Development of Membrane, Plate and
Flat Shell Elementsin Java

by
Kaushalkumar Kansara

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute & State University

In partia fulfillment of the requirements for the degree of

MASTER OF SCIENCE
in
Civil Engineering

Approved:

Dr. Kamal B. Rojiani, Chairman

Dr. W. S. Easterling Dr. C. L. Roberts - Wollmann

May, 2004
Blacksburg, Virginia

Key Words: Finite Element Analysis, Membrane, Plate, Flat Shell, Java.

Development of Membrane, Plate and
Flat Shell Elementsin Java

by
Kaushalkumar M. Kansara

Committee Chairman: Kamal B. Rojiani
CharlesE. Via, Jr. Department of Civil Engineering
Virginia Polytechnic Institute and State University

(ABSTRACT)

The development of triangular and quadrilateral membrane, plate and shell
elements in Java using the object oriented programming technique is presented. The
membrane elements developed are the constant strain triangle (CST) element and the four
node isoparametric quadrilateral membrane element. The plate bending elements
developed are the discrete Kirchoff triangular (DKT) element and discrete Kirchoff
quadrilateral (DKQ) element. The flat shell elements are developed by super imposing
the stiffness of the membrane element and plate bending element. A finite element
analysis program is aso developed to check the accuracy of the developed elements. The
program is developed using the object oriented programming approach as an aternative
to traditional procedural programming. Several test structures are analyzed using the
developed program for each developed elemert and the results are compared with those
obtained from the commercia finite element analysis program SAP 2000. The results
indicate that all elements give accurate displacements. However, there were significant
differences in stresses for the shell elements, which can be attributable to the approximate
approach in these elements to model the drilling degree of freedom.

Acknowledgements

| would like to first thank Dr. Rojiani for his encouragement, time and kind
support at every stage of this work, without whose help this task would not have been
accomplished. | would like to thank Dr. Easterling and Dr. Wollmann to serve as my
committee members. | would aso like to thank my uncle for giving me financial support

for my entire study and special thanks to my parents for their constant moral support.

Table of Contents

LISt OF FIQUIES... ittt sttt et s ae et e e neesreenaeeneens Vi
IS o = o] =SSP viii
IO I 14 0o [T § o o FO SRR 1
100 1 1 0T [T 1 o o SRR 1
1.2 ObJECLIVE @NA SCOPE......ceviieiecteeie ettt e reenre e sreenreeneenns 2
(RS X @ (o= 2= 1 o] o F PO PO 3
2.0 LItEratUr @ REVIEW ..ottt bbbt 4
P20 R g 11T 18 o OSSO 4
2.2 Membrane ElEMENS ..ot 4
2.3 Plate Bending ElemMeNntS.........cooo it s 5
2.4 Flat Shell EIEMENLSccoiiiiiiiesieeeie ettt s 7
2.5 Java Programming LaNQUAJE.cccueiueeieeiieesieesieesieesreessesssseessessseessessssesssenss 10
S.0MEMDrane ElEMENTS.......cccov et ae e nre e 13
S L OVEIVIEBIW ..ttt bbbt bt et et et e st et e sbesbeebe e st eneens 13
3.2 Two Dimensional Stresses and SIraiNScovveeeieereeeesee e 13
3.3 Plane Stress CONItiON.coiiiiiirieieierie e 14
3.4 Plane Strain ConditiON........cceeieeieieeieee e 14
3.5 Congtant Strain THANGIEccveeieeeeeceee e nre e ens 15
3.6 Implementation of the CST Element in Java.ccoccvveneenenenenneeeee e 21
3.7 Four Node Quadrilateral Plane Stress Elementcccocoveveecvieevee e 24
3.8 Implementation of the Four Node Quadrilateral Plane Element in Java 31
4.0 Plate Bending EIEmMEeNts.........cooiiiiiiieee e 35
RO Y V1= T RSP 35
4.2 Bending Of Flat PIaLes..........oooiiiiiiiceeese e 35
4.3 Basic Relationships for Bending of Thin Platesccccoeveevevievecceceeceee 37
4.4 Triangular Plate Bending Element Based on Discrete Kirchoff Theory 40
4.5 Implementation of DKT Element in Java.ccccceveeiecceevece e 49
4.6 Quadrilateral Plate Bending Element Based on Discrete Kirchoff Theory.......... 53

4.7 Implementation of DKQ Element in Java..........ccccceveeveceevecce e 61

5.0 Flat Shell EIBMENTSooiieeeece et 67
5.1 General Shell EIOMENtS.......ccocoiiiiririeieiesese s 67
5.2 Flat Shell EIEBMENTScoeeeeeeee et 68
5.3 Development of Stiffness Matrix for Flat Shell Elements.ccccocvecveeeciveenee. 69
5.4 Coordinate TranSfOrmMatioN............coeererieneeie e 72
5.5 Implementation of Triangular Flat Shell Element in Java.......c..cccoccvecvveevivenenee. 78
5.6 Implementation of Quadrilateral Flat Shell Element in Java.........cccccoeviviieenn. 82

6.0 Program DevEOPIMENT ..ot 87
G300 I T 0 [N o (o o SRR 87
6.2 Prograim SITUCLUIEc.veieeiieeiieie ettt sne e e nne s 87

6.2.1 SITUCLUrAl ClaSSES......eiueeieeieiiesiiste sttt sttt enes 87
6.2.2 INput aNd OULPUL ClBSSEScoiviiiriieieeieeesie ettt 101
6.2.3 INTEITACE ClaSSEScoueiieiieierie sttt 104
7.0 Test Examplesand Verification of RESUILS........cccceeiiieneniineereee e 107

7.1 Example Problems for Verification of Three Node Triangular (CST) Element. 107
7.2 Example Problems for Verification of Four Node Quadrilateral Plane Element 113
7.3 Example Problems for Verification of Three Node Triangular Plate Bending

(DKT) EIBMENE ...ttt s 120
7.4 Example Problems for Verification of Four Node Quadrilateral Plate Bending
(B L0) I = 107 | S 129

7.5 Example Problems for Verification of Three Node Triangular Shell Elements. 136
7.6 Example Problems for Verification of Four Node Quadrilateral Shell Elements

... 145

8.0 SumMmary and CONCIUSIONS........c.ciierieeiesiese e see et e e eeeneeens 153
8.1 SUMIMBIY ...ttt ettt st e e e ae e e e e e s ae e et e e sae e e nneesanesaneenneeennas 153

8.2 CONCIUSIONS ...ttt ettt b et enes 154

8.3 FULUre DeVEIOPIMENTveeiie et r e 156
S = = TS 157
N] 0 1= 0 [G S 161
A1 TSROSO 166

List of Figures

3.1 Constant Strain TraNgI.oive it e e e e e e e e 15
3.2 Four Node Quadrilateral Plane StressElement..............coooiiii i, 24
3.3 Four Node Quadrilateral Element in Natural Coordinate System........................ 25
4.1Bending Of PIate.o e 37
B | = 1= 117 0| 40
4.3 Positive Directionsof b, and b ... 42
4.4 Quadrilateral Plate Bending Element............c.ooii i 54
5.1 Combination of CST Element and DKT Element............ccooviiiiiii i 68
5.2 Combination of Quadrilateral Plane Element and DKQ Element........................ 69
5.3 Drilling Degrees of Freedom..........c..ieiir it e e e e e e 70
5.4 Coordinate Transformation for Triangular Element.................ccooiiis 73
5.5 Coordinate Transformation for Quadrilateral Element...............ccovevviiii i nn .. 75
6.1 El ement ClasSDiagram.ovuiie it e e e e e e e 90
6.2 FEMbdel ClassSDiagram..........ovvieiieie e e e e e e e e een a2 92
6.3 Anal ysi s ClasS DIagramM.v ettt e et e e e et e e e e 97
6.4 StressResul ts ClassSDiagram.........cooveii it e 100
6.5. Main Application Window for the Program..............cccooiiiiii i 105
7.1 FE Modé for Test Example 1 — Cantilever Beam...............ccooeiiiiiiiiieieenns 107
7.2 FE Modé for Test Example 2 — Cantilever Beam.............cocovviiiiiiiiiinneenns 109
7.3 FE Modéd for Test Example 3 — Plate with Semi Circular Hole........................ 112
7.4 FE Modd for Test Example 4 — Tip Loaded Cantilever Beam......................... 114
7.5 FE Mode for Test Example 5 - Cantilever Beam.............cocoovveiiiiiii i, 116
7.6 FE Modd for Test Example 6 - Plate with Semi Circular Hole........................ 118
7.7 FE Modd for Test Example 7 — Square Plate — Mesh Pattern A.......................121
7.8 FE Modd for Test Example 7 — Square Plate—Mesh Pattern B........................ 122
7.9 FE Model for Test Example 8 - Rectangular Plate with Hole........................... 124
7.10 FE Model for Test Example 8 - Rectangular Plate with Hole......................... 125
7.11 FE Model for Test Example 9 - Cantilever Plate.............oo oo, 127

vi

7.12 FE Moddl for Test Example 10 - Square Plate............ccooeiiii i 130

7.13 FE Model for Test Example 11- Rectangular Plate with Hole........................ 132
7.14 FE Model for Test Example 11 - Rectangular Plate with Hole........................ 133
7.15 FE Model for Test Example 12 - Cantilever Plate...........c.coooov i, 135
7.16 FE Model for Test Example 13 Cantilever | —Beam............cccoovvevivniennnnn. 137
7.17 Dimensions of the Folded Plate StrucCture.............covviiiiiiici e e 139
7.18 FE Model for Test Example 14 - Folded Plate Structure...............ccocevvvvnnnnns 140
7.19 FE Model for Test Example 15 Scordelis-LOROOfcocovviiiiii i, 143
7.20 FE Model for Test Example 16 - Cantilever Channel Section........................ 146
7.21 FE Model for Test Example 17 - Cantilever | —Beam................cccoeveiennenn. 148
7.22 FE Modé for Test Example 18 — Tip Loaded Cantilever | — Beam.................. 151

vii

List of Tables

3.1 Methods in the Class CSTEl €mentouvieiie i 0 22
3.2 Roots and weight functions for 2 x 2 Gauss quadrature................cooveveveninennn. 31
3.3 Methods in the Class QUADAEL EMENt ...viv vttt e it e e eeee 0033
4.1 Coordinates and weight functions for Gauss quadrature................oovevvveinevennnes 48

4.2 Methods in the ClaSS DKTElI @MENT ... veevee e et e e e e e e i e i iaieennenn DD

4.3 Weight functions and roots for 2 x 2 Gauss quadrature..............c.oeeveveeveninennn 61
4.4 Methods in the DKQEI ement ClaSSviiiiiii i i i een 0. .04
5.1 Methodsinthe Tri Shel I El ement ClaSS.......o.vvviieiiiie i ee e e 80
5.2 Methods in the QuadShel | El ement ClaSS......cuiviiiii i 84
6.1 Methods in the FEMbdel ClaSS.......vuiieiitiie it et e e e e et ne e eaas 93
6.2 Methods in the EqNodal Load ClaSS........oviiiiii i i e i e e 95

6.3 Methodsinthe Anal ysi s ClasS.......ccccovi i e 000,90
6.4 Methods in the MenbraneStr ClaSS........c.ooiviiiiiiiiii e 97
6.5 Methods in the Bendi ngStr ClaSS.......ovviiiiiiriie i e e e eeeen ... 98
6.6 Methodsinthe shel I Str ClasS.......c..veviiiiiii e en 2. 99

6.7 Methodsinthe StressResul ts ClaSS.......ccvvviiiiiiiiii e, 100
6.8 Methods inthe Readl nput ClaSS........ooiiiiiiiie i e e 102
7.1 Displacements and Stressesfor Test Example L.........covvviiiiiiiiiiiiiie e, 109
7.2 Displacements and Stressesfor Test Example 2., 111
7.3 Displacements and Stresses for Test Example 3..........ovii i, 113
7.4 Displacements and Stressesfor Test Example4..........ccoooeiiiiiiiiiiiiiiiiie e, 115
7.5 Displacements and Stresses for Test Example 5., 117
7.6 Displacements and Stresses for Test ExXample6..........cccooeeviviiiiiiiiiinineenn e, 120
7.7 Displacements and Stresses for Test Example 7 -Mesh Pattern — A................... 123
7.8 Displacements and Stresses for Test Example 7 - Mesh Pattern — B.................. 123
7.9 Displacements and Stresses for Test Example 8..........ccoov i, 126
7.10 Displacements and Stresses for Test Example 9..........cooiviiiiiii i, 128
7.11 Displacements and Stressesfor Test Example 10............ovviiiiiiiiiiiiiiienne, 131
7.12 Displacements and Stressesfor Test Example 11............cooiiiiiiiiiii e, 134

viii

7.13 Displacements and Stresses for Test Example 12............cooooiiiiiiiiiiineenn . 136

7.14 Displacements ard Stresses for Test Example 13.........ooo i, 138
7.15 Displacements and Stresses for Test Example 14..........coooi i, 142
7.16 Displacements and Stresses for Test Example 15............cooiiiiiii e, 144
7.17 Displacements and Stresses for Test Example 16.............coooviiiiiiiiiiiineenn . 147
7.18 Displacements and Stresses for Test Example 17.......c..coo i, 150
7.19 Displacements and Stresses for Test Example 18..........c.ccooviiiiiiiiiiiiie e, 152

Chapter 1

I ntr oduction

1.1 Introduction

The finite element method is an approximate numerical procedure for analyzing large
structures and continua (Cook et al., 1989). The finite element method became popular
with the advancements in digital computers since they allow engineers to solve large
systems of equations quickly and efficiently. The finite element method is a very useful
tool for the solution of many types of engineering problems such as the anaysis of the
structures, heat transfer and fluid flow. The method is also used in the design of air
frames, ships, electric motors, heat engines and spacecraft. The finite element method is

also used for analyzing the behavior of components of biological systems.

In most structural analysis applications it is necessary to compute displacements and
stresses at various points of interest. The finite element method is a very valuable tool
for studying the behavior of structures. In the finite element method, the finite element
model is created by dividing the structure in to a number of finite elements. Each element
is interconnected by nodes. The selection of elements for modeling the structure depends
upon the behavior and geometry of the structure being analyzed. The modeling pattern,
which is generally called mesh for the finite element method, is a very important part of
the modeling process. The results obtained from the analysis depend upon the selection of
the finite elements and the mesh size. Although the finite element model does not behave
exactly like the actual structure, it is possible to obtain sufficiently accurate results for
most practical applications. Once the finite element model has been created, the
equilibrium equations can easily be solved using digital computers without having to
solve a large number of partial differential equations by hand. The deflections at each
node of the finite element model are obtained by solving the equilibrium equations. The
stresses and strains then can be obtained from the stress-strain and strain-displacement

relations.

The finite element method is ideally suited for implementation on a computer. With
the advancements in digital computers, the finite element method is becoming the method
of choice for solving many engineering problems, and is extensively used for structural
analysis. The structure can be discretized using frame elements, plane elements, plate
elements, or shell elements according to the behavior of the structure. The structure can
aso be modeled by combining different types of elements to approximate different
aspects of structural behavior.

1.2 Objective and Scope

The focus of this thesis is to develop triangular and quadrilateral flat shell
elements for the finite element analysis of thin shell structures. The flat shell elements are
developed by combining membrane elements with plate bending elements. An important
aspect of the work is to implement these elements on the computer using an object
oriented approach and the Java programming language. Java was chosen as the
programming language for this work; since (1) Java is an object oriented programming

language, and (2) Javais platform independent.

Four elements were considered in this study. The membrane elements considered
were the CST (constant strain triangle) element, and the four node isoparametric
guadrilateral plane element (QUADA4). The plate bending elements used were the discrete
Kirchoff plate bending elements, the DKT element (discrete Kirchoff triangular element)
(Batoz et al., 1980) and the DKQ element (discrete Kirchoff quadrilateral element)
(Batoz and Tahar, 1982). The flat shell elements were obtained by combining the above
mentioned elements.

A finite element analysis program that calculates deflections and stresses was also
developed in order to verify the accuracy of these elements. This program was written in
Java using the object oriented approach. The results obtained for a series of test problems

were compared with those from a commercia finite e ement analysis program.

1.3 Organization

The thesis is divided in to eight chapters including the Introduction. An overview
of the finite element analysis method and the Java programming language is presented in
Chapter 2. This chapter also contains a discussion of membrane and plate bending
elements and techniques for developing flat shell elements. Chapter 3 describes the
development of the triangular and quadrilateral membrane elemerts and their
implementation in Java. Chapter 4 describes the development of the triangular and
quadrilateral plate bending elements based on the discrete Kirchoff theory and their
implementation in Java. The development of flat shell elements by combining the
membrane elements and plate bending elements and the implementation of these
elements is discussed in Chapter 5. Chapter 6 describes the object oriented finite element
analysis program developed to test the accuracy of the flat shell elements. The test
problems used to verify the accuracy of the results obtained are described in Chapter 7.
Also, the results obtained from the Java program are compared with those obtained from
the SAP 2000 commercia finite element analysis program. Chapter 8 presents a
summary of the important results and a discussion of the results. Suggestions for future
development are also given in this chapter.

Chapter 2

Literature Review

2.1 Introduction

Since the evolution of the term finite element by Clough in 1951, there have been
significant developments in finite element method. A large number of different finite
elements have been developed; the finite element method has been used for solving
problems in different fields of engineering. The finite element method became even more
popular with the advancement of microcomputers and development of various efficient
programming languages. In this chapter, the development of membrane, plate bending
and flat shell finite elements is discussed. An overview of the object oriented Java

programming language is also presented.
2.2 Membrane Elements

Membrane elements are among the simplest elements to develop. These elements
are used for analyzing structures subjected to inplane forces. Assuming that the structure
isin the xy plare, the displacements at any point of the structure are u, the trandation in
the x direction and v, the trandation in the y direction. The stresses of interest are the

norma stresses s, and s, and the shearing stresst , . The normal stress in the direction

perpendicular to the plane of structure is considered to be zero. Membrane elements are
used to model the behavior of shear wall, stiffened sheet construction, and membrane
action in shells.

The membrane element used in this study for the formulation of triangular flat
shell elements is the constant strain triangle (CST). The CST eement is so named
because the strains within the element are independent of the coordinates and hence are
constant over the element. Triangular elements are useful for modeling arbitrary shaped

geometry and hence are used quite extensively for the analysis of planar structures.

Isoparametric elements are useful for modeling structures with irregular
boundaries. The word isoparametric derived from ‘iso’ (“same’) and ‘parametric’
(“parameter”) indicates that the same functions are used to define the shape and
displacements of the element. It is often difficult to model the geometry of a structure
with just the regular shaped triangular or rectangular elements. |soparametric elements
are useful for modeling structures; since the isoparametric elements can have curved
sdes. Such dements are formulated using higher order interpolation functions.
Isoparametric elements are formulated in the natural coordinate system that maps the
element geometry in terms of natura coordinates regardiess of the orientation of an
element in the global coordinate system; however, the relationship between the two
systems must be used in the element formulation (Cook, 1974).

Irons (1966), introduced the concept of isoparametric elements in stiffness
methods. The four node isoparametric quadrilateral element is the smplest element in
the family of isoparametric plane elements. Ergatoudis et al. (1968) developed shape
functions to formulate the element stiffness matrix for four node isoparametric
quadrilateral element. The four node isoparametric quadrilateral plane element is used to
develop the quadrilateral flat shell element in this study.

2.3 Plate Bending Elements

There has been considerable interest in the development of plate bending
elements ever since their use became popular for representing the bending behavior of the
shell elements. Many plate bending elements have been developed. Hrabok and Hrudey
(1984) presented a review of al plate bending elements as a part of the study on the
effectiveness of plate bending elements. Clough and Tocher (1965) developed the
triangular plate bending element by dividing the main triangle in to three subtriangles.
Bazeley et al. (1966) developed confirming and nonconfirming plate bending elements.
They developed atriangular plate bending element by using shape functions based on the

area coordinates. The nonconforming plate bending element does not pass the patch test

for some mesh patterns, and the confirming element is costly to use because of the high
order numerical integration scheme required to determine the stiffness matrix of the
element.

Batoz et al. (1980) developed severa effective triangular plate bending elements
for the analysis of plates and shells. These elements had two rotational degrees of
freedom and one trandational degree of freedom at each node for a total of 9 degrees of
freedom. They developed three types of plate bending elements. (1) the DKT element
based on Discrete Kirchoff Theory assumptions, (2) the HSM element based on the
Hybrid Stress Method, to overcome the problems in development of pure displacement
based models, and (3) the SRI element based on Selective Reduced Integration scheme
that includes transverse shear deformation. Batoz et a (1980) compared the results
obtained for these elements. They found that the DKT and HSM elements are more
effective than the SRI element. They also found that the DKT element gives better results
than the HSM element because the DKT element requires less storage compared to the
HSM element.

Quadrilateral plate bending elements are popular in analyzing slab structures and
are used in formulating shell elements for the analysis of regular shaped shell structures.
Earlier attempts to develop quadrilatera plate bending elements involved combining four
triangular plate bending elements (Batoz and Tahar, 1982). However their formulation
was very complicated. McNeal (1978) developed a four node quadrilateral shell element
using isoparametric shape functions. This element gives very good results for plate
bending. Robinson and Haggenmacher (1979) developed the quadrilateral plate bending
element, LORA based on stress parameters rather than displacement fields. This element

also gives very good results for plate bending.

Batoz and Tahar (1982) reviewed the earlier attempts to develop plate bending
elements and concluded that these elements were useful for thick plates, but when applied
to the thin plates they do not give very good results. Batoz and Tahar (1982) developed a
four node quadrilateral element based on the Discrete Kirchoff theory. The basis of the

formulation of this element was the Discrete Kirchoff Triangular (DKT) element
developed earlier (Batoz et al., 1980). The quadrilateral plate bending element (DKQ)
formulated by Batoz and Tahar (1982) and the triangular plate bending element (DKT)
formulated by Batoz et al. (1980), are based on the discrete Kirchoff assumptions in
which the transverse shear strain is neglected. They considered transverse shear strain to
be present in the element in the initia development and then removed the transverse
shear strain terms by applying discrete Kirchoff constraints. Batoz and Tahar (1982)
conducted several tests on these elements. Based on their study, they suggested that the
convergence rates in displacements and stresses for DKQ element is not good as for the
QUADA4 element by McNeal (1978) and LORA by Robinson and Haggenmacher (1979).

2.4 Flat Shell Elements

Shell elements are widely used to model the curved geometry of a structure. Shell
elements based on classical shell theory are very difficult to develop. Many simplifying
approximations are involved in the development, which leads to less accurate results.
These types of elements are very efficient in modeling the curved geometry of the
structure. However, because of the complexities involved, the alternative approach of
modeling the structure with series of flat elements, which is simpler and easier to

implement, became more popular for the analysis of shell structures.

In 1961, Green et al. first developed the concept of using triangular flat shell
elements to model arbitrary shaped shell structures (Zienkiewicz, 1971). Shells with
cylindrical shapes or regular curved surfaces can be modeled using rectangular or
quadrilateral flat shell elements. Zienkiewicz (1971) recommended modeling curved
surface by a series of flat shell elements, rather than using the more complex curved shell
elements. He suggested developing a built up element by combining membrane and plate
bending elements to develop aflat shell elements.

Bathe and Ho (1981) studied two approaches for the development of shell

elements. The first approach is to use the higher order isoparametric elements, which are

formulated on the basis of three dimensional stress conditions and using the higher order
shape functions and integration scheme. The second approach is to use lower order shell
elements, which are developed by superimposing previously available membrane and
plate bending elements and hence obtaining the membrane and bending properties of the
shell element. They found that the second approach is more cost effective than the first
because of the simplicity of development. The lower order terms used in the formulation
require less computation effort and time. They also concluded that higher order elements
give far superior results than the lower order elements, but they are costly to implement

on the computer because of the large size of the stiffness matrix.

McNea and Harder (1988) suggested in their study that, the higher order
elements take three times more solution effort than the lower order elements. Another
drawback of higher order elementsis the use of high order numerical integration schemes
to avoid spurious zero energy modes. Lower order elements require a large number of
elements to model the structure but they require less computational effort and hence are
still cheaper as compared to the higher order elements. However, the effectiveness of the
element and accuracy of results of the lower order elements largely depends on the type
of the element selected for the formulation of the shell element.

Flat shell elements are developed by combining membrane elements containing
two inplane trandational degrees of freedom and plate bending elements containing two
rotational degrees of freedom and one out of plane translational degree of freedom. Since
the inplane rotational degrees of freedom are not included, that leaves null or zero values
in the stiffness matrix. The null values for the inplane rotational degrees of freedom,
generally called drilling degrees of freedom gives singularity in structure stiffness matrix
if al the elements are co-planar. Chen (1992) suggested that problems occur in solving
in-filled frames, folded plate structures and other complex structural systems when the

inplane rotationa stiffness is not included in the stiffness matrix of the shell element.

Severa methods have been suggested by various authors for removing the

singularity in the stiffness matrix. The normal approach to deal with the stiffness of the

drilling degrees of freedom is to approximate the stiffness for the drilling degrees of
freedom. Knight (1997) suggested that a very small value be specified for the stiffness of
the drilling degrees of freedom so that the contribution to the strain energy equation from
this term will be zero. Zienkiewicz (1971) developed the matrix for the stiffness of the
drilling degrees of freedom for triangular flat shell elements. Bathe and Ho (1981)
approximated the stiffness for drilling degrees of freedom by using a small approximate

value.

Batoz and Dhatt (1972) presented the formulation of a triangular shell element
named KLI element with 15 degrees of freedom and a quadrilateral shell element named
KQT element with 20 degrees of freedom using the discrete Kirchoff formulation of plate
bending element. The KQT element was developed by combining four triangular
elements with the mid-nodes on the sides. The KQT element was found effective among

the two.

Bathe and Ho (1981) developed a flat shell triangular element by combining the
CST eement for membrane stiffness and the plate bending element using the Mindlin
theory of plates for the bending stiffness. They introduced a fictitious stiffness for the
drilling degrees of freedom in the development of the element stiffness matrix for the
triangular flat shell element. The element developed by Bathe and Ho (1981) was found
to be very effective for the analysis of shell structures.

McNeal (1978) developed the quadrilateral shell element QUADA4, by considering
two inplane displacements that represent membrare properties and one out-of-plane
displacement and two rotations, which represents the bending properties. McNeal (1978)
included modifications in terms of a reduced order integration scheme for shear terms. He
also included curvature and transverse shear flexibility to deal with the deficiency in the

bending strain energy.

The simplest method adopted to remove the rotational singularity is to add a
fictitious rotational stiffness. However, Yang et al. (2000) suggested that, although the

method solves the problem of singularity it creates a convergence problem that
sometimes leads to poor results. However, the majority of the flat shell elements are
developed by inducing the fictitious rotational stiffness to remove the singularity. Recent
developments include using membrane elements with rotational degrees of freedom to
develop an efficient flat shell element.

2.5 Java Programming L anguage

Computer programming languages are built around two approaches; (1) procedural
programming and (2) object oriented programming. In procedural programming, the
program is prepared by a series of steps or routines that follow the data provided. The
programming languages FORTRAN, C, BASIC are procedural programming languages.
The main drawback of the procedural programming languages is that they are not
structured and the flow of the program largely depends on conditional statements that
induce more chances of errors. These languages are good for small programs, but

procedural program are difficult to maintain when they become larger.

In the object oriented programming approach, the program is organized around its
data in the form of objects (Schildt, 2001). The object oriented programming languages
are built on the concept of abstraction. Large complex procedures can be subdivided in to
small procedures by abstraction. Each of these sub procedures represents different objects
with their own separate identity. The series of process steps can be achieved by passing
information to the objects without being affected by the complexity of the whole
procedure. The three unique aspects of the object oriented programming languages are:
(1) Encapsulation (2) Inheritance and (3) Polymorphism. Each of these concepts is
discussed separately in following paragraphs.

Encapsulation is the most important aspect of the object oriented programming. In
object oriented programming languages, classes perform the task of encapsulation. Class
defines the structure and behavior of the process that will be shared by a set of objects
(Schildt, 2001) such as variables and methods. The variables or methods are declared by

10

access specifiers such as public, private or protected. A variable or method declared as
public can be accessed from outside the class in the program. Variables or methods that
are defined as private cannot be accessed from outside the class and hence the privacy of
the data is maintained. Variables or methods declared protected are only accessible to the

superclass and the subclass where the properties of the superclass are inherited.

Many programs contain objects that are dependent on each other and inherit certain
properties from one object to another. In object oriented programming, the classes are
divided in the superclass and subclass. The subclass inherits all of the properties of the
superclass except those declared as private. Any subclass that inherits properties from its
subclass may have additional properties that give it an individual identity, which is not
common to the other objects or subclasses that inherit the same properties from the super
class.

Polymorphism is another valuable feature of object oriented programming.
Polymorphism allows the programmer to use the same interface to perform multiple
tasks. The same class may contain multiple methods that are related to different activities
and each method will perform a different task when it is called by the object. The call to

one method will not affect the contents or activity of another method in the same class.

Severa object oriented programming languages have been developed in recent years.
These include C++, C#, and Java. Java is one of the more popular object oriented

programming languages because it has severa unique features.

Javais an object oriented programming language developed by Sun Microsystems in
1991. Java is based on the popular programming language C++. It has many of the same
features of C++. Over the years, Java has become very popular because of some of its
unigue features. Java is platform independent, which means code developed in Java can
be used on a variety of different computers without making any changes. Another
advantage is that, Java programs can be embedded within HTML pages (where they are

11

called applets) and can be easily transmitted over the internet. All this needs is a Java

compatible web browser to run these applets.

Another reason for the popularity of Java is its robustness. Java provides automatic
protections for memory loss and run-time errors that occur during the program execution.
Java has a specia garbage collection class that dynamically allocates memory and hence
prevents memory loss. In other programming languages, this is done manualy by the
programmer and any mistake in alocating or deallocating memory may result in failure
of the program. There is also an exception handling class for handling runtime errors in
Java. With the use of this classit is possible to catch many common runtime errors which

would otherwise result in program failure.

Until recently most finite element analysis program were written in FORTRAN.
Although FORTRAN is an efficient language for developing scientific applications, it is
not well suited for writing large complex programs. With the advancements in finite
element analysis, many different types of elements are being developed and elements are
constantly being modified to improve their behavior. It is very difficult to maintain the
codes for the finite element analysis that were developed using procedural programming
languages because of its complexity. An object oriented programming language such as
Java is better suited for the development of large complex programs for finite element
analysis, because of the many advantages discussed above. These advantages make it
very adttractive to implement object oriented programming techniques for the

development of the finite element analysis codes.

12

Chapter 3

Membrane Elements

3.1 Overview

Two types of membrane elements are used for development of flat shell elements
in this study: (1) the constant strain triangle (CST) element, and (2) the four node
isoparametric quadrilateral element. In this chapter the development of the element
stiffness matrix for these elements is presented. The implementation of these elements in
Javais aso discussed.

3.2 Two Dimensional Stressesand Strains

Two dimensional elasticity problems typically involve structures that are very thin
and the loads are applied in the direction in the plane of the structure. Consider a
structure in the xy plane with thickness t along the z direction. When inplane forces are
applied to the structure, the displacements at any discrete point of the structure located by

the coordiantes (x,y) are,

U ={uv}' (CXY

where, U and v are the x and y components of the displacement. The stresses and strains

are given by,
S ={sx,sy,t Xy}T

e ={ex,ey,gxy}T (3.2

13

There are two classes of plane elasticity problems: (1) plane stress, and (2) plane

strain. Each of these conditions is described in the following sections.

3.3 Plane Stress Condition

When the structure is subjected to forces in its own plane, the state of
deformations and stresses is called plane stress condition (Weaver et al., 1984). If aplate
is very thin and is only subjected to inplane forces, then the displacements and stresses
normal to the plane of the plate are negligible. Assuming the thin plate is in the xy plane,

the stresses s, =0,t , =0, t,,=0and, e,* O (Cook et al., 1989). For isotropic

material properties the stress-strain relationship for the plane stress condition is,

s G ie U
{s I’—[E]l V 33
is,y=|EJiey (33)
I, 1 |
ilyp 1€p

where, [E] isthe material matrix and can be expressed as,

e 0

£ gl n 07
[E]=1_n29n 1 0 : (34)

¢ 1-n-~

gO 0 —=

2 9

3.4 Plane Strain Condition

When a prismatic solid is subjected to a uniform load normal to its axis and the
solid B divided into thin plates then each plate will have inplane forces, i.e., the forces
will be in the direction of the plane of the plate (Weaver et al., 1984). This condition is

caled the plane strain condition. For the plane strain condition e, =0,e, =0,9, =0,

14

and s, 1 0 (Cook et al., 1989). The material matrix [E], for the plane strain condition

for an isotropic material is given by,

P2 <! 0
£ gl-n 0 0 :

= n 1-n 0 - (3.5)
[E] (1+n)(l-2n)g ; , 1 ;
& 2 o

where,
E = modulus of elasticity of the material and,

n = Poisson’sratio.
3.5 Constant Strain Triangle

The simplest triangular plane stress element is the constant strain triangle. This
element has two inplane degrees of freedom at each node for a total of six degrees of
freedom per element. The constant strain triangle is widely used for various analysis
purposes. The nodes of the CST element are numbered in a counterclockwise direction as
shownin Fig. 3.1.

.}?“ |x3,l:|_.?3l 3 H3

Fig. 3.1 Constant Strain Triangle (CST).

15

The procedure for developing the stiffness matrix of the CST element is as follows
(Cook, 1974),

The assumed displacement field can be defined by,

u(x,y) =a, +ax+ay

v(x,y)=a, +a,x+agy (3.6)

where u(x,y) is the displacement in the x direction, and v(x,y) is the displacement in

they direction.

The above equations can be written in matrix form as,

130
Tal

or (3.7)

{U ()} =[x]{a}

From Equation (3.3) and the strain-displacement relationships the following

results can be obtained,

e (xy)= ™ = (3.8)
e (xy)= % =3, (39)

16

lu W
g. =M, WV_a4a (3.10)
Yy WX ’
It is seen from the above equations that, terms a, and a, represents rigid body
transations of the system while, the term a represents a constant strain in the x
direction, and the term a represents a constant strain in the y direction. From Equation

(3.10) it can be determined that the term a, + a, represents a uniform shear strain. Also

from Equations (3.8), (3.9) and (3.10) it is observed that the strains are independent of x
and y and are constant over the element. This is why this element is called the constant

strain triangle.

As shown in Fig. 3.1, the coordinates of nodes 1, 2 and 3 are(x,, ;), (%,,Y,) and
(%5, Y5) respectively. The corresponding displacements at each node are (u;,Vv;), (U,,V,)
and, (u,,v,) respectively. Substituting the values of nodal coordinates, Equation (3.7)

results in the following:

iwa & ox y, 0 0 Ouiad
fui & x 0 0 O0dfa,i
}2y=é 2 V2 u}azy (3.11)
ii & 0 0 1 X% Y
Y o 0 oliai
.I. u3 i e X3 y3 l;l.l. a4 .I.
fwp €0 0 0 1 X% yffasp
or
{u} =[Al{a} (312)

The coefficients { a} are obtained by inverting Equation (3.12),

17

{a =[A]"{u} (3.13)

From Equation (3.7),

{U ()} =[x]{a}

Therefore,

{U (v} =[x][A] {u} (314)
where, [X][Al represents the shape functions [N].
[N]=[x][A]" (3.15)

Inverting the [A] matrix in Equation (3.11) and solving for {a} gives

180 &Y - XY, 0 X;¥; - %Y 0 XY, = %Y O uiuy

: al: g Y, Y, 0 Y.- ¥, 0 Y- Y, 0 3: v, :

1|a21y:ig X3= % 0 XK 0 X=X 0 3!”2{/

7S 2Aa 0 XY= XY, 0 XY - XY, 0 XY, - %Y1 Ve i

tal € 0 Y2~ ¥a 0 Vs~ Wi 0 V- Yo Yl

tap €& O X5 = % 0 X = X 0 X =% Bfvap
(3.16)

where, A isthe areaof the triangle and can be expressed as,

AZ%@S(Yz' y3)+X2(y3' y1)+xs(y1' yz)EI (3-17)

The shape functions are obtained by combining Equations (3.15) and (3.16).

18

gng L g(xzys X3 Y5)+ (Vs - Va) X+(% - xz)yg
N2 =57 a(%Y - XYa) +(¥s - ¥)X+ (- %) v
éNsé 8()(1)’2 Xzyl) (yl' yz)X (XZ_ Xl)yH

The displacements can now be rewritten in terms of the shape functions as,

U

i

) PV

(xy)g_éN, 0 N, 0 N, O ofu,i
=a i

(X,Y)% 0 N 0O N, O NsHﬂ’zY

|u3 T

% h

The strains are obtained from the strain-displacement relationships.

_fu_93
ex__X_ﬂXia:l(Ni(X’y)l'%)
ﬂV ﬂo3
e, =—=—a (N, (X y)v
g y ﬂyel(I(y))
Tu, WV ‘ITGBo 0 ﬂaa: o}
gxy‘ﬂyﬂXﬂyS() wad (N

The above equations can be written in matrix form as,

LU T
ie 0 e e Y
Cl8o Mo M, M
i e W Ty T i
T9b &N, N, N, TN, TN, TN, glug

axD»
—a
<

ix Ty W™ Ty ﬂxg’rvb

19

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

or

{e(x, y)}31 = éB(X’ y)gee{ui}gl

Taking the derivatives of the shape functions (Equation 3.18) with respect to x

and y, gives the strain-displacement matrix [B],

1 éyz - y3 0 y3_ y1 0 y1 - yz 0 l;l
BrYE=58 0 % % 0 X-x 0 %-x; (329
BG- % Yoo Vs X- X Yim Vi X X Yi- Yof

The element stiffness matrix can now be obtained using the strain-displacement

matrix [B] and the material matrix [E] .

(Kl s = dBlea[El. [Bly, o (329)

For constant thickness, the volume integral can be reduced to an areaintegral,

[, o= tgfBl,[€], 8], , aa (329

where,

t = thickness of the e ement.

Since all the terms in the strain-displacement matrix [B]| and the material matrix

[E] are constant, Equation (3.26) can be rewritten as,

K, =t[El:.[El, [B, o

(Kl s = tA[B;.[EL,. (Bl (327)

20

3.6 Implementation of the CST Element in Java

To implement the CST eélement in Java, a class called CSTEl enent was
developed. The CSTEI enent classis derived from the base classEl ement . The base class
El ement contains the data variables and functions necessary for managing al of the

different elements in the program.

The class definition and the variables declared within the CSTEI enent class are given
below,

public class CSTEl enent {

private double th; //Thickness of the el enment.

private double[] EX; //x Coordinates at each node of the el ement.
private double[] EY; //y Coordinates at each node of the el enent.
private double[][] D; //Material Matrix.

private double A; //Area of the el enent.

private double[][] B; //Strain-Di splacenent Mtrix.

public double[][] CSTKelem //Elenment stiffness matrix.

The variable t h represents the thickness of the element, [] Exand [] EY are arrays
containing the x and y coordinates of the nodes. A is the area of the element. The two
dimensional arrays D, B and CSTKel em contains the materia matrix, the strain
displacement matrix and the element stiffness matrix respectively. All of these instance
variables except the two dimensional array CSTKel em representing the element stiffness

matrix, are declared as private.

The constructor of the CSTEI enent s,

public CSTEl enent (double[] c¢x, double[] cy, double[]][] Mat, double
thelem {

th t hel em
EX = cx;

21

EY = cy;
D = Mat;

The coordinates of the nodes, the materiad matrix, and the thickness of the

element are al initiadized through the constructor when an instance of the class

CSTEl enent is created.

The methods of the class CSTEl enent are given in Table 3.1. All methods are
declared private except for the cal cEl enk () method, which is declared as public since
it is called from outside the class. The method Area () computes the area of triangle
using Equation (3.17). The csTBMatrix () method computes the B matrix for the
element using Equation (3.24). The element stiffness matrix is computed in the method
El ementKMatri x () using the relationship from Equation (3.27).

Table 3.1 Methods in the classCSTEI enent

Method Description
Area () Calculates the area of triangle.
CsTBMatrix () Calculates the strain-displacement matrix.
El ement KMatrix () Calculate the element stiffness matrix for CST element.

The structure of the cal cEl enkK () method is shown below. This method takes
CSTElement as an argument and cals the Area (), cCsTBwvatrix () and

El ement KMatri x () methods.

public void Cal cEl enK(CSTEl ement c) {

/] Cal cul ates Area of the Triangular el enent.

c.Area();

/1 Met hod for calculating Strain-Di splacement Matri x.
c.CsTBMatri x();

22

/I Method for calculating Element Stiffness Matrix.
c. El ementKMatri x();

The approach used for analyzing a structue consisting of CST elements is as
follows. For each CST element an instance of the CSTEI enent class is created by calling

the constructor.

CSTEl enent cst = new CSTEl enent (X, Y, D, TH);

where, cst is the instance of the class CSTEl enent. The x and y ordinates of the
nodes, the material matrix and the thickness of the element are passed in the above
constructor. Once an object of the CSTEl enent class has been created the element
stiffness matrix is computed by calling the method cal cEl enK () of the main class by

passing the cst object as an argument to the function.

The CSTEI enent class also contains the method Cal cStresses (). This method

caculates stresses for the CST eement. These stresses are obtained from the nodal

displacements which are computed during the analysis. TheCal cStresses () method is
declared as,

public void CalcStresses(CSTEl ement cst, double[] U, StressResults S) {
The parameter cst is an instance of the CSTEI ement class, U is the array of nodal

displacements and s is an instarce of the StressResul ts class which stores element

stresses.

23

3.7 Four Node Quadrilateral Plane Stress Element

The quadrilateral plane stress element used in this study is the four node
isoparametric quadrilateral element. The four node quadrilateral element (see Fig. 3.2)
has two degrees of freedom per node for a total of eight degrees of freedom per element.
The formulation of the element stiffness matrix (Cook, 1974) for the four node
quadrilateral plane stress element (QUAD4 Element) is described below.

Fig. 3.2 Four Node Quadrilateral Plane Stress Element.

To develop the isoparamatric quadrilateral plane stress element, the master or

parent element must be defined in the natural coordinate system (x,h) as shown in Fig.
(3.3).

24

|—'L]| '1,1'

Fig. 3.3 Four Node Quadrilateral Element in Natural Coordinate System.

The relationship between the natural coordinate system and the globa coordinate

system can be defined using Lagrange interpolating functions.

4

x(x,h) =é_l (N,x) (3.28)
and,
Y(X’h) :é4 (N;y;) (3.29)

i=1

Similarly, the relationship between displacements in the natural coordinate system and
the nodal displacements can be written in the following manner,

4

u(x,h)= é_ (N,u) (3.30)
v(x,h) :54 (Nv) (3.31)

i=1

25

where N,,N,,N;, N, are the shape functions for the four node quadrilateral element in

the natural coordinate system. The shape functions are,

lei(l-x)(l-h).

N, :%(l+x)(1- h). (332

N, :%(1+x)(1+h).

N4=:11(1-x)(1+h).

To obtain the element stiffness matrix, the strain-displacement matrix must be
determined. When using isoparametric elements the element geometry is defined in the
natural coordinate system and hence the strain displacement matrix must be transformed
to natural coordinates. The transformation matrix used to convert the strain-displacement
matrix from the element local coordinate system to the natural coordinate system is called
the Jacobian matrix. The Jacobian matrix can be defined as,

[9] =8 j“S (3.33)
u

21 2

A

The determinant of the Jacobian is,
9123135 - 35,3, (3.34)

and the inverse of the Jacobian matrix is,

1163, -Ju
] =5e L (3.35)

2
& Jy 1

D

26

From Equations (3.28) and (3.29) the terms in the Jacobian matrix can be obtained as,

_‘ﬂx_é‘ N,
Jll_ﬂ_x_|a:1ﬂXXi
_y_g N
v X_gl ﬂxyl
(3.36)

x o IN.
J, =—= —'x
R IR T
vy ¢ TN
J,., =—= —Y,
22 h Ia:-lﬂh

element are,
I qu U
([|
te o T Ty
I [\AN|
iey=i ﬂ— y (3.37)
I .I. i ﬂy .I.
| gxyb I fu ﬂv'l.
[—+—Ii
ify 9ixp

The derivatives of the horizontal displacement with respect to x and y in terms of
Jacobian matrix are,

i fut ifud

foxt 163, -J,ofixt
i#uyz—é_ 2 Al o Y (3.38)
i Jus | J| &J, Iy i E i

Typ tThp

27

Similarly, the derivatives of the vertical displacement with respect to x and y are,

1 Vo Y
foxt 169, -J,utxt
[fixi _ 1€ Xl (3.39)
SV ENTE-ANNER I, X V24
T Typ tThp

From Equations (3.37), (3.38), and (3.39), the strain-displacement relationships can be
obtained in terms of natural coordinates x and h as,

1 fud
I gy |
B
ie u .I. E.I.
[A (1}
re, y=[Ali ¢ v (3.40)
I .I. .I. ﬂ .I.
199 p X i
fhp
where,
1 g‘Jzz - ‘J12 0 0 8
[N:mgo 0 -Jy Juyg (3.41)
@' ‘]21 ‘]11 Jzz - leEI

Now, from Equations (3.30) and (3.31) the following relationships are obtained,

u

_ 49N
“ay

=
< |2
X

TN,

u
R _ui
fh = b

Qo

28

v _d
w a

v

fh

=

Qo..

N,

ix

<

N,
—v

: Th

Equation (3.42), can be rewritten in matrix form as,

=
c
c:

—_— o ——— = —
= = = =
:r|? ><|? :T|? x

Now, using Equations (3.40) to (3.43) the following relationship are obtained,

efN,
e
a X
N,
e
afn
0
ix

@D> D> D> D> D>

fh

{e} =[Al[c]{u}

where,

o

Ix

@D> D> D> D> (D> D>
=
>0

™,

™,

N,

N,

SN,
x

N,
Th

0

™,

ix

™,

o M o N
Ix x
N, N
Th Th

™o g N

ix Ix

™o, M

Th Th

o Mo oMm,
ix ix
o M o MW,
Th Th
™, o N
x ix
w, o, W
Th Th

29

aith d
aty !
ai ‘i
1lu,l

u. 4o,
O gi i
al Vo
-1y

ﬂN4 l;|.|. u3 i
ﬂX l]: V3 :
ﬂN4 l:|.|. U4'|'

Th H{v4b

fiN,

o
[eniY Y exy enY en Y enl el en end

N,
fh g

(3.42)

(3.43)

(3.44)

(3.45)

Thus,
{e} =[B]{u} (3.46)

where,

[B]=[AllC] (347)

Equation (3.47) represents the strain-displacement matrix for the four node isoparamatric

guadrilateral element.

The element stiffness matrix for the four node isoparamatric quadrilateral element

for the plane stress condition is given by,

[K] :t(zﬂB]T[E][B] dA (348)

Since the strain displacement matrix is in terms of the natura coordinates, therefore

Equation (3.48) must be integrated with respect to the natural coordinates.

Substituting for dA,
dA = dx>dy = |J|dx xdh (3.49)

Therefore, Equation (3.49) can be rewritten as,

(K], = tx08B(x.h), [El,, 8 (x.h)g, |3 (x.h)[dxdh (3.50)

-1-1

where, t = thickness of the e ement.

30

The element stiffness matrix can be obtained using 2° 2 Gauss quadrature,

T

& g ; ; >
[Klyo =t8 & ww gB(x.h,)i, [EL,, &(x .0,)g, |3 (x.,) axch (351)

1

j 1

The roots and weight functions for 2” 2 Gauss quadrature are given in Table 3.2

Table 3.2 Roots and weight functionsfor 2 x 2 Gauss quadrature

Roots Weight Functions w

+0.577350269189626 1.0

3.8 Implementation of the Four Node Quadrilateral Plane Element in Java

To implement the four node quadrilateral plane element in Java, a class called
QUAD4EI enent was developed. The QUAD4EI enent class is derived from the base class

El enent .

The class definition and the variables declared within the QUAD4EI enent class are given
below,

public class QUADAElI enent {

private double th; //Thickness of the Elenment.

private double[] EX; //x Coordinates for each node.

private double[] EY; //y Coordinates for each node.

private double[][] D; //3x3 Material matri x.

private double[] NXi; //Derivatives of shape functions wr.t X.

private double[] Neta; //Derivaitives of the shape functions w.r.t
Et a.

private double[][] Jac; //2x2 Jacobain martri x.

private double DJac; //Determ nant of Jacobian matrix.

31

private double[][] B; //Strain-displacement Mtrix.
public double[][] X4Kelem //Elenent Stiffness matrix.

The variable t h represents the thickness of the element, [] Exand [] EY are arrays
containing the x and y coordinates of the nodes. Arrays []1 Nxi and[] NEt a represents
the derivatives of the shape functions with respect to x and h respectively. The two
dimensional arrays Jac, D, B and Q4Kel em contains the Jacobian matrix, the materia
matrix, the strain-displacement matrix and the element stiffness matrix respectively. All
of these instance variables except the two dimensional array Q4Kel em representing the

element stiffness matrix, are declared as private.

The constructor of the Quad4El ement classis,

public QUADA4EI enment (doubl e[] cx, double[] cy, double[][] MatD, double
thelem {
D = Mat D
th = thelem
EX = cx;
EY = cy;

The coordinates of the nodes, the materiad matrix, and the thickness of the

element are al initialized through the constructor when an instance of the class

QUAD4EI enent IS created.

The methods of the class QUAD4EI enent are given in Table 3.3. All methods are
declared private except for the cal cEl enkK () method, which is declared as public since
it is cdled from outsde the class. The method QuUAD4ShapeFn () computes the
derivatives of the shape functions with respect to x and h. The Jacobi an () method

computes the Jacobian matrix and the determinant of the Jacobian matrix for the element

32

using Equation (3.36). TheQuAD4BMat ri x () method computes the B matrix for the four
node quadrilateral element.

Table 3.3 Methodsin the class QUAD4EI enent

Method Description

Calculates the derivatives of shape functions for four node
QUAD4ShapeFn ()

quadrilateral element.

Jacobi an () Calculates the Jacobian matrix.

QUADABMat ri x () Calculates the strain-displacement matrix.

Calculates the dement stiffness matrix for four node
QUAD4El emMatri x ()

quadrilateral plane element.

The element stiffness matrix is computed in the method QUAD4EI emvatri x ()
using the 2° 2 Gauss quadrature. For each Gauss point the methods QuAD4ShapeFn (),
Jacobi an (), and QUAD4BMatri x () arecalled. The elements of stiffness matrices are
computed at each Gauss point using the values obtained from these methods and are then
added to obtain the final element stiffness.

The structure of the cal cEl enkK () method is shown below. This method takes

QUAD4EI enent as an argument and callsthe QUAD4EI emvat ri x () method.

public void Cal cEl enK(QUADAEI enrent q) {

//Cal cul ates Elenent Stiffness Matri x.
g. QUADAEI emvat ri x(q);

The approach used for analyzing a structure consisting of four node quadrilateral
plane elements is as follows. For each element an instance of the QUAD4EI ement class is
created by calling the constructor.

33

QUADAEI erent g4 = new QUADAEl enent (X, Y, D, TH);

where, g4 istheinstance of the class QUAD4EI enent . The x and y coordinates, materia
matrix and the thickness of the element are passed in the above constructor. Once an
object of the QUAD4EI ement class has been created, the element stiffness matrix is

computed by calling cal cEl enk () of the main class and passing the g4 object as an
argument to the function.

The QUAD4EI enent class also contains the method Cal cStresses (). This
method calculates stresses for the four node quadrilateral plane element. These stresses
are obtained from the nodal displacements which are computed during the analysis. The

Cal cStresses () method isdeclared as,
public void Cal cStresses(QUJAD4AEI enent g4, double[] U, StressResults S)

The parameter g4 is an instance of the QUAD4EI enent class, U is the array of

nodal displacements and S is an instance of the StressResults class which stores
element stresses.

The stresses at each node of the element are calculated using 2~ 2 Gauss

quadrature. The methods QUAD4ShapeFn (), Jacobian () and QUAD4BMatrix ()
methods are called at each Gauss point and the stresses are calculated using the stress-
strain and strain-displacement relationships.

Chapter 4

Plate Bending Elements

4.1 Overview

Two plate bending elements are chosen for representing the bending behavior of
flat shell elements in this study: (1) Discrete Kirchoff Triangular (DKT) element (Batoz
et al., 1980), and (2) Discrete Kirchoff Quadrilateral (DKQ) element (Batoz and Tahar,
1982). In this chapter, the development of element stiffness matrix of these elements and

the implementation in Java is discussed.
4.2 Bending of Flat Plates

Bending of flat plates is similar to bending of beams; the former is more
complicated because plate bending is two dimensional while the bending of beam is one
dimensional. The behavior of plates mainly depends on the plate thickness. Plates can be
classified in to three categories depending on thickness and deformation (Timoshenko
and Krieger, 1959).

1. Thin plates with small deformations.
2. Thin plates with large deformations.
3. Thick plates.

In this study we consider thin plates with small deformations. The bending properties of
this plate can be used in the development of flat shell elements. There are three basic
assumptions in the theory of bending for thin plates (Timoshenko and Krieger, 1959).

1. The mid-surface of the plate remains unstretched during deformations.

2. Points straight and normal to the mid-surface of the plate before bending remain

straight and normal to the mid surface after bending.

35

3. Transverse shear stresses are small compared to normal stresses and hence can be
neglected.

These assumptions are known as Kirchoff’s hypothesis and are applicable to the bending
of the thin plates with small deflections.

Consider an isotropic plate of uniform thickness t with the XY plane as the
principal plane. According to the theory of bending for a thin plate, the plate is in the
plane stress condition and hence all stresses vary linearly over the thickness of the plate.

The moments can be represented as,

t/2
x = OS x2xdz

-2

<
I

t/2

M, = Qs ,zxdz 4.2

-2

12
MXy = Ot Xyz><dz

-tf2

where M, and M, are the moments in the x and y direction respectively, and M, is the

twisting moment. All moments are per length. If w is the transverse displacement of the

plate, the displacement-curvature relationships for the thin plate can be written as,

T°w

Kk =-

X ﬂxz
2

K, =- '1"1y‘;" 42)
Tw

kK =-2

Y xTy

36

4.3 Basic Relationshipsfor Bending of Thin Plates

Consider asmall section of the plate of length dx inthe x direction. When aload
is applied in the z direction, the point O on the mid-surface of the plate moves in

z direction as the plate deforms due to bending, as shown in the Fig.4.1.

L
[+—»]
=

£
&
-

L 4

B

w2

ax

Fig. 4.1 Bending of Plate.

According to the Kirchoff assumption, a line that is straight and normal the
mid-surface before bending remains straight and normal to the mid-surface after bending

(Cook et al., 1989). The displacements can be written as,

Tw (4.3)

From Equation (4.3), and the strain-displacement relationship, the strains can be written

a5,

37

< aX ™2
v °w
e, =—=-2 4.4
'y v (4.4)
2
gxy_ﬂ_u+ﬂ:- ZﬂW
Ty 9 Ty

e N e
€ n 0 ule U
e ul |
& 1 0 giey (4.5)
¢ ey
é 0
e

—_—] —— —

-nul I
2 U

<
T =i
I
[

Substituting for the strains from Equation (4.4), Equation (4.5) can be rewritten as,

| ﬂZW U

\ ¢ ViR vl

is, U & n oa i

[E é a T°w T
is,y= & 1 0 l:J -Z—y (4.6)

i i 1- n é l:l.|. ﬂy i

b @ o0 BN gy

e 2 Ui-2z i

T W™Xyp

From Equation (4.6) the stresses in the plate can be represented as,

s == zxE §ﬂ2W+n TPwu
x 71 n2 (éﬂxz ﬂyz H

. _-zxEé ‘HZW+‘|T2WL)
T

_-ZZXEaé-n('_jae‘ﬂzwt_)
Y T1n? € 2 paTXTy g

4.7

38

Substituting the stresses from Equation (4.7) to Equation (4.1) and integrating over the

thickness of the plate, we obtain following relationships for the moments,

-Et® éTPw | fPwl

M, = n
T 12(1-n)eﬂx2 Y
-Et* é T°w ‘ﬂzwu
M, = a > (] (4.8
12(1-n%) & ¥ Ty
- Et? éf’w U
M, = 2 (B)A g
12(1-n°?) &xTy g
Et® . .
where, ——— =D istheflexura rigidity of the plate.
12(1-n?)
Equation (4.8) can be represented in matrix form as,
3 N Y
e up - ! 2 |
iMm 0 €D pm o Ui T
iM,y=@®n D o a-1wl (4.9)
i | é - L:JI ﬂy i
iMyp €9 0 D 'T”SL,JT 2w
g ol - 21
T ™yp
From Equations (4.9) and (4.2), the moment-curvature relationship is given by,
¢ y
IM 0 €D Dn o Uk u
‘[Myy:gDm D 0 3|kyy (4.10)
| | Y
iMsp €0 0 DEMUKyp
8 &2 o

39

4.4 Triangular Plate Bending Element Based on Discrete Kirchoff Theory

Batoz et al. (1980) developed a triangular plate bending element (DKT element)
based on the discrete Kirchoff theory. According to the Kirchoff assumptions, the
bending energy present in the element is much higher compared to the shear strain
energy, and thus the transverse shear energy term can be neglected fom the energy
equation. The DKT element is a widely used triangular plate bending element in finite
element analysis programs. In this section the element stiffness matrix for the DKT

element as given by Batoz et al. (1980) is presented. The DKT element is shown in Fig.
4.2,

Z W A

ol
A

:-::r:‘

-
3

(]

Fig. 4.2 DKT Element.

The bending energy can be represented in the following form,

u, :%c‘j(TDbk xclx xdy (4.11)

A

40

where,

e:z u
& 6 g
é U
-n é 1-nu
@ 0 —q
e 2 U
where,

t = thickness of the plate, ad

The curvatures are given by,

O T
< x
< x

=~
I

(4.12)

+ by’x

D> D> D> (D~
ceonono

O

x

Yy
According to the assumptions made in the bending theory of thin plates with

small displacements, the displacement components u,v and w at any point can be

represented as,
u=zb,(xy) v=zb,(xY) w=w(X,y) (4.13)

where, w is the transverse displacement, and b, and b, aretherotationsin the direction

normal to the xz and yz planes respectively.

Batoz et al. (1980) made following observations to correlate rotations normal to the mid

surface to the transverse displacement w.

(1) The triangular element should have only nine degrees of freedom; that is, the
transverse displacement w and the rotations ¢, andq, at each node of the

element.

41

(2) According to Kirchoff theory, the rotations can be defined as,

_ _fw
dx x dy iy

(3) The Kirchoff theory can be imposed at any discrete point in the element.

(4) The compatibility of rotations b, and b, cannot be lost.

Batoz et al. (1980) made the following assumptions,

(4.14)

(1) The relationship between the rotations at six noda points including mid-surface

nodes and the shape functions at each six nodes isin the form of a quadratic,

6
bxzé- Nlbxi
i=1
$
b, =& Nb,

N

where, b, and b; aretherotations at each node as shown in the Fig. 4.3.

*+— ey Mormal

Mew Mormal —m

o

(4.15)

b, W

il
=3

Fig. 4.3 Positive Directionsof b, and b, .

42

For i=1to6, N, are the shape functions for the DKT element in area coordinates x

andh , and can be expressed as,

N, =2(1-x-h)(%-x-h).

N, =x (2 - 1).

N, =h(2h - 1). (4.16)
N, =4xh .

N; =4h (1- x - h).

Ng =4x(1- x - h).

(2) Applying Kirchoff hypothesis to remove transverse shear strain given the

following equations,

At the corner nodes,

e, l 0 k=123 (4.17)
g=é a= =14 -
éby tWy
where, g = transverse shear strain.
At the mid nodes, by +w,, =0 k=4,5,6 (4.18)

where k isthe node number.

(3) The variation of the transverse displacements is represented by a cubic expression

PR (4.19)

43

where, Kk isthe mid-node of side ij of the triangle and, |;; represents the length of side ij

of the triangle.

(4) The variation of the rotations aong the sides of the triangle is represented by
linear equation,

b, =%(b, +b,) (4.20)
where, k = 4,5,6 represents the mid- nodes of the sides 2-3, 3-1, and 2-1 respectively.

As a consequence of the above four assumptions, the condition that the transverse

shear strain along the sides of the triangle, g, = b +w, =0 issatisfied.

The displacements at each node can be written as,
UT :{Wl qxl qyl Wl qx2 qyz W2 qx2 qyz} (421)

The relationship between the nodal displacementsand b, and b, isgiven by,

; (x.h)u (4.22)

where H, and H, are the components vectors of the shape functions. Batoz et al. (1980)

represented the component vectors of the shape functions in the form,

I
<
—~

X

€1.5(a; N, - aN;)u

e u
a (BNg+bNg)
‘?Nl' C5N5' CeNelgl
e

u
@1_.5(a4N4 - aﬁNG)l:J
€ (BN, +b,N,)
eNl- CeNe - C4N4l:J
gL.s(a5N5- a4N4)3
e (b4N4+b5N5) l;'
gN3' C4N4 - CsNSH

€1.5(dgN, - d;N;) U
e u
é” N1 +e5N5 +e6N6(j

‘:9 'bst'beNs u
é a
§1.5(d4N4 - d;N;) @
h g' N2+e6N6+e4N43
(:3 'beNe'b4N4 U
gl.s(dst - d,N,) 3
g' N3+e4N4+e5N53
e -b,N,-BN; g
Xi'
=
ij
_3 %Y
o 4 12

& = (4% - HX)/
X =X = X,

Yi =Yi-Y;
=05+ %)

45

(4.23)

(4.24)

(4.25)

and, k =4,5,6 for the sides ij = 23,31,12 respectively.

The strain-displacement matrix for the DKT element can be represented in the following

form,
L€ YarHxx *+ Y Hy, y
B(x,h) = T - X Hy, - XpH), i (4.26)
8' X31H1,x - %,H Ih +Y,;,H ;x +Yy;,H ;h H

where, 2A=X,Y;, - X,Ya

The derivatives of the component vectors of the shape functions with respect to x

andh can be represented by the following equations.

The derivatives of the component vectors with respect to x are,

P.(1-)+ (R - R)h
G (1- 2x)- (s +ge)h
4+6(x +h) +r, (1-2x) -h(r; +r)
-R(1-)+h(R +R)
¢ (1- 2¢)-h(c, - q,)
-2+6x +r(1-) +h(r,-)
(R +F)
h(q4- qs)
-h(rg-1,)

ey ey ey end

s
-

(4.27)

XX

@xXD> > D> D> (D> > D> (D> (D> (D> D> D> (D~

GO C OO OO O O O

46

ts(1- %) +(ts-t;)h 0
1+15(1- 2)- (rs+1)h §

'qG(l' 2X)'h(CI5+q6)l;|
u
-t (1- 2x) +h (t, +t,) |

<
<
@xD> (> > (D> D> (D> (D> (D> (D> (D> (D> (D> (D~

H,, =€1+r(1- 2)-h(r,- re)g (4.28)
qe(l_ 2X)+h(q4' 06) l;'
-h (t, +1,) i
h(r,-) v
h(Q4' 06) a

The derivatives of the component vectors with respect to h are,

¢ -R(@A-n)-x(R-R) U
& a-n)-x(g+q) g
€ 4+6(x +h)+r,(1-2h) -x(r; +r5)d
e u
¢ x(R+R) G

H,, =% x (a, - o) u (4.29)
é a
é -x(re- r4) G
¢ R@-A)x(ReR)
é g (1- 2h) +x(q, - q) ¥
§ -2+ +r(1- h)+x(r,- 1)
€-1;(1-2)-x(t;- t5) U
gl+r5(1-2h) -x (15 +r6)3
g'QS(l' 21)+X(%+QG)3
& X (t, +1t5) G

Hun =% x (1, - rg) ¢ (4.30)
¢ x(a-a)
g (L) -x(t, +t) ¢
gl" I’5(1- 2h)+x(r4- TS)I;I
& (1- 2)+x(q- &)

where,

47

k:-6>qj/li1-2

O =3%; Y /Iij2
he = 33’5/'”'2
t, =- 6y, /lij2

and, k =4,5,6 for ij =23,31,12 respectively.

The strain-displacement matrix can be calculated using Equations (4.26) through
(4.30). Substituting the straindisplacement matrix in Equation (4.31), the element

stiffness matrix for the DKT element can be obtained.

11-h
Ko =2A00B' D, Bxck ch (4.31)

00

where D, isthe material matrix for plate bending.

It is assumed that the element has constant thickness. The element stiffness matrix
for the DKT element can be obtained using a three point Gauss quadrature scheme. The
three numerical integration points are located at the mid points of the sides of the triangle
(Batoz et al., 1980). Since the equation for the element stiffness matrix has quadratic
terms a three point Gauss quadrature scheme is sufficient. The coordinates and the weight

functions for the 3-point numerical integration scheme are given in Table 4.1.

Table 4.1 Coordinates and weight functionsfor Gauss quadrature

Integration point

Coordinates

Weight functions

1

(3.0)

wl-

2

(3.

Nl
S—

wl-

(0.4)

wl-

48

The element stiffness matrix using Gauss quadrature is obtained from,

W W gB(Xi'hJ)E';,g[Db]gagB(xi ’hj)ngdth (4.32)

Qo
Qo

[k]9'9 = 2A

N
,IE

i

4.5 Implementation of DKT Element in Java.

To implement the triangular plate bending (DKT) element in Java, a class called
DKTEl enent was developed. The DKTEl ement class is derived from the base class
El enent . The base class El enent contains all the data variables and functions necessary
for managing all of the different elements in the program.

The class definition and the variables declared within the class are given below,

public class DKTEl ement {
private double th; //Thickness of the el enent.
private double A; //Area of the el ement.
private double[] EX; //x Coordinates of the el enent.
private double[] EY; //y Coordinates of the el ement.
private double[][] Db; //Material matrix.
private double[][] X; //x geonetric conponents.
private double[][] Y; //y geonetric conponents.
private double[][] L; //L geonetric conponents.
private double[] HXxi; //Conmponent vector for x w.r.t Xi.
private doubl e[] HXeta; //Conponent vector for x wr.t Eta.
private double[] HYxi; //Component vector for y wr.t Xi.
private double[] HYeta; //Conponent vector for y wr.t Eta.

private double[] P; //CGeonetric conponents P at each node.

49

private double[] t; //Ceonetric conponents t at each node.
private double[] q; //Ceonetric conponents g at each node.
private double[] r; //Ceonetric conponents r at each node.
private double[][] B; //Strain-Displacenent matri x.

public double[][] DKTKelem //Elenent Stiffness matrix.

The variable th and A represent the thickness and the area of the element
respectively. [] EX and [] EY are arrays containing the x and y coordinates of the nodes.
[] Xand[] Y are arays containing the geometric components representing the sides of
the triangle. The array [] L contains lengths of the sides of triangle. [1 p,[]1 a, [] r
and[] t are arrays containing the geometric components for calculating the component
vectors of shepe functions. [] Hxxi, [] HXeta, [] Hyxi,and [] Hyeta are arrays
representing the derivatives of the component vectors for the shape functions with respect
to x and h respectively. The two dimensional arrays B and DKTKel em contains the strain-
displacement matrix and the element stiffness matrix respectively. All of these instance
variables except the two dimensiona array DKTKel em representing the element stiffness

matrix, are declared aspri vat e.

The constructor of the DKTEI enent classis,

publ i ¢ DKTEl enent (doubl e[] cx, double[] cy, double[][] Mat,

doubl e thelem {

Db = Mat;
th = thelem
EX = cx
EY = cy;

The coordinates of the nodes, the materiad matrix, and the thickress of the
element are all initialized through the constructor when an instance of the class

DKTE!l ement IS created.

50

The methods of the class DKTEI enent are given in Table 4.2, All methods are
declared private except for the method cal cEl enk (), which is declared as public since
it is caled from outside the class. The method Geonetry() computes the geometric
components required to calculate the element stiffness matrix using Equation (4.25). The

method shFnHXxi () computes derivatives of the component vectors for shape
functions for x with respect to x using Equation (4.27). The method ShFnHXeta ()

computes derivatives of the component vectors for the shape functions for x with respect
to h using Equation (4.29). The method shFnHyxi () computes derivatives of the

component vectors for shape functions for y with respect to x using Equation (4.28). The

method sShFnHyeta () computes derivatives of the component vectors for shape

functions for y with respect to h using Equation (4.30). The method DKTBMatrix ()

computes the B matrix for the DKT element using Equation (4.26).

Table 4.2 Methodsin the classDKTE! ement

Method Description

Geonetry () Calculates the geometric components for an el ement.

Calculates the derivatives of the component vector of the
ShFnHXxi ()

shape functions for x with respect to x .

Calculates the derivatives of the component vector of the
ShFnHXet a ()

shape functions for x with respect to h .

Calculates the derivatives of the component vector of the
ShFEnHYXi ()

shape functions for y with respect to x .

Calculates the derivatives of the component vector of the
ShFnHYeta ()

shape functions for y with respect to h .

DKTBMat ri x () Calculates the strain-displacement matrix.

DKTEl ement KMatri x () Calculates the element stiffness matrix for DKT e ement.

51

The element stiffness matrix is computed in the method DKTEI ement KMatri x ()
using three point Gauss quadrature. For each Gauss point the ShFnHxxi (), ShFnHXet a
(), ShFnHYxi (), ShFnHYeta (), and DKTBMatrix () methods are caled. The
elements of the stiffness matrices are computed at each Gauss point using the values
obtained from these methods and are then added to calculate final element stiffness
matrix for the DKT element.

The structure of the cal cEl enkK () method is shown below. This method takes
DKTEIl enent as an argument and calls the Geonetry () and DKTEl ement KMatri x ()
methods.

public void Cal cel enK(DKTEl emrent d) {

/] Cal cul ates geonetrical properties for DKT El ement.
d. Geonetry();

//Cal cul ates Elenent Stiffness Matrix for DKT El enent.
d. DKTEl emrent KMat ri x(d) ;

The approach used for analyzing a structure consisting of DKT elements is as

follows. For each element an instance of the DKTEl enent class is created by calling the
constructor.

DKTEl ement dkt = new DKTEl ement (X, Y, D, TH);

where, dkt is the instance of the class DKTEI enent . The X and y coordinates, material
matrix and the thickness of the element are passed in the above constructor. Once an
object of the DKTEI enment class has been created, the element stiffness matrix is computed
by calling the method cal cEl enk () of the main class by passing the dkt object as an

argument to the function.

52

The DKTEI enrent class also contains the method Cal cStresses (). This method
caculates stresses for a DKT element. These stresses are obtained from the nodal

displacements which are computed during the analysis. Thecal cStresses () method is

declared as,

public void Cal cStresses(DKTEl ement dkt, double[] U, StressResults S)

The parameter dkt is an instance of the DKTEI enent class, U is the array of nodal
displacements and s is an instance of the StressResul ts class which stores element
stresses.

The stresses at each node of the element are calculated using three point Gauss
guadrature. The methods ShFnHxxi (), ShFnHXeta (), ShFnHYxi (), ShFnHYeta (),
and DKTBMat ri x () are called at each Gauss point and the stresses are calculated using

the stress-strain and strain-displacement relationships.
4.6 Quadrilateral Plate Bending Element Based on Discrete Kirchoff Theory

The quadrilateral thin plate bending element is efficient and useful for
representing the bending part of flat shell elements. The quadrilateral plate bending
element can aso be used for the analysis of plate structures such as dabs. Batoz and
Tahar (1982) developed the Discrete Kirchoff Quadrilateral (DKQ) plate bending
element by considering the Kirchoff assumptions for thin plates. The DKQ element has
12 degrees of freedom. Considering the element is in the xy plane (see Fig. 4.4), the
degrees of freedom at each node of the element can be described as the transverse

displacement w in the direction normal to the xy plane, and the inplane rotations g, and

q, inthex andy directions respectively.

w=w(x,y) g, =W, q, =W, (4.33)

53

£, W A

WD =

ol

-
‘-..I

]

Lid

B]

&,

S

Fig. 4.4 Quadrilateral Plate Bending Element (After Batoz and Tahar, 1982).
The development of the DKQ element by Batoz and Tahar (1982) is described in
this section. The formulation of the DKQ element is based on the Kirchoff assumptions

which were discussed in Section 4.3. According to these assumptions the shear strain

energy is neglected. The strain energy of the element is,

U= u?’ (4.34)

where, U is element strain energy due to bending and is given by,

u’ :%(:)(c>[Db]{c}dxdy

and A° isthe area of an ement.

For homogeneous isotropic material properties, the curvatures are given by,

} Tb, /1 F
{c}= i /v oy (4.35)
i 1b, /1y + b, /xp

here,

b, = rotation normal to the middle surface of the plate in the xz direction.

b, = rotation normal to the middle surface of the plate in the yz direction.

The material matrix is,

é u
Et® gl " i
u
Dp=——a& 1 0 (4.36)
b 2 u
12(1- n) é 1-nd
g0 0 —q
e 2 Uu

where, N = Poisson’sratio, t = thickness of the plate, and E = modulus of elasticity.

Batoz and Tahar (1982) developed the relationship between the transverse

displacement w and the rotations b, and b, asfollows,

1. They defined b, and b, by incomplete cubic polynomials:

8 8
b, =a N.b, b, =& Nb, (4.37)
i=1 i=1l

The shape functions for the eight node quadrilateral element are represented in the
following form.

N, =- 2g(1- x)(1- h)(1+x +h)g

N, =- 3g1+x)(1- h)(1- x +h)g

55

N, =- %g1+x (1+h)(1- X - h)g

~—— S

(1+h)(1+x - h)g

N, =4(1- x?)(1- h?) (4.38)

2. They applied Kirchoff assumptions at the corner nodes and the midpoint of the sides,

At the corner nodes,

[Py W, ti_100

[= 1=1,2,3,4 (4.39)
TPy +wy TO%

At the midpoints:

by +w, =0 k=5,6,7,8 (4.40)

3. A cubic function was used to represent the transverse displacement w. Hence the
derivative of the transverse displacement w with respect to s at the mid nodes of the

element sidesis a quadratic and is represented as,

-3 1
Wy =——(W - W, |- —|W,4 +W,g 441
sk 2|”_(i l) 4(J) ()
where,
k=5,6,7,8 for ij =12,23,34,41 and |, = length of the line for side connecting

nodesij

56

4. The rotation norma to the sides at the mid nodes varies linearly.

bnk = l2(bni + bnj) =" %(W’ni +W’nj) (4.42)

The nodal displacement vector for the Discrete Kirchoff Quadrilateral element is,

<Un>:<vvl qxl qyl W2 qxz qy2 Ws qx3 qy3 W4 qx4 qy4> (443)
where,
le _W’yi

qy =W,y fori=1,2,3,4

The quantitiesb, and b, are expressed in terms of the nodal displacements using the

component vectors of the shape functions as,

b, = (H* (),

b, =(H” (x,h)}{U,} (4.44)

where, H* (x,h) and H” (x,h) are the component vectors of the shape functions and are

given in Equations (4.45) and (4.46),

57

7

g%(aSNS_ ast)uu
é b5N5+b8N8 U
‘?Nl - Cst - Cstl;
e u
e%(asNa' asNS)l;l
¢ BN, +BN, U
X _éNz' CeNe'Cstfl
(H (x,h)>_é,§(aL N o) ¢ (4.45)
g2\% "7 6/
& BN, +bN, @
e u
éNs' ¢ N, - CGNGL'J
g%(ast’ a7N7)H
é b8N8+b7N7 U
SN4' CBNS-C7N7H
g %(dst' dst) 3
é” N1' est' estl]
‘:9 'bst' bst l;'
e, u
(E,‘ E(deNs' dst) u
g' Nz'eeNe' e5N5H
A~ - N - N a
<Hy(X,h)>=gs b6 6 bS 5 H (446)
: 3(d,N; - d;N;) i
e'Ns' e7N7'eeN6l;|
e u
é 'b7N7'beNe u
g %(dst - d7N7) H
e N4'e8N8' eiNn]
E 'beNs'b7N7 H
with,
X
3 =7
ij
3 X% Y
h(:_ i Jij
41

58

do=-y; /i (447
& _(iy.f lz’ﬁ)/lijz

% =X - X

Y =YY,

=+ %)

k=5,6,7,8 when ij =12,23,34,41

The strain-displacement matrix is obtained from the component vectors of the shape

functions as,
g <Hx’x> 8 g j11<Hx’x>+j12<HX’h> 3

[8]=¢ (H”.,) = ¢ ja(HY)+ iz (HY) R
GH*, +HY)0 & (HY)+ 5 (HY)+ B (HE)+ 1 ()

The Jacobian matrix is given by,

[9]= & T2l 186+, +0 (% +56,) Y+ Yoo #h (v + ¥, (4.49)

-—e
8, Jnl 4% X X (X +Xy) Yoo ¥ Ve +X (Vo + Vo)

In the equation for the strain-displacement matrix (Equation 4.48), the

terms j;, 1y I, J» @€ components of the inverse of the Jacobian matrix represented in

Equation (4.49). These terms are obtained as follows,

59

1 . -1

In = det[J] Iz Jo = det J] Jio

(4.50)
o1 o1
2 =] 2= Ga7]

The determinant of the Jacobian is,

1 h
det[‘]] zg(yAZX?al- y31X42)+£8(Y34X21' y21X34)+§(y41X32 - Y32X41)

The derivatives for the component vectors<H X,X> ,<H o > ,<H - > and(H y,h> can be
obtained by substituting the derivatives of the shape functions N;, and N;, respectively

in place of the shape functions N. .

The derivatives of the shape functions are,

& (2x+h)(1-h)u € (2h +x)(1- x)u
g (2x-h)(a-h)y & (2 - %) (1+x)
&L (2 +h)(1+h)u 2%(2h+x)(1+x)8
& (2x - h)(1+h)g & (2h - x)(1- x)g
N,x=§ -x (1- h) 3 thg 3(1- x?) 3 (4.51)
e i(1-h?) & _ph(1+x) U
e u e u
é -x(1+h) @ e 3(1-x*)
é U e U
g ~31-h7) g g -h(1-x) g
The element stiffness matrix is given by,
gep= o[B8 [D,][B] ey (4.52)
AE

60

Equation (4.52) can be written in terms of natural coordinates as,

+1+1

ékeEF_ggiB]T[Db][B]da[J]wxdh (453)

According to Batoz and Tahar (1982), the double integral in Equation (4.53) can
be computed using a standard 2 2 numerica integration scheme. This is found to be
sufficient for the solution although theoretically 3° 3 numerical integration scheme is
required to integrate the quadratic functions. The weight functions and roots for two

point Gauss quadrature are given in Table 4.3

Table 4.3 Weight functionsand rootsfor 2 x 2 Gauss quadrature

Roots Weight Functions w

+0.577350269189626 1.0

Equation (4.53) can be rewritten as,

2 2

(Ko, =8 & ww gB(x h))i, [D],,88(x h,)i, [3(x h,)|dxeh (4.54)

j=1i=1
4.7 Implementation of DKQ Element in Java.

To implement the quadrilateral plate bending (DKQ) element in Java, a class
called DKQEI ement was developed. The DKQEl enent class is derived from the base class
El enent .

The class definition and the variables declared within the class are given below,
public class DKQEl enent {
private double th; //Thickness of the el enment.

private double detJ; //Determ nant of the Jacobian matrix.

61

Et a.

shape

shape

shape

shape

private double[] EX; //array of x Coordinate

private double[] EY; //Array of y Coordinate.

private double[][] Db; //Material Mtrix.

private double[][] X; //x conponent for geometric function

private double[][] Y; //y conponent for geometric function

private double[][] L; //Length of the side of the el enment.

private double[] a; //CGeonmetric function a.

private double[] b; //Geometric function b

private double[] c; //Geometric function c.

private double[] d; //Geometric function d.

private double[] e; //CGeonmetric function e.

private double[] NXi; //Derivative of the shape functions w.r.t Xi.

private double[] NEta; //Derivative of the shape functions w.r.t

private double[][] J; //Jacobian matri x.

private double[] HXxi; //derivative conponent vector x of
functions wr.t Xi.

private double[] HXeta; //derivative conponent vector x of
functions w.r.t Eta.

private double[] HYxi; //derivative conponent vector y of
functions w.r.t Xi.

private double[] HYeta; //derivative conponent vector vy of
functions w.r.t Eta.

private double[][] B; //Strain-Di splacenment nmatri x.

public double[][] DKXelem //El enment stiffness matrix for

El enent .

62

DKQ

The variables th, and detJ represent the thickness of the element and
determinant of the Jacobian respectively. []1 EX and [] EY are arrays containing the x and
y coordinates of the nodes. [] X and [] Y are arrays containing the geometric
components representing the sides of the triangle. Array [] L contains lengths of the
sides of triangle. The arrays [1 a, [] b, []1 ¢ [] dand [] e contain geometric
components for calculating the component vectors of the shape functions. [] Nxi and[]

NEt a are arrays containing the derivatives of the shape functions with respect to x and h

respectively. [] J is the array containing the Jacobian matrix. [] HXxi, [] HXeta, []
Hyxi,and [] Hyeta are arrays representing derivatives of the component vectors of the

shape functions with respect to x and h respectively. The two dimensional arrays B and

DKKel em contain the straindisplacement matrix and the element stiffness matrix
respectively. All of these instarce variables except the two dimensional array DKQKel em

representing the element stiffness matrix, are declared aspri vat e.

The constructor of the DKQEl enent classis,

publ i c DKQEl enent (doubl e[] cx, double[] cy, double[][] WMatDb,

doubl e thelem ({

Db = Mat Db;
th = thelem
EX = cx;
EY = cy;

The coordinates of the nodes, the material matrix, and the thickness of the
element are initialized through the constructor when an instance of the class DKQEl enent
iS created.

The methods of the class DKQEI enent are given in Table 4.4. All methods are

declared private except for the cal cEl enk () method, which is declared as public. The

63

method Geonet ry() computes the geometric components required to calculate element
stiffness matrix using Equation (4.25). The method shFn () calculates the derivatives of
the shape functions with respect to to x and h using Equation (4.51). The ShFnHXxi ()

method computes derivatives of the component vectors of the shape functions for x with
respect to x . The shFnHxet a () method computes derivatives of the component vectors
of the shape functions for x with respect to h . The shFnHyxi () method computes

derivatives of the component vectors of the shape functions for y with respect to x . The

ShFnHyeta () method computes derivatives of the component vectors of the shape

functions for y with respect to h . The Dk@Bmat ri x () method computes the B matrix for
the DKQ element using Equation (4.48).

Table 4.4 Methods in the DKQEI enent class

Method Description
Geonetry () Calculates geometric components for the element.
shEn () Calculates derivatives of the shape functions with respect to
x and h .
Calculates derivatives of the component vector for the shape
ShFnHXxi ()

functions for x with respect to x .

Calculates derivatives of the component vector for the shape
ShFnHXeta ()))
functions for x with respect to h .

A 0 Calculates derivatives of the component vector for the shape
ShFnHYXi
functions for y with respect to x .

Calculates derivatives of the component vector for the shape
ShFnHYeta ())]
functions for y with respect to h .

Calculates the Jacobian matrix and the determinant of
Jacobian matrix.

Jacobi an ()

DKBMat ri x () Calculates the strain-displacement matrix.

DKQEl ement KMat ri x () Calculates the element stiffness matrix for DKQ element.

The element tiffness matrix is computed in DKQEl enent KMatri x () method
using 2~ 2 Gauss quadrature. For each Gauss point, the methods shFn (), ShFnHXxi (),
ShFnHXeta (), ShFnHYxi (), ShFnHYeta (), and DKBMatrix () are caled. The
elements of the stiffness matrices are computed at each Gauss point using values obtained
from these methods are then added to obtain the fina element stiffness matrix for the
DKQ element.

The structure of the cal cEl enkK () method is shown below. This method takes
DKQEl enent as an argument and calls the Geonetry () and DKQEl ement KMatrix ()
methods.

public void Cal cEl enK(DKQEl emrent d) {

/] Cal cul ates geonetrical properties for DKQ El ement.
d. Geonetry();

//Cal cul ates Elenent Stiffness Matrix for DKQ El enent.
d. DKCQEI ermrent KMat ri x(d) ;

The approach used for analyzing a structure consisting of DKQ elements is as
follows. For each element an instance of the DKQEl enent class is created by calling the

constructor.

DKQEl ement dkq = new DKQEl ement (X, Y, D, TH);

where, dkq is the instance of the class DKQEl enent. The x and y coordinates, the
material matrix and the thickness of element are passed in the above constructor. Once an
object of the DKQEl emrent class has been created, the element stiffness matrix is computed
by calling the method cal cEl enk () of the main class by passing the dkq object as an
argument to the function.

65

The DKQEI errent class also contains the method Cal cStresses (). This method
calculates stresses for DKQ element. These stresses are obtained from the nodal

displacements which are computed during the analysis. ThecCal cStresses () method is
declared as,

public void Cal cStresses(DKQEl ement dkq, double[] U, StressResults S)

The parameter dkq is an instance of the DKQEI enent class, U is the array of nodal

displacements and s is an instance of the StressResul ts class which stores element
stresses.

The stresses at each node of the dement are calculated using 2~ 2 Gauss
guadrature. The methods shFn (), ShFnHXxi (), ShFnHXeta (), ShFnHYxi (),
ShFnHYeta (), and DKTBMatri x () are called at each Gauss point and the stresses are

calculated using the stress-strain and strain-displacement rel ationships.

66

Chapter 5
Flat Shell Elements

5.1 General Shell Elements

Shell elements are very efficient for modeling the behavior of curved structures
(Cook et al., 1989). There are four types of general shell elements: flat shell elements,
curved shell elements, axisymmetric shell elements and, Mindlin type degenerated solid
elements (Yang et. a, 1990). Shell elements can also be classified according to the
thickness of the shell and the curvature of the midsurface. Depending on the thickness,
shell elements can be separated into thin shell elements and thick shell elements. Thin
shell elements are based on the discrete Kirchoff theory in which transverse shear
deformations are neglected. Thick shell elements are based on the Mindlin theory which
includes transverse shear deformations.

Shell elements can aso be classified according to curvature as deep shell elements
and shallow shell elements. Shallow elements based on the classical shell theory and can
be developed by combining the membrane and bending strain in the energy equation. Flat
shell elements are developed by superimposing the stiffness of membrane and bending
elements. The membrane and bending forces are totally independent of each other in the
flat shell element and herce there is no membrane-bending coupling present in the
element. Thisisamajor disadvantage of the flat shell elements.

The development of the shell elements from the classical shell theory is more
complex, and many approximations are required to simplify the solution. Flat shell
elements are easier to formulate using previoudy available theories of membrane and

plate bending elements.

67

5.2 Flat Shell Elements

The shell element is subjected to both membrane forces and bending forces and
hence the development of shell elements should include a consideration of both these
actions. One approach for development of flat shell elements is to include the membrane

and bending properties by combining a membrane element and a plate bending element.

Two types of thin flat shell elements were considered to implement in Java: (1)
triangular flat shell element and, (2) quadrilateral flat shell element. The triangular flat
shell element developed by combining the CST element described in Chapter 3, which
represents the membrane part of the element, and the DKT element (Batoz et al., 1980)
described in Chapter 4, which represents the bending part of the element. Consider the
element isin the xy plane, assembly of the triangular flat shell element can be represented
asshowninFig. 5.1.

CST Element DKT Element

— Represents translations in the direction of the local axis.
—»3 Hepresents rotations in the direction of the local axis.

Fig. 5.1 Combination of CST and DKT Element.

The quadrilateral flat shell element is developed by the assembly of the four node
quadrilateral plane stress element presented in Chapter 3 and the DKQ element (Batoz
and Tahar, 1982) presented in Chapter 4. Considering that the element is in the xy plane,

68

the assembly of the quadrilateral flat shell element can be represented as shown in Fig.
5.2.

|

Guadrilateral Plane Element DKG Element

— Represents translations in the direction of the local axis.
—»» Fepresents rotations in the direction of the local axis.

Fig. 5.2 Combination of Quadrilateral Plane Element and DKQ Element.
5.3 Development of StiffnessMatrix for Flat Shell Elements.

In this section we will discuss the general formulation of stiffness matrix for flat
shell elements. The development of the stiffness matrix for the triangular membrane
element and quadrilateral membrane element was presented in Chapter 3. The
development of the stiffness matrix for the triangular plate bending element and

quadrilateral plate bending element was presented in Chapter 4.

The general shell has six degrees of freedom at each node. The nodal

displacements of the shell element are,
{UI} :{ui Vi VVI qxi qyi qzi} (51)

for, i =1K n n= number of nodes per element.

69

The membrane stiffness matrix for each nodeis of size 2 2 , and is represented

as, [km]z ,- The bending stiffness matrix for each node is of size 3" 3 and is represented
as, [k,], ,- The stiffness matrix at each node of the shell element is of size 6 6 and is

represented as, [ks] s 1he assembly of the stiffness matrices of membrane and bending

components at each node will result in a zero value on the diagonal corresponding to the
rotational degree of freedom q, since this displacement is not considered in the
membrane or bending element. Fig. 5.3 represents the inplane rotation which is

sometimes called drilling degrees of freedom.

4 7

[

Cya
-]

B
#

>

Fig. 5.3 Drilling Degrees of Freedom (L ocal coordinate system).

This zero stiffness for the drilling degree of freedom causes singularity in
structure stiffness matrix when al the elements are coplanar and there is no coupling
between the membrane and bending stiffness of the element. There are severa ways to
deal with this singularity.

The first approach for removing the singularity in the structure stiffness matrix is
to substitute an approximate value for the diagona value of the stiffness of drilling
degree of freedom. Although, this solves the problem of singularity from the structure
stiffness matrix, it sometimes does not represent actual behavior of the element because
of the fact that afictitious stiffness has been added.

70

The second approach is to develop a higher order membrane element that includes
the drilling degree of freedom. This approach is less efficient since higher order
displacement functions are needed for the membrane stiffness matrix and hence a higher

order numerical integration scheme is required.

In this study the first approach is used since it is easier to implement and is more
efficient. This approach of including the fictitious stiffness for the drilling degree of
freedom closely approximates the behavior of the shell but sometimes it results in a

stiffer structure due to the constraints present at the corner nodes.

The element stiffness matrix for the shell element is first assembled by super
imposing the membrane stiffness and bending stiffness at each node. The null values of

the stiffness corresponding to the drilling degree of freedom are then replaced by

approximate values. This approximate value is taken to be equal to 10° times the
maximum diagonal value in the element stiffness matrix. The stiffness matrix at each

node of the shell element [k, |, can thus be represented as,

¢ y
u
dcl, [0, 0 g
[k] =glol,, [klss 0§ (52)
e max((k.),)¢
e 1000 g
where,

[k,]. = stiffness at each node of the shell element.
[k,], , = membrane stiffness at eachnode of the shell element.
[K,],, = bending stiffness at each node of the shell element.

K, = element stiffness matrix for the shell element.

71

5.4 Coordinate Transformation

A shell is a three dimensiona structure and it is often convenient to define the
geometry of shell structure in the global coordinate system. However, to generate the
element stiffness matrix for the membrane and plate bending elements, the elements have
to be defined in the element local plane, and element local coordinates are required to
calculate the stiffness of these elements. Since the flat shell elements considered in this
study are based on a combination of membrane and plate bending elements it is thus
necessary to use local coordinates for computing the element stiffness matrix of the flat
shell elements. The transformation between global coordinates and local coordinates is
required to generate the element local stiffness matrix in the local coordinate system.
Also the stiffness matrix must then be transformed to the globa coordinate system. This
can be done using vector algebra. Direction cosines are required to transform the
coordinates from the global coordinate system to the local coordinate system. The
formulation of the transformation matrix for triangular and quadrilateral element is
described below (SAP 2000 Analysis Reference, Computers and Structures Inc., 1997).

Triangular Element

Fig. 5.4 shows the global axis X, Y and Z and the transformed loca axis x, y and
z In this study the global Z axis is in the upward direction and local z axis is normal to
the plane of the element. In Fig. 54, the node numbers are written in the

counterclockwise directionand i, j, and k represent the mid points of the sides 1-2, 2-3

and 3-1 respectively; and are used to define direction cosines for the plane of the triangle

72

Fig. 5.4 Coordinate Transformation for Triangular Element.

Assuming the local x axis is paralé to the vector passing through nodes k and
node |, the vector representing the local x direction is given by,

: X = X :J }.Xjk :J
V, = Vi :.|'_ yi - yk)_'/ = _i.yjky (5.3
| T
T4~ %4p 14kp

where X,V ,z €tc. represents the values of global coordinates for node k. The direction
cosine |, for the local x direction is obtained by normalizing the vector with respect to

its length of the side. The direction cosine for the local x axis is given by,

1x, 0
17 70
1Yy 54

i
T2k p

I, =

where,

o =y(%)"+ (%) * (=) isthelength of the vector.

73

A reference vector defining the plane of the element is obtained by creating a

vector that passes through the vector V, which defines the local x direction. The

reference vector Vg, is obtained by creating a vector that passes from nodes i and 3 by

the same procedure described in Equation (5.3).

Ve =Vis (5.5)

The normal to the plane that represents the element local z direction is obtained by the

cross product of vectors V, and Vg,

V, =V, "V, (5.6)

Thedirection cosine | , for the local z direction is obtained by normalizing the vector V,

as shown in Equation (5.4). The loca y axis is obtained from cross product of the vector
in the local x direction and the vector in the local z direction. The cross product of these

two vectors gives the vector V, normal to the xz plane.

V, =V, "V, (5.7)

The direction cosine |, for local y direction is obtained by normalizing the vector V, as

given in Equation (5.4).
Quadrilateral Element
Fig. 5.5 shows the global and local coordinate axis for the quadrilateral element.

The node numbers for the quadrilateral elements are written in counterclockwise order.

The mid points of sides 12, 23, 34, and 4-1 are represented by i,j, k and |

respectively. The element local plane is defined by creating two vectors intersecting each

74

other and passing through the mid points of the sides 2-3 and 3-4 of the quadrilateral as
shown in Fig. 5.5.

Fig. 5.5 Coordinate Transformation for Quadrilateral Element.

Assuming the local x axis of the quadrilateral is parald to the vector passing

through nodes | and | , the vector passing through these nodes is given by,

: X=X :J }.Xil :J
V=V, =1y - Yiy=ivy (5.9

| i
TZ474p 14D

where, x,Y,,z etc. represents the global coordinates of node i. The direction cosine |

for the local x direction is obtained by normalizing the vector with respect to its length.

1x,U
L1
L=y (5.9)
il

i
TZip

|, = \/(%) +(v,) +(z,)" isthelength of the vector.

75

A reference vector V, defining the plane of the element is obtained by creating a

vector passing through nodes i and k of the element as shown in Fig. 5.5.

V, =V, (5.10)
The normal to the plane is obtained by the vector cross product of V, and Vj,

V, =V, "V, (5.11)
The direction cosine for the local z direction |, is obtained by normalizing vector V,
with respect to its length, as given in Equation (5.4). The local y axis is obtained by the

vector cross product of the vector in the local x direction and vector in local z direction.

The cross product of these two vectors will give the vector V, normal to the xz plane.
V, =V, "V, (5.12)

The direction cosine |, for the local y direction is obtained by normalizing the vector

V, with respect to its length, as given in Equation (5.4).
Transformation of Coordinates and StiffnessMatrix

The 3° 3 transformation matrix for the transformation of coordinates from the
global to the local axis can be written as,

(L ={0) (), (L)) (5.13

where | ,, |, and | , arethe direction cosines for local x, y and z directions.

76

The local coordinates at each node needed to derive the element local stiffness matrix is

obtained as,

[, =1],.[xvz],, (5.14)
where,

[xyz], , =local x, y and z coordinates at each node.

[XYZ], , = global X, Y and Z coordinates at each node.

The element local stiffness matrix for membrane and plate bending element is
caculated using the local coordinates obtained. The stiffness for drilling degrees of

freedom is approximated as described in the previous section. The element stiffness
matrix [k,] ... for the shell element, where n is the number of nodes per element, is then

defined in the local coordinate system.

To calculate the structure stiffness matrix, the element stiffness matrix must be
transformed to the global coordinate system. The transformation of the element stiffness

matrix from the local to the global coordinate system is given by,

[KS]Gn’Gn = [T]16—n'6n [K]Gﬁ 6n [T]6n' 6n (515)

where,
n = number of nodes per element.

K, = element stiffness matrix in the globa coordinate system.
k, = element stiffness matrix in the local coordinate system.

[T] = transformation matrix.

The transformation matrix for triangular shell elementsis,

77

gl o o}

[T]=¢o0 [I]' od (5.16)
¢ Tu
& 0 0 [I] H

The transformation matrix for quadrilateral shell element is,

gl " o o o 3
eo [I' o ou

[T]=¢ ['] . ¥ (5.17)
eo o [I] o
60 o0 o [ITg

where, [I] is calculated from Equation (5.13) for triangular or quadrilateral element

respectively.
5.5 Implementation of Triangular Flat Shell Element in Java

To implement the triangular flat shell element in Java, a class called
Tri Shel | El ement was developed. The Tri shel | El ement class is derived from the base

class El enent . The base class El ement contains all the data variables and functions

necessary for managing all of the different elements in the program.

The class definition and the variables declared within the Tri Shel | El enent class are
given below,

public class Tri Shell El ement {

private double th; //Thickness of the el enment.
private double[] EX; //array of x coordi nates.
private double[] EY; //array of y coordi nates.
private double[] EZ, //array of z coordi nates.

private double[] X; //array of |ocal x coordinates.

78

private double[] Y; //array of local y coordinates.

private double[][] MatD; //Material matrix for plane stress.
private double[][] WMatDb; //Material matrix for bending condition.
private double[][] Kcst; //Elenent stiffness matrix for CST El enent.
private double[][] Kdkt; //Elenent stiffness matrix for DKT El enent.
private double[][] Ttrans; //Transformation matri x.

private double[][] ST; //Transformation matrix for coordi nates.
private double[][] TSKelem //Elenment |ocal stiffness matrix.
public double[][] GISKelem //Elenent dobal stiffness matrix.

The variable t h represents the thickness of the element. [1EX, []EY,and [] EZ
are arrays containing the x, y, and z coordinates of the nodes in the global coordinate
system. Thearrays[] xand[] Y containing the x and y coordinates of the element local
coordinate system. The two dimensional arrays [][] Mat D and [][] Mat Db contain the
material matrix for membrane and bending properties. The two dimensional arrays
[1[1STand [][] Ttrans contain the transformation matrix for coordinates and element
stiffness matrix respectively. The two dimensional arrays [][]Kest and [][] Kdkt
contain the stiffness matrices for the CST element and the DKT element respectively.
[1[]1TSKel emand [][] GTSKel em are two dimensional arrays that contain the element
stiffness matrix for triangular flat shell element in the local and global coordinate system.
All of these instance variables except the two dimensional array GTSKel emrepresenting
the element stiffness matrix of triangular flat shell element in the globa coordinate

system, are declared as private.

The constructor of the Tri Shel | El enent classis declared as follows,

public Tri Shel | El enent (doubl e[] cX, doubl e[] cy, doubl e[] cz,
double[][] D, double[][] Db, double thelem {

Mat D = D
Mat Db = Db;
th = thelem
EX = cx;
EY = cy;
EZ = cz;

79

The coordinates of the nodes, the material matrices for membrane and bending
properties, and the thickness of the element are al initialized through the constructor

when an instance of the class Tri Shel | El enent iS created.

The methods of the class Tri Shel | El enent are given in Table 5.1. All methods
are declared private except for the cal cEl enk() method, which is declared as public
since it is caled from outside the class. The method Cal cLocal coord() computes the
element loca coordinates by performing a coordinate transformation. The
Cacl cTransf ormati onMat ri x() method computes the transformation matrix needed to
transform the element stiffness matrix from the local to the global coordinate system. The
Cal cEl emLocal StiffMatrix() method computes the element stiffness matrix in the
local coordinate system by superimposing the stiffness matrices of the CST element and
the DKT element. The Cal cEl end obal Sti ffMtrix() method computes the element

stiffness matrix in the global coordinate system.

Table5.1 Methodsin theTri Shel | El enent class

Method Description

Cal cLocal coord() Calculates element local coordinates.

Cal cTransformationMatrix() | Calculatestransformation matrix.

Calculates element stiffness matrix of triangular flat
Cal cEl enLocal StiffMatrix()

shell element in the local coordinate system.

Calculates element stiffness matrix of triangular flat
Cal cEl en@ obal StiffMtrix()

shell element in the global coordinate system.

The structure of the cal cEl enk() method is shown below. This method takes an
object of type TrishellElement a an agument and calls the methods
Cal cLocal coord(), CalcTransformation(), CalcElenLocal StiffMtrix(), and

Cal cEl end obal StiffMatrix().

80

public void Cal cél enK(Tri Shel |l El ement tri) {

/Il Cal cul ates el ement coordinates in |ocal plane.
tri.Cal cLocal coord();

//Cal cul ates transformati on matri X.

tri.CalcTransformati onMatri x();

/Il Cal culates el ement stiffness matrix in the |ocal coordinate system
tri.Cal cél emLocal StiffMatrix();

/I Calculates element stiffness matrix in the global coordinate
system
tri.Cal cél end obal StiffMatrix();

The approach used for analyzing a structure consisting of triangular flat shell
elements is as follows. For each element an instance of the Tri Shel | El enent class is
created by calling the constructor.

Tri Shel | El ement tshell = new Tri Shell Element(x, y, z, MatD, MatDb, TH);

where, tshell is the instance of the class Tri Shell Element. The X, y and z
coordinates, material matrix for membrane and bending properties and the thickness of
the element are passed in the above constructor. Once an object of the Tri Shel | El enent
class has been created, the element stiffness matrix is computed by calling the method
Cal cEl enk () of the main class by passing the t shel | object as an argument to the
function.

The Tri Shel | El enent class aso contains the method Cal cStresses (). This
method calculates stresses for triangular shell element. These stresses are obtained from
the nodal displacements which are computed during the analysis. The Cal cStresses ()
method is declared as,

81

public void CalcStresses(Tri Shell El ement tshell, int elem double[] U
StressResul ts SR)

The parameter t shel | is an instance of the Tri Shel | El enent class, el emis the
element number, U is the array of nodal displacements, and SR is an instance of the

St ressResul t s class which stores element stresses.

The stresses at each node of the element are calculated by first calculating
membrane and bending stresses for membrane element and plate bending element
respectively. The summation of membrane and bending stresses gives the stresses for

triangular flat shell element.

5.6 Implementation of Quadrilateral Flat Shell Element in Java

To implement the quadrilateral flat shell element in Java, a class called
QuadsShel | El enent was developed. The Quadshel | El ement class is derived from the

base class El enent .

The class definition and the variables declared within the QuadShel | El enent class are

given below,

public class QuadShel | El ement {

private double th; //Thickness of the el enent.

private double[] EX; //Array of x Coordi nates.

private double[] EY; //Array of y Coordinates.

private double[] EZ, //Array of z Coordi nates.

private double[] X; //Array of |ocal x Coordinates.

private double[] Y; //Array of local y Coordinates.

private double[][] MatD; //Material matrix for plane stress.

private double[][] MatDb; //Mterial matrix for bending condition

private double[][] Kquad4; //Elenment stiffness matrix for QUADA
El ement .

private double[][] Kdkqg; //Elenent stiffness matrix for DKQ El enent.

82

private double[][] Ttrans; //Transformation matri x.

private double[][] ST; //transformation matrix for coordi nates.
private double[][] QSKelem //Elenment |ocal stiffness matrix.
public double[][] CGQSKelem //Elenment dobal stiffness matrix.

The variable t h represents the thickness of the element.[1EX,[]EY and[] EZ are
arrays containing the x, y, and z coordinates of the nodes in the global coordinate system.
The arrays[]1 X and []Y contain the x and y coordinates of the element local coordinate
system. The two dimensional arrays [][1MatD, and [][]MatDb contain the material
matrix for membrane and bending properties. The two dimensional arrays [][] ST and
[1[]Ttrans contain the transformation matrix for coordinates and element stiffness
matrix respectively. The two dimensional arrays[][] Kquad4, and[][] Kdkg contain the
stiffness matrices for the four node quadrilateral plane element and the DKQ element
respectively. [1[] QSKel em and [][] GQSKel emare two dimensional arrays that contain
the element stiffness matrix for quadrilateral flat shell element in the local and the global
coordinate system. All of these instance variables except the two dimensional array

GQSKel emrepresenting the element stiffness matrix, are declared as private.

The constructor of the Quadshel | El ement classis declared as follows,

public QuadShel | El ement (doubl e[] CX, doubl e[] cy, doubl e[] cz,
doubl e[]1[] D, double[][] Db, double thelem ({
Mat D = D
Mat Db = Db;
th = thel em
EX = cx;
EY = cy;
EZ = cz;

The coordinates of the nodes, the material matrices for membrane and bending
properties, and the thickness of the element are al initialized through the constructor

when an instance of the class QuadShel | El ement iScreated.

83

The methods of the class Quadshel | El enent are given in Table 5.2. All methods
are declared private except for the cal cEl enk() method, which is declared as public
since it is caled from outside the class. The method cal cLocal coord() computes the
element local coordinates by peforming a coordinate transformation. The
Cacl cTransformati onMat ri x() method computes the transformation matrix needed to
transform the element stiffness matrix from the local to the global coordinate system. The
Cal cEl ermLocal StiffMatrix() method computes the element stiffness matrix in the
local coordinate system by superimposing the stiffness matrices of the four node
guadrilateral plane element and the DKQ element. The Cal cEl end obal StiffMatri x()
method computes the element stiffness matrix in the global coordinate system.

Table 5.2 Methodsin theQuadsShel | El enent class

Method Description

Cal cLocal coord() Calculates element local coordinates.

Cal cTransformati onMatri x() Calculates transformation matrix.

Calculates element stiffness matrix of quadrilateral
flat shell element in the local coordinate system.

Cal cEl enLocal StiffMatrix()

Calculates element stiffness matrix of quadrilateral
Cal cEl end obal StiffMatrix()

flat shell element in the global coordinate system.

The structure of the cal cEl enK () method is shown below. This method takes
an object of type QuadShellElement as an argument and cals the methods
Cal cLocal coord(), CalcTransformation(), CalcElemnmlocal StiffMatrix(), and

Cal cEl end obal StiffMatri x.

public void Cal cEl enK(QuadShel | El enent quad) {

/Il Cal cualtes el ement coordinates in |ocal plane.

qguad. Cal cLocal coord();

//Cal cul ates transformati on matri X.

quad. Cal cTransformati onMatri x();

/Il Cal cul ates el ement stiffness matrix in the |ocal coordinate system
quad. Cal cEl emLocal StiffMatrix();

/I Calculates element stiffness matrix in the global coordinate
system
quad. Cal cEl en@ obal StiffMatrix();

The approach used for analyzing a structure consisting of quadrilateral flat shell
eements is as follows. For each element an instance of the QuadShel | El ement class is
created by calling the constructor.

Quadshel | El emrent gshell = new QuadShel | El ement (x, y, z, MatD, WMatDb,
TH;

where, gshell is the instance of the class Quadshel | Element. The X, y, and z
coordinates, material matrix for membrane and bending properties and the thickness of
the element are passed in the above constructor. Once an object of the
QuadShel | El enent class has been created, the element stiffness matrix is computed by
calling the method cal cEl enk () of the main class by passing the gshel I object as an
argument to the function.

The QuadsShel | El ement class also contains the method Cal cStresses (). This
method calculates stresses for quadrilateral shell element. These stresses are obtained
from the noda displacements which are computed during the anaysis. The

Cal cStresses () method is declared as,

public void Cal cStresses(QuadShel | El ement gshell, int elem double[] U,
StressResul ts SR)

85

The parameter gshel | is an ingtance of the QuadShel | El ement class, el emis the
element number, U is the array of nodal displacements and SR is an instance of the

StressResul t s class which stores element stresses.

The stresses at each node of the element are calculated by first calculating the
membrane and bending stresses for membrane element and plate bending element
respectively. The summation of membrane and bending stresses gives the stresses for
quadrilateral flat shell element.

86

Chapter 6

Program Development

6.1 Introduction

The main objective of this study is to develop triangular and quadrilateral plane
stress, plate bending, and flat shell elements in Java. A second objective was to write a
finite element analysis program to verify the results obtained from these elements. The
program computes displacements and stresses for the structure modeled using the plane
stress, plate bending, or flat shell elements. This chapter presents the development of the
finite element analysis program in Java. The required input to the program is in the form
of a text file. The results from the program are saved in an output file in text format. The
format of the input file essentialy follows that of the SAP 2000 commercial finite
element analysis program with some minor modifications. The SAP 2000 program was

used to generate the finite element models for testing and verification.
6.2 Program Structure

A finite element analysis program for the analysis of membrane, plate and shell
structures was developed in Java. The program was developed using the object oriented
approach. The classes are divided in to three categories. (1) structural classes (2) input-

output classes and (3) interface classes. The description of various classes for each

category in the program is presented in the following paragraphs.
6.2.1 Structural Classes

The structural classes include all the classes that represent the structural model

and the classes that are used to analyze the structure.

87

For any finite element analysis problem, the finite element model is first created
from different structural components such as system properties (representing the behavior
of whole structure), nodal coordinates, restraints, material properties, element section
properties, element joint connectivity, and loads. The classes that represent the objects of
these rea structural components are SystenProp, Joint, Restraint, Material,
Secti onProp, El enent, Jt Load, and Uni Load respectively. The FEMobdel class is the

storage class where the objects representing the finite element model are stored.

After al the required structural datais obtained, an instance of the Anal ysi s class
is created and displacements and stresses are calculated. The instances of the

Coor dt ransf or mati on and EqNodal Loads classes are used to define the transformation

matrices and calculate equivalent nodal loads respectively.

The classes MenbraneStr, BendinStr, and Shell Str represent membrane,
bending and shell stresses respectively for each element of the structure. The

StressResults class is a container class where objects containing stresses for each

element are stored. The description of each structura class is given in the following
paragraphs.

Syst enPr op Class

The system properties represent the behavior of the entire structure. The system
properties such as the number of system degrees of freedom in each direction are defined
in the Syst enPr op class. The number of system degrees of freedom defines the behavior
of structure, i.e. whether it is a plane, plate or shell structure. The class Syst enProp
contains the methods Get Sysdof () and Geti fl agSysdof (). These methods return the
values of system degrees of freedom and an array of values for system degrees of
freedom.

88

Joi nt Class

The nodal coordinates for each node of an element is required to calculate the
element stiffness matrix. The Joi nt class is the base class of al nodes in the structure.
Each node has its own node number and values of X, y and z coordinates. The node
number and X, y, z coordinates for a node are defined in the Joi nt class. Several methods
such as Get Jt NodeNum(), Get X(), Get Y(), and Get () are defined within the Joi nt
class. These methods provide access to the various data members of the.

Restrai nt Class

In order to anayze the structure it is important to know how many equations are
to be solved. The number of equations required to be solved are obtained from the
number of restraints provided to the structure and are derived from the class Rest rai nt .
The node number and an array of equation numbers for that node are defined in this class.
The methods Get Rest r NodeNun() and Get EQNI D() are also defined in the Restrai nt
class. These methods return the values of the node number and an array of equation IDs
for that node when called.

Mat eri al Class

Themat eri al class storesinformation regarding linear elastic material properties.
The information contained in this class includes the modulus of elasticity and Poisson’s
ratio of the material. The methods defined in this class are Get ME() and Get NU() .
These methods are called to access the stored material properties.

Sect i onProp Class

The SectionProp class represents the element section properties such as
thickness of the elements and the plane strain or plane stress condition. The Sect i onPr op

class aso contains the methods Get Thi ckness() and Get Fl aghat (). These methods

89

return the values of thickness of elements and values indicating the stress condition (i.e.

plane stress or plane strain).

El enrent Class

The El enent class is the base class for al elements. The data members in this
class include element number, number of nodes for the element and a joint connectivity
array. The methods Get el ermun(), Get Nunmodes(), and Get Connectivity() are aso
defined in the El enent class. These methods return the element number, number of
nodes for that element and the joint connectivity array. Once the node numbers for each
node of the element are obtained, the coordinates for that node can be obtained using the
methods defined in the Joint class. The class hierarchy for the El enent class is

represented in Fig. 6.1.

i Joint I

Element

CSTE lement | i QUAD4E lement || DETE Lement | | DEQE lement I |TriShellElement|| QuadShel11E lement

Fig. 6.1 El enent ClassDiagram.

Joi nt Load Class

The Joi nt Load class represents a force or moment applied at a joint. The data
members of this class include the node number and an array of nodal loads applied at that
node. The methods defined in the JointLoad class are Get NodeNumber () and
Get LoadVal ue() . These methods return the node number and an array of nodal loads in
each direction for that node.

90

Uni Load Class

The uni Load class represents a uniformly distributed surface load applied in the
direction normal to the element local plane. The Uni Load class contains the element
number and the magnitude of the uniformly distributed surface load. The methods in the
Uni Load class include Get NodeNumber () and Get LoadVal ue(). The element number
and the magnitude of uniformly distributed load applied on the element can be accessed
by calling these methods.

FEModel Class

The FEModel classis acontainer class where all of the components of a structural
model are stored as objects. The Java API class Vect or is used to store objects of each
structural component such as system properties, nodes, restraints, material properties,

section properties, elements, and loads.

Java provides the library of classes that dynamically allocate space for each object
to be stored. These classes are modified from the collection classes in the Java class
library j ava. util. The legacy classes have the additional advantage over that they are
synchronized. In this program, the API class Vect or of Javaclasslibrary java. util is
used to store the data dynamically. Vect or is a dynamic array, which is similar to the
ArraylLi st class of the Java collection classes. The Vect or class in Java has an initia
default capacity of 10. The Vect or dynamically allocates the space fr the object to be
stored after the initial capacity is reached. The elements stored in the Vvector can be
easily manipulated using the methods provided in Java. Once an instance of a Vect or is
created, the element can be added to aVect or by calling theaddEl ement () method. The
value of an element from any specific location of the Vect or can be obtained by calling
the method el enent At () . Elements stored in the Vect or can be removed by calling the

renoveEl ement () Of renpveEl enent At () methods.

91

Severd instances of the Vect or class are declared in theFEMbdel class. These are
Syst enPropLi st, NodelList, RestraintList, Materiallist, SectionProplList,
El enent Li st, JtLoadLi st and Uni LoadList. They store objects of the classes
Syst enProp, Joint, Material, Secti onProp, El ement, Joi nt Load, and Uni Load that
represents system properties, joint data, material properties, element section properties,
element data, joint loads, and uniformly distributed surface |oads respectively. Thus, each
component of the finite element nodel is stored as an instance of the vect or class. The
diagram representing the relationship between FEMbdel class and other structural classes

isshownin Fig. 6.2.

| Jystem JectionProp |

I Joint Element I
FEModel

| Festraint I JtLoad |

| Material | TniLoad |

Fig. 6.2 FEMbdel Class Diagram.

The methods for storing and retrieving the objects of each structural component
are defined in the FEMbdel class. Each method creates an object of different structural
component and stores it to the vect or using the AddEl enent () method from j ava. uti |
class library. All methods are declared public. Each method of the FEMbdel class and its
function is described in Table 6.1.

92

Table 6.1 Methodsin theFEMbdel class

M ethod

Description

AddSystem ()

Creates an instance of the Syst emclass and adds it to the vect or

Syst enPr oplLi st .

AddNode ()

Creates an instance of Joi nt class and adds it to the vect or

NodelLi st .

AddRestraint ()

Creates an instance of the Restraint class and adds it to the

vect or RestraintList.

AddMaterial ()

Creates an instance of the material class and adds it to the

vector Materi al Li st.

AddSectionProp ()

Creates an instance of the Secti onProp class and adds it to the

vector Material List.

AddEl enent ()

Creates an object of the El enent class and adds it to the vect or

El enent Li st .

AddJoi nt Load ()

Creates an instance of the Joi nt Load class and adds it to the

vector Jt LoadLi st.

AddUni Load ()

Creates an instance of the uni Load class and adds it to the

vect or Uni LoadLi st .

Put Nunof Restr ()

Stores the number of restraints provided for entire structure.

Put UDLfl ag ()

Stores a flag to specify if uniformly distributed loads are applied
to the structure.

Coor dTr ansf or mat i on Class

The flat shell element developed in this study is a combination of a plane stress

element and a plate-bending element. A shell element is three dimensional in nature and

it is convenient to represent a shell element in the global coordinate system. However,

plane stress element and plate bending element are two dimensional elements and hence a

93

transformation is required to obtain the element stiffness matrix for the shell element

when combining these two elements.

The Coor dTransf or mati on class represents the coordinate transformation from
the global to the local coordinate system. A transformation matrix can also be obtained
that transforms the element stiffness matrix from the local coordinate system to the global

coordinate system.

The CoordTransformation class contains various methods such as
Cal cCoord(), Dcos() and CRoss(). All methods are declared private except
Cal cCoord() method. The method cal cCoord() is cdled in the element classes to
calculate the element stiffness matrix for shell elements. The method DCos() returns an
array representing the direction cosines for avect or . The method CROSS() computes the
cross product of two vect ors and returns an array containing the resulting vect or . The
Cal cCoord() method performs coordinate transformation and calculates the

transformation matrix using the procedure described in Chapter 5.

EgNodal Loads Class

When uniformly distributed surface loads are applied to the elements in the
direction normal to their local plane, these loads have to be transformed to equivalent
nodal loads applied at each node of the element.

The EqNodal Loads class contains methods for computing the equivalent nodal
loads from the uniformly distributed surface load. The method Cal cEqNodal Loads() IS
caled once an instance of the EqNodal Loads is created. This method calculates
equivalent nodal loads at the each node of the structure and creates an array of loads. The
2" 2 Gauss quadrature is used to compute these noda loads at the Gauss points. The
nodal loads computed at the Gauss points are then extrapolated to the element nodes. The

94

methods defined within the EqNodal Loads class are given in Table 6.2. All methods

except Cal cEqNodal Loads() are declared private.

Table 6.2 Methodsin theEgNodal Load class

Method

Description

QUADShapeFn ()

Calculates shape functions for the quadrilateral element.

QuadJacobi an ()

Calculates the determinant of Jacobian for the
guadrilateral element.

Cal cQuad4EgNodal Lds ()

Calculates equivalent nodal loads at each node of the
guadrilateral element.

Cal cTri EgNodal Lds ()

Calculates equivalent nodal loads at each node of the
triangular element.

Cal cEqNodal Loads ()

Calculates equivalent nodal loads at each node.

Anal ysi s Class

The analysis of the structure is implemented in the Anal ysi s class. Once the

finite element model is generated, all of the components of the model are stored as

objects in the FEModel class. The analysis is then performed using these stored objects.

Several methods are developed to perform the different steps in the analysis such as,

compute the structure stiffness matrix, compute displacements at each node of the

structure, and compute element stresses for each element. All methods are declared as

private except the RunAnal ysi s() method. The methods defined in the Anal ysi s class

aregivenin Table 6.3.

95

Table 6.3 Methodsin theAnal ysi s class.

Method Description

Cal cRestr DOF () Calculates restraint degrees of freedom.

Cal cMaterial MatrixPl Stress() | Calculates materia matrix for plane stress condition.

Cal cMaterial MatrixPI Strn () | Calculates materia matrix for plane strain condition.

Cal cMat eri al Matri xBending() | Calculates material matrix for bending properties.

Calculates analysis data such as degrees of freedom,
Cal cAnal ysi sData () material properties, element section properties,

system properties material matrix etc.

Cal cStructureKMatrix () Calculates structure stiffness matrix.
Cal cDef l ections () Calculates displacements at each node.
Cal cStresses () Calculates stresses for each element.

Once the required data for analysis is processed by the method
Cal cAnal ysisData(), the anayss is perfformed wusing the methods
Cal cStructureKmatrix(), Cal cDel ection() andCal cStresses(). Joint connectivity
data is obtained for each element from the El enent class. Nodal coordinates for each
node of an element are then obtained by calling methods from the Joi nt class. Instances
of classes representing CST, four node quadrilateral, DKT, DKQ, triangular shell and
quadrilateral shell elements are declared as needed in the Cal cStructureKmatri x().
Element stiffness matrices are then calculated by calling the corresponding method for
the specific element. The element stiffness matrices for each element of the structure are
then superimposed to generate the structure stiffness matrix. Deflections are then
calculated using the structure stiffness matrix and the load values obtained from the
Joi nt Load and EqNodal Loads classes respectively. The Gauss-Jordan method is used to
solve the system of equations and compute deflections at each node of the structure.
Element stresses are then computed in the Cal cSt resses() method. Instance of classes
representing each element in the structure are created and the corresponding method for

computing element stresses is called to compute stresses for that el ement. The stresses for

96

each element are then stored in the vectors of the st ressResul t class. The class diagram

for Analysis classis shown in Fig. 6.3.

| Element I‘—l EgqiodalLoads I—b! TniLoad
b

| FEModel |-¢—| Ahnalysis IQ—‘ SGtressResults I

Fig. 6.3 Anal ysi s Class Diagram.

Menbr aneSt r Class

The MenbraneStr class represents the stresses in a membrane element (either
triangular or quadrilateral). The data members defined within this class are normal stress
in the x and y directions, shearing stresses, maximum and minimum principal stresses
and angle of the principal plane at each node of the membrane element. This class also

contains the accessor methods that are called to obtain the membrane stresses. The

methods defined within the Menbr aneSt r class are given in the Table 6.5.

Table 6.4 Methodsin theMenbr aneSt r class

Method Description
Getst () Returns an array of normal stresses in the x direction at each node of the
element.
cets2 () Returns an array of normal stresses in the y direction at each node of the

element.

Get 512 () Returns an array of shearing stresses at each node of the element.

Returns an array of maximum principal stresses at each node of the
Get Smeax ()
element.

Returns an array of minimum principal stresses at each node of the
Get Smin ()
element.

Get ANG () Returns the array of angle of principal plane at each node of the element.

97

Bendi ngStr Class

The bending stresses for an element are stored in the Bendi ngSt r class. This class

stores the stresses normal to the x and y direction, shearing stresses, maximum and

minimum principal stresses and the angle of principal plane at each node of the element.

Several methods defined within the class are used to access the stored bending stresses

for each element. The methods defined within Bendi ngSt r and their description is given

in Table 6.6.
Table 6.5 Methods in theBendi ngSt r class
Method Description
Get S1 () Returns an array of normal stresses in the x direction at each node of the
element.
Got 52 () Returns an array of normal stresses in the y direction at each node of the
element.
Get S12 () Returns an array of shearing stresses at each node of the element.
Returns an array of maximum principal stresses at each node of the
Get Smeax ()
element.
. Returns an array of minimum principal stresses at each node of the
GetSmin ()
element.
Get ANG () Returns an array of angle of principal plane at each node of the element.

Shell str Class

The shel | str class represents the shell stresses at the top and the bottom of a

shell element. The arrays of stresses normal to the x and y direction, shearing stresses,

maximum and minimum principal stresses and an array of angle of the principa plane are

defined within this class. The shel | Str class aso contains various nmethods that return

the normal, shearing and principal stresses and angle of principal plane for each node of
the element. The methods are described in Table 6.6.

98

Table 6.6 Methodsin theshel | Str class

Method Description
Getst () Returns an array of normal stresses in the x direction at each node of the
element.
cets2 () Returns an array of normal stresses in the'y direction at each node of the

element.

Get S12 () Returns an array of shearing stresses at each node of the element.

Returns an aray of maximum principal stresses at each node of the
Get Smax ()
element.

_ Returns an array of minimum principal stresses at each node of the
GetSmin ()
element.

Get ANG () Returns an array of angle of principal plane at each node of the element.

StressResul ts Class

The stresses for each element are computed separately in the analysis
process. Therefore, it is necessary to store the computed stresses for each element

dynamically. The st r essResul t s stores computed stresses for each element.

Inthe st ressResul t class, the Java class vect or is used to store the computed
stresses dynamically. The stresses for each element are stored in the instances of the
Menbr eaneSt r, Bendi ngStr oOr Shel | Str classes depending upon the type of element.
The objects of these classes are stored in the vectors defined in the St ressResul t class.
The vectors defined within the StressResults class ae MenbraneStresses,
Bendi ngStresses, and Shel | Stresses. Each of these vectors stores the objects
containing values of membrane stresses, bending stresses, and shell stresses respectively
depend on what element is being analyzed. The methods defined in the StressResul ts
class are described in Table 6.7.

99

Table 6.7 Methodsin thesStressResul ts class

Method Description

Creates an instance of the Menbr ansSt r class and adds it
AddMenbr aneStresses ()

tothevect or Menbr aneSt r esses.

_ Creates an instance of the Bendi ngSt r class and adds it to
AddBendi ngStresses ()

thevect or Bendi ngSt r esses.

Creates an instance of the shel | Str class and adds it to
AddShel | Stresses ()

thevect or Shel |l Stresses.

An instance of the StressResults class is created in the Cal cStresses()
method of the Anal ysis class. This instance is then passed to the Cal cStresses()
method of the CSTElenent, QUAD4El enent, DKTEl enent, DKQEl enent,
Tri Shel | El ement Or QuadShel | El enent classes as an argument.. The methods
AddMenbr aneStresses(), AddBendi ngStresses() OF AddShel | Stresses() are then
called to store the computed stresses from that element. The stresses for each element are
stored to the vectors dynamically within these methods using the method AddEl ement ()

of Javaclasslibrary. Fig. 6.4 represents the diagram for the St r essResul t s class.

Element classes

F Y
StressResultsl
1 \
Heml:uranEStrl | BendingStr | | ShellStr |

Fig. 6.4 stressResul t s Class Diagram.

100

6.2.2 Input and Output Classes

The geometry and structural details of the finite element model are provided to a
program in the form of an input. In this study, the finite element model is generated using
the interface provided by SAP 2000 and the input text file is created from this model.
This input ext file is used (with minor modifications). The results obtained from the
analysis are saved to atext file. The Readl nput class reads the input file and saves the
structure data. The WiteCutput class writes writes the displacements and stresses

obtained from the Anal ysi s class.

Readl nput Class

The input for the program is provided in the form of text file. Hence, it is
necessary to read the provided input from the text file and store the input data in an
instance of the FEMbdel class from where it can be used for analysis. The Readl nput
class performs the task of reading the provided data and transfers this information to the
FEModel class where the data is stored in different vectors. The input for the program
consists of the system properties, joint coordinates, joint restraints, material properties,
section properties, element joint connectivity and loads applied to the structure. Several
methods provided in the Readl nput class to read this data from a file and to store thisin
an instance of the FEMbdel class. The methods defined within the class and its description
isgivenin Table 6.8.

101

Table 6.8 Methodsin theRead! nput class

Method

Description

ReadTextFile ()

Reads the input file.

ReadSystem ()

Reads system data from the SY STEM block of the inpuit file.

ReadJoi nt ()

Reads joint coordinates from the JOINT block of the input file.

ReadRestraints ()

Reads restraint data from the RESTRAINT block of the input

file.

Reads material data such as modulus of elasticity and Poisson’s
ratio from the MATERIAL block of the input file.

ReadMwat eri al ()

Reads thickness of the dement from the SHELL SECTION
block of the input file.

ReadShel | Secti on()

Reads joint connectivity data from the SHELL block of the
ReadConnectivity()

input file.

Reads data of applied load such as joint loads, uniformly
distributed surface load from the LOAD block of input file.

ReadLoads ()

I nput Reader () Cdls al methods listed above.

An ingtance of the FEMbdel class is created in the method | nput Reader. This
instance is then passed to al the other methods in the Readl nput class. The methods in

the Read! nput class are described below.

The method ReadText Fi | e() reads the input text file and stores it as a string. The
method ReadSyst en() reads the number of system degrees of freedom and the flag
The method

AddSyst enProperti es() iscaled in the ReadSyst em() method from the FEMbdel class

vaues for the system degrees of freedom in each direction.
that stores the system properties. The method ReadJoints() reads the X, y, and z
coordinates of each node. The method AddJoi nt () of FEMbdel class is called for each
node in the structure. It saves the node number and X, y, and z coordinates for that node.

The method ReadRestrai nts() reads the restraints provided at each node ard assigns

102

equation numbers corresponding to degrees of freedom in each direction for that node.
The node number and an array representing the equation number for that node is then
stored in an object of the FEMbdel class by calling the method AddRestraint () of
FEModel class.

The method ReadMat eri al () reads material properties for the structure such as
modulus of elasticity and Poisson’s ratio. The method AddMat eri al () of the FEMbdel
classis called to store these material properties. The method ReadShel | Secti on() reads
the shell section properties such as thickness of the elements. The shell thickness is then
stored in the FEMbdel class by calling the method AddSecti onProp() of the FEMbdel
class. The method ReadConnecti vity() reads joint connectivity data for each element.
The method AddEl errent () is called for each element and the element number, number
of nodes for that element and the array representing the joint connectivity for that element
is stored in the FEMbdel object. The method ReadLoads() reads the type of load, load
cases, values of loads and multiplication factor for a particular load case. The loads are
then stored in the FEModel object by calling the methods AddJtLoad() and
AddUni Load() for storing the joint loads and uniformly distributed surface loads applied
to the structure.

Witeout put Class

The results obtained from the analysis must be stored for later use during the
analysis of the structure. Due to the large amount of output generated by the program, it
is convenient to store the results in the text file. The path of the text file where the results
are to be stored is passed through the constructor of the wi t ecut put class. The results

from the analysis are then printed to this saved text file in the w t eQut put class.

The wi t equt put class contains methods that print the stored results to the text
file. The method witeResul ts() defined in this class is declared public. This method
tabulates and prints the displacements at each node and the stresses for each element. The

vectors Menbr aneSt r esses, Bendi ngStresses, and Shel | St resses contain objects of

103

the MenbraneStr, Bendi ngStr and Shel | Str classes for each dement in which the
values of the membrane, bending and shell stresses are stored for that element. These
stored stresses are then written to the output file by calling the accessor methods defined

within the Menbr aneSt r, Bendi ngSt r and Shel | St r classes.

6.2.3 Interface Classes

The program contains a very simple user interface since al the input and output
operations are done wsing text files. There are two steps for analyzing the structure using
the program. The first is to read the input data from the input text file and second is to run
an analysis. The interface of the program contains a menu bar that has the Import, Run,
and Exit and Help commands for performing the tasks of importing the input text file,
running an analysis, exiting the program and displaying description of the program. The
classes used for the user interface and application window are the VTFEA, Mai nFr ame and

Mai nFanme_About Box classes. Each class is described in the following paragraphs.

VTEEA Class

The purpose of this classis to create an instance of the main application window
and to begin program execution. The only variable declared in this class is packf r ane,
which is initidlized to false. Setting packframe to fase results in a cal to the pack()
method of the Java class library Ul Manager which sets the size and location of the main

application window on the screen.

An instance of the class Mai nFranme is declared in the constructor to VTFEA. This
results in the creation of main application window. Once the main application frame is
congtructed, various methods such as pack(), validate(), setsize(), and
set vi si bl e() of the Javaclasslibrary Ul Manager are called. These methods set the size

of the main application window and display it on the screen.

104

The VTFEA class aso contains the mai n method. The execution of the program

begins with the main method. An instance of the VTFEA class is created inside the main.

Mai nFr ame class

The Mai nFrame class represents the main application window of the VTFEA
application. The purpose of this class is to create the application window and assign
various user interface objects such as title, border, minimize and maximize button, and a
menu bar. All of these user interface components are derived from the Java Foundation

Classes (JFC). The main application window is shown in Fig. 6.2.

The Mai nFrame class includes logic for implementing various means such as
reading the input file, performing the analysis, storing analysis results to a text file, and
terminating program execution. It aso contains logic for displaying a dialog box that
contains information regarding the program. The main actions are implemented using the

event handling features provided in the Java event handling classes.

& Finite Element Analysis for Structures: - 0] =|

File Analyze Help

Fig. 6.5 Main Application Window for the Program.
An instance of Readl nput is created when the “Input” menu item is selected. The
methods | nput r eader is called that reads and stores the input data when the “Import”

command is pressed from the “File’ menu. Instances of the Analysis class and

105

WiteQutput class are created when the “Run” menu item from the “Anayze” menu is
selected. The methods RunAnal ysi s() andthew it eResul ts() from the Anal ysi s and
WiteOutput classes respectively are called to perform the analysis and to print the
displacements and stresses obtained from the analysis to the text file.

Mai nFr ane_About Box Class

The “About” dialog box provides information about the program. The
Mai nFr ame_About Box class represents the window for the “About” dialog box. The Java
Foundation Classes (JFC) are used to design the various interface components of the
dialog box. The instance of this class is created when the “About” menu item is selected
from the “Help” menu of the main application window and a dialog box appears on the

screen that provides the details of the program.

106

Chapter 7

Test Examplesand Verification of Results

In this chapter, a comparison of results for several test examples analyzed using
the developed program for this research with those obtained from a commercial finite
element analysis program SAP 2000, is presented. The results compared include

maximum displacements and maximum average stresses.

7.1 Example Problemsfor Verification of Three Node Triangular (CST) Element
The accuracy of the CST element developed in this study is verified by analyzing

three test examples using the developed program and the commercia finite element

analysis program SAP 2000. The results are compared at different nodes.

Test Example 1

This test example consists of a cantilever beam of length 48 in., depth 12 in. and
thickness of 1 in. and is taken from Chen (1992). The beam is modeled using 8 three
node triangular (CST) elements. Vertical loads of 20 kips are applied at the free end of
the cantilever (nodes 5 and 10). Fig. 7.1 shows the finite element model of the cantilever
beam.

i 7 % o B

- i i
- 1 ol /Jg
-

- o
i b

1 k ® / 4 3 /

il Pl

' —3 ¥ / il

i

/ 2 4 / 8
o i
! / . i

Fig. 7.1 FE Model for Test Example 1 — Cantilever Beam.

107

Geometric Data:
Length L =48.0in.
Depth h=12in.
Thickness t =1.0in.

Material Properties.
Modulus of elasticity E = 30000 ksi.
Poisson’sratio n = 0.25

Boundary Conditions:
Restraints are provided in the x and y directions at the left end of the cantilever
(nodes 1 and 6).

L oading:
A concentrated load of 20 kipsis applied to nodes 5 and 10.

Comparison of Results:

The results from the analysis obtained from the program and from SAP 2000 are

shown in Table 7.1. The results shown are the displacements at nodes 10 and 8, and

stresses at node 6. From Table 7.1, it is seen that the results given by the program are
identical to those given by SAP 2000. Similar results were obtained for the other nodes.

108

Table 7.1 Displacements and Stressesfor Test Example 1

) Result from | Result from _
L ocation % Difference
Program SAP-2000
UX -0.014159 -0.014159 0.00%
Node-10
uy 0.090347 0.090347 0.00%
UX -0.010825 -0.010825 0.00%
Node—8
uy 0.030403 0.030403 0.00%
Si1 -17.128727 -17.128727 0.00%
Node- 6 S22 -4.282182 -4.282182 0.00%
S12 9.537940 9.537940 0.00%

Test Example 2

The second test example consists of the same cantilever beam of Example 1. The
length of the beam is 48 in., depth is 12 in. and the thickness is 1 in. The finite element
model now consists of 32 three node triangular (CST) elements. Vertical loads totaling 40
kips is applied at the free end of the cantilever beam. The finite element model of the
cantilever beam as shown in Fig. 7.2.

4 Z 14 > 3 26 B
i / é
o o s
A E i et / e
0] - - i -
rd I e s
A . : r / v o
| 17 | o kg g 67
\\ ', ™, Ei] \, hﬁ
W Y " ", -.
-,
\ \\\. \ \,_\x \ x\‘ o
", . ™,
- e A 1) iy
| i1 ~ I] . Fl ? P4 ™,
-
e
-

Fig. 7.2 FE Model for Test Example 2 — Cantilever Beam.

109

Geometric Data:
Length L =48.0in.
Depth h=12in.
Thickness t =1.0in.

Material Properties.
Modulus of elasticity E = 30000 ksi.
Poisson’sratio n = 0.25

Boundary Conditions:
Restraints are provided in the x and y directions at the left end of the cantilever.

L ocading:
A concentrated load B = 6.67 kipsis applied at node 10.
A concentrated load P, = 26.67 kips is applied at node 27.
A concentrated load P, = 6.67 kipsis applied at node 5.

Comparisons of Results:

Table 7.2 represents the results obtained for the second test example from the
developed program and SAP 2000. The displacements at nodes 10 and 8 and stresses at
node 6 are shown. The results indicate that the percentage difference in each case is less
than 0.02%.

110

Table 7.2 Displacements and Stressesfor Test Example 2

_ Result from Result from _
L ocation % Difference
Program SAP-2000
UXx -0.034263 -0.034271 -0.023%
Node - 10
Uy 0.194412 0.194456 -0.023%
UXx -0.025599 -0.025605 -0.023%
Node—8
uy 0.062956 0.062971 -0.024%
S11 -41.493731 -41.503067 -0.022%
Node - 6 S22 -10.373433 -10.375767 -0.022%
S12 11.840936 11.843600 -0.022%
Test Example 3

The third verification example is a plate with semi circular hole of radius 3 in. at
the center. The plate is fixed at the top. A downward vertical load of 0.67 kipg/in is
applied at the free edge. The length of the plate is 16 in., the width is 6 in. and the
thickness is 0.45 in. A plate is modeled using 110 three node triangular (CST) elements.
The FE model is shown in Fig 7.3.

Geometric Data:

Width L =16.0in.

Width b=6.0in.

Thickness t =0.45in.

Material Properties:

Modulus of elasticity E = 30000 ksi.

Poisson’sration =0.3

111

L oading:
Concentrated loads of 1.0 kips are applied at each node at the bottom of the plate.
i.e. nodes 6, 12, 19, and 26.

Comparison of Results:

The displacements at nodes 1 and 6 and stresses at nodes 32 and 36 are given in
Table 7.3. As can be seen from the table, results obtained from the developed program

and those from SAP 2000 are same. Similar results are obtained for the other nodes.

Table 7.3 Displacements and Stressesfor Test Example 3

) Result from Result from _
L ocation % Difference
Program SAP-2000
UXx 0.001545 0.001545 0.00%
Node—-1
uy -0.003132 -0.003132 0.00%
UXx 0.004213 0.004213 0.00%
Node - 6
uy -0.003355 -0.003355 0.00%
S11 1.250061 1.250061 0.00%
Node - 32 S22 7.050394 7.050394 0.00%
S12 0.480698 0.480698 0.00%
S11 1.156083 1.156083 0.00%
Node - 36
S22 7.547362 7.547362 0.00%

7.2 Example Problemsfor Verification of Four Node Quadrilateral Plane Element
Three example problems were selected to verify the accuracy of the four node

quadrilateral plane element. The structures for the second and third example problems are

the same as those analyzed using the three node triangular (CST) elements.

113

Test Example 4

The first example consists of a cantilever beam of length 6 in., depth 0.8 in. and
thickness 0.2 in. A corcentrated vertical load of 10 kips is applied at the free end of the
cantilever in the downward direction. The finite element model of the cantilever beam is

generated using three four node quadrilateral plane elements as shown in Fig. 7.4.

&, BB

W
=

Fig. 7.4 FE Model for Test Example4 —Tip Loaded Cantilever Beam.

Geometric Data:
Length L =6.0in.
Depth h=0.8in.
Thickness t =0.2in.

Material Properties:
Modulus of elasticity E = 30000 ks.

Poisson’sration =0.3

Boundary Conditions:
Restraints are provided in the x and y directions at the left end of the cantilever.

L oading:

A concentrated load of 10 kips is applied to the free end (node 8) of the

cantilever.

114

Comparison of Results:

Table 7.4 represents the results for displacements at nodes 8 and 3, and stresses at
node 1 obtained from the program and SAP 2000. The comparisons shown in the table
suggest that the displacements and stresses obtained from the program are in good
agreement with those obtained from SAP 2000.

Table 7.4 Displacements and Stressesfor Test Example 4

. Result from Result from]
L ocation % Difference
Program SAP-2000
UXx 0.016107 0.016110 -0.018%
Node—8
uy -0.162708 -0.162735 -0.016 %
UXx -0.014282 -0.014285 -0.015%
Node—3
uy -0.084639 -0.084652 -0.021%
S11 -146.96544 -146.99074 -0.017%
Node- 1 S22 -44.089634 -44.097225 -0.017%
S12 -141.122551 -141.144703 -0.015%

Test Example5

The second example problem to verify the four node quadrilateral plane element
is similar to the cantilever beam of Example 2. The length of the cantilever beam is 48
in., depth is 12 in. and thicknessis 1 in. A vertical loads totaling 40 kips are applied at the
free end of the cantilever (Chen, 1992). The beam is modeled using 20 four node
quadrilateral plane elements. The finite element model for the cantilever beam is shown
inFig. 7.5.

115

22

24

Pl

8]

P5

b, 67

45}

P4

26,6754,

4,47

Fig. 7.5 FE Model for Test Example 5 - Cantilever Beam.

Geometric Data:
Length L =48.0in.
Depth h=12in.
Thickness t =1.0in.

Material Properties.
Modulus of elasticity E = 30000 ksi.
Poisson’sratio n = 0.25

Boundary Conditions:
Restraints are provided at the left end (nodes 1, 13, and 6) of the cantilever.

L ocading:
A concentrated load B, = 6.67 kipsis applied a node 10.
A concentrated load P, = 26.67 kipsis applied at node 27.
A concentrated load P, = 6.67 kipsis applied at node 5.

116

Comparison of Results:

The displacements at nodes 10 and 8 are shown in Table 7.5. Also shown in the
table are the stresses at node 6. The difference in displacements obtained from the
program is less than 1%. The stresses obtained from the program are almost identical to
those obtained from SAP 2000.

Table 7.5 Displacements and Stressesfor Test Example 5

. Result from | Result from .
L ocation % Difference
Program SAP-2000
UX -0.057484 -0.057074 0.718%
Node—-10
uy 0.317406 0.316064 0.425%
UX -0.042772 -0.042774 -0.005%
Node—-8
uy 0.101260 0.101265 -0.005%
S11 -70.300130 -70.304114 -0.006%
Node - 6 S22 -17.575032 -17.576029 -0.006%
S12 18.407756 18.408688 -0.006%

Test Example 6

The same example problem of a plate with a semicircular hole, analyzed in
Example 3 was chosen for the verification of the four node quadrilateral elements.. The
plate is fixed at the top. A downward vertical load of 0.67 kips/in is applied to the free
edge of the plate. The length of plate is 16 in., the width is 6 in. and the thickness is 0.45
in. The plate is modeled using 52 four node quadrilateral plane elements. To model the
boundaries of the plate, 6 three node triangular (CST) elements were also included in the
FE model. This test example was chosen to verify the accuracy of the program for a

hybrid mesh that includes two different types of elements i.e. three node triangular and

117

four node quadrilateral elements. The finite element model for the plate is shown in Fig.
7.6.

+

3

b4

HE

- 34
Z -

25

1

Fig. 7.6 FE Model for Test Example 6 - Plate with Semi Circular Hole.

Geometric Data:
Length L =16.0in.
Width b=16in.
Thickness t =0.45in

118

Material Properties:
Modulus of elasticity E = 30000 ksi.

Poisson’sratio n = 0.3

Boundary Conditions:
Restraints are provided at top of the plate (i.e., nodes 55, 62, 68, and 74)

L oading:
Concentrated loads of 1.0 kips are applied at each node at the bottom of the plate.
i.e.,, nodes 6, 12, 19, and 26.

Comparison of Results:

Table 7.6 represents the comparison of displacements and stresses obtained at
various nodes from both programs. The displacements at nodes 1 and 6 are tabulated. The
differences in results obtained from the two programs are less than 2 %. The stresses at
nodes 32 and 36 are obtained from the program are compared to those from SAP 2000.
The differences in stresses are in the range 4% to 7%. The element stresses are
calculated at the element edge using the derivatives of the displacements. The stresses
calculated at the edge of one element may differ significantly from the stresses calculated
at the edge of an adjacent element. The reason for this difference is that the stresses are
not in equilibrium with the externally applied traction and hence are not continuous
across element boundaries. The difference may be significant if the generated finite
element mesh is coarse. This difference can be reduced using a finer mesh. Therefore,
stresses averaged at any single point may be higher or lower depending on mesh pattern.
The commercial finite element analysis program SAP 2000 uses an error estimation
scheme that reduces the error in stresses and thus give results that are more accurate.
However, the results obtained here from the program are in good agreement with those
obtained from the SAP 2000.

119

Table 7.6 Displacements and Stressesfor Test Example 6

) Result from | Result from _
L ocation % Difference
Program SAP-2000
UXx 0.001951 0.001984 -1.663%
Node—-1
uy -0.003847 -0.003852 -0.129%
UXx 0.005384 0.005437 -0.974%
Node-6
uy -0.004070 -0.004075 -0.122%
S11 2.12129 1.98348 6.947%
Node - 32 S22 10.76729 10.57779 1.791%
S12 1.653674 1.585048 4.329%
S11 1.91307 1.775941 7.721%
Node - 36
S22 12.28807 11.841794 3.768%

7.3 Example Problemsfor Verification of Three Node Triangular Plate Bending
(DKT) Element

To verify the accuracy of the three node plate elements, four finite element
models were analyzed using the program and SAP 2000. The results for these four test

cases are described in the following sections.
Test Example 7

Thefirst test example is asquare plate of size 12 ft = 12 ft having a thickness of 6
in. The plate is subjected to a uniform surface load of 0.1 kips/sg. in. All four edges of

the plate are fixed. The finite element model was generated using 128 three node
triangular plate bending (DKT) elements.

120

Two mesh patterns were considered in the analysis of the plate. Both mesh
patterns have the same number of nodes and elements. The only difference between the
two mesh patterns is the orientation of the elements. The finite element models for the

two mesh patterns are shown in Figures 7.7 and 7.8.

Geometric Data:
Length L =144.0in.
Width = 144.0 in.

Thickness t =6.0in.

Material Properties:
Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.2

Boundary Conditions:

All four edges of the plate are fixed.

Fig. 7.7 FE Model for Test Example 7 — Squar e Plate— M esh Pattern A.

121

Fig. 7.8 FE Model for Test Example 7 — Squar e Plate— M esh Pattern B.

L oading:
A uniform surface load of 0.1 kips/sg. in. is applied to the plate.

Comparison of Results:

The displacements at nodes A and E, and the stresses at nodes B, C, and D for
mesh pattern A and B are shown in Tables 7.7 and 7.8. It is seen from the tabulated
values that among the two mesh patterns, mesh pattern A gives more accurate results than
mesh pattern B. A similar observation was made by Batoz et al. (1980). The stresses at
nodes B, C and D for SAP 2000 are taken from the stress diagram of the SAP 2000
graphical user interface rather than from the SAP 2000 output file for the structures
analyzed using triangular plate elements. The comparison of stresses at various nodes to
those obtained from the stress diagram of SAP 2000 graphical user interface are in good

agreement.

122

Table 7.7 Displacements and Stressesfor Test Example 7 - Mesh Pattern - A

_ Resultsfrom Resultsfrom]
L ocation % Difference
Program SAP-2000
Point — A
uz -0.82345 -0.82920 -0.694%
(Node—-41)
Point — E
uz -0.295672 -0.304909 -3.029%
(Node—21)
Point — B
S11 15.44666 16.8050 9.538%
(Node - 37)
Point — C
S22 17.30481 16.9098 2.336%
(Node-5)
Point — D
S12 -2.87364 -3.0190 -4.185%
(Node—-17)

Table 7.8 Displacements and Stressesfor Test Example 7 —Mesh Pattern - B

_ Resultsfrom Resultsfrom]
L ocation % Difference
Program SAP-2000
Point — A
uz -0.79443 -0.82920 -4.193%
(Node—-41)
Point — E
uz -0.27932 -0.30010 -6.924%
(Node—-21)
Point — B
S11 14.02095 16.8584 -16.831%
(Node—37)
Point — C
S22 14.85041 16.9312 -12.289%
(Node-5)
Point — D
S12 -2.90833 -2.9001 6.241%
(Node—-17)

123

Test Example 8

The second example is arectangular plate of size 8 ft © 12 ft with ahole of size 4
ft = 2 ft. The thickness of the plate is 10 in. A uniform surface load of 0.2 kips/sg. in. is
applied over the entire plate. All inside and outside edges of the plate are simply
supported. The finite element model of the plate contains 96 three node triangular plate
bending (DKT) elements (See Figures 7.9 and 7.10).

‘-\.\\I "/.- =
\ﬁ/

Fig. 7.9 FE Model for Test Example 8 — Rectangular Plate with Hole.

Geometric Data:

Out sidelength L, =96.0in.
Outsidewidth B, =144.0in.
Insidelength L,=48in.
Insidewidth B, =24in.
Thickness t =10.0in.

124

Material Properties:
Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.2

Boundary Conditions:
All inside and outside edges of the plate are simply supported.

L oading:
A uniform surface load of 0.2 kips/sg. in. is applied to the plate.

il i T 5 | . R
1% 1% o fH] m i) o o 1 IH 1 = e W
) & (k2 ui W
] 1] | & X}
e
1 [n m 14 ul e m [IF] & e F:] JH
B nr P [H] ©»
- ol 1 e
il c
o L] L] L] LA ™ 1Y L3 aa 1] n
wr bl m Rl
Y = 1
n TR n ki A = £
il 4 icl L] 4l L1} : 3 :13
A = l
LR o & &4
55 ki e ®
&r =] [x] [[2 [1: Ed]
-
LH £} o L'
L} & K =]
dl 4 & r LL H L3 £}
-) y Ps i
b M XN n N
& H M b E
2 & & B j:3 a k-] ® o B
| 1
2 4 13 a B
4 It H B] a2
DI B 5 i, L) 1] Iz It I’ H
M . | -4

Fig. 7.10 FE Model for Test Example 8 — Rectangular Plate with Hole.

125

Comparisons of Results:

The comparison of displacements and stresses obtained from the program and
SAP 2000 for this example is tabulated in Table 7.9. The displacements are compared at

points A and B, while the stresses are compared at points C and D as shown in Figures

7.9 and 7.10. The results obtained from the program are found to be similar with those

obtained from SAP 2000. However, the norma stress in the y direction at point D is

approximately 9% less than that given by the SAP 2000. The difference in results is

because of the different triangular plate bending elements used in the program and SAP

2000.

Table 7.9 Displacements and Stressesfor Test Example 8

_ Result from Result from)
L ocation % Difference
Program SAP-2000

Point — A (Node— 46) uz -0.021537 -0.021647 -0.508%

Point — B (Node—17) uz -0.001274 -0.001288 -1.087%

) S11 3.02900 3.0126 0.544%
Point — C (Node— 68)

S22 1.577566 1.7364 -9.147%

Point — D (Node—-1) S12 1.022454 1.0103 1.203%

Test Example 9

The third verification problem is a cantilever plate of size 8 ft x 8 ft. The

thickness of the plate is 6 in. A uniformly distributed surface load of 0.01 kips/sg. in. is

applied to the plate. The finite element model consists 128 three node triangular plate
bending (DKT) elements. The finite element model of the plate is shown in Fig. 7.11.

126

Geometric Data:
Length L =96.0in.
Width =96.0 in.
Thickness t =6.0in.

Material Properties:
Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.2

Fig. 7.11 FE Modédl for Test Example 9— Cantilever Plate.

Boundary Conditions:

One edge of the cantilever plate is fixed.

127

L oading:
A uniform surface load of 0.01 kips/sg. in. is applied to the plate.

Comparisons of Results:

Displacements at points A and D and stresses at points B and C obtained from the
program are compared to those obtained from SAP 2000 (See Table 7.10). The
displacements obtained from the program are within 5% from those obtained from SAP
2000. The difference between stresses obtained from the developed program and those
obtained from the SAP 2000 is less than 5%. One reason for this difference is use of
different elements in the author’s program and SAP 2000. Another reason can be the
higher order numerical integration scheme used by SAP 2000. SAP 2000 uses four to
eight point numerical integration scheme for its quadrilateral and triangular element
while the author has used three point numerical integration scheme in the formulation of

the element stiffness matrix for DKT e ement.

Table 7.10 Displacements and Stressesfor Test Example 9

) Result from Result from ,
L ocation % Difference
Program SAP-2000
Point — A (Node—77) uz -1.60400 -1.68787 -4.960%
Point — D (Node—41) uz -0.569561 -0.599412 -4.980%
Point — B (Node—-5) S11 1.74398 1.8325 -5.431%
Point — B (Node-5) S22 8.07994 8.2984 -2.633%
Point — C (Node—18) S12 0.40987 0.4288 -4.415%

128

7.4 Example Problemsfor Verification of Four Node Quadrilateral Plate Bending
(DKQ) Element.

Verification of the four node quadrilateral plate bending (DKQ) elements
developed in Java is performed by analyzing the same three structures used for the
verification of triangular plate bending elements. The structures are now modeled using
four node quadrilateral plate bending (DKQ) elements. The description of the example

problems and comparison of results is discussed in the following sections.

Test Example 10

The first example problem is a square plate of size 12 ft =~ 12 ft and has a
thickness of 6 in. A uniform surface load of 0.1 kips/sg. in. is applied to the plate. All
four edges of the plate are fixed. The finite element model was generated using 64 four
node quadrilateral plate bending (DK Q) elements (See Fig. 7.12).

Geometric Data:
Length L =144.0in
Width =144.0in.
Thickness t =6.0in.

Material Properties:
Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.3

Boundary Conditions:
All four edges of the plate are fixed.

L oading:
A uniform surface load of 0.01 kips/sg. in. is applied to the plate.

129

Fig. 7.12 FE Modd for Test Example 10 — Square Plate

Comparison of Results:

Table 7.11 shows of displacements at points A and E and stresses at point B, C
and D obtained from the program and from SAP 2000. The displacements at points A and
E are approximately the same as those from SAP 2000. The difference is 0.006 % in the
normal stresses in x and y direction at the fixed support (where the stresses are

maximum). The difference in shearing stress from the program and that from the SAP
2000is5 %.

130

Table 7.11 Displacements and Stressesfor Test Example 10

) Result from Result from)
L ocation % Difference
Program SAP 2000
Point — A (Node—41) uz -0.84005 -0.84005 -0.000%
Point — E (Node—21) uz -0.304782 -0.304782 0.000%
Point — B (Node— 37) Si1 17.51227 17.51111 -0.006%
Point — C (Node-5) S22 17.51227 17.51111 -0.006%
Point — D (Node —17) S12 -2.82021 -2.65871 -5.726%

Test Example 11

The second example is the same rectangular plate with hole, which was used for
12 ft and has a hole of size 4 ft

the verification of DKT element. A plateis of size 8 ft -

"~ 2 ft. The thickness of plateis 10 in. A uniform surface load of 0.2 kips/sg. in. is applied

to the plate. All insde and outside edges of the plate are smply supported. A finite

element discretization for this example problem includes 72 four node quadrilateral
(DKQ) elements. (See Figures 7.13 and 7.14).

Geometric Data:

Out sidelength L, =96.0in.
Outsidewidth B, =144.0in.

Insidelength L,=48in.

Insdewidth B, =24in.

Thickness t =10.0in.

Material Properties:

Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.2

131

Boundary Conditions:
All inside and outside edges of the plate are ssmply supported.

L oading:
A uniform surface load of 0.2 kips/sg. in. is applied to the plate.

Fig. 7.13 FE Model for Test Example 11 — Rectangular Plate with Hole.

132

= - + 5 + ' £ ’ =+ : =+
85] &] i 66 &] n Ed
i £ B be)1} 1 H M
5]] & B4 w 5B w] &l &
ke 7 1 a i b 2l]
m ¢
o 16 & I 4 H] O] &=
b i T)1} 1 ke
r x ¥ L] T 11 T 1 #
& A i L LN] 1 b
kg 3 A a7 a3 14 E-] kt
ba 7 __P i1} i W _B‘J
H] @ 23] ES % L]
‘@" Bd L 4 g _Fg 28] =
" ” 12 7 L I I e 1a]
.é. 1 I 5 4 i 2 ’ e 1 .E@t
B
1 2 3 1 &] r B 2 1@
D
= = :

Fig. 7.14 FE Modd for Test Example 11 — Rectangular Plate with Hole.

Comparison of Results:

The displacements and stresses obtained from the developed program and from
SAP 2000 are tabulated in Table 7.12. The displacements are compared at points A and B
while the stresses are compared at points C and D as shown in Figures 7.13 and 7.14. As
can be seen from Table 7.12 the difference in displacements is insignificant. The stresses

are aso very close, however there is a difference of 5 % in shearing stress.

133

Table 7.12 Displacements and Stressesfor Test Example 11

) Result from Result from)
L ocation % Difference
Program SAP - 2000
Point — A (Node— 46) uz -0.030028 -0.030028 0.00%
Point — B (Node—17) uz -0.001273 -0.001272 -0.078%
) Si1 3.7204 3.7202 -0.005%
Point — C (Node— 68)
S22 1.637831 1.63769 -0.008%
Point — D (Node—1) S12 1.149302 1.095553 -4.676%

Test Example 12

The third verification example for the four node quadrilateral plate bending

(DKQ) element consists of same cantilever plate that was used for the verification of the

triangular plate bending (DKT) element. A cantilever plate is of size 8 ft x 8 ft and has a

thickness of 6 in. A uniformly distributed surface load of 0.01 kips/sg. in. is applied to a
plate. The plate is modeled using 64 four node quadrilateral plate bending (DKQ)

elements. A finite element model of the plate for this example problem is shown in Fig.

7.15.

Geometric Data:
Length L =96.0in.
Width =96.0in.
Thickness t =6.0in.

Material Properties:

Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.2

Boundary Conditions:

One edge of cantilever plate is fixed.

134

L oading:

A uniform surface load of 0.01 kips/sg. in. is applied to the plate.

Fig. 7.15 FE Model for Test Example 12 — Cantilever Plate.

Comparisons of Results:

Table 7.13 shows the comparison of displacements and stresses obtained from the
developed program and SAP 2000. The displacements are compared at hodes A and E
(See Fig. 7.15). It is seen that the displacements obtained from the program are identical
to those obtained from the SAP 2000. A similar observation can be made for the normal
stresses. However, the shearing stress compared at point C differed by approximately 7%.
It can be concluded from the tabulated results that the four node quadrilateral plate
bending elements developed for this program is efficient and gives satisfactory results as

compared to commercial finite element analysis program SAP 2000.

135

Table 7.13 Displacements and Stressesfor Test Example 12

) Result from Result from)
L ocation % Difference
Program SAP 2000

Point — A (Node—77) uz -1.605057 -1.605057 0.00%
Point — E (Node—21) uz -0.169455 -0.169455 0.00%

Point — B (Node—5) Si1 1.593686 1.593686 0.00%

Point — B (Node-5) S22 7.968432 7.968432 0.00%
Point — C (Node— 10) S12 0.455595 0.488347 -6.706%

7.5 Example Problemsfor Verification of Three Node Triangular Shell Elements

The three node triangular shell element developed in this study is a combination

of CST element and DKT element. To verify the accuracy of three node triangular shell

element, three example problems were selected. The comparison of displacements and

stresses for each example problem is done at different points and the discussion is

presented in the following sections.

Test Example 13

A cantilever | — beam is analyzed using the developed program and the SAP
2000. The length of the | — beam is 40 in., the height is 5 in. and the flange widths are 10

in. A load of 1.6 kips is applied at the top and bottom flanges of the | - beam in two

opposite directions as shown in Fig. 7.16. This example is one of the verification

examples presented in Alladin v. 1.0. A finite element model of the cantilever beam

consists of 96 three node triangular shell elements.

136

Fig. 7.16 FE Model for Test Example 13 Cantilever | —Beam

Geometric Data:
Length L =40.0in.
Width = 10.0in.
Height h =5.0in.
Thickness t =0.251n.

Material Properties:
Modulus of elasticity E = 10000 ksi.

Poisson’sration =0.3

Boundary Conditions:
One end of the cantilever is fixed.

137

L oading:
A concentrated load of 1.6 kips is applied at the top and bottom of the flange in
opposite directions as shown in Fig. 7.16.

Comparison of Results:

This verification example was selected, as it is very efficient in determining the
effect of inplane rotations in the element. The displacements at nodes 63 and 9 and the
stresses at nodes 2, 46 and 27 are compared to those obtained from the SAP 2000 (See
Table 7.14). The percentage difference in displacements is within 3 %, which is
acceptable because the different plate bending elements are used for the development of
three node triangular shell elements in the author’s program and SAP 2000. The stresses
from the program differ considerably from those obtained from SAP 2000. In this test
example, torsional load is applied to the structure that causes inplane rotations in the
elements. These inplane rotations are not included in the shell elements developed in this
research while the triangular shell element in SAP 2000 include the rotational degrees of
freedom in the development of element stiffness matrix of the shell element and hence is
more accurate. The results indicate that the shell element developed is suitable for
computing deflections but additional work is necessary to modify the element to take

inplane rotations in to account. Thisis left on atopic of future study.

Table 7.14 Displacements and Stressesfor Test Example 13

_ Result from | Result from)
L ocation % Difference
Program SAP-2000
_ UX -0.015376 -0.014921 3.049%
Point — A
uy 0.088021 0.085471 2.983%
(Node - 63)
uz 0.150498 0.146070 3.031%
. UX -0.015281 -0.014834 3.013%
Point — B
Uy -0.088024 -0.085475 2.982%
(Node—-9)
uz -0.148408 -0.144533 2.681%

138

Table 7.14 Displacements and Stresses for Test Example 13 (Continue)

Point — C
S11 -6.517417 -5.441100 19.78%
(Node-2)
Point — D
S22 2.688420 2.009748 33.769%
(Node — 46)
Point — E
S12 -1.4427 -1.450483 0.539%
(Node - 27)

Test Example 14

The second verification example is a folded plate structure as shown in the Fig.
7.18. The length of the plate is 7.62 in. and the thickness is 1 in. A uniformly distributed
surface load of 1 kips/ sq. in. is applied at the top and the two inclined sides of the plate.
A finite element model of the folded plate structure is generated using 128 three node
triangular plate bending elements. The folded plate structure is a good example for
studying the effect of membrane and bending coupling that occurs at the edges of the
shell elements. The finite element model of the folded plate is shown in Fig. 7.18

B L e —
- r \\ L :
+ 0men”
2.0410§
{ '
L

Fig. 7.17 Dimensions of the Folded Plate Structure

139

Fig. 7.18 FE Model for Test Example 14 — Folded Plate.

Geometric Data;

Length of theplate L = 7.62 in.

The other geometric data are shown in Fig. 7.17

140

Material Properties:
Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.2

Boundary Conditions:

The folded plate structure is simply supported at the bottom.

L oading:
A uniformly distributed surface load of 1 kips/sg.in. is applied to the top and two
inclined faces of the folded plate.

Comparison of Results:

Table 7.15 shows analysis results at a few points obtained from the program and
SAP 2000. The displacements at nodes 43 and node 63 which are the center nodes of the
top and inclined faces of the folded plate structure are shown in the table. It can be seen
that displacements obtained from the program are amost identical except for the
displacements in y direction that have percentage difference of approximately 2 %. The
stresses at nodes 43, 63 and 71 given by the program are different from those obtained
from SAP 2000. Again, as in the previous example the reason for this difference is due to
the fact that drilling degrees of freedom are not included in the triangular shell elements
developed in this research. The inclusion of drilling degrees of freedom can have

significant effect on stresses while inplane bending stresses are present in the structure.

141

Table 7.15 Displacements and Stressesfor Test Example 14

) Result from Result from %
L ocation
Program SAP-2000 | Difference
_ UX 0.003291 0.003293 -0.061%
Point — A
Uy 0.000567 0.000581 -2.410%
(Node—-43)
uz -0.012889 -0.012844 0.350%
' UX 0.008567 0.008551 0.187%
Point — C
Uy 0.000422 0.000431 -2.088%
(Node-—63)
uz -0.013089 -0.013055 0.260%
Point — A
S11 -4.02949 -3.62061 11.293%
(Node-—43)
Point — C
S22 -6.03507 -6.90214 -12.562%
(Node-—63)
Point — D
S12 -0.362579 -0.28533 27.074%
(Node 71)

Test Example 15

The third verification problem is the standard test for triangular shell elements
which is the Scordelis — Lo roof problem (Chen, 1992). The length of the roof is 50 in.
and the radius of 25 in. The angle of inclination is 40°. A uniform surface load of 90
kips/sg. in. is applied to the cylindrical shell roof. Restraints are provided at the two ends
of the roof. The geometric and materia properties are described in the following sections.

The finite element mesh is generated using 32 three node triangular shell elements. The

finite element model of Scordelis— Lo roof is shownin Fig. 7.19.

142

Fig. 7.19 FE Model for Test Example 15 - Scordelis— L o Roof.

Geometric Data:
Length of the plate L =50.0in.
Radius = 25.0in.
Angle f = 40°

Material Properties:
Modulus of easticity E = 43200000 ksi.
Poisson’sration =0

L oading:

A uniformly distributed surface load of 90 kips/sg.in. is applied to the roof.

143

Comparison of Results:

The standard test consists of computing the downward displacement at center of
the free edge of the roof (node 11). The exact value of this displacement is 0.3024 in. The
displacement at node 11 from the program and from SAP 2000 are in good agreement
with the theoretical value. The percentage difference is less than 3% (See Table 7.16).
The displacements at the top of the roof (node 13) are also compared to those obtained
from the SAP 2000 and are found satisfactory. Stresses at nodes 1, 12 and 21 are
compared and the percentage difference was approximately less than 5 % in results was
observed. It can be concluded that for this test example, that the developed triangular flat
shell element gives accurate results, however; the SAP 2000 triangular shell element is
more accurate since the inplane rotational degrees of freedom are included and hence

more accurately represents the inplane bending behavior of the structure.

Table 7.16 Displacements and Stressesfor Test Example 15

. Result from Result from ,
L ocation % Difference
Program SAP-2000
. UXx 0.002265 0.002148 5.447%
Point — A
uy 0.178983 0.176408 1.460%
(Node—-11)
uz -0.328725 -0.323447 1.632%
_ UXx 0.002281 0.002164 5.407%
Point — B
Uy -0.000005 -0.0000049 2.041%
(Node-—13)
uz 0.036906 0.035615 3.625%
Point — C
S11 32942.582 34730.135 -5.147%
(Node-1)
Point —D
S22 227009.341 222166.846 2.189%
(Node-12)
Point — E
S12 214256.364 220455.581 -2.812%
(Node—-21)

144

7.6 Example Problemsfor Verification of Four Node Quadrilateral Shell Elements

This section presents the comparison of displacements and stresses obtained from
the developed program with those obtained from SAP 2000. Three example problems
were selected for the verification of four node quadrilateral shell element. A description
of each example problem and the discussion of the results are presented in the following

sections.

Test Example 16

The first example problem for the verification of the four node quadrilateral shell
elements is a cantilever channel section with tip load applied to the free end. The length
of the cantilever is 6 in., the height 3 in., and the flange width is 2 in. The thickness of the
channel sectionis 1 in. A tip load of 30 kipsis applied at the free end of the cantilever.
The finite element model is generated using 56 four node quadrilateral shell elements.
Fig. 7.20 shows the finite element discretization for the structure. One end of the
cantilever is restrained in al six directions and the concentrated loads of 10 kips each (in
the downward vertical direction) are applied to the three nodes at the free end.

Geometric Data:
Length=6.01in.
Flange width = 2.0in.
Height of the section =3.0in.
Thickness t =1.0in.
Material Properties:
Modulus of elasticity E = 3600 ksi.

Poisson’sration =0.2

Boundary Conditions:

Restraintsin all six directions are provided at the left end of the cantilever.

145

Fig. 7.20 FE Model for Test Example 16 — Cantilever Channel Section

L oading:
A concentrated loads of 10 kips each is applied to the nodes at the top of the free
end of the cantilever (nodes 7, 14, and 21) as shown in Fig. 7.20.

Comparison of Results:

Table 7.17 shows the comparison of displacements and stresses for the
verification example. The displacements at nodes 11 and 14 are compared with those
obtained from SAP 2000. The difference in the displacements is less than 5%. This
difference is because of the different element types are used in the author’s program and
SAP 2000. It is observed that the membrane action of the four node quadrilateral shell
element in SAP 2000 isinternally represented by eight node quadrilateral plane elements.
Also the SAP 2000 shell element includes inplane rotational degrees of freedom in the

146

membrane part of the shell element. In the developed program a four node quadrilateral
plane element is used in combination with four node quadrilateral plate bending (DKQ)
element. The four node quadrilateral plate element isinitially formulated as an eight node
quadrilateral plate element and then constraints are provided at the mid nodes. However,
the shape functions of eight node quadrilateral element is used in the development of the
four node quadrilateral plate bending element. When combining this four node
quadrilateral plate bending element with four node quadrilateral plane element to develop
the quadrilateral shell element, it was concluded that convergence may not be accurate at
the edges of the element and hence the difference in the results were found different.
Also, the four node quadrilateral shell element developed in this study does not include
the inplane rotational degrees of freedom which is important while analyzing the
structure in which pure membrane or bending action is not present. The stresses obtained
at nodes 1 and 14 are compared to those obtained from SAP 2000 and the difference in

the results are found less than 3 % as shown in Table 7.17.

Table 7.17 Displacements and Stressesfor Test Example 16

) Result from Result from)
L ocation % Difference
Program SAP 2000
_ UX 0.014098 0.014522 -3.263%
Point — A
uy -0.074297 -0.077952 -4.689%
(Node—14)
uz -0.218509 -0.223337 -2.162%
_ UX 0.009755 0.010005 -2.499%
Point — B
uy -0.024764 -0.025712 -3.687%
(Node—-11)
Uz -0.069415 -0.070682 -1.793%
Point — C
S11 60.253877 59.538842 -1.187%
(Node-1)
Point — C
S22 11.907768 12.050775 -1.187%
(Node-1)
Point — D
S12 -26.076878 -26.862638 -2.925%
(Node-7)

147

Test Example 17

The second example consists of the same cantilever | — beam used to verify the
three node triangular shell elements. This example tests the behavior of the element when
the inplane bending stresses are severe. A cantilever | — beam has a length of 40 in.,
height of 5 in. and flange width of 10 in. The thickness of the beam is 0.25 in. A torque
is goplied to the | — section by applying point loads of 1.6 kips each in two opposite
directions at the top and bottom flanges of the beam (See Fig. 7.21). The finite element
model of this example problem contains 48 four node quadrilateral shell elements and is
shown in Fig. 7.21.

Fig. 7.21 FE Model for Example 17 - Cantilever | —Beam (Alladin v. 1.0, 1996).

148

Geometric Data:
Length L =40.0in.
Width = 10.0in.
Height h =5.0in.
Thickness t =0.25in.

Material Properties:
Modulus of elasticity E = 10000 ksi.

Poisson’sration =0.3

Boundary Conditions:

One end of the cantilever is fixed.

L oading:
A concentrated load of 1.6 kipsis applied at the top and bottom of the flange in

opposite directions as shown in Fig. 7.21.

Comparison of Results:

The displacements at nodes 9 and 63 and stresses at nodes 1, 46, and 27 are
obtained from the developed program and SAP 2000 are shown in Table 7.18. It is seen
from the Table 7.18 that the effect of inplane bending stresses in the four node
quadrilateral shell element is more severe than in the triangular shell element. The
displacements are compared at nodes 63 and node 9, which are the nodes opposite to the
nodes where the loads are applied. When a torque is applied to a cantilever | — beam it
was expected that the displacements in y and z should be in the opposite directions and of
same value. The tabulated results agree with the expected results tus verifying the
accuracy of the assembly of structure stiffness matrix and the equation solver used in this
program. There is a large difference in the results obtained for stresses from the two

programs for the same reasons indicated for the Test Example 16.

149

Table 7.18 Displacements and Stressesfor Test Example 17

_ Result from | Result from _
L ocation % Difference
Program SAP-2000
. UX -0.025120 -0.027162 -7.518%
Point — A
uy 0.139963 0.151049 -7.339%
(Node—63)
uz 0.209469 0.255308 -17.954%
_ UX -0.025120 -0.027162 -7.518%
Point — E
uy -0.139963 -0.151049 -7.339%
(Node—-9)
uz -0.209469 -0.255308 -17.954%
Point — B
S11 -10.824349 -12.256818 -11.687%
(Node-1)
Point — C
S22 4.430982 4.683511 -5.392%
(Node — 46)
Point —D
S12 -1.523552 -1.683754 -9.515%
(Node—-27)

Text Example 18

The structure chosen for the third verification example for quadrilateral shell
elements is the same cantilever | — beam as in the previous example but now a
concentrated tip load of 15 kips is applied at the free end of the cantilever. The length of
the cantilever is 40 in., flange width is 10 in., height is 5 in. and thicknessis 0.25 in. The
cantilever | — beam has same number of elements as in Test Example 17 and is modeled
using four node quadrilateral shell elements. The cantilever | — beam was chosen to
verify the magnitude of the error in analysis due to inplane bending stresses present in the

structure. The finite element model of the cantilever | —beam is shown in Fig. 7.22.

150

Fig. 7.22 FE Model for Test Example 18 — Tip Loaded Cantilever | — Beam.

Geometric Data:
Length L =40.0in.
Width = 10.0in.
Height h =5.0in.
Thickness t =0.25in.

Material Properties.

Modulus of elasticity E = 10000 ksi.

Poisson’sration =0.3

151

Boundary Conditions:

Restraintsin all six directions are provided at the left end of the cantilever.

L oading:

A concentrated load of 5 kips each is applied to nodes 9, 18 and 21.

Comparison of Results:

From Table 7.19 it can be seen that the difference in the displacements at nodes

18 and 54 is approximately 3 %. The maximum displacement is observed at node 9 where
the difference between the results obtained from the devel oped program and SAP 2000 is
found 0.6 %. Normal stresses at nodes 1 and 46 differ by 3 %. For shearing stress the
difference is approximately 8 %. Thus it can be concluded that the four node quadrilateral

shell element gives better results when inplane bending stresses are not significant.

Table 7.19 Displacements and Stressesfor Test Example 18

) Result from | Result from)
L ocation % Difference
Program SAP-2000
' UXx 0.086634 0.089327 -3.015%
Point — A
uy 0.00 0.00 0.00%
(Node—18)
uz -1.051681 -1.084128 -2.993%
Point — B UXx -0.082022 -0.084834 -3.315%
(Node —54) uz -1.045458 -1.082865 -3.454%
Point — C
uz -4.658466 -4.630571 0.602%
(Node-9)
Point — D
S11 44.204776 42.776400 -3.231%
(Node-1)
Point — E
S22 13.261433 12.832920 -3.231%
(Node-1)
Point — E
S12 -4,119114 -4.437667 7.734%
(Node — 46)

152

Chapter 8

Summary and Conclusions

8.1 Summary

The purpose of this study was to develop membrane, plate and flat shell elements
using an object oriented approach and the Java programming language. The membrane
elements developed in the program included the three node triangular plane (CST)
element and a four node quadrilateral plane element. The plate elements developed were
based on the discrete Kirchoff theory. The two plate elements developed were the three
node discrete Kirchoff triangular (DKT) element and the four node discrete Kirchoff
guadrilateral (DKQ) element. The triangular flat shell element was developed by
combining the CST element and the DKT Element (Batoz et al., 1980). The quadrilateral
flat shell element was developed by assembling the four node isoparametric quadrilatera
element and the DKQ Element (Batoz and Tahar, 1982). A computer program for finite
element ardlysis was also written in Java programming language to check and verify the
accuracy of results obtained from the developed membrane, plate and flat shell elements.

The program is based on the object oriented approach.

Input to the program is through atext file. The format for the input file is smilar
to the SAP 2000 S2k file. This makes it possible to generate the finite element model for
the verification examples using the SAP 2000 graphical user interface. However, a few
changes were made in the format of input text file for compatibility with the developed
program. The loads that can be applied to the structure include concentrated loads, and
uniformly distributed surface loads. Various load combinations can aso be used. The

program computes displacements and stresses at each node of the finite element model.

Severa test examples were analyzed using the program and results were

compared with those obtained from the commercia finite element analysis program SAP

153

2000. Results were compared at the points of maximum displacements and stresses. The

average stress was taken in to consideration to calculate stresses at specific point.

8.2 Conclusions

This thesis presented the development of six finite elements using the object
oriented programming concept in Java as an alternative to the traditional procedural
programming approach. A finite element analysis program was developed to verify the

accuracy of the results.

A series of test example problems were analyzed using the developed program.
The results from these analyses were compared with those obtained from the commercial
finite element analysis program SAP 2000 in order to verify the accuracy of the

developed program.

The results obtained from the analysis of the example problems using the plane
stress triangular elements and the plane stress quadrilateral elements were found to be
very accurate when compared to those obtained from the SAP 2000. The difference in
displacements computed by the two programs was less than 1 %. The difference in

stresses was also quite close. However, stresses in afew cases differed by 6 to 7 %.

The displacements for the verification examples using the triangular plate bending
(DKT) elements (Batoz et al., 1980) were in agreement with those obtained from the SAP
2000. The difference in displacements was found to be less than 3 % for the three node
triangular plate bending (DKT) element and less than 5 % for the four node quadrilateral
plate bending (DKQ) element. The computed stresses were also in agreement for most

cases. The margin of difference in stresses was about 10 %.
An important observation was made when analyzing the clamped plate using the

DKT eements. It was founded that orientation of the mesh pattern affects the analysis

results in clamped plate problem analyzed using DKT elements.

154

Three structures were analyzed using the three node triangular flat shell elements.
The displacements found from these anayses were found to be in good agreement.
However, there was a significant difference in the stress results. The reason for the
difference is because the drilling degrees of freedom were neglected in the development
of the element. It can be concluded that although the devel oped element gives reasonable
results for displacements it does not accurately model the behavior of the shell structures
when it comes to computing stresses. Thus, it is proposed that this element be modified

by including drilling degrees of freedom in the membrane part of the element.

The results from the quadrilateral shell elemernts were satisfactory only when
either membrane or bending action is present in the structure, but gave poor results when
inplane bending stresses were also present in the structure. The main reason for poor
results is again the negligence of inplane rotationa stiffness in the membrane stiffness
matrix. The stiffness parameter for the drilling degree of freedom was approximated in
the quadrilateral shell element developed in this study, while SAP 2000 uses a
quadrilateral shell element with inplane rotatioral degree of freedom and hence gives
more accurate results. McNeal and Harder (1988) have arrived at a similar conclusion.
According to them, the flat shell element gives more accurate results when inplane
rotationa degree of freedom is included. Knowles et al. (1976) also observed in his
studies that, the flat shell elements are more accurate when the response of the structure is
either membrane action or bending, but when membrane-bending coupling is present in
the structure the flat shell element gives poor results. They aso demonstrated the
complete failure in performance of flat shell elements while analyzing the torsional

behavior of adlit cylinder.

In conclusion, the plane stress and plate bending elements developed in this study
were found to be accurate. The triangular shell element performed better than the
guadrilateral shell elements. From an analysis of different structures using the program, it
can be concluded that the assembly of the structure stiffness matrix and the equation

solver used in the program are accurate.

155

8.3 Future Development

This study illustrates the use of the object oriented Java programming language
for developing membrane, plate bending and flat shell elements. Suggestions for future
work include: (1) developing flat shell elements in which the membrane elements have
rotational degrees of freedom, (2) using a band storage scheme for storing the structure
stiffness matrix and band solvers in the program to solve large finite element analysis
problems, (3) modifying the program to include a graphical user interface and, (4)

extending the program to include other elements such as truss, and frame elements.

156

Refer ences:

Bathe K. J., Finite Element Procedures, Prentice — Hall, Englewood Cliffs, New Jersey,
1996.

Bathe, K. J, and Ho, L. W., A Simple and Effective Element for Anaysis of General
Shell Structures, Computers and Sructures, Vol. 13, pp. 673-681, 1981.

Bathe K. J., Wilson E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall
Inc., 1976.

Batoz J-L., Bathe K. J. and Ho L. W., A Study of Three-Noded Triangular Plate Bending
Elements, International Journal for Numerical Methods in Engineering, Vol.15, 1771-
1812 (1980).

Batoz J. L. and Dhatt G., Development of Two Simple Shell Elements, AIAAJ, Vol. 10,
No. 2, 1972, pp. 237-238.

Batoz J-L. and Tahar M. B., Evaluation of a New Quadrilateral Thin Plate Bending

Element, International Journal for Numerical Methods in Engineering, Vol. 18, 1655-
1677 (1982).

Bazeley, G. P., Cheung Y. K., Irons B. M. and Zienkiewicz, O. C., Triangular Elements
in Plate Bending, Confirming and Non — Confirming Solutions, Proc. 1% Conference on
Matrix Methods in Sructural Mechanics, pp. 547-576, Wright Patterson AF Base, Ohio,
1966.

Chen H. C. Evaluation of Allaman Triangular Membrane Element used in General Shell
Anaysis, Computers and Structures, Vol. 43, No. 5, pp. 881-887, 1992.

157

Chen H. C., Evaluation of Allman Triangular Membrane Element used in general Shell
Anaysis, Computers and Structures, Vol. 43 (5), 1992, pp. 881-887.

Clough R. W. and Tocher J. L., Finite Element Stiffness Matrices for Analysis of Plate
Bending, Proc. Conference on Matrix Methods in Sructural Mechanic, WPAFB, Ohio,

1965, pp. 515-545.

Clough R. W., The Finite Element Method in Plane Stress Anaysis. Proceedings
American Society of Civil Engineers, 2" Conference on Electronic Computations,
Pittsbutgh, Pennsylvania, 23, 1960, pp. 345-378

C-MOLD Shrinkage & Warpage User's Guide, Copyright © 1995, 1997 Advanced CAE
Technology, Inc.

Cook R D., Concepts and Applications of Finite Element Analysis, John Wiley & Sons,
1974.

Cook R. D., Mdkus D. S, and Plesha M. E., Concepts and Applications of Finite
Element Analysis, 3" ed., John Wiley & Sons, 1989.

Driver J. J, A Methodology of Anaysis of Structures Using an Object-Oriented
Representation of the Structural Model, M.S. Thesis, Virginia Polytechnic Institute and
State University, 1994.

Ergatoudis I., Iron B. M., and Zeinkiewicz O. C., Curved Isoparametric ‘Quadrilateral’
elements for Finite Element Analysis, International Journal of Solids and Structures,

Vol. 4, No.1, 1968, pp. 31-42.

Gallagher R. H., Finite Element Analysis Fundamentals, Prentice-Hall, 1975.

158

Green B. E., Strome D. R., and Weikel R. C., Application of the stiffness method to the
analysis of shell structures, Procedures on Aviation Conference, American Society of
Mechanical Engineers, Los Angeles, March 1961.

Holzer S. M., Computer Analysis of Structures - Matrix Sructural Analysis Sructured
Programming, Elsevier Science Publishing Co., Inc., 1985.

Hrabok M. M., and Hrudey T. H., A Review and Catalogue of Plate Bending Finite
Elements, Computers and Structures, Vol. 19, No. 3, 1984, pp. 475-495.

Irons B. M., Engineering Application of Numerical Integration in Stiffness Methods,
AlAAJ, Vol. 4, No. 11, 1966, pp. 2035-2037.

Knight Jr. N. F., The Raasch Challenge for Shell Elements, AIAAJ, Vol. 35, 1997,
pp.375-388.

Mark A. and Blattau M., Alladin v. 1.0 - A complete Toolkit For Engineering Matrix and
Finite Element Analysis, 1996

McNeal R. H., A Simple Quadrilateral Shell Element, Computers and Structures, Val. 8,
1978, pp. 175-183.

McNea R. H. and Harder R. L., Refined Four Node Membrane Element with Rotational
Degrees of Freedom, Computers and Structures, Vol. 28, 1988, pp. 75-84.

Robinson J. and Haggenmacher G., Lora — an accurate four nodes stress plate bending
element, International Journal of Numerical Methods in Engineering, Vo. 14 (2), 1979,

pp. 296-306.

SAP-2000 - Integrated Finite Element Analysis and Design of Structures, Analysis
Reference, Computers and Structures, Inc., Berkeley, California, 1997.

159

SAP-2000 - Integrated Finite Element Analysis and Design of Structures, Input File
Format, Computers and Structures, Inc., Berkeley, California, 1997.

Schildt H., The complete reference — JAVA 2 4" ed., Tata McGraw-Hill Publishing
Company Limited, 2001.

Timoshenko S. and Woinowsky-Krieger S., Theory of Plates and Shells 2" ed., 1959.

Ugura A. C., Stresses in Plates and Shells, 2" ed. 1999.

Weaver W. Jr. and Johnston P. R., Finite Elements for Structural Analysis, Prentice-Hall,
1984.

Yang H. T., Saigal S., Masud A., Kapania R. A Survey of Recent Shell Finite Elements,
International Journal of Numerical Methods in Engineering, 2000, pp. 101-127.

Yang H. T. Y., Saiga S, and Liaw, D. G., Advances of Thin Shell Finite Elements and
some applications — version — |, Computers and Structures, 35, pp. 481-504, 1990.

Zhang Y. X., Cheung Y. K., and Chen W. J. Two refined non-conforming quadrilateral at
shell elements, International Journal of Numerical Methods in Engineering, Vol. 49, pp.

355-382.

Zienkiewicz O. C., The Finite Element Method in Engineering Science, 2" ed., McGraw-
Hill, 1971.

160

Appendix — A

Input File Format for Program

The input for the program can be provided in the form of atext file. The format of

the text file essentially follows that used in the SAP 2000 program. However, several

modifications were made to this format.

All input data is provided in inches and kips. The data to be provided is in the

form of data blocks. Each data block is separated by a specific title, which defines and

separates the data blocks. The data blocks must be in the same order as shown in Table

A-1.

Table A-1 Ligt of data blocksin input file

Title of the data block

Function

SYSTEM Defines system properties.

JOINT Defines joint coordinates.

RESTRAINT Defines the restraints provided to nodes.
MATERIAL Defines material properties.

SHELL SECTION Defines shell section properties.

SHELL Defines the joint connectivity for each element.
LOAD Defines applied loads applied and load cases.
END Ends the input file.

SYSTEM Data Block:

SYSTEM data block provides information regarding the degrees of freedom for

the whole structure. The restraint conditions for the structure can be derived from this

data block.

161

Table A- 2 SYSTEM data block

SYSTEM
DOF = UX, UY, UZ, RX, RY, RZ Shell Element
DOF = UX, RY, RZ or UY, RX, RZ or UZ, RX, RY Plate Element
DOF = UX, UY or UY, UZ or UX, UZ Plane Element

JOINT Data Block:

The JOINT data block contains data for joint coordinates. For each joint, X, Y

and Z coordinates must be provided.

Table A- 3 JOINT data block

JOINT

1 X=0.5 Y=0.5 Z=0

Node number X-coordinate Y -coordinate Z-coordinate

RESTAINT Data Block:
The RESTRAINT data block provides data for the restraints provided at different
nodes of the structure. The notations U1, U2, U3 and R1, R2, R3 represents trand ational

and rotational restraintsin THE global X, Y, and Z directions regpectively.

Table A-4 RESTRAINT data block

RESTRAINT
ADD=1 DOF=U1, U2, U3, R1, R2, R3
Adds restraint to joint number 1 Provides restraints in the specified direction for

joint 1.

162

MATERIAL Data Block:

The MATERIAL data block defines material properties for the elements such as

modulus of elasticity and Poisson’ s ratio.

Table A-5 MATERIAL data block

MATERIAL
E=29000 U=0.3
Modulus of elasticity Poisson’s ratio

SHELL SECTION Data Block:
The SHELL SECTION data block provides information regarding section
properties such as the thickness of the plane, plate or shell element. This data block also

provides information on the type of stress condition (plane stress or plane strain).

Table A-6 SHELL SECTION data block

SHELL SECTION

TH=1.0 TYPE=STRESS or STRAIN
Thickness of the element. Stress conditions (plane stress or plane
strain)

SHELL Data Block:

SHELL data block provides information regarding joint connectivity for each

element.

163

Table A-7 SHELL data block

SHELL

1 J1234

Element no. | Defines nodes 1, j, k, and | in counterclockwise direction (Quadrilatera
element)

1 JF123

Element no. | Definesnodes i, j, and k in counterclockwise direction (Triangular element)

LOAD Data Block:

LOAD data block defines load values, load cases and load types. Two types of
loads are considered in this study. One is a concentrated load that can be applied at any
joint and the other is a uniformly distributed surface load that can be applied to elements
in the element local Z — direction. A multiplication factor for any load case can also be
defined in this data block.

Table A-8 LOAD data block

LOAD
NAME = DEAD LOAD MULT =1
Defines the load case. Defines the multiplication factor.
TYPE = FORCE

Defines the load type for this load case.

ADD =1 UX=5UY=2UZ=4,RX=4,RY=1RZ=2
Adds joint load to specified node. Defines the value of load in specified direction.

TYPE =UDL

Defines uniformly distributed load.

ADD=1 P=-1
Applies surface load to specified element. | Defines the value of the applied load.

164

END Data Block:

The END data block must be placed at the end of the input text file to indicate the
end of al input data.

165

Vita

Kaushalkumar M. Kansara was born in Palanpur, Gujarat, India March, 17, 1979.
He completed his high school at Shri Vividh Laxi Vidya Mandir in 1996. He graduated
with Bachelor of Engineering in Civil Engineering with First Class Distinction from
Lukhdheerji Engineering College, Morvi, India. He joined Virginia Tech for pursuing
Masters of Science in Civil Engineering in August 2002. He is working as a structural

engineer at Alliance Structural Engineersin Vienna, Virginia.

166

