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Electronic	 medical	 records	 (EMRs)	 are	 becoming	 more	 widely	 implemented	 following	
directives	from	the	federal	government	and	incentives	for	supplemental	reimbursements	for	
Medicare	 and	 Medicaid	 claims.	 Replete	 with	 rich	 phenotypic	 data,	 EMRs	 offer	 a	 unique	
opportunity	for	clinicians	and	researchers	to	identify	potential	research	cohorts	and	perform	
epidemiologic	studies.	Notable	limitations	to	the	traditional	epidemiologic	study	include	cost,	
time	to	complete	the	study,	and	limited	ancestral	diversity;	EMR‐based	epidemiologic	studies	
offer	 an	 alternative.	 The	 Epidemiologic	 Architecture	 for	 Genes	 Linked	 to	 Environment	
(EAGLE)	 Study,	 as	 part	 of	 the	 Population	 Architecture	 using	 Genomics	 and	 Epidemiology	
(PAGE)	I	Study,	has	genotyped	more	than	15,000	patients	of	diverse	ancestry	 in	BioVU,	 the	
Vanderbilt	University	Medical	Center’s	biorepository	linked	to	the	EMR	(EAGLE	BioVU).	We	
report	here	the	development	and	performance	of	data‐mining	techniques	used	to	identify	the	
age	 at	 menarche	 (AM)	 and	 age	 at	 menopause	 (AAM),	 important	 milestones	 in	 the	
reproductive	 lifespan,	 in	 women	 from	 EAGLE	 BioVU	 for	 genetic	 association	 studies.	 In	
addition,	we	demonstrate	 the	 ability	 to	 discriminate	 age	 at	 naturally‐occurring	menopause	
(ANM)	 from	 medically‐induced	 menopause.	 Unusual	 timing	 of	 these	 events	 may	 indicate	
underlying	pathologies	and	 increased	risk	 for	some	complex	diseases	and	cancer;	however,	
they	are	not	consistently	recorded	in	the	EMR.	Our	algorithm	offers	a	mechanism	by	which	to	
extract	these	data	for	clinical	and	research	goals.	

	

	 	



	

1.  Introduction	

1.1 Women’s	health	and	the	reproductive	lifespan	

Though women comprise more than 50% of the US population[1] and there are notable 
differences in the incidences and severity of diseases between men and women, from Alzheimer’s 
disease[2] to inflammatory arthritis[3], only in the last few decades has the importance of 
women’s health and physiologic differences between males and females in the research setting 
come to the forefront of researchers and government agencies[4]. Age at menarche (AM) and age 
at menopause (AAM) define the boundaries of the reproductive lifespan in women. The timing of 
these events has also been linked to numerous diseases and complex traits [5]. Fertility is directly 
impacted by the length of the reproductive lifespan. Earlier AM and later AAM have been 
associated with heightened risks for breast, ovarian, and endometrial cancers, elevated blood 
pressure, and increased glucose intolerance, driven by a significant extent by the additional 
exposure to circulating estrogens over an extended reproductive lifespan [6]. Early AAM has been 
associated with increased risk for cardiovascular disease [7]. More directly, extremely early or late 
attainment of these reproductive milestones can indicate underlying pathologies, such as pituitary 
diseases, hormone imbalances, and nutritional insufficiencies [5]. 

National surveys have calculated the average AM to be 12.4 years and age at natural 
menopause (ANM) at 51 years [8]. The genetic contribution to the timing of menarche and natural 
menopause is estimated to be approximately 0.50, however variants identified through numerous 
genome-wide association studies (GWAS) account for <10% of the observed variation in either 
AM or ANM [8]. Cross-sectional and longitudinal studies have shown recent secular trends in the 
earlier attainment of pubertal milestones (breast development, appearance of pubic hair, 
menarche) from the 1960s to present and later age at natural menopause [9]. The earlier AM is 
accelerated in girls of African American and Hispanic ancestry, a bias that remains after adjusting 
for socioeconomic variables and body mass index (BMI) [10]. The difference observed in the 
timing of reproductive events across ethnicities highlights the importance of conducting research 
in diverse populations—a challenging enterprise given the limited diversity in cohorts available 
for women’s health outcomes research. 

1.2	Research	use	of	electronic	medical	records	

Electronic medical/health records (EMRs/EHRs) are becoming more widely used in clinical 
practice and hospital settings. Motivated in part by the ‘meaningful use’ requirement for 
supplemental reimbursements for Medicare and Medicaid claims through the Health Information 
Technology for Economic and Clinical Health (HITECH) Act, widespread adoption of EMR 
technology is expected to improve patient outcomes and streamline health care processes and may 
be helpful in the goal of “personalized medicine” [11-14]. A significant measure of ‘meaningful 
use’ is the recording of patient data (e.g., demographic, medication allergy, smoking status, vital 
signs) as structured data [12]. Additional measurements of ‘meaningful use’ include the 
dissemination of clinical quality measurements to states or other governmental oversight agencies. 



	

	

	

Immunization and reportable disease statistics are two examples of EMR data that can be 
leveraged for public health research [15]. 

The rich phenotypic data existing in EMR systems allows clinicians and researchers to identify 
potential cohorts, while EMRs that are linked to biobanks extend this framework to genotype-
phenotype association studies. Traditional epidemiologic studies are costly and require significant 
amounts of time to complete; furthermore, these studies may not include sufficient numbers of 
individuals from diverse ancestries. The Epidemiologic Architecture for Genes Linked to 
Environment (EAGLE) Study seeks to address these limitations by enabling high-throughput 
identification and generalization of genotype-phenotype associations in ethnically diverse research 
populations. Accessing data from EMRs for use in research may prove to be a cost effective 
alternative to traditional ascertainment and data collection.  One challenge to research use of 
EMR-derived data is the lack of consistency in recording certain types of data in the EMR. 
Despite the obvious health implications, AM and AAM/ANM are not recorded consistently or in a 
standardized manner in the EMR. This presents a challenge for researchers and suggests algorithm 
development is a necessary first step in developing a resource for women’s health studies in 
diverse populations. 

1.3 BioVU	

BioVU is the Vanderbilt University Medical Center (VUMC) biorepository linked to the EMR 
system. Beginning in 2007, discarded blood samples from routine clinical testing have the DNA 
extracted, stored, and linked to a de-identified version of the EMR termed the Synthetic Derivative 
(SD).  As of mid-2012, more than 150,000 samples have been collected for BioVU, including 
more than 16,000 pediatric samples.  Patients are given the opportunity to opt-out of BioVU at any 
time. Once a sample has been accepted into the system, a unique ID is generated through a one-
way hash mechanism and linked to that patient’s SD. The SD removes or de-identifies Health 
Insurance Portability and Accountability Act (HIPAA) information, such as names, geographical 
locations, and social security numbers, and replaces dates with dates that have been randomly 
shifted by up to six months. The date shifting is consistent within a single SD record. The SD 
enables researchers to examine genome-phenome associations and identify cohorts for research. 

2.  Methods	

2.1.  Population	

As part of the Population Architecture using Genomics and Epidemiology (PAGE) I Study, 
EAGLE genotyped all non-European descent patients in BioVU (EAGLE BioVU, n=15,863) on 
the Metabochip, a custom genotyping array with an emphasis on cardiovascular disease and 
metabolic traits. This array also includes over 2200 SNPs associated at genome-wide significance 
to any trait published in the NHGRI GWAS catalog as of August 2009, with additional proxy 
SNPs chosen based on linkage disequilibrium (LD) in both CEU and YRI HapMap II datasets 
[16]. Overall, 11,521 African Americans, 1,714 Hispanics, 1,122 Asians and others were 



	

	

genotyped on the Metabochip by EAGLE.  For the AM study, all females age>6 in EAGLE 
BioVU as of January 31, 2013 were eligible for inclusion. For the AAM study, all females >18 
years were eligible for inclusion; for the ANM study, only women ages≥41 were eligible for 
inclusion. All patients were of diverse ethnicity. 

2.2.  Algorithm	development	

We developed a flow chart to visualize the inclusion/exclusion processes for the algorithms (Fig. 
1A (AM) and Fig. 1B/C (AAM/ANM)).   AM and age at menopause or age at natural menopause 
(AAM/ANM) are not consistently recorded in the EMR system at VUMC; individuals may enter 
BioVU through numerous outpatient clinics. The lack of a pre-specified field for AM and 
AAM/ANM in the EMR necessitated a combination of free text data mining using regular 
expressions/pattern matching, billing (ICD-9) codes, and procedure (CPT) codes to identify AM 
and AAM/ANM in the subsequently generated SD. All analysis for this study was performed 
using the SD.	

2.2.1 Age	at	menarche	(AM)	

Primary exclusion criteria for AM phenotype consisted of four components: age<7 years, male 
sex, ICD-9 codes for delayed puberty/sexual development (259.0) and precocious puberty/sexual 
development (259.1), and keywords (Figure 1A). Inclusion of any of the preceding criteria in the 
SD resulted in exclusion for the AM study.  As part of the de-identification data scrubbing to 
convert a patient’s EMR to the SD, ages and dates may be masked and listed as “birth-12” or “in 
teens.” Dates and ages which are not masked were  date shifted by up to six months forward or 
backward from the actual date.  

To identify a listed AM for an individual, we utilized pattern matching to seek instances with 
menarche keyword phrases (Figure 1A). Numbers and dates were allowed to be included as 
numerals only.  Instances where the AM was listed as a date used the subject’s birthdate to 
calculate the age (in years) at menarche.  In cases of ties, where more than one AM was identified 
and recorded an equal number of times in the SD, the AM was determined to be the one listed first 
in the SD. If the algorithm identified multiple versions of the AM (an exact age, an age calculated 
from a date, or a de-identified age), a hierarchy was used to determine the AM for the output, 
where an exact age or date was prioritized over de-identified age ranges.  Instances where multiple 
different ages were listed in the SD as AM defaulted to the age listed most frequently. We 
considered situations where the algorithm identified an exact AAM and a de-identified AAM 
range containing the exact AAM to be the same for purpose of calculating sensitivity, specificity, 
and positive predictive value (PPV), but different for the purpose of calculating accuracy. The 
resulting output file contained the subject’s unique research id (RUID), date of birth, and either an 
algorithm-generated AM or null value.	



	

	

	

	

Figure 1. Flow chart for (A) age at menarche (AM), (B) age at menopause (AAM), (C) age at natural menopause 
(ANM), and (D) keywords for AAM and ANM algorithms. 



	

	

2.2.2 Age	at	menopause	(AAM)	

For an algorithm to identify all post-menopausal women and their age at menopause (AAM), we 
initially excluded all males, set a minimum age of 18 years, and excluded patients with a Fragile X 
diagnosis (ICD-9 759.83) (Figure 1B).  Pattern matching was utilized to find keyword phrases 
similar to those used in the menarche algorithm, substituting “menopause” for “menarche” (Figure 
1D).  Furthermore, we included keywords pertaining to surgical procedures that induce cessation 
of menses/menopause (Figure 1D). We excluded instances where the word “possible” immediately 
preceded a keyword.  For instances where the SD had scrubbed the exact age, decade-specific 
results (e.g. “in 30s”, “in 50s”) were captured by our algorithm. CPT and ICD-9 (Table 1) codes 
were used to identify women with surgical menopause or menses-ceasing procedures. 
 

Table 1.  CPT and ICD-9 codes used for menopause 
(AAM/ANM) algorithm development. 
CPT codes   ICD-9 codes  

58150 58285 58548 65.5 68.3 68.69 

58152 58290 58550 65.51 68.31 68.7 

58180 58291 58552 65.52 68.39 68.71 

58200 58292 58553 65.53 68.4 68.79 

58260 58293 58554 65.64 68.41 68.9 

58262 58294 58563 65.6 68.49  

58263 58353 58570 65.61 68.5  

58267 58541 58571 65.62 68.51  

58270 58542 58572 65.63 68.59  

58275 58543 58573 65.64 68.6  

58280 58544  68.23 68.61  

 
After SD review of initial algorithms and subject matter knowledge, we implemented 

secondary exclusion criteria based on the algorithm-identified AAM and excluded subjects with a 
calculated AAM<18 or AAM>65 (Figure 1B). A hierarchy was used to determine the AAM for 
the output, with an exact age or date identified by keyword or pattern matching and ICD-9/CPT 
codes prioritized over de-identified age ranges. In rare instances where the algorithm identified 
more than one AAM for a subject, the age recorded most frequently was determined to be the 
AAM for that patient. In cases of ties, where more than one AAM was identified and recorded an 
equal number of times in the SD, the AAM was determined to be the one listed first in the SD. We 
considered situations where the algorithm identified an exact AAM and a de-identified AAM 
range containing the exact AAM to be the same for purpose of calculating sensitivity, specificity, 
and PPV, but different for the purpose of calculating accuracy. The resulting output file contained 
the subject’s unique research id (RUID), date of birth, race/ethnicity, either an algorithm-



	

	

	

generated AAM or null value, the method by which the AAM was calculated (e.g., from ICD-9 
code, keyword), and the date in the SD corresponding to the AAM identification. 

2.2.3 Age	at	natural	menopause	(ANM) 

To discriminate age at natural menopause (ANM) from all instances of menopause (AAM), we 
extended the AAM algorithm to exclude women aged <41 years, men, and subjects with ICD-9 
codes signifying premature ovarian failure/premature menopause (256.31), artificially induced 
menopause (627.4), ovarian failure (256.39), and Fragile X syndrome (759.83) (Figure 1C). We 
used pattern matching with the menopause keywords to identify an age at menopause (Figure 1D). 
We did not use ICD-9 codes, CPT codes, or keywords associated with procedures that induce 
menopause to identify subjects for the ANM cohort.  

Medication delivery and prescriptions are captured by the EMR at VUMC and are included in 
the SD. To ascertain the temporal relationship between AAM and menopause-inducing/menses-
ceasing surgery or hormone replacement therapy (HRT) use, we first calculated the AAM with the 
alternate algorithm (Figure 1C). Surgery-inducing menopause, determined through CPT and/or 
ICD-9 codes or keywords, and HRT were not exclusion criteria unless the first instance of surgery 
or HRT occurred prior to the extended algorithm-identified AAM. Keyword pattern matching was 
performed using surgical keywords (Figure 1D). We used a combination of brand-name and 
generic names for HRT identification (Figure 1D).  If AAM was identified and no keywords or 
CPT/ICD-9 codes were found to indicate artificially induced menopause, the subject was deemed 
to have undergone natural menopause. If surgery or HRT occurred after the algorithm-determined 
ANM, the subject was also considered to have undergone natural menopause. If the subject had 
either surgery or used HRT prior to menopause, they were excluded from the cohort and the 
resulting output was a null value. 

We implemented secondary exclusion criteria (Figure 1C) based on the algorithm-identified 
age at menopause and excluded subjects with a calculated ANM<18 or ANM>65 based on subject 
matter knowledge and review of early versions of our algorithms. A hierarchy was used to 
determine the ANM for the output. If the algorithm determined more than one ANM for a subject, 
we used the same procedure as described above to determine the final ANM generated by our 
query. We again  considered situations where the algorithm identified an exact ANM and a de-
identified ANM range containing the exact ANM to be the same for purpose of calculating 
sensitivity, specificity, and PPV, but different for the purpose of calculating accuracy. The 
resulting output file contained the subject’s unique research id (RUID), date of birth, 
race/ethnicity, either an algorithm-generated ANM or null value, the method by which the ANM 
was calculated (e.g., from exact date, de-identified age), and the date in the SD corresponding to 
the ANM identification. 



	

	

2.3.  Manual review	

To determine the sensitivity, specificity, PPV, and accuracy of the AM, AAM, and ANM 
algorithms, extensive manual chart review was performed by a single individual for consistency.  
Each algorithm output contained three types of values: exact ages, de-identified ages, and null 
values. For each algorithm, a random number generator was used to randomize RUIDs within each 
of the three types of output and the subjects were then sorted in ascending value by the random 
number. The first 50 subjects in the exact age and de-identified age categories and the first 100 
subjects with a null value had their SD reviewed manually to determine the AM, AAM, or ANM. 
Sensitivity, specificity, PPV and accuracy were calculated by comparing the automated algorithm 
result to the manual review result for each subject.	

3.  Results	

3.1 Population	characteristics	

A total of 10,051 females were genotyped on the Metabochip in BioVU by EAGLE for 
various studies. We identified an age for menarche (exact or de-identified) in 1,618 
individuals. For the AAM algorithm, we identified an AAM (exact age or de-identified 
decade) for 1281 individuals. We identified 83 individuals with an ANM (exact or de-
identified decade) (Table 2). The algorithm-extracted mean AM in our population was 12.7 
(+/- 2.1 ) yrs. The mean AAM in our population was 44.6 (+/- 9.8) yrs. and the mean ANM 
was 49.7 (+/- 5.6) yrs. (Table 2). Approximately half of the algorithm extracted AM (54.7%) 
and ANM (47.0%) were exact ages, while the majority of AAM (92.5%) were exact ages 
(Table 2).  

	

Table 2. Population characteristics for women with algorithm-identified age at menarche (AM), 
age at menopause (AAM), and age at natural menopause (ANM) from EAGLE BioVU. 
Abbreviations: standard deviation (sd), years (yrs). 

 AM AAM ANM 
N, total 1618 1281 83 

exact age (n) 885 1185 39 
de-identified age (n) 733 96 44 

Age at event, mean +/- sd (yrs)  12.7 (2.1) 44.6 (9.8) 49.7 (5.6) 
Age range at event (yrs) 8-20 18-65 40-65 
Race/ethnicity (n)     

African American 1232  1112  62  
Hispanic 120  45  4  
Asian 115  66  11  
Other 151  58  6  

	



	

	

	

3.2 AM	algorithm	performance	

We manually reviewed 200 SD entries for the AM algorithm to determine sensitivity, specificity, 
PPV, and accuracy. Of the 100 subjects with an algorithm-specified AM, 94 were confirmed by 
manual review. For the 100 subjects without an AM captured by the algorithm, 99 were not found 
to have an identifiable AM upon manual review. The AM algorithm had a sensitivity and 
specificity of 99.0% and 94.3%, respectively, and a PPV of 94.0% (Table 3).  We calculated the 
accuracy of the algorithm by comparing the results for the 94 subjects with both manually 
identified and algorithm identified AMs, requiring identical results for concordance. Of these 94 
subjects, we found 87 where the AM matched in both manual and algorithm identification for an 
accuracy of 92.6% (Table 4). We observed instances where the algorithm calculated an exact AM 
(e.g., 8) and manual review found a de-identified AM (e.g., birth-12), or vice-versa. If we allow 
these to be concordant, accuracy increases to 94.7%. 

Table 3. Performance of the age at menarche (AM), age at menopause (AAM), and age 

at natural menopause (ANM) algorithms in women from EAGLE BioVU. 

Abbreviations: positive predictive value (PPV). 

 Sensitivity Specificity Accuracy PPV 

AM (n=200) 99.0% 94.3% 92.6% 94.0% 

AAM (n=200) 94.4% 85.6% 52.4% 84.0% 

ANM (n=183) 89.8% 75.8% 75.5% 63.9% 

	

3.3 AAM	algorithm	performance	

For the AAM algorithm, we manually reviewed 200 SD entries to determine sensitivity, 
specificity, PPV, and accuracy. Of the 100 subjects with an algorithm-identified AAM, we 
identified 82 with AAM via manual review. Only five of the 100 subjects without an algorithm-
identified AAM were found to have an identifiable AAM with manual review.  Overall, our 
algorithm was found to have 94.4% sensitivity, 85.6% specificity, and a PPV of 84.0% (Table 3). 
We also calculated the accuracy of our AAM algorithm by comparing the algorithm-obtained 
AAM to the manual review-obtained AAM. We observed a 52.4% exact concordance within our 
82 subjects with AAMs calculated from both manual review and the algorithm. If we allowed a 
de-identified age range encompassing an exact age to be considered concordant with the exact age 
obtained from the other method, our accuracy improved to 61.9%. 

3.4 ANM	algorithm	performance	

The ANM algorithm identified 83 individuals with an ANM; therefore, we manually reviewed 183 
SD entries to determine the specificity, sensitivity, PPV, and accuracy of our ANM algorithm. Of 
the 100 individuals with no algorithm-identified ANM, manual review of the SD found 6 instances 
with an identifiable ANM (Table 3). Of the 83 individuals with an algorithm-specified ANM, 



	

	

manual review confirmed 53. Overall, the sensitivity and specificity of the ANM algorithm were 
89.8% and 75.8%, respectively, and the PPV was 63.9%. Of the 53 subjects with both algorithm- 
and manually-identified ANM, 40 were an exact match, yielding an accuracy of 75.5%. We again 
observed instances where the algorithm yielded an exact age, but manual review of the SD 
obtained only a de-identified ANM range that encompassed the exact age, and vice-versa; if we 
considered these as concordant, our accuracy increased to 81.1%. 

4. Conclusion	

Menarche and menopause are the bookends of the reproductive lifespan in women. The timing of 
these events may increase risk for various complex disorders and cancers, such as osteoporosis 
and breast cancer [5].  Precocious or delayed menarche may signal the occurrence of hormonal 
imbalance, inadequate nutrition or caloric intake, or pituitary diseases [5]. The timing of 
menopause directly affects reproductive capabilities. In addition, premature menopause may result 
from hormonal imbalances, genetic disorders such as Fragile X Syndrome, metabolic disorders, or 
autoimmune diseases such as thyroid disease or rheumatoid arthritis [17]. Though the timing of 
menarche and menopause may increase risk for disease or indicate underlying pathologies, this 
information is not consistently included in electronic health records, leading to missed 
opportunities to inform clinical care and represents a challenge to clinicians and researchers alike. 

Data-mining EMRs has been used to identify cohorts for research studies [18-21], determine 
smoking status [22], and predict disease, such as sepsis [23]. Our development of algorithms to 
extract these important data is notable for the emphasis on diverse populations and attention to 
women’s health, both historically underrepresented in health outcomes research.  The menarche 
(AM) and menopause (AAM) algorithms have PPV>80% and high specificity and sensitivity, 
though accuracy of the AAM algorithm was just over 50%.  The age at natural menopause (ANM) 
algorithm had moderately high (>75%) sensitivity and specificity but the lowest PPV, at 63.9%. 
However, the accuracy of the ANM algorithm bested that of the AAM (75.5% vs. 52.4%, 
respectively). In addition, the algorithm-extracted ages at menarche, menopause, and natural 
menopause are consistent with published research, validating our methodology. 

Several factors may have reduced the performance of our menopause algorithms. We observed 
many instances where the ages calculated by the algorithm and by manual review differed by one 
year. This may have been the result of the date-shifting done within each individual’s SD for de-
identification purposes.  If the method for calculating the age differed between the methods, it is 
possible this could result in the observed one-year difference. When we allowed a +/- 1 year 
difference in the algorithm and manual identified AAM and ANM, the accuracy of our algorithms 
improved to 70.2% and 90.6%, respectively. The timing of menopause is challenging to identify, 
as the menstrual cycle becomes more erratic as a woman moves through perimenopause into 
menopause. Months may lapse between cycles; hormone levels may change substantially.  In 
addition, the normal menopausal age range is quite large, taking place between the ages of 40 and 
60. These factors challenge the accurate dating of the onset of menopause.  



	

	

	

Furthermore, an algorithm designed to identify the age at menopause may not accurately 
reconcile multiple mentions in an EMR of menopause. Discerning between natural menopause and 
medically/surgically induced menopause is an additional challenge. Our extensive list of time-
dependent exclusions for HRT and surgical procedures was not exhaustive and may have led to 
the algorithm identifying an ANM where manual review identified HRT and/or a procedure 
artificially inducing menopause. Correctly identifying the temporal relationship between 
attainment of natural menopause and surgical procedures that result in menopause may perform 
inconsistently in the absence of these data in structured fields in an EMR. Addressing some of 
these issues by including structured fields for age at menarche, age at menopause, and type of 
menopause (natural/medical), and standardizing the reporting of these data could greatly improve 
the performance of our algorithms. 

We have demonstrated the performance of algorithms designed to extract the age at menarche 
and age at menopause from the Synthetic Derivative, a de-identified version of the electronic 
medical record at Vanderbilt University Medical Center. Furthermore, we have developed an 
algorithm to discriminate naturally occurring menopause from artificially-induced menopause. 
Our method combining text-mining for regular expressions and pattern matching, and structured 
data derived from the EMR to obtain the age at menarche and the age at menopause  is likely to be 
easily transferable to other institutions, given the simplicity of the approach. Overall, these 
algorithms provide an opportunity for researchers and clinicians to obtain these valuable, though 
inconsistently reported data. 
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