
Development of Membrane, Plate and

Flat Shell Elements in Java

by

Kaushalkumar Kansara

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute & State University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Civil Engineering

Approved:

Dr. Kamal B. Rojiani, Chairman

________________________ ________________________

 Dr. W. S. Easterling Dr. C. L. Roberts - Wollmann

May, 2004

Blacksburg, Virginia

Key Words: Finite Element Analysis, Membrane, Plate, Flat Shell, Java.

Development of Membrane, Plate and

Flat Shell Elements in Java

by

Kaushalkumar M. Kansara

Committee Chairman: Kamal B. Rojiani
Charles E. Via, Jr. Department of Civil Engineering
Virginia Polytechnic Institute and State University

(ABSTRACT)

The development of triangular and quadrilateral membrane, plate and shell

elements in Java using the object oriented programming technique is presented. The

membrane elements developed are the constant strain triangle (CST) element and the four

node isoparametric quadrilateral membrane element. The plate bending elements

developed are the discrete Kirchoff triangular (DKT) element and discrete Kirchoff

quadrilateral (DKQ) element. The flat shell elements are developed by super imposing

the stiffness of the membrane element and plate bending element. A finite element

analysis program is also developed to check the accuracy of the developed elements. The

program is developed using the object oriented programming approach as an alternative

to traditional procedural programming. Several test structures are analyzed using the

developed program for each developed element and the results are compared with those

obtained from the commercial finite element analysis program SAP 2000. The results

indicate that all elements give accurate displacements. However, there were significant

differences in stresses for the shell elements, which can be attributable to the approximate

approach in these elements to model the drilling degree of freedom.

 iii

Acknowledgements

I would like to first thank Dr. Rojiani for his encouragement, time and kind

support at every stage of this work, without whose help this task would not have been

accomplished. I would like to thank Dr. Easterling and Dr. Wollmann to serve as my

committee members. I would also like to thank my uncle for giving me financial support

for my entire study and special thanks to my parents for their constant moral support.

 iv

Table of Contents

List of Figures... vi

List of Tables .. viii

1.0 Introduction... 1

1.1 Introduction... 1

1.2 Objective and Scope.. 2

1.3 Organization.. 3

2.0 Literature Review ... 4

2.1 Introduction... 4

2.2 Membrane Elements ... 4

2.3 Plate Bending Elements .. 5

2.4 Flat Shell Elements ... 7

2.5 Java Programming Language.. 10

3.0 Membrane Elements ... 13

3.1 Overview... 13

3.2 Two Dimensional Stresses and Strains ... 13

3.3 Plane Stress Condition.. 14

3.4 Plane Strain Condition.. 14

3.5 Constant Strain Triangle ... 15

3.6 Implementation of the CST Element in Java .. 21

3.7 Four Node Quadrilateral Plane Stress Element .. 24

3.8 Implementation of the Four Node Quadrilateral Plane Element in Java 31

4.0 Plate Bending Elements .. 35

4.1 Overview... 35

4.2 Bending of Flat Plates ... 35

4.3 Basic Relationships for Bending of Thin Plates ... 37

4.4 Triangular Plate Bending Element Based on Discrete Kirchoff Theory 40

4.5 Implementation of DKT Element in Java. .. 49

4.6 Quadrilateral Plate Bending Element Based on Discrete Kirchoff Theory.......... 53

 v

4.7 Implementation of DKQ Element in Java... 61

5.0 Flat Shell Elements ... 67

5.1 General Shell Elements ... 67

5.2 Flat Shell Elements ... 68

5.3 Development of Stiffness Matrix for Flat Shell Elements. 69

5.4 Coordinate Transformation... 72

5.5 Implementation of Triangular Flat Shell Element in Java 78

5.6 Implementation of Quadrilateral Flat Shell Element in Java 82

6.0 Program Development .. 87

6.1 Introduction... 87

6.2 Program Structure ... 87

6.2.1 Structural Classes ... 87

6.2.2 Input and Output Classes ... 101

6.2.3 Interface Classes .. 104

7.0 Test Examples and Verification of Results ... 107

7.1 Example Problems for Verification of Three Node Triangular (CST) Element. 107

7.2 Example Problems for Verification of Four Node Quadrilateral Plane Element 113

7.3 Example Problems for Verification of Three Node Triangular Plate Bending

(DKT) Element ... 120

7.4 Example Problems for Verification of Four Node Quadrilateral Plate Bending

(DKQ) Element. .. 129

7.5 Example Problems for Verification of Three Node Triangular Shell Elements . 136

7.6 Example Problems for Verification of Four Node Quadrilateral Shell Elements

... 145

8.0 Summary and Conclusions ... 153

8.1 Summary... 153

8.2 Conclusions ... 154

8.3 Future Development .. 156

References.. 157

Appendix - A.. 161

Vita.. 166

 vi

List of Figures

3.1 Constant Strain Triangle……………………………………………………………..15

3.2 Four Node Quadrilateral Plane Stress Element...……………………………………24

3.3 Four Node Quadrilateral Element in Natural Coordinate System…………………...25

4.1 Bending of Plate……...………………………………………………………………37

4.2 DKT Element………………………………………………………………………...40

4.3 Positive Directions of xβ and yβ …………………………………………………...42

4.4 Quadrilateral Plate Bending Element………………………………………………...54

5.1 Combination of CST Element and DKT Element…………………………………...68

5.2 Combination of Quadrilateral Plane Element and DKQ Element…………………...69

5.3 Drilling Degrees of Freedom………………………………………………………...70

5.4 Coordinate Transformation for Triangular Element…………………………………73

5.5 Coordinate Transformation for Quadrilateral Element………………………………75

6.1 Element Class Diagram……………………………………………………………...90

6.2 FEModel Class Diagram……………………………………………………………...92

6.3 Analysis Class Diagram…………………………………………………………….97

6.4 StressResults Class Diagram…………………………………………………….100

6.5. Main Application Window for the Program……………………………………….105

7.1 FE Model for Test Example 1 – Cantilever Beam………………………………….107

7.2 FE Model for Test Example 2 – Cantilever Beam………………………………….109

7.3 FE Model for Test Example 3 – Plate with Semi Circular Hole…………………...112

7.4 FE Model for Test Example 4 – Tip Loaded Cantilever Beam…………………….114

7.5 FE Model for Test Example 5 - Cantilever Beam………………………………….116

7.6 FE Model for Test Example 6 - Plate with Semi Circular Hole……………………118

7.7 FE Model for Test Example 7 – Square Plate – Mesh Pattern A…………………..121

7.8 FE Model for Test Example 7 – Square Plate – Mesh Pattern B…………….……..122

7.9 FE Model for Test Example 8 - Rectangular Plate with Hole……………………...124

7.10 FE Model for Test Example 8 - Rectangular Plate with Hole…………………….125

7.11 FE Model for Test Example 9 - Cantilever Plate………………………………….127

 vii

7.12 FE Model for Test Example 10 - Square Plate……………………………………130

7.13 FE Model for Test Example 11- Rectangular Plate with Hole……………………132

7.14 FE Model for Test Example 11 - Rectangular Plate with Hole…………………...133

7.15 FE Model for Test Example 12 - Cantilever Plate………………………………...135

7.16 FE Model for Test Example 13 Cantilever I – Beam……………………………..137

7.17 Dimensions of the Folded Plate Structure………………………………………...139

7.18 FE Model for Test Example 14 - Folded Plate Structure………………………….140

7.19 FE Model for Test Example 15 Scordelis -Lo Roof ……………………………...143

7.20 FE Model for Test Example 16 - Cantilever Channel Section……………………146

7.21 FE Model for Test Example 17 - Cantilever I – Beam……………………………148

7.22 FE Model for Test Example 18 – Tip Loaded Cantilever I – Beam………………151

 viii

List of Tables

3.1 Methods in the class CSTElement………………………………………………........22

3.2 Roots and weight functions for 2 x 2 Gauss quadrature…….……………………….31

3.3 Methods in the class QUAD4Element………………………………………….…..….33

4.1 Coordinates and weight functions for Gauss quadrature…………………………….48

4.2 Methods in the class DKTElement……………………………………………………51

4.3 Weight functions and roots for 2 x 2 Gauss quadrature……………….……………..61

4.4 Methods in the DKQElement class …………………………………………..……….64

5.1 Methods in the TriShellElement class…………………………………………….80

5.2 Methods in the QuadShellElement class…………………………………………...84

6.1 Methods in the FEModel class……………………………………………………….93

6.2 Methods in the EqNodalLoad class………………………………………………….95

6.3 Methods in the Analysis class………………………………………………………96

6.4 Methods in the MembraneStr class…………………………………………………..97

6.5 Methods in the BendingStr class……………………………………………………98

6.6 Methods in the ShellStr class………………………………………………………99

6.7 Methods in the StressResults class……………………………………………...100

6.8 Methods in the ReadInput class…………………………………………………...102

7.1 Displacements and Stresses for Test Example 1……………………………………109

7.2 Displacements and Stresses for Test Example 2……………………………………111

7.3 Displacements and Stresses for Test Example 3……………………………………113

7.4 Displacements and Stresses for Test Example 4……………………………………115

7.5 Displacements and Stresses for Test Example 5……………………………………117

7.6 Displacements and Stresses for Test Example 6……………………………………120

7.7 Displacements and Stresses for Test Example 7 -Mesh Pattern – A……………….123

7.8 Displacements and Stresses for Test Example 7 - Mesh Pattern – B………………123

7.9 Displacements and Stresses for Test Example 8……………………………………126

7.10 Displacements and Stresses for Test Example 9…………………………………..128

7.11 Displacements and Stresses for Test Example 10…………………………………131

7.12 Displacements and Stresses for Test Example 11…………………………………134

 ix

7.13 Displacements and Stresses for Test Example 12…………………………………136

7.14 Displacements and Stresses for Test Example 13…………………………………138

7.15 Displacements and Stresses for Test Example 14…………………………………142

7.16 Displacements and Stresses for Test Example 15…………………………………144

7.17 Displacements and Stresses for Test Example 16…………………………………147

7.18 Displacements and Stresses for Test Example 17…………………………………150

7.19 Displacements and Stresses for Test Example 18…………………………………152

 1

Chapter 1

Introduction

1.1 Introduction

The finite element method is an approximate numerical procedure for analyzing large

structures and continua (Cook et al., 1989). The finite element method became popular

with the advancements in digital computers since they allow engineers to solve large

systems of equations quickly and efficiently. The finite element method is a very useful

tool for the solution of many types of engineering problems such as the analysis of the

structures, heat transfer and fluid flow. The method is also used in the design of air

frames, ships, electric motors, heat engines and spacecraft. The finite element method is

also used for analyzing the behavior of components of biological systems.

 In most structural analysis applications it is necessary to compute displacements and

stresses at various points of interest. The finite element method is a very valuable tool

for studying the behavior of structures. In the finite element method, the finite element

model is created by dividing the structure in to a number of finite elements. Each element

is interconnected by nodes. The selection of elements for modeling the structure depends

upon the behavior and geometry of the structure being analyzed. The modeling pattern,

which is generally called mesh for the finite element method, is a very important part of

the modeling process. The results obtained from the ana lysis depend upon the selection of

the finite elements and the mesh size. Although the finite element model does not behave

exactly like the actual structure, it is possible to obtain sufficiently accurate results for

most practical applications. Once the finite element model has been created, the

equilibrium equations can easily be solved using digital computers without having to

solve a large number of partial differential equations by hand. The deflections at each

node of the finite element model are obtained by solving the equilibrium equations. The

stresses and strains then can be obtained from the stress-strain and strain-displacement

relations.

 2

The finite element method is ideally suited for implementation on a computer. With

the advancements in digital computers, the finite element method is becoming the method

of choice for solving many engineering problems, and is extensively used for structural

analysis. The structure can be discretized using frame elements, plane elements, plate

elements, or shell elements according to the behavior of the structure. The structure can

also be modeled by combining different types of elements to approximate different

aspects of structural behavior.

1.2 Objective and Scope

The focus of this thesis is to develop triangular and quadrilateral flat shell

elements for the finite element analysis of thin shell structures. The flat shell elements are

developed by combining membrane elements with plate bending elements. An important

aspect of the work is to implement these elements on the computer using an object

oriented approach and the Java programming language. Java was chosen as the

programming language for this work; since (1) Java is an object oriented programming

language, and (2) Java is platform independent.

 Four elements were considered in this study. The membrane elements considered

were the CST (constant strain triangle) element, and the four node isoparametric

quadrilateral plane element (QUAD4). The plate bending elements used were the discrete

Kirchoff plate bending elements, the DKT element (discrete Kirchoff triangular element)

(Batoz et al., 1980) and the DKQ element (discrete Kirchoff quadrilateral element)

(Batoz and Tahar, 1982). The flat shell elements were obtained by combining the above

mentioned elements.

 A finite element analysis program that calculates deflections and stresses was also

developed in order to verify the accuracy of these elements. This program was written in

Java using the object oriented approach. The results obtained for a series of test problems

were compared with those from a commercial finite element analysis program.

 3

1.3 Organization

The thesis is divided in to eight chapters including the Introduction. An overview

of the finite element analysis method and the Java programming language is presented in

Chapter 2. This chapter also contains a discussion of membrane and plate bending

elements and techniques for developing flat shell elements. Chapter 3 describes the

development of the triangular and quadrilateral membrane elements and their

implementation in Java. Chapter 4 describes the development of the triangular and

quadrilateral plate bending elements based on the discrete Kirchoff theory and their

implementation in Java. The development of flat shell elements by combining the

membrane elements and plate bending elements and the implementation of these

elements is discussed in Chapter 5. Chapter 6 describes the object oriented finite element

analysis program developed to test the accuracy of the flat shell elements. The test

problems used to verify the accuracy of the results obtained are described in Chapter 7.

Also, the results obtained from the Java program are compared with those obtained from

the SAP 2000 commercial finite element analysis program. Chapter 8 presents a

summary of the important results and a discussion of the results. Suggestions for future

development are also given in this chapter.

 4

Chapter 2

Literature Review

2.1 Introduction

Since the evolution of the term finite element by Clough in 1951, there have been

significant developments in finite element method. A large number of different finite

elements have been developed; the finite element method has been used for solving

problems in different fields of engineering. The finite element method became even more

popular with the advancement of microcomputers and development of various efficient

programming languages. In this chapter, the development of membrane, plate bending

and flat shell finite elements is discussed. An overview of the object oriented Java

programming language is also presented.

2.2 Membrane Elements

 Membrane elements are among the simplest elements to develop. These elements

are used for analyzing structures subjected to inplane forces. Assuming that the structure

is in the xy plane, the displacements at any point of the structure are u , the translation in

the x direction and v , the translation in the y direction. The stresses of interest are the

normal stresses xσ and yσ and the shearing stress xyτ . The normal stress in the direction

perpendicular to the plane of structure is considered to be zero. Membrane elements are

used to model the behavior of shear wall, stiffened sheet construction, and membrane

action in shells.

 The membrane element used in this study for the formulation of triangular flat

shell elements is the constant strain triangle (CST). The CST element is so named

because the strains within the element are independent of the coordinates and hence are

constant over the element. Triangular elements are useful for modeling arbitrary shaped

geometry and hence are used quite extensively for the analysis of planar structures.

 5

 Isoparametric elements are useful for modeling structures with irregular

boundaries. The word isoparametric derived from ‘iso’ (“same”) and ‘parametric’

(“parameter”) indicates that the same functions are used to define the shape and

displacements of the element. It is often difficult to model the geometry of a structure

with just the regular shaped triangular or rectangular elements. Isoparametric elements

are useful for modeling structures; since the isoparametric elements can have curved

sides. Such elements are formulated us ing higher order interpolation functions.

Isoparametric elements are formulated in the natural coordinate system that maps the

element geometry in terms of natural coordinates regardless of the orientation of an

element in the global coordinate system; however, the relationship between the two

systems must be used in the element formulation (Cook, 1974).

Irons (1966), introduced the concept of isoparametric elements in stiffness

methods. The four node isoparametric quadrilateral element is the simplest element in

the family of isoparametric plane elements. Ergatoudis et al. (1968) developed shape

functions to formulate the element stiffness matrix for four node isoparametric

quadrilateral element. The four node isoparametric quadrilateral plane element is used to

develop the quadrilateral flat shell element in this study.

2.3 Plate Bending Elements

 There has been considerable interest in the development of plate bending

elements ever since their use became popular for representing the bending behavior of the

shell elements. Many plate bending elements have been developed. Hrabok and Hrudey

(1984) presented a review of all plate bending elements as a part of the study on the

effectiveness of plate bending elements. Clough and Tocher (1965) developed the

triangular plate bending element by dividing the main triangle in to three subtriangles.

Bazeley et al. (1966) developed confirming and nonconfirming plate bending elements.

They developed a triangular plate bending element by using shape functions based on the

area coordinates. The nonconforming plate bending element does not pass the patch test

 6

for some mesh patterns, and the confirming element is costly to use because of the high

order numerical integration scheme required to determine the stiffness matrix of the

element.

Batoz et al. (1980) developed several effective triangular plate bending elements

for the analysis of plates and shells. These elements had two rotational degrees of

freedom and one translational degree of freedom at each node for a total of 9 degrees of

freedom. They developed three types of plate bending elements: (1) the DKT element

based on Discrete Kirchoff Theory assumptions, (2) the HSM element based on the

Hybrid Stress Method, to overcome the problems in development of pure displacement

based models, and (3) the SRI element based on Selective Reduced Integration scheme

that includes transverse shear deformation. Batoz et al (1980) compared the results

obtained for these elements. They found that the DKT and HSM elements are more

effective than the SRI element. They also found that the DKT element gives better results

than the HSM element because the DKT element requires less storage compared to the

HSM element.

Quadrilateral plate bending elements are popular in analyzing slab structures and

are used in formulating shell elements for the analysis of regular shaped shell structures.

Earlier attempts to develop quadrilateral plate bending elements involved combining four

triangular plate bending elements (Batoz and Tahar, 1982). However their formulation

was very complicated. McNeal (1978) developed a four node quadrilateral shell element

using isoparametric shape functions. This element gives very good results for plate

bending. Robinson and Haggenmacher (1979) developed the quadrilateral plate bending

element, LORA based on stress parameters rather than displacement fields. This element

also gives very good results for plate bending.

Batoz and Tahar (1982) reviewed the earlier attempts to develop plate bending

elements and concluded that these elements were useful for thick plates, but when applied

to the thin plates they do not give very good results. Batoz and Tahar (1982) developed a

four node quadrilateral element based on the Discrete Kirchoff theory. The basis of the

 7

formulation of this element was the Discrete Kirchoff Triangular (DKT) element

developed earlier (Batoz et al., 1980). The quadrilateral plate bending element (DKQ)

formulated by Batoz and Tahar (1982) and the triangular plate bending element (DKT)

formulated by Batoz et al. (1980), are based on the discrete Kirchoff assumptions in

which the transverse shear strain is neglected. They considered transverse shear strain to

be present in the element in the initial development and then removed the transverse

shear strain terms by applying discrete Kirchoff constraints. Batoz and Tahar (1982)

conducted several tests on these elements. Based on their study, they suggested that the

convergence rates in displacements and stresses for DKQ element is not good as for the

QUAD4 element by McNeal (1978) and LORA by Robinson and Haggenmacher (1979).

2.4 Flat Shell Elements

 Shell elements are widely used to model the curved geometry of a structure. Shell

elements based on classical shell theory are very difficult to develop. Many simplifying

approximations are involved in the development, which leads to less accurate results.

These types of elements are very efficient in modeling the curved geometry of the

structure. However, because of the complexities involved, the alternative approach of

modeling the structure with series of flat elements, which is simpler and easier to

implement, became more popular for the analysis of shell structures.

 In 1961, Green et al. first developed the concept of using triangular flat shell

elements to model arbitrary shaped shell structures (Zienkiewicz, 1971). Shells with

cylindrical shapes or regular curved surfaces can be modeled using rectangular or

quadrilateral flat shell elements. Zienkiewicz (1971) recommended modeling curved

surface by a series of flat shell elements, rather than using the more complex curved shell

elements. He suggested developing a built up element by combining membrane and plate

bending elements to develop a flat shell elements.

Bathe and Ho (1981) studied two approaches for the development of shell

elements. The first approach is to use the higher order isoparametric elements, which are

 8

formulated on the basis of three dimensional stress conditions and using the higher order

shape functions and integration scheme. The second approach is to use lower order shell

elements, which are developed by superimposing previously available membrane and

plate bending elements and hence obtaining the membrane and bending properties of the

shell element. They found that the second approach is more cost effective than the first

because of the simplicity of development. The lower order terms used in the formulation

require less computation effort and time. They also concluded that higher order elements

give far superior results than the lower order elements, but they are costly to implement

on the computer because of the large size of the stiffness matrix.

McNeal and Harder (1988) suggested in their study that, the higher order

elements take three times more solution effort than the lower order elements. Another

drawback of higher order elements is the use of high order numerical integration schemes

to avoid spurious zero energy modes. Lower order elements require a large number of

elements to model the structure but they require less computational effort and hence are

still cheaper as compared to the higher order elements. However, the effectiveness of the

element and accuracy of results of the lower order elements largely depends on the type

of the element selected for the formulation of the shell element.

Flat shell elements are developed by combining membrane elements containing

two inplane translational degrees of freedom and plate bending elements containing two

rotational degrees of freedom and one out of plane translational degree of freedom. Since

the inplane rotational degrees of freedom are not included, that leaves null or zero values

in the stiffness matrix. The null values for the inplane rotational degrees of freedom,

generally called drilling degrees of freedom gives singularity in structure stiffness matrix

if all the elements are co-planar. Chen (1992) suggested that problems occur in solving

in-filled frames, folded plate structures and other complex structural systems when the

inplane rotational stiffness is not included in the stiffness matrix of the shell element.

Several methods have been suggested by various authors for removing the

singularity in the stiffness matrix. The normal approach to deal with the stiffness of the

 9

drilling degrees of freedom is to approximate the stiffness for the drilling degrees of

freedom. Knight (1997) suggested that a very small value be specified for the stiffness of

the drilling degrees of freedom so that the contribution to the strain energy equation from

this term will be zero. Zienkiewicz (1971) developed the matrix for the stiffness of the

drilling degrees of freedom for triangular flat shell elements. Bathe and Ho (1981)

approximated the stiffness for drilling degrees of freedom by using a small approximate

value.

Batoz and Dhatt (1972) presented the formulation of a triangular shell element

named KLI element with 15 degrees of freedom and a quadrilateral shell element named

KQT element with 20 degrees of freedom using the discrete Kirchoff formulation of plate

bending element. The KQT element was developed by combining four triangular

elements with the mid-nodes on the sides. The KQT element was found effective among

the two.

Bathe and Ho (1981) developed a flat shell triangular element by combining the

CST element for membrane stiffness and the plate bending element using the Mindlin

theory of plates for the bending stiffness. They introduced a fictitious stiffness for the

drilling degrees of freedom in the development of the element stiffness matrix for the

triangular flat shell element. The element developed by Bathe and Ho (1981) was found

to be very effective for the analysis of shell structures.

McNeal (1978) developed the quadrilateral shell element QUAD4, by considering

two inplane displacements that represent membrane properties and one out-of-plane

displacement and two rotations, which represents the bending properties. McNeal (1978)

included modifications in terms of a reduced order integration scheme for shear terms. He

also included curvature and transverse shear flexibility to deal with the deficiency in the

bending strain energy.

The simplest method adopted to remove the rotational singularity is to add a

fictitious rotational stiffness. However, Yang et al. (2000) suggested that, although the

 10

method solves the problem of singularity it creates a convergence problem that

sometimes leads to poor results. However, the majority of the flat shell elements are

developed by inducing the fictitious rotational stiffness to remove the singularity. Recent

developments include using membrane elements with rotational degrees of freedom to

develop an efficient flat shell element.

2.5 Java Programming Language

Computer programming languages are built around two approaches; (1) procedural

programming and (2) object oriented programming. In procedural programming, the

program is prepared by a series of steps or routines that follow the data provided. The

programming languages FORTRAN, C, BASIC are procedural programming languages.

The main drawback of the procedural programming languages is that they are not

structured and the flow of the program largely depends on conditional statements that

induce more chances of errors. These languages are good for small programs, but

procedural program are difficult to maintain when they become larger.

In the object oriented programming approach, the program is organized around its

data in the form of objects (Schildt, 2001). The object oriented programming languages

are built on the concept of abstraction. Large complex procedures can be subdivided in to

small procedures by abstraction. Each of these sub procedures represents different objects

with their own separate identity. The series of process steps can be achieved by passing

information to the objects without being affected by the complexity of the whole

procedure. The three unique aspects of the object oriented programming languages are:

(1) Encapsulation (2) Inheritance and (3) Polymorphism. Each of these concepts is

discussed separately in following paragraphs.

Encapsulation is the most important aspect of the object oriented programming. In

object oriented programming languages, classes perform the task of encapsulation. Class

defines the structure and behavior of the process that will be shared by a set of objects

(Schildt, 2001) such as variables and methods. The variables or methods are declared by

 11

access specifiers such as public, private or protected. A variable or method declared as

public can be accessed from outside the class in the program. Variables or methods that

are defined as private cannot be accessed from outside the class and hence the privacy of

the data is maintained. Variables or methods declared protected are only accessible to the

superclass and the subclass where the properties of the superclass are inherited.

Many programs contain objects that are dependent on each other and inherit certain

properties from one object to another. In object oriented programming, the classes are

divided in the superclass and subclass. The subclass inherits all of the properties of the

superclass except those declared as private. Any subclass that inherits properties from its

subclass may have additional properties that give it an individual identity, which is not

common to the other objects or subclasses that inherit the same properties from the super

class.

Polymorphism is another valuable feature of object oriented programming.

Polymorphism allows the programmer to use the same interface to perform multiple

tasks. The same class may contain multiple methods that are related to different activities

and each method will perform a different task when it is called by the object. The call to

one method will not affect the contents or activity of another method in the same class.

Several object oriented programming languages have been developed in recent years.

These include C++, C#, and Java. Java is one of the more popular object oriented

programming languages because it has several unique features.

Java is an object oriented programming language developed by Sun Microsystems in

1991. Java is based on the popular programming language C++. It has many of the same

features of C++. Over the years, Java has become very popular because of some of its

unique features. Java is platform independent, which means code developed in Java can

be used on a variety of different computers without making any changes. Another

advantage is that, Java programs can be embedded within HTML pages (where they are

 12

called applets) and can be easily transmitted over the internet. All this needs is a Java

compatible web browser to run these applets.

Another reason for the popularity of Java is its robustness. Java provides automatic

protections for memory loss and run-time errors that occur during the program execution.

Java has a special garbage collection class that dynamically allocates memory and hence

prevents memory loss. In other programming languages, this is done manually by the

programmer and any mistake in allocating or deallocating memory may result in failure

of the program. There is also an exception handling class for handling runtime errors in

Java. With the use of this class it is possible to catch many common runtime errors which

would otherwise result in program failure.

Until recently most finite element analysis program were written in FORTRAN.

Although FORTRAN is an efficient language for developing scientific applications, it is

not well suited for writing large complex programs. With the advancements in finite

element analysis, many different types of elements are being developed and elements are

constantly being modified to improve their behavior. It is very difficult to maintain the

codes for the finite element analysis that were developed using procedural programming

languages because of its complexity. An object oriented programming language such as

Java is better suited for the development of large complex programs for finite element

analysis, because of the many advantages discussed above. These advantages make it

very attractive to implement object oriented programming techniques for the

development of the finite element analysis codes.

 13

Chapter 3

Membrane Elements

3.1 Overview

 Two types of membrane elements are used for development of flat shell elements

in this study: (1) the constant strain triangle (CST) element, and (2) the four node

isoparametric quadrilateral element. In this chapter the development of the element

stiffness matrix for these elements is presented. The implementation of these elements in

Java is also discussed.

3.2 Two Dimensional Stresses and Strains

 Two dimensional elasticity problems typically involve structures that are very thin

and the loads are applied in the direction in the plane of the structure. Consider a

structure in the xy plane with thickness t along the z direction. When inplane forces are

applied to the structure, the displacements at any discrete point of the structure located by

the coordiantes (),x y are,

 { },
T

u v=U (3.1)

where, u and v are the x and y components of the displacement. The stresses and strains

are given by,

 { }, ,
T

x y xyσ σ τ=σ

 { }, ,
T

x y xyε ε γ=ε (3.2)

 14

There are two classes of plane elasticity problems: (1) plane stress, and (2) plane

strain. Each of these conditions is described in the following sections.

3.3 Plane Stress Condition

 When the structure is subjected to forces in its own plane, the state of

deformations and stresses is called plane stress cond ition (Weaver et al., 1984). If a plate

is very thin and is only subjected to inplane forces, then the displacements and stresses

normal to the plane of the plate are negligible. Assuming the thin plate is in the xy plane,

the stresses 0zσ = , 0yzτ = , 0xzτ = and, 0zε ≠ (Cook et al., 1989). For isotropic

material properties the stress-strain relationship for the plane stress condition is,

[]
x x

y y

xy z

σ ε

σ ε

τ ε

   
   

=   
   

  

E (3.3)

where, []E is the material matrix and can be expressed as,

 [] 2

1 0
1 0

1
1

0 0
2

E
ν

ν
ν

ν

 
 
 

=  −  −
 
 

E (3.4)

3.4 Plane Strain Condition

 When a prismatic solid is subjected to a uniform load normal to its axis and the

solid is divided into thin plates then each plate will have inplane forces, i.e., the forces

will be in the direction of the plane of the plate (Weaver et al., 1984). This condition is

called the plane strain condition. For the plane strain condition 0zε = , 0yzε = , 0zxγ = ,

 15

and 0zσ ≠ (Cook et al., 1989). The material matrix []E , for the plane strain condition

for an isotropic material is given by,

 [] () ()

1 0 0
1 0

1 1 2
1 2

0 0
2

E
ν

ν ν
ν ν

ν

 
 −
 

= − + −  −
 
 

E (3.5)

where,

E = modulus of elasticity of the material and,

ν = Poisson’s ratio.

3.5 Constant Strain Triangle

 The simplest triangular plane stress element is the constant strain triangle. This

element has two inplane degrees of freedom at each node for a total of six degrees of

freedom per element. The constant strain triangle is widely used for various analysis

purposes. The nodes of the CST element are numbered in a counterclockwise direction as

shown in Fig. 3.1.

Fig. 3.1 Constant Strain Triangle (CST).

 16

The procedure for developing the stiffness matrix of the CST element is as follows

(Cook, 1974),

The assumed displacement field can be defined by,

() 0 1 2,u x y a a x a y= + +

() 3 4 5,v x y a a x a y= + + (3.6)

where (),u x y is the displacement in the x direction, and (),v x y is the displacement in

the y direction.

The above equations can be written in matrix form as,

0

1

2

3

4

5

1 0 0 0
0 0 0 1

a

a
au x y
av x y
a

a

 
 
 
     

=    
    

 
 
  

or (3.7)

(){ } []{ },U x y X a=

From Equation (3.3) and the strain-displacement relationships the following

results can be obtained,

() 1,x

u
x y a

x
ε

∂
= =

∂
 (3.8)

() 5,y
v

x y a
y

ε
∂

= =
∂

 (3.9)

 17

2 4xy
u v

a a
y x

γ
∂ ∂

= + = +
∂ ∂

 (3.10)

It is seen from the above equations that, terms 0a and 3a represents rigid body

translations of the system while, the term 1a represents a constant strain in the x

direction, and the term 5a represents a constant strain in the y direction. From Equation

(3.10) it can be determined that the term 2 4a a+ represents a uniform shear strain. Also

from Equations (3.8), (3.9) and (3.10) it is observed that the strains are independent of x

and y and are constant over the element. This is why this element is called the constant

strain triangle.

 As shown in Fig. 3.1, the coordinates of nodes 1, 2 and 3 are ()1 1,x y , ()2 2,x y and

()3 3,x y respectively. The corresponding displacements at each node are ()1 1,u v , ()2 2,u v

and, ()3 3,u v respectively. Substituting the values of nodal coordinates, Equation (3.7)

results in the following:

01 1 1

1 11 1

2 22 2

2 22 3

3 33 4

3 33 5

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1
1 0 0 0
0 0 0 1

au x y
v ax y
u ax y

x yv a
x yu a

x yv a

    
    
    
       

=     
    
    
    
        

 (3.11)

or

 { } []{ }u A a= (3.12)

The coefficients { }a are obtained by inverting Equation (3.12),

 18

{ } [] { }1
a A u

−
= (3.13)

From Equation (3.7),

 (){ } []{ },U x y X a=

Therefore,

(){ } [][] { }1
,U x y X A u

−
= (3.14)

where, [][] 1
X A

−
 represents the shape functions []N .

 [] [][] 1
N X A

−
= (3.15)

Inverting the []A matrix in Equation (3.11) and solving for { }a gives,

0 12 3 3 2 3 1 1 3 1 2 2 1

11 2 3 3 1 1 2

22 3 2 1 3 2 1

2 3 3 2 3 1 1 3 1 2 2 1 23

2 3 3 1 1 2 34

3 2 1 3 2 15

0 0 0
0 0 0

0 0 01
0 0 02
0 0 0
0 0 0

a ux y x y x y x y x y x y
va y y y y y y
ua x x x x x x

x y x y x y x y x y x y va A
y y y y y y ua
x x x x x xa

− − −   
   − − −   
   − − − 

=   
− − −  

   − − −
  

− − −      3v

 
 
 
  
 
 
 
 
  

 (3.16)

where, A is the area of the triangle and can be expressed as,

() () ()1 2 3 2 3 1 3 1 2

1
2

A x y y x y y x y y= − + − + −   (3.17)

The shape functions are obtained by combining Equations (3.15) and (3.16).

 19

() () ()
() () ()
() () ()

1 2 3 3 2 2 3 3 2

2 3 1 1 3 3 2 1 3

3 1 2 2 1 1 2 2 1

1
2

N x y x y y y x x x y
N x y x y y y x x x y

A
N x y x y y y x x x y

− + − + −  
   = − + − + −  
   − + − + −   

 (3.18)

The displacements can now be rewritten in terms of the shape functions as,

()
()

1

1

21 2 3

1 2 3 2

3

3

, 0 0 0
0 0 0,

u

v
u x y uN N Nu

N N N vv v x y
u

v

 
 
 
         

= =      
       

 
 
  

 (3.19)

The strains are obtained from the strain-displacement relationships.

()()
3

1

,x i i
i

u
N x y u

x x
ε

=

∂ ∂
= =

∂ ∂ ∑ (3.20)

()()
3

1

,y i i
i

v
N x y v

y y
ε

=

∂ ∂
= =

∂ ∂ ∑ (3.21)

() ()
3 3

1 1
xy i i i i

i i

u v
N u N v

y x y x
γ

= =

∂ ∂ ∂ ∂   
= + = +   ∂ ∂ ∂ ∂   

∑ ∑ (3.22)

The above equations can be written in matrix form as,

1
31 2

1

231 2

2

3 31 1 2 2 3

3

0 0 0

0 0 0
x

y

xy

uNN N
vx x x
uNN N
vy y y

N NN N N N u
y x y x y x v

ε

ε

γ

  ∂∂ ∂
  

∂ ∂ ∂     
    ∂∂ ∂  

=    ∂ ∂ ∂    
    ∂ ∂∂ ∂ ∂ ∂

  
∂ ∂ ∂ ∂ ∂ ∂      

 (3.23)

 20

or

(){ } () { }6 13 1 3 6
, , ix y B x y uε

×× ×
=   

Taking the derivatives of the shape functions (Equation 3.18) with respect to x

and y, gives the strain-displacement matrix []B ,

()
2 3 3 1 1 2

3 2 1 3 2 1

3 2 2 3 1 3 3 1 2 1 1 2

0 0 0
1

, 0 0 0
2

y y y y y y

B x y x x x x x x
A

x x y y x x y y x x y y

− − − 
 = − − −    
 − − − − − − 

 (3.24)

The element stiffness matrix can now be obtained using the strain-displacement

matrix []B and the material matrix []E .

[] [] [] []6 6 6 3 3 3 3 6

T

v

k B E B dv
× × × ×

= ∫ (3.25)

For constant thickness, the volume integral can be reduced to an area integral,

[] [] [] []6 6 6 3 3 3 3 6

T

A

k t B E B dA
× × × ×

= ∫ (3.26)

where,

t = thickness of the element.

Since all the terms in the strain-displacement matrix []B and the material matrix

[]E are constant, Equation (3.26) can be rewritten as,

[] [] [] []6 6 6 3 3 3 3 6

T

A

k t B E B dA
× × × ×

= ∫

or

[] [] [] []6 6 6 3 3 3 3 6

T
k tA B E B

× × × ×
= (3.27)

 21

3.6 Implementation of the CST Element in Java

To implement the CST element in Java, a class called CSTElement was

developed. The CSTElement class is derived from the base class Element. The base class

Element contains the data variables and functions necessary for managing all of the

different elements in the program.

The class definition and the variables declared within the CSTElement class are given

below,

public class CSTElement {

 private double th; //Thickness of the element.

 private double[] EX; //x Coordinates at each node of the element.

 private double[] EY; //y Coordinates at each node of the element.

 private double[][] D; //Material Matrix.

 private double A; //Area of the element.

 private double[][] B; //Strain-Displacement Matrix.

 public double[][] CSTKelem; //Element stiffness matrix.

The variable th represents the thickness of the element, []EX and []EY are arrays

containing the x and y coordinates of the nodes. A is the area of the element. The two

dimensional arrays D, B and CSTKelem contains the material matrix, the strain-

displacement matrix and the element stiffness matrix respectively. All of these instance

variables except the two dimensional array CSTKelem representing the element stiffness

matrix, are declared as private.

The constructor of the CSTElement is,

public CSTElement(double[] cx, double[] cy, double[][] Mat, double

thelem) {

 th = thelem;

 EX = cx;

 22

 EY = cy;

 D = Mat;

}

The coordinates of the nodes, the material matrix, and the thickness of the

element are all initialized through the constructor when an instance of the class

CSTElement is created.

The methods of the class CSTElement are given in Table 3.1. All methods are

declared private except for the CalcElemK () method, which is declared as public since

it is called from outside the class. The method Area () computes the area of triangle

using Equation (3.17). The CSTBMatrix () method computes the B matrix for the

element using Equation (3.24). The element stiffness matrix is computed in the method

ElementKMatrix () using the relationship from Equation (3.27).

Table 3.1 Methods in the class CSTElement

Method Description

Area () Calculates the area of triangle.

CSTBMatrix () Calculates the strain-displacement matrix.

ElementKMatrix () Calculate the element stiffness matrix for CST element.

The structure of the CalcElemK () method is shown below. This method takes

CSTElement as an argument and calls the Area (), CSTBMatrix () and

ElementKMatrix () methods.

public void CalcElemK(CSTElement c) {

 //Calculates Area of the Triangular element.

 c.Area();

 //Method for calculating Strain-Displacement Matrix.

 c.CSTBMatrix();

 23

 //Method for calculating Element Stiffness Matrix.

 c.ElementKMatrix();

}

 The approach used for analyzing a structure consisting of CST elements is as

follows. For each CST element an instance of the CSTElement class is created by calling

the constructor.

CSTElement cst = new CSTElement (X, Y, D, TH);

where, cst is the instance of the class CSTElement. The x and y coordinates of the

nodes, the material matrix and the thickness of the element are passed in the above

constructor. Once an object of the CSTElement class has been created the element

stiffness matrix is computed by calling the method CalcElemK () of the main class by

passing the cst object as an argument to the function.

The CSTElement class also contains the method CalcStresses (). This method

calculates stresses for the CST element. These stresses are obtained from the nodal

displacements which are computed during the analysis. The CalcStresses () method is

declared as,

public void CalcStresses(CSTElement cst, double[] U, StressResults S) {

The parameter cst is an instance of the CSTElement class, U is the array of nodal

displacements and S is an instance of the StressResults class which stores element

stresses.

 24

3.7 Four Node Quadrilateral Plane Stress Element

 The quadrilateral plane stress element used in this study is the four node

isoparametric quadrilateral element. The four node quadrilateral element (see Fig. 3.2)

has two degrees of freedom per node for a total of eight degrees of freedom per element.

The formulation of the element stiffness matrix (Cook, 1974) for the four node

quadrilateral plane stress element (QUAD4 Element) is described below.

Fig. 3.2 Four Node Quadrilateral Plane Stress Element.

 To develop the isoparamatric quadrilateral plane stress element, the master or

parent element must be defined in the natural coordinate system (),ξ η as shown in Fig.

(3.3).

 25

Fig. 3.3 Four Node Quadrilateral Element in Natural Coordinate System.

 The relationship between the natural coordinate system and the global coordinate

system can be defined using Lagrange interpolating functions.

()
4

1

, ()i i
i

x N xξ η
=

= ∑ (3.28)

and,

()
4

1

, ()i i
i

y N yξ η
=

= ∑ (3.29)

Similarly, the relationship between displacements in the natural coordinate system and

the nodal displacements can be written in the following manner,

()
4

1

, ()i i
i

u N uξ η
=

= ∑ (3.30)

()
4

1

, ()i i
i

v N vξ η
=

= ∑ (3.31)

 26

where 1 2 3 4, , ,N N N N are the shape functions for the four node quadrilateral element in

the natural coordinate system. The shape functions are,

() ()1

1
1 1

4
N ξ η= − − .

()()2

1
1 1

4
N ξ η= + − . (3.32)

() ()3

1
1 1

4
N ξ η= + + .

() ()4

1
1 1

4
N ξ η= − + .

To obtain the element stiffness matrix, the strain-displacement matrix must be

determined. When using isoparametric elements the element geometry is defined in the

natural coordinate system and hence the strain displacement matrix must be transformed

to natural coordinates. The transformation matrix used to convert the strain-displacement

matrix from the element local coordinate system to the natural coordinate system is called

the Jacobian matrix. The Jacobian matrix can be defined as,

[] 11 12

21 22

J J
J

J J
 

=  
 

 (3.33)

The determinant of the Jacobian is,

11 22 12 21J J J J J= − (3.34)

and the inverse of the Jacobian matrix is,

 [] 1 22 12

21 11

1 J J
J

J JJ
− − 

=  − 
 (3.35)

 27

From Equations (3.28) and (3.29) the terms in the Jacobian matrix can be obtained as,

4

11
1

i
i

i

Nx
J x

ξ ξ=

∂∂
= =

∂ ∂∑

4

12
1

i
i

i

Ny
J y

ξ ξ=

∂∂
= =

∂ ∂∑

 (3.36)
4

21
1

i
i

i

Nx
J x

η η=

∂∂
= =

∂ ∂∑

4

22
1

i
i

i

Ny
J y

η η=

∂∂
= =

∂ ∂∑

Thus, the strain-displacement relationships for the four node isoparamatric quadrilateral

element are,

x

y

xy

u
x
v
y

u v
y x

ε

ε

γ

 ∂
 

∂   
   ∂

=   
∂   

   ∂ ∂
+ 

∂ ∂ 

 (3.37)

The derivatives of the horizontal displacement with respect to x and y in terms of

Jacobian matrix are,

22 12

21 11

1
uu

J Jx
u J J uJ
y

ξ

η

∂ ∂ 
   − ∂ ∂   

=    ∂ − ∂    
∂   ∂   

 (3.38)

 28

Similarly, the derivatives of the vertical displacement with respect to x and y are,

22 12

21 11

1
vv

J Jx
v J J vJ
y

ξ

η

∂ ∂ 
   − ∂ ∂   

=    ∂ − ∂    
∂   ∂   

 (3.39)

From Equations (3.37), (3.38), and (3.39), the strain-displacement relationships can be

obtained in terms of natural coordinates ξ and η as,

[]
x

y

xy

u

u

A
v

v

ξ

ε
η

ε

γ ξ

η

∂ 
 ∂ 

∂  
   ∂ 

=   
∂   

   ∂
 

∂ 
 ∂ 

 (3.40)

where,

[]
22 12

21 11

21 11 22 12

0 0
1

0 0

J J

A J J
J

J J J J

− 
 = − 
 − − 

 (3.41)

Now, from Equations (3.30) and (3.31) the following relationships are obtained,

4

1

i
i

i

Nu
u

ξ ξ=

∂∂
=

∂ ∂∑

4

1

i
i

i

Nu
u

η η=

∂∂
=

∂ ∂∑

 29

4

1

i
i

i

Nv
v

ξ ξ=

∂∂
=

∂ ∂∑

4

1

i
i

i

Nv
v

η η=

∂∂
=

∂ ∂∑ (3.42)

Equation (3.42), can be rewritten in matrix form as,

131 2 4

1

231 2 4

2

331 2 4

3

31 2 4 4

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

uNN N Nu
v
uNN N Nu
v

uv NN N N
v

v NN N N u
v

ξ ξ ξ ξξ

η η η η η

ξ ξ ξ ξ ξ

η η η η η

 ∂∂ ∂ ∂ ∂ 
    ∂ ∂ ∂ ∂∂      ∂∂ ∂ ∂ ∂ 
   ∂ ∂ ∂ ∂ ∂   =   

 ∂ ∂∂ ∂ ∂     ∂ ∂ ∂ ∂ ∂    ∂ ∂∂ ∂ ∂  
   ∂ ∂ ∂ ∂ ∂     










 (3.43)

Now, using Equations (3.40) to (3.43) the following relationship are obtained,

{ } [][]{ }A G uε = (3.44)

where,

 []

31 2 4

31 2 4

31 2 4

31 2 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

NN N N

NN N N

G
NN N N

NN N N

ξ ξ ξ ξ

η η η η

ξ ξ ξ ξ

η η η η

∂∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

∂∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ =
 ∂∂ ∂ ∂
 ∂ ∂ ∂ ∂ 
 ∂∂ ∂ ∂
 ∂ ∂ ∂ ∂  

 (3.45)

 30

Thus,

{ } []{ }B uε = (3.46)

where,

[] [][]B A G= (3.47)

Equation (3.47) represents the strain-displacement matrix for the four node isoparamatric

quadrilateral element.

The element stiffness matrix for the four node isoparamatric quadrilateral element

for the plane stress condition is given by,

[] [] [][]T

A

k t B E B dA= ∫∫ (3.48)

Since the strain displacement matrix is in terms of the natural coordinates, therefore

Equation (3.48) must be integrated with respect to the natural coordinates.

Substituting for dA ,

dA dx dy J d dξ η= ⋅ = ⋅ (3.49)

Therefore, Equation (3.49) can be rewritten as,

[] () [] () ()
1 1

8 8 3 38 3 3 8
1 1

, , ,
T

k t B E B J d dξ η ξ η ξ η ξ η
× ×× ×

− −

= ⋅       ∫ ∫ (3.50)

where, t = thickness of the element.

 31

The element stiffness matrix can be obtained using 2 2× Gauss quadrature,

[] () [] () ()
2 2

8 8 3 38 3 3 8
1 1

, , ,
T

j i i j i j i j
j i

k t w w B E B J d dξ η ξ η ξ η ξ η
× ×× ×

= =

   =    ∑∑ (3.51)

The roots and weight functions for 2 2× Gauss quadrature are given in Table 3.2

Table 3.2 Roots and weight functions for 2 × 2 Gauss quadrature

Roots Weight Functions w

0.577350269189626± 1.0

 3.8 Implementation of the Four Node Quadrilateral Plane Element in Java

To implement the four node quadrilateral plane element in Java, a class called

QUAD4Element was developed. The QUAD4Element class is derived from the base class

Element.

The class definition and the variables declared within the QUAD4Element class are given

below,

public class QUAD4Element {

 private double th; //Thickness of the Element.

 private double[] EX; //x Coordinates for each node.

 private double[] EY; //y Coordinates for each node.

 private double[][] D; //3x3 Material matrix.

 private double[] NXi; //Derivatives of shape functions w.r.t Xi.

 private double[] NEta; //Derivaitives of the shape functions w.r.t

Eta.

 private double[][] Jac; //2x2 Jacobain martrix.

 private double DJac; //Determinant of Jacobian matrix.

 32

 private double[][] B; //Strain-displacement Matrix.

 public double[][] Q4Kelem; //Element Stiffness matrix.

The variable th represents the thickness of the element, []EX and []EY are arrays

containing the x and y coordinates of the nodes. Arrays [] NXi and [] NEta represents

the derivatives of the shape functions with respect to ξ and η respectively. The two

dimensional arrays Jac, D, B and Q4Kelem contains the Jacobian matrix, the material

matrix, the strain-displacement matrix and the element stiffness matrix respectively. All

of these instance variables except the two dimensional array Q4Kelem representing the

element stiffness matrix, are declared as private.

The constructor of the Quad4Element class is,

public QUAD4Element(double[] cx, double[] cy, double[][] MatD, double

thelem) {

 D = MatD;

 th = thelem;

 EX = cx;

 EY = cy;

 }

The coordinates of the nodes, the material matrix, and the thickness of the

element are all initialized through the constructor when an instance of the class

QUAD4Element is created.

The methods of the class QUAD4Element are given in Table 3.3. All methods are

declared private except for the CalcElemK () method, which is declared as public since

it is called from outside the class. The method QUAD4ShapeFn () computes the

derivatives of the shape functions with respect to ξ and η . The Jacobian () method

computes the Jacobian matrix and the determinant of the Jacobian matrix for the element

 33

using Equation (3.36). The QUAD4BMatrix () method computes the B matrix for the four

node quadrilateral element.

Table 3.3 Methods in the class QUAD4Element

Method Description

QUAD4ShapeFn ()
Calculates the derivatives of shape functions for four node

quadrilateral element.

Jacobian () Calculates the Jacobian matrix.

QUAD4BMatrix () Calculates the strain-displacement matrix.

QUAD4ElemMatrix ()
Calculates the element stiffness matrix for four node

quadrilateral plane element.

The element stiffness matrix is computed in the method QUAD4ElemMatrix ()

using the 2 2× Gauss quadrature. For each Gauss point the methods QUAD4ShapeFn (),

Jacobian (), and QUAD4BMatrix () are called. The elements of stiffness matrices are

computed at each Gauss point using the values obtained from these methods and are then

added to obtain the final element stiffness.

The structure of the CalcElemK () method is shown below. This method takes

QUAD4Element as an argument and calls the QUAD4ElemMatrix () method.

 public void CalcElemK(QUAD4Element q) {

 //Calculates Element Stiffness Matrix.

 q.QUAD4ElemMatrix(q);

 }

 The approach used for analyzing a structure consisting of four node quadrilateral

plane elements is as follows. For each element an instance of the QUAD4Element class is

created by calling the constructor.

 34

QUAD4Element q4 = new QUAD4Element (X, Y, D, TH);

where, q4 is the instance of the class QUAD4Element. The x and y coordinates, material

matrix and the thickness of the element are passed in the above constructor. Once an

object of the QUAD4Element class has been created, the element stiffness matrix is

computed by calling CalcElemK () of the main class and passing the q4 object as an

argument to the function.

The QUAD4Element class also contains the method CalcStresses (). This

method calculates stresses for the four node quadrilateral plane element. These stresses

are obtained from the nodal displacements which are computed during the analysis. The

CalcStresses () method is declared as,

public void CalcStresses(QUAD4Element q4, double[] U, StressResults S)

The parameter q4 is an instance of the QUAD4Element class, U is the array of

nodal displacements and S is an instance of the StressResults class which stores

element stresses.

 The stresses at each node of the element are calculated using 2 2× Gauss

quadrature. The methods QUAD4ShapeFn (), Jacobian () and QUAD4BMatrix ()

methods are called at each Gauss point and the stresses are calculated using the stress-

strain and strain-displacement relationships.

 35

Chapter 4

Plate Bending Elements

4.1 Overview

 Two plate bending elements are chosen for representing the bending behavior of

flat shell elements in this study: (1) Discrete Kirchoff Triangular (DKT) element (Batoz

et al., 1980), and (2) Discrete Kirchoff Quadrilateral (DKQ) element (Batoz and Tahar,

1982). In this chapter, the development of element stiffness matrix of these elements and

the implementation in Java is discussed.

4.2 Bending of Flat Plates

 Bending of flat plates is similar to bending of beams; the former is more

complicated because plate bending is two dimensional while the bending of beam is one

dimensional. The behavior of plates mainly depends on the plate thickness. Plates can be

classified in to three categories depending on thickness and deformation (Timoshenko

and Krieger, 1959).

1. Thin plates with small deformations.

2. Thin plates with large deformations.

3. Thick plates.

In this study we consider thin plates with small deformations. The bending properties of

this plate can be used in the development of flat shell elements. There are three basic

assumptions in the theory of bending for thin plates (Timoshenko and Krieger, 1959).

1. The mid-surface of the plate remains unstretched during deformations.

2. Points straight and normal to the mid-surface of the plate before bending remain

straight and normal to the mid surface after bending.

 36

3. Transverse shear stresses are small compared to normal stresses and hence can be

neglected.

These assumptions are known as Kirchoff’s hypothesis and are applicable to the bending

of the thin plates with small deflections.

 Consider an isotropic plate of uniform thickness t with the XY plane as the

principal plane. According to the theory of bending for a thin plate, the plate is in the

plane stress condition and hence all stresses vary linearly over the thickness of the plate.

The moments can be represented as,

2

2

t

x x
t

M z dzσ
−

= ⋅∫

2

2

t

y y
t

M z dzσ
−

= ⋅∫ (4.1)

2

2

t

xy xy
t

M z dzτ
−

= ⋅∫

where xM and yM are the moments in the x and y direction respectively, and xyM , is the

twisting moment. All moments are per length. If w is the transverse displacement of the

plate, the displacement-curvature relationships for the thin plate can be written as,

2

2x
w

x
κ

∂
= −

∂

2

2y
w

y
κ

∂
= −

∂
 (4.2)

2

2xy
w

x y
κ

∂
= −

∂ ∂

 37

4.3 Basic Relationships for Bending of Thin Plates

 Consider a small section of the plate of length dx in the x direction. When a load

is applied in the z direction, the point O on the mid-surface of the plate moves in

z direction as the plate deforms due to bending, as shown in the Fig.4.1.

Fig. 4.1 Bending of Plate.

 According to the Kirchoff assumption, a line that is straight and normal to the

mid-surface before bending remains straight and normal to the mid-surface after bending

(Cook et al., 1989). The displacements can be written as,

w
u z

x
∂

= −
∂

w
v z

y
∂

= −
∂

 (4.3)

From Equation (4.3), and the strain-displacement relationship, the strains can be written

as,

 38

2

2x
u w

z
x x

ε
∂ ∂

= = −
∂ ∂

2

2y
v w

z
y y

ε
∂ ∂

= = −
∂ ∂

 (4.4)

2

2xy
u v w

z
y x x y

γ
∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂

For the plane-stress condition the stress-strain relationship is,

2

1 0
1 0

1
1

0 0
2

x x

y y

xy xy

E
σ εν
σ ν ε

ν
ντ γ

 
    
    

=    −    −    
 

 (4.5)

Substituting for the strains from Equation (4.4), Equation (4.5) can be rewritten as,

2

2

2

2 2

2

1 0

1 0
1

1
0 0

2 2

x

y

xy

w
z

x
E w

z
y

w
z

x y

σ ν

σ ν
ν

ντ

 ∂
−   ∂    

     ∂ 
= −    − ∂    −     ∂  − 

∂ ∂  

 (4.6)

From Equation (4.6) the stresses in the plate can be represented as,

2 2

2 2 21x

z E w w
x y

σ ν
ν

 − ⋅ ∂ ∂
= + − ∂ ∂ 

2 2

2 2 21y

z E w w
x y

σ ν
ν

 − ⋅ ∂ ∂
= + − ∂ ∂ 

 (4.7)

2

2

2 1
21xy

z E w
x y

ν
τ

ν
 − ⋅ − ∂ =    ∂ ∂−   

 39

Substituting the stresses from Equation (4.7) to Equation (4.1) and integrating over the

thickness of the plate, we obtain following relationships for the moments,

()
3 2 2

2 2212 1
x

Et w w
M

x y
ν

ν

 − ∂ ∂
= + ∂ ∂−  

()
3 2 2

2 2212 1
y

Et w w
M

x y
ν

ν

 − ∂ ∂
= + ∂ ∂−  

 (4.8)

() ()
3 2

2
1

12 1
xy

Et w
M

x y
ν

ν

 − ∂
= −  ∂ ∂−  

where,
()

3

212 1
Et

D
ν

=
−

 is the flexural rigidity of the plate.

Equation (4.8) can be represented in matrix form as,

2

2

2

2

2

0

0

1
0 0

2 2

x

y

xy

w
xM D D
w

M D D
y

M D w
x y

ν

ν

ν

 ∂
  − 

∂     ⋅
     ∂ 

= ⋅ −    
∂    −     ∂   −   
∂ ∂  

 (4.9)

From Equations (4.9) and (4.2), the moment-curvature relationship is given by,

0
0

1
0 0

2

x x

y y

xy xy

M D D
M D D

M D

κν
ν κ

ν κ

 
    ⋅    

= ⋅    
    −         

 (4.10)

 40

4.4 Triangular Plate Bending Element Based on Discrete Kirchoff Theory

 Batoz et al. (1980) developed a triangular plate bending element (DKT element)

based on the discrete Kirchoff theory. According to the Kirchoff assumptions, the

bending energy present in the element is much higher compared to the shear strain

energy, and thus the transverse shear energy term can be neglected from the energy

equation. The DKT element is a widely used triangular plate bending element in finite

element analysis programs. In this section the element stiffness matrix for the DKT

element as given by Batoz et al. (1980) is presented. The DKT element is shown in Fig.

4.2,

Fig. 4.2 DKT Element.

The bending energy can be represented in the following form,

1
2

T
b b

A

U D dx dyκ κ= ⋅ ⋅∫ (4.11)

 41

where,

()
3

2

1 0
1 0

12 1
1

0 0
2

b

Et
D

ν
ν

ν
ν

 
 
 

=  −  −
 
 

where,

t = thickness of the plate, and

The curvatures are given by,

,

,

, ,

x x

y y

x y y x

β
κ β

β β

 
 

=  
 + 

 (4.12)

According to the assumptions made in the bending theory of thin plates with

small displacements, the displacement components ,u v and w at any point can be

represented as,

(),xu z x yβ= (),yv z x yβ= (),w w x y= (4.13)

where, w is the transverse displacement, and xβ and yβ are the rotations in the direction

normal to the xz and yz planes respectively.

Batoz et al. (1980) made following observations to correlate rotations normal to the mid

surface to the transverse displacement w .

(1) The triangular element should have only nine degrees of freedom; that is, the

transverse displacement w and the rotations xθ and yθ at each node of the

element.

 42

(2) According to Kirchoff theory, the rotations can be defined as,

x

w
x

θ
∂

=
∂

 y
w
y

θ
∂

=
∂

 (4.14)

(3) The Kirchoff theory can be imposed at any discrete point in the element.

(4) The compatibility of rotations xβ and yβ cannot be lost.

Batoz et al. (1980) made the following assumptions,

(1) The relationship between the rotations at six nodal points including mid-surface

nodes and the shape functions at each six nodes is in the form of a quadratic,

6

1
x i xi

i

Nβ β
=

= ∑

6

1
y i yi

i

Nβ β
=

= ∑ (4.15)

where, xiβ and yiβ are the rotations at each node as shown in the Fig. 4.3.

Fig. 4.3 Positive Directions of xβ and yβ .

 43

For i = 1 to 6, iN are the shape functions for the DKT element in area coordinates ξ

andη , and can be expressed as,

() ()1
1 22 1N ξ η ξ η= − − − − .

()2 2 1N ξ ξ= − .

()3 2 1N η η= − . (4.16)

4 4N ξη= .

 ()5 4 1N η ξ η= − − .

 ()6 4 1N ξ ξ η= − − .

(2) Applying Kirchoff hypothesis to remove transverse shear strain given the

following equations,

At the corner nodes,

,
0

,
x x

y y

w
w

β
γ

β
+ 

= = + 
 k = 1,2,3 (4.17)

where, γ = transverse shear strain.

At the mid nodes, , 0sk skwβ + = 4,5,6k = (4.18)

where k is the node number.

(3) The variation of the transverse displacements is represented by a cubic expression

as,

3 1 3 1
, , ,

2 4 2 4sk i si j sj
ij ij

w w w w w
l l

= − − + + (4.19)

 44

where, k is the mid-node of side ij of the triangle and, ijl represents the length of side ij

of the triangle.

(4) The variation of the rotations along the sides of the triangle is represented by

linear equation,

 ()1
2nk ni njβ β β= + (4.20)

where, 4,5,6k = represents the mid-nodes of the sides 2-3, 3-1, and 2-1 respectively.

As a consequence of the above four assumptions, the condition that the transverse

shear strain along the sides of the triangle, , 0s s swγ β= + = is satisfied.

The displacements at each node can be written as,

 { }1 1 1 1 2 2 2 2 2
T

x y x y x yU w w wθ θ θ θ θ θ= (4.21)

The relationship between the nodal displacements and xβ and yβ is given by,

(),T
x xH Uβ ξ η=

(),T
y yH Uβ ξ η= (4.22)

where xH and yH are the components vectors of the shape functions. Batoz et al. (1980)

represented the component vectors of the shape functions in the form,

 45

()

()
()

()
()

()
()

6 6 5 5

5 5 6 6

1 5 5 6 6

4 4 6 6

6 6 4 4

1 6 6 4 4

5 5 4 4

4 4 5 5

3 4 4 5 5

1.5

1.5
,

1.5

x

a N a N
b N b N

N c N c N
a N a N

H b N b N
N c N c N

a N a N
b N b N

N c N c N

ξ η

 − 
 + 
 − −
 

− 
 = +
 

− − 
 −
 

+ 
 − −  

 (4.23)

()

()

()

()

6 6 5 5

1 5 5 6 6

5 5 6 6

4 4 6 6

2 6 6 4 4

6 6 4 4

5 5 4 4

3 4 4 5 5

4 4 5 5

1.5

1.5
,

1.5

y

d N d N
N e N e N

b N b N
d N d N

H N e N e N
b N b N
d N d N

N e N e N
b N b N

ξ η

 − 
 − + + 
 − −
 

− 
 = − + +
 

− − 
 −
 
− + + 

 − −  

 (4.24)

where,

2
ij

k
ij

x
a

l
= −

2

3
4

ij ij
k

ij

x y
b

l
=

()2 2 21 1
4 2k ij ij ijc x y l= −

2 2
k ij ijd y l= − (4.25)

()2 2 21 1
4 2k ij ij ije y x l= −

ij i jx x x= −

ij i jy y y= −

()2 2 2
ij ij ijl x y= +

 46

and, 4,5,6k = for the sides 23,31,12ij = respectively.

The strain-displacement matrix for the DKT element can be represented in the following

form,

()
31 , 12 ,

31 , 12 ,

31 , 12 , 31 , 12 ,

1
,

2

T T
x x
T T
y y

T T T T
x x y y

y H y H
B x H x H

A
x H x H y H y H

ξ η

ξ η

ξ η ξ η

ξ η

 +
 

= − − 
 − − + + 

 (4.26)

where, 31 12 12 312A x y x y= −

The derivatives of the component vectors of the shape func tions with respect to ξ

andη can be represented by the following equations.

The derivatives of the component vectors with respect to ξ are,

() ()
() ()

() () ()
() ()

() ()
() ()
()

()
()

6 5 6

6 5 6

6 5 6

6 4 6

, 6 6 4

6 4 6

5 4

4 5

5 4

1 2
1 2

4 6 1 2
1 2

1 2
2 6 1 2

x

P P P
q q q

r r r
P P P

H q q q
r r r

P P
q q

r r

ξ

ξ η
ξ η

ξ η ξ η
ξ η

ξ η
ξ ξ η

η
η

η

− + − 
 − − + 
 − + + + − − +
 

− − + + 
 = − − −
 

− + + − + − 
 − +
 

− 
 − −  

 (4.27)

 47

() ()
() ()

() ()
() ()

() ()
() ()

()
()
()

6 5 6

6 5 6

6 5 6

6 4 6

, 6 4 6

6 4 6

4 5

4 5

4 5

1 2
1 1 2

1 2
1 2

1 1 2
1 2

y

t t t
r r r

q q q
t t t

H r r r
q q q

t t
r r
q q

ξ

ξ η
ξ η

ξ η
ξ η

ξ η
ξ η
η

η
η

− + − 
 + − − + 
 − − − +
 

− − + + 
 = − + − − −
 

− + − 
 − +
 

− 
 − −  

 (4.28)

The derivatives of the component vectors with respect to η are,

() ()
() ()

() () ()
()
()
()

() ()
() ()

() ()

5 6 5

5 5 6

5 5 6

4 6

, 4 6

6 4

5 4 5

5 4 5

5 4 5

1 2
1 2

4 6 1 2

1 2
1 2

2 6 1 2

x

P P P
q q q

r r r
P P

H q q
r r

P P P
q q q

r r r

η

η ξ
η ξ

ξ η η ξ
ξ
ξ

ξ
η ξ
η ξ

η η ξ

− − − − 
 − − + 
 − + + + − − +
 

+ 
 = −
 

− − 
 − − +
 

− + − 
 − + + − + −  

 (4.29)

() ()
() ()

() ()
()
()
()

() ()
() ()

() ()

5 6 5

5 5 6

5 5 6

4 6

, 4 6

4 6

5 4 5

5 4 5

5 4 5

1 2
1 1 2

1 2

1 2
1 1 2

1 2

t t t
r r r

q q q
t t

H r r
q q

t t t
r r r

q q q

η η

η ξ
η ξ

η ξ
ξ
ξ
ξ
η ξ

η ξ
η ξ

− − − − 
 + − − + 
 − − + +
 

+ 
 = −
 

− − 
 − − +
 

− − + − 
 − − + −  

 (4.30)

where,

 48

 26k ij ijP x l= −

 23k ij ij ijq x y l=

 2 23k ij ijr y l=

 26k ij ijt y l= −

 and, 4,5,6k = for 23,31,12ij = respectively.

The strain-displacement matrix can be calculated using Equations (4.26) through

(4.30). Substituting the strain-displacement matrix in Equation (4.31), the element

stiffness matrix for the DKT element can be obtained.

11

0 0

2 T
DKT bK A B D B d d

η

ξ η
−

= ⋅∫ ∫ (4.31)

where bD is the material matrix for plate bending.

It is assumed that the element has constant thickness. The element stiffness matrix

for the DKT element can be obtained using a three point Gauss quadrature scheme. The

three numerical integration points are located at the mid points of the sides of the triangle

(Batoz et al., 1980). Since the equation for the element stiffness matrix has quadratic

terms a three point Gauss quadrature scheme is sufficient. The coordinates and the weight

functions for the 3-point numerical integration scheme are given in Table 4.1.

Table 4.1 Coordinates and weight functions for Gauss quadrature

Integration point Coordinates Weight functions

1 ()1
2 ,0 1

3

2 ()1 1
2 2, 1

3

3 ()1
20, 1

3

 49

The element stiffness matrix using Gauss quadrature is obtained from,

[] () [] ()
3 3

9 9 3 39 3 3 9
1 1

2 , ,
T

j i i j b i j
j i

k A w w B D B d dξ η ξ η ξ η
× ×× ×

= =

   =    ∑∑ (4.32)

4.5 Implementation of DKT Element in Java.

To implement the triangular plate bending (DKT) element in Java, a class called

DKTElement was developed. The DKTElement class is derived from the base class

Element. The base class Element contains all the data variables and functions necessary

for managing all of the different elements in the program.

The class definition and the variables declared within the class are given below,

public class DKTElement {

 private double th; //Thickness of the element.

 private double A; //Area of the element.

 private double[] EX; //x Coordinates of the element.

 private double[] EY; //y Coordinates of the element.

 private double[][] Db; //Material matrix.

 private double[][] X; //x geometric components.

 private double[][] Y; //y geometric components.

 private double[][] L; //L geometric components.

 private double[] HXxi; //Component vector for x w.r.t Xi.

 private double[] HXeta; //Component vector for x w.r.t Eta.

 private double[] HYxi; //Component vector for y w.r.t Xi.

 private double[] HYeta; //Component vector for y w.r.t Eta.

 private double[] P; //Geometric components P at each node.

 50

 private double[] t; //Geometric components t at each node.

 private double[] q; //Geometric components q at each node.

 private double[] r; //Geometric components r at each node.

 private double[][] B; //Strain-Displacement matrix.

 public double[][] DKTKelem; //Element Stiffness matrix.

The variable th and A represent the thickness and the area of the element

respectively. []EX and []EY are arrays containing the x and y coordinates of the nodes.

[] X and [] Y are arrays containing the geometric components representing the sides of

the triangle. The array [] L contains lengths of the sides of triangle. [] p, [] q, [] r

and [] t are arrays containing the geometric components for calculating the component

vectors of shape functions. [] HXxi, [] HXeta, [] HYxi, and [] HYeta are arrays

representing the derivatives of the component vectors for the shape functions with respect

to ξ and η respectively. The two dimensional arrays B and DKTKelem contains the strain-

displacement matrix and the element stiffness matrix respectively. All of these instance

variables except the two dimensional array DKTKelem representing the element stiffness

matrix, are declared as private.

The constructor of the DKTElement class is,

public DKTElement(double[] cx, double[] cy, double[][] Mat,

 double thelem) {

 Db = Mat;

 th = thelem;

 EX = cx;

 EY = cy;

}

The coordinates of the nodes, the material matrix, and the thickness of the

element are all initialized through the constructor when an instance of the class

DKTElement is created.

 51

The methods of the class DKTElement are given in Table 4.2, All methods are

declared private except for the method CalcElemK (), which is declared as public since

it is called from outside the class. The method Geometry() computes the geometric

components required to calculate the element stiffness matrix using Equation (4.25). The

method ShFnHXxi () computes derivatives of the component vectors for shape

functions for x with respect to ξ using Equation (4.27). The method ShFnHXeta ()

computes derivatives of the component vectors for the shape functions for x with respect

to η using Equation (4.29). The method ShFnHYxi () computes derivatives of the

component vectors for shape functions for y with respect to ξ using Equation (4.28). The

method ShFnHYeta () computes derivatives of the component vectors for shape

functions for y with respect to η using Equation (4.30). The method DKTBMatrix ()

computes the B matrix for the DKT element using Equation (4.26).

Table 4.2 Methods in the class DKTElement

Method Description

Geometry () Calculates the geometric components for an element.

ShFnHXxi ()
Calculates the derivatives of the component vector of the

shape functions for x with respect to ξ .

ShFnHXeta ()
Calculates the derivatives of the component vector of the

shape functions for x with respect to η .

ShFnHYxi()
Calculates the derivatives of the component vector of the

shape functions for y with respect to ξ .

ShFnHYeta ()
Calculates the derivatives of the component vector of the

shape functions for y with respect to η .

DKTBMatrix () Calculates the strain-displacement matrix.

DKTElementKMatrix () Calculates the element stiffness matrix for DKT element.

 52

The element stiffness matrix is computed in the method DKTElementKMatrix ()

using three point Gauss quadrature. For each Gauss point the ShFnHXxi (), ShFnHXeta

(), ShFnHYxi (), ShFnHYeta (), and DKTBMatrix () methods are called. The

elements of the stiffness matrices are computed at each Gauss point using the values

obtained from these methods and are then added to calculate final element stiffness

matrix for the DKT element.

The structure of the CalcElemK () method is shown below. This method takes

DKTElement as an argument and calls the Geometry () and DKTElementKMatrix ()

methods.

 public void CalcElemK(DKTElement d) {

 //Calculates geometrical properties for DKT Element.

 d.Geometry();

 //Calculates Element Stiffness Matrix for DKT Element.

 d.DKTElementKMatrix(d);

 }

 The approach used for analyzing a structure consisting of DKT elements is as

follows. For each element an instance of the DKTElement class is created by calling the

constructor.

DKTElement dkt = new DKTElement (X, Y, D, TH);

where, dkt is the instance of the class DKTElement. The x and y coordinates, material

matrix and the thickness of the element are passed in the above constructor. Once an

object of the DKTElement class has been created, the element stiffness matrix is computed

by calling the method CalcElemK () of the main class by passing the dkt object as an

argument to the function.

 53

The DKTElement class also contains the method CalcStresses (). This method

calculates stresses for a DKT element. These stresses are obtained from the nodal

displacements which are computed during the analysis. The CalcStresses () method is

declared as,

public void CalcStresses(DKTElement dkt, double[] U, StressResults S)

The parameter dkt is an instance of the DKTElement class, U is the array of nodal

displacements and S is an instance of the StressResults class which stores element

stresses.

 The stresses at each node of the element are calculated using three point Gauss

quadrature. The methods ShFnHXxi (), ShFnHXeta (), ShFnHYxi (), ShFnHYeta (),

and DKTBMatrix () are called at each Gauss point and the stresses are calculated using

the stress-strain and strain-displacement relationships.

4.6 Quadrilateral Plate Bending Element Based on Discrete Kirchoff Theory

The quadrilateral thin plate bending element is efficient and useful for

representing the bending part of flat shell elements. The quadrilateral plate bending

element can also be used for the analysis of plate structures such as slabs. Batoz and

Tahar (1982) developed the Discrete Kirchoff Quadrilateral (DKQ) plate bending

element by considering the Kirchoff assumptions for thin plates. The DKQ element has

12 degrees of freedom. Considering the element is in the xy plane (see Fig. 4.4), the

degrees of freedom at each node of the element can be described as the transverse

displacement w in the direction normal to the xy plane, and the inplane rotations xθ and

yθ in the x and y directions respectively.

(),w w x y= ,x ywθ = ,y xwθ = (4.33)

 54

Fig. 4.4 Quadrilateral Plate Bending Element (After Batoz and Tahar, 1982).

The development of the DKQ element by Batoz and Tahar (1982) is described in

this section. The formulation of the DKQ element is based on the Kirchoff assumptions

which were discussed in Section 4.3. According to these assumptions the shear strain

energy is neglected. The strain energy of the element is,

b
e

e

U U= ∑ (4.34)

where, e
bU is element strain energy due to bending and is given by,

 []{ }1
2

e

b
e b

A

U D dxdyχ χ= ∫

and eA is the area of an element.

 55

For homogeneous isotropic material properties, the curvatures are given by,

{ }

x

y

x y

x

y

y x

β

χ β

β β

 ∂ ∂
 

= ∂ ∂ 
 ∂ ∂ + ∂ ∂ 

 (4.35)

here,

xβ = rotation normal to the middle surface of the plate in the xz direction.

yβ = rotation normal to the middle surface of the plate in the yz direction.

The material matrix is,

()

3

2

1 0
1 0

12 1 1
0 0

2

b

Et
D

ν
ν

ν ν

 
 
 

=  
−  −

 
 

 (4.36)

where, ν = Poisson’s ratio, t = thickness of the plate, and E = modulus of elasticity.

Batoz and Tahar (1982) developed the relationship between the transverse

displacement w and the rotations xβ and yβ as follows,

1. They defined xβ and yβ by incomplete cubic polynomials:

8

1
x i xi

i

Nβ β
=

= ∑
8

1
y i yi

i

Nβ β
=

= ∑ (4.37)

The shape functions for the eight node quadrilateral element are represented in the

following form.

()() ()1
1 4 1 1 1N ξ η ξ η= − − − + +  

() ()()1
2 4 1 1 1N ξ η ξ η= − + − − +  

 56

() () ()1
3 4 1 1 1N ξ η ξ η= − + + − −  

() ()()1
4 4 1 1 1N ξ η ξ η= − − + + −  

()()21
5 2 1 1N ξ η= − −

() ()21
6 2 1 1N ξ η= + −

()()21
7 2 1 1N ξ η= − +

()()2 21
5 2 1 1N ξ η= − − (4.38)

2. They applied Kirchoff assumptions at the corner nodes and the midpoint of the sides,

At the corner nodes,

, 0
, 0

xi xi

yi yi

w

w

β

β

+    
=   +    

 1,2,3,4i = (4.39)

At the midpoints:

, 0sk skwβ + = 5,6,7,8k = (4.40)

3. A cubic function was used to represent the transverse displacement w . Hence the

derivative of the transverse displacement w with respect to s at the mid nodes of the

element sides is a quadratic and is represented as,

 () ()3 1
, , ,

2 4sk i j si sj
ij

w w w w w
l

−
= − − + (4.41)

where,

 5,6,7,8k = for 12,23,34,41ij = and ijl = length of the line for side connecting

nodes ij

 57

4. The rotation normal to the sides at the mid nodes varies linearly.

() ()1 1
2 2 , ,nk ni nj ni njw wβ β β= + = − + (4.42)

The nodal displacement vector for the Discrete Kirchoff Quadrilateral element is,

1 1 1 2 2 2 3 3 3 4 4 4n x y x y x y x yU w w w wθ θ θ θ θ θ θ θ= (4.43)

where,

,xi yiwθ =

,yi xiwθ = for 1,2,3,4i =

The quantities xβ and yβ are expressed in terms of the nodal displacements using the

component vectors of the shape functions as,

() { },x
x nH Uβ ξ η=

() { },y
y nH Uβ ξ η= (4.44)

where, (),xH ξ η and (),yH ξ η are the component vectors of the shape functions and are

given in Equations (4.45) and (4.46),

 58

()

()

()

()

()

3
5 5 8 82

5 5 8 8

1 5 5 8 8
3

6 6 5 52

6 6 5 5

2 6 6 5 5

3
7 7 6 62

7 7 6 6

3 7 7 6 6

3
8 8 7 72

8 8 7 7

4 8 8 7 7

,x

a N a N
b N b N

N c N c N
a N a N
b N b N

N c N c N
H

a N a N
b N b N

N c N c N
a N a N
b N b N

N c N c N

ξ η

 − 
 + 
 − −
 

− 
 +
 

− − =  −
 

+ 
 − − 
 −
 

+ 
 − −  

 (4.45)

()

()

()

()

()

3
5 5 8 82

1 5 5 8 8

5 5 8 8
3

6 6 5 52

2 6 6 5 5

6 6 5 5

3
7 7 6 62

3 7 7 6 6

7 7 6 6

3
8 8 7 72

4 8 8 7 7

8 8 7 7

,y

d N d N
N e N e N

b N b N
d N d N

N e N e N
b N b N

H
d N d N

N e N e N
b N b N
d N d N

N e N e N
b N b N

ξ η

 − 
 − − − 
 − −
 

− 
 − − −
 

− − =  −
 
− − − 

 − − 
 −
 
− − − 

 − −  

 (4.46)

with,

2
ij

k
ij

x
a

l
= −

2

3
4

ij ij
k

ij

x y
b

l
=

 59

()2 2 21 1
4 2k ij ij ijc x y l= −

2 2
k ij ijd y l= − (4.47)

()2 2 21 1
4 2k ij ij ije y x l= −

ij i jx x x= −

ij i jy y y= −

()2 2 2
ij ij ijl x y= +

 5,6,7,8k = when 12,23,34,41ij =

The strain-displacement matrix is obtained from the component vectors of the shape

functions as,

[]
11 12

21 22

11 12 21 22

 , , ,

 , , ,

, , , , , ,

x x x
x

y y y
y

x y y y x x
y x

H j H j H

B H j H j H

H H j H j H j H j H

ξ η

ξ η

ξ η ξ η

   +
   
   = = +
   
   + + + +   

 (4.48)

The Jacobian matrix is given by,

[] () ()
() ()

21 34 12 34 21 34 12 3411 12

32 41 12 34 32 41 12 3421 22

1
4

x x x x y y y yJ J
J

x x x x y y y yJ J
η η
ξ ξ

+ + + + + +  
= =    + + + + + +   

 (4.49)

In the equation for the strain-displacement matrix (Equation 4.48), the

terms 11j , 12j , 21j , 22j are components of the inverse of the Jacobian matrix represented in

Equation (4.49). These terms are obtained as follows,

 60

[]11 22

1
det

j J
J

= []12 12

1
det

j J
J

−
=

 (4.50)

[]21 21

1
det

j J
J

−
= []22 22

1
det

j J
J

=

The determinant of the Jacobian is,

 [] () () ()42 31 31 42 34 21 21 34 41 32 32 41

1
det

8 8 8
J y x y x y x y x y x y x

ξ η
= − + − + −

The derivatives for the component vectors ,xH ξ , ,xH η , ,yH ξ , and ,yH η can be

obtained by substituting the derivatives of the shape functions ,iN ξ and ,iN η respectively

in place of the shape functions iN .

The derivatives of the shape functions are,

() ()
()()
()()
() ()

()
()

()
()

1
4
1
4
1
4
1
4

21
2

21
2

2 1
2 1
2 1
2 1

, 1

1

1

1

N ξ

ξ η η
ξ η η
ξ η η
ξ η η
ξ η

η

ξ η

η

 + − 
 − − 
 + +
 

− + 
=  − −

 
 −
 

− + 
 − −  

() ()
() ()
()()
()()

()
()

()
()

1
4
1
4
1
4
1
4

21
2

21
2

2 1
2 1
2 1

2 1
, 1

1

1

1

N η

η ξ ξ
η ξ ξ
η ξ ξ

η ξ ξ

ξ

η ξ

ξ

η ξ

+ − 
 − + 
 + +
 

− − 
=  − − 

 − +
 
 −
 

− −  

 (4.51)

The element stiffness matrix is given by,

[] [][]
e

Te
b

A

k B D B dxdy  =  ∫ (4.52)

 61

Equation (4.52) can be written in terms of natural coordinates as,

[] [][] []
1 1

1 1

det
Te

bk B D B J d dξ η
+ +

− −

  = ⋅  ∫ ∫ (4.53)

According to Batoz and Tahar (1982), the double integral in Equation (4.53) can

be computed using a standard 2 2× numerical integration scheme. This is found to be

sufficient for the solution although theoretically 3 3× numerical integration scheme is

required to integrate the quadratic functions. The weight functions and roots for two

point Gauss quadrature are given in Table 4.3

Table 4.3 Weight functions and roots for 2 × 2 Gauss quadrature

Roots Weight Functions w

0.577350269189626± 1.0

Equation (4.53) can be rewritten as,

[] () [] () ()
2 2

12 1 2 3 31 2 3 3 12
1 1

, , ,
T

j i i j b i j i j
j i

k w w B D B J d dξ η ξ η ξ η ξ η
× ×× ×

= =

   =    ∑∑ (4.54)

4.7 Implementation of DKQ Element in Java.

To implement the quadrilateral plate bending (DKQ) element in Java, a class

called DKQElement was developed. The DKQElement class is derived from the base class

Element.

The class definition and the variables declared within the class are given below,

public class DKQElement {

 private double th; //Thickness of the element.

 private double detJ; //Determinant of the Jacobian matrix.

 62

 private double[] EX; //array of x Coordinate.

 private double[] EY; //Array of y Coordinate.

 private double[][] Db; //Material Matrix.

 private double[][] X; //x component for geometric function.

 private double[][] Y; //y component for geometric function.

 private double[][] L; //Length of the side of the element.

 private double[] a; //Geometric function a.

 private double[] b; //Geometric function b.

 private double[] c; //Geometric function c.

 private double[] d; //Geometric function d.

 private double[] e; //Geometric function e.

 private double[] NXi; //Derivative of the shape functions w.r.t Xi.

 private double[] NEta; //Derivative of the shape functions w.r.t Eta.

 private double[][] J; //Jacobian matrix.

 private double[] HXxi; //derivative component vector x of shape

functions w.r.t Xi.

 private double[] HXeta; //derivative component vector x of shape

functions w.r.t Eta.

 private double[] HYxi; //derivative component vector y of shape

functions w.r.t Xi.

 private double[] HYeta; //derivative component vector y of shape

functions w.r.t Eta.

 private double[][] B; //Strain-Displacement matrix.

 public double[][] DKQKelem; //Element stiffness matrix for DKQ

Element.

 63

The variables th, and detJ represent the thickness of the element and

determinant of the Jacobian respectively. []EX and []EY are arrays containing the x and

y coordinates of the nodes. [] X and [] Y are arrays containing the geometric

components representing the sides of the triangle. Array [] L contains lengths of the

sides of triangle. The arrays [] a, [] b, [] c, [] d and [] e contain geometric

components for calculating the component vectors of the shape functions. [] NXi and []

NEta are arrays containing the derivatives of the shape functions with respect to ξ and η

respectively. [] J is the array containing the Jacobian matrix. [] HXxi, [] HXeta, []

HYxi, and [] HYeta are arrays representing derivatives of the component vectors of the

shape functions with respect to ξ and η respectively. The two dimensional arrays B and

DKQKelem contain the strain-displacement matrix and the element stiffness matrix

respectively. All of these instance variables except the two dimensional array DKQKelem

representing the element stiffness matrix, are declared as private.

The constructor of the DKQElement class is,

public DKQElement(double[] cx, double[] cy, double[][] MatDb,

 double thelem) {

 Db = MatDb;

 th = thelem;

 EX = cx;

 EY = cy;

}

The coordinates of the nodes, the material matrix, and the thickness of the

element are initialized through the constructor when an instance of the class DKQElement

is created.

The methods of the class DKQElement are given in Table 4.4. All methods are

declared private except for the CalcElemK () method, which is declared as public. The

 64

method Geometry() computes the geometric components required to calculate element

stiffness matrix using Equation (4.25). The method ShFn () calculates the derivatives of

the shape functions with respect to to ξ and η using Equation (4.51). The ShFnHXxi ()

method computes derivatives of the component vectors of the shape functions for x with

respect to ξ . The ShFnHXeta () method computes derivatives of the component vectors

of the shape functions for x with respect to η . The ShFnHYxi () method computes

derivatives of the component vectors of the shape functions for y with respect to ξ . The

ShFnHYeta () method computes derivatives of the component vectors of the shape

functions for y with respect to η . The DKQBMatrix () method computes the B matrix for

the DKQ element using Equation (4.48).

Table 4.4 Methods in the DKQElement class

Method Description

Geometry () Calculates geometric components for the element.

ShFn ()
Calculates derivatives of the shape functions with respect to

ξ and η .

ShFnHXxi ()
Calculates derivatives of the component vector for the shape

functions for x with respect to ξ .

ShFnHXeta ()
Calculates derivatives of the component vector for the shape

functions for x with respect to η .

ShFnHYxi()
Calculates derivatives of the component vector for the shape

functions for y with respect to ξ .

ShFnHYeta ()
Calculates derivatives of the component vector for the shape

functions for y with respect to η .

Jacobian ()
Calculates the Jacobian matrix and the determinant of

Jacobian matrix.

DKQBMatrix () Calculates the strain-displacement matrix.

DKQElementKMatrix () Calculates the element stiffness matrix for DKQ element.

 65

The element stiffness matrix is computed in DKQElementKMatrix () method

using 2 2× Gauss quadrature. For each Gauss point, the methods ShFn (), ShFnHXxi (),

ShFnHXeta (), ShFnHYxi (), ShFnHYeta (), and DKQBMatrix () are called. The

elements of the stiffness matrices are computed at each Gauss point using values obtained

from these methods are then added to obtain the final element stiffness matrix for the

DKQ element.

The structure of the CalcElemK () method is shown below. This method takes

DKQElement as an argument and calls the Geometry () and DKQElementKMatrix ()

methods.

 public void CalcElemK(DKQElement d) {

 //Calculates geometrical properties for DKQ Element.

 d.Geometry();

 //Calculates Element Stiffness Matrix for DKQ Element.

 d.DKQElementKMatrix(d);

}

 The approach used for analyzing a structure consisting of DKQ elements is as

follows. For each element an instance of the DKQElement class is created by calling the

constructor.

DKQElement dkq = new DKQElement (X, Y, D, TH);

where, dkq is the instance of the class DKQElement. The x and y coordinates, the

material matrix and the thickness of element are passed in the above constructor. Once an

object of the DKQElement class has been created, the element stiffness matrix is computed

by calling the method CalcElemK () of the main class by passing the dkq object as an

argument to the function.

 66

The DKQElement class also contains the method CalcStresses (). This method

calculates stresses for DKQ element. These stresses are obtained from the nodal

displacements which are computed during the analysis. The CalcStresses () method is

declared as,

public void CalcStresses(DKQElement dkq, double[] U, StressResults S)

The parameter dkq is an instance of the DKQElement class, U is the array of nodal

displacements and S is an instance of the StressResults class which stores element

stresses.

 The stresses at each node of the element are calculated using 2 2× Gauss

quadrature. The methods ShFn (), ShFnHXxi (), ShFnHXeta (), ShFnHYxi (),

ShFnHYeta (), and DKTBMatrix () are called at each Gauss point and the stresses are

calculated using the stress-strain and strain-displacement relationships.

 67

Chapter 5

Flat Shell Elements

5.1 General Shell Elements

Shell elements are very efficient for modeling the behavior of curved structures

(Cook et al., 1989). There are four types of general shell elements: flat shell elements,

curved shell elements, axisymmetric shell elements and, Mindlin type degenerated solid

elements (Yang et. al, 1990). Shell elements can also be classified according to the

thickness of the shell and the curvature of the midsurface. Depending on the thickness,

shell elements can be separated into thin shell elements and thick shell elements. Thin

shell elements are based on the discrete Kirchoff theory in which transverse shear

deformations are neglected. Thick shell elements are based on the Mindlin theory which

includes transverse shear deformations.

Shell elements can also be classified according to curvature as deep shell elements

and shallow shell elements. Shallow elements based on the classical shell theory and can

be developed by combining the membrane and bending strain in the energy equation. Flat

shell elements are developed by superimposing the stiffness of membrane and bending

elements. The membrane and bending forces are totally independent of each other in the

flat shell element and hence there is no membrane-bending coupling present in the

element. This is a major disadvantage of the flat shell elements.

 The development of the shell elements from the classical shell theory is more

complex, and many approximations are required to simplify the solution. Flat shell

elements are easier to formulate using previously available theories of membrane and

plate bending elements.

 68

5.2 Flat Shell Elements

 The shell element is subjected to both membrane forces and bending forces and

hence the development of shell elements should include a consideration of both these

actions. One approach for development of flat shell elements is to include the membrane

and bending properties by combining a membrane element and a plate bending element.

 Two types of thin flat shell elements were considered to implement in Java: (1)

triangular flat shell element and, (2) quadrilateral flat shell element. The triangular flat

shell element developed by combining the CST element described in Chapter 3, which

represents the membrane part of the element, and the DKT element (Batoz et al., 1980)

described in Chapter 4, which represents the bending part of the element. Consider the

element is in the xy plane, assembly of the triangular flat shell element can be represented

as shown in Fig. 5.1.

Fig. 5.1 Combination of CST and DKT Element.

The quadrilateral flat shell element is developed by the assembly of the four node

quadrilateral plane stress element presented in Chapter 3 and the DKQ element (Batoz

and Tahar, 1982) presented in Chapter 4. Considering that the element is in the xy plane,

 69

the assembly of the quadrilateral flat shell element can be represented as shown in Fig.

5.2.

Fig. 5.2 Combination of Quadrilateral Plane Element and DKQ Element.

5.3 Deve lopment of Stiffness Matrix for Flat Shell Elements.

 In this section we will discuss the general formulation of stiffness matrix for flat

shell elements. The development of the stiffness matrix for the triangular membrane

element and quadrilateral membrane element was presented in Chapter 3. The

development of the stiffness matrix for the triangular plate bending element and

quadrilateral plate bending element was presented in Chapter 4.

 The general shell has six degrees of freedom at each node. The nodal

displacements of the shell element are,

 { } { }i i i i xi yi ziU u v w θ θ θ= (5.1)

 for, 1i n= K n = number of nodes per element.

 70

The membrane stiffness matrix for each node is of size 2 2× , and is represented

as, []2 2mk
×

. The bending stiffness matrix for each node is of size 3 3× and is represented

as, []3 3bk
×

. The stiffness matrix at each node of the shell element is of size 6 6× and is

represented as, []6 6sk
×

. The assembly of the stiffness matrices of membrane and bending

components at each node will result in a zero value on the diagonal corresponding to the

rotational degree of freedom zθ since this displacement is not considered in the

membrane or bending element. Fig. 5.3 represents the inplane rotation which is

sometimes called drilling degrees of freedom.

Fig. 5.3 Drilling Degrees of Freedom (Local coordinate system).

This zero stiffness for the drilling degree of freedom causes singularity in

structure stiffness matrix when all the elements are coplanar and there is no coupling

between the membrane and bending stiffness of the element. There are several ways to

deal with this singularity.

The first approach for removing the singularity in the structure stiffness matrix is

to substitute an approximate value for the diagonal value of the stiffness of drilling

degree of freedom. Although, this solves the problem of singularity from the structure

stiffness matrix, it sometimes does not represent actual behavior of the element because

of the fact that a fictitious stiffness has been added.

 71

The second approach is to develop a higher order membrane element that includes

the drilling degree of freedom. This approach is less efficient since higher order

displacement functions are needed for the membrane stiffness matrix and hence a higher

order numerical integration scheme is required.

In this study the first approach is used since it is easier to implement and is more

efficient. This approach of including the fictitious stiffness for the drilling degree of

freedom closely approximates the behavior of the shell but sometimes it results in a

stiffer structure due to the constraints present at the corner nodes.

The element stiffness matrix for the shell element is first assembled by super

imposing the membrane stiffness and bending stiffness at each node. The null values of

the stiffness corresponding to the drilling degree of freedom are then replaced by

approximate values. This approximate value is taken to be equal to 310− times the

maximum diagonal value in the element stiffness matrix. The stiffness matrix at each

node of the shell element []s i
k can thus be represented as,

[]
[] []
[] []

()()

2 2 2 3

3 2 3 3

,

0 0

0 0

max
0 0

1000

m

s bi

s i i

k

k k

K

× ×

× ×

 
 
 
 =  
 
 
  

 (5.2)

where,

 []s i
k = stiffness at each node of the shell element.

 []2 2mk
×

 = membrane stiffness at each node of the shell element.

 []3 3bk
×

 = bending stiffness at each node of the shell element.

sK = element stiffness matrix for the shell element.

 72

5.4 Coordinate Transformation

 A shell is a three dimensional structure and it is often convenient to define the

geometry of shell structure in the global coordinate system. However, to generate the

element stiffness matrix for the membrane and plate bending elements, the elements have

to be defined in the element local plane, and element local coordinates are required to

calculate the stiffness of these elements. Since the flat shell elements considered in this

study are based on a combination of membrane and plate bending elements it is thus

necessary to use local coordinates for computing the element stiffness matrix of the flat

shell elements. The transformation between global coordinates and local coordinates is

required to generate the element local stiffness matrix in the local coordinate system.

Also the stiffness matrix must then be transformed to the global coordinate system. This

can be done using vector algebra. Direction cosines are required to transform the

coordinates from the global coordinate system to the local coordinate system. The

formulation of the transformation matrix for triangular and quadrilateral element is

described below (SAP 2000 Analysis Reference, Computers and Structures Inc., 1997).

Triangular Element

Fig. 5.4 shows the global axis X, Y and Z and the transformed local axis x, y and

z. In this study the global Z axis is in the upward direction and local z axis is normal to

the plane of the element. In Fig. 5.4, the node numbers are written in the

counterclockwise direction and i , j , and k represent the mid points of the sides 1-2, 2-3

and 3-1 respectively; and are used to define direction cosines for the plane of the triangle

 73

Fig. 5.4 Coordinate Transformation for Triangular Element.

Assuming the local x axis is parallel to the vector passing through nodes k and

node j , the vector representing the local x direction is given by,

j k jk

x jk j k jk

j k jk

x x x

V V y y y

z z z

   −
   

= = − =   
   −   

 (5.3)

where , ,k k kx y z etc. represents the values of global coordinates for node k . The direction

cosine xλ for the local x direction is obtained by normalizing the vector with respect to

its length of the side. The direction cosine for the local x axis is given by,

1
jk

x jk
kj

jk

x

y
l

z

λ

 
 

=  
 
 

 (5.4)

where,

() () ()2 2 2

kj jk jk jkl x y z= + + is the length of the vector.

 74

 A reference vector defining the plane of the element is obtained by creating a

vector that passes through the vector xV which defines the local x direction. The

reference vector RV , is obtained by creating a vector that passes from nodes i and 3 by

the same procedure described in Equation (5.3).

 3R iV V= (5.5)

The normal to the plane that represents the element local z direction is obtained by the

cross product of vectors xV and RV ,

z x RV V V= × (5.6)

The direction cosine zλ for the local z direction is obtained by normalizing the vector zV

as shown in Equation (5.4). The local y axis is obtained from cross product of the vector

in the local x direction and the vector in the local z direction. The cross product of these

two vectors gives the vector yV normal to the xz plane.

y z xV V V= × (5.7)

The direction cosine yλ for local y direction is obtained by normalizing the vector yV as

given in Equation (5.4).

Quadrilateral Element

Fig. 5.5 shows the global and local coordinate axis for the quadrilateral element.

The node numbers for the quadrilateral elements are written in counterclockwise order.

The mid points of sides 1-2, 2-3, 3-4, and 4-1 are represented by i , j , k and l

respectively. The element local plane is defined by creating two vectors intersecting each

 75

other and passing through the mid points of the sides 2-3 and 3-4 of the quadrilateral as

shown in Fig. 5.5.

Fig. 5.5 Coordinate Transformation for Quadrilateral Element.

Assuming the local x axis of the quadrilateral is parallel to the vector passing

through nodes l and j , the vector passing through these nodes is given by,

j l jl

x lj j l jl

j l jl

x x x

V V y y y

z z z

   −
   

= = − =   
   −   

 (5.8)

where, , ,i i ix y z etc. represents the global coordinates of node i . The direction cosine xλ

for the local x direction is obtained by normalizing the vector with respect to its length.

1
jl

x jl
jl

jl

x

y
l

z

λ

 
 

=  
 
 

 (5.9)

where,

() () ()2 2 2

jl jl jl jll x y z= + + is the length of the vector.

 76

 A reference vector RV , defining the plane of the element is obtained by creating a

vector passing through nodes i and k of the element as shown in Fig. 5.5.

 R ikV V= (5.10)

The normal to the plane is obtained by the vector cross product of xV and RV ,

 z x RV V V= × (5.11)

The direction cosine for the local z direction zλ is obtained by normalizing vector zV

with respect to its length, as given in Equation (5.4). The local y axis is obtained by the

vector cross product of the vector in the local x direction and vector in local z direction.

The cross product of these two vectors will give the vector yV normal to the xz plane.

y z xV V V= × (5.12)

The direction cosine yλ for the local y direction is obtained by normalizing the vector

yV with respect to its length, as given in Equation (5.4).

Transformation of Coordinates and Stiffness Matrix

The 3 3× transformation matrix for the transformation of coordinates from the

global to the local axis can be written as,

[] () () (){ }3 1 3 13 3 3 1x y zλ λ λ λ
× ×× ×

= (5.13)

where xλ , yλ , and zλ are the direction cosines for local x, y and z directions.

 77

The local coordinates at each node needed to derive the element local stiffness matrix is

obtained as,

[] [] []3 1 3 3 3 1

T
xyz XYZλ

× × ×
= (5.14)

where,

 []3 1
xyz

×
 = local x, y and z coordinates at each node.

[]3 1
XYZ

×
 = global X, Y and Z coordinates at each node.

 The element local stiffness matrix for membrane and plate bending element is

calculated using the local coordinates obtained. The stiffness for drilling degrees of

freedom is approximated as described in the previous section. The element stiffness

matrix []6 6s n n
k

×
 for the shell element, where n is the number of nodes per element, is then

defined in the local coordinate system.

 To calculate the structure stiffness matrix, the element stiffness matrix must be

transformed to the global coordinate system. The transformation of the element stiffness

matrix from the local to the global coordinate system is given by,

[] [] [] []6 6 6 6 6 6 6 6

T

s sn n n n n n n n
K T k T

× × × ×
= (5.15)

where,

 n = number of nodes per element.

 sK = element stiffness matrix in the global coordinate system.

 sk = element stiffness matrix in the local coordinate system.

 []T = transformation matrix.

The transformation matrix for triangular shell elements is,

 78

 []
[]

[]
[]

0 0

0 0

0 0

T

T

T

T

λ

λ

λ

 
 
 =
 
  

 (5.16)

The transformation matrix for quadrilateral shell element is,

 []

[]
[]

[]
[]

0 0 0

0 0 0

0 0 0

0 0 0

T

T

T

T

T

λ

λ

λ

λ

 
 
 

=  
 
 
  

 (5.17)

where, []λ is calculated from Equation (5.13) for triangular or quadrilateral element

respectively.

5.5 Implementation of Triangular Flat Shell Element in Java

To implement the triangular flat shell element in Java, a class called

TriShellElement was developed. The TriShellElement class is derived from the base

class Element. The base class Element contains all the data variables and functions

necessary for managing all of the different elements in the program.

The class definition and the variables declared within the TriShellElement class are

given below,

public class TriShellElement {

 private double th; //Thickness of the element.

 private double[] EX; //array of x coordinates.

 private double[] EY; //array of y coordinates.

 private double[] EZ; //array of z coordinates.

 private double[] X; //array of local x coordinates.

 79

 private double[] Y; //array of local y coordinates.

 private double[][] MatD; //Material matrix for plane stress.

 private double[][] MatDb; //Material matrix for bending condition.

 private double[][] Kcst; //Element stiffness matrix for CST Element.

 private double[][] Kdkt; //Element stiffness matrix for DKT Element.

 private double[][] Ttrans; //Transformation matrix.

 private double[][] ST; //Transformation matrix for coordinates.

 private double[][] TSKelem; //Element local stiffness matrix.

 public double[][] GTSKelem; //Element Global stiffness matrix.

The variable th represents the thickness of the element. []EX, []EY, and [] EZ

are arrays containing the x, y, and z coordinates of the nodes in the global coordinate

system. The arrays [] X and [] Y containing the x and y coordinates of the element local

coordinate system. The two dimensional arrays [][]MatD and [][]MatDb contain the

material matrix for membrane and bending properties. The two dimensional arrays

[][]ST and [][]Ttrans contain the transformation matrix for coordinates and element

stiffness matrix respectively. The two dimensional arrays [][]Kcst and [][]Kdkt

contain the stiffness matrices for the CST element and the DKT element respectively.

[][]TSKelem and [][]GTSKelem are two dimensional arrays that contain the element

stiffness matrix for triangular flat shell element in the local and global coordinate system.

All of these instance variables except the two dimensional array GTSKelem representing

the element stiffness matrix of triangular flat shell element in the global coordinate

system, are declared as private.

The constructor of the TriShellElement class is declared as follows,

public TriShellElement(double[] cx, double[] cy, double[] cz,

double[][] D, double[][] Db, double thelem) {

 MatD = D;

 MatDb = Db;

 th = thelem;

 EX = cx;

 EY = cy;

 EZ = cz;

 80

The coordinates of the nodes, the material matrices for membrane and bending

properties, and the thickness of the element are all initialized through the constructor

when an instance of the class TriShellElement is created.

The methods of the class TriShellElement are given in Table 5.1. All methods

are declared private except for the CalcElemK() method, which is declared as public

since it is called from outside the class. The method CalcLocalcoord() computes the

element local coordinates by performing a coordinate transformation. The

CaclcTransformationMatrix() method computes the transformation matrix needed to

transform the element stiffness matrix from the local to the global coordinate system. The

CalcElemLocalStiffMatrix() method computes the element stiffness matrix in the

local coordinate system by superimposing the stiffness matrices of the CST element and

the DKT element. The CalcElemGlobalStiffMatrix() method computes the element

stiffness matrix in the global coordinate system.

Table 5.1 Methods in the TriShellElement class

Method Description

CalcLocalcoord() Calculates element local coordinates.

CalcTransformationMatrix() Calculates transformation matrix.

CalcElemLocalStiffMatrix()
Calculates element stiffness matrix of triangular flat

shell element in the local coordinate system.

CalcElemGlobalStiffMatrix()
Calculates element stiffness matrix of triangular flat

shell element in the global coordinate system.

The structure of the CalcElemK() method is shown below. This method takes an

object of type TriShellElement as an argument and calls the methods

CalcLocalcoord(), CalcTransformation(), CalcElemLocalStiffMatrix(), and

CalcElemGlobalStiffMatrix().

 81

public void CalcElemK(TriShellElement tri) {

 //Calculates element coordinates in local plane.

 tri.CalcLocalcoord();

 //Calculates transformation matrix.

 tri.CalcTransformationMatrix();

 //Calculates element stiffness matrix in the local coordinate system.

 tri.CalcElemLocalStiffMatrix();

 //Calculates element stiffness matrix in the global coordinate

system.

 tri.CalcElemGlobalStiffMatrix();

}

 The approach used for analyzing a structure consisting of triangular flat shell

elements is as follows. For each element an instance of the TriShellElement class is

created by calling the constructor.

TriShellElement tshell = new TriShellElement(x, y, z, MatD, MatDb, TH);

where, tshell is the instance of the class TriShellElement. The x, y and z

coordinates, material matrix for membrane and bending properties and the thickness of

the element are passed in the above constructor. Once an object of the TriShellElement

class has been created, the element stiffness matrix is computed by calling the method

CalcElemK () of the main class by passing the tshell object as an argument to the

function.

The TriShellElement class also contains the method CalcStresses (). This

method calculates stresses for triangular shell element. These stresses are obtained from

the nodal displacements which are computed during the analysis. The CalcStresses ()

method is declared as,

 82

public void CalcStresses(TriShellElement tshell, int elem, double[] U,

StressResults SR)

The parameter tshell is an instance of the TriShellElement class, elem is the

element number, U is the array of nodal displacements, and SR is an instance of the

StressResults class which stores element stresses.

 The stresses at each node of the element are calculated by first calculating

membrane and bending stresses for membrane element and plate bending element

respectively. The summation of membrane and bending stresses gives the stresses for

triangular flat shell element.

5.6 Implementation of Quadrilateral Flat Shell Element in Java

To implement the quadrilateral flat shell element in Java, a class called

QuadShellElement was developed. The QuadShellElement class is derived from the

base class Element.

The class definition and the variables declared within the QuadShellElement class are

given below,

public class QuadShellElement {

 private double th; //Thickness of the element.

 private double[] EX; //Array of x Coordinates.

 private double[] EY; //Array of y Coordinates.

 private double[] EZ; //Array of z Coordinates.

 private double[] X; //Array of local x Coordinates.

 private double[] Y; //Array of local y Coordinates.

 private double[][] MatD; //Material matrix for plane stress.

 private double[][] MatDb; //Material matrix for bending condition.

 private double[][] Kquad4; //Element stiffness matrix for QUAD4

Element.

 private double[][] Kdkq; //Element stiffness matrix for DKQ Element.

 83

 private double[][] Ttrans; //Transformation matrix.

 private double[][] ST; //transformation matrix for coordinates.

 private double[][] QSKelem; //Element local stiffness matrix.

 public double[][] GQSKelem; //Element Global stiffness matrix.

The variable th represents the thickness of the element. []EX, []EY and []EZ are

arrays containing the x, y, and z coordinates of the nodes in the global coordinate system.

The arrays []X and []Y contain the x and y coordinates of the element local coordinate

system. The two dimensional arrays [][]MatD, and [][]MatDb contain the material

matrix for membrane and bending properties. The two dimensional arrays [][]ST and

[][]Ttrans contain the transformation matrix for coordinates and element stiffness

matrix respectively. The two dimensional arrays [][]Kquad4, and [][]Kdkq contain the

stiffness matrices for the four node quadrilateral plane element and the DKQ element

respectively. [][] QSKelem, and [][]GQSKelem are two dimensional arrays that contain

the element stiffness matrix for quadrilateral flat shell element in the local and the global

coordinate system. All of these instance variables except the two dimensional array

GQSKelem representing the element stiffness matrix, are declared as private.

The constructor of the QuadShellElement class is declared as follows,

public QuadShellElement(double[] cx, double[] cy, double[] cz,

double[][] D, double[][] Db, double thelem) {

 MatD = D;

 MatDb = Db;

 th = thelem;

 EX = cx;

 EY = cy;

 EZ = cz;

 }

The coordinates of the nodes, the material matrices for membrane and bending

properties, and the thickness of the element are all initialized through the constructor

when an instance of the class QuadShellElement is created.

 84

The methods of the class QuadShellElement are given in Table 5.2. All methods

are declared private except for the CalcElemK() method, which is declared as public

since it is called from outside the class. The method CalcLocalcoord() computes the

element local coordinates by performing a coordinate transformation. The

CaclcTransformationMatrix() method computes the transformation matrix needed to

transform the element stiffness matrix from the local to the global coordinate system. The

CalcElemLocalStiffMatrix() method computes the element stiffness matrix in the

local coordinate system by superimposing the stiffness matrices of the four node

quadrilateral plane element and the DKQ element. The CalcElemGlobalStiffMatrix()

method computes the element stiffness matrix in the global coordinate system.

Table 5.2 Methods in the QuadShellElement class

Method Description

CalcLocalcoord() Calculates element local coordinates.

CalcTransformationMatrix() Calculates transformation matrix.

CalcElemLocalStiffMatrix()
Calculates element stiffness matrix of quadrilateral

flat shell element in the local coordinate system.

CalcElemGlobalStiffMatrix()
Calculates element stiffness matrix of quadrilateral

flat shell element in the global coordinate system.

The structure of the CalcElemK () method is shown below. This method takes

an object of type QuadShellElement as an argument and calls the methods

CalcLocalcoord(), CalcTransformation(), CalcElemLocalStiffMatrix(), and

CalcElemGlobalStiffMatrix.

public void CalcElemK(QuadShellElement quad) {

 //Calcualtes element coordinates in local plane.

 quad.CalcLocalcoord();

 //Calculates transformation matrix.

 85

 quad.CalcTransformationMatrix();

 //Calculates element stiffness matrix in the local coordinate system.

 quad.CalcElemLocalStiffMatrix();

 //Calculates element stiffness matrix in the global coordinate

system.

 quad.CalcElemGlobalStiffMatrix();

}

 The approach used for analyzing a structure consisting of quadrilateral flat shell

elements is as follows. For each element an instance of the QuadShellElement class is

created by calling the constructor.

QuadShellElement qshell = new QuadShellElement(x, y, z, MatD, MatDb,

TH);

where, qshell is the instance of the class QuadShellElement. The x, y, and z

coordinates, material matrix for membrane and bending properties and the thickness of

the element are passed in the above constructor. Once an object of the

QuadShellElement class has been created, the element stiffness matrix is computed by

calling the method CalcElemK () of the main class by passing the qshell object as an

argument to the function.

The QuadShellElement class also contains the method CalcStresses (). This

method calculates stresses for quadrilateral shell element. These stresses are obtained

from the nodal displacements which are computed during the analysis. The

CalcStresses () method is declared as,

public void CalcStresses(QuadShellElement qshell, int elem, double[] U,

StressResults SR)

 86

The parameter qshell is an instance of the QuadShellElement class, elem is the

element number, U is the array of nodal displacements and SR is an instance of the

StressResults class which stores element stresses.

 The stresses at each node of the element are calculated by first calculating the

membrane and bending stresses for membrane element and plate bending element

respectively. The summation of membrane and bending stresses gives the stresses for

quadrilateral flat shell element.

 87

Chapter 6

Program Development

6.1 Introduction

 The main objective of this study is to develop triangular and quadrilateral plane

stress, plate bending, and flat shell elements in Java. A second objective was to write a

finite element analysis program to verify the results obtained from these elements. The

program computes displacements and stresses for the structure modeled using the plane

stress, plate bending, or flat shell elements. This chapter presents the development of the

finite element analysis program in Java. The required input to the program is in the form

of a text file. The results from the program are saved in an output file in text format. The

format of the input file essentially follows that of the SAP 2000 commercial finite

element analysis program with some minor modifications. The SAP 2000 program was

used to generate the finite element models for testing and verification.

6.2 Program Structure

 A finite element analysis program for the analysis of membrane, plate and shell

structures was developed in Java. The program was developed using the object oriented

approach. The classes are divided in to three categories: (1) structural classes (2) input-

output classes and (3) interface classes. The description of various classes for each

category in the program is presented in the following paragraphs.

6.2.1 Structural Classes

 The structural classes include all the classes that represent the structural model

and the classes that are used to analyze the structure.

 88

For any finite element analysis problem, the finite element model is first created

from different structural components such as system properties (representing the behavior

of whole structure), nodal coordinates, restraints, material properties, element section

properties, element joint connectivity, and loads. The classes that represent the objects of

these real structural components are SystemProp, Joint, Restraint, Material,

SectionProp, Element, JtLoad, and UniLoad respectively. The FEModel class is the

storage class where the objects representing the finite element model are stored.

 After all the required structural data is obtained, an instance of the Analysis class

is created and displacements and stresses are calculated. The instances of the

Coordtransformation and EqNodalLoads classes are used to define the transformation

matrices and calculate equivalent nodal loads respectively.

The classes MembraneStr, BendinStr, and ShellStr represent membrane,

bending and shell stresses respectively for each element of the structure. The

StressResults class is a container class where objects containing stresses for each

element are stored. The description of each structural class is given in the following

paragraphs.

SystemProp Class

The system properties represent the behavior of the entire structure. The system

properties such as the number of system degrees of freedom in each direction are defined

in the SystemProp class. The number of system degrees of freedom defines the behavior

of structure, i.e. whether it is a plane, plate or shell structure. The class SystemProp

contains the methods GetSysdof() and GetiflagSysdof(). These methods return the

values of system degrees of freedom and an array of values for system degrees of

freedom.

 89

Joint Class

 The nodal coordinates for each node of an element is required to calculate the

element stiffness matrix. The Joint class is the base class of all nodes in the structure.

Each node has its own node number and values of x, y and z coordinates. The node

number and x, y, z coordinates for a node are defined in the Joint class. Several methods

such as GetJtNodeNum(), GetX(), GetY(), and GetZ() are defined within the Joint

class. These methods provide access to the various data members of the.

Restraint Class

 In order to analyze the structure it is important to know how many equations are

to be solved. The number of equations required to be solved are obtained from the

number of restraints provided to the structure and are derived from the class Restraint.

The node number and an array of equation numbers for that node are defined in this class.

The methods GetRestrNodeNum() and GetEQNID() are also defined in the Restraint

class. These methods return the values of the node number and an array of equation IDs

for that node when called.

Material Class

 The Material class stores information regarding linear elastic material properties.

The information contained in this class includes the modulus of elasticity and Poisson’s

ratio of the material. The methods defined in this class are GetMoE() and GetNU().

These methods are called to access the stored material properties.

SectionProp Class

 The SectionProp class represents the element section properties such as

thickness of the elements and the plane strain or plane stress condition. The SectionProp

class also contains the methods GetThickness() and GetFlagMat(). These methods

 90

return the values of thickness of elements and values indicating the stress condition (i.e.

plane stress or plane strain).

Element Class

 The Element class is the base class for all elements. The data members in this

class include element number, number of nodes for the element and a joint connectivity

array. The methods Getelemnum(), GetNumnodes(), and GetConnectivity() are also

defined in the Element class. These methods return the element number, number of

nodes for that element and the joint connectivity array. Once the node numbers for each

node of the element are obtained, the coordinates for that node can be obtained using the

methods defined in the Joint class. The class hierarchy for the Element class is

represented in Fig. 6.1.

Fig. 6.1 Element Class Diagram.

JointLoad Class

 The JointLoad class represents a force or moment applied at a joint. The data

members of this class include the node number and an array of nodal loads applied at that

node. The methods defined in the JointLoad class are GetNodeNumber() and

GetLoadValue(). These methods return the node number and an array of nodal loads in

each direction for that node.

 91

UniLoad Class

 The UniLoad class represents a uniformly distributed surface load applied in the

direction normal to the element local plane. The UniLoad class contains the element

number and the magnitude of the uniformly distributed surface load. The methods in the

UniLoad class include GetNodeNumber() and GetLoadValue(). The element number

and the magnitude of uniformly distributed load applied on the element can be accessed

by calling these methods.

FEModel Class

 The FEModel class is a container class where all of the components of a structural

model are stored as objects. The Java API class Vector is used to store objects of each

structural component such as system properties, nodes, restraints, material properties,

section properties, elements, and loads.

 Java provides the library of classes that dynamically allocate space for each object

to be stored. These classes are modified from the collection classes in the Java class

library java.util. The legacy classes have the additional advantage over that they are

synchronized. In this program, the API class Vector of Java class library java.util is

used to store the data dynamically. Vector is a dynamic array, which is similar to the

ArrayList class of the Java collection classes. The Vector class in Java has an initial

default capacity of 10. The Vector dynamically allocates the space for the object to be

stored after the initial capacity is reached. The elements stored in the Vector can be

easily manipulated using the methods provided in Java. Once an instance of a Vector is

created, the element can be added to a Vector by calling the addElement() method. The

value of an element from any specific location of the Vector can be obtained by calling

the method elementAt(). Elements stored in the Vector can be removed by calling the

removeElement() or removeElementAt()methods.

 92

Several instances of the Vector class are declared in the FEModel class. These are

SystemPropList, NodeList, RestraintList, MaterialList, SectionPropList,

ElementList, JtLoadList and UniLoadList. They store objects of the classes

SystemProp, Joint, Material, SectionProp, Element, JointLoad, and UniLoad that

represents system properties, joint data, material properties, element section properties,

element data, joint loads, and uniformly distributed surface loads respectively. Thus, each

component of the finite element model is stored as an instance of the Vector class. The

diagram representing the relationship between FEModel class and other structural classes

is shown in Fig. 6.2.

Fig. 6.2 FEModel Class Diagram.

The methods for storing and retrieving the objects of each structural component

are defined in the FEModel class. Each method creates an object of different structural

component and stores it to the vector using the AddElement() method from java.util

class library. All methods are declared public. Each method of the FEModel class and its

function is described in Table 6.1.

 93

Table 6.1 Methods in the FEModel class

Method Description

AddSystem ()
Creates an instance of the System class and adds it to the vector

SystemPropList.

AddNode ()
Creates an instance of Joint class and adds it to the vector

NodeList.

AddRestraint ()
Creates an instance of the Restraint class and adds it to the

vector RestraintList.

AddMaterial ()
Creates an instance of the Material class and adds it to the

vector MaterialList.

AddSectionProp ()
Creates an instance of the SectionProp class and adds it to the

vector MaterialList.

AddElement ()
Creates an object of the Element class and adds it to the vector

ElementList.

AddJointLoad ()
Creates an instance of the JointLoad class and adds it to the

vector JtLoadList.

AddUniLoad ()
Creates an instance of the UniLoad class and adds it to the

vector UniLoadList.

PutNumofRestr () Stores the number of restraints provided for entire structure.

PutUDLflag ()
Stores a flag to specify if uniformly distributed loads are applied

to the structure.

CoordTransformation Class

 The flat shell element developed in this study is a combination of a plane stress

element and a plate-bending element. A shell element is three dimensional in nature and

it is convenient to represent a shell element in the global coordinate system. However,

plane stress element and plate bending element are two dimensional elements and hence a

 94

transformation is required to obtain the element stiffness matrix for the she ll element

when combining these two elements.

 The CoordTransformation class represents the coordinate transformation from

the global to the local coordinate system. A transformation matrix can also be obtained

that transforms the element stiffness matrix from the local coordinate system to the global

coordinate system.

 The CoordTransformation class contains various methods such as

CalcCoord(), DCOS() and CROSS(). All methods are declared private except

CalcCoord() method. The method CalcCoord() is called in the element classes to

calculate the element stiffness matrix for shell elements. The method DCOS() returns an

array representing the direction cosines for a vector. The method CROSS() computes the

cross product of two vectors and returns an array containing the resulting vector. The

CalcCoord() method performs coordinate transformation and calculates the

transformation matrix using the procedure described in Chapter 5.

EqNodalLoads Class

 When uniformly distributed surface loads are applied to the elements in the

direction normal to their local plane, these loads have to be transformed to equivalent

nodal loads applied at each node of the element.

 The EqNodalLoads class contains methods for computing the equivalent nodal

loads from the uniformly distributed surface load. The method CalcEqNodalLoads() is

called once an instance of the EqNodalLoads is created. This method calculates

equivalent nodal loads at the each node of the structure and creates an array of loads. The

2 2× Gauss quadrature is used to compute these nodal loads at the Gauss points. The

nodal loads computed at the Gauss points are then extrapolated to the element nodes. The

 95

methods defined within the EqNodalLoads class are given in Table 6.2. All methods

except CalcEqNodalLoads() are declared private.

Table 6.2 Methods in the EqNodalLoad class

Method Description

QUADShapeFn () Calculates shape functions for the quadrilateral element.

QuadJacobian ()
Calculates the determinant of Jacobian for the

quadrilateral element.

CalcQuad4EqNodalLds ()
Calculates equivalent nodal loads at each node of the

quadrilateral element.

CalcTriEqNodalLds ()
Calculates equivalent nodal loads at each node of the

triangular element.

CalcEqNodalLoads () Calculates equivalent nodal loads at each node.

Analysis Class

 The analysis of the structure is implemented in the Analysis class. Once the

finite element model is generated, all of the components of the model are stored as

objects in the FEModel class. The analysis is then performed using these stored objects.

Several methods are developed to perform the different steps in the analysis such as,

compute the structure stiffness matrix, compute displacements at each node of the

structure, and compute element stresses for each element. All methods are declared as

private except the RunAnalysis() method. The methods defined in the Analysis class

are given in Table 6.3.

 96

Table 6.3 Methods in the Analysis class.

Method Description

CalcRestrDOF () Calculates restraint degrees of freedom.

CalcMaterialMatrixPlStress() Calculates material matrix for plane stress condition.

CalcMaterialMatrixPlStrn () Calculates material matrix for plane strain condition.

CalcMaterialMatrixBending() Calculates material matrix for bending properties.

CalcAnalysisData ()

Calculates analysis data such as degrees of freedom,

material properties, element section properties,

system properties material matrix etc.

CalcStructureKMatrix () Calculates structure stiffness matrix.

CalcDeflections () Calculates displacements at each node.

CalcStresses () Calculates stresses for each element.

 Once the required data for analysis is processed by the method

CalcAnalysisData(), the analysis is performed using the methods

CalcStructureKMatrix(), CalcDelection() and CalcStresses(). Joint connectivity

data is obtained for each element from the Element class. Nodal coordinates for each

node of an element are then obtained by calling methods from the Joint class. Instances

of classes representing CST, four node quadrilateral, DKT, DKQ, triangular shell and

quadrilateral shell elements are declared as needed in the CalcStructureKMatrix().

Element stiffness matrices are then calculated by calling the corresponding method for

the specific element. The element stiffness matrices for each element of the structure are

then superimposed to generate the structure stiffness matrix. Deflections are then

calculated using the structure stiffness matrix and the load values obtained from the

JointLoad and EqNodalLoads classes respectively. The Gauss-Jordan method is used to

solve the system of equations and compute deflections at each node of the structure.

Element stresses are then computed in the CalcStresses() method. Instance of classes

representing each element in the structure are created and the corresponding method for

computing element stresses is called to compute stresses for that element. The stresses for

 97

each element are then stored in the vectors of the StressResult class. The class diagram

for Analysis class is shown in Fig. 6.3.

Fig. 6.3 Analysis Class Diagram.

MembraneStr Class

 The MembraneStr class represents the stresses in a membrane element (either

triangular or quadrilateral). The data members defined within this class are normal stress

in the x and y directions, shearing stresses, maximum and minimum principal stresses

and angle of the principal plane at each node of the membrane element. This class also

contains the accessor methods that are called to obtain the membrane stresses. The

methods defined within the MembraneStr class are given in the Table 6.5.

Table 6.4 Methods in the MembraneStr class

Method Description

GetS1 ()
Returns an array of normal stresses in the x direction at each node of the

element.

GetS2 ()
Returns an array of normal stresses in the y direction at each node of the

element.

GetS12 () Returns an array of shearing stresses at each node of the element.

GetSmax ()
Returns an array of maximum principal stresses at each node of the

element.

GetSmin ()
Returns an array of minimum principal stresses at each node of the

element.

GetANG () Returns the array of angle of principal plane at each node of the element.

 98

BendingStr Class

 The bending stresses for an element are stored in the BendingStr class. This class

stores the stresses normal to the x and y direction, shearing stresses, maximum and

minimum principal stresses and the angle of principal plane at each node of the element.

Several methods defined within the class are used to access the stored bending stresses

for each element. The methods defined within BendingStr and their description is given

in Table 6.6.

Table 6.5 Methods in the BendingStr class

Method Description

GetS1 ()
Returns an array of normal stresses in the x direction at each node of the

element.

GetS2 ()
Returns an array of normal stresses in the y direction at each node of the

element.

GetS12 () Returns an array of shearing stresses at each node of the element.

GetSmax ()
Returns an array of maximum principal stresses at each node of the

element.

GetSmin ()
Returns an array of minimum principal stresses at each node of the

element.

GetANG () Returns an array of angle of principal plane at each node of the element.

ShellStr Class

 The ShellStr class represents the shell stresses at the top and the bottom of a

shell element. The arrays of stresses normal to the x and y direction, shearing stresses,

maximum and minimum principal stresses and an array of angle of the principal plane are

defined within this class. The ShellStr class also contains various methods that return

the normal, shearing and principal stresses and angle of principal plane for each node of

the element. The methods are described in Table 6.6.

 99

Table 6.6 Methods in the ShellStr class

Method Description

GetS1 ()
Returns an array of normal stresses in the x direction at each node of the

element.

GetS2 ()
Returns an array of normal stresses in the y direction at each node of the

element.

GetS12 () Returns an array of shearing stresses at each node of the element.

GetSmax ()
Returns an array of maximum principal stresses at each node of the

element.

GetSmin ()
Returns an array of minimum principal stresses at each node of the

element.

GetANG () Returns an array of angle of principal plane at each node of the element.

StressResults Class

 The stresses for each element are computed separately in the analysis

process. Therefore, it is necessary to store the computed stresses for each element

dynamically. The StressResults stores computed stresses for each element.

 In the StressResult class, the Java class vector is used to store the computed

stresses dynamically. The stresses for each element are stored in the instances of the

MembreaneStr, BendingStr or ShellStr classes depending upon the type of element.

The objects of these classes are stored in the vectors defined in the StressResult class.

The vectors defined within the StressResults class are MembraneStresses,

BendingStresses, and ShellStresses. Each of these vectors stores the objects

containing values of membrane stresses, bending stresses, and shell stresses respectively

depend on what element is being analyzed. The methods defined in the StressResults

class are described in Table 6.7.

 100

Table 6.7 Methods in the StressResults class

Method Description

AddMembraneStresses ()
Creates an instance of the MembransStr class and adds it

to the vector MembraneStresses.

AddBendingStresses ()
Creates an instance of the BendingStr class and adds it to

the vector BendingStresses.

AddShellStresses ()
Creates an instance of the ShellStr class and adds it to

the vector ShellStresses.

 An instance of the StressResults class is created in the CalcStresses()

method of the Analysis class. This instance is then passed to the CalcStresses()

method of the CSTElement, QUAD4Element, DKTElement, DKQElement,

TriShellElement or QuadShellElement classes as an argument.. The methods

AddMembraneStresses(), AddBendingStresses() or AddShellStresses() are then

called to store the computed stresses from that element. The stresses for each element are

stored to the vectors dynamically within these methods using the method AddElement()

of Java class library. Fig. 6.4 represents the diagram for the StressResults class.

Fig. 6.4 StressResults Class Diagram.

 101

6.2.2 Input and Output Classes

 The geometry and structural details of the finite element model are provided to a

program in the form of an input. In this study, the finite element model is generated using

the interface provided by SAP 2000 and the input text file is created from this model.

This input text file is used (with minor modifications). The results obtained from the

analysis are saved to a text file. The ReadInput class reads the input file and saves the

structure data. The WriteOutput class writes writes the displacements and stresses

obtained from the Analysis class.

ReadInput Class

 The input for the program is provided in the form of text file. Hence, it is

necessary to read the provided input from the text file and store the input data in an

instance of the FEModel class from where it can be used for analysis. The ReadInput

class performs the task of reading the provided data and transfers this information to the

FEModel class where the data is stored in different vectors. The input for the program

consists of the system properties, joint coordinates, joint restraints, material properties,

section properties, element joint connectivity and loads applied to the structure. Several

methods provided in the ReadInput class to read this data from a file and to store this in

an instance of the FEModel class. The methods defined within the class and its description

is given in Table 6.8.

 102

Table 6.8 Methods in the ReadInput class

Method Description

ReadTextFile () Reads the input file.

ReadSystem () Reads system data from the SYSTEM block of the input file.

ReadJoint () Reads joint coordinates from the JOINT block of the input file.

ReadRestraints ()
Reads restraint data from the RESTRAINT block of the input

file.

ReadMaterial ()
Reads material data such as modulus of elasticity and Poisson’s

ratio from the MATERIAL block of the input file.

ReadShellSection()
Reads thickness of the element from the SHELL SECTION

block of the input file.

ReadConnectivity()
Reads joint connectivity data from the SHELL block of the

input file.

ReadLoads ()
Reads data of applied load such as joint loads, uniformly

distributed surface load from the LOAD block of input file.

InputReader () Calls all methods listed above.

 An instance of the FEModel class is created in the method InputReader. This

instance is then passed to all the other methods in the ReadInput class. The methods in

the ReadInput class are described below.

 The method ReadTextFile() reads the input text file and stores it as a string. The

method ReadSystem() reads the number of system degrees of freedom and the flag

values for the system degrees of freedom in each direction. The method

AddSystemProperties() is called in the ReadSystem() method from the FEModel class

that stores the system properties. The method ReadJoints() reads the x, y, and z

coordinates of each node. The method AddJoint() of FEModel class is called for each

node in the structure. It saves the node number and x, y, and z coordinates for that node.

The method ReadRestraints() reads the restraints provided at each node and assigns

 103

equation numbers corresponding to degrees of freedom in each direction for that node.

The node number and an array representing the equation number for that node is then

stored in an object of the FEModel class by calling the method AddRestraint() of

FEModel class.

The method ReadMaterial() reads material properties for the structure such as

modulus of elasticity and Poisson’s ratio. The method AddMaterial() of the FEModel

class is called to store these material properties. The method ReadShellSection() reads

the shell section properties such as thickness of the elements. The shell thickness is then

stored in the FEModel class by calling the method AddSectionProp() of the FEModel

class. The method ReadConnectivity() reads joint connectivity data for each element.

The method AddElement() is called for each element and the element number, number

of nodes for that element and the array representing the joint connectivity for that element

is stored in the FEModel object. The method ReadLoads() reads the type of load, load

cases, values of loads and multiplication factor for a particular load case. The loads are

then stored in the FEModel object by calling the methods AddJtLoad() and

AddUniLoad() for storing the joint loads and uniformly distributed sur face loads applied

to the structure.

WriteOutput Class

The results obtained from the analysis must be stored for later use during the

analysis of the structure. Due to the large amount of output generated by the program, it

is convenient to store the results in the text file. The path of the text file where the results

are to be stored is passed through the constructor of the WriteOutput class. The results

from the analysis are then printed to this saved text file in the WrteOutput class.

 The WriteOutput class contains methods that print the stored results to the text

file. The method WriteResults() defined in this class is declared public. This method

tabulates and prints the displacements at each node and the stresses for each element. The

vectors MembraneStresses, BendingStresses, and ShellStresses contain objects of

 104

the MembraneStr, BendingStr and ShellStr classes for each element in which the

values of the membrane, bending and shell stresses are stored for that element. These

stored stresses are then written to the output file by calling the accessor methods defined

within the MembraneStr, BendingStr and ShellStr classes.

6.2.3 Interface Classes

 The program contains a very simple user interface since all the input and output

operations are done using text files. There are two steps for analyzing the structure using

the program. The first is to read the input data from the input text file and second is to run

an analysis. The interface of the program contains a menu bar that has the Import, Run,

and Exit and Help commands for performing the tasks of importing the input text file,

running an analysis, exiting the program and displaying description of the program. The

classes used for the user interface and application window are the VTFEA, MainFrame and

MainFame_AboutBox classes. Each class is described in the following paragraphs.

VTFEA Class

 The purpose of this class is to create an instance of the main application window

and to begin program execution. The only variable declared in this class is packframe,

which is initialized to false. Setting packframe to false results in a call to the pack()

method of the Java class library UIManager which sets the size and location of the main

application window on the screen.

An instance of the class MainFrame is declared in the constructor to VTFEA. This

results in the creation of main application window. Once the main application frame is

constructed, various methods such as pack(), validate(), setsize(), and

setvisible() of the Java class library UIManager are called. These methods set the size

of the main application window and display it on the screen.

 105

The VTFEA class also contains the main method. The execution of the program

begins with the main method. An instance of the VTFEA class is created inside the main.

MainFrame class

 The MainFrame class represents the main application window of the VTFEA

application. The purpose of this class is to create the application window and assign

various user interface objects such as title, border, minimize and maximize button, and a

menu bar. All of these user interface components are derived from the Java Foundation

Classes (JFC). The main application window is shown in Fig. 6.2.

 The MainFrame class includes logic for implementing various means such as

reading the input file, performing the analysis, storing analysis results to a text file, and

terminating program execution. It also contains logic for displaying a dialog box that

contains information regarding the program. The main actions are implemented using the

event handling features provided in the Java event handling classes.

Fig. 6.5 Main Application Window for the Program.

 An instance of ReadInput is created when the “Input” menu item is selected. The

methods Inputreader is called that reads and stores the input data when the “Import”

command is pressed from the “File” menu. Instances of the Analysis class and

 106

WriteOutput class are created when the “Run” menu item from the “Analyze” menu is

selected. The methods RunAnalysis() and the WriteResults() from the Analysis and

WriteOutput classes respectively are called to perform the analysis and to print the

displacements and stresses obtained from the analysis to the text file.

MainFrame_AboutBox Class

 The “About” dialog box provides information about the program. The

MainFrame_AboutBox class represents the window for the “About” dialog box. The Java

Foundation Classes (JFC) are used to design the various interface components of the

dialog box. The instance of this class is created when the “About” menu item is selected

from the “Help” menu of the main application window and a dialog box appears on the

screen that provides the details of the program.

 107

Chapter 7

Test Examples and Verification of Results

 In this chapter, a comparison of results for several test examples analyzed using

the developed program for this research with those obtained from a commercial finite

element analysis program SAP 2000, is presented. The results compared include

maximum displacements and maximum average stresses.

7.1 Example Problems for Verification of Three Node Triangular (CST) Element

 The accuracy of the CST element developed in this study is verified by analyzing

three test examples using the developed program and the commercial finite element

analysis program SAP 2000. The results are compared at different nodes.

Test Example 1

This test example consists of a cantilever beam of length 48 in., depth 12 in. and

thickness of 1 in. and is taken from Chen (1992). The beam is modeled using 8 three

node triangular (CST) elements. Vertical loads of 20 kips are applied at the free end of

the cantilever (nodes 5 and 10). Fig. 7.1 shows the finite element model of the cantilever

beam.

Fig. 7.1 FE Model for Test Example 1 – Cantilever Beam.

 108

Geometric Data:

 Length L = 48.0 in.

 Depth h = 12 in.

 Thickness t = 1.0 in.

Material Properties:

 Modulus of elasticity E = 30000 ksi.

 Poisson’s ratio ν = 0.25

Boundary Conditions:

 Restraints are provided in the x and y directions at the left end of the cantilever

(nodes 1 and 6).

Loading:

 A concentrated load of 20 kips is applied to nodes 5 and 10.

Comparison of Results:

The results from the analysis obtained from the program and from SAP 2000 are

shown in Table 7.1. The results shown are the displacements at nodes 10 and 8, and

stresses at node 6. From Table 7.1, it is seen that the results given by the program are

identical to those given by SAP 2000. Similar results were obtained for the other nodes.

 109

Table 7.1 Displacements and Stresses for Test Example 1

Location
Result from

Program

Result from

SAP-2000
% Difference

UX -0.014159 -0.014159 0.00%
Node – 10

UY 0.090347 0.090347 0.00%

UX -0.010825 -0.010825 0.00%
Node – 8

UY 0.030403 0.030403 0.00%

S11 -17.128727 -17.128727 0.00%

S22 -4.282182 -4.282182 0.00% Node - 6

S12 9.537940 9.537940 0.00%

Test Example 2

 The second test example consists of the same cantilever beam of Example 1. The

length of the beam is 48 in., depth is 12 in. and the thickness is 1 in. The finite element

model now consists of 32 three node triangular (CST) elements. Vertical loads totaling 40

kips is applied at the free end of the cantilever beam. The finite element model of the

cantilever beam as shown in Fig. 7.2.

Fig. 7.2 FE Model for Test Example 2 – Cantilever Beam.

 110

Geometric Data:

 Length L = 48.0 in.

 Depth h = 12 in.

 Thickness t = 1.0 in.

Material Properties:

 Modulus of elasticity E = 30000 ksi.

 Poisson’s ratio ν = 0.25

Boundary Conditions:

 Restraints are provided in the x and y directions at the left end of the cantilever.

Loading:

A concentrated load 1P = 6.67 kips is applied at node 10.

 A concentrated load 2P = 26.67 kips is applied at node 27.

 A concentrated load 3P = 6.67 kips is applied at node 5.

Comparisons of Results:

 Table 7.2 represents the results obtained for the second test example from the

developed program and SAP 2000. The displacements at nodes 10 and 8 and stresses at

node 6 are shown. The results indicate that the percentage difference in each case is less

than 0.02%.

 111

Table 7.2 Displacements and Stresses for Test Example 2

Location
Result from

Program

Result from

SAP-2000
% Difference

UX -0.034263 -0.034271 -0.023%
Node – 10

UY 0.194412 0.194456 -0.023%

UX -0.025599 -0.025605 -0.023%
Node – 8

UY 0.062956 0.062971 -0.024%

S11 -41.493731 -41.503067 -0.022%

S22 -10.373433 -10.375767 -0.022% Node - 6

S12 11.840936 11.843600 -0.022%

Test Example 3

 The third verification example is a plate with semi circular hole of radius 3 in. at

the center. The plate is fixed at the top. A downward vertical load of 0.67 kips/in is

applied at the free edge. The length of the plate is 16 in., the width is 6 in. and the

thickness is 0.45 in. A plate is modeled using 110 three node triangular (CST) elements.

The FE model is shown in Fig 7.3.

Geometric Data:

 Width L = 16.0 in.

 Width b = 6.0 in.

 Thickness t = 0.45 in.

Material Properties:

 Modulus of elasticity E = 30000 ksi.

 Poisson’s ratio ν = 0.3

 112

Fig. 7.3 FE Model for Test Example 3 – Plate with Semi Circular Hole.

Boundary Conditions:

 The plate is restrained at the top in both the x and y directions.

 113

Loading:

 Concentrated loads of 1.0 kips are applied at each node at the bottom of the plate.

i.e. nodes 6, 12, 19, and 26.

Comparison of Results:

The displacements at nodes 1 and 6 and stresses at nodes 32 and 36 are given in

Table 7.3. As can be seen from the table, results obtained from the developed program

and those from SAP 2000 are same. Similar results are obtained for the other nodes.

Table 7.3 Displacements and Stresses for Test Example 3

Location
Result from

Program

Result from

SAP-2000
% Difference

UX 0.001545 0.001545 0.00%
Node – 1

UY -0.003132 -0.003132 0.00%

UX 0.004213 0.004213 0.00%
Node - 6

UY -0.003355 -0.003355 0.00%

S11 1.250061 1.250061 0.00%

S22 7.050394 7.050394 0.00% Node - 32

S12 0.480698 0.480698 0.00%

S11 1.156083 1.156083 0.00%
Node - 36

S22 7.547362 7.547362 0.00%

7.2 Example Problems for Verification of Four Node Quadrilateral Plane Element

 Three example problems were selected to verify the accuracy of the four node

quadrilateral plane element. The structures for the second and third example problems are

the same as those analyzed using the three node triangular (CST) elements.

 114

Test Example 4

 The first example consists of a cantilever beam of length 6 in., depth 0.8 in. and

thickness 0.2 in. A concentrated vertical load of 10 kips is applied at the free end of the

cantilever in the downward direction. The finite element model of the cantilever beam is

generated using three four node quadrilateral plane elements as shown in Fig. 7.4.

Fig. 7.4 FE Model for Test Example 4 – Tip Loaded Cantilever Beam.

Geometric Data:

 Length L = 6.0 in.

 Depth h = 0.8 in.

 Thickness t = 0.2 in.

Material Properties:

 Modulus of elasticity E = 30000 ksi.

 Poisson’s ratio ν = 0.3

Boundary Conditions:

 Restraints are provided in the x and y directions at the left end of the cantilever.

Loading:

 A concentrated load of 10 kips is applied to the free end (node 8) of the

cantilever.

 115

Comparison of Results:

Table 7.4 represents the results for displacements at nodes 8 and 3, and stresses at

node 1 obtained from the program and SAP 2000. The comparisons shown in the table

suggest that the displacements and stresses obtained from the program are in good

agreement with those obtained from SAP 2000.

Table 7.4 Displacements and Stresses for Test Example 4

Location
Result from

Program

Result from

SAP-2000
% Difference

UX 0.016107 0.016110 -0.018%
Node – 8

UY -0.162708 -0.162735 -0.016 %

UX -0.014282 -0.014285 -0.015%
Node – 3

UY -0.084639 -0.084652 -0.021%

S11 -146.96544 -146.99074 -0.017%

S22 -44.089634 -44.097225 -0.017% Node - 1

S12 -141.122551 -141.144703 -0.015%

Test Example 5

 The second example problem to verify the four node quadrilateral plane element

is similar to the cantilever beam of Example 2. The length of the cantilever beam is 48

in., depth is 12 in. and thickness is 1 in. A vertical loads totaling 40 kips are applied at the

free end of the cantilever (Chen, 1992). The beam is modeled using 20 four node

quadrilateral plane elements. The finite element model for the cantilever beam is shown

in Fig. 7.5.

 116

Fig. 7.5 FE Model for Test Example 5 - Cantilever Beam.

Geometric Data:

 Length L = 48.0 in.

 Depth h = 12 in.

 Thickness t = 1.0 in.

Material Properties:

 Modulus of elasticity E = 30000 ksi.

 Poisson’s ratio ν = 0.25

Boundary Conditions:

 Restraints are provided at the left end (nodes 1, 13, and 6) of the cantilever.

Loading:

A concentrated load 1P = 6.67 kips is applied at node 10.

 A concentrated load 2P = 26.67 kips is applied at node 27.

 A concentrated load 3P = 6.67 kips is applied at node 5.

 117

Comparison of Results:

The displacements at nodes 10 and 8 are shown in Table 7.5. Also shown in the

table are the stresses at node 6. The difference in displacements obtained from the

program is less than 1%. The stresses obtained from the program are almost identical to

those obtained from SAP 2000.

Table 7.5 Displacements and Stresses for Test Example 5

Location
Result from

Program

Result from

SAP-2000
% Difference

UX -0.057484 -0.057074 0.718%
Node – 10

UY 0.317406 0.316064 0.425%

UX -0.042772 -0.042774 -0.005%
Node – 8

UY 0.101260 0.101265 -0.005%

S11 -70.300130 -70.304114 -0.006%

S22 -17.575032 -17.576029 -0.006% Node - 6

S12 18.407756 18.408688 -0.006%

Test Example 6

 The same example problem of a plate with a semicircular hole, analyzed in

Example 3 was chosen for the verification of the four node quadrilateral elements.. The

plate is fixed at the top. A downward vertical load of 0.67 kips/in is applied to the free

edge of the plate. The length of plate is 16 in., the width is 6 in. and the thickness is 0.45

in. The plate is modeled using 52 four node quadrilateral plane elements. To model the

boundaries of the plate, 6 three node triangular (CST) elements were also included in the

FE model. This test example was chosen to verify the accuracy of the program for a

hybrid mesh that includes two different types of elements i.e. three node triangular and

 118

four node quadrilateral elements. The finite element model for the plate is shown in Fig.

7.6.

Fig. 7.6 FE Model for Test Example 6 - Plate with Semi Circular Hole.

Geometric Data:

 Length L = 16.0 in.

Width b = 16 in.

Thickness t = 0.45 in

 119

Material Properties:

 Modulus of elasticity E = 30000 ksi.

 Poisson’s ratio ν = 0.3

Boundary Conditions:

 Restraints are provided at top of the plate (i.e., nodes 55, 62, 68, and 74)

Loading:

 Concentrated loads of 1.0 kips are applied at each node at the bottom of the plate.

i.e., nodes 6, 12, 19, and 26.

Comparison of Results:

 Table 7.6 represents the comparison of displacements and stresses obtained at

various nodes from both programs. The displacements at nodes 1 and 6 are tabulated. The

differences in results obtained from the two programs are less than 2 %. The stresses at

nodes 32 and 36 are obtained from the program are compared to those from SAP 2000.

The differences in stresses are in the range 4% to 7%. The element stresses are

calculated at the element edge using the derivatives of the displacements. The stresses

calculated at the edge of one element may differ significantly from the stresses calculated

at the edge of an adjacent element. The reason for this difference is that the stresses are

not in equilibrium with the externally applied traction and hence are not continuous

across element boundaries. The difference may be significant if the generated finite

element mesh is coarse. This difference can be reduced using a finer mesh. Therefore,

stresses averaged at any single point may be higher or lower depending on mesh pattern.

The commercial finite element analysis program SAP 2000 uses an error estimation

scheme that reduces the error in stresses and thus give results that are more accurate.

However, the results obtained here from the program are in good agreement with those

obtained from the SAP 2000.

 120

Table 7.6 Displacements and Stresses for Test Example 6

Location
Result from

Program

Result from

SAP-2000
% Difference

UX 0.001951 0.001984 -1.663%
Node – 1

UY -0.003847 -0.003852 -0.129%

UX 0.005384 0.005437 -0.974%
Node-6

UY -0.004070 -0.004075 -0.122%

S11 2.12129 1.98348 6.947%

S22 10.76729 10.57779 1.791% Node - 32

S12 1.653674 1.585048 4.329%

S11 1.91307 1.775941 7.721%
Node - 36

S22 12.28807 11.841794 3.768%

7.3 Example Problems for Verification of Three Node Triangular Plate Bending

(DKT) Element

 To verify the accuracy of the three node plate elements, four finite element

models were analyzed using the program and SAP 2000. The results for these four test

cases are described in the following sections.

Test Example 7

The first test example is a square plate of size 12 ft × 12 ft having a thickness of 6

in. The plate is subjected to a uniform surface load of 0.1 kips/sq. in. All four edges of

the plate are fixed. The finite element model was generated using 128 three node

triangular plate bending (DKT) elements.

 121

Two mesh patterns were considered in the analysis of the plate. Both mesh

patterns have the same number of nodes and elements. The only difference between the

two mesh patterns is the orientation of the elements. The finite element models for the

two mesh patterns are shown in Figures 7.7 and 7.8.

Geometric Data:

 Length L = 144.0 in.

 Width = 144.0 in.

Thickness t = 6.0 in.

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.2

Boundary Conditions:

All four edges of the plate are fixed.

Fig. 7.7 FE Model for Test Example 7 – Square Plate– Mesh Pattern A.

 122

Fig. 7.8 FE Model for Test Example 7 – Square Plate– Mesh Pattern B.

Loading:

 A uniform surface load of 0.1 kips/sq. in. is applied to the plate.

Comparison of Results:

 The displacements at nodes A and E, and the stresses at nodes B, C, and D for

mesh pattern A and B are shown in Tables 7.7 and 7.8. It is seen from the tabulated

values that among the two mesh patterns, mesh pattern A gives more accurate results than

mesh pattern B. A similar observation was made by Batoz et al. (1980). The stresses at

nodes B, C and D for SAP 2000 are taken from the stress diagram of the SAP 2000

graphical user interface rather than from the SAP 2000 output file for the structures

analyzed using triangular plate elements. The comparison of stresses at various nodes to

those obtained from the stress diagram of SAP 2000 graphical user interface are in good

agreement.

 123

Table 7.7 Displacements and Stresses for Test Example 7 - Mesh Pattern - A

Location
Results from

Program

Results from

SAP-2000
% Difference

Point – A

(Node – 41)
UZ -0.82345 -0.82920 -0.694%

Point – E

(Node – 21)
UZ -0.295672 -0.304909 -3.029%

Point – B

(Node – 37)
S11 15.44666 16.8050 9.538%

Point – C

(Node – 5)
S22 17.30481 16.9098 2.336%

Point – D

(Node – 17)
S12 -2.87364 -3.0190 -4.185%

Table 7.8 Displacements and Stresses for Test Example 7 – Mesh Pattern - B

Location
Results from

Program

Results from

SAP-2000
% Difference

Point – A

(Node – 41)
UZ -0.79443 -0.82920 -4.193%

Point – E

(Node – 21)
UZ -0.27932 -0.30010 -6.924%

Point – B

(Node – 37)
S11 14.02095 16.8584 -16.831%

Point – C

(Node – 5)
S22 14.85041 16.9312 -12.289%

Point – D

(Node – 17)
S12 -2.90833 -2.9001 6.241%

 124

Test Example 8

The second example is a rectangular plate of size 8 ft × 12 ft with a hole of size 4

ft × 2 ft. The thickness of the plate is 10 in. A uniform surface load of 0.2 kips/sq. in. is

applied over the entire plate. All inside and outside edges of the plate are simply

supported. The finite element model of the plate contains 96 three node triangular plate

bending (DKT) elements (See Figures 7.9 and 7.10).

Fig. 7.9 FE Model for Test Example 8 – Rectangular Plate with Hole.

Geometric Data:

 Out side length 1L = 96.0 in.

 Outside width 1B = 144.0 in.

 Inside length 2L = 48 in.

 Inside width 2B = 24 in.

 Thickness t = 10.0 in.

 125

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.2

Boundary Conditions:

 All inside and outside edges of the plate are simply supported.

Loading:

 A uniform surface load of 0.2 kips/sq. in. is applied to the plate.

Fig. 7.10 FE Model for Test Example 8 – Rectangular Plate with Hole.

 126

Comparisons of Results:

 The comparison of displacements and stresses obtained from the program and

SAP 2000 for this example is tabulated in Table 7.9. The displacements are compared at

points A and B, while the stresses are compared at points C and D as shown in Figures

7.9 and 7.10. The results obtained from the program are found to be similar with those

obtained from SAP 2000. However, the normal stress in the y direction at point D is

approximately 9% less than that given by the SAP 2000. The difference in results is

because of the different triangular plate bending elements used in the program and SAP

2000.

Table 7.9 Displacements and Stresses for Test Example 8

Location
Result from

Program

Result from

SAP-2000
% Difference

Point – A (Node – 46) UZ -0.021537 -0.021647 -0.508%

Point – B (Node – 17) UZ -0.001274 -0.001288 -1.087%

S11 3.02900 3.0126 0.544%
Point – C (Node – 68)

S22 1.577566 1.7364 -9.147%

Point – D (Node – 1) S12 1.022454 1.0103 1.203%

Test Example 9

The third verification problem is a cant ilever plate of size 8 ft x 8 ft. The

thickness of the plate is 6 in. A uniformly distributed surface load of 0.01 kips/sq. in. is

applied to the plate. The finite element model consists 128 three node triangular plate

bending (DKT) elements. The finite element model of the plate is shown in Fig. 7.11.

 127

Geometric Data:

 Length L = 96.0 in.

 Width = 96.0 in.

Thickness t = 6.0 in.

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.2

Fig. 7.11 FE Model for Test Example 9– Cantilever Plate.

Boundary Conditions:

 One edge of the cantilever plate is fixed.

 128

Loading:

 A uniform surface load of 0.01 kips/sq. in. is applied to the plate.

Comparisons of Results:

 Displacements at points A and D and stresses at points B and C obtained from the

program are compared to those obtained from SAP 2000 (See Table 7.10). The

displacements obtained from the program are within 5% from those obtained from SAP

2000. The difference between stresses obtained from the developed program and those

obtained from the SAP 2000 is less than 5%. One reason for this difference is use of

different elements in the author’s program and SAP 2000. Another reason can be the

higher order numerical integration scheme used by SAP 2000. SAP 2000 uses four to

eight point numerical integration scheme for its quadrilateral and triangular element

while the author has used three point numerical integration scheme in the formulation of

the element stiffness matrix for DKT element.

Table 7.10 Displacements and Stresses for Test Example 9

Location
Result from

Program

Result from

SAP-2000
% Difference

Point – A (Node – 77) UZ -1.60400 -1.68787 -4.960%

Point – D (Node – 41) UZ -0.569561 -0.599412 -4.980%

Point – B (Node – 5) S11 1.74398 1.8325 -5.431%

Point – B (Node – 5) S22 8.07994 8.2984 -2.633%

Point – C (Node – 18) S12 0.40987 0.4288 -4.415%

 129

7.4 Example Problems for Verification of Four Node Quadrilateral Plate Bending

(DKQ) Element.

 Verification of the four node quadrilateral plate bending (DKQ) elements

developed in Java is performed by analyzing the same three structures used for the

verification of triangular plate bending elements. The structures are now modeled using

four node quadrilateral plate bending (DKQ) elements. The description of the example

problems and comparison of results is discussed in the following sections.

Test Example 10

The first example problem is a square plate of size 12 ft × 12 ft and has a

thickness of 6 in. A uniform surface load of 0.1 kips/sq. in. is applied to the plate. All

four edges of the plate are fixed. The finite element model was generated using 64 four

node quadrilateral plate bending (DKQ) elements (See Fig. 7.12).

Geometric Data:

 Length L = 144.0 in

Width = 144.0 in.

Thickness t = 6.0 in.

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.3

Boundary Conditions:

 All four edges of the plate are fixed.

Loading:

 A uniform surface load of 0.01 kips/sq. in. is applied to the plate.

 130

Fig. 7.12 FE Model for Test Example 10 – Square Plate

Comparison of Results:

 Table 7.11 shows of displacements at points A and E and stresses at point B, C

and D obtained from the program and from SAP 2000. The displacements at points A and

E are approximately the same as those from SAP 2000. The difference is 0.006 % in the

normal stresses in x and y direction at the fixed support (where the stresses are

maximum). The difference in shearing stress from the program and that from the SAP

2000 is 5 %.

 131

Table 7.11 Displacements and Stresses for Test Example 10

Location
Result from

Program

Result from

SAP 2000
% Difference

Point – A (Node – 41) UZ -0.84005 -0.84005 -0.000%

Point – E (Node – 21) UZ -0.304782 -0.304782 0.000%

Point – B (Node – 37) S11 17.51227 17.51111 -0.006%

Point – C (Node –5) S22 17.51227 17.51111 -0.006%

Point – D (Node – 17) S12 -2.82021 -2.65871 -5.726%

Test Example 11

The second example is the same rectangular plate with hole, which was used for

the verification of DKT element. A plate is of size 8 ft × 12 ft and has a hole of size 4 ft

× 2 ft. The thickness of plate is 10 in. A uniform surface load of 0.2 kips/sq. in. is applied

to the plate. All inside and outside edges of the plate are simply supported. A finite

element discretization for this example problem includes 72 four node quadrilateral

(DKQ) elements. (See Figures 7.13 and 7.14).

Geometric Data:

 Out side length 1L = 96.0 in.

 Outside width 1B = 144.0 in.

 Inside length 2L = 48 in.

 Inside width 2B = 24 in.

 Thickness t = 10.0 in.

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.2

 132

Boundary Conditions:

 All inside and outside edges of the plate are simply supported.

Loading:

 A uniform surface load of 0.2 kips/sq. in. is applied to the plate.

Fig. 7.13 FE Model for Test Example 11 – Rectangular Plate with Hole.

 133

Fig. 7.14 FE Model for Test Example 11 – Rectangular Plate with Hole.

Comparison of Results:

 The displacements and stresses obtained from the developed program and from

SAP 2000 are tabulated in Table 7.12. The displacements are compared at points A and B

while the stresses are compared at points C and D as shown in Figures 7.13 and 7.14. As

can be seen from Table 7.12 the difference in displacements is insignificant. The stresses

are also very close, however there is a difference of 5 % in shearing stress.

 134

Table 7.12 Displacements and Stresses for Test Example 11

Location
Result from

Program

Result from

SAP - 2000
% Difference

Point – A (Node – 46) UZ -0.030028 -0.030028 0.00%

Point – B (Node – 17) UZ -0.001273 -0.001272 -0.078%

S11 3.7204 3.7202 -0.005%
Point – C (Node – 68)

S22 1.637831 1.63769 -0.008%

Point – D (Node – 1) S12 1.149302 1.095553 -4.676%

Test Example 12

The third verification example for the four node quadrilateral plate bending

(DKQ) element consists of same cantilever plate that was used for the verification of the

triangular plate bending (DKT) element. A cantilever plate is of size 8 ft x 8 ft and has a

thickness of 6 in. A uniformly distributed surface load of 0.01 kips/sq. in. is applied to a

plate. The plate is modeled using 64 four node quadrilateral plate bending (DKQ)

elements. A finite element model of the plate for this example problem is shown in Fig.

7.15.

Geometric Data:

 Length L = 96.0 in.

 Width = 96.0 in.

Thickness t = 6.0 in.

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.2

Boundary Conditions:

 One edge of cantilever plate is fixed.

 135

Loading:

 A uniform surface load of 0.01 kips/sq. in. is applied to the plate.

Fig. 7.15 FE Model for Test Example 12 – Cantilever Plate.

Comparisons of Results:

 Table 7.13 shows the comparison of displacements and stresses obtained from the

developed program and SAP 2000. The displacements are compared at nodes A and E

(See Fig. 7.15). It is seen that the displacements obtained from the program are identical

to those obtained from the SAP 2000. A similar observation can be made for the normal

stresses. However, the shearing stress compared at point C differed by approximately 7%.

It can be concluded from the tabulated results that the four node quadrilateral plate

bending elements developed for this program is efficient and gives satisfactory results as

compared to commercial finite element analysis program SAP 2000.

 136

Table 7.13 Displacements and Stresses for Test Example 12

Location
Result from

Program

Result from

SAP 2000
% Difference

Point – A (Node – 77) UZ -1.605057 -1.605057 0.00%

Point – E (Node – 21) UZ -0.169455 -0.169455 0.00%

Point – B (Node – 5) S11 1.593686 1.593686 0.00%

Point – B (Node – 5) S22 7.968432 7.968432 0.00%

Point – C (Node – 10) S12 0.455595 0.488347 -6.706%

7.5 Example Problems for Verification of Three Node Triangular Shell Elements

 The three node triangular shell element developed in this study is a combination

of CST element and DKT element. To verify the accuracy of three node triangular shell

element, three example problems were selected. The comparison of displacements and

stresses for each example problem is done at different points and the discussion is

presented in the following sections.

Test Example 13

A cantilever I – beam is analyzed using the developed program and the SAP

2000. The length of the I – beam is 40 in., the height is 5 in. and the flange widths are 10

in. A load of 1.6 kips is applied at the top and bottom flanges of the I - beam in two

opposite directions as shown in Fig. 7.16. This example is one of the verification

examples presented in Alladin v. 1.0. A finite element model of the cantilever beam

consists of 96 three node triangular shell elements.

 137

Fig. 7.16 FE Model for Test Example 13 Cantilever I – Beam

Geometric Data:

 Length L = 40.0 in.

 Width = 10.0 in.

 Height h = 5.0 in.

 Thickness t = 0.25 in.

Material Properties:

 Modulus of elasticity E = 10000 ksi.

 Poisson’s ratio ν = 0.3

Boundary Conditions:

 One end of the cantilever is fixed.

 138

Loading:

 A concentrated load of 1.6 kips is applied at the top and bottom of the flange in

opposite directions as shown in Fig. 7.16.

Comparison of Results:

 This verification example was selected, as it is very efficient in determining the

effect of inplane rotations in the element. The displacements at nodes 63 and 9 and the

stresses at nodes 2, 46 and 27 are compared to those obtained from the SAP 2000 (See

Table 7.14). The percentage difference in displacements is within 3 %, which is

acceptable because the different plate bending elements are used for the development of

three node triangular shell elements in the author’s program and SAP 2000. The stresses

from the program differ considerably from those obtained from SAP 2000. In this test

example, torsional load is applied to the structure that causes inplane rotations in the

elements. These inplane rotations are not included in the shell elements developed in this

research while the triangular shell element in SAP 2000 include the rotational degrees of

freedom in the development of element stiffness matrix of the shell element and hence is

more accurate. The results indicate that the shell element developed is suitable for

computing deflections but additional work is necessary to modify the element to take

inplane rotations in to account. This is left on a topic of future study.

Table 7.14 Displacements and Stresses for Test Example 13

Location
Result from

Program

Result from

SAP-2000
% Difference

UX -0.015376 -0.014921 3.049%

UY 0.088021 0.085471 2.983%
Point – A

(Node – 63)
UZ 0.150498 0.146070 3.031%

UX -0.015281 -0.014834 3.013%

UY -0.088024 -0.085475 2.982%
Point – B

(Node – 9)
UZ -0.148408 -0.144533 2.681%

 139

Table 7.14 Displacements and Stresses for Test Example 13 (Continue)

Point – C

(Node – 2)
S11 -6.517417 -5.441100 19.78%

Point – D

(Node – 46)
S22 2.688420 2.009748 33.769%

Point – E

(Node – 27)
S12 -1.4427 -1.450483 0.539%

Test Example 14

 The second verification example is a folded plate structure as shown in the Fig.

7.18. The length of the plate is 7.62 in. and the thickness is 1 in. A uniformly distributed

surface load of 1 kips/ sq. in. is applied at the top and the two inclined sides of the plate.

A finite element model of the folded plate structure is generated using 128 three node

triangular plate bending elements. The folded plate structure is a good example for

studying the effect of membrane and bending coupling that occurs at the edges of the

shell elements. The finite element model of the folded plate is shown in Fig. 7.18

.

Fig. 7.17 Dimensions of the Folded Plate Structure

 140

Fig. 7.18 FE Model for Test Example 14 – Folded Plate.

Geometric Data:

 Length of the plate L = 7.62 in.

 The other geometric data are shown in Fig. 7.17

 141

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.2

Boundary Conditions:

 The folded plate structure is simply supported at the bottom.

Loading:

 A uniformly distributed surface load of 1 kips/sq.in. is applied to the top and two

inclined faces of the folded plate.

Comparison of Results:

 Table 7.15 shows analysis results at a few points obtained from the program and

SAP 2000. The displacements at nodes 43 and node 63 which are the center nodes of the

top and inclined faces of the folded plate structure are shown in the table. It can be seen

that displacements obtained from the program are almost identical except for the

displacements in y direction that have percentage difference of approximately 2 %. The

stresses at nodes 43, 63 and 71 given by the program are different from those obtained

from SAP 2000. Again, as in the previous example the reason for this difference is due to

the fact that drilling degrees of freedom are not included in the triangular shell elements

developed in this research. The inclusion of drilling degrees of freedom can have

significant effect on stresses while inplane bending stresses are present in the structure.

 142

Table 7.15 Displacements and Stresses for Test Example 14

Location
Result from

Program

Result from

SAP-2000

%

Difference

UX 0.003291 0.003293 -0.061%

UY 0.000567 0.000581 -2.410%
Point – A

(Node – 43)
UZ -0.012889 -0.012844 0.350%

UX 0.008567 0.008551 0.187%

UY 0.000422 0.000431 -2.088%
Point – C

(Node – 63)
UZ -0.013089 -0.013055 0.260%

Point – A

(Node – 43)
S11 -4.02949 -3.62061 11.293%

Point – C

(Node – 63)
S22 -6.03507 -6.90214 -12.562%

Point – D

(Node 71)
S12 -0.362579 -0.28533 27.074%

Test Example 15

The third verification problem is the standard test for triangular shell elements

which is the Scordelis – Lo roof problem (Chen, 1992). The length of the roof is 50 in.

and the radius of 25 in. The angle of inclination is 40° . A uniform surface load of 90

kips/sq. in. is applied to the cylindrical shell roof. Restraints are provided at the two ends

of the roof. The geometric and material properties are described in the following sections.

The finite element mesh is generated using 32 three node triangular shell elements. The

finite element model of Scordelis – Lo roof is shown in Fig. 7.19.

 143

Fig. 7.19 FE Model for Test Example 15 - Scordelis – Lo Roof.

Geometric Data:

 Length of the plate L = 50.0 in.

 Radius = 25.0 in.

 Angle φ = 40°

Material Properties:

 Modulus of elasticity E = 43200000 ksi.

 Poisson’s ratio ν = 0

Loading:

 A uniformly distributed surface load of 90 kips/sq.in. is applied to the roof.

 144

Comparison of Results:

The standard test consists of computing the downward displacement at center of

the free edge of the roof (node 11). The exact value of this displacement is 0.3024 in. The

displacement at node 11 from the program and from SAP 2000 are in good agreement

with the theoretical value. The percentage difference is less than 3% (See Table 7.16).

The displacements at the top of the roof (node 13) are also compared to those obtained

from the SAP 2000 and are found satisfactory. Stresses at nodes 1, 12 and 21 are

compared and the percentage difference was approximately less than 5 % in results was

observed. It can be concluded that for this test example, that the developed triangular flat

shell element gives accurate results, however; the SAP 2000 triangular shell element is

more accurate since the inplane rotational degrees of freedom are included and hence

more accurately represents the inplane bending behavior of the structure.

Table 7.16 Displacements and Stresses for Test Example 15

Location
Result from

Program

Result from

SAP-2000
% Difference

UX 0.002265 0.002148 5.447%

UY 0.178983 0.176408 1.460%
Point – A

(Node – 11)
UZ -0.328725 -0.323447 1.632%

UX 0.002281 0.002164 5.407%

UY -0.000005 -0.0000049 2.041%
Point – B

(Node – 13)
UZ 0.036906 0.035615 3.625%

Point – C

(Node – 1)
S11 32942.582 34730.135 -5.147%

Point – D

(Node – 12)
S22 227009.341 222166.846 2.189%

Point – E

(Node – 21)
S12 214256.364 220455.581 -2.812%

 145

7.6 Example Problems for Verification of Four Node Quadrilateral Shell Elements

 This section presents the comparison of displacements and stresses obtained from

the developed program with those obtained from SAP 2000. Three example problems

were selected for the verification of four node quadrilateral shell element. A description

of each example problem and the discussion of the results are presented in the following

sections.

Test Example 16

The first example problem for the verification of the four node quadrilateral shell

elements is a cantilever channel section with tip load applied to the free end. The length

of the cantilever is 6 in., the height 3 in., and the flange width is 2 in. The thickness of the

channel section is 1 in. A tip load of 30 kips is applied at the free end of the cantilever.

The finite element model is generated using 56 four node quadrilateral shell elements.

Fig. 7.20 shows the finite element discretization for the structure. One end of the

cantilever is restrained in all six directions and the concentrated loads of 10 kips each (in

the downward vertical direction) are applied to the three nodes at the free end.

Geometric Data:

 Length = 6.0 in.

Flange width = 2.0 in.

 Height of the section = 3.0 in.

 Thickness t = 1.0 in.

Material Properties:

 Modulus of elasticity E = 3600 ksi.

 Poisson’s ratio ν = 0.2

Boundary Conditions:

 Restraints in all six directions are provided at the left end of the cantilever.

 146

Fig. 7.20 FE Model for Test Example 16 – Cantilever Channel Section

Loading:

 A concentrated loads of 10 kips each is applied to the nodes at the top of the free

end of the cantilever (nodes 7, 14, and 21) as shown in Fig. 7.20.

Comparison of Results:

Table 7.17 shows the comparison of displacements and stresses for the

verification example. The displacements at nodes 11 and 14 are compared with those

obtained from SAP 2000. The difference in the displacements is less than 5%. This

difference is because of the different element types are used in the author’s program and

SAP 2000. It is observed that the membrane action of the four node quadrilateral shell

element in SAP 2000 is internally represented by eight node quadrilateral plane elements.

Also the SAP 2000 shell element includes inplane rotational degrees of freedom in the

 147

membrane part of the shell element. In the developed program a four node quadrilateral

plane element is used in combination with four node quadrilateral plate bending (DKQ)

element. The four node quadrilateral plate element is initially formulated as an eight node

quadrilateral plate element and then constraints are provided at the mid nodes. However,

the shape functions of eight node quadrilateral element is used in the development of the

four node quadrilateral plate bending element. When combining this four node

quadrilateral plate bending element with four node quadrilateral plane element to develop

the quadrilateral shell element, it was concluded that convergence may not be accurate at

the edges of the element and hence the difference in the results were found different.

Also, the four node quadrilateral shell element developed in this study does not include

the inplane rotational degrees of freedom which is important while analyzing the

structure in which pure membrane or bending action is not present. The stresses obtained

at nodes 1 and 14 are compared to those obtained from SAP 2000 and the difference in

the results are found less than 3 % as shown in Table 7.17.

Table 7.17 Displacements and Stresses for Test Example 16

Location
Result from

Program

Result from

SAP 2000
% Difference

UX 0.014098 0.014522 -3.263%

UY -0.074297 -0.077952 -4.689%
Point – A

(Node – 14)
UZ -0.218509 -0.223337 -2.162%

UX 0.009755 0.010005 -2.499%

UY -0.024764 -0.025712 -3.687%
Point – B

(Node – 11)
UZ -0.069415 -0.070682 -1.793%

Point – C

(Node – 1)
S11 60.253877 59.538842 -1.187%

Point – C

(Node – 1)
S22 11.907768 12.050775 -1.187%

Point – D

(Node – 7)
S12 -26.076878 -26.862638 -2.925%

 148

Test Example 17

The second example consists of the same cantilever I – beam used to verify the

three node triangular shell elements. This example tests the behavior of the element when

the inplane bending stresses are severe. A cantilever I – beam has a length of 40 in.,

height of 5 in. and flange width of 10 in. The thickness of the beam is 0.25 in. A torque

is applied to the I – section by applying point loads of 1.6 kips each in two opposite

directions at the top and bottom flanges of the beam (See Fig. 7.21). The finite element

model of this example problem contains 48 four node quadrilateral shell elements and is

shown in Fig. 7.21.

Fig. 7.21 FE Model for Example 17 - Cantilever I – Beam (Alladin v. 1.0, 1996).

 149

Geometric Data:

 Length L = 40.0 in.

 Width = 10.0 in.

 Height h = 5.0 in.

 Thickness t = 0.25 in.

Material Properties:

 Modulus of elasticity E = 10000 ksi.

 Poisson’s ratio ν = 0.3

Boundary Conditions:

 One end of the cantilever is fixed.

Loading:

 A concentrated load of 1.6 kips is applied at the top and bottom of the flange in

opposite directions as shown in Fig. 7.21.

Comparison of Results:

 The displacements at nodes 9 and 63 and stresses at nodes 1, 46, and 27 are

obtained from the developed program and SAP 2000 are shown in Table 7.18. It is seen

from the Table 7.18 that the effect of inplane bending stresses in the four node

quadrilateral shell element is more severe than in the triangular shell element. The

displacements are compared at nodes 63 and node 9, which are the nodes opposite to the

nodes where the loads are applied. When a torque is applied to a cantilever I – beam it

was expected that the displacements in y and z should be in the opposite directions and of

same value. The tabulated results agree with the expected results thus verifying the

accuracy of the assembly of structure stiffness matrix and the equation solver used in this

program. There is a large difference in the results obtained for stresses from the two

programs for the same reasons indicated for the Test Example 16.

 150

Table 7.18 Displacements and Stresses for Test Example 17

Location
Result from

Program

Result from

SAP-2000
% Difference

UX -0.025120 -0.027162 -7.518%

UY 0.139963 0.151049 -7.339%
Point – A

(Node – 63)
UZ 0.209469 0.255308 -17.954%

UX -0.025120 -0.027162 -7.518%

UY -0.139963 -0.151049 -7.339%
Point – E

(Node – 9)
UZ -0.209469 -0.255308 -17.954%

Point – B

(Node – 1)
S11 -10.824349 -12.256818 -11.687%

Point – C

(Node – 46)
S22 4.430982 4.683511 -5.392%

Point – D

(Node – 27)
S12 -1.523552 -1.683754 -9.515%

Text Example 18

 The structure chosen for the third verification example for quadrilateral shell

elements is the same cantilever I – beam as in the previous example but now a

concentrated tip load of 15 kips is applied at the free end of the cantilever. The length of

the cantilever is 40 in., flange width is 10 in., height is 5 in. and thickness is 0.25 in. The

cantilever I – beam has same number of elements as in Test Example 17 and is modeled

using four node quadrilateral shell elements. The cantilever I – beam was chosen to

verify the magnitude of the error in analysis due to inplane bending stresses present in the

structure. The finite element model of the cantilever I – beam is shown in Fig. 7.22.

 151

Fig. 7.22 FE Model for Test Example 18 – Tip Loaded Cantilever I – Beam.

Geometric Data:

 Length L = 40.0 in.

 Width = 10.0 in.

 Height h = 5.0 in.

 Thickness t = 0.25 in.

Material Properties:

 Modulus of elasticity E = 10000 ksi.

 Poisson’s ratio ν = 0.3

 152

Boundary Conditions:

 Restraints in all six directions are provided at the left end of the cantilever.

Loading:

 A concentrated load of 5 kips each is applied to nodes 9, 18 and 21.

Comparison of Results:

 From Table 7.19 it can be seen that the difference in the displacements at nodes

18 and 54 is approximately 3 %. The maximum displacement is observed at node 9 where

the difference between the results obtained from the developed program and SAP 2000 is

found 0.6 %. Normal stresses at nodes 1 and 46 differ by 3 %. For shearing stress the

difference is approximately 8 %. Thus it can be concluded that the four node quadrilateral

shell element gives better results when inplane bending stresses are not significant.

Table 7.19 Displacements and Stresses for Test Example 18

Location
Result from

Program

Result from

SAP-2000
% Difference

UX 0.086634 0.089327 -3.015%

UY 0.00 0.00 0.00%
Point – A

(Node – 18)
UZ -1.051681 -1.084128 -2.993%

UX -0.082022 -0.084834 -3.315% Point – B

(Node – 54) UZ -1.045458 -1.082865 -3.454%

Point – C

(Node – 9)
UZ -4.658466 -4.630571 0.602%

Point – D

(Node – 1)
S11 44.204776 42.776400 -3.231%

Point – E

(Node – 1)
S22 13.261433 12.832920 -3.231%

Point – E

(Node – 46)
S12 -4.119114 -4.437667 7.734%

 153

Chapter 8

Summary and Conclusions

8.1 Summary

The purpose of this study was to develop membrane, plate and flat shell elements

using an object oriented approach and the Java programming language. The membrane

elements developed in the program included the three node triangular plane (CST)

element and a four node quadrilateral plane element. The plate elements developed were

based on the discrete Kirchoff theory. The two plate elements developed were the three

node discrete Kirchoff triangular (DKT) element and the four node discrete Kirchoff

quadrilateral (DKQ) element. The triangular flat shell element was developed by

combining the CST element and the DKT Element (Batoz et al., 1980). The quadrilateral

flat shell element was developed by assembling the four node isoparametric quadrilateral

element and the DKQ Element (Batoz and Tahar, 1982). A computer program for finite

element analysis was also written in Java programming language to check and verify the

accuracy of results obtained from the developed membrane, plate and flat shell elements.

The program is based on the object oriented approach.

Input to the program is through a text file. The format for the input file is similar

to the SAP 2000 S2k file. This makes it possible to generate the finite element model for

the verification examples using the SAP 2000 graphical user interface. However, a few

changes were made in the format of input text file for compatibility with the developed

program. The loads that can be applied to the structure include concentrated loads, and

uniformly distributed surface loads. Various load combinations can also be used. The

program computes displacements and stresses at each node of the finite element model.

Several test examples were analyzed using the program and results were

compared with those obtained from the commercial finite element analysis program SAP

 154

2000. Results were compared at the points of maximum displacements and stresses. The

average stress was taken in to consideration to calculate stresses at specific point.

8.2 Conclusions

This thesis presented the development of six finite elements using the object

oriented programming concept in Java as an alternative to the traditional procedural

programming approach. A finite element analysis program was developed to verify the

accuracy of the results.

A series of test example problems were analyzed using the developed program.

The results from these analyses were compared with those obtained from the commercial

finite element analysis program SAP 2000 in order to verify the accuracy of the

developed program.

The results obtained from the analysis of the example problems using the plane

stress triangular elements and the plane stress quadrilateral elements were found to be

very accurate when compared to those obtained from the SAP 2000. The difference in

displacements computed by the two programs was less than 1 %. The difference in

stresses was also quite close. However, stresses in a few cases differed by 6 to 7 %.

 The displacements for the verification examples using the triangular plate bending

(DKT) elements (Batoz et al., 1980) were in agreement with those obtained from the SAP

2000. The difference in displacements was found to be less than 3 % for the three node

triangular plate bending (DKT) element and less than 5 % for the four node quadrilateral

plate bending (DKQ) element. The computed stresses were also in agreement for most

cases. The margin of difference in stresses was about 10 %.

An important observation was made when analyzing the clamped plate using the

DKT elements. It was founded that orientation of the mesh pattern affects the analysis

results in clamped plate problem analyzed using DKT elements.

 155

Three structures were analyzed using the three node triangular flat shell elements.

The displacements found from these analyses were found to be in good agreement.

However, there was a significant difference in the stress results. The reason for the

difference is because the drilling degrees of freedom were neglected in the development

of the element. It can be concluded that although the developed element gives reasonable

results for displacements it does not accurately model the behavior of the shell structures

when it comes to computing stresses. Thus, it is proposed that this element be modified

by including drilling degrees of freedom in the membrane part of the element.

The results from the quadrilateral shell elements were satisfactory only when

either membrane or bending action is present in the structure, but gave poor results when

inplane bending stresses were also present in the structure. The main reason for poor

results is again the negligence of inplane rotational stiffness in the membrane stiffness

matrix. The stiffness parameter for the drilling degree of freedom was approximated in

the quadrilateral shell element developed in this study, while SAP 2000 uses a

quadrilateral shell element with inplane rotational degree of freedom and hence gives

more accurate results. McNeal and Harder (1988) have arrived at a similar conclusion.

According to them, the flat shell element gives more accurate results when inplane

rotational degree of freedom is included. Knowles et al. (1976) also observed in his

studies that, the flat shell elements are more accurate when the response of the structure is

either membrane action or bending, but when membrane-bending coupling is present in

the structure the flat shell element gives poor results. They also demonstrated the

complete failure in performance of flat shell elements while analyzing the torsional

behavior of a slit cylinder.

In conclusion, the plane stress and plate bending elements developed in this study

were found to be accurate. The triangular shell element performed better than the

quadrilateral shell elements. From an analysis of different structures using the program, it

can be concluded that the assembly of the structure stiffness matrix and the equation

solver used in the program are accurate.

 156

8.3 Future Development

 This study illustrates the use of the object oriented Java programming language

for developing membrane, plate bending and flat shell elements. Suggestions for future

work include: (1) developing flat shell elements in which the membrane elements have

rotational degrees of freedom, (2) using a band storage scheme for storing the structure

stiffness matrix and band solvers in the program to solve large finite element analysis

problems, (3) modifying the program to include a graphical user interface and, (4)

extending the program to include other elements such as truss, and frame elements.

 157

References:

Bathe K. J., Finite Element Procedures, Prentice – Hall, Englewood Cliffs, New Jersey,

1996.

Bathe, K. J., and Ho, L. W., A Simple and Effective Element for Analysis of General

Shell Structures, Computers and Structures, Vol. 13, pp. 673-681, 1981.

Bathe K. J., Wilson E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall

Inc., 1976.

Batoz J.-L., Bathe K. J. and Ho L. W., A Study of Three-Noded Triangular Plate Bending

Elements, International Journal for Numerical Methods in Engineering, Vol.15, 1771-

1812 (1980).

Batoz J. L. and Dhatt G., Development of Two Simple Shell Elements, AIAAJ, Vol. 10,

No. 2, 1972, pp. 237-238.

Batoz J.-L. and Tahar M. B., Evaluation of a New Quadrilateral Thin Plate Bending

Element, International Journal for Numerical Methods in Engineering, Vol. 18, 1655-

1677 (1982).

Bazeley, G. P., Cheung Y. K., Irons B. M. and Zienkiewicz, O. C., Triangular Elements

in Plate Bending, Confirming and Non – Confirming Solutions, Proc. 1st Conference on

Matrix Methods in Structural Mechanics, pp. 547-576, Wright Patterson AF Base, Ohio,

1966.

Chen H. C. Evaluation of Allaman Triangular Membrane Element used in General Shell

Analysis, Computers and Structures, Vol. 43, No. 5, pp. 881-887, 1992.

 158

Chen H. C., Evaluation of Allman Triangular Membrane Element used in general Shell

Analysis, Computers and Structures, Vol. 43 (5), 1992, pp. 881-887.

Clough R. W. and Tocher J. L., Finite Element Stiffness Matrices for Analysis of Plate

Bending, Proc. Conference on Matrix Methods in Structural Mechanic, WPAFB, Ohio,

1965, pp. 515-545.

Clough R. W., The Finite Element Method in Plane Stress Analysis. Proceedings

American Society of Civil Engineers, 2nd Conference on Electronic Computations,

Pittsbutgh, Pennsylvania, 23, 1960, pp. 345-378

C-MOLD Shrinkage & Warpage User's Guide, Copyright © 1995, 1997 Advanced CAE

Technology, Inc.

Cook R. D., Concepts and Applications of Finite Element Analysis, John Wiley & Sons,

1974.

Cook R. D., Malkus D. S., and Plesha M. E., Concepts and Applications of Finite

Element Analysis, 3rd ed., John Wiley & Sons, 1989.

Driver J. J., A Methodology of Analys is of Structures Using an Object-Oriented

Representation of the Structural Model, M.S. Thesis, Virginia Polytechnic Institute and

State University, 1994.

Ergatoudis I., Iron B. M., and Zeinkiewicz O. C., Curved Isoparametric ‘Quadrilateral’

elements for Finite Element Analysis, International Journal of Solids and Structures,

Vol. 4, No.1, 1968, pp. 31-42.

Gallagher R. H., Finite Element Analysis Fundamentals, Prentice-Hall, 1975.

 159

Green B. E., Strome D. R., and Weikel R. C., Application of the stiffness method to the

analysis of shell structures, Procedures on Aviation Conference, American Society of

Mechanical Engineers, Los Angeles, March 1961.

Holzer S. M., Computer Analysis of Structures - Matrix Structural Analysis Structured

Programming, Elsevier Science Publishing Co., Inc., 1985.

Hrabok M. M., and Hrudey T. H., A Review and Catalogue of Plate Bending Finite

Elements, Computers and Structures, Vol. 19, No. 3, 1984, pp. 475-495.

Irons B. M., Engineering Application of Numerical Integration in Stiffness Methods,

AIAAJ, Vol. 4, No. 11, 1966, pp. 2035-2037.

Knight Jr. N. F., The Raasch Challenge for Shell Elements, AIAAJ, Vol. 35, 1997,

pp.375-388.

Mark A. and Blattau M., Alladin v. 1.0 - A complete Toolkit For Engineering Matrix and

Finite Element Analysis, 1996

McNeal R. H., A Simple Quadrilateral Shell Element, Computers and Structures, Vol. 8,

1978, pp. 175-183.

McNeal R. H. and Harder R. L., Refined Four Node Membrane Element with Rotational

Degrees of Freedom, Computers and Structures, Vol. 28, 1988, pp. 75-84.

Robinson J. and Haggenmacher G., Lora – an accurate four nodes stress plate bending

element, International Journal of Numerical Methods in Engineering, Vo. 14 (2), 1979,

pp. 296-306.

SAP-2000 - Integrated Finite Element Analysis and Design of Structures, Analysis

Reference, Computers and Structures, Inc., Berkeley, California, 1997.

 160

SAP-2000 - Integrated Finite Element Analysis and Design of Structures, Input File

Format, Computers and Structures, Inc., Berkeley, California, 1997.

Schildt H., The complete reference – JAVA 2, 4th ed., Tata McGraw-Hill Publishing

Company Limited, 2001.

Timoshenko S. and Woinowsky-Krieger S., Theory of Plates and Shells, 2nd ed., 1959.

Ugural A. C., Stresses in Plates and Shells, 2nd ed. 1999.

Weaver W. Jr. and Johnston P. R., Finite Elements for Structural Analysis, Prentice-Hall,

1984.

Yang H. T., Saigal S., Masud A., Kapania R. A Survey of Recent Shell Finite Elements,

International Journal of Numerical Methods in Engineering, 2000, pp. 101-127.

Yang H. T. Y., Saigal S., and Liaw, D. G., Advances of Thin Shell Finite Elements and

some applications – version – I, Computers and Structures, 35, pp. 481-504, 1990.

Zhang Y. X., Cheung Y. K., and Chen W. J. Two refined non-conforming quadrilateral at

shell elements, International Journal of Numerical Methods in Engineering, Vol. 49, pp.

355-382.

Zienkiewicz O. C., The Finite Element Method in Engineering Science, 2nd ed., McGraw-

Hill, 1971.

 161

Appendix – A

Input File Format for Program

The input for the program can be provided in the form of a text file. The format of

the text file essentially follows that used in the SAP 2000 program. However, several

modifications were made to this format.

All input data is provided in inches and kips. The data to be provided is in the

form of data blocks. Each data block is separated by a specific title, which defines and

separates the data blocks. The data blocks must be in the same order as shown in Table

A-1.

Table A-1 List of data blocks in input file

Title of the data block Function

SYSTEM Defines system properties.

JOINT Defines joint coordinates.

RESTRAINT Defines the restraints provided to nodes.

MATERIAL Defines material properties.

SHELL SECTION Defines shell section properties.

SHELL Defines the joint connectivity for each element.

LOAD Defines applied loads applied and load cases.

END Ends the input file.

SYSTEM Data Block:

SYSTEM data block provides information regarding the degrees of freedom for

the whole structure. The restraint conditions for the structure can be derived from this

data block.

 162

Table A- 2 SYSTEM data block

SYSTEM

 DOF = UX, UY, UZ, RX, RY, RZ Shell Element

 DOF = UX, RY, RZ or UY, RX, RZ or UZ, RX, RY Plate Element

 DOF = UX, UY or UY, UZ or UX, UZ Plane Element

JOINT Data Block:

 The JOINT data block contains data for joint coordinates. For each joint, X, Y

and Z coordinates must be provided.

Table A- 3 JOINT data block

JOINT

1 X=0.5 Y=0.5 Z=0

Node number X-coordinate Y-coordinate Z-coordinate

RESTAINT Data Block:

 The RESTRAINT data block provides data for the restraints provided at different

nodes of the structure. The notations U1, U2, U3 and R1, R2, R3 represents translational

and rotational restraints in THE global X, Y, and Z directions respectively.

Table A-4 RESTRAINT data block

RESTRAINT

 ADD=1 DOF=U1, U2, U3, R1, R2, R3

Adds restraint to joint number 1 Provides restraints in the specified direction for

joint 1.

 163

MATERIAL Data Block:

 The MATERIAL data block defines material properties for the elements such as

modulus of elasticity and Poisson’s ratio.

Table A-5 MATERIAL data block

MATERIAL

 E=29000 U=0.3

Modulus of elasticity Poisson’s ratio

SHELL SECTION Data Block:

The SHELL SECTION data block provides information regarding section

properties such as the thickness of the plane, plate or shell element. This data block also

provides information on the type of stress condition (plane stress or plane strain).

Table A-6 SHELL SECTION data block

SHELL SECTION

 TH=1.0 TYPE=STRESS or STRAIN

Thickness of the element. Stress conditions (plane stress or plane

strain)

SHELL Data Block:

 SHELL data block provides information regarding joint connectivity for each

element.

 164

Table A-7 SHELL data block

SHELL

1 J=1,2,3,4

Element no. Defines nodes i, j, k, and l in counterclockwise direction (Quadrilateral

element)

1 J=1,2,3

Element no. Defines nodes i, j, and k in counterclockwise direction (Triangular element)

LOAD Data Block:

 LOAD data block defines load values, load cases and load types. Two types of

loads are considered in this study. One is a concentrated load that can be applied at any

joint and the other is a uniformly distributed surface load that can be applied to elements

in the element local Z – direction. A multiplication factor for any load case can also be

defined in this data block.

Table A-8 LOAD data block

LOAD

 NAME = DEAD LOAD MULT = 1

Defines the load case. Defines the multiplication factor.

 TYPE = FORCE

Defines the load type for this load case.

 ADD = 1 UX = 5, UY = 2, UZ = 4, RX = 4, RY = 1, RZ = 2

Adds joint load to specified node. Defines the value of load in specified direction.

 TYPE = UDL

Defines uniformly distributed load.

 ADD=1 P = -1

Applies surface load to specified element. Defines the value of the applied load.

 165

END Data Block:

 The END data block must be placed at the end of the input text file to indicate the

end of all input data.

 166

Vita

 Kaushalkumar M. Kansara was born in Palanpur, Gujarat, India March, 17, 1979.

He completed his high school at Shri Vividh Laxi Vidya Mandir in 1996. He graduated

with Bachelor of Engineering in Civil Engineering with First Class Distinction from

Lukhdheerji Engineering College, Morvi, India. He joined Virginia Tech for pursuing

Masters of Science in Civil Engineering in August 2002. He is working as a structural

engineer at Alliance Structural Engineers in Vienna, Virginia.

