DPCM. We have seen 
that our JPEG algorithm is able to obtain similar PSNRs and CRs of the current 
algorithms in the market; giving us, for example, the possibility to obtain images with 
an excellent quality with compression ratios around 10:1. 
 
Our developed Fractal algorithms were not as efficient as JPEG, but they gave us a 
good idea of how Fractal compression uses the self-similarity in images. In the first 
Fractal algorithm we have seen how to find similarities between different parts of an 
image and decode it using a very small codebook, but doing so we produced very 
visually low quality images. In the second studied Fractal algorithm we have seen the 
large capacity that this technique has to encode images getting quite good visual results 
and compressing in a very unintuitive way. That is to say, storing only transformations 
and iterating the decoding process without any need of a stored codebook.  
 
The digital era is still very young; clearly, image compression is not yet at the end of its 
evolution. 
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ANNEX 1:  
FRACTAL 1 NUMERICAL DEVELOPMENTS  

 
In this annex we present the numerical results from compressing Lenna and Toucan 
images with our developed Fractal 1 algorithm. They are organized by coding 
parameters following the notation: CP: region size, reference block size, range block 
size. 
 
1- Coding parameters (CP): 32, 16, 4 
Pixels in region: 32*32  
Domain/reference block pixels: 16*16 
Range block pixels: 4*4 
 
 
Toucan Image:  
Original size in bits: 
216*160*7.49bpp=258855bits 
   
A- Encoding time= 1.58s 
B- Decoding time= 0.56s 
C- PSNR=21.21 
D-    
d1) 8960*7.10=63616 bits    
d2) (5*7)*(8*8)=2240 positions  
d3) Log2(16*16/(4*4))=4 bpsp 
  
      TBS: 63616+2240*4=72576 bits 
      CR= 258855/72576=3.56 
 
E- BPP=72576/(216*160)= 2.1bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.2: 
Decoded Toucan with CP: 32,16,4  

 
Lenna Image:  
Original size in bits:  
512*512*7.43bpp=1947599bits 
   
A- Encoding time=7.02s 
B- Decoding time2.27s 
C- PSNR=22.58 
D-   
d1)  7.40*65536=484967 bits    
d2) (16*16)*(8*8)=16384positions  
d3) Log2(16*16/(4*4))= 4 bpsp  
 
TBS: 484967+16384*4=550503 bits 
CR= 1947599/550503=3.54 
 
E- BPP=550503/(512*512)= 2.1bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.2: 
Decoded Lenna with CP: 32,16,4 
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2- Coding parameters: 16, 8, 4 
Pixels in region: 16*16  
Domain blocks/reference blocks pixels: 8*8 
Range blocks pixels: 4*4 
 

 
 
Toucan Image:  
   
A- Encoding time= 0.72s 
B- Decoding time= 0.52s 
C- PSNR= 19.79 
D-    
d1) 8960*7.32=65588 bits      
d2) (14*10)*(4*4)=2240 positions  
d3) Log2(8*8/(4*4))=2 bpsp 

 
      TBS: 63616+2240*4=70068 bits 
      CR= 258855/70068=3.69 
 
E- BPP=70068/(216*160)= 2.03bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.3: 
Decoded Toucan with CP: 16,8,4 

 
Lenna Image:  
   
A- Encoding time= 2.82s 
B- Decoding time = 2.24s 
C- PSNR= 23.13 
D-   
d1)  65536*7.39=484312 bits 
d2) (32*32)*(4*4)=16384positions  
d3) Log2(8*8/(4*4))= 2 bpsp  
 
TBS: 484312+16384*2=517080 bits  
CR= 1947599/517080=3.77 
 
E- BPP=517080/(512*512)= 1.97bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A1.4: 
Decoded Lenna with CP: 16,8,4 
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3- Coding parameters: 8, 4, 2 
Pixels in region: 8*8  
Domain blocks/reference blocks pixels: 4*4 
Range blocks pixels: 2*2 
 
 
 
Toucan Image:  
   
A- Encoding time= 1.23s 
B- Decoding time= 0.44s 
C- PSNR= 22.56 
D-    
d1) 8640*7.40= 63936 bits        
d2) (27*20)*(4*4)= 8640 positions  
d3) Log2(4*4/(2*2))= 2 bpsp 

 
      TBS: 63936+8640*2=81216 bits 
      CR= 258855/81216=3.19 
 
E- BPP= 81216/(216*160)= 2.35bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4.2.2.5: 

Decoded Toucan with CP: 8,4,2 

 
 
 
Lenna Image:  
   
A- Encoding time= 9.30s 
B- Decoding time= 3.08s 
C- PSNR= 27.15 
D-   
d1)  65536*7.39=484312 bits 
d2) (32*32)*(4*4)=16384positions  
d3) Log2(8*8/(4*4))= 2 bpsp  
 
TBS: 484312+16384*2=517080 bits  
CR= 1947599/517080=3.77 
 
E- BPP= 616039/(512*512)= 2.35bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.2.2.6: 
Decoded Lenna with CP: 8,4,2 
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4- Coding parameters: 16, 4, 2 
Pixels in region: 16*16 
Domain blocks/reference blocks pixels: 4*4 
Range blocks pixels: 2*2 

 
 
 
 

Toucan Image:  
   
A- Encoding time= 1.81s 
B- Decoding time= 0.59s 
C- PSNR= 19.22 
D-    
d1) 2240*7.13=15972 bits           
d2) (14*10)*(8*8)=8960 positions  
d3) Log2(4*4/(2*2))= 2 bpsp 

 
      TBS: 15972+8960*2=33892 bits  
      CR= 258855/33892=7.64 
 
E-BPP= 33892/(216*160)= 0.98bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.4.2.2.7: 

Decoded Toucan with CP: 16,4,2 
 
 
 
 
 
 

Lenna Image:  
   
A- Encoding time= 12.95s 
B- Decoding time= 4.26s 
C- PSNR= 22.77 
D-   
d1)  16384*7.30=119604 bits    
d2) (32*32)*(8*8)= 65536 positions  
d3) Log2(4*4/(2*2))= 2 bpsp 
 
TBS: 119604+65536*2=250676 bits  
CR= 1947599/250676=7.77 
 
E- BPP= 250676/(512*512)= 0.95bpp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4.2.2.8: 
Decoded Lenna with CP: 16,4,2 

 
 
 
 
 

 
 
 
*Lenna images have been reduced in size when printed in the document for space limitations.  
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ANNEX 2:  
FRACTAL 2 NUMERICAL DEVELOPMENTS 

 
In this annex we present the numerical developments used to compute the compression 
ratios and the number of bits per pixel achieved with the Fractal 2 algorithm. To 
calculate the compression ratio, first of all, we have to compute the original size in bits 
of the processed images: 
 
Parrot original image size in bits: (image size) *(entropy)= 128*192*7.7457=190359 
Toucan original image size in bits: (image size) *(entropy)= 216*160*7,4795=258492 
Lenna original image size in bits: (image size) *(entropy)= 512*512*7,4295=1947599 
 
The size in bits of the compressed image is mostly defined by the positions, the 
geometrical transformations and the color transformations stored. Following, we 
calculate the bits used to store those features: 
 

1- Positions:  
 
The bits that we have to use in order to store the domain blocks position matching with 
the range blocks, varies in function of the image size and the result can be found with 
the formula: 
 
Position= [(positions in axe x in bits)+( positions in axe y in bits)]*(nº of range blocks) 

Formula 4.4.3.2.1 
  
Where: size of the image in x axe= 2(max positions in axe x in bits) �  
  � positions in axe x= log2 (size of the image in axe x) 
  

size of the image in y axe= 2(positions in axe y in bits) �  
  � positions in axe y= log2 (size of the image in axe y) 
 
For every one of the processed images we have: 
Bits Parrot:  [log2 (192)+log2 (128)]*[(192*128)/(8*8)]  ~ [8bits+8bits]*[384]=6144 bits 
Bits Toucan: [log2 (216)+log2 (160)]*[(216*160)/(8*8)] ~ [8bits+8bits]*[540]=8640bits 
Bits Lenna:  [log2 (512)+log2 (512)]*[(5122)/(8*8)] ~ [9bits+9bits]*[4096]=73728 bits 

 
 
2- Geometrical transformation: 
 

In total, eight different symmetries could be applied to a subsampled block, in order to 
find the domain blocks, so 3 bits will be enough to store every one of such 
transformations. Thus, for the totality of range blocks we have:  
 
 

Bits to store the geometrical transformations=(3 bits/rotation)*(nº of range blocks) 
Formula 4.4.3.2.2 

 
Bits needed to store the geometrical transformations for Parrot: 3*384=1152 bits 
Bits needed to store the geometrical transformations for Toucan: 3*540=1620 bits 
Bits needed to store the geometrical transformations for Lenna: 3*4096=12288 bits 
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3- Contrast and brightness (color transformations):  

 
Contrast and brightness are two scalars that, from the literature, can be optimally coded 
using with 5 and 7 bits respectively [3]. We have to apply such transformations for 
every one of the range blocks: 
 

(5bits+7bits)*(nº of rang blocks) 
 

Formula 4.4.3.2.3 
 
Bits needed to store the color transformations for Parrot: (5+7)*384= 4608 bits 
Bits needed to store the color transformations for Toucan: (5+7)*540= 6480 bits 
Bits needed to store the color transformations for Lenna: (5+7)*4096= 49152 bits 
 
 
Other values needed to decode the image such as the size of the image or the size of the 
range blocks can be neglected because their size in bits is negligible in comparison with 
the rest of stored data. In total we will have to store for each one of the compressed 
images:  
 
Bits to store to store the encoded Parrot: 6144+1152+4608 = 11904 
Bits needed to store the encoded Toucan: 8640+1620+6480= 16740 
Bits needed to store the encoded Lenna: 73728+ 12288+49152= 135168 

 
 
 
After those intermediate calculations we can proceed to compute the compression ratios 
(CR) and average number of bits per pixel (BPP): 
 
CR for Parrot image: 190359/11904=15.99 
CR for Toucan image: 258492/16740=15.44 
CR for Lenna image: 1947599/135168=14.40 

 
Nº of bits per pixel for parrot image= 11904/(192*128)=0.4843 bpp 
Nº of bits per pixel for Toucan image= 16740/(216*160)=0.4844 bpp 
Nº of bits per pixel for Lenna image= 135168/(512*512)=0.5156 bpp 
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In Figure 4.4.3.2.2 we present the attractor of the Toucan image, followed by some 
decoding iterations. The decoded images have been obtained using a 216x160 (Toucan 
image size) grey image as decoder input, but we could use whatever decoder input 
image at its place getting almost the same result after some iterations. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Attractor 
PSNR: 29 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 iteration   2 iterations   3 iterations 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5 iteration   8 iterations   15 iterations 

 
Figure 4.4.3.2.2: Fractal compressed Toucan image decoding 
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ANNEX 3:  
ENCODING TIME PREDICTION FOR FRACTAL 2 

 
In this Annex we propose a technique for making a prediction of the time that a big 
image takes to be encoded, in function of a known smaller image encoding time:  
 
First of all we calculate the number of computations done by the algorithm. In fact, the 
most time consuming step consists into the research of good matching domain blocks 
for every range block; bigger it is the image, higher the number of computations. In 
Formula 4.4.3.2.4 we calculate an approximation of the computations number, based on 
the precedent assumption. 
 
 
 

Formula 4.4.3.2.4 
 
Knowing the encoding time of a small image and knowing the number of operations 
needed to encode the small image and the number of operations needed to encode the 
big image, we can deduce the encoding time by applying the Formula 4.4.3.2.5: 
 
 
 
 

 
Formula 4.4.3.2.5 

 
Using the last two formulas we could make an approximated prediction of the Lenna 
encoding time, in function of the parrot image encoding time that was around 25 
minutes (from Table 4.4.3.2.1): 
 
 Parrot Coding Computations: [128*192/(8*8)]*[128*192]*[8] ~7.5*107 computations 
 Lenna Coding Computations: [512*512/(8*8)]*[512*512]*[8] ~8.6*109 computations 
     

� 
 
 
 

 
 
We obtain a result of 48 hours, result that it is quite coherent with our practical result of 
52 hours to code the Lenna image.   
 
 
 
 
 
 
 
 

Coding computations~ [nº of range blocks]*[nº of overlapping blocks]*[8rotations] 

hbigtimeEncoding 48min2866
10*7.5

10*8.6
min*25__

7

9

==≈  
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ANNEX 4:  
JPEG NUMERICAL DEVELPMENTS  

 
Hereafter, we present the numerical results obtained from applying the JPEG algorithm to the 
Toucan and the Lenna images, the calculations done to find the CRs are the following 
ones:  
 
Bits to store DC coefficients=Entropy DC vector *Size DC vector 
Bits to store AC coefficients=Entropy AC vector * Size AC vector 
Size in bits of coded image= Bits to store DC coefficients+ Bits to store AC coefficients 
CR=size in bits of original image/ size in bits of encoded image 
 
Using DPCM, the number of bits occupied by the DC coefficients must be calculated in 
the following way: 
 
Initial coefficient bits=Initial coefficients entropy* Initial coefficients vector size 
Difference coefficient bits=Difference vector entropy* Difference vector size 
Bits to store DC coefficients= Initial coefficient bits+ Difference coefficient bits 
 
Toucan image results: 
 
Image size in bits without encoding: Size*Entropy= 216*160*7.48= 258509 bits  
 
The results obtained applying our developed JPEG algorithm for different quality 
factors are shown in Tables 4.5.7.5 to 4.5.7.7. 
 
As seen in Table 4.5.7.5, the encoding and decoding times for the Toucan image 
oscillates between one and two seconds. The obtained PSNRs are very similar to those 
obtained for the Parrot image when using identical quality factors. Entropies and vector 
lengths have been used to compute the size in bits of the compressed images, and thus, 
the CR and the number of bits per pixel of those images.  
 

Table A4.1: JPEG compression results (Toucan) 
 

Initial DC 
coefficients 

entropy 
(bps) 

Difference 
DC vector 
entropy 

(bps) 

 
Quality  
factor: 

Q 

 
Encoding 
time (s) 

 
Decoding  
time(s) 

 
PSNR 
(dB) 

vector length: 
204 

Vector 
length: 336  

AC coded 
coefficients 

entropy (bps) 
and vector 

length 

0.0003 ~1.27 ~0.82 51.54 6.70  6.00  5.42  32641 
0.001 ~1.40 ~1.00 48.39 6.58 5.99  4.59  24820 
0.005 ~1.51 ~1.34 40.88 6.68 6.63 3.92  13846 
0.01 ~1.58 ~1.32 38.07 6.63 5.99 3.76  9788 
0.05 ~1.51 ~1.27 31.85 4.87 3.90 3.35  3924 
0.1 ~1.38 ~1.23 28.54 3.97 2.95 3.13  2435 
0.2 ~1.29 ~0.77 24.66 3.04 1.98 2.79   1475 
0.4 ~1.43 ~0.91 20.47 2.12 1.29 2.22  948 
0.7 ~1.31 ~0.77 17.40 1.36 0.67 1.57  712 
1 ~2.07 ~0.86 15.00 1.18 0.51 0.89  606 
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Table A4.2: JPEG compression results without DC prediction (Toucan) 
 
 
In Table 4.5.7.7 we observe that the CRs achieved for the Toucan image are higher than 
the CRs found with the correspondent quality factors for the Parrot image. That is 
because the Toucan image is bigger than the Parrot image, their details are bigger, and 
thus the 8x8 pixel blocks of the Toucan image have better detail resolution. Because of 
that, the frequencies used to encode the Toucan image are lower and we don’t need to 
use so many AC coefficients to encode the image blocks, getting higher CR results than 
we got for the Parrot image while getting similar PSNR results.  
 
 

Table A4.3: JPEG compression results with DC prediction (Toucan) 
 
 
 
 
 
 
 

DC coefficients 
without prediction 

(vector length: 
27*20=540 
symbols) 

 
 

Quality  
factor: Q 

Entropy (bps) 

Bits to store the 
DC coefficients 
without linear 

prediction  

Bits to store 
the AC 

coefficients  

Size in bits 
of coded 
image  

Without DC 
prediction  

 
 

CR 

0.0003 8.99  4855 176914 181769 1,42 
0.001 8.74 4720 113924 118644 2,18 
0.005 7.77 4196 54276 58472 4,42 
0.01 7.05 3807 36803 40610 6,37 
0.05 4.99 2695 13145 15840 16,32 
0.1 4.05 2187 7622 9809 26,35 
0.2 3.08 1663 4115 5778 44,74 
0.4 2.19 1183 2105 3288 78,62 
0.7 1.47 794 1118 1912 135,20 
1 1.24 670 539 1209 213,82 

 
Quality  

factor: Q 

Bits to store the 
DC coefficients 

using linear 
prediction 

Bits to store 
the AC 

coefficients 
 

Size in bits of 
coded image  

with DC 
prediction  

 
CR 

 
BPP 

0.0003 3383 176914 180297 1.43 5.22 
0.001 3355 113924 117279 2.20 3.39 
0.005 3590 54276 57866 4.47 1.67 
0.01 3365 36803 40168 6.44 1.16 
0.05 2304 13145 15449 16.73 0.45 
0.1 1801 7622 9423 27.43 0.27 
0.2 1285 4115 5400 47.87 0.16 
0.4 866 2105 2971 87.01 0.09 
0.7 503 1118 1621 159.47 0.05 
1 412 539 951 271.83 0.03 
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Lenna image results: 
 
Image size in bits without encoding: Size*Entropy= 512*512*7.43=1947730bits 
 
Results obtained applying JPEG coding for different quality factors are displayed in 
Tables 4.5.7.8 to 4.5.7.10. Working with the Lenna image of 512x512 pixels, we 
observe how the encoding times ascends to almost 10 seconds and the decoding times to 
almost 6 seconds. We have almost a factor 10 between the times elapsed by an image of 
216x160 pixels and the times elapsed by an image of the size of Lenna. In fact, for a 
bigger image we have much more 8x8 pixel blocks to be coded. Other measures as the 
PSNRs or the entropy measures are quite close to the results obtained when coding the 
precedent images, independently of the image size and content. 
 

Table A4.4: JPEG compression results (Lenna) 
 

Table A4.5: JPEG compression results without DC prediction (Lenna) 
  
 
 

Initial DC 
coefficients 

entropy 
(bps) 

Difference 
DC vector 
entropy 

(bps) 

 
Quality  
factor 

 
Encoding 
time (s) 

 
Decoding  
time(s) 

 
PSNR 
(dB) 

Vector 
length: 1495 

Vector 
length: 2601 

AC coded 
coefficients 

entropy (bps) 
and vector 

length 

0.0003 ~9.52 ~6.12 52.96 7.64 6.02 5.20 251595 
0.001 ~9.47 ~5.75 48.43 7.56 5.92 4.15  201958 
0.005 ~9.80 ~5.67 41.97 7.26 5.61 3.70  96823 
0.01 ~9.13 ~5.62 39.78 7.27 5.61 3.59  64795 
0.05 ~9.07 ~5.53 33.30 5.04 3.36 3.26  22777 
0.1 ~9.11 ~5.55 29.84 4.04 2.45 3.04  13937 
0.2 ~9.16 ~5.53 25.82 3.08 1.56 2.60  8582 
0.4 ~9.12 ~5.51 21.83 2.20 0.86 1.68  5631 
0.7 ~9.08 ~5.78 18.51 1.43 0.69 0.69  4490 
1 ~9.15 ~5.53 17.09 1.16 0.20 0.26  4219 

DC coefficients 
without prediction 

(vector length: 
64*64=4096 symbols) 

 
 

Quality  
factor 

Entropy (bps) 

Bits to store the 
DC coefficients 
without linear 

prediction  

Bits to store 
the AC 

coefficients  

Size in bits 
of coded 
image  

without DC 
prediction  

 
 

CR 

0.0003 11.30 46285 1308294 1354579 1.44 
0.001 10.31 42230 838126 880356 2.21 
0.005 8.28 33915 358245 392160 4.97 
0.01 7.31 29942 232614 262556 7.42 
0.05 5.02 20562 74253 94815 20.54 
0.1 4.05 16589 42368 58957 33.04 
0.2 3.06 12534 22313 34847 55.89 
0.4 2.20 9011 9460 18471 105.5 
0.7 1.43 5857 3098 8955 217.5 
1 1.18 4833 1097 5930 328.5 
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We also appreciate the augmentation of CRs for Lenna image compared with the 
precedent coded images. For encodings giving a very good quality we can achieve CR 
up to 7:1, CR around 20:1 are achieved for encodings resulting in quite good visual 
quality images. 
 
 

Table A4.6: JPEG compression results with DC prediction (Lenna) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Quality  

factor (Q) 

Bits to store the 
DC coefficients 

using linear 
prediction 

Bits to store 
the AC 

coefficients 
 

Size in bits of 
coded image  

AC+ DC  with 
prediction  

 
CR 

 
BPP 

0.0003 27080 1308294 1335374 1.46 5,09 
0.001 26700 838126 864826 2.25 3,30 
0.005 25445 358245 383690 5.08 1,46 
0.01 25460 232614 258074 7.55 0,98 
0.05 16274 74253 90527 21.52 0,35 
0.1 12412 42368 54780 35.56 0,21 
0.2 8662 22313 30975 62.88 0,12 
0.4 5526 9460 14986 129.97 0,06 
0.7 3933 3098 7031 277.02 0,03 
1 2254 1097 3351 581.24 0,01 
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ANNEX 5:  

INDEX OF ALGORITHMS 
 
 
The algorithms developed are presented in computer support and have been organized 
in folders inside a main folder named ‘Compression Algorithms’. Each folder contains 
the algorithms used in the different chapters of the project.  
 
 
Hereafter the list of folders with the correspondent associated chapters is presented: 
 
 
(1) – IMAGES: ……………………………………………… Chapters 2, 3, 4 and 5 
 
(2)- ENTROPY AND HISTOGRAM……………………….. Chapter 3.2 
 
(3)- LAPLACIAN PYRAMID………………………………. Chapter 3.3 
 
(4)- QUALITY CONTROL –PSNR ……………………….. Chapters 4 and 5 
 
(5)- SCALAR QUANTIZER ………………………………. Chapter 4.3 
 
(6)- FRACTAL IMAGES ………………………………….. Chapter 4.4.1 
 
(7)- FRACTAL 1 COMPRESSION ALGORITHM……….. Chapter 4.4.2 
 
(8)- FRACTAL 2 COMPRESSION ALGORITHM……….. Chapter 4.4.3 
 
(9)- DPCM AND CORRELATION…………………………. Chapter 4.5.1 
 
(10)- DCT ….……………………………………………….....Chapter 4.5.2 
 
(11)- JPEG COMPRESSION ALGORITHM…………………Chapter 4.5 
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