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CONVERSION FACTORS, VERTICAL DATUM, AND DELTA NOTATION 

For temperature, degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) by using the formula 
°F = (1.8) (°C) + 32.

Sea Level: in this report, “sea level” refers to the National Geodetic Vertical Datum of 1929, a geodetic datum derived from a  
general adjustment of the first-order level nets of the United States and Canada, formerly called “Sea Level Datum of 1929.”

Abbreviated units used in report: µS/cm (microsiemens per centimeter at 25°C), mg/L (milligrams per liter),  
µg/L (micrograms per liter).

Delta Notation for Reporting Stable Isotope Data

The absolute measurement of isotopic ratios is a difficult analytical task and, as a result, relative isotopic ratios are measured as a 
matter of convention (Toran, 1982). For example, 18O/16O of a sample is compared with 18O/16O of a standard:
δ18O = (Rsample/Rstandard - 1) x 1,000,
where
Rsample = 18O/16O in the sample,
Rstandard = 18O/16O in the standard, and
δ18O = relative difference in concentration, in units of parts per thousand (permil).
Delta 18O (δ18O) is referred to as delta notation and is the value reported by isotopic laboratories for stable isotope analysis. Delta 
2H (δ2H) can be derived by analogy to δ18O where the ratio 2H/H replaces 18O/16O in Rsample and Rstandard. The standard used for 
determining δ18O and δ2H in water originally was standard mean ocean water (SMOW) as defined by Craig (1961). The standard 
used in this report is Vienna standard mean ocean water (VSMOW). If δ18O and δ2H samples contain more of the heavier isotopes 
(18O or 2H) than the reference material, the samples have positive permil values and are referred to as heavier than the reference 
material or as being enriched in the heavier isotope. Conversely, if the samples contain more of the lighter isotopes (16O or H) than 
the reference material, the samples have negative permil values and are referred to as lighter than the reference material or as being 
depleted in the heavier isotope. For example, a δ18O value of -18.15 can be referred to as lighter than VSMOW or depleted in 18O 
relative to VSMOW. Once the reference material has been specified, it is assumed by convention that all values are reported relative 
to it unless otherwise indicated. Because VSMOW reflects the average isotopic composition of the ocean, and because of the nature 
of isotope fractionation processes, δ18O and δ2H values of precipitation are always negative. The same terminology for discussions 
of δ18O and δ2H relative to VSMOW can be applied to different samples of precipitation that have different values. For example, 
if two samples of precipitation have δ2H values of -144.9 and -150.5, then the sample with the value of -150.5 can be referred to 
as lighter than the sample with the value of -144.9. In a similar fashion, the sample with the value of -150.5 is depleted in the heavier 
isotope relative to the other sample.

Multiply  By To Obtain
centimeter (cm) 0.3937 inch

kilometer (km) 0.6214 mile

liter (L) 0.2642 gallon

meter (m) 3.281 foot

milliliter (mL) 0.002113 pint

square kilometer (km2) 0.3861 square mile
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Abstract

   Linear-regression analysis was applied to stable 
hydrogen (H) and oxygen (O) isotope data in 72 snow-core and 
precipitation samples collected during 1999-2001 to determine 
the Local Meteoric Water Line (LMWL) for southeastern 
Idaho, western Wyoming, and south-central Montana.

   On the basis of (1) residuals from the regression model, 
(2) comparison of study-area deuterium-excess (d-excess) 
values with the global range of d-excess values, and (3) outlier 
analysis by means of Chauvenet’s Criterion, values of four 
samples were excluded from final regression analysis of the 
dataset. Regression results for the 68 remaining samples yielded 
a LMWL defined by the equation δ2H = 7.95 δ18O + 8.09 
(r2 = 0.98).

   This equation will be useful as a reference point for future 
studies in this area that use stable isotopes of H and O to 
determine sources of ground-water recharge, to determine 
water-mineral exchange, to evaluate surface-water and ground-
water interaction, and to analyze many other geochemical and 
hydrologic problems.

INTRODUCTION

   As a result of kinetic and equilibrium processes during 
evaporation from the ocean and subsequent condensation, the 
ratios of the stable isotopes of hydrogen (H and 2H or 
deuterium) and oxygen (16O and 18O) in water within a 
particular airmass vary with temperature during condensation 
and with relative humidity during evaporation (Clark and Fritz, 
1997). The stable isotope ratios of water vapor in an airmass 
reflect the origin of the airmass, and the ratios in the 
precipitation that evolves from the airmass reflect both the 
origin of the airmass and the conditions under which 
condensation occurs. As an airmass travels away from the ocean 
(or other source areas for water vapor) and precipitation occurs, 
precipitation that is enriched in the heavier isotopes leaves the 
airmass first. The remaining water vapor then is composed of 
lighter isotopes. Subsequent precipitation has an increasingly 
lighter stable isotope composition. 

   This depletion effect has been called the "continental 
effect" and results in lighter stable isotope ratios farther away 
from the ocean. Studies in California and Nevada have shown 
gradients in delta hydrogen-2 (δ2H) composition of 
precipitation that range from 20 permil per 100 km close to the 
coast to 2 permil per 100 km farther inland (Friedman and 
Norton, 1970; Ingraham and Taylor, 1991; Williams and 
Rodoni, 1997). Furthermore, a strong linear correlation exists 
between mean annual isotopic composition of precipitation and 
mean annual surface air temperature. This relationship 
corresponds to a 1-permil decrease in mean annual delta 
oxygen-18 (δ18O) with a 1.1 to 1.7°C decrease in mean annual 
temperature; δ2H varies with temperature in a similar manner to 
δ18O (Clark and Fritz, 1997, p. 64). As a result, precipitation at 
higher latitudes has a lighter stable isotope composition than 
precipitation closer to the equator. This temperature effect also 
is seen as a result of elevation; cooler temperatures at higher 
elevations result in δ18O depletion that varies between -0.15 
and -0.5 permil per 100 m rise in elevation (Clark and Fritz, 
1997). As a result of seasonal differences in temperature, strong 
seasonal variability in stable isotopic composition of 
precipitation occurs that is particularly pronounced in 
continental locations where seasonal temperature differences 
are extreme. 

   The relation between δ2H and δ18O in precipitation is 
described by the Global Meteoric Water Line (GMWL) 
developed by Craig (1961) and expressed by the equation:

δ2H = 8 δ18O + 10 permil. (1)

   This relation was developed as an average of many local 
water lines that differ from the GMWL as a result of climatic 
and geographic factors. Differential fractionation of δ2H and 
δ18O occurs as a function of humidity during primary 
evaporation of water vapor from the ocean and as a function of 
temperature during secondary evaporation as rain falls from a 
cloud. These two factors affect the slope and intercept of the 
Local Meteoric Water Line (LMWL) and produce a different 
LMWL at different locations. For example, in arid climates 
such as Bahrain, where the secondary evaporation effect is 
especially pronounced, the equation for the LMWL (Clark and 
Fritz, 1997, p. 51) is:
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   δ2H = 6.3 δ18O + 11.6 permil. (2)

   Greater isotopic fractionation of 18O than 2H with 
evaporation during rainfall or sublimation during snowfall 
results in disproportional enrichment of 18O relative to 2H and 
a lower slope for the LMWL. Defining the LMWL for 
precipitation is an important part of ground-water investigations 
that compare isotopic ratios in ground water or surface water 
with precipitation at specific locations.

   For example, to define the processes that affect ground-
water chemistry at and downstream from the Idaho National 
Engineering and Environmental Laboratory (INEEL, fig. 1), it 
is necessary to understand the natural geochemistry of water 
entering the eastern Snake River Plain aquifer (ESRPA). 
Ground water at the INEEL is derived from rapidly infiltrating 
surface water from the Big Lost River, from ground water 
derived from the Little Lost River and Birch Creek tributary 
basins (fig. 1), and from ground water moving into the area 
from the northeast. Recent and ongoing studies either have 
examined or currently are examining several aspects of ground-
water geochemistry such as rock chemistry, water chemistry, 
mineralogy, stable isotopes, and naturally occurring radioactive 
isotopes (Rightmire and Lewis, 1987; Wood and Low, 1988; 
Mann and Low, 1994; Knobel and others, 1997; Cecil and 
others, 1999; Benjamin, 2000; Cecil, 2000; Cecil and others, 
2000; Coplen and Kendall, 2000; Busenberg and others, 2001; 
Carkeet and others, 2001; Chapelle and others, 2002; Swanson 
and others, 2002, 2003). Although studies of the geochemistry 
of the ground water have utilized stable isotope data from basins 
tributary to the ESRPA, no stable isotope data for precipitation 
have been collected from basins north or northeast of the 
INEEL. To provide a more complete understanding of the 
geochemistry of water entering the ESRPA, it is necessary to 
know the stable isotope composition, particularly the stable 
isotopes of hydrogen and oxygen, of precipitation falling in the 
region.

   With information about the stable hydrogen and oxygen 
isotope ratios of local precipitation, it may be possible to 
identify recharge areas in tributary basins and processes that 
occur during recharge and to evaluate surface- and ground-
water interaction and many other geochemical and hydrologic 
problems. The establishment of a LMWL for southeastern 
Idaho, western Wyoming, and south-central Montana provides 
a baseline for comparison in future stable isotope studies for this 
region.

Purpose and Scope

   The purpose of this report is to describe the development 
of a local meteoric water line for southeastern Idaho, western 
Wyoming, and south-central Montana. The specific objectives 
of the study described in this report were to (1) identify and 
establish a network of precipitation collection sites in the study 
area that can be used for future stable isotope monitoring; (2) 
collect quarterly samples of precipitation for stable hydrogen 

and oxygen isotope analysis; and (3) use the isotopic data to 
establish the LMWL. 

Description of Study Area

   The study area comprises approximately 14,200 km2, 
mostly in southeastern Idaho, but also in small parts of 
northwestern Wyoming and south-central Montana (fig. 1). The 
area includes the Lost River, Lemhi, Bitterroot, Snake River, 
and Teton Ranges; the Pioneer, Beaverhead, and Centennial 
Mountains; part of the eastern Snake River Plain; the Island 
Park Caldera; and the Yellowstone Plateau volcanic field. 
Drainage basins in the study area include: Big Wood River, Big 
Lost River, Little Lost River, Birch Creek, Medicine Lodge 
Creek, Camas Creek, Madison River, Henrys Fork of the Snake 
River, Teton River, and the upper Snake River (fig. 1). Water 
from the Big Lost River, Little Lost River, Birch Creek, and 
Medicine Lodge Creek drainages reaches the ESRPA mostly as 
ground-water underflow rather than surface-water flow. The 
area is characterized by north- to northwest-trending mountain 
ranges in the northern Basin and Range Province, the 
Yellowstone and Island Park Calderas, and the north/south-
trending Teton Range. The highest elevation in the study area is 
Borah Peak in the Lost River Range (3,840 m above sea level) 
and the lowest elevation is at Mud Lake on the ESRP (1,455 m). 
All of the mountain ranges in the study area (fig. 1) contain 
peaks that exceed 3,050 m; however, the basins draining the 
northern Basin and Range Province and the Beaverhead and 
Centennial Mountains descend onto the sinks and playas of the 
ESRP, where elevations are less than 1,500 m. 

Regional Geology

   The Lost River, Lemhi, and Bitterroot Ranges make up 
the northern part of the Basin and Range province and the 
western part of the study area. These long, north- or northwest-
trending ranges are separated by equally long valleys and are 
bounded by normal faults (Maley, 1987). The ranges are 
composed of consolidated sedimentary strata consisting mostly 
of limestone, quartzite, sandstone, and shale that have been 
folded and faulted. 

    The north-central part of the study area lies east of the 
Beaverhead Mountains, south of the Continental Divide, and 
north of the ESRP. The principal topographic features are the 
southern part of the Beaverhead Mountains and the Centennial 
Mountains. The surficial rocks in this area were mapped and 
described as silicic volcanic rocks by McKee (1972, fig. 16-3, 
p. 259). Discharge from this area to the ESRPA is both ground- 
and surface-water flow from the Medicine Lodge and Camas 
Creek drainages.

    The largest physiographic feature in the study area is the 
ESRP. The southwesterly movement of the North American 
Plate over a stationary hot spot beneath the Earth's crust formed 
the ESRP. The hot spot generated a series of volcanic fields 
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that deposited silicic volcanic rocks over large areas. After the 
crustal material moved past the hot spot, secondary basaltic vol-
canism covered the silicic rocks. The basalt flows were intermit-
tent, and lacustrine, fluvial, and eolian sediments were 
deposited between volcanic events. Several volcanic fields of 
this type have been identified by Pierce and Morgan (1992). 
Island Park Caldera is located at the northeastern margin of the 
ESRP and forms a topographic and geologic transition from the 
basalt of the ESRP to the Yellowstone Plateau volcanic field 
(Christiansen, 1982; Christiansen and Embree, 1987). 

   The Teton Range forms the eastern boundary of the study 
area and also the eastern margin of the Basin and Range 
Province in this area. The Teton Range is a slice of basement 
rock lifted along a fault that defines the eastern front of the 
range. If the trend of the Teton Range is projected north-south, 
it aligns approximately with Yellowstone National Park 
(YSNP) and the Madison and Gallatin Ranges of Montana to 
the north and with the Wasatch Range of Utah to the south (Alt 
and Hyndman, 1989). The upper Snake River drains the eastern 
and southern flanks of the Teton Range.

Climate

   The Lost River, Lemhi, and Bitterroot Ranges receive 
most of their moisture from the northern Pacific Ocean and act 
as an effective barrier to movement of most of the winter 
airmasses passing to the south out of Canada over the ESRP. 
This barrier results in low precipitation on the ESRP (Clawson 
and others, 1989). Additionally, the mountains bordering the 
ESRP channel the prevailing west winds into a southwesterly 
flow. Occasionally, however, a cold, Arctic airmass spills over 
the Continental Divide with a northeasterly flow over the ESRP. 

   The Yellowstone Plateau and the Island Park Caldera 
receive 75 percent of their annual precipitation from winter 
snow that comes from airmasses originating in the Northern 
Pacific that generally travel up the ESRP (Kharaka and others, 
2002). The region also receives Arctic airmasses in the winter 
and occasional storms originating in the Gulf of Mexico. In the 
summer months, much of the precipitation comes from warm, 
moist airmasses originating in the Gulf of Mexico (Dirks and 
Martner, 1982).

Previous Investigations

   In 1999, snow cores and summer precipitation in the 
eastern Island Park region of Idaho were collected and analyzed 
for stable isotope ratios (Benjamin, 2000). Additionally, 
precipitation, ground-water, and surface-water stable isotope 
data from eastern Idaho and western YSNP were compiled from 
reports by Rightmire and Lewis (1987); Wood and Low (1988); 
Rye and Truesdell (1993); Bartholomay and others (1994, 
1995, 1996); Mann and Low (1994); Ott and others (1994); 
Knobel and others (1999); Busenberg and others (2000); and 
Coplen and Kendall (2000). Compilation of regional stable 
isotope data showed the paucity of existing precipitation data 

and underscored the need to collect these data to establish a 
LMWL for the study area.

   A recently published report by Kharaka and others 
(2002) provides δ2H and δ18O values for 40 snow samples in 
the YSNP region that define a well-constrained LMWL for 
YSNP. That line is described by:

   δ2H = 8.2 δ18O + 14.7 permil VSMOW. (3)

   Arctic, Pacific, and Gulf of Mexico airmasses influence 
weather patterns in the study area, so it is likely that stable 
isotope ratios for precipitation in the region will reflect the 
different origins of airmasses and be fairly complex. In the 
western YSNP/eastern Idaho region, both winter and summer 
precipitation becomes increasingly lighter in a south-to-north 
direction in terms of δ2H and δ18O (Rye and Truesdell, 1993; 
Benjamin, 2000). This south-to-north depletion in stable 
isotope values probably is the result of a northeasterly Pacific 
storm trajectory that travels up the ESRP. As these storms 
travel, precipitation from a storm becomes progressively lighter 
in isotopic composition. However, it is possible that in a winter 
where Arctic rather than Pacific airmasses predominate, the 
south-to-north depletion of stable isotope values would not be 
seen. It is likely that the climatic effects resulting from the 
presence of El Niño or La Niña would affect stable isotope 
values in precipitation (Benjamin, 2000). Precipitation data 
from Idaho Falls and the upper Henrys Fork Basin show strong 
seasonal variability in stable isotope values. Summer 
precipitation is greatly enriched in heavier isotopes relative to 
winter precipitation; in the Henrys Fork Basin, δ2H values 
range from -141 permil (winter) to -55 permil (summer).
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METHODS

Sample Collection

   Over the period from 1999 to 2001, precipitation samples 
consisting of snow cores and rainwater were collected from 25 
sites located in basins tributary to the Snake River and the 
ESRPA and in basins tributary to the Madison River in Montana 
(fig. 2 and table 1). Seven sampling events over this period 
yielded 75 complete sets of analytical results (including 3 
quality-assurance replicates) for samples submitted for 
laboratory analyses of δ2H and δ18O. 

   The data used for this study (table 2) consists of results 
for 14 samples from 11 sites previously published by Benjamin 
(2000); results from 2 sites (Copper Basin and Fish Pole Lake) 
that were sampled only in April 2000 and 2 sites (Teton Pass 
and State Line) that were sampled only in February 2001; and 
results from 10 sites that were sampled two or more times 
during 2000–01. 

   Sample-collection sites were primarily NRCS snow-
telemetry (SNOTEL) and snow-course sites and USGS 
streamflow-gaging sites. Cores were collected at NRCS 
SNOTEL and snow-course sites in cooperation with NRCS 
personnel. Precipitation samplers were positioned at USGS 
streamflow-gaging stations and at selected NRCS SNOTEL and 
snow-course sites.

The focus of the 1999 sample collection (Benjamin, 2000) 
included in this current study was to capture the average 
isotopic ratio for the snowpack in early spring (when thickness 
of the snowpack is at its peak), and to capture the average 
isotopic ratio for summer precipitation collected during July 
through September. The 2000–01 sample collection was 
conducted to further refine the expected seasonal variation of 
the isotopic ratios. Samples were collected in April to represent 
peak snowpack, in February to represent mid-winter snowpack, 
in July to represent late spring and early summer precipitation, 
and in October to represent late summer and early fall 
precipitation. Two samples collected from sites visited only in 
April 2000 (Copper Basin and Fish Pole Lake) and two samples 
collected from sites visited only in February 2001 (Teton Pass 
and State Line) were opportunity samples collected by NRCS 
for use in this study. 

Quality Assurance

   Samples of snow cores and precipitation were collected 
and analyzed for δ2H and δ18O using standard methods 
(Friedman and Norton, 1970; Coplen and others, 1991). 
SNOTEL sites were reached by snowmobile, and a Mt. Rose 
snow corer was used for sample collection. The volume and 
mass of snow cores were recorded and snow water content was 
determined, and the entire volume of each sample was 
transferred to a plastic bag and sealed. After melting, the 
samples were well mixed and immediately transferred to 50-mL 

glass containers and sealed with polyseal caps. Rainwater-
precipitation collectors consisted of a 1.9-L glass container with 
an attached funnel sealed to the top. A layer of mineral oil 
0.5 cm thick was added to the container to prevent sampling 
error as a result of evaporation. The precipitation collectors 
were installed at the sites in April and samples were collected in 
July and October. A syringe was used to transfer samples to 
50-mL glass containers with polyseal caps.

   The USGS Stable Isotope Laboratories in Reston, 
Virginia, and in Menlo Park, California, used a carbon dioxide 
equilibrium technique (at 30 ºC) (Epstein and Mayeda, 1953) to 
separate the oxygen from hydrogen in the submitted samples, 
and used mass spectroscopy to determine the ratio of stable 
oxygen isotopes (18O/16O). The ratio of stable hydrogen 
isotopes (2H/1H) is measured by first using a hydrogen gas 
equilibrium procedure (at 30 ºC) (Coplen and others, 1991) to 
separate the hydrogen, and then mass spectroscopy to determine 
the ratio of stable hydrogen isotopes. Analytical results are 
reported as δ2H and δ18O (permil, relative to VSMOW) with 
1-sigma uncertainties of 1 permil for δ2H and 0.1 permil for 
δ18O. The laboratories analyze each sample for δ2H in duplicate 
and every third sample for δ18O to insure the stated 
uncertainties are achieved or exceeded.

   Replicate samples were analyzed for three sites visited in 
April 2000. These samples, collected from Big Springs/Lucky 
Dog, Warm River, and Baker Draw, showed relative percent 
differences for δ2H ranging from 0.0 to 0.63 percent and for 
δ18O ranging from 0.03 to 0.24 percent, which were within the 
expected uncertainties based on a 95-percent confidence 
interval. Replicate sample results were not used in the linear 
regression that defines the LMWL.

RESULTS OF DELTA HYDROGEN-2 AND 
OXYGEN-18 ANALYSES

   Laboratory results for δ2H and δ18O analyses of 75 
samples from 25 sites (table 2) were reviewed by applying a 
linear-regression model to the complete dataset (excluding the 
3 quality-assurance replicates). Deuterium-excess (d-excess) 
was calculated for each of 72 results used in the linear-
regression model to identify data outliers with the use of 
Chauvenet's Criterion (Taylor, 1997) and to compare with the 
normally expected global range of d-excess values. The 
combination of these review tools helped to identify samples 
that may have been impacted by secondary processes such as 
partial evaporation of the sample during storage in the rain 
gage, or by site-specific environmental conditions at the sample 
location. 
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Figure 2. Location of snow core and summer precipitation collection sites, Idaho National Engineering and Environmental Laboratory,
and the eastern Snake River Plain.
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Table 1. Sampling site elevations and drainage basins in southeastern Idaho, western Wyoming, and south-central Montana, 1999-2001.

[See figure 2 for location of sampling sites. Bold indicates site has additional data from Benjamin (2000). Elevation, m above sea level. Drainage basin, drainage 
basin represented by sample. Abbreviations: BC, Birch Creek; BLR, Big Lost River; BWR, Big Wood River; CC, Camas Creek; HF, Henrys Fork, Snake River; 
INEEL, Idaho National Engineering and Environmental Laboratory; LLR, Little Lost River; LWR, Little Wood River; MR, Madison River; SF, Upper Snake 
River (South Fork); SNOTEL, snow telemetry; USGS, U.S. Geological Survey]

Sampling site Elevation Drainage basin

Lost-Wood Divide 2,438 BLR/BWR

Mackay Reservoir (USGS streamflow-gaging station) 1,828 BLR

Big Lost River at INEEL  
(USGS streamflow-gaging station below INEEL diversion) 1,590 BLR

Birch Creek (meteorological station) 2,243 BC

Above Gilmore 2,408 Lemhi/BC

Mud Lake (USGS streamflow-gaging station) 1,455 CC/Mud Lake

White Elephant (SNOTEL site) 2,350 HF

Big Springs/Lucky Dog 1.951 HF

Latham Spring 2,316 HF

Grassy Lake 2,214 Lower HF

Warm River 1,780 HF

Big/Little Lost Divide 2,316 BLR/LLR

Little Lost at Clyde 2,195 LLR

Pine Creek Pass (SNOTEL site) 2,042 Teton River

Copper Basin 2,391 BLR

Fish Pole Lake 2,926 LWR

Baker Draw 2,268 HF

Snow Creek 2,133 HF

Black Bear 2,484 MR

Teton Pass 2,359 Teton River

State Line 2,030 Teton River

Madison Plateau 2,362 MR

Black Canyon 2,426 HF

Glade Creek 2,146 SF

Lewis Lake 2,393 SF
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Linear-Regression Model

   Residuals from the regression model (the difference 
between the observed δ2H for a given δ18O and the δ2H 
predicted for that δ18O by the model) were examined to identify 
results that fell outside the 95-percent confidence interval for 
the dataset. Results for three sites—the July 2000 precipitation 
samples from the Big Lost River at INEEL and from the Big/
Little Lost Divide, and the February 2001 snow core from 
Grassy Lake—were outside the acceptable confidence interval.

Calculation of Deuterium-Excess

   Deuterium-excess is a measure of the relative proportions 
of 2H and 18O in the sample. Deuterium-excess, defined by d (in 
permil) = δ2H - 8 δ18O (Dansgaard, 1964), can be thought of as 
an index of deviation from the GMWL, which has a d-excess 
value of 10 permil. Review of d-excess values can be a useful 
diagnostic tool for δ2H and δ18O results because d-excess can 
be correlated with conditions at the source area for the water 
vapor in an airmass and the nature of the airmass prior to the 
moisture falling as rain or snow (Clark and Fritz, 1997; 
Froehlich and others, 2002). Partial evaporation of the sample, 
either as the precipitation falls from the cloud or during storage 
in the rain gage during warm and dry conditions, can result in 
low or even negative d-excess values. Low temperature and 
lower humidity in the source area for the water vapor that the 
precipitation is derived from yield large d-excess values. On a 
global scale, d-excess values range from about -2 permil to 
about 10 to 15 permil (Froehlich and others, 2002). For the 
northern hemisphere, d-excess values tend to be largest in 
December and January and smallest in June and July (Kreutz 
and others, 2003). 

   The two tests that were applied to review the d-excess 
values both confirmed that the three results identified by 
examination of the residuals from the linear-regression model 
required closer review. In addition, the February 2001 snow 
core from Mud Lake was identified for further review by the 
d-excess evaluation. 

   Expected d-excess range comparison.—Review of 
d-excess values for the 72 primary pairs of δ2H and δ18O results 
identified 4 values that exceeded the expected range. The July 
2000 precipitation values for samples from Big Lost River at 
INEEL and Big/Little Lost Divide, and the February 2001 snow 
cores from Grassy Lake and Mud Lake (d-excess values of -13, 
-20, 33, and 22 permil, respectively) were outside the expected 
range of -2 to 15 permil. The first three sites are the same ones 
identified by the linear-regression model.

   Chauvenet's Criterion.—Chauvenet's Criterion (Taylor, 
1997, p. 166–169) was used as a test for identifying outliers. 
This test also was applied to the calculated d-excess values for 
all 72 primary pairs of δ2H and δ18O results. Chauvenet's 
Criterion identified three outlier values; these values were for 
samples from the same three sites identified by the linear-
regression model: the July 2000 precipitation samples from Big 

Lost River at INEEL and Big/Little Lost Divide, and the 
February 2001 snow core from Grassy Lake. 

   Because Chauvenet's Criterion utilizes the standard-
normal probability function, it was assumed that the population 
of d-excess values was normally distributed. To insure that the 
application of Chauvenet's Criterion was appropriate for this 
dataset, the Shapiro-Wilk W-test (Royston, 1992) was used to 
test for normality. When applied to the 72 primary data pairs, 
the W-test indicated that the data were not normally distributed 
(W= 0.8049, p= <0.0001). Removing the three values identified 
as outliers by Chauvenet’s Criterion and the one additional 
value identified by expected d-excess comparison and repeating 
the test indicated that the dataset displayed a normal distribution 
(W= 0.9690, p=0.0888) at a 95-percent confidence level.

   On the basis of the residual review, the expected range of 
global d-excess values, and outlier analysis by Chauvenet's 
Criterion, these four values were excluded from further 
regression analysis of all datasets. 

   Post-depositional modification of the stable isotope 
signal via melting, evaporation, sublimation, wind erosion, and 
(or) diffusive mixing of water vapor may be a possible local-
scale explanation for the extreme d-excess values of the four 
samples excluded from analysis. Research in the Andes 
Mountains of South America has demonstrated that seasonal 
changes in snow melting and evaporation rates can amplify 
seasonal δ18O profiles (Grootes and others, 1989). It was 
observed that melting of the snow does not affect the d-excess 
values but subsequent evaporation may affect d-excess over 
diurnal and longer timescales (Clark and Fritz, 1997). 
Additionally, sublimation during dry winters also may alter 
d-excess values. However, none of the slopes of the regression 
lines for the datasets listed in table 3 approach typical 
sublimation (evaporation) line slopes (about 5, Clark and Fritz, 
1997). It is likely that some type of secondary evaporation 
processes impacted the four values excluded from analysis.

DEVELOPMENT OF LOCAL METEORIC 
WATER LINE

   Linear-regression analysis was completed for the final 68 
sample results to determine the LMWL for the study area. 
Regression analysis also was completed for the dataset sorted to 
investigate seasonal variation. Results and regression 
parameters are listed in table 3. Regression parameters 
comprise the correlation coefficient (r2), the standard error for 
the regression (SE), the probability value (p-value) for the slope 
of the regression, and the number of samples considered for 
each analysis. Also included is the 95-percent confidence 
interval for the slope of the regression line which is identified as 
m, and the intercept which is identified as b. A regression model 
is a good fit to the data when the correlation coefficient is large 
(approaching 1.0), the standard error is relatively small in 
relation to the magnitude of the data, and the p-value is small, 
approaching less than 0.0001 (Helsel and Hirsch, 1992). The 
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confidence in the regression parameters for describing the fit of 
the regression model to the data tends to increase with the 
number of samples (larger datasets, n greater than 30, table 3).

   The regression for all precipitation data (snow cores and 
rain water, minus the four values excluded following review of 
regression residuals and d-excess, figure 3) yielded a slope of 
7.95 (n = 68, r2 = 0.98), near the expected slope of 8.0 for the 
GMWL. The Y-intercept (d-excess value) for the regression is 
8.09, between the 6 derived for the North American MWL 
(Yurtsever and Gat, 1981) and the d-excess of 10 for the 
GMWL. The data also were sorted by seasons (snow cores, 
1999–2001, and precipitation, 1999–2000), and the regression 
does show the expected seasonal variability (fig. 4), as winter 
snow plots lighter than summer precipitation. The summer 
precipitation also shows a much wider range of values, 
representing different sources of precipitation from differing 
storm tracks in the summer, as well as differing evaporative 
conditions. The slope for winter precipitation (bulk snow cores, 
1999–2001) is 7.41 and the d-excess is -2.18 (n = 46, r2 = 0.89). 
The slope for summer precipitation (May–October 1999–2000) 
is 8.49 and the d-excess is 14.5 (n = 22, r2 = 0.96). The final 
dataset used to establish a LMWL for this study and the four 
excluded values are shown in figure 5. Also included for 
comparison are regression lines with the 95-percent confidence 
intervals for the final dataset and for the dataset containing the 
four excluded values.

The meteoric water line specific to a location or region is 
controlled by local factors specific to the climate of that region, 
including the oceanic origin of the water vapor and storm tracks 
characteristic of the region, and secondary evaporation of the 
precipitation. Such local factors work together to produce the 
slope and d-excess specific to that LMWL. The LMWL for the 
study area should be defined by the final set of all data, 

excluding the four d-excess values outside the expected range. 
This line is δ2H = 7.95 δ18O + 8.09. The slope of this LMWL is 
not different from that for the 1976–77 Idaho Falls precipitation 
data (δ2H = 7.94 δ18O + 3.12) (table 3), but the Y-intercept is 
different, and this may be a reflection of the more regional 
nature of the dataset used in this study. The LMWL developed 
in this study and the one for YSNP developed by Kharaka and 
others (2002) (δ2H = 8.2 δ18O + 14.7) also are similar (table 3). 
The small differences in δ2H and δ18O values used to develop 
the lines result from differences in the amount of evaporation 
that takes place in the two study areas. The YSNP line 
(developed from values derived from 40 snow samples) 
generally reflects less evaporative isotope fractionation than 
does the line reported in this study (developed from values 
derived from 68 rain and snow samples).

SUMMARY AND CONCLUSIONS

Linear-regression analysis of 68 pairs of δ2H and δ18O 
values yielded a Local Meteoric Water Line (LMWL) defined 
by the equation δ2H = 7.95 δ18O + 8.09. The slope of this 
LMWL is not different from that for the 1976–77 Idaho Falls 
precipitation data (δ2H = 7.94 δ18O + 3.12), but the Y-intercept 
is different, and this may be a reflection of the more regional 
nature of the dataset used in this study. The slope and intercept 
of the LMWL also are similar to those of the Global Meteoric 
Water Line (δ2H = 8 δ18O + 10) and the YSNP LMWL (δ2H = 
8.2 δ18O + 14.7). This likely results from the averaging effects 
of storms originating in different source areas (Gulf of Mexico, 
Pacific Ocean, and Arctic Ocean) and from small differences in 
evaporative isotope fractionation of H and O, respectively.
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12  Develpment of a local meteoric water line for southeastern Idaho, western Wyoming, and south-central Montana
Figure 3. Local Meteoric Water Line for southeastern Idaho, western Wyoming, and south-central Montana [δ2H, delta notation for 
stable hydrogen isotopes in permil relative to Vienna Standard Mean Ocean Water (VSMOW); δ18O, delta notation for stable oxygen 
isotopes; GMWL, Global Meteoric Water Line]

Snow core and 
precipitation data
1999-2001
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Figure 4. Seasonal variation in Local Meteoric Water Line for southeastern Idaho, western Wyoming, and south-central Montana 
[δ2H, delta notation for stable hydrogen isotopes in permil relative to Vienna Standard Mean Ocean Water (VSMOW); δ18O, delta 
notation for stable oxygen isotopes; GMWL, Global Meteoric Water Line]

Snow core data 1999-2001
Precipitation data 1999-2000



14  Develpment of a local meteoric water line for southeastern Idaho, western Wyoming, and south-central Montana
Figure 5. Final dataset used to establish a Local Meteoric Water Line for southeastern Idaho, western Wyoming, and south-central 
Montana [Values excluded by extreme deuterium-excess criteria also shown; δ2H, delta notation for stable hydrogen isotopes in 
permil relative to Vienna Standard Mean Ocean Water (VSMOW); δ18O, delta notation for stable oxygen isotopes]

four values excluded by
d-excess criteria

Values excluded by d-excess:
February 2001

Grassy
Lake

Mud
Lake

all values included

Values excluded
by d-excess:
July 2000

Big/Little
Lost Divide

Big Lost River
at INEEL

Final dataset of all snow
core and precipitation samples
Value excluded by d-excess
criteria; see text for explanation 
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