
Development and Performance-Testing of Multi-Path I/O
Algorithms on V-Series Systems

by

Ryan TerBush

S.B., Electrical Engineering and Computer Science, M.I.T., 2012

Submitted to the Department of Electrical Engineering

and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the Massachusetts Institute of Technology

iIay 2013

@2013 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis
document in whole and in part in any medium now known or

hereafter created.

Author:

Certified by:

Certified by:

Accepted by:

Department of Electrical Enginfering and Computer Science
May 20, 2013

Christopher Terman, Verkoftecturer of EECS
Thesis Co-Supervisor

May 20, 2013

Chris Busick, S-nior Engineer, NetApp V-Series
Thesis Co-Supervisor

May 20, 2013

Prof. Dennis M. Freeman
Chairman, Masters of Engineering Thesis Committee

May 20, 2013

1

Development and Performance-Testing of Multi-Path I/O
Algorithms on V-Series Systems

by

Ryan TerBush

Submitted to the Department of Electrical Engineering
and Computer Science

May 20, 2013

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer

Science

Abstract

As data growth continues to accelerate, so must performance and efficiency of large
scale storage systems. This project will present the implementation and performance
analysis of Multi-Path I/O within Data ONTAP. The goal of this feature is to take
advantage of redundant paths that were previously utilized only in failure situations.
The paper will address the core mechanisms that comprise the MPIO handling within
the system. Furthermore it will present the difficulties of testing such a feature in a
shared lab environment. The initial expectation that MPIO would provide a small
performance gain, in addition to better failure handling properties, was affirmed in the
results. Under heavy I/O loads, MPIO systems showed an average of 5% throughput
improvement over the older single-path implementation.

3

Glossary of Terms

" Array: The third party storage device on which the back-end storage resides

" Controller: the device running Data ONTAP that routes I/O, see also, Node

* Fibre Channel (FC): the protocol used to communicate to back-end arrays

" Initiator Port: the port on the NetApp controller through which I/O flows to the
back-end

" I/O: Input/Output, used to describe reading/writing

* IOP: an individual Input/Output operation

" MPIO: Multi-Path I/O, the feature being implemented in this paper

" Node: another terms used to refer to a NetApp controller

" SPIO: Single path I/O

" Switch: a device that routes I/O along preconfigured paths

" Target Port: the port on the back-end storage array through which incoming I/O
flows

* V-Series: the version of NetApp controller that can utilize third-party arrays as back-
end storage

5

Contents

1 Introduction
1.1 Problem
1.2 Background

2 Single Path vs. Multi-Path
2.1 Load Balancing

3 Simulation
3.1 Simulation Pseudocode .

4 MPIO Implemenation
4.1 Counters
4.2 Rolling Averages
4.3 Registration/Reservations

5 Performance Testing
5.1 D esign .
5.2 Testing Pseudocode

5.2.1 Example of polling command and result
5.3 Load Generation

6 Results
6.1 Preliminary Results
6.2 Final Results

7 Discussion

8 Conclusion

9 Future Work

10 Acknowledgments

11
11
11

15
17

18
20

21
21
22
24

26
29
30
31
32

34
34
38

44

47

48

50

7

List of Figures

1 NetApp hardware configuration . 13
2 V-Series hardware configuration . 14
3 SPIO vs. M PIO . 16
4 Rolling Average . 23
5 Effect of Changing Alpha. 23
6 Early Result Numbers . 35
7 Result Numbers with External Load Disabled 38
8 Result Numbers on Isolated EMC Symmetrix on 4 Paths 40
9 Graphs: 4 Path 2 Target Port . 41
10 Result Numbers on Isolated EMC Symmetrix on 2 Paths 42
11 Graphs: 2 Path 2 Target Port . 42
12 Result Numbers on Isolated EMC Symmetrix on 2 Paths and 1 Target Port. 43
13 Graphs: 2 Path 1 Target Port . 44
14 Graphs: Aggregate Results . 45

9

1 Introduction

1.1 Problem

The purpose of this investigation is to determine the performance benefits, if any, of Multi-

path I/O over Single path I/O routing in Data ONTAP. The benefits of the multi-path

implementation include increased fault-tolerance and availability, as well as improved per-

formance in the event of a failure. In general, reliability is a tradeoff for performance, but

this is not always the case. It is anticipated that within Data ONTAP, MPIO will also

increase performance under normal operation. Performance increases due to MPIO have

been observed in other systems [1]. Testing this hypothesis will be a significant portion of

this project. The MPIO implementation uses a suite of newly added counters that pas-

sively gather statistics about the past and current state of the system. The testing of MPIO

will additionally test these counters at a system level, as the routing decisions it makes are

dependent on their values.

1.2 Background

As of 2010, society was estimated to produce about an exabyte of data per day [2]. This

is a staggering amount of data, and a significant fraction must be stored on durable media.

This data explosion has prompted the similarly explosive growth of the large scale storage

industry, in which NetApp plays an integral role. Currently, NetApp is researching new

ways to efficiently store data, as well as facilitate the access of stored data with minimal

latency. This must be done in a way that preserves the valuable properties of durability

and availability, since data loss can have steep legal and financial implications. Storage

is considered durable if all data that has been entered persists through outages, including

system crashes, power failures, and network failures. Availability refers to a systems ability

R. TerBush

to continue to store and serve data in the face of the aforementioned failures. It is often

the case that performance is a tradeoff with these two properties, caused primarily by the

limitation that durable media (disks, tapes, etc.) are typically slow compared to faster, non-

persistent options such as RAM. It is common for higher level performance features, such as

deduplication, to rely heavily on low-level reliability [4].

The mechanism under examination in this thesis is one of the many components of the

system that must deal with the performance vs. reliability tradeoff. It involves some of

the low-level I/O drivers in NetApps proprietary operating system, Data ONTAP. In the

big picture, Data ONTAP is responsible for the majority of the high availability aspects

of the system, as well as performance and compression. It takes advantage of WAFL, the

Write Anywhere File Layout, to increase read/write performance, and to reduce recovery

time. While this project will not directly deal with WAFL, aspects of WAFL may become

important in explaining I/O behavior under certain loads. Data ONTAP is also responsible

for various caching schemes to further accelerate read/write performance.

Knowledge of the typical NetApp architecture is necessary to understand the changes to

the routing scheme and how performance is being measured. A typical configuration can be

seen in Figure 1. Redundancy is a major theme in most configurations as it almost directly

leads to higher availability. Each controller has a failover partner that takes over should it go

down. All data is accessible via multiple paths to provide tolerance to single port/connection

failures. The extra paths will prove to be the key for the proposed changes to I/O routing,

as they currently remain unused except in failure cases. The controllers provide a layer of

abstraction over the disks, allowing the users accessing them to view their available space as

customized pools of memory rather than individual disks.

The V-Series team pushes the abstraction even further, enabling the use of third party

storage arrays on the back end rather than just disk shelves. This is achieved through

the partitioning of the arrays as logical disks, which are then treated similarly to their

12

13

Host 1 Host 2 Host N

SWftWh~bftI1 Switehfebr 2

Cnr r1 AcieShelves

CNN*Oaer2Aedv* Shelves

Figure 1: An example of a typical NetApp hardware configuration

physical counterparts. V-Series configurations run specialized software on the controllers,

which contain the logic to interface with different third party arrays. Third party arrays

sometimes exhibit different behavior than disk shelves when used in this manner, primarily

because they are additionally running their own software. This is part of the motivation for

recording the performance characteristics of these systems.

The V-Series configuration can be seen in Figure 2. The NetApp V-Series controller at

the center of the image is designed to communicate with many different types of front end

via various communication protocols. The storage units are also denoted in the figure, which

shows that volumes are built upon aggregates, and aggregates are built upon the units of

R. TerBush

storage connected on the back end. The primary difference between this figure and Figure

1 is what is connected to the back end. For a V-Series system, rather than NetApp disk

shelves, third party arrays are connected, either directly to the V-Series controller or through

switches. Switches are typically deployed on the back end for a few reasons. One reason is to

provide several paths between the controller and storage arrays. This additional redundancy

is added for the purpose of increased availability. Another reason is that adding switches

expands the number of ports available for connecting storage arrays. This is useful in a

deployed environment if the customer needs more storage than a single array can provide, or

if a customer wants the performance benefits of running multiple storage arrays in parallel.

It also has uses in a development environment, because with clever zoning, it is possible

for multiple front ends to share storage on a limited number of back end systems. The

implications of this configuration will be discussed later in the paper.

Fibre [SCSI CIFS NFS L.AN
Channel

EMC2 FU H5U 3PAR

Figure 2: An example of a typical NetApp V-Series hardware configuration

14

15

2 Single Path vs. Multi-Path

Both single path and multi-path I/O routing refer to the transfer of I/O from the NetApp

controller to the third-party storage arrays on the back-end. The problem becomes inter-

esting when the arrays are connected through switches, which can be configured to provide

multiple redundant paths between the two. In the context of single or multi-path I/0, a

path refers to a physical route from an initiator port on the NetApp controller to a target

port on the storage array. The connection does not have to be direct, it could traverse a

fibre channel switch. Such a path consists of a physical connection from initiator port to

the front end of the switch, a switch zone that allows the front and back end switch ports to

communicate, and a physical connection from the back-end port of the switch to the target

port of the array.

Previous versions of Data ONTAP used only single path I/O, or SPIO, routing algorithms.

This algorithm runs in a module called the routing administrator, or RA. The role of the

routing administrator is to maintain the list of paths available for use, and to decide which

path to use when an I/O needs to be sent to the back-end storage. When making this

decision, the RA must consider what logical unit number, or LUN, the I/O is destined for,

so that it can send it on a path that ends at the correct target port of the storage array.

LUNs are the equivalent for storage arrays what disks are for disk shelves. They are logical

devices that can be pooled together to form aggregates, volumes, etc. The configuration of

the storage array allows for only certain LUNs to be presented to a given target port, so the

RA must be aware of which LUNs are reachable with each path. The single path nature of

the routing algorithm comes from the fact that the RA stores a primary path to each LUN,

and that path will always be used to reach that LUN. It is only when the primary path is

unresponsive that it will redefine the primary path as one of the alternatives, if any exist.

Problems that could result in the primary path being unresponsive include, but are not

R. TerBush

limited to, failure at the initiator port of the controller, a link failure on the fibre connecting

controller to switch, or switch to storage array, switch zoning errors or reboots, and array

target port failures. Certain errors have a bigger impact on the system. For example, a link

failure may only bring down one path, but a switch reboot would result in all paths through

that switch disappearing for a period of time. The redundancy of hardware in the system

generally means that even in the face of such failures, the system will continue to operate,

though possibly at slightly reduced capacity. In the context of the routing algorithm, the

redundancy means that, given a single failure, there will still be a path available to any LUN

for use as the new primary path.

OP for LUN *X"
loP for LUN 'Y

Heavy 1RO LUN

Low IlO LUN

Array Target Po

Figure 3: How I/O handling differs between SPIO (left) and MPIO (right)

The difference in I/O flow between MPIO and SPIO is displayed in Figure 3. SPIO is

shown on the left, and MPIO on the right. The configuration has a NetApp controller with

4 initiator ports, and an array that has two controllers with two target ports each. Each

dotted line represents a path from the controller to the array that is available for use in

16

17

relaying I/O. It is evident in the SPIO system that not all paths are being utilized. There

are only two LUNs, X and Y, and each LUN has a single path designated as its primary

path. All I/O destined for LUN X goes down the path from Ga -Z Al, and all I/O for Y goes

down Oc -Z 1. In contrast, the MPIO system allows any I/O for X or Y to use any path.

This allows all paths to be evenly utilized even if the load to X is much higher than Y, as is

displayed in the figure.

2.1 Load Balancing

Although SPIO limits each individual LUN to a specific path, that does not mean there is no

load balancing. The majority of test beds, as well as customer deployments, utilize multiple

LUNs, commonly on the order of tens to hundreds. While the load to a single LUN cant be

split amongst multiple paths, the system can designate a different path for each of the LUNs

to attempt to spread the load around. This rebalancing happens in a periodic fashion every

few minutes, mainly because switching the path of a LUN is costly. Not only does it require

signals to be sent to the corresponding hardware, it also involves halting I/O to the LUN for

which the switch is occurring. This doesnt align well with the use case, since the motivation

to move a LUN is often that it is receiving a disproportionate amount of the load, which

amplifies the effect of halting I/O.

MPIO provides the facility to balance on a path basis, and in real time. It follows that

the system is better able to react to sudden changes in load. In addition, MPIO will never

have to halt I/O to rebalance, since the bits will flow down any path without the need for

a pause to switch. This is a result of a changed path registration system that now accepts

multiple registrations per LUN, rather than one. The changes to the registration system

are mainly centered on the fact that a LUN can now receive I/O on multiple paths without

receiving errors on those not designated the primary path.

R. TerBush

3 Simulation

An I/O simulation tool was developed alongside basic MPIO functionality testing to both

aid the process of analysis on actual hardware, as well as to help understand the different

I/O routing strategies and I/O distribution behavior in general. The software tool evolved

as more was understood about the way NetApp controllers handle I/O, and will serve as

a sanity check for results retrieved from the instrumented real world tests. The goal for

the software simulation is to explore the viability of a given routing strategy before taking

the time to implement it in the source code of Data ONTAP. It is also designed to give

an indication if a given strategy has more favorable throughput and latency characteristics.

During a simulation one can also derive a sense of fairness, inspecting to see if a given LUN

is getting starved.

The I/O simulation tool was implemented as a Perl script that interacts with the user

at a command prompt. When the program is started, it is passed a configuration file that

specifies the layout of the simulated hardware, including how many controllers and third

party arrays there are, as well as what ports they have and how they are connected. The

software constructs Perl objects for each piece of hardware, and remembers viable paths,

which are basically the pairs of ports that allow I/O to flow between them.Using a simulator

rather than actual hardware to investigate different topologies is particularly useful, as the

overhead of a physical reconfiguration is enormous relative to creating a configuration file. A

large portion of the hardware available to development and QA teams is kept in a lab off-site,

which only adds to the complexity of a reconfiguration. Physical layouts of actual hardware

are further limited by the scarcity of the NetApp controllers and third party arrays, the

majority of which are utilized for testing builds of software releases before they are deployed

to the field.

Once the physical layout has been simulated, the interactive prompt is used to load the

18

19

hardware with I/O. This can be done instantaneously, over a window of time, or can be run

until a specified amount of I/O has built up on a controller. There is also a steady-state

option that supplies enough I/O to maintain the current levels on each controller. After

each command, the simulated performance characteristics are displayed to the console. The

software uses a notion of ticks rather than actual time, which can be exploited to limit the

rate of completion as the throughput of connections become saturated.

The simulation proved useful for a variety of reasons. It was the first positive sign that we

might be able to expect measurably better performance out of MPIO on an actual system.

It led us to rule out some possibilities of routing algorithms that had observable failure

modes for specific configurations. One such example is the routing algorithm that uses the

least I/Os pending at a target port metric. This proved to have problems with a fan-in

configuration, which is a setup that has a greater number of initiator ports at the controller

than target ports on the array. If a deterministic tie-breaking method is used to select which

path out of the several possible ones to take to a given target port, the other paths to that

target port will not be used at all. This is undesirable behavior and led us to consider more

carefully what our tie breaking behavior would be in a situation like this.

One disadvantage to choosing a step-based implementation of the simulation tool is that

it hides the computational costs of the routing algorithm chosen. Since decision of which

path to send an I/O on sits on the execution path of sending each individual I/O operation

(IOP), it is important to keep the decision logic as lightweight as possible to limit the impact

on throughput and latency. The simulation did show that we need to make the logic robust

enough to avoid the failure modes described above. Moving forward, the MPIO routing

algorithm would be kept as simple as possible, and the performance benchmarks would

include a comparison to a round-robin variant of the algorithm in addition to the version

deemed best path.

R. TerBush

3.1 Simulation Pseudocode

Parse configuration file;

while Prompt not exit do

Parse prompt input command;

if command == load then

Apply load to paths;

Step time forward as necessary;

end

if command == tick then

Step time forward specified number of ticks;

end

if command == aig then

Switch the routing algorithm being used;

end

if command == clear then

Delete all pending I/O and memory of statistics;

end

if command =f fill then

Gradually load paths until fill amount of I/O is pending;

end

if command == steady then

Load enough I/O to maintain current levels of I/O;

end

Print summary of state after each command

end

20

21

4 MPIO Implemenation

4.1 Counters

The design and implementation of the MPIO performance testing framework happened con-

currently with the design and implementation of the MPIO feature itself. A precursor to

the work on MPIO involved the addition of various counters in the routing administrator.

The counters were added in anticipation of the MPIO algorithm needing information about

the past and current state of the system, specifically about the various paths. Some of the

counters that were added included:

" Number of bytes of I/O pending on a path

" Total I/O in bytes sent on a path

" Total number of IOPs pending on a path

" Number of IOPs sent on a path

" The cumulative latency of I/Os that have been sent on a path

" The cumulative service time of I/Os that have been sent on a path

The counters are implemented in a way that distinguishes reads from writes, should the

algorithm ultimately need to differentiate between the two. The total for all I/O can be

obtained by summing the counters for read and writes, since they are all absolute counters.

In addition to the cumulative counters, rolling averages are kept for latency and service time

to allow for the tuning of sensitivity to local I/O activity relative to what has been observed

in the past.

Counters provide a better way for MPIO to label error paths than the previous way

it was done in the SPIO implementation. Prior to counters, paths were assigned an error

R. TerBush

status if they exceeded a predefined threshold, and any LUNs that were assigned that path

as a primary path had to switch. The error was effectively a binary value that indicated

whether or not a path should be used. With MPIO and counters, the error weight can be a

continuous value that indicates the severity of the error on the path. The path can still be

flagged if it passes a threshold, but it is no longer necessary to avoid it entirely in this case.

MPIO allows multiple paths to be used to a given LUN, which enables the use of the error

path, in addition to all others. If the error path can be used without incurring the overhead

of switching, as it would in the SPIO system, periodic IOPS can be sent to probe the path

and determine if it should still carry the error weight it was designated at the time of the

error. The counter retain the data from the error, so the path may not be used extensively

right away, but the weights can be set to adjust the speed at which Data ONTAP backs off

in the face of an error, and resume I/O at a sign of recovery.

4.2 Rolling Averages

The use of rolling averages for measuring average latency allows for the tuning of sensitivity

to high-latency error events. The alpha value influences both the reaction to the spike in

latency, as well as how long it takes for a system to settle after the event is over. Such

an event may include a path disable, or even a physical detachment from either end of the

path. The algorithm is depicted in Figure 4, which shows how the feedback works toward

computing a new average. The larger the value of alpha, the more the calculation favors the

old average relative to the new data. The equation for the calculation is follows:

a * avgold + (1 - a) * newVal = avgew

To understand the implications of the selection for the value of alpha, it was necessary

to inspect the number of cycles it would take to settle back to steady-state latency after an

22

23

Latest ment 1 New Average

a.Delay

Figure 4: The flow of information in the rolling average calculation

error event. The settling aspect of the algorithm proved more interesting than the response

to a spike, as it controls how long a path remains out of commission after a latency jump.

The influence of the alpha value is shown in Figure 5. A small alpha value can converge

back to the steady-state latency after a few window periods, while a larger value will take

many times longer to converge. Penalizing a path too harshly for a brief latency spike can

hurt throughput in the long run, especially considering many brief jumps are fixed almost

as quickly as they occur. If the path remains in an error state, intermittent probe IOPs are

adequate to discern that the latency is still large enough for the path to be considered in

error.

alpha =.1 alpha = .5

1 -s ^ Is-

1100 MS 100 Me

1 ms 1 Ms
S100 us 100 us

10 us 10 usI I I

A B C D E F G H t A B C D E F G H t
Bucket (time window) Bucket (time window)

Figure 5: As assessment of recovery behavior relative to value of parameter alpha

R. TerBush

4.3 Registration/Reservations

An overhaul of the previous path registration/reservation system was necessary to accom-

modate the needs of MPIO to send on multiple paths. Prior to MPIO, Data ONTAP was

implemented with a single registration model. A LUN could only be registered on one path,

and that was the path that all I/O to the LUN had to take. In the event of a failure on

that path, the system would have to go through the process of shifting the registration to

a different path, which had a non-negligible overhead and required I/O to halt to the LUN

for the duration. This model fit well with the common Active/Passive array behavior at the

time, since most third-party storage arrays couldnt handle I/O to a specific LUN on all of its

target ports. Data ONTAP was designed to prohibit sending I/O down a path that would

cause the underlying array to generate an error, such as a SCSI check condition.

The system had to be modified with the requirement that it still supported the old style

of registration, since A/P arrays are still supported and will be for some time. However, to

take full advantage of the more capable A/A arrays that are becoming more common, Data

ONTAP needed to be able to allow multiple paths to deliver I/O to a LUN. The solution was

to permit multiple paths to register with a LUNs reservation. The internal modifications to

achieve this result are very system specific, and wont have much meaning in the context of

the paper. This modification, while necessary for the functionality of MPIO, doesnt have

many implications on the performance of the routing. Routing Algorithm

The last major aspect of MPIO to be implemented was the routing algorithm. This is

the most customizable module, and has the biggest implications on load balance, fairness,

and performance. The most straightforward way to get the routing administrator to use

multiple paths was just to multiplex them, so the first algorithm implemented was a simple

round-robin version. The selection involved walking a circular list of paths, and advancing

the pointer each time an I/O was sent. Additional handling was required to deal with new

24

25

paths being discovered, as well as paths disappearing. In this case, the list is updated and the

pointer set back at the head of the list. While this leads to a slight imbalance, adjustments

to the path list happen so infrequently relative to the volume of I/O that it has a negligible

effect.

The next step was to make the routing algorithm customizable via boot arguments. This

provided a mechanism to make testing much more efficient, as it allowed a change in al-

gorithm without a full rebuild and reinstall. In addition, it provides a failsafe should an

algorithm prove to have issues for a given configuration, as was the case in some of the sim-

ulation runs. A similar approach was taken to allow the old code paths to be selected, but

with a slightly different mechanism. Should the entire framework prove to be problematic,

there are low level flags that can be set to induce a boot into the old SPIO mode. Like the

modifiable algorithm, this proved useful in testing the performance of the different imple-

mentations, as reboots are much quicker than software reinstalls. One additional perk to

making the routing algorithm dynamic is the potential for a system that uses the measured

counter data to proactively change the algorithm based on the load. Currently, changing the

algorithm requires a reboot, but modifications could be made to remove this restriction.

Round-robin met the requirement that the algorithm is computationally simple, but

simulation results indicated that using feedback could improve load balance and overall

throughput. In the next version of the algorithm, named best-path, metrics were generated

for each path at the time a path was chosen. The metric that was ultimately chosen used the

number of bytes pending on each path, weighted by an error weight that depended on the

latency observed on that path. Since these values are available via the counters, computing

this metric is still not computationally intensive, though costs more cycles than round-robin.

Part of the performance testing will measure the number of cycles spent in the storage

domain of Data ONTAP, which encompasses the routing administrator and any calculations

it has to make. Round-robin will be used as a baseline, with the best-path variant being

R. TerBush

compared on a per-run basis to identify the cost of the routing.

5 Performance Testing

One of the trickiest parts of testing a feature such as MPIO in a system like Data ONTAP

is that it is difficult to isolate. For this reason, the majority of testing done for this paper

is at the system level. The primary goal is to profile performance between three versions of

the system: SPIO, MPIO round robin, and MPIO best path. Testing V-Series performance

is a challenge in general because several array models from various different vendors are

supported. Each third party array has slightly different behavior, so comparisons of perfor-

mance between different array models and vendors are difficult to make. In addition, the

development environment at NetApp has several generations of V-Series controller in use,

which further obfuscates comparisons between different test beds.

One feature that MPIO requires to take full advantage of its multiple paths is that an ar-

ray must display behavior known as Active/Active (A/A). An Active/Active array can serve

reads or writes to/from a given LUN through both of its array controllers. This is in contrast

to an Active/Passive (A/P) array, which has one controller effectively own a LUN, and the

other passive one will only serve I/O to that LUN in the event of a failure. Active/Active

arrays are becoming more common, which is a significant part of the motivation for switching

to an MPIO implementation within Data ONTAP. Unfortunately, because A/A arrays are

newer, and typically more expensive, than their A/P counterparts, there are only a limited

number available to the developers for testing purposes.

Cost-saving measures have influenced the development environment to make extensive

use of sharing resources. The end result is a system of Storage-Area Networks, which share

switches and arrays and use clever switch zoning to multiplex access to the shared resources.

A development SAN will consists of a few switches ISLed together with front-end connec-

26

27

tions to a pair of NetApp controllers for each developer. The same switches have back-end

connections to a handful of different third-party storage arrays. On the arrays themselves,

individual LUNS are provisioned from a large pool of available capacity, and presented to

the specific V-Series controllers that need the storage. As one can imagine, this system is

good for cutting costs, but makes it difficult to achieve isolation when testing performance.

The ability to share the capacity of a storage array is extremely useful for testing code

paths specific to a given array, but it complicates the process of retrieving reliable perfor-

mance numbers for I/O throughput to the array. Although the LUNs used by a configuration

differ, they still share array target ports and switch back-end ports with other development

and QA configurations. Since there are constant QA tests running on all available arrays in

the lab, opportunities for isolation are limited. A large portion of the preliminary testing

was done in the presence of traffic from these other tests, and a few performance measure-

ments were done during a prearranged pause in other QA testing that may have conflicted.

There is no framework or interface to identify in real time what I/O is being passed to the

array, and from which controllers it is originating. The implications of the effects of shared

resources will be discussed further in the context of the results.

Although the shared resource model primarily meets the needs of a development and

testing environment, it isnt uncommon for a deployed system to use some degree of sharing

as well. There may be multiple pairs of V-Series controllers configured with the same third-

party storage array on the back end, potentially serving different data or running different

applications. Communication at the level of the routing administrator does not bridge

controllers, so all routing decisions must be made with local information. Since each V-

Series controller has no way of quantifying how much I/O is being done by other controllers,

potentially to the same back-end array, it must use other feedback mechanisms to achieve

load balance.

The first step toward achieving balance is to ensure that the local controller is evenly

R. TerBush

distributing I/O amongst its different paths. This can be done utilizing local information,

since the counters incremented in the RA provide an estimate of latency for each path. The

RA also keeps track of how many IOPS, as well as how many bytes, are currently pending on

each path. The second step is to factor in that the latency observed by one controller reflects

the actions of the other controllers that share the same back-end. Consider two paths, with

initiator ports on entirely different V-Series controllers, but a shared array target port, that

simultaneously drive I/O. If the target port is saturated, it will have to alternate between the

I/Os it receives from both paths, causing the observed latencies on those paths to double.

This feedback could be used in the RA to stray away from the shared path, and choose

another that may not be shared, and thus have a lower observed latency, if available.

Data ONTAP has recently received a large refresh that introduces the concept of clusters

of NetApp controllers, rather than High-Availability (HA) pairs [3]. Clustered ONTAP

places a heavy focus on availability and reliability at the system level. Rather than having

to maintain each controller individually, they can now all be administered from a cluster

administrator prompt, available at any of the nodes. A pair of controllers is no longer

solely responsible for servicing data; the responsibility can be shifted at the cluster level to

any controllers that have joined it. Unfortunately, because the RA operates at such a low

level within the controller, there are no clear ways to convey information that the routing

administrators of other controllers would be interested in. There is potential to implement

some form of cluster level communication to further support the notion of load balance on

the paths to an array. Even this would not cover the case where out-of-cluster nodes also

share the array, which is also a viable configuration. The option to share such information

is potentially viable, but will not be explored further in this paper.

28

29

5.1 Design

Many of the aspects of NetApp systems discussed above had direct impacts on how the

performance testing of MPIO was done. The first was the influence of clustered ONTAP on

the design of the tests. Development builds at the time were in a transition period, where

cluster mode was the default, but the old non-clustered mode was available to switch to.

The non-clustered mode will be referred to as 7-mode for brevity. Many of the interesting

tools that existed for examining the internal state of the RA were only available for 7-mode

at the time, so 7-mode was primarily used for gathering data and measuring the desired

performance statistics. The tools used in the performance testing for this paper are some

of those that are used by QA for verifying the correctness and reliability of production

builds prior to deployment, so their accuracy is trusted. In fact, during the early stages of

performance testing, abnormal results reported by these tools lead to the discovery of several

bugs tn the MPIO implementation before even QA was able to detect them.

One of the consequences of using the 7-mode interface, rather than cluster mode, is that

the 7-mode interface has a relatively restrictive buffer regarding I/O to the console. This

became apparent as a constraint when the polling of the levels of I/O too rapidly led to the

timeout of the connection to the 7-mode interface. The script running the performance tests

was adapted to hold back on the polling if the buffer was nearing capacity. The limited polling

reduced the granularity of the inspection of I/O levels per path. This was not considered to

be detrimental to the results, as the performance data was gathered over the duration of a

several-minute run. This limitation of the 7-mode console is not a factor in cluster mode, so

as the tools become available it would be worth porting the performance test script.

Another important decision for testing is the configuration to be used. This decision was

constrained by the available resources, as contention for the aforementioned Active/Active

arrays was common. The test configurations used utilized a single V-Series controller, con-

R. TerBush

nected through two different switches to either two or four target ports on the array. Tests

were run with different numbers of paths available to try to identify the benefits of MPIO

when there were more or fewer selections to be made. The switches are identical speed but

different brands: one Brocade and one Cisco. This type of configuration is designed to test

both brands, and for reliability purposes. The switch brands are a consequence of QA testing

and were not specifically selected for MPIO testing. MPIO testing repurposed much of the

existing framework due to fiscal and time constraints.

5.2 Testing Pseudocode

Parse CLI args;

Remote login to V-Series Controller;

Begin load generation;

Start metadata gathering tool;

while Duration not exceeded do

Request snapshot data;

Parse out relevant values;

Aggregate observed values;

end

End metadata tool;

Parse out relevant metadata values;

Compute averages with gathered data;

The general approach was to start the load specified at the command line, and then

periodically probe the controller with custom commands to produce the data. The custom

image of Data ONTAP with the MPIO changes also included some modified command

30

31

line tools that displayed the MPIO-specific internal variables. These modified commands

gave much easier access to the internal counters relevant to the routing algorithm, and also

served as a sanity check regarding the function of the routing. Early in the testing, these

tools revealed nonsensical values for the bytes pending on a path, leading to the discovery of

a bug within the counter code. The periodic snapshots were displayed to the screen during

each test run, allowing for visual inspection as the code ran in addition to the final summary

at the termination of the script.

The frequency of polling was determined experimentally, and was restricted by the buffer

size of the 7-mode console. Polling too fast resulted in a forced logout from the 7-mode

prompt back to the cluster prompt, which violated assumptions made by the script and

commonly caused it to hang. Limiting the frequency to one command every 5 seconds, com-

bined with other adjustments, enabled the test script to maintain its connection and complete

progressively longer test periods. The other adjustments involved frequent reestablishment

of the connection, as well as filtering of the command results to reduce the number of charac-

ters reaching the console. In retrospect, it may have been possible to increase the frequency

of polling if the results were logged to a file rather than printed to the console, but the

manual verification of results early on had enough benefits to warrant the console approach

for the duration of the project.

5.2.1 Example of polling command and result

Below is an example of the output from the polling command used to extract data during a

test. The output has been clipped for brevity; more paths mean more columns in the output.

vgv3240f83a*> ra mlm load show IBM_2107900_1

Total I Entities | Seconds I Durations (usecs)

stat name Times I Last High Avg I Ago I Last High AverageI

Next Iter 31 I 76 76 69 | 10 1 591 627 509 1

List Sort 161 20 30 181 10 1 7 8 6 1

R. TerBush

Rebalance- 16 1 0 9 0 1

name

wwnn

wwpn

devaddr

tp-queue-depth

cmds-in-process

highest-cmdsinprocess

total-bytes-assigned

average service time

average latency time

Target Port Group

array-name

errors

good-time

Load Data

path load

ha load

target load

vgci9l48s75:1-16.126L5

vgbr300s71:16.126L4

vgci9148s74:1-10.126L3

vgbr300s7O:16.126L2

vgbr300s7O:16.126L6

vgci9148s74:1-10.126L7

vgbr300s71:16.126L8

vgci9148s75:1-16.126L9

vgv3240f83a*>

10 1 9

vgbr300s70: 16. 126

5005076303ff c124

5005076303030124

4010700 (Oc)

512

32

34

390656

18

18

3

IBM_21079001

0%

#LUNS Scr MB/s

2 2.04

4 2.08

2 2.04

RDY/AO 0.00

RDY/AO 0.00

RDY/AO 0.00

INU/AO 2.04

INU/AO 0.00

RDY/AO 0.00

RDY/AO 0.00

RDY/AO 0.00

15m

Avg MB/s

2.04

2.08

2.04

0.00

0.00

0.00

2.04

0.00

0.00

0.00

0.00

29 11 1

vgci9148s74:1-10.126

5005076303ff c124

5005076303088124

50E1400 (Od)

512

32

34

313344

13

#LUNS

2

3

2

RDY/AO

RDY/AO

INU/AO

RDY/AO

RDY/AO

INU/AO

RDY/AO

RDY/AO

13

16

IBM_2107900_1

0%

15m

Scr MB/s Avg MB/s

2.21 2.21

2.21 2.21

2.21 2.21

0.00 0.00

0.00 0.00

2.21 2.21

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

5.3 Load Generation

There were a few tools available for driving an I/O load onto a system, each with pros and

cons. The two with the most documentation within NetApp were Hammer and SIO, and

ultimately it was decided that S10 had more options that would enable some of the desired

benchmarks of MPIO. One major motivating factor was the need to avoid as many levels

32

33

of caching as possible, since the limited available capacity on the contended Active/Active

arrays meant that the target aggregates, volumes, and ultimately files were restricted in size.

Given that the files were not much bigger than some of the higher level caches, the only

way to achieve any noteworthy levels of I/O load was to either disable or circumvent the

caches. Hammer was a tool that had to be run at the level of an external load client over an

NFS mounted file system, which meant that its requests would be cached in the local load

clients hardware [5]. In contrast, SIO had a more featured version that operated native to

the NetApp controller, meaning that the I/O could be generated locally and only potentially

hit the controllers cache before reaching the disk.

Using this native version of SIO, called filersio, had drawbacks as well. Most notable is

the fact that, since the load was generated locally, it consumed cycles of the controllers CPU

that would not otherwise be used in handling I/O. Since there were already concerns about

the consumption of CPU cycles by the routing algorithm, we carefully dissected the results

of the first few tests regarding CPU usage. The I/O tools indicated that even with the load

being generated locally, a large fraction of the CPU cores remained idle during the tests.

This lead to the conclusion that the tests were not CPU limited, but rather limited by the

amount of I/O the tool was able to generate, as well as the speed at which the array could

process the I/O.

Filersio has two primary modes of operation, asyncio-pause and asyncio-active. The

asyncio-pause option takes arguments for X amount of I/O to be generated every Y seconds,

and a single thread works to try to meet that request. The asyncio-active option takes

arguments for X amount of I/O per second to be generated per thread, by Y number of

threads. It was experimentally determined that both modes max out at roughly the same

overall level of I/O, with minimal difference in overall behavior between the two. If the

levels of I/O requested exceeded the capability of the tool by too much, the actual volume

produced fell noticeably lower than the maximum. This lead to a design where, for each

R. TerBush

system, the maximum level was determined before performance data was gathered. The

filersio tool itself has a reporting mechanism that indicates the requested and delivered I/O

rates, which helped to isolate the maximum request rate that could be met.

6 Results

6.1 Preliminary Results

The first round of testing was done on a pair of V-Series controllers of the model V3240, which

were a part of the development SAN DEV SAN 1. This SAN is shared by approximately 10

other V-Series and FAS controller pairs. DEV SAN 1 uses a network of 6 Fibre Channel

switches, 3 Cisco switches ISLed together, and 3 Brocade switches ISLed together. The

controllers being used for testing, called f84a and f84b, had a zone defined within each

switch environment that connected them to an IBM DS8000 array on the back-end. The

IBM DS8000 provides storage for most of the controllers in DEV SAN 1, and additionally

has connections to other SANs used by QA. It is typically under some degree of I/O load all

of the time, due to the fact that it is an Active/active array and thus is a valuable testing

resource for QA.

The first round of testing produced mixed results, as shown in Figure 6. The figure

can be interpreted as follows. Each cell holds the data from a test run with the number

of volumes given by the row, and the routing protocol given by the column. In this case,

two runs were done per algorithm with 1 volume, and another two runs each for 4 volumes.

The number of volumes affects both the file size, as well as the number of paths available

(as it may restrict SPIO). Within each cell there is data for the number of CPU cycles per

second spent in the storage domain, the average read and write throughput in KB/s, and

the average/minimum/maximum I/O service times observed by the polling tool.

34

35

When run with one volume, MPIO best path and round robin averaged slightly higher

throughput, and consumed slightly more cycles than SPIO. Their average service time was

also measurably lower. This configuration had 4 available paths, and with only 1 volume

being used, and 2 LUNs per volume, this meant that SPIO was not able to use two of the four

paths, while MPIO could. Each row in the table represents data from a different run, which

indicates that there was some variation between the runs as well. At this point in testing,

the process of switching modes was less streamlined, meaning the runs occurred relatively

far apart in time. Fluctuations in load from external sources may have influenced numbers

between runs, and unfortunately cant be quantified given the current infrastructure.

Vols SPIO MPIOrr MPIObp

1
CPU/s 183.9k 185.9k 187.3k

Read/Write KB/s 42.7k/13.0k 41.9k/13.4k 42.0k/13.6k
Avg/min/max svc 63.8 / 19 / 223 55.2 / 30 / 148 51.8 / 29 / 120

181.1k 186.3k 191.2k
40.8k/13.4k 42.4k/13.6k 42.0k/13.9k
55.0 / 27 / 137 55.4 / 29 / 119 53.7 / 27 / 136

4
184.9k 178.2k 176.4k
63.8k/16.4k 58.2k/15.6k 59.5k/16.4k
72.6 / 6 / 256 68.7 / 8 / 242 73.3 / 11 / 295

183.6k 179.8k 182.3k
63.6k/16.4k 58.0k/15.5k 60.0k/16.2k
70.0 / 7 / 246 65.7 / 12 / 209 70.8 / 13 / 249

Note: SPIO with 1 volume used 2 paths because volumes all have 2 LUNs

Figure 6: Early results from testing on DEV SAN 1 with the DS8000

The data generated from testing with 4 volumes is interesting in that it seems to have

favored SPIO in terms of throughput. MPIO round robin had the lowest service time of the

three protocols, and additionally had the fewest cycles spent in the storage domain. This

result was the first indication that the cycles spent in the storage domain were related to

the throughput done, since each I/O being processed has a fixed number of cycles it must

R. TerBush

spend regardless of the implementation. This data also motivated a few changes to the test

infrastructure. Due to the variation between runs, longer runs would be run in the future to

avoid reflecting spikes in external load. In addition, more runs per protocol would be run to

try to better gain a picture of aggregate behavior.

These preliminary results were also gathered prior to the experimentation with the limits

of the filersio tool. The load was generated by using the asyncio-active option, with the

maximum load per thread, and the maximum number of threads allowed by the tool. It

turns out the overall load can be increased by reducing the number of threads, which seems

unusual. The -exact cause of this was not explored in detail, but it may be due to the

overhead of managing too many threads within the tool. It may also be the case that the

tool, when backlogged, uses cycles to resend I/O after timeouts, which would reduce the

overall throughput of the system. The impact of these changes will be discussed in the

context of the results of later runs.

/subsectionModifications to Test Script and Configuration

The preliminary results motivated a string of changes to both the test script, the config-

uration being used, and the testing procedure in general. It was at this point in the testing

that the modifications to Data ONTAP were made to enable switching algorithms through

the use of boot arguments, rather than reinstalls. This cut down on the time between runs,

which helped address the problem of variable activity taking place on the array. If all of the

tests could be collectively done in a smaller window of time, there would be less of a chance

that some other large generated load would interfere with the data. This change also allowed

for the length of the runs to be increased, while still completing the testing for a given day

in a reasonable amount of time.

Another important observation made was that a write load had very little impact on I/O

routing and performance. This is a result of the implementation of Data ONTAP and the

way it handles writes. Unlike with reads, where Data ONTAP must fetch the data for each

36

37

IOP if the data is not in a cache, writes can be buffered and returned immediately. Writes

are grouped and flushed either on a periodic timer or when the buffer is full, rather than

going to disk on every write. This performance acceleration of writes made I/O routing with

writes difficult, since even a large write load would only generate few actual IOPs, but they

would be much bigger than the individual writes handled above. Condensing the writes into

large blocks makes routing uninteresting, since any path with be equally fast when there are

only a handful of I/Os pending in the system.

To push the limits of the routing protocols, the decision was made at this point to only

test with 100% random read loads. This led to the highest number of IOPs flowing through

the system, which challenges the routing algorithm and stresses the system in general. In

addition, the random nature helps miss the cache more often, which helps increase the

number of reads that go to the back-end array even if the file size is limited. One final perk

of this selection was that filersio seemed to be able to generate a higher read load than either

writes or any combination of the two.

The results up to this point also led to the belief that caching was still having an impact

on the results, so the file size was increased, along with the underlying aggregate and volume

size. The underlying storage pools were made larger by adding more LUNs, rather than

making the LUNs bigger, so the previous limitation of SPIO on a one volume system was no

longer applicable. Even one volume made use of at least 4 LUNs, so it would be possible after

rebalancing for SPIG to use all paths just as MPIO could. Just because it uses all paths

doesnt mean the load will be balanced, so the comparisons are still interesting regarding

throughput and fairness.

The final adjustment made to enhance the performance testing results was to hack Data

ONTAP to allow a higher number of IOPs to be pending to each LUN in the system. Data

ONTAP artificially limited the total volume of I/O that could be dispatched to each LUN,

so by relaxing that constraint the system was able to allow more I/O through given the

38 R. TerBush

configuration the testing was limited to. The investigation into relaxing this constraint

led to the uncovering of several bugs related to this rate limiting, and the repair of those

deficiencies may have also impacted the performance capacity for future tests.

6.2 Final Results

Further testing was conducted with the newly adapted tools and configuration, and the

results better reflected what we would have expected from an MPIO and SPIO comparison.

The first round of data was collected on the same equipment as the previous round, but at

this point the main source of load on the particular array had been identified. Some data

was generated during a window in which that external load from QA was temporarily shut

off, which gave a better look at how the routing algorithm performed in isolation. Results

from one such test can be seen in Figure 7.

Vols SPIO MPIOrr MPIObp

1
CPU/s 178266.61 181024.14 182195.51
Read B/s 122970.83 124161.84 124283.97

Avg/min/max lat 45.29 / 23 / 91 41.75 / 26 / 102 41.66 / 25 / 76
Tool IOPs 2104 2114 2129

178349.41 182271.09 183433.81
122703.72 123568.58 124044.69
41.5 / 18 / 74 41.55 / 19 / 109 43.22 / 28 / 90
2112 2111 2113

180505.14 180461.78 181222.99
122940.20 122129.55 121871.58
43.32 / 28 / 102 41.78 / 26 / 95 43.25 / 24 / 95
2109 2153 2087

Note: asyncioactive used with 128 threads, 1 instance

Figure 7: Results from testing with major source of external load disabled

The data from these tests suggests a few more things about the characteristics of the

system. The first is that, even with one major source of the external load disabled, there

39

was considerable variation between runs with the same algorithm. One cause of this might

be the aggregate effect of other sources of load, or it may that the random reads happened

to interact with Data ONTAP differently each run. It is also clear that SPIO is using fewer

CPU cycles in the storage domain, but this was expected from the start. MPIO must spend

some additional cycles maintaining path state and making the decision of which path to send

on for each pending I/O.

These results motivated another push to further separate the test configuration from the

effects of a shared system. The goal was to truly isolate system so the MPIO implemen-

tation, including the routing algorithm, could be closely compared to SPIO with minimal

noise. Luckily, such a test rig became available around the time the previous results came in,

so the move was made to continue testing on the newly available equipment. Another benefit

of switching equipment is that it provided an opportunity to test and measure the perfor-

mance of MPIO with a different brand of storage array. Although there is no vendor-specific

code within the MPIO implementation, it is still valuable to test on different equipment

considering they often have different behavior.

The new test rig included an older pair of NetApp V-Series controllers of the model V3070.

This model is considerable slower than those used in the other tests, which were V3240s (two

generations newer). This would have implications on the total amount of I/O that could

be driven by the controllers. The new test setup had a similar switch structure, one Cisco

side and one Brocade side, each with several paths available between the controller and the

back-end storage array. The array was an EMC Symmetrix, one of the other Active/Active

arrays available within the NetApp lab. This equipment was previously being used to test

and fix an important bug in isolation, which meant the back-end equipment was not shared

by any other controllers. After some small modifications to the MPIO test script, and some

redistributing of LUNs on the storage array, the new setup was ready for testing.

The data from Figure 8 shows that MPIO best path had consistently higher throughput

R. TerBush

Vols SPIO MPIOrr MPIObp

1
103776.05 108613.40 111765.66
46257.75 48393.85 49559.58
136.28 / 10 / 636 130.52 / 24 / 286 140.12 / 49 / 264
796 840 853

105148.73 108690.45 110617.39
46415.66 47787.35 48608.86
133.40 / 8 / 586 133.68 / 25 / 297 143.95 / 37 / 291
803 822 837

105475.29 109456.39 110073.18
46323.58 48351.27 48486.18
138.42 / 8 / 613 133.98 / 23 / 317 145.15 / 39 / 303
801 830 838

Figure 8: Results from testing on EMC Symmetrix test configuration with 4 paths

than both SPIO and MPIO round robin, but also consumed a larger number of CPU cy-

cles/second in the storage domain. MPIO round robin also outperformed SPIO on through-

put. It should be noted that this round of testing used 1 volume because the configuration

was designed to include all available LUNs into that one volume. SPIO was able to use

all available paths because the number of LUNs exceeded the number of paths. The data

is shown in a graphical form in Figure 9. For this 4-path configuration, MPIO best path

exceeded the throughput of SPIO by about 5.5%, and the CPU usage by almost 6%. Again,

part of the excess CPU usage is attributed to more I/O being processed, so the 6% is not

entirely overhead that can be attributed to the routing algorithm.

Satisfied with the results from the 4-path tests, the next step was to vary the number of

paths to try to discern where the benefit of MPIO was coming from within the system. The

data in Figure 10 was derived from a series of test runs with only one path through the Cisco

fabric, and one path through the Brocade fabric. The paths connect to different target port

groups on the back-end storage array. The expectation was that MPIO would still surpass

SPIO in throughput, but the degree to which it was better would decline. MPIO is assumed

40

41

CPU cycles/s
11200X

110000 -
10MM0 -
106000

104000 -

102000 _

100000 i i
SPIO MPIOrr MPIObp

Read KB/s
50000

49000

48000

47000

46000 -

45000
SPIO MPIOrr MPIObp

Figure 9: V3070 to EMC Symmetrix 4-path
read load

CPU ratio
1.08
1.06

1.04 -

1.02 -

1
0.98 -

0.96
SPIO MPIOrr MPIObp

Read ratio
1.06

1.04

1.02 -

1 -

0.98 -

O.96
SPIO MPIOrr MPIObp

2-target port data generated with 100% random

to benefit from having more paths to choose from when routing an IOP, so with fewer paths,

SPIO should do comparatively better than the 4-path case.

Surprisingly, the MPIO best path routing algorithm performed almost as well with the

2-path configuration as it did with the 4-path configuration. It still exceeded the throughput

of the SPIO tests by about 5% on average, and CPU usage by about 4.5%. The drop in CPU

usage for a comparable amount of throughput can be partially attributed to the reduction

of decision making time and statistics gathering, since state must only be maintained for 2

paths rather than 4. The results inspired one final test to discern the effect of the number of

available target ports on the routing mechanism. It was hypothesized that the performance

benefit of MPIO over SPIO would be negligible under a configuration that included only two

paths, but to the same target port on the array.

42 R. TerBush

Vols SPIO MPIOrr MPIObp

1
104796.20 107935.04 109849.01
46766.16 47850.86 48912.07
132.20 / 15 / 353 127.03 / 32 / 324 129.60 / 54 / 189
805 826 848

105453.67 107768.35 111055.03
46778.65 48098.02 49694.47
129.76 / 14 / 326 131.02 / 33 / 271 123.57 / 61 / 176
811 830 854

104654.58 108671.28 108664.95
46369.37 48094.35 48337.85
128.10 / 17 / 306 131.72 / 39 / 251 133.22 / 78 / 223
802 834 847

Figure 10: Results from testing on EMC Symmetrix test configuration with 2 paths

CPU ratio
1.06

1.04

1.02

1

0.98 -

0.96
MPIOrr MPIObpSPK:

Figure 11: V3070 to EMC Symmetrix 2-path 2-target port data generated with 100% random
read load

CPU cycles/s
112000

110000

108000

106000

104000

102000

SPID MPIOrr MPIObp

Read KB/s
50000

49000

48000

47000

46000

45000
SPIO MPIOrr MPIObp

Read ratio
1.06

1.04

1.02

1

0.98

0.96
SPIO MPIOrr MPIObp

.

43

As expected, the data from the 2-path 1-target port testing indicated that there was

very little benefit associated with running MPIO in place of SPIO. This suggests that load

balance between the available array target ports is the main contributor to the performance

benefit of MPIO. Typically, storage arrays will have different CPU and memory resources

associated with different groups of target ports. The flow of I/O can be increased if multiple

groups are used rather than the one. It can be increased further if the load is spread more

evenly amongst the different arrays controllers, which is the underlying cause for the benefits

seen for MPIO.

Vols SPIO MPIOrr MPIObp

1
104294.90 103271.29 103890.74
46003.69 45784.19 46577.94
134.89 / 14 / 320 143.20 / 85 / 211 135.10 / 77 / 213
793 799 798

104995.57 105352.59 105169.80
46684.57 46383.33 46377.12
135.64 / 14 / 367 137 / 70 / 205 135.51 / 76 / 214
810 798 798

104007.54 105410.59 105413.62
45803.26 46734.32 46042.78
197.25 / 15 / 1026 135.03 / 88 / 199 138.22 / 77 / 227
796 806 796

Figure 12: Results from testing on EMC Symmetrix test configuration with 2 paths and 1
target port

As shown in Figure 12, the relative gain of throughput by MPIO over SPIO is negligible

for the 2-path 1-target port test. The throughput increase measured a mere .35%, while the

CPU usage rose about .4%. Plots of the data can be observed in Figure 13.

For reference, Figure 14 shows the absolute levels of CPU/cycles and I/O done for each

of the three types of test, for each routing protocol. Overall, MPIO best path performed best

on throughput, but had an associated increase in CPU cycles/s used as well. It was shown

that both the 4-path and 2-path cases that used 2 array target ports benefitted from the

R. TerBush

CPU cycles/s
106000
105500

105000

104500

104000

103500

103000

SPIO MPIOrr MPIObp

Read KB/s
47000

46500

46000 -

45500 -

45000
SPIO MPIOrr MPIObp

CPU ratio
1.005

1.004

1.003 -

1.002
1.001

1

0.999

0.998E
SPIO MPIOrr MPIObp

Read ratio
1.004

1.003 -

1.002 -

1.001 -

1

0.999 -

0.998
SPIO MPIOrr MPIObp

Figure 13: V3070 to EMC Symmetrix 2-path 1-target port data generated with 100% random
read load

load balancing provided by MPIO. The 2-path 1-target port testing additionally showed that

multiplexing paths to a single target port does provide some benefit, though it is marginal

compared to the benefits of using multiple target ports.

7 Discussion

The goal of this paper is to examine the performance results of MPIO in the context of the

implementation details. Early results challenged the original assertion that MPIO would

consistently provide higher throughput than the old SPIO implementation, but there were

a number of issues at the time. These including MPIO bugs, unfamiliarity with the I/O

44

45

CPU cycles/s
112000

10000 -

106000 -
- MPIOrr

104000 - N MPIObp

102000 -

100000
4 path 2 path 2tp 2 path 1tp

Read KB/s
49500

49000

48500

48000

47000
4 MPIOrr

46500

46000 - N MPIObp

45500 -

45000

44500
4 path 2 path 2tp 2 path tp

Figure 14: V3070 to EMC Symmetrix all runs combined with 100% random read load

load generation tool, and contention for the shared resources within the testing framework.

While the early numbers didnt reflect a clear benefit of using MPIO, they were a start that

went on to influence the testing approach and improve the overall testing process.

R. TerBush

As the testing infrastructure because more polished and provided a more reliable level

of isolation, the data began to reflect the initial expectations for MPIO. It .became clear

that MPIO could benefit a system with minimal contention on the backend obscuring test

results. The final tests done on the IBM DS8000 test rig suggested that further isolation

was necessary to reason about specific aspects of MPIO, but renewed the belief that it did

not fall behind SPIO performance. The last round of testing on the DS8000 also supported

the design decision to test with 100% random reads, as many more IOPs were recorded, and

higher back-end throughput suggested that the cache was being circumvented more often.

The spontaneous availability of a separate, isolated test configuration proved extremely

useful in moving forward with the MPIO investigation. Not only did the isolation eliminate

the noise that strained the data from the other runs, it permitted the deployment of more

reliable tests. The data generated on this system made the benefit of the MPIO best path

algorithm even clearer. The comparable 4-path test from the previous test rig favored MPIO

even more on the new isolated configuration. Removing the external noise allowed further

testing to hone in on the effect of different path layouts.

Testing with different paths confirmed the expectation that MPIO benefits from having

more paths to balance load across. It also showed that the benefit is derived from the

algorithm being able to balance across multiple array target ports. This was evident in the

result of the 2-path 1-target port data, which showed only a small increase in throughput

when only paths to the same target port were available. Overall MPIO in its current state

outperforms SPIG, and the testing shows that the improvement is at its greatest when there

are more paths available, with more individual IOPs flowing to allow for a higher granularity

of balancing.

The results also showed that MPIO consumed a measurably higher number of CPU cycles

per second in the storage domain than did SPIO. The increase was primarily attributed to the

overall increase in I/O throughput, since each individual IOP must traverse a certain generic

46

47

code path regardless of the routing algorithm. This goes on to suggest that the routing

costs of MPIO are not as significant as initially expected, so perhaps more sophisticated

algorithms might be able to outperform the current best path implementation.

8 Conclusion

The primary motivation behind adding multi-path I/O to the V-Series code within Data

ONTAP was to accelerate the error handing and recovery process when paths failed within

the system. It does so by enabling the use of all paths to the back-end storage, for each

individual storage element. Previously each LUN had a designated primary path, and only

that path could be used to communicate under normal operation. By allowing all paths

to be used, new opportunities for I/O routing were made available, with the potential to

accelerate I/O throughput in the system. The goal of this investigation was to examine if

the new reliability provided by MPIO came at the cost of performance. The results showed

that not only did MPIO not hurt performance, but with a clever routing algorithm it was

able to demonstrate a measurable increase in I/O throughput.

One other concern regarding the implementation of MPIO was that the routing algorithm

may sit in the path of I/O completion, and that the extra cycles would hurt system perfor-

mance. Testing showed that the majority of the increase in CPU usage could be directly tied

to the associated increase in throughput, suggesting that the cost of the routing algorithm

was not as restrictive as initially thought. The design of MPIO was done with these CPU

restrictions in mind, so it is entirely possible that the performance gains could be pushed

further with slightly more sophisticated algorithms. Overall, the MPIO implementation was

done with modularity in mind, and specifically allows for different algorithms that utilize

the counter data for each path. The code is not far from being able to swap algorithms on

the fly, opening doors for load-pattern algorithm selection and other performance tweaks.

R. TerBush

9 Future Work

There are a few avenues on which this work can be expanded. The first is the scope of the

testing itself. V-Series code is typically tested on a variety of equipment representative of all

configurations it might run on in production. Although the MPIO code does not entail any

paths that are vendor-specific, it may be wise to gauge the performance on other platforms

to see if there is any degradation before it occurs at a customer site. Likewise, the testing

itself could be done with a variety of loads. This becomes more important as the routing

algorithms become more complicated, especially since corner cases are likely to appear as

the algorithm evolves.

As mentioned at several points in the assessment of the results, the algorithm itself can

stand to evolve and improve. The results from this investigation suggest that the CPU cost

of the routing algorithm is not as dramatic as initially believed. This paper has shown that

a properly designed algorithm has room to improve over a round-robin implementation, so

it follows that there must be better algorithms that exceed the throughput performance of

the current best path implementation. Likewise, different algorithms may optimize different

parameters, so it may be possible to design routing algorithms that minimize latency rather

than maximize throughput. Making this selection available at the user level might help

op'timize certain applications.

One final future project would be to adapt the testing framework used in this paper to

be more generic. Currently the code is designed to interact with the equipment that was

used for MPIO testing, and used some MPIO specific commands to generate results that

this paper was concerned in. With some modifications it could be made to interface with

any specified test rig, and generate results relevant to the feature being tested. Currently

there is not a large emphasis on testing at the feature level, but such testing could help avoid

performance pitfalls in production builds before they are discovered by customers.

48

50 R. TerBush

10 Acknowledgments

I want to thank the entire V-Series team for their guidance and advice during the project,
specifically Senior Engineers Chris Busick and Ed Barron for help with scoping the project,
Development Engineer Bill Dallas for his MPIO implementation work, and Development
Engineer Greg Flynn for his debugging expertise. Thanks to Senior Technical Director Steve
Miller and MIT Professor Sam Madden for support and guidance with the project planning.
Thanks to the Course 6 administrative staff for their logistics support. Lastly, thanks to
MIT Senior Lecturer Chris Terman for assistance with the layout and editing of this thesis.

R. TerBush

References

[1] Moon-Seok Chang, Hae-Jin Kim, Performance Analysis of a CC-NUMA Operating Sys-
tem. IEEE Xplore. 2001.

[2] http://www.csc.com/insights/flxwd/78931-big-data-universe-beginning-to-explode.
CSC.

[3] Michael Eisler, Peter Corbett, Michael Kazar, Daniel S. Nydick, Data ONTAP GX: A
Scalable Storage Cluster. USENIX. 139-152, 2007.

[4] Larry Freeman. -How Safe is Deduplication? ONTAP Newsletter. 2008.

[5] Andy Watson, Paul Benn, Alan G. Yoder, Multiprotocol Data Access: NFS, CIFS, and
HTTP. NetApp Technical Report. 1999.

[6] Netapp internal wiki. wikid.netapp.com

52

