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Abstract 

Autonomous driving, or self-driving, is the ability of a vehicle to drive itself without 

human input. To achieve this, the vehicle uses mechanical and electronic parts, sensors, 

actuators and an on-board computer. The on-board computer runs sophisticated 

software which allows the vehicle to perceive and understand its environment based on 

sensor input, localise itself in that environment and plan the optimal route from point A 

to point B. Autonomous driving is no longer a thing of the future, and to develop 

autonomous driving solutions is a highly valuable skill in today’s software engineering 

field.  

Robot Operating System (ROS) is a meta-operating system that simplifies the process 

of robotics programming. This master’s thesis aims to demonstrate how ROS could be 

used to develop autonomous driving software by analysing autonomous driving 

problems, examining existing solutions and developing a prototype vehicle using ROS. 

This thesis provides an overview of autonomous driving and usage of ROS in the 

development of autonomous driving, then elaborates on the benefits and challenges of 

using ROS for autonomous car development. 

The research methods used in this master’s thesis are design science research (DSR) and 

a literature review. An artefact is developed and evaluated—a remote-controlled (RC) 

car equipped with Raspberry Pi 3 board as the on-board computer, an Arduino Uno 

board, Teensy LC board, a set of sensors and ROS-based software. The thesis is 

supported by the author’s employer, automotive software company called Elektrobit. 

By following the steps described in this thesis, it is possible to develop an autonomous 

driving RC car which runs on ROS. Additionally, this thesis shows why ROS provides 

good solutions for the autonomous driving issues. It points to the benefits of ROS: open 

sourced, peer-to-peer, network-based meta-operating system with ready-made 

components for autonomous driving, and highlights some of the challenges of ROS: 

security issues and single point of failure. 
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1. Introduction 

We live in an era of rapid technological improvement, what with the advance of 

artificial intelligence, sensors, communication technologies, software (SW) and 

hardware (HW) engineering and other industries—not least of which is the automotive 

industry. In this new age, smart, autonomously driving cars are no longer ideas of the 

future—they are things of the present. As automotive tycoons and powerful software 

companies try to get ahead in the self-driving business, engineers who can work with 

the technologies needed for developing autonomous cars are of high value. 

Robot Operating System (ROS) is one such technology that can be used to develop 

autonomous cars (Tellez, 2017). Robot Operating System is a meta-operating system, 

which contains a set of tools and libraries that aim to make robotics programming more 

comprehensive (Reddivari et al., 2014). Additionally, to achieve that goal, ROS 

enforces certain robotic programming conventions (Reddivari et al., 2014). We can 

think of autonomous cars as robots because, in fact, that is what they are: robots with 

sensors (GPS, odometers, ultrasound sensors) and actuators (wheels, servos, motors).  

Davies (2017) projects that the era of measuring a car’s power by that of its engine is 

about to end. In the coming era, the autonomous driving era, car power will be 

measured by the power of the vehicle’s sensors, computers and SW (Davies, 2017). 

Despite advancements, however, programming of robots is still very difficult. One 

reason for this is that robots can work in different HW environments and run on various 

SW systems. Code reusability is a big issue, as SW is often highly coupled and built for 

specific HW. Even if one identifies a piece of relevant code from someone else’s work, 

reusing code written specifically for another platform poses a challenge. As a flexible 

meta-operating system for writing robotic SW, ROS offers an opportunity to overcome 

these issues (Quigley et al., 2009). 

The objective of this master’s thesis is to analyse how ROS can be used to develop and 

run autonomous driving SW and to identify the benefits and challenges of using ROS to 

develop autonomous cars. An employee of the automotive SW company Elektrobit 

(EB), the author of this paper was motivated to conduct this research by EB’s interest in 

autonomous driving, particularly that using ROS. The topic in general is an attractive 

one, as common interest in autonomous driving is rapidly increasing. Solutions for 

autonomous driving problems, especially those that use open-source SW such as ROS, 

could be very useful to the autonomous driving community. 

The main aim of this research is to provide insight into how ROS can be used to 

develop autonomous driving and to identify its benefits and challenges. Both scientific 

circles and the automotive SW industry can benefit from the results of this investigation 

as it will analyse both the design and implementation of autonomous cars using ROS. 

The present review examines the existing literature related to autonomous cars, ROS 

and the use of ROS in autonomous cars. This literature review is then used as the basis 

for the main research of the thesis, which uses the design science research (DSR) 

method. This includes developing an artefact using DSR—in this case, an autonomous 



7 

remote-controlled (RC) car, called ‘EB Hobby Car’, running on ROS, specifically ROS 

Kinetic. Development of the artefact is done in iterations following DSR guidelines.  

This thesis strictly follows the template and instructions given by Halonen (2015) from 

the University of Oulu. This template guides students to write a proper master’s thesis 

per the regulations of the University of Oulu (Halonen, 2016). This paper begins by 

defining the research problem and research questions, then explains in detail the chosen 

research methodology—DSR. A literature review is performed to gather knowledge 

about the prior research on the present topic. The results of this literature review are 

then used to introduce the topics of autonomous driving, ROS and the use of ROS to 

develop autonomous cars. The literature review’s results also inform the initial set of 

requirements formed in the present study. This set of requirements, named ‘literature 

requirements’, serves as a base for the following DSR. The core part of the thesis is the 

in-depth description of the performed DSR, followed by an evaluation of the results of 

the DSR against the previously established requirements. Finally, the results of the 

thesis are presented, the research questions answered, limitations of the study pointed 

out and ideas for future work proposed. A summary of the main findings concludes the 

paper.  
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2. Research Problem and Methodology 

An informal literature review was conducted to gather prior knowledge related to the 

research topic. The review focused on literature containing information about 

autonomous driving, ROS and use of ROS in developing autonomous cars. The main 

research method was DSR. As there was no need for a systematic or structured literature 

review, the literature was collected, read and analysed in an ad hoc manner. Due to the 

novelty of the topic, non-scientific literature, such as blog posts and websites, was also 

reviewed. ROS use in autonomous driving development is a relatively new topic, so the 

volume of peer-reviewed literature on the subject was limited; this justified the 

inclusion of non-peer–reviewed literature in the review. 

After gaining knowledge about the research topics from the literature, related projects in 

which ROS was used for the development of autonomous cars were selected and 

analysed. The core of this thesis is the conducted DSR, which is described in detail 

below. The main research problem was to analyse how ROS can be used in the 

development of self-driving vehicles and to identify its potential benefits and 

challenges. To solve the research problem, the following research questions were 

proposed: 

RQ1: How can ROS be used in the development of autonomous driving?  

RQ2: What are the benefits and challenges of using ROS in the development of 

autonomous driving? 

The first research question was answered by describing the steps needed to create the 

present experiment’s autonomously driving RC car using ROS. By answering the first 

question and analysing the related literature, the benefits and challenges of using ROS 

for autonomous driving were identified, thus answering the second research question. 

With the research questions answered, the initial research problem could be addressed. 

As noted above, the literature review served to provide insight into the field of 

autonomous driving, learn about ROS and understand how ROS can be used to develop 

self-driving vehicles. No systematic literature review was conducted, as the use of DSR 

negated the need for rigorous literature analysis. Google Scholar and Science Direct 

databases were searched for the relevant scientific literature. When there was no 

scientific literature available, Wikipedia and popular ROS websites and blogs were used 

to search for related non-scientific literature. 

In the conducted DSR, the results of the literature review were used to build the 

knowledge base upon which the artefact could be constructed. Thus, the main output of 

the performed literature review was the compiled set of requirements, called ‘literature 

requirements’. This set of requirements was used as a basis for the DSR that followed 

the analysis. Building on these requirements, additional requirements were compiled 

through conversations with experienced professionals from EB. The final set of 

requirements was created by merging the literature and company requirements. Once 

the final set of requirements was in place, the design part of the DSR began. 
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The formal definition of DSR, given by Hevner and Chatterjee (2010), is as follows: 

“Design science research is a research paradigm in which a designer 

answers questions relevant to human problems via the creation of innovative 

artefacts, thereby contributing new knowledge to the body of scientific 

evidence. The designed artefacts are both useful and fundamental in 

understanding that problem (Hevner & Chatterjee, 2010, p. 5).” 

Due to the empirical nature of the present research, wherein a new system is constructed 

and evaluated, the DSR methodology was a realistic research method. DSR is a research 

methodology in which the design problem is understood and solved by building and 

applying a viable artefact (Hevner, March, Park, & Ram, 2004). The artefact can be a 

construct, a model, a method or an instantiation, which helps to explain and address 

information system-related problems (Hevner, March, Park, & Ram, 2004). The artefact 

is developed in iterations and then evaluated to produce the wanted outcome. In this 

thesis, an autonomous, ROS-running RC car and the developed autonomous driving SW 

qualify as the artefacts of this DSR. 

There are several different DSR-related frameworks. These generally differ in their 

views on what should be emphasised in the research process and how research should 

be conducted in general. In this thesis, framework presented by Hevner (2007), as 

shown in Figure 1, is adopted in an applied manner, because it fit well the purpose and 

the environment of this DSR. 

 

 

Figure 1. Design science research cycles (Hevner A. R., A Three Cycle View of Design, 2007). 

Hevner’s (2007) DSR cycles were followed to answer the research questions. As stated 

by Hevner and Chatterjee (2010), the cycles of DSR are: 

Relevance cycle. Works as a bridge between the research environment and DSR 

activities.  

Rigor cycle. Works as a bridge between DSR activities and the knowledge base of 

scientific theories and methods, existing expertise and gained experience.  

Design cycle. Iterated by repeating the core activities of building and evaluating the 

design artefacts and processes within the research. 
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The main goal of DSR is to improve the environment throughout the whole process of 

the artefact building and by the built artefact itself. In DSR, a research problem is is 

solved by designing, implementing and studying of an artefact in an iterative way 

(Hevner & Chatterjee, 2010). DSR starts by identifying the problems and the 

opportunities of the environment, by identification of the context of the application 

(Hevner & Chatterjee, 2010). This context is what provides both the design 

requirements and the acceptance criteria for the evaluation of the developed artefact and 

the research itself (Hevner & Chatterjee, 2010). The results of the evaluation reveal 

potential issues in functionality or performance and inform the decision as to whether 

additional iterations of the relevance cycle are required (Hevner & Chatterjee, 2010). 

The knowledge base of theories and methods provide the foundation for rigorous 

research in DSR (Hevner & Chatterjee, 2010). The knowledge base is composed out of 

the prior research, existing artefacts, experiences and expertise (Hevner & Chatterjee, 

2010). The rigor cycle builds on prior research by adding new artefacts and experiences 

gained from the research work and its evaluations in the application environment to the 

existing knowledge base (Hevner & Chatterjee, 2010). 

During the design cycle, artefact is built in an iterative manner, whereas after each 

iteration, the artefact is evaluated and potential refinement feedback is given (Hevner & 

Chatterjee, 2010). Design cycle activities, construction and evaluation, are basically 

being repeated until the constructed artefact does not fulfil the requirements set prior 

(Hevner & Chatterjee, 2010). Both the construction and evaluation must be performed 

with rigor and purpose (Hevner & Chatterjee, 2010). 

The immediate environment of the research was EB’s office in Oulu, where the created 

artefact was to operate. The wider environment included current practices of automated 

driving, automotive SW development and SW engineering approaches. The information 

about ROS and similar projects were gathered from analyses of the literature and related 

projects. The information was used to create the present research’s knowledge base. 

This knowledge was used to write the present thesis’ introduction, and to compile the 

initial set of requirements needed for development of the artefact. From the DSR 

perspective, the literature requirements contributed applicable knowledge to build the 

artefact. As the core part of this research was the development of the artefact, the 

development was done in several cycles to achieve the complete system. Each cycle had 

its own objectives to accomplish. The main cycles of this DSR are described below. 

Cycle 1: Developing the requirements. The objective here was to develop a list of 

requirements for the system. The final list merged requirements extracted from the 

literature and those noted in the discussion with experienced company professionals. 

Cycle completion was evaluated by analysing the validity of the final requirements with 

the company professionals, with consideration for budget and other limitations. 

Cycle 2: Designing the system structure. The objective of this cycle was to design the 

structure of the system’s components. The structure was based on the requirements 

developed in the previous cycle. The completion of the cycle was evaluated by 

confirming that the structure met the requirements and the objectives of the thesis. 

Cycle 3: Developing and testing the system. The objective of this cycle was to use the 

system to perform its features according to the developed system structure. The 

components chosen in the previous cycles were used. The completion of the cycle was 

evaluated by confirming that the system could perform the desired features 

satisfactorily.  



11 

After the cycles were completed, the entire system was evaluated. This was done by 

analysing its performance and capabilities according to the requirements set prior. The 

results of the literature review and reflections on the DSR process allowed the research 

questions to be answered, thus solving the initial research problem. With the research 

questions answered and the research problem solved, the knowledge gained from this 

research may contribute significantly to the knowledge base. 
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3. Prior Research and Background 

In this chapter, the analyses of prior research and related works are presented. These 

analyses introduce the concepts of autonomous driving, ROS and the use of ROS in 

autonomous driving development. 

3.1 Autonomous driving 

The idea of automating vehicles is an old one. People have been trying to automate cars 

and aircrafts since 1930, but the hype for self-driving cars skyrocketed between 2004 

and 2013. To encourage autonomous car technology, the U.S. Department of Defense’s 

research arm, the Defense Advanced Research Projects Agency (DARPA), created a 

challenge called the Grand DARPA Challenge in 2004 (Joseph, 2017). The aim of the 

challenge was to design a vehicle that could drive autonomously through real world 

environment (Joseph, 2017). The winner of the challenge was Team Taran Racing from 

Carnegie Mellon University, and the second placed team was Stanford Racing from 

Stanford University (Joseph, 2017). 

DARPA challenges popularized autonomous driving and pushed the automotive 

companies to start working on implementation of the autonomous driving capabilities in 

their vehicles (Joseph, 2017). Currently, almost all automotive companies are trying to 

develop their own model of a self-driving car. In 2009, Google started to develop its 

own self-driving car, now known as Waymo, which has greatly influenced other 

companies to start autonomous car development on their own (Davies, 2017). 

3.1.1 The concept of autonomous driving 

A car capable of autonomous driving should be able to drive itself without any human 

input (Autonomous car, n.d.). To achieve this, the autonomous car needs to sense its 

environment, navigate and react without human interaction (Autonomous car, n.d.). A 

wide range of sensors, such as LIDAR, RADAR, GPS, wheel odometry sensors and 

cameras are used by self-driving cars to perceive their surroundings. In addition, the 

autonomous car must have a control system that is able to understand the data received 

from the sensors and make a difference between traffic signs, obstacles, pedestrian and 

other expected and unexpected things on the road (Autonomous car, n.d.). 

For a vehicle to operate autonomously several real-time systems must work tightly 

together (Levinson et al., 2011). These real-time systems, as identified by Levinson et 

al. (2011), include environment mapping and understanding, localisation, route planning 

and movement control. For these real-time systems to have a platform to work on, the 

self-driving car itself needs to be equipped with the appropriate sensors, computational 

HW, networking and SW infrastructure (Levinson et al., 2011). 

Autonomous driving has many benefits for humankind. Zakharenko (2016) predicts that 

autonomous transport will reduce the cost of travel, allow children to travel without 

present adults and relieve people from the burden of driving, all of which will result in 

an enhanced travel experience. Zakharenko (2016) adds that the self-driving cars will be 

safer, choose more optimal routes and increase highway throughput. Zakharenko (2016) 

also adds that the cars will be able to park themselves, if needed, far away from their 
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owners, which would reduce the parking costs. Finally, Zakharenko (2016) notes that 

the interest in autonomous driving developers is increasing together with the growth of 

the autonomous driving industry. One of the valuable skills, that those autonomous 

driving developers could have in their pockets, is the knowledge of ROS programming 

(Zakharenko, 2016). 

For a machine to be called a robot, it should satisfy at least three important capabilities: 

to be able to sense, plan, and act (Joseph, 2017). For a car to be called an autonomous 

car, it should satisfy the same requirements (Joseph, 2017). Self-driving cars are 

essentially robot cars that can make decisions about how to get from point A to point B. 

The passenger only needs to specify the destination, and the autonomous car should be 

able to take him or her there safely. To transform an ordinary car into an autonomous 

car requires the addition of sensors and an on-board computer (Joseph, 2017). 

3.1.2 Vehicle autonomy levels 

Joseph (2017) identifies six levels of vehicle autonomy: 

Autonomy Level 0. Vehicles with level 0 autonomy are completely manual, with a 

human driver. Most old cars belong in this category (Joseph, 2017). 

Autonomy Level 1. Vehicles with level 1 autonomy have a human driver, but they also 

have a driver assistance system that can automatically control either the motor or 

steering systems using environmental information (Joseph, 2017).  

Autonomy Level 2. This level qualifies as partial automation, as at this level, the 

vehicle can perform both motor control and steering functions, while all other tasks are 

controlled by the driver (Joseph, 2017). 

Autonomy Level 3. This level is called conditional automation, as at this level, it is 

expected that all tasks are performed by the car autonomously, though it is also 

expected that a human will intervene whenever required (Joseph, 2017). 

Autonomy Level 4. Joseph (2017) states that at this level, there is no need for a human 

driver, as everything is handled by an automated system. This level is called high 

automation and this kind of autonomous system will work in a set type of area under 

specified weather conditions (Joseph, 2017).  

Autonomy Level 5. This level of autonomy is called full automation, as at this level, 

everything is heavily automated and the car can work autonomously on any road in any 

weather (Joseph, 2017). Joseph (2017) notes that at this level of automation, there is no 

need for a human driver at all. 

According to Hughes (2017), the highest level of autonomy currently reached by 

modern cars is level 3. This means that the current technology is not on the level of full 

autonomy, nor on the level of high autonomy, though there is promise from big players 

in the automotive industry that this will change in the near future (Hughes, 2017). 
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3.1.3 Sensors of self-driving vehicles 

According to Joseph (2017), the following sensors should be present in all self-driving 

cars: 

Global positioning system (GPS). Global positioning system is used to determine the 

position of a self-driving car by triangulating signals received from GPS satellites 

(Joseph, 2017). It is often used in combination with data gathered from an IMU and 

wheel odometry encoder for more accurate vehicle positioning and state using sensor 

fusion algorithms (Joseph, 2017). 

Light detection and ranging (LIDAR). A core sensor of a self-driving car, this 

measures the distance to an object by sending a laser signal and receiving its reflection 

(Joseph, 2017). It can provide accurate 3D data of the environment, computed from 

each received laser signal (Joseph, 2017). Self-driving vehicles use LIDAR to map the 

environment and detect and avoid obstacles (Joseph, 2017). 

Camera. Camera on board of a self-driving car is used to detect traffic signs, traffic 

lights, pedestrians, etc. by using image processing algorithms (Joseph, 2017). 

RADAR. RADAR is used for the same purposes as LIDAR. The advantages of 

RADAR over LIDAR are that it is lighter and has the capability to operate in different 

conditions (Jamelska, 2017). While it has longer range, all RADAR categories have a 

limited field of vision (Jamelska, 2017). 

Ultrasound sensors. Ultrasound sensors play an important role in the parking of self-

driving vehicles and avoiding and detecting obstacles in blind spots, as their range is 

usually up to 10 metres (Joseph, 2017). 

Wheel odometry encoder. Wheel encoders provide data about the rotation of car’s 

wheels per second. Odometry makes use of this data, calculates the speed, and estimates 

the car’s position and velocity based on it (Odometry and encoders, 2010). Odometry is 

often used with other sensor’s data to determine a car’s position more accurately. 

Inertial measurement unit (IMU). An IMU consists of gyroscopes and 

accelerometers, with one pair oriented towards each of the axes (Schweber, 2018). 

These sensors provide data on the rotational and linear motion of the car, which is then 

used to calculate the motion and position of the vehicle regardless of speed or any type 

of signal obstruction (Schweber, 2018). 

On-board computer. This is the core part of any self-driving car. As any computer, it 

can be of varying power, depending on how much sensor data it has to process and how 

efficient it needs to be (Joseph, 2017). All sensors connect to this computer, which has 

to make use of sensor’s data by understanding it, planning the route and controlling the 

car’s actuators. The control is performed by sending the control commands such as 

steering angle, throttle and braking to the wheels, motors and servo of the autonomous 

car (Joseph, 2017).  
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3.1.4 SW block diagram of self-driving vehicles 

Figure 2 illustrates the SW block diagram of the standard self-driving car, as presented 

by Joseph (2017). 

 

Figure 2. SW block diagram of a self-driving car (Joseph, 2017). 

Each block seen in Figure 2 can interact with other blocks using inter-process 

communication (IPC) or shared memory, so ROS messaging system works very well 

here (Joseph, 2017). Joseph (2017) identified the following blocks for the SW block 

diagram of a typical self-driving car: 

Sensor interface modules. All communication between sensors and the car is 

performed in this block, as it enables data acquired from sensors to be shared with other 

blocks (Joseph, 2017). The core sensors, from which data is gathered in this block, are: 

LIDAR, RADAR, GPS, IMU, cameras and wheel encoders (Joseph, 2017). 

Perception modules. These modules process perception data from sensors such as 

LIDAR, RADAR and cameras, then segment the processed data to locate different 

objects that are staying still or moving (Joseph, 2017). These modules also help in self-

driving car localisation, relative to the generated map of the environment (Joseph, 

2017). 

Navigation modules. Navigation modules determine the behaviour of the self-driving 

car, as they have route and motion planners, as well as a state machine of car’s 

behaviour (Joseph, 2017). To generate the most optimal route for the car to get from 

point A to point B, navigation modules communicate with perception modules (Joseph, 

2017). 

Vehicle interface. This interface’s goal is to send control commands such as steering, 

throttle and braking to the car after the path has been plotted in the navigation module 

(Joseph, 2017). 

User interface. The user interface provides user controls that can be related to setting a 

destination or looking at the map (Joseph, 2017). Typically, an emergency stop button 

should also be available to the user (Joseph, 2017). 
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Global services. Global services module controls the car’s SW reliability by allowing 

logging and time-stamping of car’s sensor data (Joseph, 2017). 

3.2 Robot Operating System (ROS) 

ROS is not an actual operating system, but rather a meta-operating system. Simply put, 

ROS works on top of other operating system and allows different processes to 

communicate with each other during runtime. As a meta-operating system, ROS offers a 

communications layer, in a structured manner, running on top of the operating systems 

of host computers (Quigley et al., 2009). Usage of ROS is not limited to robotics only, 

as majority of ROS tools are compatible with peripheral hardware and can be used for 

various purposes (Ademovic, 2015). ROS core consists of more than a two thousand 

packages, where each package has it’s specific functionality (Ademovic, 2015).  

Finally, ROS is a set of tools that provides the functionality and services of an operating 

system on a single, or over multiple computers. These services include abstraction of 

the hardware, exchange of messages between processes, management of packages, etc. 

(Thomas, 2014). Ademovic (2015) argues that ROS’s greatest strength is the number of 

available ROS tools (Ademovic, 2015). 

There are many different areas of robotics programming, and for one person or a team 

to know how to solve all the robotic programming problems is almost impossible 

(About ROS 2018). Because of that, robotics programming teams and laboratories need 

to cooperate with each other to create complex robotics solutions (About ROS, 2018). 

ROS is convenient because to create a robust robot software is too demanding for a 

single engineer. The core idea of ROS is to develop a meta-operating system that would 

allow people to cooperate in development of robotics solutions by using standardized 

way of programming, exchange standardized messages, make use of reusable and 

scalable programming modules (About ROS, 2018). Thus, ROS was created with a goal 

that different groups of engineers could collaborate, cooperate and build their solutions 

on top of each other’s work (About ROS, 2018). 

One very important characteristic of ROS is that it is completely open source. ROS was 

designed with the goal of robotic SW reusability in mind. It is stated by Quigley et al. 

(2009) that writing SW for robots is difficult, particularly as the scale and scope of 

robotics grows. Different types of robots can have widely varying HW, making code 

reuse extremely challenging. Further, robot SW is tightly coupled, and the extraction of 

reusable code can be very difficult and ROS is built to overcome these problems 

(Quigley et al., 2009). 

To explain ROS, Quigley et al. (2009) summarised the philosophical goals of ROS 

using the following five statements: 

ROS is peer-to-peer. ROS nodes are units of execution that communicate with each 

other directly or via publish/subscribe mechanisms. 

ROS is tools-based. It uses a microkernel design and several small tools and modules. 

ROS is multilingual. It has support for C++, Python, Octave and LISP. 

ROS is ‘thin’. It uses a catkin build system to provide code segmentation in terms of 

packages and libraries. 

ROS is free and open source. ROS is publicly available under a BSD license. 
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3.2.1 ROS Overview 

ROS uses internet protocol (IP)-based communication to transfer data between ROS 

nodes. This way, ROS splits the robotic SW into ROS nodes that can be executed on 

one machine or on the distributed computer cluster. ROS nodes use publish/subscribe 

channels to exchange information amongst themselves, but they can also provide 

callable services to other nodes. A running ROS system has one master node (roscore) 

that acts as a name server and allows other nodes to find each other to form direct 

connections (Roscore, 2016). This architecture results in very low coupling between 

nodes and promotes their reuse. For example, the same ROS nodes can be used without 

modification in both the actual robot and in the simulator. 

The fundamental concepts of ROS implementation are nodes, messages, topics and 

services. Figure 3 illustrates the role of the ROS master node: roscore, which is the 

essential part of each ROS-based program. Simply put, roscore is a set of core ROS 

nodes that are essential for ROS-based application to be able to run (Roscore, 2016). 

The roscore master node must be running for ROS nodes to communicate (Roscore, 

2016). When roscore is active, nodes can exchange messages by publishing and 

subscribing to certain topics or by directly invoking the services and actions of the other 

nodes. 

 

Figure 3. Illustration of ROS nodes and messages (Clearpath Robotics, 2015). 

Figure 4 illustrates the ROS concepts (nodes, messages and topics) and how they 

correlate. Services, a way of communicating between nodes, do not use 

publish/subscribe mechanism illustrated in Figure 4, but rather directly invoke the 

services of the other node. 

 

Figure 4. Visualisation of ROS concepts (MathWorks, 2018). 
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As identified in the article written by Tellez (2017), ROS has two major drawbacks. 

Roscore is a single point of failure. As roscore must be constantly running for ROS 

program to run, roscore poses a security threat for all ROS-based programs. The rest of 

the system might be running smoothly and written perfectly, but if roscore terminates, 

the whole ROS-based program shuts down too (Tellez, 2017). 

Security issue. The access to ROS network is not secured, which is a big security threat 

for autonomous car’s which are using ROS. The communication among ROS nodes is 

not secured, thus the whole system is vulnerable. Someone who gains the access to car’s 

ROS network can access and alter the car’s behaviour (Tellez, 2017) . 

Tellez (2017) also stated, however, that both drawbacks are being addressed in the 

newest version of ROS—ROS version 2 (Tellez, 2017). Even with the present 

negatives, it can be argued that ROS is a good solution for developing autonomous 

driving. 

There are two ROS versions: ROS version 1, and the new ROS version 2. Further, there 

are different versions of ROS version 1 available. The major ROS version 1 releases to 

date are: Box Turtle (March 2, 2010), C Turtle (August 2, 2010), Diamondback (March 

2, 2011), Electric Emys (August 30, 2011), Fuerte Turtle (April 23, 2012), Groovy 

Galapagos (December 31, 2012), Hydro Medusa (September 4, 2013), Indigo Igloo 

(July 22, 2014), Jade Turtle (May 23, 2015), Kinetic Kame (May 23, 2016) and Lunar 

Loggerhead (May 23, 2017) (Robot Operating System, n.d.). This thesis uses ROS 

version 1 Kinetic Kame because it was the most stable ROS release at the time of 

writing. 

The ROS core concepts—nodes, topics, messages and services—are explained in detail 

in the subchapters below. 

3.2.2 ROS nodes 

In ROS, a node is a process that performs computation and it can be seen as a single 

unit of execution in the ROS ecosystem (Conley, 2012). Nodes can communicate with 

each other using client server–like architecture, where each node can serve both as a 

client and a server at the same time. Once a new node is spawned, it registers with the 

master node. Registration makes the node accessible to the other nodes for 

communication (Conley, 2012). Nodes can communicate between themselves through 

the direct invocation of another nodes’ services or actions or through publish/subscribe 

mechanisms (Conley, 2012). 

As an ROS-based robot control system will usually have many nodes, each node should 

be designed to have small, specific task (Conley, 2012). Nodes should perform their 

own tasks and communicate their results with the other nodes, thus forming the complex 

graph-like structure capable of solving demanding problems. Node-based architecture 

provides ROS with many benefits, where the biggest benefits are fault tolerance (as 

each node is an isolated part of the system) and reduced code complexity compared to 

monolithic systems, which are not decoupled (Conley, 2012). As additional benefit, 

Conley (2012) adds that the implementation details in ROS are well hidden by nodes 

that expose only minimal API. 
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3.2.3 ROS messages 

ROS messages are exchanged between ROS nodes using publish/subscribe mechanism. 

One ROS node would publish the ROS message to certain ROS topic, while the other 

ROS node would subscribe to that ROS topic and obtain the sent ROS message. ROS 

Messages are typically described in text files inside msgs folder under ROS folder 

structure. These text files are following certain standards for description of ROS 

messages. The description format of ROS messages is fairly simple. Each ROS message 

is a data structure which contains primitive types (integers, floats or booleans) or an 

array of primitive types (Messages, 2016). Additionally, ROS message can contain the 

other ROS message or an array of ROS messages as a data type. ROS messages can be 

also exchanged in direct communication between nodes, called ROS Services and in 

this case, the messages should be inside of the srv folder (Messages, 2016). 

3.2.4 ROS topics 

ROS topics are used when ROS nodes are communicating using publish/subscribe 

mechanism (Topics, 2014). Each ROS topic has a unique name, so that ROS nodes can 

publish or subscribe to it. Any node can publish or subscribe to any ROS topic and there 

is no limitation on the number of topics to which a node can subscribe or publish to 

(Topics, 2014). As this communication is not direct, nodes are not aware who are they 

getting the data from or who are they sending the data to (Topics, 2014). 

3.2.5 ROS services 

ROS services are used when there is a need for nodes to communicate directly with 

each other. By using the ROS services, publish/subscribe mechanism is avoided and 

nodes can send requests and replies to each other directly using the defined request and 

reply messages (Conley, 2012). As ROS services are a form of direct communication, 

they are increasing the performance of the system, but at the same time they are 

decreasing the system’s decoupling (Conley, 2012). 
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3.3 Usage of ROS in autonomous driving development 

As it is mature and flexible meta-operating system for robotics programming, ROS is 

highly interesting for development of autonomous driving (Tellez, 2017). Because 

autonomous cars are robot cars, the same type of programs used to control robots can be 

used to control autonomous cars. Tellez (2017) states that ROS allows easy access to 

the data gathered from the sensors, processing of the received data and sending the 

instructions to robot’s actuators. Tellez (2017) adds that, as ROS works as a distributed 

computing system, different ROS nodes can perform different actions and computations 

at the same time. ROS-based program can be running on a single computer or over 

multiple computers because of its distributed nature (Tellez, 2017). 

Another good thing about ROS is that it has been used for development of robots on 

wheels and autonomous driving since it’s creation. Tellez (2017) notes that because of 

that, there are already ready-made solutions for most of the self-driving driving issues. 

ROS is thus a perfect tool for self-driving car development, as all the complex 

algorithms for environment mapping, route planning, obstacle detection, etc. are already 

developed and free to use (Tellez, 2017). 

Additionally, ROS has a big advantage as an option for autonomous driving 

development, as it has tools for visualisation already available (Tellez, 2017). ROS 

provides visualisation tools, which are able to log and present data gathered from the 

car’s sensors in a convenient way (Tellez, 2017). Visualisation tools can also be created 

in a custom manner and added so that they serve for some specific need, which can be 

very handy in certain situations of software development and debugging process 

(Tellez, 2017). 

To develop a simple autonomous driving car using ROS is fairly simple if the developer 

has basic knowledge about autonomous driving and ROS (Tellez, 2017). The car needs 

to have basic mechanical and electrical parts such as wheels, servo, motor and sensors. 

There are many sensors that an autonomous car can have, but to be able to detect 

obstacles, map the environment and plan the route, which are essential actions of a self-

driving cars, the car should have at least ultrasound sensors, LIDAR, inertial 

measurement unit and a camera (Tellez, 2017). If all these sensors are in place, and car 

is running on ROS, it should be fairly easy to program simple car’s autonomous 

behaviour according to Tellez (2017). More professional efforts can begin after buying 

ROS-compatible car and better quality sensors. Because ROS offers an easy and 

standardized way of autonomous cars development, many big software and automotive 

companies are starting to use it (Tellez, 2017). 

Many scientific papers and non-scientific articles have been published about 

autonomous driving, and judging from searches through Google Scholar and Science 

Direct, that number is increasing. This indicates that autonomous driving is a current 

topic of major interest. While relevant scientific papers on ROS may be limited in 

number, there are ample non-scientific articles, highly rated blog posts and intriguing 

books. These resources, as well as the present analysis of related projects, can be very 

helpful in understanding how ROS works and how it can be used to implement 

autonomous driving. Some of the related projects that use ROS in development of 

autonomous driving are analysed in the subchapters below. 
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3.3.1 ADAS Development Vehicle Kit 

This project is fully implemented using ROS and it allows the control of a real car using 

ROS software (ADAS Development Vehicle Kit, 2017). The user can control the car 

using ROS-based controller, through which it is possible take control over the car’s 

brakes, steering, shifting of gears and motor control (ADAS Development Vehicle Kit, 

2017). ADAS Development Vehicle Kit was created with a goal of testing of the 

autonomous driving sensors and it currently supports development of two car models: 

Lincoln MKZ and Ford Fusion (ADAS Development Vehicle Kit, 2017). 

3.3.2 Stanford Racing’s Junior 

The Stanford Racing team created an autonomous car called ‘Junior’. Junior was able to 

finish the DARPA Urban Challenge in 2010, and come to the finish line as second 

(Schaerer, 2016). This required solving of very complex real driving situations, though 

rough terrain, which proves how good of an autonomous car Junior is. It is important to 

mention, that Junior was not fully implemented using ROS, rather it has only one 

software component implemented in ROS – perception libraries (Schaerer, 2016). These 

libraries helped Junior in detection and classification of obstacles on the road, while the 

rest of the system was implemented using inter process communication (IPC) (Schaerer, 

2016). 

This proves that ROS is compatible with other self-driving software implementations 

and is highly decoupled. According to Schaerer (2016), this was exactly one of the main 

goals of ROS. ROS was designed in that way so that the modules, or ROS nodes, are 

kept as small as possible and highly decoupled, so that they could be reused in different 

projects with no need for modifications (Schaerer, 2016). 

3.3.3 AutoRally Project 

The AutoRally project is a good example of self-driving RC car development using 

ROS. This aggressive, well-performing, self-driving RC car was developed at Georgia 

Tech. It was integrated with ROS and designed as a self-contained system that required 

no external sensing or computing (AutoRally, 2017). The developers of AutoRally 

created a very advanced control mechanism that allowed the car to adjust its route and 

control its motor and steering to handle unexpected behaviours, such as drifting. 

AutoRally’s core SW and simulation environment are publicly available, complete with 

tutorials. This open source aspect and code availability is one of the greatest things 

about ROS. Developers of the AutoRally project chose ROS as their software middle 

layer so as not to start from scratch. They have chosen ROS, as it has ready packages 

available for autonomous driving. They were able to make use of this ready made 

packages to set up the project and get the car’s basic functionality up and running 

rapidly. After that, they’ve focus on advanced features which allowed them to develop a 

very fast and powerful RC car (Schaerer, 2016). 

Developers of the AutoRally project stated that, when new workforce was needed for 

the project, they were able to find new people with ROS experience gained from various 

courses and workshops. These newcomers did not have to spend a lot of time learning 

about the AutoRally, but were able to contribute to the project fairly quickly, as they 

have already had generic knowledge of ROS programming (Schaerer, 2016). 
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3.4 Requirements derived from the literature 

Table 1 displays the requirements gathered from the literature review and the analysis of 

related projects. These requirements were gathered from different sources, taking into 

the account that the artefact for design is a self-driving car that must be developed using 

ROS. 

Table 1. The requirements from the literature. 

Requirement ID Requirement description 

L-R1 Self-driving car should have cameras, ultrasound sensors, IMU, LIDAR, RADAR, 

GPS, wheel encoders and an on-board computer (Joseph, ROS Robotics Projects, 

2017). 

L-R2 All self-driving car sensors should be interfaced with ROS (Joseph, ROS Robotics 

Projects, 2017). 

L-R3 Self-driving car should have motor and servo controls interfaced with ROS (Joseph, 

ROS Robotics Projects, 2017). 

L-R4 Self-driving car should be able to detect obstacles (Joseph, ROS Robotics Projects, 

2017). 

L-R5 Self-driving car should be able to create a 3D map of the environment (Joseph, ROS 

Robotics Projects, 2017). 

L-R6 Self-driving car should be able to estimate its position based on its starting location 

(Joseph, ROS Robotics Projects, 2017). 

L-R7 Self-driving car should be able to plan its route from point A to point B (Joseph, ROS 

Robotics Projects, 2017). 

L-R8 Self-driving car should have a user interface for manual user input (Joseph, ROS 

Robotics Projects, 2017). 

L-R9 Self-driving car should log sensor data (Joseph, ROS Robotics Projects, 2017). 

L-R10 Self-driving car should use standardised ROS messages in communication between 

ROS nodes (Joseph, ROS Robotics Projects, 2017). 

It was clear that some of the literature requirements could not be achieved. Those 

requirements were not included in the final requirements. For example, requirement L-

R8, which states that the autonomous car should have a user interface for manual user 

input, was not relevant to EB Hobby Car and therefore discarded. Also, some of the 

sensors listed as required in L-R1 could not be acquired due to budget limitations, so 

this requirement was implemented only in part. 
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4. Design 

With the support of the list of requirements gathered from the literature review and 

analyses of related projects, development of the system could begin. The system was 

developed iteratively in cycles. 

4.1 Developing the requirements 

In the initial phase of the DSR and after compiling the requirements from the literature, 

the study’s author met with EB professionals from the autonomous driving industry to 

discuss the second set of requirements: company requirements. 

4.1.1 Company requirements 

These requirements were compiled during an informal meeting with EB professionals 

from the field of autonomous driving. In the meeting, the author and the gathered 

professionals discussed what must be done to achieve the goal of developing an artefact 

that would answer the research questions. While the author had domain knowledge 

about autonomous driving and ROS from prior research analyses, the company 

professionals had practical experience in building such systems, so their suggestions 

were very useful. The company requirements, derived from purposeful discussions 

between the author and the involved professionals, can be seen in Table 2. 

Table 2. The Company requirements for the autonomous driving artefact. 

Requirement ID Requirement description 

R1 Car should be accessible remotely via another computer on the same network. 

R2 Car’s movement should be manually controllable using keyboard input. 

R3 Car should be able to detect obstacles. 

R4 Car should be able to perform emergency braking if a critically close obstacle is 

detected. 

R5 Car should be able to recognise and react to different colours using the Pi Camera. 

R6 Car should be able to navigate and return to its initial position in reverse steps. 

R7 Car should be able to turn in any compass direction. 

R8 Car should be able to move in a given direction for a given distance, then stop. 

R9 Car should be able to perform a K-turn. 
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R10 ROS launch files should be used to start ROS nodes. 

R11 Car should implement Ackermann steering. 

R12 Vector data of car’s movement from sensors should be collected and logged. 

R13 A URDF model of EB Hobby Car should be created. 

R14 Mapping of the environment should be done by detecting obstacles’ positions in a 2D 

space. 

R15 Car should implement route planning. 

4.1.2 Final requirements 

The final requirements, shown in Table 3, were created as a fusion of the requirements 

compiled from the literature and professional suggestions. In Table 3, car refers to EB 

Hobby Car. From the beginning, it was clear that some of the requirements could not be 

achieved due to time, budget or HW limitations. Some of those, to be discussed later, 

still made the list of final requirements due to their importance. 

Table 3. EB Hobby Car final requirements. 

Requirement ID Requirement description 

R1 Car should have a camera, ultrasound sensors, IMU, LIDAR, RADAR, GPS, wheel 

encoders and an on-board computer. 

R2 Car’s sensors should be interfaced with ROS. 

R3 Car should have a motor and servo controls interfaced with ROS. 

R4 Car should use standardised ROS messages in communication between ROS nodes. 

R5 ROS launch files should be used to start ROS nodes. 

R6 Car should be accessible remotely via another computer on the same network. 

R7 Car’s movements should be manually controllable using keyboard input. 

R8 Car should be able to detect obstacles. 

R9 Car should be able to perform emergency braking if a critically close obstacle is 

detected. 

R10 Car should be able to recognise and react to different colours using the Pi Camera. 

R11 Car should be able to turn in any compass direction. 
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R12 Car should be able to navigate and return to its initial position in reverse steps. 

R13 Car should be able to move in a given direction for a given distance, and then stop. 

R14 Car should be able to perform a K-turn. 

R15 Car should implement Ackermann steering. 

R16 Car should implement route planning.  

R17 Car should log sensor data. 

R18 A URDF model of EB Hobby Car should be created. 

R19 Mapping of the environment should be done by detecting obstacles’ positions in a 2D 

space. 

R20 Car should be able to estimate its position based on its starting location. 
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4.3 EB Hobby Car 

EB Hobby Car is a custom-assembled RC car with an on-board computer and sensors. 

Turnigy SCT 2WD 1/10 Brushless Short Course Truck, shown in Figure 5, was used as 

the mechanical platform. It was chosen for its moderate size—not too big for the office 

environment and not too small to carry all the mounted equipment. This RC car was 

assembled from scratch, as all mechanical and electronic parts, components and sensors 

were wired and mounted on car’s chassis in the EB’s office.  

 

Figure 5.  EB Hobby Car's early stages. 

Figure 5 shows how EB Hobby Car looked in its early stages, with its chassis assembled 

and no electronics mounted. As weeks passed, EB Hobby Car started to look more like 

as shown in Figure 6, with the platform mounted and all the components and sensors 

attached. 

 

Figure 6.  EB Hobby Car with electronics attached. 
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A robot can have either a computer or a microcontroller as a computation and 

processing unit. Powerful computers are used to process data if the robot has sensors 

such as cameras, laser scanners and LIDARs, while microcontrollers are used in all 

kinds of robots for interfacing low-bandwidth sensors and for performing real-time 

tasks (Joseph, 2017). Both the computers and microcontrollers can be found in most 

self-driving cars. 

The most important parts of EB Hobby Car were the components that bridged the car’s 

HW and SW: Raspberry Pi 3 board, Arduino Uno board and Teensy LC board. The 

Raspberry Pi 3 is a microprocessor-based board, while Arduino and Teensy are both 

microcontroller-based boards. Raspberry Pi 3 is an embedded board and a single-board 

computer, which can load and use an operating system as would a standard PC (Joseph, 

2017). It has a system on chip comprised of such components as an ARM processor, 

RAM, GPU and all the standard computer ports (Joseph, 2017). For EB Hobby Car, it 

runs Ubuntu 16.04, with ROS running on Ubuntu.  

An Arduino Uno board is one of the most popular embedded controller boards that can 

be used in self-driving cars and is commonly used in robotics (Arduino Uno Rev3, n.d.). 

In EB Hobby Car is it used to gather sensor data. To gather data about vehicle 

orientation and localisation, EB Hobby Car used a 9 Degrees of Freedom IMU 9250, 

while an Adafruit 16-Channel Pulse Width Modulation (PWM) / Servo HAT for 

Raspberry Pi 3 was mounted on top of EB Hobby Car’s Raspberry Pi 3 to send PWM 

signals to control the motor and servos.  

A Teensy-LC (low-cost) board is a tiny USB-based microcontroller development board 

commonly used to build various embedded solutions (Teensy USB Development Board, 

n.d.). In EB Hobby Car, it was used to handle data from the ultrasound sensors. EB 

Hobby Car used six ultrasound distance sensors, HC-SR04s. These ultrasound sensors 

were placed as shown in Figure 7 to achieve the best obstacle detection area coverage. 

As the car could move forwards and backwards with a maximum steering angle of 45 

degrees, it was decided via experimental methods that the illustrated positions were 

optimum for obstacle detection when six ultrasound sensors were in use. 

 

Figure 7.  EB Hobby Car’s ultrasound sensor placement. 

Two wheel rotation sensors (hall effect sensors) were placed on the car’s two rear 

wheels. Their placement is illustrated in Figure 8. Rotation sensors are used to measure 
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speed and wheel rotation, and they can be used to perform a positioning process called 

‘dead reckoning’. In this process, one sensor is placed on each side of the car to 

compensate for different distances driven by the outer and inner wheels in a curve. The 

direction of rotation is derived from motor input. 

 

Figure 8. EB Hobby Car’s wheel rotation sensors placement. 

EB Hobby Car used a Turnigy 1300mAh 2S 20C Lipo Pack battery to power itself. 

During development and testing, the car often had to be running; because of this, two 

batteries were used. One was always kept fully charged as a backup while the other was 

in use. For image processing, EB Hobby Car used a Raspberry Pi Camera Board v2 - 8 

Megapixels. It was mounted statically to have a view of the front of the car, as shown in 

Figure 9. 

Figure 9 illustrates the final look of EB Hobby Car, with its main HW components 

marked. Here, the position and placement of the main HW components are visible. As 

described, the final EB Hobby Car was equipped with six ultrasound sensors (three in 

the front and three in the rear), two rotation sensors (one on the left and one on the right 

rear wheel)—which also detected rotation direction—an IMU (containing a 3D 

compass, acceleration, gyro and thermometer) and the Raspberry Pi camera. 

 

Figure 9.  Final look of EB Hobby Car with marked HW. 
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4.4 Designing the system structure 

Figure 10 illustrates the network setup required for the development and control of EB 

Hobby Car. To be able to connect to the car’s Raspberry Pi via Secure Shell (SSH) 

protocol, while developing and testing, the Raspberry Pi and a remote PC had to be on 

the same network. With the EB network closed, this required another network to be set 

up; thus, 4G and a mobile hotspot were used. SSH connection was necessary during 

development because had any cables been attached to the car, it would not have been 

able to move freely. 

 

Figure 10.  Network setup for development and control of EB Hobby Car. 

The system architecture of EB Hobby Car was devised from the requirements shown in 

Table 3. All the data acquired by the sensors had to be made available for the on-board 

computer, Raspberry Pi. This was achieved by writing low-level drivers, which 

understood data coming from the sensors and made it available for high-level 

processing. Low-level drivers for car’s movement were also developed. This made 

high-level development based on the ROS possible. 

Figure 11 illustrates how the sensors, motor and steering interfaced with the low-level 

drivers and the ROS. Each ROS node communicates with the other nodes by displaying 

the ROS nodes, ROS topics and ROS messages exchanged between them. The ROS 

master node, roscore, is always active and responsible for registering the other nodes 

and topics in the running ROS ecosystem.  

The IMU talker node is an ROS node responsible for gathering data from the IMU unit, 

processing it and publishing it to IMU topics. The movement listener node is subscribed 

to the IMU topics and retrieves the needed data to decide the car’s next movement. An 

example of the type of data that comes from the IMU talker node is heading data, 

expressed in degrees from 0 to 360, which allows the car to know which way it is 

heading according to the Earth’s magnetic field. 
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The camera node is responsible for retrieving the raw video stream from the Pi Camera, 

processing it and publishing it to movement topics. The movement listener node is 

subscribed to these topics and reacts accordingly. For example, if the camera detects the 

colour red, the car should stop; if the camera detects the colour green, the car should 

move forwards. The movement listener node is the main node for planning the car’s 
movement. It communicates directly with low-level car-control drivers. 

The sensor interface node is the main ROS node for collecting sensor data from the 

ultrasound and rotation sensors. It communicates directly with low-level drivers which 

retrieve sensor data from the HW. 

 

Figure 11.  ROS-level architecture of EB Hobby Car. 

4.5 Development 

Low-level drivers between HW and SW were written in Python. Python scripts 

sensorhub.py and car_control.py control low-level communications between the car’s 

HW and SW. The purpose of sensorhub.py is to read signals from the USB and serial 

ports, which come from sensors, then process those signals and provide understandable 

data to the ROS nodes. The purpose of car_control.py is to receive high-level 

commands from the ROS nodes about the car’s movement, process them and send those 

commands as low-level signals to the motor and servo so that the car’s movement is 

performed. After low-level communication was established, a ROS Kinetic was 

installed on Raspberry Pi 3 to run Ubuntu 16.04. The main task then was to interface all 

the sensors to ROS and begin high-level development. 
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4.5.1 ROS on EB Hobby Car 

In Figure 12, a ROS folder structure of EB Hobby Car is shown. The root folder is 

called catkin_ws, where catkin is ROS’s build system and ws stands for ‘workspace’. In 

the launch folder, the launch file eb.launch launches all ROS nodes automatically. The 

ROS package car_interface is located in the src folder. Also on this level is one 

CMakeLists.txt file, responsible for building the entire workspace. Each ROS package 

has its own CMakeLists.txt file responsible for building the respective package on its 

own. ROS package car_interface is the only package used by EB Hobby Car. It 

contains all the ROS nodes and messages for the car’s behaviour. 

 

Figure 12.   ROS folder structure of EB Hobby Car. 

ROS uses build system called catkin, which is based on CMake. They have almost the 

same workflow, but catkin has some features which are suitable for building of ROS 

projects. It is created with a goal of simplifying building of ROS programs, by adding 

features like automatic finding of packages and building of inter-dependent projects at 

the same time (Woodall, 2018). 

4.5.2 ROS Development 

ROS development was done in iterations, where each iteration had specific objectives 

tested at the end of the iteration. Development started simply, and each iteration built on 

the results of the previous one to increase the complexity of the developed system.  

The ROS environment offers a very good simulation tool, Gazebo; it is recommended 

that ROS development use the simulator. To simulate robot behaviour, a 3D model of 

the robot must be created. However, during the development of EB Hobby Car, Gazebo 

simulator was not used. Rather, development was done using the real HW due to EB 

Hobby Car’s accessibility.  



32 

Iteration 1: Manual control  

The goal of the first iteration was familiarisation with the ROS environment and ROS 

programming by developing the manual control of EB Hobby Car via the keyboard. The 

following ROS messages, topic and nodes were written and used in this iteration: 

ROS message Movement: 

# command: forward, reverse, left, right, brake, reset 

string command 

Here we see ROS topic /movement, ROS node movement_talker (which publishes to 

the /movement topic) and ROS node movement_listener (which subscribes to the 

/movement topic). 

Figure 13 illustrates the ROS node movement_talker running in the terminal where the 

user has the ability to publish movement messages to the /movement topic by pressing 

certain keyboard buttons. 

 

Figure 13.   Movement talker node running in the terminal. 

Below is a code snippet from the start of the movement_talker_node main method, 

where a ROS node prepares to publish data to a ROS topic: 

def main_loop(): 

 rospy.init_node('movement_talker_node') 

 pub=rospy.Publisher('movement_talker', Movement, queue_size=1) 

 print(',---------------------------------------------') 

 print('| Enter command:                              |') 

 print('| w = throttle forward / s = throttle reverse |') 

 print('| a = steer left / d = steer right            |') 

 print('| b = break                                   |') 

 print('| r = center steering                       |') 

 print('| any other key = kill switch, STOP!          |') 

 print('| q = STOP and quit script                    |') 

 print(' ---------------------------------------------') 

while True:  

  ch = getin() 

  movement_msg = Movement() 
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Iteration 2: Obstacle detection and emergency braking 

After manual control was successfully implemented and tested, the second iteration 

began. In this iteration, obstacle detection and emergency braking were implemented. 

This implementation showed that the connections between sensors, ROS processing 

nodes and car control parts were working smoothly, making it an important step in EB 

Hobby Car’s development. The following ROS messages, topic and nodes were written 

and used in this iteration: 

ROS message Distance: 

# 0 .. MAX_NO_OF_SONAR-1 

uint8 sensor 

# Measurements in microseconds (time to hear echo @ speed of sound) 

uint16 distance 

# Time when data was measured 

uint32 when 

Here we see the ROS topic /distance, ROS node sensor_interface (which publishes to 

the /distance ROS topic) and ROS node movement_listener (which subscribes to the 

/distance ROS topic). 

Figure 14 shows how the movement_listener_node prints to the console when a 

critically close obstacle is detected. The movement_listener_node is subscribed to the 

/distance topic; when a distance message is received, the node calculates whether the 

distance is critical. If the obstacle is critically close, emergency braking is performed 

and further movement in that direction prohibited. 

 

Figure 14. Movement listener node prints to the console when an obstacle is detected nearby. 
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In the main loop, the movement_listener_node subscribes to four different topics and 

handles them in separate call-back functions, as seen from the code snippet below. This 

code snippet also illustrates how the ROS node subscribes to a ROS topic.  

def movement_listener(): 

rospy.init_node('movement_listener_node',anonymous=True) 

rospy.Subscriber(MOVEMENT_TOPIC_NAME,Movement,movement_cb) 

rospy.Subscriber(DISTANCE_TOPIC_NAME,Distance,distance_cb) 

rospy.Subscriber(WHEEL_TOPIC_NAME,Wheels,wheels_cb) 

rospy.Subscriber(IMU_TALKER_TOPIC_NAME,ImuMessage,imu_message_cb) 

rospy.spin() 

 

An example handler code could look like this: 

def imu_message_callback(data): 

global heading, roll, pitch 

heading = data.heading 

roll = data.roll 

pitch = data.pitch 

print('Heading={0:0.2F}Roll={1:0.2F}Pitch={2:0.2F}'.format(hea

ding, roll, pitch)) 

Iteration 3: Pi camera colour detection 

The goal of the third iteration was to use the Pi camera to detect colours. The idea was 

that, in future work, this function would be used to detect traffic light colours and other 

traffic signals. The successful implementation of this iteration provided the proof of 

concept that the Pi camera can be interfaced with the ROS and used for image 

processing.  

 

Figure 15.  Screenshot from the video obtained by the ROS node camera_talker. 
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In Figure 15, a screenshot from the video obtained by the ROS node camera_talker can 

be seen. The following ROS messages, topic and nodes were written and used in this 

iteration: 

ROS message Movement: 

# command: forward, reverse, left, right, brake, reset 

string command 

Here we see the ROS topic /movement, ROS node camera_talker (which publishes to 

the /movement ROS topic) and the ROS node movement_listener (which subscribes to 

the /movement ROS topic). 

Iteration 4: Wheel rotation sensors 

In the fourth iteration, wheel rotation sensor data was used to obtain information about 

how far each wheel travelled. First, wheel odometry calibration was performed. 

Calibration is required in odometry to reduce navigational errors. The main parameter 

for calibration is the measure of ‘distance per encoder ticks of the wheels’ (Joseph, 

2015). Joseph (2015) explains this measure as the distance traversed by the car’s wheel 

during each encoder tick.  

 

Figure 16. EB Hobby Car in the process of odometry calibration. 

The process of odometry calibration for EB Hobby Car can be seen in Figure 16. To 

calibrate the car, it was driven for a fixed distance (e.g. as illustrated in Figure 16, EB 

Hobby Car drove for one meter) while the encoder counted the left and right wheels. 

The following equation gave an average count per millimetre: 

Counts per millimetre = (left counts + right counts)/2)/ total 

millimetre travelled 
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The following ROS messages, topic and nodes were written and used in this iteration: 

ROS message Wheel: 

# Two records, one for left and one for right wheel 

OneWheel left 

OneWheel right 

ROS message OneWheel: 

# Pulses per second (lowest possible speed is 20 seconds for one wheel 

revolution) 

uint16 speed 

# Enumeration rotDirection is used 

uint8 direction 

# Timestamp for measurement 

uint32 when 

# Odometer when direction changed 

uint32 dist 

# Absolute distance travelled 

uint32 dist_abs 

Here we see the ROS topic /teensy_wheel, the ROS node sensor_interface publishes to 

/teensy_wheel topic and the ROS node movement_listener subscribes to the 

/teensy_wheel topic. 

In Figure 17, data received from the /teensy_wheel topic can be seen printed in the 

movement_listener node. 

 

Figure 17.   Data from /teensy_wheel topic received and printed in movement_listener node. 
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Iteration 5: 3D model of EB Hobby Car 

The ROS grants access to a whole system of tools to support robot development. Within 

this system are simulation tools such as Gazebo, which allow for robotic SW to be 

developed without running it in actual HW. 

Use of these simulation tools requires a model of the robot. The model can be defined in 

varying levels of detail, but at minimum it should specify all the model’s moving parts 

(links) and how they are connected (joints). The visual aspects of the model are less 

relevant for the simulation, though it is possible to include purely visual elements so 

that the model looks like the real thing. 

The most common way for modelling when using an ROS is unified robot description 

format (URDF). A URDF ROS package has XML specifications upon which one can 

choose model of the robot, sensors, scenes, et cetera (Coleman, 2014). Simply put, 

when using URDF, one can describe and model one’s own autonomous car using XML-

like syntax understood by the ROS. URDF allows the basic physical structure of the 

robot, as well as its visual look and feel, to be modelled (Gazebosim, n.d.). Gazebo 

actually uses a more comprehensive modelling format called Simulation Description 

Format (SDF), but the recommendation is to start with URDF, because it works with 

most of the available ROS tools and has the best ROS support (Gazebosim, n.d.). URDF 

can be converted to SDF (Gazebosim, n.d.). 

The following piece of XML code is a snippet from an rccar.urdf file used to describe 

EB Hobby Car and create the car’s model. 

    <!-- Front left wheel --> 

    <link name="front_left_wheel"> 

        <collision> 

            <origin rpy="1.5708 0 0"/> 

            <geometry> 

                <cylinder length="0.04" radius="0.055"/> 

            </geometry> 

        </collision> 

        <visual> 

            <origin rpy="1.5708 0 0"/> 

            <geometry> 

                <cylinder length="0.04" radius="0.055"/> 

            </geometry> 

            <material name="black"/> 

        </visual> 

        <inertial> 

            <origin rpy="1.5708 0 0"/> 

            <mass value="0.1"/> 

            <inertia  

                ixx="8.896e-5" ixy="0.0" ixz="0.0" 

                iyy="8.896e-5" iyz="0.0" 

                izz="1.515e-4"/> 

        </inertial> 

    </link> 

    <gazebo reference="front_left_wheel"> 

        <material>Gazebo/Black</material> 

    </gazebo> 

The visualisation shows the joints and their local coordinate axes, which makes it easy 

to see whether they are located where expected. The model has all the basic moving 

parts and joints that EB Hobby Car has, and its dimensions should be roughly correct. 
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The goal was to make the model move in Gazebo to enable the autonomous driving 

algorithms to be developed in parallel with the actual car. 

 

Figure 18.   RVIZ visualisation of a simple model of EB Hobby Car, done in URDF. 

ROS Visualisation (RVIZ) is a way of displaying sensor data and robot’s state 

information from the ROS in a 3D manner. Figure 18 shows an RVIZ visualisation of a 

simple model of EB Hobby Car in URDF. 

Iteration 6: Localization and mapping 

An autonomous car cannot navigate through an unknown environment without sensors 

and an on-board computer which would make use of acquired sensor’s data to 

understand the environment. Different kinds of sensors (such as sonars, odometers, 

LIDAR, IMU, GPS and cameras) are used to make an autonomous car capable of 

sensing a wide range of environments (Zaman, Slany, & Steinbauer, 2011). A map of 

the environment is a basic need of an autonomous car to perform services like moving 

from point A to point B (Zaman, Slany, & Steinbauer, 2011). While it is moving 

through an environment, the car should also be aware of its own location in that 

environment, and its own dimensions, to be able to solve navigation and route planning 

issues successfully (Zaman, Slany, & Steinbauer, 2011). 

Mapping of the environment. Environment mapping is done by creating the 2D model of 

the environment surrounding a car using its sensors and mapping algorithms (Zaman, 

Slany, & Steinbauer, 2011). The created map is then used for car’s localisation, 

navigation and route planning. 

Localisation. Car localisation tells the car where it is in relation to its environment. 

Localisation uses odometry, laser data and a map (Zaman, Slany, & Steinbauer, 2011). 

The localisation algorithms play a crucial role in the positioning. As input, localisation 

algorithm requires a global map with occupied cells, a LIDAR, RADAR or ultrasound 

sensor sweep and, optionally, an estimated location, which is usually obtained using the 
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dead reckoning algorithm (Zaman, Slany, & Steinbauer, 2011). If the estimated location 

is not available, localisation will be performed using the full scale map, otherwise 

localisation will be restricted to around the estimated location (Varveropoulos, 2005). 

Dead reckoning. Dead reckoning is a location estimation algorithm that uses odometry 

information. This is a is a very common approach to solving the localisation problem. 

Even though it is fast and relatively easy to implement, dead reckoning is usually used 

as a secondary source of location information, as it can be inaccurate (Varveropoulos, 

2005). It is often combined with other localisation methods, to get more accurate results. 

When combined with range sensor–based localisation algorithm, dead reckoning can 

provide much better localisation results close to real time (Varveropoulos, 2005). 

The ROS platform could greatly shorten the robot development cycle, and simultaneous 

localisation and mapping (SLAM) could easily be realised using ROS (An, Hao, Liu, & 

Dai, 2016). This is possible because ROS already has ready packages for this purpose 

called gmapping. By using this package, ROS-based self-driving car could simply map 

the environment by using LIDAR sensor (Gmapping, n.d.). 

As EB Hobby Car was not designed with an LIDAR, use of this ready ROS package 

was not possible. An alternative solution was to use ultrasound sensors to perform 

SLAM. The problem was that mapping an environment using ultrasound sensors 

outputs much poorer results than LIDAR mapping. This is because the ultrasound 

sensors could pick up the returning signal from the other ultrasound sensor, which 

would give inaccurate results (Mapping with sonar data, n.d.). Because of this, it is very 

important how and where ultrasound sensors are placed. Additionally, bandwidth of 

ultrasound sensors is smaller than of LIDAR sensors (Mapping with sonar data, n.d.). 

Nevertheless, mapping of the environment using ultrasound sensors is in theory 

possible, but was beyond the scope of this DSR. In the future, EB Hobby Car may be 

equipped with LIDAR. 

Iteration 7: Route planning  

Once the environment map is in place and the car can locate itself with success, what is 

left to do is to plan a route from point A to point B within that environment. Route 

planning is one of the core functions of a self-driving car, where the car, ideally, finds 

the shortest or optimal path between two points.  

This process can be done using different route planning algorithms, depending on the 

implementation and situation. If the whole map is already known, and will not change, 

algorithms like Dijkstra or A* can be implemented to manage the navigation from point 

A to point B (Paden, Michal , Sze , Yershov, & Frazzoli, 2016). Dijkstra’s algorithm is 

one of the simplest algorithms which allows the car to find the shortest path from point 

A to point B in a graph-like structure of the environment map (Feik, 2017). A* 

algorithm requires a cost estimation along with the actual distance and the marked node, 

is more efficient than Dijkstra’s algorithm and works better for occupancy grid maps. 

(Paden, Michal , Sze , Yershov, & Frazzoli, 2016).  

More complex algorithms, for example D* and Rapidly-exploring Random Trees 

(RRT), are needed if the car needs to react to the changing environment map (Paden, 

Michal , Sze , Yershov, & Frazzoli, 2016). D* algorithm is an extension of the A* 

algorithm, which solves the issue of demanding recalculations that occur when car faces 

unexpected obstacles in the path (Paden, Michal , Sze , Yershov, & Frazzoli, 2016). D* 

is designed to efficiently recalculate the shortest path every time the graph-like map 
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changes using information from previous search efforts (Paden, Michal , Sze , Yershov, 

& Frazzoli, 2016). RTT algorithm is the most efficient algorithm for route finding in 

large environment maps (Akgun & Stilman, 2011). The RTT algorithm aims to 

randomly explore a large area of the search space quickly with iterative refinements 

(Akgun & Stilman, 2011). 

Iteration 8: Creation of ROS launch files 

The following launch file describes the eb_imu.launch ROS launch file used to start the 

ROS nodes in EB Hobby Car: 

<?xml version="1.0"?> 

<launch> 

<!-- Sensor Interface Node --> 

<node pkg="car_interface" type="sensor_interface.py" 

name="sensor_interface_node" output="screen" launch-prefix="xterm -e" 

/> 

<!-- Custom IMU Node --> 

<node pkg="car_interface" type="imu_talker.py" name="imu_talker_node" 

output="screen" launch-prefix="xterm -e" /> 

<!-- Movement Listener Node --> 

<node pkg="car_interface" type="movement_listener.py" 

name="movement_listener_node" output="screen" launch-prefix="xterm -e" 

/> 

<!-- Movement Talker Node --> 

<node pkg="car_interface" type="movement_talker.py" 

name="movement_talker_node" output="screen" launch-prefix="xterm -e" 

/> 

</launch> 

This is launch file, eb.launch, launches when the command roslaunch eb.launch is 

executed in the terminal. After the command is executed, the ROS master node starts 

automatically and nodes sensor_interface_node, movement_listener_node, 

imu_talker_node and movement_talker_node, all from the car_interface ROS package, 

start automatically in separate terminals. Launch files are very useful, as without them, 

each node would have to be started manually in a separate terminal. Doing so would 

require much time, especially during development and testing when the whole system 

must restart frequently. 
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The launch file eb_camera.launch includes the launch file eb_imu.launch, which means 

that it does the same as eb_imu.launch and spawns the camera_talker ROS node. Figure 

19 illustrates the desktop after execution of the roslaunch eb_camera.launch command. 

As shown, the sensor_interface_node, imu_talker_node, movement_listener_node, 

movement_talker_node and picamera_color_decetion_node are launched in separate 

terminals and communicate using defined topics and messages. 

 

Figure 19.   Full-screen screenshot after launch file execution. 



42 

5. Evaluation 

This section presents the evaluation of the developed artefact against the pre-determined 

requirements. This involved recording the achievement status of each requirement 

identified in Chapter 4, then an evaluation rationale for each reported achievement 

status.  

Adherence to the requirements was noted as follows: 

R1: Car should have camera, ultrasound sensors, IMU, LIDAR, RADAR, GPS, wheel 

encoders and an on-board computer. 

Status: Partially achieved 

Evaluation: EB Hobby Car had all the described sensors except LIDAR, RADAR and 

GPS due to budget limitations. 

R2: Car’s sensors should be interfaced with ROS. 

Status: Achieved 

Evaluation: All the available sensors were interfaced with ROS. 

R3: Car should have motor and servo control interfaced with ROS. 

Status: Achieved 

Evaluation: EB Hobby Car’s motor and servo control were interfaced with ROS. 

R4: Car should use standardised ROS messages in communication between ROS nodes. 

Status: Partially achieved 

Evaluation: One part of the ROS messages exchanged between the ROS nodes of EB 

Hobby Car was that of standardised ROS messages, while others were custom ROS 

messages. Because EB Hobby Car was not a standardised ROS robot and its HW not 

standardised ROS HW, custom ROS messages were necessary. 

R5: ROS launch files should be used to start ROS nodes. 

Status: Achieved 

Evaluation: EB Hobby Car used launch files to start ROS nodes. Launch files created 

and used were: eb_imu.launch and eb_camera.launch. 

R6: Car should be accessible remotely via another computer on the same network. 

Status: Achieved 

Evaluation: A remote PC was able access EB Hobby Car’s Raspberry Pi 3 via SSH. 

They were both set to the same network, where EB Hobby Car was assigned a static IP 

address. 

R7: The car’s movement should be manually controllable using keyboard input. 

Status: Achieved 

Evaluation: ROS node movement_talker_node accepted keyboard input via the 

terminal and sent the data to car_control.py driver, which then controlled the car’s 

movement. 
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R8: The car should be able to detect obstacles. 

Status: Achieved 

Evaluation: EB Hobby Car was able to detect obstacles using its six ultrasound sensors 

at the front and rear of the car. 

R9: The car should be able to perform emergency braking if a critically close obstacle is 

detected. 

Status: Achieved 

Evaluation: When the ultrasound sensors detected a critically close obstacle, 

emergency braking was performed and further movement in the direction of that 

obstacle was prohibited. 

R10: The car should be able to recognise and react to different colours using the Pi 

Camera. 

Status: Achieved 

Evaluation: Data obtained from the Raspberry Pi camera was processed by ROS node 

picamera_color_detection.py, which then published the processed data to the 

/movement ROS topic custom ROS message, Movement. When a red colour was 

detected, the car performed emergency braking; when a green colour was detected, the 

car moved forward. This is proof that the Raspberry Pi camera can be used for image 

processing with ROS. 

R11: The car should be able to turn in any compass direction. 

Status: Achieved 

Evaluation: Using the ROS node imu_talker_node, which published the ROS message 

imu_message to the ROS topic imu_topic, the car received heading directions from the 

IMU unit. This data was converted to floats ranging from 0.0 to 360.0 to represent angle 

degrees. Using this data, the car knew in which direction it was to head. When 

requested, the car could use this data to turn in the desired direction. When instructed to 

turn at a certain angle, ROS node movement_listener_node first calculated whether it 

was closer to steer left or right to reach the desired angle, then executed the command 

and moved the car. 

R12: The car should be able to navigate and return to its initial position in reverse steps. 

Status: Not achieved 

Evaluation: Not achieved due to time limitations.  

R13: The car should be able to move in a given direction for a given distance, and then 

stop. 

Status: Achieved 

Evaluation: Achieved by implementing functions which controlled the car’s turning to 

a given direction and moving for a given number of meters. Orientation data received 

from the IMU unit had to be transformed to a float value between 0 and 360 degrees, 

and odometry data received from the wheel encoders had to be calibrated. 

R14: The car should be able to perform a K-turn. 

Status: Achieved 

Evaluation: Achieved by implementing the following algorithm: steer in one direction 

and go reverse for 90 degrees, then steer in the opposite direction and move forward for 

90 degrees. 
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R15: The car should implement Ackermann steering. 

Status: Not achieved 

Evaluation: Not achieved due to time limitations. 

R16: The car should implement route planning. 

Status: Not achieved 

Evaluation: As environment mapping was not completed, route planning could not be 

implemented. 

R17: The car should log sensor data. 

Status: Achieved 

Evaluation: EB Hobby Car logged all its received sensor data. 

R19: An URDF model of EB Hobby Car should be created. 

Status: Achieved 

Evaluation: An URDF model of EB Hobby Car was created and visualised in RVIZ. 

Both the URDF code snippet and RVIZ image are shown in Chapter 4. 

R19: Mapping of the environment should be done by detecting obstacles’ positions in a 

2D space. 

Status: Partially achieved 

Evaluation: The full implementation was not achieved, as explained in Chapter 4. To 

implement it properly would have required LIDAR. An experimental implementation 

using ultrasound sensors was partially completed as proof of concept. 

R20: The car should be able to estimate its position based on its starting location. 

Status: Achieved 

Evaluation: Using wheel odometry and dead reckoning, the car was able to locate itself 

in correspondence to the starting location. 
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6. Discussion 

The objective of this research was to determine how ROS can be used in developing 

autonomous driving and to identify the possible benefits and challenges of such 

implementation. This research problem was approached through the DSR methodology. 

System development was divided into cycles, and the development process was done 

iteratively. The completed system was evaluated against the requirements identified in 

Chapter 4. The results of the evaluation revealed that most of the requirements were 

met, with few exceptions due to lack of HW and other limitations to be discussed in this 

section (ways to fulfil the requirements will also be discussed).  

In Figure 20, EB Hobby Car is shown in action. By the end of the experiment, EB 

Hobby Car reached a level of automation, thereby demonstrating the design as a valid 

prototype to answer the DSR’s research questions. The two research questions 

established at the beginning of the thesis are answered and discussed below. 

 

Figure 20. EB Hobby Car in action. 

This DSR was conducted to answer the research questions asked in Chapter 1. The 

answer to RQ1, how can ROS be used in the development of autonomous driving, was 

addressed by the design part of this experiment. The autonomous RC car was developed 

using ROS per the steps described in the DSR: collect requirements, assemble 

mechanical and electronic parts, connect sensors and interface them to the ROS, 

implement motor and servo control and set up obstacle detection algorithms, 

environment mapping, localisation and route planning. This complex task was 

simplified by ROS, which provided tested and reusable SW components for 

autonomous driving. 

The answer to RQ2, what are the benefits and challenges of using ROS to develop 

autonomous driving, came from analysing the present literature review and from the 
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author’s observations during the DSR. Unlike conventional SW development platforms, 

ROS focuses on usability and ease of installation, and has the advantage of being free 

and open source (An, Hao, Liu, & Dai, 2016). However, a developer still must have at 

least basic knowledge of distributed computing and programming to undertake designs 

related to automated driving. 

The main benefits of ROS identified from the literature and present experiment are that 

ROS as a robotic programming platform is peer-to-peer, tool-based, multi-lingual, 

‘thin’, free and open source (Quigley et al., 2009). These benefits are discussed in 

Chapter 3. Further, ROS includes several ready-made packages for autonomous driving 

that can be used off-the-shelf, making it an easy choice for autonomous car 

development. Additionally, there are ready-made visualisation tools which make ROS 

development of self-driving cars easier (Tellez, 2017). 

As for identified challenges, it is already mentioned in Chapter 3 that ROS has a single 

point of failure and that ROS network is not secure (Tellez, 2017). As these security 

threats pose a big vulnerability of car’s software, they are being addressed in ROS 

version 2 (Tellez, 2017). Another challenge of using ROS in development of 

autonomous cars, is that it requires solid C++ or Python programming skills, as most of 

the ROS packages are written in those languages. Additionally, ROS also requires basic 

Linux knowledge, being that ROS is Linux-based meta-operating system. Because of 

this, ROS learning curve might be steep for some developers.  

A search of the related literature did not reveal a structured set of requirements for 

developing autonomous driving. This thesis responds to this gap by offering a structured 

set of requirements for developing an autonomous RC car using ROS. By following 

these requirements, an autonomous RC car can be developed using relatively cheap HW 

equipment and open-source SW such as ROS. The described design process thus 

contributes to the existing knowledge base on the topic. Further, the present study’s 

identification of the benefits and challenges of using ROS in autonomous driving 

development represents yet another contribution of this research to the knowledge base.  

The complete SW of EB Hobby Car is publicly available via the present author’s 

GitHub account. The name of the GitHub project is ros_autonomous_car. It is 

published as an open-source project under Massachusetts Institute of Technology (MIT) 

licensing. As the MIT license is a permissive free SW license, reusability is very liberal 

(MIT License, n.d.). As such, the EB Hobby Car’s SW may be freely distributed, 

modified and run, so long as credit is attributed to the author. This SW also enriches the 

existing knowledge base on the topic. 

As for limitations, budget constraints meant that some of the HW was not acquired, 

such as the LIDAR sensor. The lack of LIDAR limited the development of the EB 

Hobby Car, as explained in Chapter 4. Further, the author did not have experience 

developing autonomous driving using conventional SW development platforms to 

compare with the current ROS-based development. As such, the present study’s 

implementation could only be evaluated against the requirements set in Chapter 4. 

For the EB Hobby Car to be fully autonomous, it will require proper environment 

mapping using LIDAR and route planning algorithms. Ways to implement these 

features are described in Chapter 4. This should be done in future works, and all 

encountered challenges (or potential challenges) should be reported. 
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7. Conclusion 

The purpose of this thesis was to research how ROS can be used in the development of 

autonomous driving and to gain insight into the benefits and challenges of such an 

approach. The research used the DSR methodology to test the use of ROS in 

autonomous driving by implementing the system as described in Chapter 4.  

The devised system was an ROS-based autonomous RC car. Its implementation drew 

from the requirements presented in Chapter 4, which were developed from the literature 

and company requirements. The DSR’s design phase included planning the desired 

system’s structure and workflow, acquiring components, assembling the mechanical and 

electronic parts of the car and developing iterative SW using ROS. The following 

evaluation assessed how well the system met the design requirements. 

Results show that ROS-based autonomous driving is both a feasible and a working 

concept. This thesis shows how ROS can be used to develop autonomous cars by 

following the steps in this DSR, thereby answering the first research question. Chapter 6 

reported on the benefits and encountered challenges when using ROS in autonomous 

driving development during this DSR, thereby answering the second research question. 

This research will assist in the complex task of coping with the issues of autonomous 

driving. Though the present DSR-developed artefact was a small RC car, its main 

technical issues were the same as those of a full-scale car. As such, the problems, 

solutions, benefits and challenges discussed in this DSR are viable for ROS-based 

autonomous cars of any size and environments of any type. 

In this thesis, more benefits were observed than challenges regarding the use of ROS in 

developing autonomous driving. Research on this topic should continue, as it can 

benefit the autonomous driving community, both academic and commercial. 
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