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(ABSTRACT) 

 

The development of triangular and quadrilateral membrane, plate and shell 

elements in Java using the object oriented programming technique is presented. The 

membrane elements developed are the constant strain triangle (CST) element and the four 

node isoparametric quadrilateral membrane element. The plate bending elements 

developed are the discrete Kirchoff triangular (DKT) element and discrete Kirchoff 

quadrilateral (DKQ) element. The flat shell elements are developed by super imposing 

the stiffness of the membrane element and plate bending element. A finite element 

analysis program is also developed to check the  accuracy of the developed elements. The 

program is developed using the object oriented programming approach as an alternative 

to traditional procedural programming. Several test structures are analyzed using the 

developed program for each developed element and the results are compared with those 

obtained from the commercial finite element analysis program SAP 2000. The results 

indicate that all elements give accurate displacements. However, there were significant 

differences in stresses for the shell elements, which can be attributable to the approximate 

approach in these elements to model the drilling degree of freedom. 
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Chapter 1 

Introduction 

 
1.1 Introduction 

 

The finite element method is an approximate numerical procedure for analyzing large  

structures and continua (Cook et al., 1989). The finite element method became popular 

with the advancements in digital computers since they allow engineers to solve large 

systems of equations quickly and efficiently. The finite element method is a very useful 

tool for the solution of many types of engineering problems such as the analysis of the 

structures, heat transfer and fluid flow. The method is also used in the design of air 

frames, ships, electric motors, heat engines and spacecraft. The finite element method is 

also used for analyzing the behavior of components of biological systems. 

 

 In most structural analysis applications it is necessary to compute displacements and 

stresses at various points of interest.  The finite element method is a very valuable tool 

for studying the behavior of structures. In the finite element method, the finite element 

model is created by dividing the structure in to a number of finite elements. Each element 

is interconnected by nodes. The selection of elements for modeling the structure depends 

upon the behavior and geometry of the structure being analyzed. The modeling pattern, 

which is generally called mesh for the finite element method, is a very important part of 

the modeling process. The results obtained from the ana lysis depend upon the selection of 

the finite elements and the mesh size. Although the finite element model does not behave 

exactly like the actual structure, it is possible to obtain sufficiently accurate results for 

most practical applications. Once the finite element model has been created, the 

equilibrium equations can easily be solved using digital computers without having to 

solve a large number of partial differential equations by hand. The deflections at each 

node of the finite element model are obtained by solving the equilibrium equations. The 

stresses and strains then can be obtained from the stress-strain and strain-displacement 

relations. 
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The finite element method is ideally suited for implementation on a computer. With 

the advancements in digital computers, the finite element method is becoming the method 

of choice for solving many engineering problems, and is extensively used for structural 

analysis. The structure can be discretized using frame elements, plane elements, plate 

elements, or shell elements according to the behavior of the structure. The structure can 

also be modeled by combining different types of elements to approximate different 

aspects of structural behavior. 

 

1.2 Objective and Scope  

 

The focus of this thesis is to develop triangular and quadrilateral flat shell 

elements for the finite element analysis of thin shell structures. The flat shell elements are 

developed by combining membrane elements with plate bending elements. An important 

aspect of the work is to implement these elements on the computer using an object 

oriented approach and the Java programming language. Java was chosen as the 

programming language for this work; since (1) Java is an object oriented programming 

language, and (2) Java is platform independent.  

  

 Four elements were considered in this study. The membrane elements considered 

were the CST (constant strain triangle) element, and the four node isoparametric 

quadrilateral plane element (QUAD4). The plate bending elements used were the discrete 

Kirchoff plate bending elements, the DKT element (discrete Kirchoff triangular element) 

(Batoz et al., 1980) and the DKQ element (discrete Kirchoff quadrilateral element) 

(Batoz and Tahar, 1982). The flat shell elements were obtained by combining the above 

mentioned elements. 

 

 A finite element analysis program that calculates deflections and stresses was also 

developed in order to verify the accuracy of these elements. This program was written in 

Java using the object oriented approach. The results obtained for a series of test problems 

were compared with those from a commercial finite element analysis program. 
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1.3 Organization 

 

The thesis is divided in to eight chapters including the Introduction. An overview 

of the finite element analysis method and the Java programming language is presented in 

Chapter 2. This chapter also contains a discussion of membrane and plate bending 

elements and techniques for developing flat shell elements. Chapter 3 describes the 

development of the triangular and quadrilateral membrane elements and their 

implementation in Java. Chapter 4 describes the development of the triangular and 

quadrilateral plate bending elements based on the discrete Kirchoff theory and their 

implementation in Java. The development of flat shell elements by combining the 

membrane elements and plate bending elements and the implementation of these 

elements is discussed in Chapter 5. Chapter 6 describes the object oriented finite element 

analysis program developed to test the accuracy of the flat shell elements. The test 

problems used to verify the accuracy of the results obtained are described in Chapter 7. 

Also, the results obtained from the Java program are compared with those obtained from 

the SAP 2000 commercial finite element analysis program.  Chapter 8 presents a 

summary of the important results and a discussion of the results. Suggestions for future 

development are also given in this chapter. 
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Chapter 2 

Literature Review 

 

2.1 Introduction  

  

Since the evolution of the term finite element by Clough in 1951, there have been 

significant developments in finite element method. A large number of different finite 

elements have been developed; the finite element method has been used for solving 

problems in different fields of engineering. The finite element method became even more 

popular with the advancement of microcomputers and development of various efficient 

programming languages. In this chapter, the development of membrane, plate bending 

and flat shell finite elements is discussed. An overview of the object oriented Java 

programming language is also presented.  

 

2.2 Membrane Elements 

 

 Membrane elements are among the simplest elements to develop. These elements 

are used for analyzing structures subjected to inplane forces. Assuming that the structure 

is in the xy plane, the displacements at any point of the structure are u , the translation in 

the x direction and v , the translation in the y direction. The stresses of interest are the 

normal stresses xσ  and  yσ  and the shearing stress xyτ . The normal stress in the direction 

perpendicular to the plane of structure is considered to be zero. Membrane elements are 

used to model the behavior of shear wall, stiffened sheet construction, and membrane 

action in shells. 

 

 The membrane element used in this study for the formulation of triangular flat 

shell elements is the constant strain triangle (CST). The CST element is so named 

because the strains within the element are independent of the coordinates and hence are 

constant over the element. Triangular elements are useful for modeling arbitrary shaped 

geometry and hence are used quite extensively for the analysis of planar structures. 
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 Isoparametric elements are useful for modeling structures with irregular 

boundaries. The word isoparametric derived from ‘iso’ (“same”) and ‘parametric’ 

(“parameter”) indicates that the same functions are used to define the shape and 

displacements of the element. It is often difficult to model the geometry of a structure 

with just the regular shaped triangular or rectangular elements. Isoparametric elements 

are useful for modeling structures; since the isoparametric elements can have curved 

sides. Such elements are formulated us ing higher order interpolation functions. 

Isoparametric elements are formulated in the natural coordinate system that maps the 

element geometry in terms of natural coordinates regardless of the orientation of an 

element in the global coordinate system; however, the relationship between the two 

systems must be used in the element formulation (Cook, 1974). 

 

Irons (1966), introduced the concept of isoparametric elements in stiffness 

methods.  The four node isoparametric quadrilateral element is the simplest element in 

the family of isoparametric plane elements. Ergatoudis et al. (1968) developed shape 

functions to formulate the element stiffness matrix for four node isoparametric 

quadrilateral element. The four node isoparametric quadrilateral plane element is used to 

develop the quadrilateral flat shell element in this study. 

 

2.3 Plate Bending Elements 

 

 There has been considerable interest in the development of plate bending 

elements ever since their use became popular for representing the bending behavior of the 

shell elements. Many plate bending elements have been developed. Hrabok and Hrudey 

(1984) presented a review of all plate bending elements as a part of the study on the 

effectiveness of plate bending elements. Clough and Tocher (1965) developed the 

triangular plate bending element by dividing the main triangle in to three subtriangles. 

Bazeley et al. (1966) developed confirming and nonconfirming plate bending elements. 

They developed a triangular plate bending element by using shape functions based on the 

area coordinates. The nonconforming plate bending element does not pass the patch test 
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for some mesh patterns, and the confirming element is costly to use because of the high 

order numerical integration scheme required to determine the stiffness matrix of the 

element.  

 

Batoz et al. (1980) developed several effective triangular plate bending elements 

for the analysis of plates and shells. These elements had two rotational degrees of 

freedom and one translational degree of freedom at each node for a total of 9 degrees of 

freedom. They developed three types of plate bending elements: (1) the DKT element 

based on Discrete Kirchoff Theory assumptions, (2) the HSM element based on the 

Hybrid Stress Method, to overcome the problems in development of pure displacement 

based models, and (3) the SRI element based on Selective Reduced Integration scheme 

that includes transverse shear deformation. Batoz et al (1980) compared the results 

obtained for these elements. They found that the DKT and HSM elements are more 

effective than the SRI element. They also found that the DKT element gives better results 

than the HSM element because the DKT element requires less storage compared to the 

HSM element. 

 

Quadrilateral plate bending elements are popular in analyzing slab structures and 

are used in formulating shell elements for the analysis of regular shaped shell structures. 

Earlier attempts to develop quadrilateral plate bending elements involved combining four 

triangular plate bending elements (Batoz and Tahar, 1982). However their formulation 

was very complicated. McNeal (1978) developed a four node quadrilateral shell element 

using isoparametric shape functions. This element gives very good results for plate 

bending. Robinson and Haggenmacher (1979) developed the quadrilateral plate bending 

element, LORA based on stress parameters rather than displacement fields. This element 

also gives very good results for plate bending.  

 

Batoz and Tahar (1982) reviewed the earlier attempts to develop plate bending 

elements and concluded that these elements were useful for thick plates, but when applied 

to the thin plates they do not give very good results. Batoz and Tahar (1982) developed a 

four node quadrilateral element based on the Discrete Kirchoff theory. The basis of the 
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formulation of this element was the Discrete Kirchoff Triangular (DKT) element 

developed earlier (Batoz et al., 1980). The quadrilateral plate bending element (DKQ) 

formulated by Batoz and Tahar (1982) and the triangular plate bending element (DKT) 

formulated by Batoz et al. (1980), are based on the discrete Kirchoff assumptions in 

which the transverse shear strain is neglected. They considered transverse shear strain to 

be present in the element in the initial development and then removed the transverse 

shear strain terms by applying discrete Kirchoff constraints. Batoz and Tahar (1982) 

conducted several tests on these elements. Based on their study, they suggested that the 

convergence rates in displacements and stresses for DKQ element is not good as for the 

QUAD4 element by McNeal (1978) and LORA by Robinson and Haggenmacher (1979).  

 

2.4 Flat Shell Elements  

 

 Shell elements are widely used to model the curved geometry of a structure. Shell 

elements based on classical shell theory are very difficult to develop. Many simplifying 

approximations are involved in the development, which leads to less accurate results. 

These types of elements are very efficient in modeling the curved geometry of the 

structure. However, because of the complexities involved, the alternative approach of 

modeling the structure with series of flat elements, which is simpler and easier to 

implement, became more popular for the analysis of shell structures.   

 

 In 1961, Green et al. first developed the concept of using triangular flat shell 

elements to model arbitrary shaped shell structures (Zienkiewicz, 1971). Shells with 

cylindrical shapes or regular curved surfaces can be modeled using rectangular or 

quadrilateral flat shell elements. Zienkiewicz (1971) recommended modeling curved 

surface by a series of flat shell elements, rather than using the more complex curved shell 

elements. He suggested developing a built up element by combining membrane and plate 

bending elements to develop a flat shell elements. 

 

Bathe and Ho (1981) studied two approaches for the development of shell 

elements. The first approach is to use the higher order isoparametric elements, which are 
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formulated on the basis of three dimensional stress conditions and using the higher order 

shape functions and integration scheme. The second approach is to use lower order shell 

elements, which are developed by superimposing previously available membrane and 

plate bending elements and hence obtaining the membrane and bending properties of the 

shell element. They found that the second approach is more cost effective than the first 

because of the simplicity of development. The lower order terms used in the formulation 

require less computation effort and time. They also concluded that higher order elements 

give far superior results than the lower order elements, but they are costly to implement 

on the computer because of the large size of the stiffness matrix.  

 

McNeal and Harder (1988) suggested in their study that, the higher order 

elements take three times more solution effort than the lower order elements.  Another 

drawback of higher order elements is the use of high order numerical integration schemes 

to avoid spurious zero energy modes. Lower order elements require a large number of 

elements to model the structure but they require less computational effort and hence are 

still cheaper as compared to the higher order elements. However, the effectiveness of the 

element and accuracy of results of the lower order elements largely depends on the type 

of the element selected for the formulation of the shell element. 

  

Flat shell elements are developed by combining membrane elements containing 

two inplane translational degrees of freedom and plate bending elements containing two 

rotational degrees of freedom and one out of plane translational degree of freedom. Since 

the inplane rotational degrees of freedom are not included, that leaves null or zero values 

in the stiffness matrix. The null values for the inplane rotational degrees of freedom, 

generally called drilling degrees of freedom gives singularity in structure stiffness matrix 

if all the elements are co-planar. Chen (1992) suggested that problems occur in solving 

in-filled frames, folded plate structures and other complex structural systems when the 

inplane rotational stiffness is not included in the stiffness matrix of the shell element.  

 

Several methods have been suggested by various authors for removing the 

singularity in the stiffness matrix. The normal approach to deal with the stiffness of the 
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drilling degrees of freedom is to approximate the stiffness for the drilling degrees of 

freedom. Knight (1997) suggested that a very small value be specified for the stiffness of 

the drilling degrees of freedom so that the contribution to the strain energy equation from 

this term will be zero.  Zienkiewicz (1971) developed the matrix for the stiffness of the 

drilling degrees of freedom for triangular flat shell elements. Bathe and Ho (1981) 

approximated the stiffness for drilling degrees of freedom by using a small approximate 

value. 

 

Batoz and Dhatt (1972) presented the formulation of a triangular shell element 

named KLI element with 15 degrees of freedom and a quadrilateral shell element named 

KQT element with 20 degrees of freedom using the discrete Kirchoff formulation of plate 

bending element. The KQT element was developed by combining four triangular 

elements with the mid-nodes on the sides. The KQT element was found effective among 

the two.   

 

Bathe and Ho (1981) developed a flat shell triangular element by combining the 

CST element for membrane stiffness and the plate bending element using the Mindlin 

theory of plates for the bending stiffness. They introduced a fictitious stiffness for the 

drilling degrees of freedom in the development of the element stiffness matrix for the 

triangular flat shell element. The element developed by Bathe and Ho (1981) was found 

to be very effective for the analysis of shell structures.  

 

McNeal (1978) developed the quadrilateral shell element QUAD4, by considering 

two inplane displacements that represent membrane properties and one out-of-plane 

displacement and two rotations, which represents the bending properties. McNeal (1978) 

included modifications in terms of a reduced order integration scheme for shear terms. He 

also included curvature and transverse shear flexibility to deal with the deficiency in the 

bending strain energy.  

 

The simplest method adopted to remove the rotational singularity is to add a 

fictitious rotational stiffness. However, Yang et al. (2000) suggested that, although the 
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method solves the  problem of singularity it creates a convergence problem that 

sometimes leads to poor results. However, the majority of the flat shell elements are 

developed by inducing the fictitious rotational stiffness to remove the singularity. Recent 

developments include using membrane elements with rotational degrees of freedom to 

develop an efficient flat shell element. 

 

2.5 Java Programming Language 

 

Computer programming languages are built around two approaches; (1) procedural 

programming and (2) object oriented programming. In procedural programming, the 

program is prepared by a series of steps or routines that follow the data provided. The 

programming languages FORTRAN, C, BASIC are procedural programming languages. 

The main drawback of the procedural programming languages is that they are not 

structured and the flow of the program largely depends on conditional statements that 

induce more chances of errors. These languages are good for small programs, but 

procedural program are difficult to maintain when they become larger.  

 

In the object oriented programming approach, the program is organized around its 

data in the form of objects (Schildt, 2001). The object oriented programming languages 

are built on the concept of abstraction. Large complex procedures can be subdivided in to 

small procedures by abstraction. Each of these sub procedures represents different objects 

with their own separate identity. The series of process steps can be achieved by passing 

information to the objects without being affected by the complexity of the whole 

procedure. The three unique aspects of the object oriented programming languages are:  

(1) Encapsulation (2) Inheritance and (3) Polymorphism. Each of these concepts is 

discussed separately in following paragraphs. 

 

Encapsulation is the most important aspect of the object oriented programming.  In 

object oriented programming languages, classes perform the task of encapsulation. Class 

defines the structure and behavior of the process that will be shared by a set of objects 

(Schildt, 2001) such as variables and methods. The variables or methods are declared by 
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access specifiers such as public, private or protected. A variable or method declared as 

public can be accessed from outside the class in the program. Variables or methods that 

are defined as private cannot be accessed from outside the class and hence the privacy of 

the data is maintained. Variables or methods declared protected are only accessible to the 

superclass and the subclass where the properties of the superclass are inherited. 

 

Many programs contain objects that are dependent on each other and inherit certain 

properties from one object to another. In object oriented programming, the classes are 

divided in the superclass and subclass. The subclass inherits all of the properties of the 

superclass except those declared as private. Any subclass that inherits properties from its 

subclass may have additional properties that give it an individual identity, which is not 

common to the other objects or subclasses that inherit the same properties from the super 

class. 

 

Polymorphism is another valuable feature of object oriented programming. 

Polymorphism allows the programmer to use the same interface to perform multiple 

tasks. The same class may contain multiple methods that are related to different activities 

and each method will perform a different task when it is called by the object. The call to 

one method will not affect the contents or activity of another method in the same class.  

 

Several object oriented programming languages have been developed in recent years. 

These include C++, C#, and Java. Java is one of the more popular object oriented 

programming languages because it has several unique features.  

 

Java is an object oriented programming language developed by Sun Microsystems in 

1991. Java is based on the popular programming language C++. It has many of the same 

features of C++. Over the years, Java has become very popular because of some of its 

unique features. Java is platform independent, which means code developed in Java can 

be used on a variety of different computers without making any changes. Another 

advantage is that, Java programs can be embedded within HTML pages (where they are 
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called applets) and can be easily transmitted over the internet. All this needs is a Java 

compatible web browser to run these applets. 

 

Another reason for the popularity of Java is its robustness. Java provides automatic 

protections for memory loss and run-time errors that occur during the program execution. 

Java has a special garbage collection class that dynamically allocates memory and hence 

prevents memory loss. In other programming languages, this is done manually by the 

programmer and any mistake in allocating or deallocating memory may result in failure 

of the program. There is also an exception handling class for handling runtime errors in 

Java. With the use of this class it is possible to catch many common runtime errors which 

would otherwise result in program failure. 

 

Until recently most finite element analysis program were written in FORTRAN. 

Although FORTRAN is an efficient language for developing scientific applications, it is 

not well suited for writing large complex programs. With the advancements in finite 

element analysis, many different types of elements are being developed and elements are 

constantly being modified to improve their behavior. It is very difficult to maintain the 

codes for the finite element analysis that were developed using procedural programming 

languages because of its complexity. An object oriented programming language such as 

Java is better suited for the development of large complex programs for finite element 

analysis, because of the many advantages discussed above. These advantages make it 

very attractive to implement object oriented programming techniques for the 

development of the finite element analysis codes.  
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Chapter 3 

Membrane Elements 

 
3.1 Overview 

  

 Two types of membrane elements are used for development of flat shell elements 

in this study: (1) the constant strain triangle (CST) element, and (2) the four node 

isoparametric quadrilateral element. In this chapter the development of the element 

stiffness matrix for these elements is presented. The implementation of these elements in 

Java is also discussed. 

  

3.2 Two Dimensional Stresses and Strains  

  

 Two dimensional elasticity problems typically involve structures that are very thin 

and the loads are applied in the direction in the plane of the structure. Consider a 

structure in the xy plane with thickness t  along the z direction. When inplane forces are 

applied to the structure, the displacements at any discrete point of the structure located by 

the coordiantes ( ),x y  are, 

  

 { },
T

u v=U          (3.1) 

 

where, u  and v  are the x and y components of the displacement. The stresses and strains 

are given by, 

  

 { }, ,
T

x y xyσ σ τ=σ          

 { }, ,
T

x y xyε ε γ=ε         (3.2) 
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There are two classes of plane elasticity problems: (1) plane stress, and (2) plane 

strain. Each of these conditions is described in the following sections. 

 

3.3 Plane Stress Condition 

  

 When the structure is subjected to forces in its own plane, the state of 

deformations and stresses is called plane stress cond ition (Weaver et al., 1984).  If a plate 

is very thin and is only subjected to inplane forces, then the displacements and stresses 

normal to the plane of the plate are negligible. Assuming the thin plate is in the xy plane, 

the stresses 0zσ = , 0yzτ = , 0xzτ = and, 0zε ≠  (Cook et al., 1989). For isotropic 

material properties the stress-strain relationship for the plane stress condition is, 

 

[ ]
x x

y y

xy z

σ ε

σ ε

τ ε

   
   

=   
   

  

E           (3.3) 

 

where, [ ]E  is the material matrix and can be expressed as,   

 

   [ ] 2

1 0
1 0

1
1

0 0
2

E
ν

ν
ν

ν

 
 
 

=  −  −
 
 

E          (3.4) 

 

3.4 Plane Strain Condition 

 

 When a prismatic solid is subjected to a uniform load normal to its axis and the 

solid is divided into thin plates then each plate will have inplane forces, i.e., the forces 

will be in the direction of the plane of the plate (Weaver et al., 1984). This condition is 

called the plane strain condition. For the plane strain condition 0zε = , 0yzε = , 0zxγ = , 
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and 0zσ ≠  (Cook et al., 1989). The material matrix [ ]E , for the plane strain condition 

for an isotropic material is given by, 

  [ ] ( ) ( )

1 0 0
1 0

1 1 2
1 2

0 0
2

E
ν

ν ν
ν ν

ν

 
 −
 

= − + −  −
 
 

E         (3.5) 

where, 

E  = modulus of elasticity of the material and, 

ν  = Poisson’s ratio. 

 

3.5 Constant Strain Triangle 

  

 The simplest triangular plane stress element is the constant strain triangle. This 

element has two inplane degrees of freedom at each node for a total of six degrees of 

freedom per element. The constant strain triangle is widely used for various analysis 

purposes. The nodes of the CST element are numbered in a counterclockwise direction as 

shown in Fig. 3.1.  

 
 

Fig. 3.1 Constant Strain Triangle (CST). 
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The procedure for developing the stiffness matrix of the CST element is as follows 

(Cook, 1974), 

 

The assumed displacement field can be defined by,  

 

( ) 0 1 2,u x y a a x a y= + +  

( ) 3 4 5,v x y a a x a y= + +      (3.6)  

 

where ( ),u x y  is the displacement in the x direction, and ( ),v x y  is the displacement in 

the y direction. 

 

The above equations can be written in matrix form as,  

 

0

1

2

3

4

5

1 0 0 0
0 0 0 1

a

a
au x y
av x y
a

a

 
 
 
     

=    
    

 
 
  

     

or           (3.7) 

 

( ){ } [ ]{ },U x y X a=       

  

From Equation (3.3) and the strain-displacement relationships the following 

results can be obtained, 

 

( ) 1,x

u
x y a

x
ε

∂
= =

∂
         (3.8) 

 

( ) 5,y
v

x y a
y

ε
∂

= =
∂

         (3.9) 
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2 4xy
u v

a a
y x

γ
∂ ∂

= + = +
∂ ∂

        (3.10) 

 

It is seen from the above equations that, terms 0a  and 3a  represents rigid body 

translations of the system while, the term 1a  represents a constant strain in the x  

direction, and the term 5a  represents a constant strain in the y  direction. From Equation 

(3.10) it can be determined that the term 2 4a a+  represents a uniform shear strain. Also 

from Equations (3.8), (3.9) and (3.10) it is observed that the strains are independent of x 

and y and are constant over the element. This is why this element is called the constant 

strain triangle.  

 

 As shown in Fig. 3.1, the coordinates of nodes 1, 2 and 3 are ( )1 1,x y , ( )2 2,x y  and 

( )3 3,x y  respectively. The corresponding displacements at each node are ( )1 1,u v , ( )2 2,u v  

and, ( )3 3,u v  respectively. Substituting the values of nodal coordinates, Equation (3.7) 

results in the following: 

  

01 1 1

1 11 1

2 22 2

2 22 3

3 33 4

3 33 5

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1
1 0 0 0
0 0 0 1

au x y
v ax y
u ax y

x yv a
x yu a

x yv a

    
    
    
       

=     
    
    
    
        

   (3.11) 

 

or 

 

    { } [ ]{ }u A a=       (3.12) 

 

The coefficients { }a are obtained by inverting Equation (3.12), 
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{ } [ ] { }1
a A u

−
=      (3.13) 

 

From Equation (3.7),  

    ( ){ } [ ]{ },U x y X a=  

 

Therefore,     

( ){ } [ ][ ] { }1
,U x y X A u

−
=     (3.14) 

 

where, [ ][ ] 1
X A

−
 represents the shape functions [ ]N . 

 

    [ ] [ ][ ] 1
N X A

−
=      (3.15)  

 

Inverting the [ ]A  matrix in Equation (3.11) and solving for { }a gives,   

 

0 12 3 3 2 3 1 1 3 1 2 2 1

11 2 3 3 1 1 2

22 3 2 1 3 2 1

2 3 3 2 3 1 1 3 1 2 2 1 23

2 3 3 1 1 2 34

3 2 1 3 2 15

0 0 0
0 0 0

0 0 01
0 0 02
0 0 0
0 0 0

a ux y x y x y x y x y x y
va y y y y y y
ua x x x x x x

x y x y x y x y x y x y va A
y y y y y y ua
x x x x x xa

− − −   
   − − −   
   − − − 

=   
− − −  

   − − −
  

− − −      3v

 
 
 
  
 
 
 
 
  

 

           (3.16) 

where, A  is the area of the triangle and can be expressed as, 

 

( ) ( ) ( )1 2 3 2 3 1 3 1 2

1
2

A x y y x y y x y y= − + − + −      (3.17) 

 

The shape functions are obtained by combining Equations (3.15) and (3.16). 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3 3 2 2 3 3 2

2 3 1 1 3 3 2 1 3

3 1 2 2 1 1 2 2 1

1
2

N x y x y y y x x x y
N x y x y y y x x x y

A
N x y x y y y x x x y

− + − + −  
   = − + − + −  
   − + − + −   

  (3.18) 

 

The displacements can now be rewritten in terms of the shape functions as, 

 

( )
( )

1

1

21 2 3

1 2 3 2

3

3

, 0 0 0
0 0 0,

u

v
u x y uN N Nu

N N N vv v x y
u

v

 
 
 
         

= =      
       

 
 
  

  (3.19) 

 

The strains are obtained from the strain-displacement relationships.  

 

( )( )
3

1

,x i i
i

u
N x y u

x x
ε

=

∂ ∂
= =

∂ ∂ ∑        (3.20) 

 

( )( )
3

1

,y i i
i

v
N x y v

y y
ε

=

∂ ∂
= =

∂ ∂ ∑         (3.21) 

 

( ) ( )
3 3

1 1
xy i i i i

i i

u v
N u N v

y x y x
γ

= =

∂ ∂ ∂ ∂   
= + = +   ∂ ∂ ∂ ∂   

∑ ∑      (3.22) 

 

The above equations can be written in matrix form as, 

 

1
31 2

1

231 2

2

3 31 1 2 2 3

3

0 0 0

0 0 0
x

y

xy

uNN N
vx x x
uNN N
vy y y

N NN N N N u
y x y x y x v

ε

ε

γ

  ∂∂ ∂
  

∂ ∂ ∂     
    ∂∂ ∂  

=    ∂ ∂ ∂    
    ∂ ∂∂ ∂ ∂ ∂

  
∂ ∂ ∂ ∂ ∂ ∂      

   (3.23) 
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or 

( ){ } ( ) { }6 13 1 3 6
, , ix y B x y uε

×× ×
=     

 

Taking the derivatives of the shape functions (Equation 3.18) with respect to x 

and y, gives the strain-displacement matrix [ ]B , 

 

( )
2 3 3 1 1 2

3 2 1 3 2 1

3 2 2 3 1 3 3 1 2 1 1 2

0 0 0
1

, 0 0 0
2

y y y y y y

B x y x x x x x x
A

x x y y x x y y x x y y

− − − 
 = − − −    
 − − − − − − 

 (3.24) 

 

The element stiffness matrix can now be obtained using the strain-displacement 

matrix [ ]B  and the material matrix [ ]E . 

 

[ ] [ ] [ ] [ ]6 6 6 3 3 3 3 6

T

v

k B E B dv
× × × ×

= ∫     (3.25) 

For constant thickness, the volume integral can be reduced to an area integral, 

 

[ ] [ ] [ ] [ ]6 6 6 3 3 3 3 6

T

A

k t B E B dA
× × × ×

= ∫     (3.26) 

where,    

t  = thickness of the element. 

 

Since all the terms in the strain-displacement matrix [ ]B  and the material matrix 

[ ]E  are constant, Equation (3.26) can be rewritten as,  

  

[ ] [ ] [ ] [ ]6 6 6 3 3 3 3 6

T

A

k t B E B dA
× × × ×

= ∫  

or 

[ ] [ ] [ ] [ ]6 6 6 3 3 3 3 6

T
k tA B E B

× × × ×
=      (3.27) 
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3.6 Implementation of the CST Element in Java 

 

To implement the CST element in Java, a class called CSTElement was 

developed. The CSTElement class is derived from the base class Element. The base class 

Element contains the data variables and functions necessary for managing all of the 

different elements in the program. 

 

The class definition and the variables declared within the CSTElement class are given 

below, 

 
public class CSTElement { 

 

  private double th; //Thickness of the element. 

  private double[] EX; //x Coordinates at each node of the element. 

  private double[] EY; //y Coordinates at each node of the element. 

  private double[][] D; //Material Matrix. 

  private double A; //Area of the element. 

  private double[][] B; //Strain-Displacement Matrix. 

  public double[][] CSTKelem; //Element stiffness matrix. 

 

The variable th represents the thickness of the element, []EX and []EY are arrays 

containing the x and y coordinates of the nodes. A is the area of the element. The two 

dimensional arrays D, B and CSTKelem contains the material matrix, the strain-

displacement matrix and the element stiffness matrix respectively. All of these instance 

variables except the two dimensional array CSTKelem representing the element stiffness 

matrix, are declared as private.  

 

The constructor of the CSTElement is,  

 
public CSTElement(double[] cx, double[] cy, double[][]  Mat, double 

thelem) { 

   th = thelem; 

   EX = cx; 
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   EY = cy; 

   D = Mat; 

} 

 

The coordinates of the nodes, the material matrix, and the thickness of the 

element are all initialized through the constructor when an instance of the class 

CSTElement is created. 

 

The methods of the class CSTElement are given in Table 3.1. All methods are 

declared private except for the CalcElemK () method, which is declared as public since 

it is called from outside the class. The method Area () computes the area of triangle 

using Equation (3.17). The CSTBMatrix () method computes the B matrix for the 

element using Equation (3.24). The element stiffness matrix is computed in the method 

ElementKMatrix () using the relationship from Equation (3.27). 

 

Table 3.1 Methods in the class CSTElement 

 

Method Description 

Area () Calculates the area of triangle. 

CSTBMatrix () Calculates the strain-displacement matrix. 

ElementKMatrix () Calculate the element stiffness matrix for CST element. 

 

The structure of the CalcElemK () method is shown below. This method takes 

CSTElement as an argument and calls the Area (), CSTBMatrix () and 

ElementKMatrix () methods. 

 
public void CalcElemK(CSTElement c) { 

 

  //Calculates Area of the Triangular element. 

  c.Area(); 

 

  //Method for calculating Strain-Displacement Matrix. 

  c.CSTBMatrix(); 
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  //Method for calculating Element Stiffness Matrix. 

  c.ElementKMatrix(); 

 

} 

 

 The approach used for analyzing a structure consisting of CST elements is as 

follows. For each CST element an instance of the CSTElement class is created by calling 

the constructor. 

 
CSTElement cst = new CSTElement (X, Y, D, TH); 

 

where,  cst is the instance of the class CSTElement. The x and y coordinates of the 

nodes, the material matrix and the thickness of the element are passed in the above 

constructor. Once an object of the CSTElement class has been created the element 

stiffness matrix is computed by calling the method CalcElemK () of the main class by 

passing the cst object as an argument to the function. 

 

The CSTElement class also contains the method CalcStresses (). This method 

calculates stresses for the CST element. These stresses are obtained from the nodal 

displacements which are computed during the analysis. The CalcStresses () method is 

declared as, 

 
public void CalcStresses(CSTElement cst, double[] U, StressResults S) { 

 

The parameter cst is an instance of the CSTElement class, U is the array of nodal 

displacements and S is an instance of the StressResults class which stores element 

stresses. 
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3.7 Four Node Quadrilateral Plane Stress Element 

 

 The quadrilateral plane stress element used in this study is the four node 

isoparametric quadrilateral element. The four node quadrilateral element (see Fig. 3.2) 

has two degrees of freedom per node for a total of eight degrees of freedom per element. 

The formulation of the element stiffness matrix (Cook, 1974) for the four node 

quadrilateral plane stress element (QUAD4 Element) is described below. 

 
 

Fig. 3.2 Four Node Quadrilateral Plane Stress Element. 

 

 

 To develop the isoparamatric quadrilateral plane stress element, the master or 

parent element must be defined in the natural coordinate system ( ),ξ η  as shown in Fig. 

(3.3). 
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Fig. 3.3 Four Node Quadrilateral Element in Natural Coordinate System. 

 

 The relationship between the natural coordinate system and the global coordinate 

system can be defined using Lagrange interpolating functions.  

 

( )
4

1

, ( )i i
i

x N xξ η
=

= ∑          (3.28) 

and, 

( )
4

1

, ( )i i
i

y N yξ η
=

= ∑          (3.29) 

 

Similarly, the relationship between displacements in the natural coordinate system and 

the nodal displacements can be written in the following manner, 

 

( )
4

1

, ( )i i
i

u N uξ η
=

= ∑          (3.30) 

( )
4

1

, ( )i i
i

v N vξ η
=

= ∑          (3.31) 
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where 1 2 3 4, , ,N N N N  are the shape functions for the four node quadrilateral element in 

the natural coordinate system. The shape functions are, 

 

( ) ( )1

1
1 1

4
N ξ η= − − . 

( )( )2

1
1 1

4
N ξ η= + − .         (3.32) 

( ) ( )3

1
1 1

4
N ξ η= + + . 

( ) ( )4

1
1 1

4
N ξ η= − + . 

 

To obtain the element stiffness matrix, the strain-displacement matrix must be 

determined. When using isoparametric elements the element geometry is defined in the 

natural coordinate system and hence the strain displacement matrix must be transformed 

to natural coordinates. The transformation matrix used to convert the strain-displacement 

matrix from the element local coordinate system to the natural coordinate system is called 

the Jacobian matrix. The Jacobian matrix can be defined as, 

 

[ ] 11 12

21 22

J J
J

J J
 

=  
 

      (3.33) 

 

The determinant of the Jacobian is, 

 

11 22 12 21J J J J J= −      (3.34) 

 

and the inverse of the Jacobian matrix is, 

 

        [ ] 1 22 12

21 11

1 J J
J

J JJ
− − 

=  − 
    (3.35) 
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From Equations (3.28) and (3.29) the terms in the Jacobian matrix can be obtained as, 

 
4

11
1

i
i

i

Nx
J x

ξ ξ=

∂∂
= =

∂ ∂∑   

 
4

12
1

i
i

i

Ny
J y

ξ ξ=

∂∂
= =

∂ ∂∑  

           (3.36) 
4

21
1

i
i

i

Nx
J x

η η=

∂∂
= =

∂ ∂∑  

 
4

22
1

i
i

i

Ny
J y

η η=

∂∂
= =

∂ ∂∑  

 

Thus, the strain-displacement relationships for the four node isoparamatric quadrilateral 

element are, 

 

x

y

xy

u
x
v
y

u v
y x

ε

ε

γ

 ∂
 

∂   
   ∂

=   
∂   

   ∂ ∂
+ 

∂ ∂ 

         (3.37) 

 

The derivatives of the horizontal displacement with respect to x and y in terms of 

Jacobian matrix are, 

 

22 12

21 11

1
uu

J Jx
u J J uJ
y

ξ

η

∂ ∂ 
   − ∂ ∂   

=    ∂ − ∂    
∂   ∂   

       (3.38) 
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Similarly, the derivatives of the vertical displacement with respect to x and y are, 

 

22 12

21 11

1
vv

J Jx
v J J vJ
y

ξ

η

∂ ∂ 
   − ∂ ∂   

=    ∂ − ∂    
∂   ∂   

       (3.39) 

 

From Equations (3.37), (3.38), and (3.39), the strain-displacement relationships can be 

obtained in terms of natural coordinates ξ  and η  as, 

 

[ ]
x

y

xy

u

u

A
v

v

ξ

ε
η

ε

γ ξ

η

∂ 
 ∂ 

∂  
   ∂ 

=   
∂   

   ∂
 

∂ 
 ∂ 

         (3.40) 

 

where,  

 

[ ]
22 12

21 11

21 11 22 12

0 0
1

0 0

J J

A J J
J

J J J J

− 
 = − 
 − − 

       (3.41) 

 

Now, from Equations (3.30) and (3.31) the following relationships are obtained, 

 
4

1

i
i

i

Nu
u

ξ ξ=

∂∂
=

∂ ∂∑       

          
4

1

i
i

i

Nu
u

η η=

∂∂
=

∂ ∂∑  
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4

1

i
i

i

Nv
v

ξ ξ=

∂∂
=

∂ ∂∑  

          
4

1

i
i

i

Nv
v

η η=

∂∂
=

∂ ∂∑          (3.42) 

 

Equation (3.42), can be rewritten in matrix form as, 

 

131 2 4

1

231 2 4

2

331 2 4

3

31 2 4 4

4

0 0 0 0

0 0 0 0
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  (3.43) 

 

Now, using Equations (3.40) to (3.43) the following relationship are obtained, 

 

{ } [ ][ ]{ }A G uε =          (3.44) 

 

where, 
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   (3.45) 
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Thus,   

{ } [ ]{ }B uε =         (3.46) 

 

where,    

[ ] [ ][ ]B A G=         (3.47) 

 

Equation (3.47) represents the strain-displacement matrix for the four node isoparamatric 

quadrilateral element. 

 

The element stiffness matrix for the four node isoparamatric quadrilateral element 

for the plane stress condition is given by, 

 

[ ] [ ] [ ][ ]T

A

k t B E B dA= ∫∫        (3.48) 

 

Since the strain displacement matrix is in terms of the natural coordinates, therefore 

Equation (3.48) must be integrated with respect to the natural coordinates.  

 

Substituting for dA , 

 

dA dx dy J d dξ η= ⋅ = ⋅        (3.49) 

 

Therefore, Equation (3.49) can be rewritten as, 

 

[ ] ( ) [ ] ( ) ( )
1 1

8 8 3 38 3 3 8
1 1

, , ,
T

k t B E B J d dξ η ξ η ξ η ξ η
× ×× ×

− −

= ⋅       ∫ ∫   (3.50) 

 

where,  t  = thickness of the element. 
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The element stiffness matrix can be obtained using 2 2×  Gauss quadrature,  

 

[ ] ( ) [ ] ( ) ( )
2 2

8 8 3 38 3 3 8
1 1

, , ,
T

j i i j i j i j
j i

k t w w B E B J d dξ η ξ η ξ η ξ η
× ×× ×

= =

   =    ∑∑   (3.51) 

 

The roots and weight functions for 2 2×  Gauss quadrature are given in Table 3.2 

 

Table 3.2 Roots and weight functions for 2 × 2  Gauss quadrature 

 

Roots Weight Functions w  

0.577350269189626±  1.0 

 

 

 3.8 Implementation of the Four Node Quadrilateral Plane Element in Java 

 

To implement the four node quadrilateral plane element in Java, a class called 

QUAD4Element was developed. The QUAD4Element class is derived from the base class 

Element.  

 

The class definition and the variables declared within the QUAD4Element class are given 

below, 

 
public class QUAD4Element { 

 

  private double th; //Thickness of the Element. 

  private double[] EX; //x Coordinates for each node. 

  private double[] EY; //y Coordinates for each node. 

  private double[][] D; //3x3 Material matrix. 

  private double[] NXi; //Derivatives of shape functions w.r.t Xi. 

  private double[] NEta; //Derivaitives of  the shape  functions w.r.t 

Eta. 

  private double[][] Jac; //2x2 Jacobain martrix. 

  private double DJac; //Determinant of Jacobian matrix. 
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  private double[][] B; //Strain-displacement Matrix. 

  public double[][] Q4Kelem; //Element Stiffness matrix. 

 

The variable th represents the thickness of the element, []EX and []EY are arrays 

containing the x and y coordinates of the nodes. Arrays [] NXi and [] NEta represents 

the derivatives of the shape functions with respect to ξ  and η  respectively. The two 

dimensional arrays Jac, D, B and Q4Kelem contains the Jacobian matrix, the material 

matrix, the strain-displacement matrix and the element stiffness matrix respectively. All 

of these instance variables except the two dimensional array Q4Kelem representing the 

element stiffness matrix, are declared as private.  

 

The constructor of the Quad4Element class is,  

 
public QUAD4Element(double[] cx, double[] cy, double[][] MatD, double 

thelem) { 

 

    D = MatD; 

    th = thelem; 

    EX = cx; 

    EY = cy; 

  } 

 

The coordinates of the nodes, the material matrix, and the thickness of the 

element are all initialized through the constructor when an instance of the class 

QUAD4Element is created. 

 

 

The methods of the class QUAD4Element are given in Table 3.3. All methods are 

declared private except for the CalcElemK () method, which is declared as public since 

it is called from outside the class. The method QUAD4ShapeFn () computes the 

derivatives of the shape functions with respect to ξ  and η . The Jacobian () method 

computes the Jacobian matrix and the determinant of the Jacobian matrix for the element 
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using Equation (3.36). The QUAD4BMatrix () method computes the B matrix for the four 

node quadrilateral element.  

 

Table 3.3 Methods in the class QUAD4Element 

 

Method Description 

QUAD4ShapeFn () 
Calculates the derivatives of shape functions for four node 

quadrilateral element. 

Jacobian () Calculates the Jacobian matrix. 

QUAD4BMatrix () Calculates the strain-displacement matrix. 

QUAD4ElemMatrix () 
Calculates the element stiffness matrix for four node 

quadrilateral plane element. 

 

The element stiffness matrix is computed in the method QUAD4ElemMatrix () 

using the 2 2×  Gauss quadrature. For each Gauss point the methods QUAD4ShapeFn (), 

Jacobian (), and QUAD4BMatrix () are called. The elements of stiffness matrices are 

computed at each Gauss point using the values obtained from these methods and are then 

added to obtain the final element stiffness. 

 

The structure of the CalcElemK () method is shown below. This method takes 

QUAD4Element as an argument and calls the QUAD4ElemMatrix () method. 

 
  public void CalcElemK(QUAD4Element q) { 

 

    //Calculates Element Stiffness Matrix. 

    q.QUAD4ElemMatrix(q); 

 

  } 

 The approach used for analyzing a structure consisting of four node quadrilateral 

plane elements is as follows. For each element an instance of the QUAD4Element class is 

created by calling the constructor. 
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QUAD4Element q4 = new QUAD4Element (X, Y, D, TH); 

 

where,  q4 is the instance of the class QUAD4Element. The x and y coordinates, material 

matrix and the thickness of the element are passed in the above constructor. Once an 

object of the QUAD4Element class has been created, the element stiffness matrix is 

computed by calling CalcElemK () of the main class and passing the q4 object as an 

argument to the function. 

 

The QUAD4Element class also contains the method CalcStresses (). This 

method calculates stresses for the four node quadrilateral plane element. These stresses 

are obtained from the nodal displacements which are computed during the analysis. The 

CalcStresses () method is declared as, 

 
public void CalcStresses(QUAD4Element q4, double[] U, StressResults S)  

 

The parameter q4 is an instance of the QUAD4Element class, U is the array of 

nodal displacements and S is an instance of the StressResults class which stores 

element stresses.  

 

 The stresses at each node of the element are calculated using 2 2×  Gauss 

quadrature. The methods QUAD4ShapeFn (), Jacobian () and QUAD4BMatrix () 

methods are called at each Gauss point and the stresses are calculated using the stress-

strain and strain-displacement relationships. 
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Chapter 4 

Plate Bending Elements 

 
4.1 Overview 

 

 Two plate bending elements are chosen for representing the bending behavior of 

flat shell elements in this study: (1) Discrete Kirchoff Triangular (DKT) element (Batoz 

et al., 1980), and (2) Discrete Kirchoff Quadrilateral (DKQ) element (Batoz and Tahar, 

1982). In this chapter, the development of element stiffness matrix of these elements and 

the implementation in Java is discussed. 

  

4.2 Bending of Flat Plates 

 

 Bending of flat plates is similar to bending of beams; the former is more 

complicated because plate bending is two dimensional while the bending of beam is one 

dimensional. The behavior of plates mainly depends on the plate thickness. Plates can be 

classified in to three categories depending on thickness and deformation (Timoshenko 

and Krieger, 1959). 

  

1. Thin plates with small deformations. 

2. Thin plates with large deformations. 

3. Thick plates. 

 

In this study we consider thin plates with small deformations. The bending properties of 

this plate can be used in the development of flat shell elements. There are three basic 

assumptions in the theory of bending for thin plates (Timoshenko and Krieger, 1959). 

 

1. The mid-surface of the plate remains unstretched during deformations. 

2. Points straight and normal to the mid-surface of the plate before bending remain 

straight and normal to the mid surface after bending. 
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3. Transverse shear stresses are small compared to normal stresses and hence can be 

neglected. 

 

These assumptions are known as Kirchoff’s hypothesis and are applicable to the bending 

of the thin plates with small deflections. 

  

 Consider an isotropic plate of uniform thickness t  with the XY  plane as the 

principal plane. According to the theory of bending for a thin plate, the plate is in the 

plane stress condition and hence all stresses vary linearly over the thickness of the plate.  

 

The moments can be represented as, 

 
2

2

t

x x
t

M z dzσ
−

= ⋅∫          

2

2

t

y y
t

M z dzσ
−

= ⋅∫              (4.1) 

2

2

t

xy xy
t

M z dzτ
−

= ⋅∫    

       

where xM  and yM  are the moments in the x and y direction respectively, and xyM , is the 

twisting moment. All moments are per length. If w  is the transverse displacement of the 

plate, the displacement-curvature relationships for the thin plate can be written as, 

 

2

2x
w

x
κ

∂
= −

∂
         

2

2y
w

y
κ

∂
= −

∂
              (4.2)  

2

2xy
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x y
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∂
= −
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4.3 Basic Relationships for Bending of Thin Plates 

 

 Consider a small section of the plate of length dx  in the x  direction. When a load 

is applied in the z  direction, the point O  on the mid-surface of the plate moves in 

z direction as the plate deforms due to bending, as shown in the Fig.4.1.  

 

 
Fig. 4.1 Bending of Plate. 

 

  According to the Kirchoff assumption, a line that is straight and normal to the 

mid-surface before bending remains straight and normal to the mid-surface after bending 

(Cook et al., 1989). The displacements can be written as, 

 

w
u z

x
∂

= −
∂

           

w
v z

y
∂

= −
∂

          (4.3) 

 

From Equation (4.3), and the strain-displacement relationship, the strains can be written 

as, 
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2

2x
u w

z
x x

ε
∂ ∂

= = −
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2

2y
v w

z
y y

ε
∂ ∂

= = −
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         (4.4) 

2

2xy
u v w

z
y x x y

γ
∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂

 

 

For the plane-stress condition the stress-strain relationship is, 
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       (4.5) 

 

Substituting for the strains from Equation (4.4), Equation (4.5) can be rewritten as, 

 

2

2

2

2 2

2

1 0

1 0
1

1
0 0

2 2

x

y

xy

w
z

x
E w

z
y

w
z

x y

σ ν

σ ν
ν

ντ

 ∂
−   ∂    

     ∂ 
= −    − ∂    −     ∂  − 

∂ ∂  

      (4.6) 

 

From Equation (4.6) the stresses in the plate can be represented as, 

 

2 2

2 2 21x

z E w w
x y

σ ν
ν

 − ⋅ ∂ ∂
= + − ∂ ∂ 

 

2 2

2 2 21y

z E w w
x y

σ ν
ν

 − ⋅ ∂ ∂
= + − ∂ ∂ 

        (4.7)  

2

2

2 1
21xy

z E w
x y

ν
τ

ν
 − ⋅ − ∂ =    ∂ ∂−   

         



 39

Substituting the stresses from Equation (4.7) to Equation (4.1) and integrating over the 

thickness of the plate, we obtain following relationships for the moments, 

 

( )
3 2 2

2 2212 1
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Et w w
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x y
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where, 
( )

3

212 1
Et

D
ν

=
−

 is the flexural rigidity of the plate. 

Equation (4.8) can be represented in matrix form as, 
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From Equations (4.9) and (4.2), the moment-curvature relationship is given by, 
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4.4 Triangular Plate Bending Element Based on Discrete Kirchoff Theory  

 

 Batoz et al. (1980) developed a triangular plate bending element (DKT element) 

based on the discrete Kirchoff theory. According to the Kirchoff assumptions, the 

bending energy present in the element is much higher compared to the shear strain 

energy, and thus the transverse shear energy term can be neglected from the energy 

equation. The DKT element is a widely used triangular plate bending element in finite 

element analysis programs. In this section the element stiffness matrix for the DKT 

element as given by Batoz et al. (1980) is presented. The DKT element is shown in Fig. 

4.2, 

 

 
 

Fig. 4.2 DKT Element. 

 

 

The bending energy can be represented in the following form,  

 

1
2

T
b b

A

U D dx dyκ κ= ⋅ ⋅∫         (4.11) 

 



 41

where,  

( )
3

2

1 0
1 0

12 1
1

0 0
2

b

Et
D

ν
ν

ν
ν

 
 
 
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 
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where,  

t = thickness of the plate, and 

 

The curvatures are given by, 

  

,

,

, ,

x x

y y

x y y x

β
κ β

β β

 
 

=  
 + 

         (4.12) 

 

According to the assumptions made in the bending theory of thin plates with 

small displacements, the displacement components ,u v  and w  at any point can be 

represented as,  

 

( ),xu z x yβ=   ( ),yv z x yβ=   ( ),w w x y=    (4.13) 

 

where, w  is the transverse displacement, and xβ  and yβ  are the rotations in the direction 

normal to the xz  and yz  planes respectively. 

 

Batoz et al. (1980) made following observations to correlate rotations normal to the mid 

surface to the transverse displacement w . 

 

(1) The triangular element should have only nine degrees of freedom; that is, the 

transverse displacement w  and the rotations xθ  and yθ  at each node of the 

element. 
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(2) According to Kirchoff theory, the rotations can be defined as, 

x

w
x

θ
∂

=
∂

  y
w
y

θ
∂

=
∂

      (4.14) 

 

(3) The Kirchoff theory can be imposed at any discrete point in the element. 

(4) The compatibility of rotations xβ  and yβ cannot be lost. 

 

Batoz et al. (1980) made the following assumptions, 

 

(1) The relationship between the rotations at six nodal points including mid-surface 

nodes and the shape functions at each six nodes is in the form of a quadratic,  

 
6

1
x i xi

i

Nβ β
=

= ∑    

6

1
y i yi

i

Nβ β
=

= ∑         (4.15) 

 

where, xiβ  and yiβ  are the rotations at each node as shown in the Fig. 4.3. 

 

 
 

Fig. 4.3 Positive Directions of  xβ  and yβ . 
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For i = 1 to 6, iN  are the shape functions for the DKT element in area coordinates ξ  

andη , and can be expressed as, 

 

( ) ( )1
1 22 1N ξ η ξ η= − − − − . 

( )2 2 1N ξ ξ= − . 

( )3 2 1N η η= − .       (4.16) 

4 4N ξη= . 

 ( )5 4 1N η ξ η= − − . 

 ( )6 4 1N ξ ξ η= − − . 

 

(2) Applying Kirchoff hypothesis to remove transverse shear strain given the 

following equations,  

 

At the corner nodes, 

 

,
0

,
x x

y y

w
w

β
γ

β
+ 

= = + 
    k  = 1,2,3   (4.17) 

 

where, γ  = transverse shear strain. 

 

At the mid nodes, , 0sk skwβ + =           4,5,6k =    (4.18) 

 

where k  is the node number. 

 

(3) The variation of the transverse displacements is represented by a cubic expression 

as, 

 

3 1 3 1
, , ,

2 4 2 4sk i si j sj
ij ij

w w w w w
l l

= − − + +      (4.19) 
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where, k  is the mid-node of side ij of the triangle and, ijl  represents the length of side ij  

of the triangle. 

 

(4) The variation of the rotations along the sides of the triangle is represented by 

linear equation, 

 

 ( )1
2nk ni njβ β β= +         (4.20) 

 

where, 4,5,6k =  represents the mid-nodes of the sides 2-3, 3-1, and 2-1 respectively. 

 

As a consequence of the above four assumptions, the condition that the transverse 

shear strain along the sides of the triangle, , 0s s swγ β= + =  is satisfied.  

 

The displacements at each node can be written as,  

 

 { }1 1 1 1 2 2 2 2 2
T

x y x y x yU w w wθ θ θ θ θ θ=    (4.21) 

 

The relationship between the nodal displacements and xβ  and yβ  is given by, 

 

( ),T
x xH Uβ ξ η=            

( ),T
y yH Uβ ξ η=          (4.22) 

 

where xH  and yH  are the components vectors of the shape functions. Batoz et al. (1980) 

represented the component vectors of the shape functions in the form,  
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and, 4,5,6k =  for the sides 23,31,12ij =  respectively. 

 

The strain-displacement matrix for the DKT element can be represented in the following 

form,  
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where,  31 12 12 312A x y x y= −  

 

The derivatives of the component vectors of the shape func tions with respect to ξ  

andη can be represented by the following equations. 

 

 

 

The derivatives of the component vectors with respect to ξ  are, 
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6 5 6

6 4 6

, 6 6 4

6 4 6

5 4

4 5

5 4

1 2
1 2

4 6 1 2
1 2

1 2
2 6 1 2

x

P P P
q q q

r r r
P P P

H q q q
r r r

P P
q q

r r

ξ

ξ η
ξ η

ξ η ξ η
ξ η

ξ η
ξ ξ η

η
η

η

− + − 
 − − + 
 − + + + − − +
 

− − + + 
 = − − −
 

− + + − + − 
 − +
 

− 
 − −  

     (4.27) 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( )
( )

6 5 6

6 5 6

6 5 6

6 4 6

, 6 4 6

6 4 6

4 5

4 5

4 5

1 2
1 1 2

1 2
1 2

1 1 2
1 2

y

t t t
r r r

q q q
t t t

H r r r
q q q

t t
r r
q q

ξ

ξ η
ξ η

ξ η
ξ η

ξ η
ξ η
η

η
η

− + − 
 + − − + 
 − − − +
 

− − + + 
 = − + − − −
 

− + − 
 − +
 

− 
 − −  

       (4.28) 

 

The derivatives of the component vectors with respect to η  are, 

 

( ) ( )
( ) ( )

( ) ( ) ( )
( )
( )
( )

( ) ( )
( ) ( )

( ) ( )

5 6 5

5 5 6

5 5 6

4 6

, 4 6

6 4

5 4 5

5 4 5

5 4 5

1 2
1 2

4 6 1 2

1 2
1 2

2 6 1 2

x

P P P
q q q

r r r
P P

H q q
r r

P P P
q q q

r r r

η

η ξ
η ξ

ξ η η ξ
ξ
ξ

ξ
η ξ
η ξ

η η ξ

− − − − 
 − − + 
 − + + + − − +
 

+ 
 = −
 

− − 
 − − +
 

− + − 
 − + + − + −  

     (4.29) 

 

( ) ( )
( ) ( )

( ) ( )
( )
( )
( )

( ) ( )
( ) ( )

( ) ( )

5 6 5

5 5 6

5 5 6

4 6

, 4 6

4 6

5 4 5

5 4 5

5 4 5

1 2
1 1 2

1 2

1 2
1 1 2

1 2

t t t
r r r

q q q
t t

H r r
q q

t t t
r r r

q q q

η η

η ξ
η ξ

η ξ
ξ
ξ
ξ
η ξ

η ξ
η ξ

− − − − 
 + − − + 
 − − + +
 

+ 
 = −
 

− − 
 − − +
 

− − + − 
 − − + −  

       (4.30) 

 

where, 
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 26k ij ijP x l= −  

 23k ij ij ijq x y l=          

 2 23k ij ijr y l=  

 26k ij ijt y l= −  

 

 and, 4,5,6k =  for 23,31,12ij =  respectively. 

 

The strain-displacement matrix can be calculated using Equations (4.26) through 

(4.30). Substituting the strain-displacement matrix in Equation (4.31), the element 

stiffness matrix for the DKT element can be obtained. 

 
11

0 0

2 T
DKT bK A B D B d d

η

ξ η
−

= ⋅∫ ∫        (4.31) 

where bD  is the material matrix for plate bending. 

 

It is assumed that the element has constant thickness. The element stiffness matrix 

for the DKT element can be obtained using a three point Gauss quadrature scheme. The 

three numerical integration points are located at the mid points of the sides of the triangle 

(Batoz et al., 1980). Since the equation for the element stiffness matrix has quadratic 

terms a three point Gauss quadrature scheme is sufficient. The coordinates and the weight 

functions for the 3-point numerical integration scheme are given in Table 4.1. 

 

Table 4.1 Coordinates and weight functions for Gauss quadrature  

 

Integration point Coordinates Weight functions  

1 ( )1
2 ,0  1

3  

2 ( )1 1
2 2,  1

3  

3 ( )1
20,  1

3  
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The element stiffness matrix using Gauss quadrature is obtained from, 

 

[ ] ( ) [ ] ( )
3 3

9 9 3 39 3 3 9
1 1

2 , ,
T

j i i j b i j
j i

k A w w B D B d dξ η ξ η ξ η
× ×× ×

= =

   =    ∑∑    (4.32) 

 

 

4.5 Implementation of DKT Element in Java. 

 

To implement the triangular plate bending (DKT) element in Java, a class called 

DKTElement was developed. The DKTElement class is derived from the base class 

Element. The base class Element contains all the data variables and functions necessary 

for managing all of the different elements in the program. 

 

The class definition and the variables declared within the class are given below, 

public class DKTElement { 

  private double th; //Thickness of the element. 

  private double A; //Area of the element. 

  private double[] EX; //x Coordinates of the element. 

  private double[] EY; //y Coordinates of the element. 

  private double[][] Db; //Material matrix. 

  private double[][] X; //x geometric components. 

  private double[][] Y; //y geometric components. 

  private double[][] L; //L geometric components. 

  private double[] HXxi; //Component vector for x w.r.t Xi. 

  private double[] HXeta; //Component vector for x w.r.t Eta. 

  private double[] HYxi; //Component vector for y w.r.t Xi. 

  private double[] HYeta; //Component vector for y w.r.t Eta. 

  private double[] P; //Geometric components P at each node. 
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  private double[] t; //Geometric components t at each node. 

  private double[] q; //Geometric components q at each node. 

  private double[] r; //Geometric components r at each node. 

  private double[][] B; //Strain-Displacement matrix. 

  public double[][] DKTKelem; //Element Stiffness matrix. 

 
The variable th and A represent the thickness and the area of the element 

respectively. []EX and []EY are arrays containing the x and y coordinates of the nodes. 

[] X and [] Y are arrays containing the geometric components representing the sides of 

the triangle. The array [] L contains lengths of the sides of triangle. [] p, [] q, [] r 

and [] t are arrays containing the geometric components for calculating the component 

vectors of shape functions.  [] HXxi, [] HXeta, [] HYxi, and [] HYeta are arrays 

representing the derivatives of the component vectors for the shape functions with respect 

to ξ  and η  respectively. The two dimensional arrays B and DKTKelem contains the strain-

displacement matrix and the element stiffness matrix respectively. All of these instance 

variables except the two dimensional array DKTKelem representing the element stiffness 

matrix, are declared as private.  

 

The constructor of the DKTElement class is,  

public DKTElement(double[] cx, double[] cy, double[][] Mat, 

                    double thelem) { 

  Db = Mat; 

  th = thelem; 

  EX = cx; 

  EY = cy; 

} 
 

The coordinates of the nodes, the material matrix, and the thickness of the 

element are all initialized through the constructor when an instance of the class 

DKTElement is created. 
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The methods of the class DKTElement are given in Table 4.2, All methods are 

declared private except for the method CalcElemK (), which is declared as public since 

it is called from outside the class. The method Geometry() computes the geometric 

components required to calculate the element stiffness matrix using Equation (4.25). The  

method ShFnHXxi () computes derivatives of the component vectors for shape 

functions for x with respect to ξ  using Equation (4.27). The method ShFnHXeta () 

computes derivatives of the component vectors for the shape functions for x with respect 

to η  using Equation (4.29).  The method ShFnHYxi () computes derivatives of the 

component vectors for shape functions for y with respect to ξ  using Equation (4.28). The 

method ShFnHYeta () computes derivatives of the component vectors for shape 

functions for y with respect to η  using Equation (4.30).  The method DKTBMatrix () 

computes the B matrix for the DKT element using Equation (4.26).  

 

Table 4.2 Methods in the class DKTElement 

 

Method Description 

Geometry () Calculates the geometric components for an element. 

ShFnHXxi () 
Calculates the derivatives of the component vector of the 

shape functions for x with respect to ξ . 

ShFnHXeta () 
Calculates the derivatives of the component vector of the 

shape functions for x with respect to η . 

ShFnHYxi() 
Calculates the derivatives of the component vector of the 

shape functions for y with respect to ξ . 

ShFnHYeta () 
Calculates the derivatives of the component vector of the 

shape functions for y with respect to η . 

DKTBMatrix () Calculates the strain-displacement matrix. 

DKTElementKMatrix () Calculates the element stiffness matrix for DKT element. 
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The element stiffness matrix is computed in the method DKTElementKMatrix () 

using three point Gauss quadrature. For each Gauss point the ShFnHXxi (), ShFnHXeta 

(), ShFnHYxi (), ShFnHYeta (), and DKTBMatrix () methods are called. The 

elements of the stiffness matrices are computed at each Gauss point using the values 

obtained from these methods and are then added to calculate final element stiffness 

matrix for the DKT element. 

 

The structure of the CalcElemK () method is shown below. This method takes 

DKTElement as an argument and calls the Geometry () and DKTElementKMatrix () 

methods. 

 
  public void CalcElemK(DKTElement d) { 
 

    //Calculates geometrical properties for DKT Element. 

    d.Geometry(); 

 

    //Calculates Element Stiffness Matrix for DKT Element. 

    d.DKTElementKMatrix(d); 

  } 

 

 The approach used for analyzing a structure consisting of DKT elements is as 

follows. For each element an instance of the DKTElement class is created by calling the 

constructor. 

 
DKTElement dkt = new DKTElement (X, Y, D, TH); 

 

where,  dkt is the instance of the class DKTElement. The x and y coordinates, material 

matrix and the thickness of the element are passed in the above constructor. Once an 

object of the DKTElement class has been created, the element stiffness matrix is computed 

by calling the method CalcElemK () of the main class by passing the dkt object as an 

argument to the function. 
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The DKTElement class also contains the method CalcStresses (). This method 

calculates stresses for a DKT element. These stresses are obtained from the nodal 

displacements which are computed during the analysis. The CalcStresses () method is 

declared as, 

 
 

public void CalcStresses(DKTElement dkt, double[] U, StressResults S)  

 

The parameter dkt is an instance of the DKTElement class, U is the array of nodal 

displacements and S is an instance of the StressResults class which stores element 

stresses.  

 

 The stresses at each node of the element are calculated using three point Gauss 

quadrature. The methods ShFnHXxi (), ShFnHXeta (), ShFnHYxi (), ShFnHYeta (), 

and DKTBMatrix () are called at each Gauss point and the stresses are calculated using 

the stress-strain and strain-displacement relationships. 

 

4.6 Quadrilateral Plate Bending Element Based on Discrete Kirchoff Theory 

 

The quadrilateral thin plate bending element is efficient and useful for 

representing the bending part of flat shell elements. The quadrilateral plate bending 

element can also be used for the analysis of plate structures such as slabs. Batoz and 

Tahar (1982) developed the Discrete Kirchoff Quadrilateral (DKQ) plate bending 

element by considering the Kirchoff assumptions for thin plates. The DKQ element has 

12 degrees of freedom. Considering the element is in the xy plane (see Fig. 4.4), the 

degrees of freedom at each node of the element can be described as the transverse 

displacement w  in the direction normal to the xy plane, and the inplane rotations xθ  and 

yθ  in the x and y directions respectively. 

 

( ),w w x y=   ,x ywθ =   ,y xwθ =     (4.33) 
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Fig. 4.4 Quadrilateral Plate Bending Element (After Batoz and Tahar, 1982). 

 

The development of the DKQ element by Batoz and Tahar (1982) is described in 

this section. The formulation of the DKQ element is based on the Kirchoff assumptions 

which were discussed in Section 4.3. According to these assumptions the shear strain 

energy is neglected. The strain energy of the element is, 

 
b
e

e

U U= ∑           (4.34) 

 

where, e
bU  is element strain energy due to bending and is given by, 

 

 [ ]{ }1
2

e

b
e b

A

U D dxdyχ χ= ∫   

and eA  is the area of an element. 
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For homogeneous isotropic material properties, the curvatures are given by, 

{ }
       

       
x

y

x y

x

y

y x

β

χ β

β β

 ∂ ∂
 

= ∂ ∂ 
 ∂ ∂ + ∂ ∂ 

        (4.35) 

here, 

xβ  = rotation normal to the middle surface of the plate in the xz direction. 

yβ  = rotation normal to the middle surface of the plate in the yz direction. 

 

The material matrix is, 

 

( )

3

2

1 0
1 0

12 1 1
0 0

2

b

Et
D

ν
ν

ν ν

 
 
 

=  
−  −

 
 

       (4.36) 

 

where, ν  = Poisson’s ratio, t  = thickness of the plate, and E  = modulus of elasticity. 

 

Batoz and Tahar (1982) developed the relationship between the transverse 

displacement w  and the rotations xβ  and yβ  as follows, 

 

1. They defined xβ  and yβ  by incomplete cubic polynomials: 

   

 
8

1
x i xi

i

Nβ β
=

= ∑   
8

1
y i yi

i

Nβ β
=

= ∑       (4.37) 

 

The shape functions for the eight node quadrilateral element are represented in the 

following form. 

( )( ) ( )1
1 4 1 1 1N ξ η ξ η= − − − + +    

( ) ( )( )1
2 4 1 1 1N ξ η ξ η= − + − − +    
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( ) ( ) ( )1
3 4 1 1 1N ξ η ξ η= − + + − −    

( ) ( )( )1
4 4 1 1 1N ξ η ξ η= − − + + −         

( )( )21
5 2 1 1N ξ η= − −  

( ) ( )21
6 2 1 1N ξ η= + −  

( )( )21
7 2 1 1N ξ η= − +  

( )( )2 21
5 2 1 1N ξ η= − −         (4.38) 

 

2. They applied Kirchoff assumptions at the corner nodes and the midpoint of the sides, 

 

At the corner nodes, 

 

, 0
, 0

xi xi

yi yi

w

w

β

β

+    
=   +    

    1,2,3,4i =     (4.39) 

 

At the midpoints: 

 

, 0sk skwβ + =      5,6,7,8k =     (4.40) 

 

3.  A cubic function was used to represent the transverse displacement w . Hence the 

derivative of the transverse displacement w  with respect to s  at the mid nodes of the 

element sides is a quadratic and is represented as, 

  

 ( ) ( )3 1
, , ,

2 4sk i j si sj
ij

w w w w w
l

−
= − − +       (4.41) 

 

where,  

 5,6,7,8k =   for  12,23,34,41ij =  and ijl = length of the line for side connecting 

nodes ij  
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4. The rotation normal to the sides at the mid nodes varies linearly. 

 

( ) ( )1 1
2 2 , ,nk ni nj ni njw wβ β β= + = − +       (4.42) 

 

The nodal displacement vector for the Discrete Kirchoff Quadrilateral element is, 

 

1 1 1 2 2 2 3 3 3 4 4 4n x y x y x y x yU w w w wθ θ θ θ θ θ θ θ=   (4.43) 

 

where,   

 

,xi yiwθ =    

,yi xiwθ =  for 1,2,3,4i =  

 

The quantities xβ  and yβ  are expressed in terms of the nodal displacements using the 

component vectors of the shape functions as, 

 

( ) { },x
x nH Uβ ξ η=         

( ) { },y
y nH Uβ ξ η=        (4.44) 

 

where, ( ),xH ξ η  and ( ),yH ξ η  are the component vectors of the shape functions and are 

given in Equations (4.45) and (4.46), 
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( )

( )

( )

( )

( )

3
5 5 8 82

5 5 8 8

1 5 5 8 8
3

6 6 5 52

6 6 5 5

2 6 6 5 5

3
7 7 6 62

7 7 6 6

3 7 7 6 6

3
8 8 7 72

8 8 7 7

4 8 8 7 7

,x

a N a N
b N b N

N c N c N
a N a N
b N b N

N c N c N
H

a N a N
b N b N

N c N c N
a N a N
b N b N

N c N c N

ξ η

 − 
 + 
 − −
 

− 
 +
 

− − =  −
 

+ 
 − − 
 −
 

+ 
 − −  

      (4.45) 

 

 

( )

( )

( )

( )

( )

3
5 5 8 82

1 5 5 8 8

5 5 8 8
3

6 6 5 52

2 6 6 5 5

6 6 5 5

3
7 7 6 62

3 7 7 6 6

7 7 6 6

3
8 8 7 72

4 8 8 7 7

8 8 7 7

,y

d N d N
N e N e N

b N b N
d N d N

N e N e N
b N b N

H
d N d N

N e N e N
b N b N
d N d N

N e N e N
b N b N

ξ η

 − 
 − − − 
 − −
 

− 
 − − −
 

− − =  −
 
− − − 

 − − 
 −
 
− − − 

 − −  

      (4.46) 

 

with,  

2
ij

k
ij

x
a

l
= −  

2

3
4

ij ij
k

ij

x y
b

l
=  
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( )2 2 21 1
4 2k ij ij ijc x y l= −  

2 2
k ij ijd y l= −         (4.47) 

( )2 2 21 1
4 2k ij ij ije y x l= −  

ij i jx x x= −  

ij i jy y y= −  

( )2 2 2
ij ij ijl x y= +  

 

 5,6,7,8k =  when 12,23,34,41ij =  

 

The strain-displacement matrix is obtained from the component vectors of the shape 

functions as,  

 

[ ]
11 12

21 22

11 12 21 22

     ,                       , ,

     ,                      , ,

, , , , , ,

x x x
x

y y y
y

x y y y x x
y x

H j H j H

B H j H j H

H H j H j H j H j H

ξ η

ξ η

ξ η ξ η

   +
   
   = = +
   
   + + + +   

 (4.48) 

 

The Jacobian matrix is given by,  

 

[ ] ( ) ( )
( ) ( )

21 34 12 34 21 34 12 3411 12

32 41 12 34 32 41 12 3421 22

1
4

x x x x y y y yJ J
J

x x x x y y y yJ J
η η
ξ ξ

+ + + + + +  
= =    + + + + + +   

  (4.49) 

 

In the equation for the strain-displacement matrix (Equation 4.48), the 

terms 11j , 12j , 21j , 22j  are components of the inverse of the Jacobian matrix represented in 

Equation (4.49). These terms are obtained as follows, 
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[ ]11 22

1
det

j J
J

=     [ ]12 12

1
det

j J
J

−
=  

           (4.50) 

[ ]21 21

1
det

j J
J

−
=     [ ]22 22

1
det

j J
J

=  

 

The determinant of the Jacobian is,  

 

 [ ] ( ) ( ) ( )42 31 31 42 34 21 21 34 41 32 32 41

1
det

8 8 8
J y x y x y x y x y x y x

ξ η
= − + − + −  

 

The derivatives for the component vectors ,xH ξ , ,xH η , ,yH ξ , and ,yH η  can be 

obtained by substituting the derivatives of the shape functions ,iN ξ  and ,iN η  respectively 

in place of the shape functions iN . 

 

The derivatives of the shape functions are,  

 

( ) ( )
( )( )
( )( )
( ) ( )

( )
( )

( )
( )

1
4
1
4
1
4
1
4

21
2

21
2

2 1
2 1
2 1
2 1

, 1

1

1

1

N ξ

ξ η η
ξ η η
ξ η η
ξ η η
ξ η

η

ξ η

η

 + − 
 − − 
 + +
 

− + 
=  − −

 
 −
 

− + 
 − −  

  

( ) ( )
( ) ( )
( )( )
( )( )

( )
( )

( )
( )

1
4
1
4
1
4
1
4

21
2

21
2

2 1
2 1
2 1

2 1
, 1

1

1

1

N η

η ξ ξ
η ξ ξ
η ξ ξ

η ξ ξ

ξ

η ξ

ξ

η ξ

+ − 
 − + 
 + +
 

− − 
=  − − 

 − +
 
 −
 

− −  

   (4.51) 

 

The element stiffness matrix is given by,  

 

[ ] [ ][ ]
e

Te
b

A

k B D B dxdy  =  ∫         (4.52) 
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Equation (4.52) can be written in terms of natural coordinates as, 

 

[ ] [ ][ ] [ ]
1 1

1 1

det
Te

bk B D B J d dξ η
+ +

− −

  = ⋅  ∫ ∫       (4.53) 

 

According to Batoz and Tahar (1982), the double integral in Equation (4.53) can 

be computed using a standard 2 2×  numerical integration scheme. This is found to be 

sufficient for the solution although theoretically 3 3×  numerical integration scheme is 

required to integrate the quadratic functions.  The weight functions and roots for two 

point Gauss quadrature are given in Table 4.3 

 

Table 4.3 Weight functions and roots for 2 × 2  Gauss quadrature  

 

Roots Weight Functions w  

0.577350269189626±  1.0 

 

Equation (4.53) can be rewritten as,  

 

[ ] ( ) [ ] ( ) ( )
2 2

12 1 2 3 31 2 3 3 12
1 1

, , ,
T

j i i j b i j i j
j i

k w w B D B J d dξ η ξ η ξ η ξ η
× ×× ×

= =

   =    ∑∑  (4.54) 

 

4.7 Implementation of DKQ Element in Java. 

 

To implement the quadrilateral plate bending (DKQ) element in Java, a class 

called DKQElement was developed. The DKQElement class is derived from the base class 

Element.  

The class definition and the variables declared within the class are given below, 

public class DKQElement { 

  private double th; //Thickness of the element. 

  private double detJ; //Determinant of the Jacobian matrix. 
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  private double[] EX; //array of x Coordinate. 

  private double[] EY; //Array of y Coordinate. 

  private double[][] Db; //Material Matrix. 

  private double[][] X; //x component for geometric function. 

  private double[][] Y; //y component for geometric function. 

  private double[][] L; //Length of the side of the element. 

  private double[] a; //Geometric function a. 

  private double[] b; //Geometric function b. 

  private double[] c; //Geometric function c. 

  private double[] d; //Geometric function d. 

  private double[] e; //Geometric function e. 

  private double[] NXi; //Derivative of the shape functions w.r.t Xi. 

  private double[] NEta; //Derivative of the shape functions w.r.t Eta. 

  private double[][] J; //Jacobian matrix. 

  private double[] HXxi; //derivative component vector x of shape 

functions w.r.t Xi. 

  private double[] HXeta; //derivative component vector x of shape 

functions w.r.t Eta. 

  private double[] HYxi; //derivative component vector y of shape 

functions w.r.t Xi. 

  private double[] HYeta; //derivative component vector y of shape 

functions w.r.t Eta. 

  private double[][] B; //Strain-Displacement matrix. 

  public double[][] DKQKelem; //Element stiffness matrix for DKQ 

Element. 
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The variables th, and detJ represent the thickness of the element and 

determinant of the Jacobian respectively. []EX  and []EY are arrays containing the x and 

y coordinates of the nodes. [] X and [] Y are arrays containing the geometric 

components representing the sides of the triangle. Array [] L contains lengths of the 

sides of triangle. The arrays [] a, [] b, [] c, [] d and [] e contain geometric 

components for calculating the component vectors of the shape functions. [] NXi and [] 

NEta are arrays containing the derivatives of the shape functions with respect to ξ  and η  

respectively. [] J is the array containing the Jacobian matrix. [] HXxi, [] HXeta, [] 

HYxi, and [] HYeta are arrays representing derivatives of the component vectors of the 

shape functions with respect to ξ  and η  respectively. The two dimensional arrays B and 

DKQKelem contain the strain-displacement matrix and the element stiffness matrix 

respectively. All of these instance variables except the two dimensional array DKQKelem 

representing the element stiffness matrix, are declared as private.  

 

The constructor of the DKQElement class is,  

public DKQElement(double[] cx, double[] cy, double[][] MatDb, 

                    double thelem) { 

  Db = MatDb; 

  th = thelem; 

  EX = cx; 

  EY = cy; 

} 
 

The coordinates of the nodes, the material matrix, and the thickness of the 

element are initialized through the constructor when an instance of the class DKQElement 

is created. 

 

The methods of the class DKQElement are given in Table 4.4. All methods are 

declared private except for the CalcElemK () method, which is declared as public. The 
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method Geometry() computes the geometric components required to calculate element 

stiffness matrix using Equation (4.25). The method ShFn () calculates the derivatives of 

the shape functions with respect to to ξ  and η  using Equation (4.51). The ShFnHXxi () 

method computes derivatives of the component vectors of the shape functions for x with 

respect to ξ . The ShFnHXeta () method computes derivatives of the component vectors 

of the shape functions for x with respect to η  .  The ShFnHYxi () method computes 

derivatives of the component vectors of the shape functions for y with respect to ξ . The 

ShFnHYeta () method computes derivatives of the component vectors of the shape 

functions for y with respect to η . The DKQBMatrix () method computes the B matrix for 

the DKQ element using Equation (4.48).  

 

Table 4.4 Methods in the DKQElement class 

 

Method Description 

Geometry () Calculates geometric components for the element. 

ShFn () 
Calculates derivatives of the shape functions with respect to 

ξ  and η .   

ShFnHXxi () 
Calculates derivatives of the component vector for the shape 

functions for x with respect to ξ . 

ShFnHXeta () 
Calculates derivatives of the component vector for the shape 

functions for x with respect to η . 

ShFnHYxi() 
Calculates derivatives of the component vector for the shape 

functions for y with respect to ξ . 

ShFnHYeta () 
Calculates derivatives of the component vector for the shape 

functions for y with respect to η . 

Jacobian () 
Calculates the Jacobian matrix and the determinant of 

Jacobian matrix. 

DKQBMatrix () Calculates the strain-displacement matrix. 

DKQElementKMatrix () Calculates the element stiffness matrix for DKQ element. 
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The element stiffness matrix is computed in DKQElementKMatrix () method 

using 2 2× Gauss quadrature. For each Gauss point, the methods ShFn (), ShFnHXxi (), 

ShFnHXeta (), ShFnHYxi (), ShFnHYeta (), and DKQBMatrix () are called. The 

elements of the stiffness matrices are computed at each Gauss point using values obtained 

from these methods are then added to obtain the final element stiffness matrix for the 

DKQ element. 

 

The structure of the CalcElemK () method is shown below. This method takes 

DKQElement as an argument and calls the Geometry () and DKQElementKMatrix () 

methods. 

 
  public void CalcElemK(DKQElement d) { 
 

    //Calculates geometrical properties for DKQ Element. 

    d.Geometry(); 

 

    //Calculates Element Stiffness Matrix for DKQ Element. 

    d.DKQElementKMatrix(d); 

   

} 

 

 The approach used for analyzing a structure consisting of DKQ elements is as 

follows. For each element an instance of the DKQElement class is created by calling the 

constructor. 

 
DKQElement dkq = new DKQElement (X, Y, D, TH); 

 

where,  dkq is the instance of the class DKQElement. The x and y coordinates, the 

material matrix and the thickness of element are passed in the above constructor. Once an 

object of the DKQElement class has been created, the element stiffness matrix is computed 

by calling the method CalcElemK () of the main class by passing the dkq object as an 

argument to the function. 
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The DKQElement class also contains the method CalcStresses (). This method 

calculates stresses for DKQ element. These stresses are obtained from the nodal 

displacements which are computed during the analysis. The CalcStresses () method is 

declared as, 

 
public void CalcStresses(DKQElement dkq, double[] U, StressResults S)  

 

The parameter dkq is an instance of the DKQElement class, U is the array of nodal 

displacements and S is an instance of the StressResults class which stores element 

stresses.  
 

 The stresses at each node of the element are calculated using 2 2×  Gauss 

quadrature. The methods ShFn (), ShFnHXxi (), ShFnHXeta (), ShFnHYxi (), 

ShFnHYeta (), and DKTBMatrix () are called at each Gauss point and the stresses are 

calculated using the stress-strain and strain-displacement relationships. 
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Chapter 5 

Flat Shell Elements 

 
5.1 General Shell Elements 

  

Shell elements are very efficient for modeling the behavior of curved structures 

(Cook et al., 1989). There are four types of general shell elements: flat shell elements, 

curved shell elements, axisymmetric shell elements and, Mindlin type degenerated solid 

elements (Yang et. al, 1990). Shell elements can also be classified according to the 

thickness of the shell and the curvature of the midsurface. Depending on the thickness, 

shell elements can be separated into thin shell elements and thick shell elements. Thin 

shell elements are based on the discrete Kirchoff theory in which transverse shear 

deformations are neglected. Thick shell elements are based on the Mindlin theory which 

includes transverse shear deformations. 

  

Shell elements can also be classified according to curvature as deep shell elements 

and shallow shell elements. Shallow elements based on the classical shell theory and can 

be developed by combining the membrane and bending strain in the energy equation. Flat 

shell elements are developed by superimposing the stiffness of membrane and bending 

elements. The membrane and bending forces are totally independent of each other in the 

flat shell element and hence there is no membrane-bending coupling present in the 

element. This is a major disadvantage of the flat shell elements. 

 

 The development of the shell elements from the classical shell theory is more 

complex, and many approximations are required to simplify the solution. Flat shell 

elements are easier to formulate using previously available theories of membrane and 

plate bending elements.  
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5.2 Flat Shell Elements 

 

 The shell element is subjected to both membrane forces and bending forces and 

hence the development of shell elements should include a consideration of both these 

actions. One approach for development of flat shell elements is to include the membrane 

and bending properties by combining a membrane element and a plate bending element.  

  

 Two types of thin flat shell elements were considered to implement in Java: (1) 

triangular flat shell element and, (2) quadrilateral flat shell element.  The triangular flat 

shell element developed by combining the CST element described in Chapter 3, which 

represents the membrane part of the element, and the DKT element (Batoz et al., 1980) 

described in Chapter 4, which represents the bending part of the element. Consider the 

element is in the xy plane, assembly of the triangular flat shell element can be represented 

as shown in Fig. 5.1.  

 

 
Fig. 5.1 Combination of CST and DKT Element. 

 

 

The quadrilateral flat shell element is developed by the assembly of the four node 

quadrilateral plane stress element presented in Chapter 3 and the DKQ element (Batoz 

and Tahar, 1982) presented in Chapter 4. Considering that the element is in the xy plane, 
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the assembly of the quadrilateral flat shell element can be represented as shown in Fig. 

5.2. 

 
 

Fig. 5.2 Combination of Quadrilateral Plane Element and DKQ Element. 

 

5.3 Deve lopment of Stiffness Matrix for Flat Shell Elements. 

 

 In this section we will discuss the general formulation of stiffness matrix for flat 

shell elements. The development of the stiffness matrix for the triangular membrane 

element and quadrilateral membrane element was presented in Chapter 3. The 

development of the stiffness matrix for the triangular plate bending element and 

quadrilateral plate bending element was presented in Chapter 4.  

  

 The general shell has six degrees of freedom at each node. The nodal 

displacements of the shell element are, 

 

 { } { }i i i i xi yi ziU u v w θ θ θ=       (5.1) 

 

 for, 1i n= K    n = number of nodes per element. 
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The membrane stiffness matrix for each node is of size 2 2×  , and  is represented 

as, [ ]2 2mk
×

. The bending stiffness matrix for each node is of size 3 3×  and is represented 

as, [ ]3 3bk
×

. The stiffness matrix at each node of the shell element is of size 6 6×  and is 

represented as, [ ]6 6sk
×

. The assembly of the stiffness matrices of membrane and bending 

components at each node will result in a zero value on the diagonal corresponding to the 

rotational degree of freedom zθ  since this displacement is not considered in the 

membrane or bending element. Fig. 5.3 represents the inplane rotation which is 

sometimes called drilling degrees of freedom.  

 
Fig. 5.3 Drilling Degrees of Freedom (Local coordinate system). 

 

This zero stiffness for the drilling degree of freedom causes singularity in 

structure stiffness matrix when all the elements are coplanar and there is no coupling 

between the membrane and bending stiffness of the element. There are several ways to 

deal with this singularity.  

 

The first approach for removing the singularity in the structure stiffness matrix is 

to substitute an approximate value for the diagonal value of the stiffness of drilling 

degree of freedom. Although, this solves the problem of singularity from the structure 

stiffness matrix, it sometimes does not represent actual behavior of the element because 

of the fact that a fictitious stiffness has been added.  
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The second approach is to develop a higher order membrane element that includes 

the drilling degree of freedom. This approach is less efficient since higher order 

displacement functions are needed for the membrane stiffness matrix and hence a higher 

order numerical integration scheme is required.  

 

In this study the first approach is used since it is easier to implement and is more 

efficient. This approach of including the fictitious stiffness for the drilling degree of 

freedom closely approximates the behavior of the shell but sometimes it results in a 

stiffer structure due to the constraints present at the corner nodes.   

 

The element stiffness matrix for the shell element is first assembled by super 

imposing the membrane stiffness and bending stiffness at each node. The null values of 

the stiffness corresponding to the drilling degree of freedom are then replaced by 

approximate values. This approximate value is taken to be equal to 310−  times the 

maximum diagonal value in the element stiffness matrix.  The stiffness matrix at each 

node of the shell element [ ]s i
k can thus be represented as,  

 

[ ]
[ ] [ ]
[ ] [ ]

( )( )

2 2 2 3

3 2 3 3

,

0 0

0 0

max
0 0

1000
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s bi
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k k

K

× ×

× ×

 
 
 
 =  
 
 
  

      (5.2) 

 

where,  

 [ ]s i
k  = stiffness at each node of the shell element. 

 [ ]2 2mk
×

 = membrane stiffness at each node of the shell element. 

 [ ]3 3bk
×

 = bending stiffness at each node of the shell element. 

sK  = element stiffness matrix for the shell element. 
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5.4 Coordinate Transformation 

  

 A shell is a three dimensional structure and it is often convenient to define the 

geometry of shell structure in the global coordinate system. However, to generate the 

element stiffness matrix for the membrane and plate bending elements, the elements have 

to be defined in the element local plane, and element local coordinates are required to 

calculate the stiffness of these elements. Since the flat shell elements considered in this 

study are based on a combination of membrane and plate bending elements it is thus 

necessary to use local coordinates for computing the element stiffness matrix of the flat 

shell elements. The transformation between global coordinates and local coordinates is 

required to generate the element local stiffness matrix in the local coordinate system. 

Also the stiffness matrix must then be transformed to the global coordinate system. This 

can be done using vector algebra. Direction cosines are required to transform the 

coordinates from the global coordinate system to the local coordinate system. The 

formulation of the transformation matrix for triangular and quadrilateral element is 

described below (SAP 2000 Analysis Reference, Computers and Structures Inc., 1997). 

 

Triangular Element 

 

Fig. 5.4 shows the global axis X, Y and Z and the transformed local axis x, y and 

z. In this study the global Z axis is in the upward direction and local z axis is normal to 

the plane of the element. In Fig. 5.4, the node numbers are written in the 

counterclockwise direction and i , j , and k  represent the mid points of the sides 1-2, 2-3 

and 3-1 respectively; and are used to define direction cosines for the plane of the triangle 
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Fig. 5.4 Coordinate Transformation for Triangular Element. 

 

Assuming the local x axis is parallel to the vector passing through nodes k  and 

node j , the vector representing the local x direction is given by, 

 

j k jk

x jk j k jk

j k jk

x x x

V V y y y

z z z

   −
   

= = − =   
   −   

       (5.3) 

 

where , ,k k kx y z  etc. represents the values of global coordinates for node k . The direction 

cosine xλ  for the local x direction is obtained by normalizing the vector with respect to 

its length of the side. The direction cosine for the local x axis is given by, 

 

1
jk

x jk
kj

jk

x

y
l

z

λ

 
 

=  
 
 

         (5.4) 

where,  

( ) ( ) ( )2 2 2

kj jk jk jkl x y z= + +   is the length of the vector. 
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 A reference vector defining the plane of the element is obtained by creating a 

vector that passes through the vector xV  which defines the local x direction. The 

reference vector RV , is obtained by creating a vector that passes from nodes i  and 3 by 

the same procedure described in Equation (5.3). 

 

 3R iV V=          (5.5) 

 

The normal to the plane that represents the element local z direction is obtained by the 

cross product of vectors xV  and RV ,  

  

z x RV V V= ×          (5.6) 

 

The direction cosine zλ  for the local z direction is obtained by normalizing the vector zV  

as shown in Equation (5.4). The local y axis is obtained from cross product of the vector 

in the local x direction and the vector in the local z direction. The cross product of these 

two vectors gives the vector  yV  normal to the xz plane.  

 

y z xV V V= ×          (5.7) 

 

The direction cosine yλ  for local y direction is obtained by normalizing the vector yV  as 

given in Equation (5.4). 

 

Quadrilateral Element 

 

Fig. 5.5 shows the global and local coordinate axis for the quadrilateral element. 

The node numbers for the quadrilateral elements are written in counterclockwise order. 

The mid points of sides 1-2, 2-3, 3-4, and 4-1 are represented by i , j , k  and l  

respectively.  The element local plane is defined by creating two vectors intersecting each 
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other and passing through the mid points of the sides 2-3 and 3-4 of the quadrilateral as 

shown in Fig. 5.5. 

 
Fig. 5.5 Coordinate Transformation for Quadrilateral Element. 

 

Assuming the local x axis of the quadrilateral is parallel to the vector passing 

through nodes l  and j , the vector passing through these nodes is given by, 

 

 
j l jl

x lj j l jl

j l jl

x x x

V V y y y

z z z

   −
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= = − =   
   −   

       (5.8) 

 

where, , ,i i ix y z  etc. represents the global coordinates of node i . The direction cosine xλ  

for the local x direction is obtained by normalizing the vector with respect to its length. 
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x jl
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λ

 
 
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         (5.9) 

where,  

( ) ( ) ( )2 2 2

jl jl jl jll x y z= + +   is the length of the vector. 
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 A reference vector RV , defining the plane of the element is obtained by creating a 

vector passing through nodes i  and k  of the element as shown in Fig. 5.5.  

 

 R ikV V=          (5.10) 

 

The normal to the plane is obtained by the vector cross product of xV  and RV ,  

  

 z x RV V V= ×          (5.11) 

 

The direction cosine for the local z direction zλ  is obtained by normalizing vector zV  

with respect to its length, as given in Equation (5.4). The local y axis is obtained by the 

vector cross product of the vector in the local x direction and vector in local z direction. 

The cross product of these two vectors will give the vector  yV  normal to the xz  plane.  

 

y z xV V V= ×          (5.12) 

 

The direction cosine yλ  for the local y  direction is obtained by normalizing the vector 

yV  with respect to its length, as given in Equation (5.4). 

 

Transformation of Coordinates and Stiffness Matrix 

 

The 3 3×  transformation matrix for the transformation of coordinates from the 

global to the local axis can be written as,  

 

[ ] ( ) ( ) ( ){ }3 1 3 13 3 3 1x y zλ λ λ λ
× ×× ×

=        (5.13) 

 

where xλ , yλ , and zλ  are the direction cosines for local x, y and z directions. 
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The local coordinates at each node needed to derive the element local stiffness matrix is 

obtained as, 

 

[ ] [ ] [ ]3 1 3 3 3 1

T
xyz XYZλ

× × ×
=         (5.14) 

 

where,  

 [ ]3 1
xyz

×
 = local x, y and z coordinates at each node. 

[ ]3 1
XYZ

×
 = global X, Y and Z coordinates at each node. 

  

 The element local stiffness matrix for membrane and plate bending element is 

calculated using the local coordinates obtained. The stiffness for drilling degrees of 

freedom is approximated as described in the previous section. The element stiffness 

matrix [ ]6 6s n n
k

×
 for the shell element, where n is the number of nodes per element, is then 

defined in the local coordinate system.  

 

 To calculate the structure stiffness matrix, the element stiffness matrix must be 

transformed to the global coordinate system. The transformation of the element stiffness 

matrix from the local to the global coordinate system is given by,  

 

[ ] [ ] [ ] [ ]6 6 6 6 6 6 6 6

T

s sn n n n n n n n
K T k T

× × × ×
=        (5.15) 

 

where,  

 n  = number of nodes per element. 

 sK  = element stiffness matrix in the global coordinate system. 

 sk  = element stiffness matrix in the local coordinate system. 

 [ ]T  = transformation matrix. 

 

The transformation matrix for triangular shell elements is, 
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 [ ]
[ ]

[ ]
[ ]
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         (5.16) 

 

The transformation matrix for quadrilateral shell element is, 
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       (5.17) 

 

where, [ ]λ  is calculated from Equation (5.13) for triangular or quadrilateral element 

respectively. 

 

5.5 Implementation of Triangular Flat Shell Element in Java 

  

To implement the triangular flat shell element in Java, a class called 

TriShellElement was developed. The TriShellElement class is derived from the base 

class Element. The base class Element contains all the data variables and functions 

necessary for managing all of the different elements in the program. 

 

The class definition and the variables declared within the TriShellElement class are 

given below, 

 
public class TriShellElement { 

 

  private double th; //Thickness of the element. 

  private double[] EX; //array of x coordinates. 

  private double[] EY; //array of y coordinates. 

  private double[] EZ; //array of z coordinates. 

  private double[] X; //array of local x coordinates. 
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  private double[] Y; //array of local y coordinates. 

  private double[][] MatD; //Material matrix for plane stress. 

  private double[][] MatDb; //Material matrix for bending condition. 

  private double[][] Kcst; //Element stiffness matrix for CST Element. 

  private double[][] Kdkt; //Element stiffness matrix for DKT Element. 

  private double[][] Ttrans; //Transformation matrix. 

  private double[][] ST; //Transformation matrix for coordinates. 

  private double[][] TSKelem; //Element local stiffness matrix. 

  public double[][] GTSKelem; //Element Global stiffness matrix. 

 

The variable th represents the thickness of the element. []EX, []EY, and [] EZ 

are arrays containing the x, y, and z coordinates of the nodes in the global coordinate 

system. The arrays [] X and [] Y containing the x and y coordinates of the element local 

coordinate system. The two dimensional arrays [][]MatD and [][]MatDb contain the 

material matrix for membrane and bending properties. The two dimensional arrays 

[][]ST and [][]Ttrans contain the transformation matrix for coordinates and element 

stiffness matrix respectively. The two dimensional arrays [][]Kcst and [][]Kdkt  

contain the stiffness matrices for the CST element and the DKT element respectively. 

[][]TSKelem and [][]GTSKelem  are two dimensional arrays that contain the element 

stiffness matrix for triangular flat shell element in the local and global coordinate system. 

All of these instance variables except the two dimensional array GTSKelem representing 

the element stiffness matrix of triangular flat shell element in the global coordinate 

system, are declared as private.  

 

The constructor of the TriShellElement class is declared as follows,  

 
public TriShellElement(double[] cx, double[] cy, double[] cz, 

double[][] D, double[][] Db, double thelem) { 

    MatD = D; 

    MatDb = Db; 

    th = thelem; 

    EX = cx; 

    EY = cy; 

    EZ = cz; 



 80

The coordinates of the nodes, the material matrices for membrane and bending 

properties, and the thickness of the element are all initialized through the constructor 

when an instance of the class TriShellElement is created. 

 

The methods of the class TriShellElement are given in Table 5.1. All methods 

are declared private except for the CalcElemK() method, which is declared as public 

since it is called from outside the class. The method CalcLocalcoord() computes the 

element local coordinates by performing a coordinate transformation. The 

CaclcTransformationMatrix() method computes the transformation matrix needed to 

transform the element stiffness matrix from the local to the global coordinate system. The 

CalcElemLocalStiffMatrix() method computes the element stiffness matrix in the 

local coordinate system by superimposing the stiffness matrices of the CST element and 

the DKT element.  The CalcElemGlobalStiffMatrix() method computes the element 

stiffness matrix in the global coordinate system.  

 

Table 5.1 Methods in the TriShellElement class 

 

Method Description 

CalcLocalcoord() Calculates element local coordinates. 

CalcTransformationMatrix() Calculates transformation matrix. 

CalcElemLocalStiffMatrix() 
Calculates element stiffness matrix of triangular flat 

shell element in the local coordinate system. 

CalcElemGlobalStiffMatrix() 
Calculates element stiffness matrix of triangular flat 

shell element in the global coordinate system. 

 

The structure of the CalcElemK() method is shown below. This method takes an 

object of type TriShellElement as an argument and calls the methods 

CalcLocalcoord(), CalcTransformation(), CalcElemLocalStiffMatrix(), and 

CalcElemGlobalStiffMatrix(). 
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public void CalcElemK(TriShellElement tri) { 

 

  //Calculates element coordinates in local plane. 

  tri.CalcLocalcoord(); 

 

  //Calculates transformation matrix. 

  tri.CalcTransformationMatrix(); 

 

  //Calculates element stiffness matrix in the local coordinate system. 

  tri.CalcElemLocalStiffMatrix(); 

 

  //Calculates element stiffness matrix in the global coordinate 

system. 

  tri.CalcElemGlobalStiffMatrix(); 

} 

 

 The approach used for analyzing a structure consisting of triangular flat shell 

elements is as follows. For each element an instance of the TriShellElement class is 

created by calling the constructor. 

 
TriShellElement tshell = new TriShellElement(x, y, z, MatD, MatDb, TH); 

 

where,  tshell is the instance of the class TriShellElement. The x, y and z 

coordinates, material matrix for membrane and bending properties and the thickness of 

the element are passed in the above constructor. Once an object of the TriShellElement 

class has been created, the element stiffness matrix is computed by calling the method 

CalcElemK () of the main class by passing the tshell object as an argument to the 

function. 

 

The TriShellElement class also contains the method CalcStresses (). This 

method calculates stresses for triangular shell element. These stresses are obtained from 

the nodal displacements which are computed during the analysis. The CalcStresses () 

method is declared as, 
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public void CalcStresses(TriShellElement tshell, int elem, double[] U, 

StressResults SR) 

 

The parameter tshell is an instance of the TriShellElement class, elem is the 

element number, U is the array of nodal displacements, and SR is an instance of the 

StressResults class which stores element stresses.  
 

 The stresses at each node of the element are calculated by first calculating 

membrane and bending stresses for membrane element and plate bending element 

respectively. The summation of membrane and bending stresses gives the stresses for 

triangular flat shell element. 

 

5.6 Implementation of Quadrilateral Flat Shell Element in Java 

  

To implement the quadrilateral flat shell element in Java, a class called 

QuadShellElement was developed. The QuadShellElement class is derived from the 

base class Element.  

 

The class definition and the variables declared within the QuadShellElement class are 

given below, 

 
public class QuadShellElement { 

 

  private double th; //Thickness of the element. 

  private double[] EX; //Array of x Coordinates. 

  private double[] EY; //Array of y Coordinates. 

  private double[] EZ; //Array of z Coordinates. 

  private double[] X; //Array of local x Coordinates. 

  private double[] Y; //Array of local y Coordinates. 

  private double[][] MatD; //Material matrix for plane stress. 

  private double[][] MatDb; //Material matrix for bending condition. 

  private double[][] Kquad4; //Element stiffness matrix for QUAD4 

Element. 

  private double[][] Kdkq; //Element stiffness matrix for DKQ Element. 
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  private double[][] Ttrans; //Transformation matrix. 

  private double[][] ST; //transformation matrix for coordinates. 

  private double[][] QSKelem; //Element local stiffness matrix. 

  public double[][] GQSKelem; //Element Global stiffness matrix. 

 

The variable th represents the thickness of the element. []EX, []EY and []EZ are 

arrays containing the x, y, and z coordinates of the nodes in the global coordinate system. 

The arrays []X and []Y contain the x and y coordinates of the element local coordinate 

system. The two dimensional arrays [][]MatD, and [][]MatDb contain the material 

matrix for membrane and bending properties. The two dimensional arrays [][]ST and 

[][]Ttrans contain the transformation matrix for coordinates and element stiffness 

matrix respectively. The two dimensional arrays [][]Kquad4, and [][]Kdkq  contain the 

stiffness matrices for the four node quadrilateral plane element and the DKQ element 

respectively. [][] QSKelem, and [][]GQSKelem are two dimensional arrays that contain 

the element stiffness matrix for quadrilateral flat shell element in the local and the global 

coordinate system. All of these instance variables except the two dimensional array 

GQSKelem representing the element stiffness matrix, are declared as private.  

 

The constructor of the QuadShellElement class is declared as follows,  

 
public QuadShellElement(double[] cx, double[] cy, double[] cz, 

double[][] D, double[][] Db, double thelem) { 

    MatD = D; 

    MatDb = Db; 

    th = thelem; 

    EX = cx; 

    EY = cy; 

    EZ = cz; 

  } 

 

The coordinates of the nodes, the material matrices for membrane and bending 

properties, and the thickness of the element are all initialized through the constructor 

when an instance of the class QuadShellElement is created. 
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The methods of the class QuadShellElement are given in Table 5.2. All methods 

are declared private except for the CalcElemK() method, which is declared as public 

since it is called from outside the class. The method CalcLocalcoord() computes the 

element local coordinates by performing a coordinate transformation. The 

CaclcTransformationMatrix() method computes the transformation matrix needed to 

transform the element stiffness matrix from the local to the global coordinate system. The 

CalcElemLocalStiffMatrix() method computes the element stiffness matrix in the 

local coordinate system by superimposing the stiffness matrices of the four node 

quadrilateral plane element and the DKQ element.  The CalcElemGlobalStiffMatrix() 

method computes the element stiffness matrix in the global coordinate system.  

 

Table 5.2 Methods in the QuadShellElement class 

 

Method Description 

CalcLocalcoord() Calculates element local coordinates. 

CalcTransformationMatrix() Calculates transformation matrix. 

CalcElemLocalStiffMatrix() 
Calculates element stiffness matrix of quadrilateral 

flat shell element in the local coordinate system. 

CalcElemGlobalStiffMatrix() 
Calculates element stiffness matrix of quadrilateral 

flat shell element in the global coordinate system. 

 

The structure of the CalcElemK () method is shown below. This method takes 

an object of type QuadShellElement as an argument and calls the methods 

CalcLocalcoord(), CalcTransformation(), CalcElemLocalStiffMatrix(), and 

CalcElemGlobalStiffMatrix. 

 
public void CalcElemK(QuadShellElement quad) { 

 

  //Calcualtes element coordinates in local plane. 

  quad.CalcLocalcoord(); 

 

  //Calculates transformation matrix. 
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  quad.CalcTransformationMatrix(); 

 

  //Calculates element stiffness matrix in the local coordinate system. 

  quad.CalcElemLocalStiffMatrix(); 

 

  //Calculates element stiffness matrix in the global coordinate 

system. 

  quad.CalcElemGlobalStiffMatrix(); 

} 

 

 The approach used for analyzing a structure consisting of quadrilateral flat shell 

elements is as follows. For each element an instance of the QuadShellElement class is 

created by calling the constructor. 

 
QuadShellElement qshell = new QuadShellElement(x, y, z, MatD, MatDb, 

TH); 

 

where,  qshell is the instance of the class QuadShellElement. The x, y, and z 

coordinates, material matrix for membrane and bending properties and the thickness of 

the element are passed in the above constructor. Once an object of the 

QuadShellElement class has been created, the element stiffness matrix is computed by 

calling the method CalcElemK () of the main class by passing the qshell object as an 

argument to the function. 

 

The QuadShellElement class also contains the method CalcStresses (). This 

method calculates stresses for quadrilateral shell element. These stresses are obtained 

from the nodal displacements which are computed during the analysis. The 

CalcStresses () method is declared as, 

 
public void CalcStresses(QuadShellElement qshell, int elem, double[] U, 

StressResults SR) 
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The parameter qshell is an instance of the QuadShellElement class, elem is the 

element number, U is the array of nodal displacements and SR is an instance of the 

StressResults class which stores element stresses.  
 

 The stresses at each node of the element are calculated by first calculating the 

membrane and bending stresses for membrane element and plate bending element 

respectively. The summation of membrane and bending stresses gives the stresses for 

quadrilateral flat shell element. 
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Chapter 6 

Program Development 

 

6.1 Introduction 

 

 The main objective of this study is to develop triangular and quadrilateral plane 

stress, plate bending, and flat shell elements in Java. A second objective was to write a 

finite element analysis program to verify the results obtained from these elements. The 

program computes displacements and stresses for the structure modeled using the plane 

stress, plate bending, or flat shell elements. This chapter presents the development of the 

finite element analysis program in Java. The required input to the program is in the form 

of a text file. The results from the program are saved in an output file in text format. The 

format of the input file essentially follows that of the SAP 2000 commercial finite 

element analysis program with some minor modifications. The SAP 2000 program was 

used to generate the finite element models for testing and verification. 

 

6.2 Program Structure  

  

 A finite element analysis program for the analysis of membrane, plate and shell 

structures was developed in Java. The program was developed using the object oriented 

approach. The classes are divided in to three categories: (1) structural classes (2) input-

output classes and (3) interface classes. The description of various classes for each 

category in the program is presented in the following paragraphs. 

 

6.2.1 Structural Classes 

  

 The structural classes include all the classes that represent the structural model 

and the classes that are used to analyze the structure.  
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For any finite element analysis problem, the finite element model is first created 

from different structural components such as system properties (representing the behavior 

of whole structure), nodal coordinates, restraints, material properties, element section 

properties, element joint connectivity, and loads. The classes that represent the objects of 

these real structural components are SystemProp, Joint, Restraint, Material, 

SectionProp, Element, JtLoad, and UniLoad respectively. The FEModel class is the 

storage class where the objects representing the finite element model are stored.  

  

  After all the required structural data is obtained, an instance of the Analysis class 

is created and displacements and stresses are calculated. The instances of the 

Coordtransformation and EqNodalLoads classes are used to define the transformation 

matrices and calculate equivalent nodal loads respectively.  

 

The classes MembraneStr, BendinStr, and ShellStr represent membrane, 

bending and shell stresses respectively for each element of the structure. The 

StressResults class is a container class where objects containing stresses for each 

element are stored. The description of each structural class is given in the following 

paragraphs. 

 

SystemProp Class 

 

The system properties represent the behavior of the entire structure. The system 

properties such as the number of system degrees of freedom in each direction are defined 

in the SystemProp class. The number of system degrees of freedom defines the behavior 

of structure, i.e. whether it is a plane, plate or shell structure. The class SystemProp 

contains the methods GetSysdof() and GetiflagSysdof(). These methods return the 

values of system degrees of freedom and an array of values for system degrees of 

freedom.  
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Joint Class 

 

 The nodal coordinates for each node of an element is required to calculate the 

element stiffness matrix. The Joint class is the base class of all nodes in the structure. 

Each node has its own node number and values of x, y and z coordinates. The node 

number and x, y, z coordinates for a node are defined in the Joint class. Several methods 

such as GetJtNodeNum(), GetX(), GetY(), and GetZ() are defined within the Joint 

class. These methods provide access to the various data members of the. 

 

Restraint Class 

 

 In order to analyze the structure it is important to know how many equations are 

to be solved. The number of equations required to be solved are obtained from the 

number of restraints provided to the structure and are derived from the class Restraint. 

The node number and an array of equation numbers for that node are defined in this class. 

The methods GetRestrNodeNum() and GetEQNID() are also defined in the Restraint 

class. These methods return the values of the node number and an array of equation IDs 

for that node when called. 

 

Material Class 

 

 The Material class stores information regarding linear elastic material properties. 

The information contained in this class includes the modulus of elasticity and Poisson’s 

ratio of the material. The methods defined in this class are GetMoE() and GetNU(). 

These methods are called to access the stored material properties. 

 

SectionProp Class 

 

 The SectionProp class represents the element section properties such as 

thickness of the elements and the plane strain or plane stress condition. The SectionProp 

class also contains the methods GetThickness() and GetFlagMat(). These methods 
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return the values of thickness of elements and values indicating the stress condition (i.e. 

plane stress or plane strain).  

 

Element Class 

 

 The Element class is the base class for all elements. The data members in this 

class include element number, number of nodes for the element and a joint connectivity 

array. The methods Getelemnum(), GetNumnodes(), and GetConnectivity() are also 

defined in the Element class. These methods return the element number, number of 

nodes for that element and the joint connectivity array. Once the node numbers for each 

node of the element are obtained, the coordinates for that node can be obtained using the 

methods defined in the Joint class. The class hierarchy for the Element class is 

represented in Fig. 6.1.  

 

 
 

Fig. 6.1 Element Class Diagram. 
 

 

JointLoad Class 

 

 The JointLoad class represents a force or moment applied at a joint. The data 

members of this class include the node number and an array of nodal loads applied at that 

node. The methods defined in the JointLoad class are GetNodeNumber() and 

GetLoadValue(). These methods return the node number and an array of nodal loads in 

each direction for that node.  
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UniLoad Class 

 

 The UniLoad class represents a uniformly distributed surface load applied in the 

direction normal to the element local plane. The UniLoad class contains the element 

number and the magnitude of the uniformly distributed surface load. The methods in the 

UniLoad class include GetNodeNumber() and GetLoadValue(). The element number 

and the magnitude of uniformly distributed load applied on the element can be accessed 

by calling these methods.  
 

 

FEModel Class 

  

 The FEModel class is a container class where all of the components of a structural 

model are stored as objects. The Java API class Vector is used to store objects of each 

structural component such as system properties, nodes, restraints, material properties, 

section properties, elements, and loads.  

 

 Java provides the library of classes that dynamically allocate space for each object 

to be stored. These classes are modified from the collection classes in the Java class 

library java.util. The legacy classes have the additional advantage over that they are 

synchronized. In this program, the API class Vector of Java class library java.util is 

used to store the data dynamically. Vector is a dynamic array, which is similar to the 

ArrayList class of the Java collection classes. The Vector class in Java has an initial 

default capacity of 10. The Vector dynamically allocates the space for the object to be 

stored after the initial capacity is reached. The elements stored in the Vector can be 

easily manipulated using the methods provided in Java. Once an instance of a Vector is 

created, the element can be added to a Vector by calling the addElement() method. The 

value of an element from any specific location of the Vector can be obtained by calling 

the method elementAt(). Elements stored in the Vector can be removed by calling the 

removeElement() or removeElementAt()methods.  
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Several instances of the Vector class are declared in the FEModel class. These are 

SystemPropList, NodeList, RestraintList, MaterialList, SectionPropList, 

ElementList, JtLoadList and UniLoadList. They store objects of the classes 

SystemProp, Joint, Material, SectionProp, Element, JointLoad, and UniLoad that 

represents system properties, joint data, material properties, element section properties, 

element data, joint loads, and uniformly distributed surface loads respectively. Thus, each 

component of the finite element model is stored as an instance of the Vector class. The 

diagram representing the relationship between FEModel class and other structural classes 

is shown in Fig. 6.2. 

 

 
 

Fig. 6.2 FEModel Class Diagram. 

 

 

The methods for storing and retrieving the objects of each structural component 

are defined in the FEModel class. Each method creates an object of different structural 

component and stores it to the vector using the AddElement() method from java.util 

class library. All methods are declared public. Each method of the FEModel class and its 

function is described in Table 6.1. 
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Table 6.1 Methods in the FEModel class 

 

Method Description 

AddSystem () 
Creates an instance of the System class and adds it to the vector 

SystemPropList. 

AddNode () 
Creates an instance of Joint class and adds it to the vector 

NodeList. 

AddRestraint () 
Creates an instance of the Restraint class and adds it to the 

vector RestraintList. 

AddMaterial () 
Creates an instance of the Material class and adds it to the 

vector MaterialList. 

AddSectionProp () 
Creates an instance of the SectionProp class and adds it to the 

vector MaterialList. 

AddElement () 
Creates an object of the Element class and adds it to the vector 

ElementList. 

AddJointLoad () 
Creates an instance of the JointLoad class and adds it to the 

vector JtLoadList. 

AddUniLoad () 
Creates an instance of the UniLoad class and adds it to the 

vector UniLoadList. 

PutNumofRestr () Stores the number of restraints provided for entire structure. 

PutUDLflag () 
Stores a flag to specify if uniformly distributed loads are applied 

to the structure. 
 

 

 

CoordTransformation Class 

  

 The flat shell element developed in this study is a combination of a plane stress 

element and a plate-bending element. A shell element is three dimensional in nature and 

it is convenient to represent a shell element in the global coordinate system. However, 

plane stress element and plate bending element are two dimensional elements and hence a 
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transformation is required to obtain the element stiffness matrix for the she ll element 

when combining these two elements. 

 

 The CoordTransformation class represents the coordinate transformation from 

the global to the local coordinate system. A transformation matrix can also be obtained 

that transforms the element stiffness matrix from the local coordinate system to the global 

coordinate system.  

 

 The CoordTransformation class contains various methods such as 

CalcCoord(), DCOS() and CROSS(). All methods are declared private except 

CalcCoord() method. The method CalcCoord() is called in the element classes to 

calculate the element stiffness matrix for shell elements. The method DCOS() returns an 

array representing the direction cosines for a vector. The method CROSS() computes the 

cross product of two vectors and returns an array containing the resulting vector. The 

CalcCoord() method performs coordinate transformation and calculates the 

transformation matrix using the procedure described in Chapter 5. 
 

 

EqNodalLoads Class 

 

 When uniformly distributed surface loads are applied to the elements in the 

direction normal to their local plane, these loads have to be transformed to equivalent 

nodal loads applied at each node of the element. 

 

 The EqNodalLoads class contains methods for computing the equivalent nodal 

loads from the uniformly distributed surface load. The method CalcEqNodalLoads() is 

called once an instance of the EqNodalLoads is created. This method calculates 

equivalent nodal loads at the each node of the structure and creates an array of loads. The 

2 2×  Gauss quadrature is used to compute these nodal loads at the Gauss points. The 

nodal loads computed at the Gauss points are then extrapolated to the element nodes. The 
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methods defined within the EqNodalLoads class are given in Table 6.2. All methods 

except CalcEqNodalLoads() are declared private. 

 

Table 6.2 Methods in the EqNodalLoad class 
 

 

Method Description 

QUADShapeFn () Calculates shape functions for the quadrilateral element. 

QuadJacobian () 
Calculates the determinant of Jacobian for the 

quadrilateral element. 

CalcQuad4EqNodalLds () 
Calculates equivalent nodal loads at each node of the 

quadrilateral element. 

CalcTriEqNodalLds () 
Calculates equivalent nodal loads at each node of the 

triangular element. 

CalcEqNodalLoads () Calculates equivalent nodal loads at each node. 
 

 

 

Analysis Class 

 

 The analysis of the structure is implemented in the Analysis class. Once the 

finite element model is generated, all of the components of the model are stored as 

objects in the FEModel class. The analysis is then performed using these stored objects. 

Several methods are developed to perform the different steps in the analysis such as, 

compute the structure stiffness matrix, compute displacements at each node of the 

structure, and compute element stresses for each element. All methods are declared as 

private except the RunAnalysis() method. The methods defined in the Analysis class 

are given in Table 6.3. 
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Table 6.3 Methods in the Analysis class. 

 

Method Description 

CalcRestrDOF () Calculates restraint degrees of freedom. 

CalcMaterialMatrixPlStress() Calculates material matrix for plane stress condition. 

CalcMaterialMatrixPlStrn () Calculates material matrix for plane strain condition. 

CalcMaterialMatrixBending() Calculates material matrix for bending properties. 

CalcAnalysisData () 

Calculates analysis data such as degrees of freedom, 

material properties, element section properties, 

system properties material matrix etc. 

CalcStructureKMatrix () Calculates structure stiffness matrix. 

CalcDeflections () Calculates displacements at each node. 

CalcStresses () Calculates stresses for each element. 

 

 Once the required data for analysis is processed by the method 

CalcAnalysisData(), the analysis is performed using the methods 

CalcStructureKMatrix(), CalcDelection() and CalcStresses().  Joint connectivity 

data is obtained for each element from the Element class. Nodal coordinates for each 

node of an element are then obtained by calling methods from the Joint class. Instances 

of classes representing CST, four node quadrilateral, DKT, DKQ, triangular shell and 

quadrilateral shell elements are declared as needed in the CalcStructureKMatrix(). 

Element stiffness matrices are then calculated by calling the corresponding method for 

the specific element. The element stiffness matrices for each element of the structure are 

then superimposed to generate the structure stiffness matrix. Deflections are then 

calculated using the structure stiffness matrix and the load values obtained from the 

JointLoad and EqNodalLoads classes respectively. The Gauss-Jordan method is used to 

solve the system of equations and compute deflections at each node of the structure. 

Element stresses are then computed in the CalcStresses() method. Instance of classes 

representing each element in the structure are created and the corresponding method for 

computing element stresses is called to compute stresses for that element. The stresses for 
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each element are then stored in the vectors of the StressResult class. The class diagram 

for Analysis class is shown in Fig. 6.3. 

 

Fig. 6.3 Analysis Class Diagram. 

MembraneStr Class 

  

 The MembraneStr class represents the stresses in a membrane element (either 

triangular or quadrilateral). The data members defined within this class are normal stress 

in the x and y directions, shearing stresses, maximum and minimum principal stresses 

and angle of the principal plane at each node of the membrane element. This class also 

contains the accessor methods that are called to obtain the membrane stresses. The 

methods defined within the MembraneStr class are given in the Table 6.5. 

 

Table 6.4 Methods in the MembraneStr class 

 

Method Description 

GetS1 () 
Returns an array of normal stresses in the x direction at each node of the 

element. 

GetS2 () 
Returns an array of normal stresses in the y direction at each node of the 

element. 

GetS12 () Returns an array of shearing stresses at each node of the element. 

GetSmax () 
Returns an array of maximum principal stresses at each node of the 

element. 

GetSmin () 
Returns an array of minimum principal stresses at each node of the 

element. 

GetANG () Returns the array of angle of principal plane at each node of the element. 
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BendingStr Class 

 

 The bending stresses for an element are stored in the BendingStr class. This class 

stores the stresses normal to the x and y direction, shearing stresses, maximum and 

minimum principal stresses and the angle of principal plane at each node of the element. 

Several methods defined within the class are used to access the stored bending stresses 

for each element. The methods defined within BendingStr and their description is given 

in Table 6.6.  

 

Table 6.5 Methods in the BendingStr class 

 

Method Description 

GetS1 () 
Returns an array of normal stresses in the x direction at each node of the 

element. 

GetS2 () 
Returns an array of normal stresses in the y direction at each node of the 

element. 

GetS12 () Returns an array of shearing stresses at each node of the element. 

GetSmax () 
Returns an array of maximum principal stresses at each node of the 

element. 

GetSmin () 
Returns an array of minimum principal stresses at each node of the 

element. 

GetANG () Returns an array of angle of principal plane at each node of the element. 
 

ShellStr Class 

 

 The ShellStr class represents the shell stresses at the top and the bottom of a 

shell element. The arrays of stresses normal to the x and y direction, shearing stresses, 

maximum and minimum principal stresses and an array of angle of the principal plane are 

defined within this class. The ShellStr class also contains various methods that return 

the normal, shearing and principal stresses and angle of principal plane for each node of 

the element. The methods are described in Table 6.6. 
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Table 6.6 Methods in the ShellStr class 

 

Method Description 

GetS1 () 
Returns an array of normal stresses in the x direction at each node of the 

element. 

GetS2 () 
Returns an array of normal stresses in the y direction at each node of the 

element. 

GetS12 () Returns an array of shearing stresses at each node of the element. 

GetSmax () 
Returns an array of maximum principal stresses at each node of the 

element. 

GetSmin () 
Returns an array of minimum principal stresses at each node of the 

element. 

GetANG () Returns an array of angle of principal plane at each node of the element. 
 

StressResults Class 

 

 The stresses for each element are computed separately in the analysis 

process. Therefore, it is necessary to store the computed stresses for each element 

dynamically. The StressResults stores computed stresses for each element. 

 

 In the StressResult class, the Java class vector is used to store the computed 

stresses dynamically. The stresses for each element are stored in the instances of the 

MembreaneStr, BendingStr or ShellStr classes depending upon the type of element. 

The objects of these classes are stored in the vectors defined in the StressResult class. 

The vectors defined within the StressResults class are MembraneStresses, 

BendingStresses, and ShellStresses.  Each of these vectors stores the objects 

containing values of membrane stresses, bending stresses, and shell stresses respectively 

depend on what element is being analyzed. The methods defined in the StressResults 

class are described in Table 6.7. 
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Table 6.7 Methods in the StressResults class 

 

Method Description 

AddMembraneStresses () 
Creates an instance of the MembransStr class and adds it 

to the vector MembraneStresses. 

AddBendingStresses () 
Creates an instance of the BendingStr class and adds it to 

the vector BendingStresses. 

AddShellStresses () 
Creates an instance of the ShellStr class and adds it to 

the vector ShellStresses. 

 

 

 An instance of the StressResults class is created in the CalcStresses() 

method of the Analysis class. This instance is then passed to the CalcStresses() 

method of the CSTElement, QUAD4Element, DKTElement, DKQElement, 

TriShellElement or QuadShellElement classes as an argument.. The methods 

AddMembraneStresses(), AddBendingStresses() or AddShellStresses() are then 

called to store the computed stresses from that element. The stresses for each element are 

stored to the vectors dynamically within these methods using the method AddElement() 

of Java class library. Fig. 6.4 represents the diagram for the StressResults class. 

 

 

 

Fig. 6.4 StressResults Class Diagram. 
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6.2.2 Input and Output Classes 

 

 The geometry and structural details of the finite element model are provided to a 

program in the form of an input. In this study, the finite element model is generated using 

the interface provided by SAP 2000 and the input text file is created from this model. 

This input text file is used (with minor modifications). The results obtained from the 

analysis are saved to a text file. The ReadInput class reads the input file and saves the 

structure data. The WriteOutput class writes writes the displacements and stresses 

obtained from the Analysis class.  
 

 

ReadInput Class 

 

 The input for the program is provided in the form of text file. Hence, it is 

necessary to read the provided input from the text file and store the input data in an 

instance of the FEModel class from where it can be used for analysis. The ReadInput 

class performs the task of reading the provided data and transfers this information to the 

FEModel class where the data is stored in different vectors. The input for the program 

consists of the system properties, joint coordinates, joint restraints, material properties, 

section properties, element joint connectivity and loads applied to the structure. Several 

methods provided in the ReadInput class to read this data from a file and to store this in 

an instance of the FEModel class. The methods defined within the class and its description 

is given in Table 6.8. 
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Table 6.8 Methods in the ReadInput class 

 

Method Description 

ReadTextFile () Reads the input file. 

ReadSystem () Reads system data from the SYSTEM block of the input file. 

ReadJoint () Reads joint coordinates from the JOINT block of the input file. 

ReadRestraints () 
Reads restraint data from the RESTRAINT block of the input 

file. 

ReadMaterial () 
Reads material data such as modulus of elasticity and Poisson’s 

ratio from the MATERIAL block of the input file. 

ReadShellSection() 
Reads thickness of the element from the SHELL SECTION 

block of the input file. 

ReadConnectivity() 
Reads joint connectivity data from the SHELL block of the 

input file. 

ReadLoads () 
Reads data of applied load such as joint loads, uniformly 

distributed surface load from the LOAD block of input file. 

InputReader () Calls all methods listed above. 

 

 An instance of the FEModel class is created in the method InputReader. This 

instance is then passed to all the other methods in the ReadInput class. The methods in 

the ReadInput class are described below. 

  

 The method ReadTextFile() reads the input text file and stores it as a string. The 

method ReadSystem() reads the number of system degrees of freedom and the flag 

values for the system degrees of freedom in each direction. The method 

AddSystemProperties() is called in the ReadSystem() method from the FEModel class 

that stores the system properties. The method ReadJoints() reads the x, y, and z 

coordinates of each node. The method AddJoint() of FEModel class is called for each 

node in the structure. It saves the node number and x, y, and z coordinates for that node. 

The method ReadRestraints() reads the restraints provided at each node and assigns 
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equation numbers corresponding to degrees of freedom in each direction for that node. 

The node number and an array representing the equation number for that node is then 

stored in an object of the FEModel class by calling the method AddRestraint() of 

FEModel class.  

 

The method ReadMaterial() reads material properties for the structure such as 

modulus of elasticity and Poisson’s ratio. The method AddMaterial() of the FEModel 

class is called to store these material properties. The method ReadShellSection() reads 

the shell section properties such as thickness of the elements. The shell thickness is then 

stored in the FEModel class by calling the method AddSectionProp() of the FEModel 

class. The method ReadConnectivity() reads joint connectivity data for each element. 

The method AddElement() is called for each element and the element number, number 

of nodes for that element and the array representing the joint connectivity for that element 

is stored in the FEModel object. The method ReadLoads() reads the type of load, load 

cases, values of loads and multiplication factor for a particular load case. The loads are 

then stored in the FEModel object by calling the methods AddJtLoad() and 

AddUniLoad() for storing the joint loads and uniformly distributed sur face loads applied 

to the structure. 
 

WriteOutput Class 

 

The results obtained from the analysis must be stored for later use during the 

analysis of the structure. Due to the large amount of output generated by the program, it 

is convenient to store the results in the text file. The path of the text file where the results 

are to be stored is passed through the constructor of the WriteOutput class. The results 

from the analysis are then printed to this saved text file in the WrteOutput class. 

 

 The WriteOutput class contains methods that print the stored results to the text 

file. The method WriteResults() defined in this class is declared public. This method 

tabulates and prints the displacements at each node and the stresses for each element. The 

vectors MembraneStresses, BendingStresses, and ShellStresses contain objects of 
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the MembraneStr, BendingStr and ShellStr classes for each element in which the 

values of the membrane, bending and shell stresses are stored for that element. These 

stored stresses are then written to the output file by calling the accessor methods defined 

within the MembraneStr, BendingStr and ShellStr classes.  

 

6.2.3 Interface Classes 

 

 The program contains a very simple user interface since all the input and output 

operations are done using text files. There are two steps for analyzing the structure using 

the program. The first is to read the input data from the input text file and second is to run 

an analysis. The interface of the program contains a menu bar that has the Import, Run, 

and Exit and Help commands for performing the tasks of importing the input text file, 

running an analysis, exiting the program and displaying description of the program. The 

classes used for the user interface and application window are the VTFEA, MainFrame and 

MainFame_AboutBox classes. Each class is described in the following paragraphs. 
 

VTFEA Class 

 

   The purpose of this class is to create an instance of the main application window 

and to begin program execution. The only variable declared in this class is packframe, 

which is initialized to false. Setting packframe to false results in a call to the pack() 

method of the Java class library UIManager which sets the size and location of the main 

application window on the screen.   

 

An instance of the class MainFrame is declared in the constructor to VTFEA. This 

results in the creation of main application window. Once the main application frame is 

constructed, various methods such as pack(), validate(), setsize(), and 

setvisible() of the Java class library UIManager are called. These methods set the size 

of the main application window and display it on the screen.  
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The VTFEA class also contains the main method. The execution of the program 

begins with the main method. An instance of the VTFEA class is created inside the main. 
 

MainFrame class 

 

 The MainFrame class represents the main application window of the VTFEA 

application. The purpose of this class is to create the application window and assign 

various user interface objects such as title, border, minimize and maximize button, and a 

menu bar. All of these user interface components are derived from the Java Foundation 

Classes (JFC). The main application window is shown in Fig. 6.2. 
 

 The MainFrame class includes logic for implementing various means such as 

reading the input file, performing the analysis, storing analysis results to a text file, and 

terminating program execution. It also contains logic for displaying a dialog box that 

contains information regarding the program. The main actions are implemented using the 

event handling features provided in the Java event handling classes. 

 

 
 

Fig. 6.5  Main Application Window for the Program. 

 An instance of ReadInput is created when the “Input” menu item is selected. The 

methods Inputreader is called that reads and stores the input data when the “Import” 

command is pressed from the “File” menu. Instances of the Analysis class and 
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WriteOutput class are created when the “Run” menu item from the “Analyze” menu is 

selected. The methods RunAnalysis()  and the WriteResults() from the Analysis and 

WriteOutput classes respectively are called to perform the analysis and  to print the 

displacements and stresses obtained from the analysis to the text file.  

 

MainFrame_AboutBox Class 

 

 The “About” dialog box provides information about the program. The 

MainFrame_AboutBox class represents the window for the “About” dialog box. The Java 

Foundation Classes (JFC) are used to design the various interface components of the 

dialog box. The instance of this class is created when the “About” menu item is selected 

from the “Help” menu of the main application window and a dialog box appears on the 

screen that provides the details of the program.  
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Chapter 7 

Test Examples and Verification of Results 

 

 In this chapter, a comparison of results for several test examples analyzed using 

the developed program for this research with those obtained from a commercial finite 

element analysis program SAP 2000, is presented. The results compared include 

maximum displacements and maximum average stresses. 

 

7.1 Example Problems for Verification of Three Node Triangular (CST) Element 

  

 The accuracy of the CST element developed in this study is verified by analyzing 

three test examples using the developed program and the commercial finite element 

analysis program SAP 2000. The results are compared at different nodes. 

 

Test Example 1 

 

This test example consists of a cantilever beam of length 48 in., depth 12 in. and 

thickness of 1 in. and is taken from Chen (1992). The beam is modeled using 8 three 

node triangular (CST) elements. Vertical loads of 20 kips are applied at the free end of 

the cantilever (nodes 5 and 10). Fig. 7.1 shows the finite element model of the cantilever 

beam.  

 
Fig. 7.1 FE Model for Test Example 1 – Cantilever Beam.  
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Geometric Data: 

 Length L  = 48.0 in. 

 Depth h = 12 in. 

 Thickness t  = 1.0 in. 

 

 

Material Properties:  

 Modulus of elasticity E = 30000 ksi. 

 Poisson’s ratio ν  = 0.25  

 

 

Boundary Conditions: 

 Restraints are provided in the x and y directions at the left end of the cantilever 

(nodes 1 and 6). 

 

 

Loading:  

 A concentrated load of 20 kips is applied to nodes 5 and 10. 

 

 

Comparison of Results: 

 

The results from the analysis obtained from the program and from SAP 2000 are 

shown in Table 7.1. The results shown are the displacements at nodes 10 and 8, and 

stresses at node 6. From Table 7.1, it is seen that the results given by the program are 

identical to those given by SAP 2000. Similar results were obtained for the other nodes. 
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Table 7.1 Displacements and Stresses for Test Example 1 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX -0.014159 -0.014159    0.00% 
Node – 10 

UY 0.090347 0.090347 0.00% 

UX -0.010825 -0.010825 0.00% 
Node – 8   

UY 0.030403 0.030403 0.00% 

S11 -17.128727 -17.128727 0.00% 

S22 -4.282182 -4.282182 0.00% Node - 6 

S12 9.537940 9.537940 0.00% 

 

 

Test Example 2 

 

 The second test example consists of the same cantilever beam of Example 1. The 

length of the beam is 48 in., depth is 12 in. and the thickness is 1 in. The finite element 

model now consists of 32 three node triangular (CST) elements. Vertical loads totaling 40 

kips is applied at the free end of the cantilever beam. The finite element model of the 

cantilever beam as shown in Fig. 7.2. 

 

 
Fig. 7.2 FE Model for Test Example 2 – Cantilever Beam. 
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Geometric Data: 

 Length L  = 48.0 in. 

 Depth h = 12 in. 

 Thickness t  = 1.0 in. 

 

 

Material Properties: 

 Modulus of elasticity E = 30000 ksi. 

 Poisson’s ratio ν  = 0.25  

 

 

Boundary Conditions: 

 Restraints are provided in the x and y directions at the left end of the cantilever. 

 

 

Loading:  

A concentrated load 1P  = 6.67 kips is applied at node 10. 

      A concentrated load 2P  = 26.67 kips is applied at node 27. 

      A concentrated load 3P  = 6.67 kips is applied at node 5. 

 

 

Comparisons of Results: 

 

 Table 7.2 represents the results obtained for the second test example from the 

developed program and SAP 2000. The displacements at nodes 10 and 8 and stresses at 

node 6 are shown. The results indicate that the percentage difference in each case is less 

than 0.02%.  
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Table 7.2 Displacements and Stresses for Test Example 2 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX -0.034263 -0.034271     -0.023% 
Node – 10 

UY 0.194412 0.194456 -0.023% 

UX -0.025599 -0.025605 -0.023% 
Node – 8  

UY 0.062956 0.062971 -0.024% 

S11 -41.493731 -41.503067 -0.022% 

S22 -10.373433 -10.375767 -0.022% Node - 6 

S12 11.840936 11.843600 -0.022% 

 

 

Test Example 3 

  

 The third verification example is a plate with semi circular hole of radius 3 in. at 

the center. The plate is fixed at the top. A downward vertical load of 0.67 kips/in is 

applied at the free edge. The length of the plate is 16 in., the width is 6 in. and the 

thickness is 0.45 in. A plate is modeled using 110 three node triangular (CST) elements.  

The FE model is shown in Fig 7.3. 

 

Geometric Data: 

 Width L  = 16.0 in. 

 Width b = 6.0 in. 

 Thickness t  = 0.45 in. 

 

Material Properties:  

 Modulus of elasticity E = 30000 ksi. 

 Poisson’s ratio ν  = 0.3  
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Fig. 7.3 FE Model for Test Example 3 – Plate with Semi Circular Hole. 

 

 

Boundary Conditions: 

 The plate is restrained at the top in both the x and y directions. 
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Loading:  

 Concentrated loads of 1.0 kips are applied at each node at the bottom of the plate. 

i.e. nodes 6, 12, 19, and 26.  

 

Comparison of Results:  

 

The displacements at nodes 1 and 6 and stresses at nodes 32 and 36 are given in 

Table 7.3. As can be seen from the table, results obtained from the developed program 

and those from SAP 2000 are same. Similar results are obtained for the other nodes.  
 

Table 7.3 Displacements and Stresses for Test Example 3 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX 0.001545 0.001545    0.00% 
Node – 1 

UY -0.003132 -0.003132 0.00% 

UX 0.004213 0.004213    0.00% 
Node - 6 

UY -0.003355 -0.003355 0.00% 

S11 1.250061 1.250061 0.00% 

S22 7.050394 7.050394 0.00% Node - 32 

S12 0.480698 0.480698 0.00% 

S11 1.156083 1.156083 0.00% 
Node - 36 

S22 7.547362 7.547362 0.00% 

  

 

7.2 Example Problems for Verification of Four Node Quadrilateral Plane Element 

  

 Three example problems were selected to verify the accuracy of the four node 

quadrilateral plane element. The structures for the second and third example problems are 

the same as those analyzed using the three node triangular (CST) elements.  
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Test Example 4  

 

 The first example consists of a cantilever beam of length 6 in., depth 0.8 in. and 

thickness 0.2 in. A concentrated vertical load of 10 kips is applied at the free end of the 

cantilever in the downward direction. The finite element model of the cantilever beam is 

generated using three four node quadrilateral plane elements as shown in Fig. 7.4. 

 
 

Fig. 7.4 FE Model for Test Example 4 – Tip Loaded Cantilever Beam.   

 

Geometric Data: 

 Length L  = 6.0 in. 

 Depth h = 0.8 in. 

 Thickness t  = 0.2 in. 

 

Material Properties:  

 Modulus of elasticity E = 30000 ksi. 

 Poisson’s ratio ν  = 0.3  

 

Boundary Conditions: 

 Restraints are provided in the x and y directions at the left end of the cantilever. 

 

Loading: 

 A concentrated load of 10 kips is applied to the free end (node 8) of the 

cantilever. 
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Comparison of Results:  

 

Table 7.4 represents the results for displacements at nodes 8 and 3, and stresses at 

node 1 obtained from the program and SAP 2000. The comparisons shown in the table 

suggest that the displacements and stresses obtained from the program are in good 

agreement with those obtained from SAP 2000. 

 

Table 7.4 Displacements and Stresses for Test Example 4 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX 0.016107 0.016110    -0.018% 
Node – 8 

UY -0.162708 -0.162735 -0.016 % 

UX -0.014282 -0.014285 -0.015% 
Node – 3  

UY -0.084639 -0.084652 -0.021% 

S11 -146.96544 -146.99074 -0.017% 

S22 -44.089634 -44.097225 -0.017% Node - 1 

S12 -141.122551 -141.144703 -0.015% 

 

 

Test Example 5 

 

 The second example problem to verify the four node quadrilateral plane element 

is similar to the cantilever beam of Example 2. The length of the cantilever beam is 48 

in., depth is 12 in. and thickness is 1 in. A vertical loads totaling 40 kips are applied at the 

free end of the cantilever (Chen, 1992). The beam is modeled using 20 four node 

quadrilateral plane elements. The finite element model for the cantilever beam is shown 

in Fig. 7.5.  
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Fig. 7.5 FE Model for Test Example 5 - Cantilever Beam.  

 

Geometric Data: 

 Length L  = 48.0 in. 

 Depth h = 12 in. 

 Thickness t  = 1.0 in. 

 

Material Properties:  

 Modulus of elasticity E = 30000 ksi. 

 Poisson’s ratio ν  = 0.25  

 

Boundary Conditions: 

 Restraints are provided at the left end (nodes 1, 13, and 6) of the cantilever. 

 

Loading:  

A concentrated load 1P  = 6.67 kips is applied at node 10. 

      A concentrated load 2P  = 26.67 kips is applied at node 27. 

      A concentrated load 3P  = 6.67 kips is applied at node 5. 
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Comparison of Results:  

 

The displacements at nodes 10 and 8 are shown in Table 7.5. Also shown in the 

table are the stresses at node 6. The difference in displacements obtained from the 

program is less than 1%. The stresses obtained from the program are almost identical to 

those obtained from SAP 2000. 

 

Table 7.5 Displacements and Stresses for Test Example 5 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX -0.057484 -0.057074     0.718% 
Node – 10 

UY 0.317406 0.316064 0.425% 

UX -0.042772 -0.042774 -0.005% 
Node – 8  

UY 0.101260 0.101265 -0.005% 

S11 -70.300130 -70.304114   -0.006% 

S22 -17.575032 -17.576029     -0.006% Node - 6 

S12 18.407756 18.408688 -0.006% 

 

 

Test Example 6 

 

 The same example problem of a plate with a semicircular hole, analyzed in 

Example 3 was chosen for the verification of the four node quadrilateral elements.. The 

plate is fixed at the top. A downward vertical load of 0.67 kips/in is applied to the free 

edge of the plate. The length of plate is 16 in., the width is 6 in. and the thickness is 0.45 

in. The plate is modeled using 52 four node quadrilateral plane elements. To model the 

boundaries of the plate, 6 three node triangular (CST) elements were also included in the 

FE model. This test example was chosen to verify the accuracy of the program for a 

hybrid mesh that includes two different types of elements i.e. three node triangular and 
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four node quadrilateral elements. The finite element model for the plate is shown in Fig. 

7.6. 

 
 

Fig. 7.6 FE Model for Test Example 6 - Plate with Semi Circular Hole.  

 

Geometric Data: 

 Length L  = 16.0 in.   

Width b = 16 in.   

Thickness t  = 0.45 in  
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Material Properties:  

 Modulus of elasticity E = 30000 ksi. 

 Poisson’s ratio ν  = 0.3  

 

Boundary Conditions: 

 Restraints are provided at top of the plate (i.e., nodes 55, 62, 68, and 74) 

 

Loading: 

 Concentrated loads of 1.0 kips are applied at each node at the bottom of the plate. 

i.e., nodes 6, 12, 19, and 26. 

 

Comparison of Results:  

 

 Table 7.6 represents the comparison of displacements and stresses obtained at 

various nodes from both programs. The displacements at nodes 1 and 6 are tabulated. The 

differences in results obtained from the two programs are less than 2 %. The stresses at 

nodes 32 and 36 are obtained from the program are compared to those from SAP 2000. 

The differences in stresses are in the range 4% to 7%.  The element stresses are 

calculated at the element edge using the derivatives of the displacements. The stresses 

calculated at the edge of one element may differ significantly from the stresses calculated 

at the edge of an adjacent element. The reason for this difference is that the stresses are 

not in equilibrium with the externally applied traction and hence are not continuous 

across element boundaries. The difference may be significant if the generated finite 

element mesh is coarse. This difference can be reduced using a finer mesh. Therefore, 

stresses averaged at any single point may be higher or lower depending on mesh pattern. 

The commercial finite element analysis program SAP 2000 uses an error estimation 

scheme that reduces the error in stresses and thus give results that are more accurate. 

However, the results obtained here from the program are in good agreement with those 

obtained from the SAP 2000. 
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Table 7.6 Displacements and Stresses for Test Example 6 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX 0.001951 0.001984    -1.663% 
Node – 1 

UY -0.003847 -0.003852 -0.129% 

UX 0.005384 0.005437    -0.974% 
Node-6 

UY -0.004070 -0.004075 -0.122% 

S11 2.12129 1.98348 6.947% 

S22 10.76729 10.57779 1.791% Node - 32 

S12 1.653674 1.585048 4.329% 

S11 1.91307 1.775941 7.721% 
Node - 36 

S22 12.28807 11.841794 3.768% 

 

 

7.3 Example Problems for Verification of Three Node Triangular Plate Bending 

(DKT) Element 

 

 To verify the accuracy of the three node plate elements, four finite element 

models were analyzed using the program and SAP 2000. The results for these four test 

cases are described in the following sections.  

 

Test Example 7 

 

The first test example is a square plate of size 12 ft ×  12 ft having a thickness of 6 

in. The plate is subjected to a uniform surface load of 0.1 kips/sq. in.  All four edges of 

the plate are fixed. The finite element model was generated using 128 three node 

triangular plate bending (DKT) elements. 
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Two mesh patterns were considered in the analysis of the plate. Both mesh 

patterns have the same number of nodes and elements. The only difference between the 

two mesh patterns is the orientation of the elements. The finite element models for the 

two mesh patterns are shown in Figures 7.7 and 7.8. 

 

Geometric Data: 

 Length L  = 144.0 in. 

 Width = 144.0 in. 

Thickness t  = 6.0 in. 
 

Material Properties:  

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.2 

 

Boundary Conditions: 

All four edges of the plate are fixed. 

 
Fig. 7.7 FE Model for Test Example 7 – Square Plate– Mesh Pattern A. 
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Fig. 7.8 FE Model for Test Example 7 – Square Plate– Mesh Pattern B. 

 

Loading: 

 A uniform surface load of 0.1 kips/sq. in. is applied to the plate. 

 

Comparison of Results: 

 

 The displacements at nodes A and E, and the stresses at nodes B, C, and D for 

mesh pattern A and B are shown in Tables 7.7 and 7.8. It is seen from the tabulated 

values that among the two mesh patterns, mesh pattern A gives more accurate results than 

mesh pattern B. A similar observation was made by Batoz et al. (1980). The stresses at 

nodes B, C and D for SAP 2000 are taken from the stress diagram of the SAP 2000 

graphical user interface rather than from the SAP 2000 output file for the structures 

analyzed using triangular plate elements. The comparison of stresses at various nodes to 

those obtained from the stress diagram of SAP 2000 graphical user interface are in good 

agreement. 
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Table 7.7 Displacements and Stresses for Test Example 7 - Mesh Pattern - A 

 

Location  
Results from 

Program 

Results from  

SAP-2000 
% Difference 

Point – A 

(Node – 41) 
UZ -0.82345 -0.82920 -0.694% 

Point – E 

(Node – 21) 
UZ -0.295672 -0.304909    -3.029% 

Point – B 

(Node – 37) 
S11 15.44666 16.8050 9.538% 

Point – C 

(Node – 5) 
S22 17.30481 16.9098 2.336% 

Point – D 

(Node – 17) 
S12 -2.87364 -3.0190 -4.185% 

 
Table 7.8 Displacements and Stresses for Test Example 7 – Mesh Pattern - B 

 

Location  
Results from 

Program 

Results from  

SAP-2000 
% Difference 

Point – A 

(Node – 41) 
UZ -0.79443 -0.82920 -4.193% 

Point – E 

(Node – 21) 
UZ -0.27932 -0.30010    -6.924% 

Point – B 

(Node – 37) 
S11 14.02095 16.8584 -16.831% 

Point – C 

(Node – 5) 
S22 14.85041 16.9312 -12.289% 

Point – D 

(Node – 17) 
S12 -2.90833 -2.9001 6.241% 
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Test Example 8  

 

The second example is a rectangular plate of size 8 ft ×  12 ft with a hole of size 4 

ft ×  2 ft. The thickness of the plate is 10 in. A uniform surface load of 0.2 kips/sq. in. is 

applied over the entire plate. All inside and outside edges of the plate are simply 

supported. The finite element model of the plate contains 96 three node triangular plate 

bending (DKT) elements (See Figures 7.9 and 7.10). 

 
Fig. 7.9 FE Model for Test Example 8 – Rectangular Plate with Hole.  

 

Geometric Data: 

 Out side length 1L  = 96.0 in. 

 Outside width 1B  = 144.0 in. 

 Inside length 2L = 48 in. 

 Inside width 2B  = 24 in. 

 Thickness t  = 10.0 in. 
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Material Properties: 

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.2  

 

Boundary Conditions: 

 All inside and outside edges of the plate are simply supported. 

 

Loading: 

 A uniform surface load of 0.2 kips/sq. in. is applied to the plate. 

 

 
 

Fig. 7.10 FE Model for Test Example 8 – Rectangular Plate with Hole. 
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Comparisons of Results:  

 

 The comparison of displacements and stresses obtained from the program and 

SAP 2000 for this example is tabulated in Table 7.9. The displacements are compared at 

points A and B, while the stresses are compared at points C and D as shown in Figures 

7.9 and 7.10. The results obtained from the program are found to be similar with those 

obtained from SAP 2000. However, the normal stress in the y direction at point D is 

approximately 9% less than that given by the SAP 2000. The difference in results is 

because of the different triangular plate bending elements used in the program and SAP 

2000.  

 

Table 7.9 Displacements and Stresses for Test Example 8 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

Point – A (Node – 46) UZ -0.021537 -0.021647    -0.508% 

Point – B (Node – 17) UZ -0.001274 -0.001288     -1.087% 

S11 3.02900 3.0126 0.544% 
Point – C (Node – 68) 

S22 1.577566 1.7364 -9.147% 

Point – D (Node – 1) S12 1.022454 1.0103     1.203% 

 

 

Test Example 9 

 

The third verification problem is a cant ilever plate of size 8 ft x 8 ft. The 

thickness of the plate is 6 in. A uniformly distributed surface load of 0.01 kips/sq. in. is 

applied to the plate. The finite element model consists 128 three node triangular plate 

bending (DKT) elements. The finite element model of the plate is shown in Fig. 7.11. 
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Geometric Data: 

 Length L  = 96.0 in. 

 Width = 96.0 in. 

Thickness t  = 6.0 in. 

 

Material Properties: 

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.2  

 

 
Fig. 7.11 FE Model for Test Example 9– Cantilever Plate. 

 

Boundary Conditions: 

 One edge of the cantilever plate is fixed. 
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Loading: 

 A uniform surface load of 0.01 kips/sq. in. is applied to the plate. 

 

Comparisons of Results:  

 

 Displacements at points A and D and stresses at points B and C obtained from the 

program are compared to those obtained from SAP 2000 (See Table 7.10). The 

displacements obtained from the program are within 5% from those obtained from SAP 

2000. The difference between stresses obtained from the developed program and those 

obtained from the SAP 2000 is less than 5%. One reason for this difference is use of 

different elements in the author’s program and SAP 2000. Another reason can be the 

higher order numerical integration scheme used by SAP 2000. SAP 2000 uses four to 

eight point numerical integration scheme for its quadrilateral and triangular element 

while the author has used three point numerical integration scheme in the formulation of 

the element stiffness matrix for DKT element. 

 

Table 7.10 Displacements and Stresses for Test Example 9 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

Point – A (Node – 77) UZ -1.60400 -1.68787    -4.960% 

Point – D (Node – 41) UZ -0.569561 -0.599412    -4.980% 

Point – B (Node – 5) S11 1.74398 1.8325 -5.431% 

Point – B (Node – 5) S22 8.07994 8.2984 -2.633% 

Point – C (Node – 18) S12 0.40987 0.4288 -4.415% 
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7.4 Example Problems for Verification of Four Node Quadrilateral Plate Bending 

(DKQ) Element. 

  

 Verification of the four node quadrilateral plate bending (DKQ) elements 

developed in Java is performed by analyzing the same three structures used for the 

verification of triangular plate bending elements. The structures are now modeled using 

four node quadrilateral plate bending (DKQ) elements. The description of the example 

problems and comparison of results is discussed in the following sections. 

 

Test Example 10 

 

The first example problem is a square plate of size 12 ft ×  12 ft and has a 

thickness of 6 in. A uniform surface load of 0.1 kips/sq. in. is applied to the plate.  All 

four edges of the plate are fixed. The finite element model was generated using 64 four 

node quadrilateral plate bending (DKQ) elements (See Fig. 7.12). 

 

Geometric Data: 

 Length L  = 144.0 in   

Width  = 144.0 in.  

Thickness t  = 6.0 in. 

 

Material Properties:  

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.3  

 

Boundary Conditions: 

 All four edges of the plate are fixed. 

 

Loading: 

 A uniform surface load of 0.01 kips/sq. in. is applied to the plate. 
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Fig. 7.12 FE Model for Test Example 10 – Square Plate  

 

Comparison of Results:  

 

 Table 7.11 shows of displacements at points A and E and stresses at point B, C 

and D obtained from the program and from SAP 2000. The displacements at points A and 

E are approximately the same as those from SAP 2000. The difference is 0.006 % in the 

normal stresses in x and y direction at the fixed support (where the stresses are 

maximum). The difference in shearing stress from the program and that from the SAP 

2000 is 5 %.  
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Table 7.11 Displacements and Stresses for Test Example 10 

 

Location  
Result from 

Program 

Result from 

SAP 2000 
% Difference 

Point – A (Node – 41) UZ -0.84005     -0.84005 -0.000% 

Point – E (Node – 21) UZ -0.304782 -0.304782    0.000% 

Point – B (Node – 37) S11 17.51227     17.51111 -0.006% 

Point – C (Node –5) S22 17.51227   17.51111 -0.006% 

Point – D (Node – 17) S12 -2.82021 -2.65871 -5.726% 

 

Test Example 11  

 

The second example is the same rectangular plate with hole, which was used for 

the verification of DKT element. A plate is of size 8 ft ×  12 ft and has a hole of size 4 ft 

×  2 ft. The thickness of plate is 10 in. A uniform surface load of 0.2 kips/sq. in. is applied 

to the plate.  All inside and outside edges of the plate are simply supported. A finite 

element discretization for this example problem includes 72 four node quadrilateral 

(DKQ) elements. (See Figures 7.13 and 7.14). 

 

Geometric Data: 

 Out side length 1L  = 96.0 in. 

 Outside width 1B  = 144.0 in. 

 Inside length 2L = 48 in. 

 Inside width 2B  = 24 in. 

 Thickness t  = 10.0 in. 

 

Material Properties:  

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.2  
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Boundary Conditions: 

 All inside and outside edges of the plate are simply supported. 

 

Loading:  

 A uniform surface load of 0.2 kips/sq. in. is applied to the plate. 

 

 

 
 

 

Fig. 7.13 FE Model for Test Example 11 – Rectangular Plate with Hole. 
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Fig. 7.14 FE Model for Test Example 11 – Rectangular Plate with Hole.  

 

Comparison of Results: 

 

 The displacements and stresses obtained from the developed program and from 

SAP 2000 are tabulated in Table 7.12. The displacements are compared at points A and B 

while the stresses are compared at points C and D as shown in Figures 7.13 and 7.14. As 

can be seen from Table 7.12 the difference in displacements is insignificant. The stresses 

are also very close, however there is a difference of 5 % in shearing stress.  
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Table 7.12 Displacements and Stresses for Test Example 11 

 

Location  
Result from 

Program 

Result from 

SAP - 2000 
% Difference 

Point – A (Node – 46) UZ -0.030028    -0.030028 0.00% 

Point – B (Node – 17) UZ -0.001273    -0.001272 -0.078% 

S11 3.7204 3.7202 -0.005% 
Point – C (Node – 68) 

S22 1.637831 1.63769 -0.008% 

Point – D (Node – 1) S12 1.149302     1.095553 -4.676% 

 

Test Example 12 

 

The third verification example for the four node quadrilateral plate bending 

(DKQ) element consists of same cantilever plate that was used for the verification of the 

triangular plate bending (DKT) element. A cantilever plate is of size 8 ft x 8 ft and has a 

thickness of 6 in. A uniformly distributed surface load of 0.01 kips/sq. in. is applied to a 

plate. The plate is modeled using 64 four node quadrilateral plate bending (DKQ) 

elements. A finite element model of the plate for this example problem is shown in Fig. 

7.15. 

 

Geometric Data: 

 Length L  = 96.0 in. 

 Width = 96.0 in. 

Thickness t  = 6.0 in. 

 

Material Properties:  

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.2  

 

Boundary Conditions: 

 One edge of cantilever plate is fixed. 
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Loading:  

 A uniform surface load of 0.01 kips/sq. in. is applied to the plate. 

 
Fig. 7.15 FE Model for Test Example 12 – Cantilever Plate. 

 

Comparisons of Results: 

 

 Table 7.13 shows the comparison of displacements and stresses obtained from the 

developed program and SAP 2000. The displacements are compared at nodes A and E 

(See Fig. 7.15). It is seen that the displacements obtained from the program are identical 

to those obtained from the SAP 2000. A similar observation can be made for the normal 

stresses. However, the shearing stress compared at point C differed by approximately 7%. 

It can be concluded from the tabulated results that the four node quadrilateral plate 

bending elements developed for this program is efficient and gives satisfactory results as 

compared to commercial finite element analysis program SAP 2000. 
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Table 7.13 Displacements and Stresses for Test Example 12 

 

Location  
Result from 

Program 

Result from 

SAP 2000 
% Difference 

Point – A (Node – 77) UZ -1.605057    -1.605057 0.00% 

Point – E (Node – 21) UZ -0.169455 -0.169455 0.00% 

Point – B (Node – 5) S11 1.593686 1.593686 0.00% 

Point – B (Node – 5) S22 7.968432 7.968432 0.00% 

Point – C (Node – 10) S12 0.455595 0.488347 -6.706% 

 

7.5 Example Problems for Verification of Three Node Triangular Shell Elements 

   

 The three node triangular shell element developed in this study is a combination 

of CST element and DKT element. To verify the accuracy of three node triangular shell 

element, three example problems were selected. The comparison of displacements and 

stresses for each example problem is done at different points and the discussion is 

presented in the following sections. 

 

Test Example 13  

 

A cantilever I – beam is analyzed using the developed program and the SAP 

2000. The length of the I – beam is 40 in., the height is 5 in. and the flange widths are 10 

in. A load of 1.6 kips is applied at the top and bottom flanges of the I - beam in two 

opposite directions as shown in Fig. 7.16. This example is one of the verification 

examples presented in Alladin v. 1.0. A finite element model of the cantilever beam 

consists of 96 three node triangular shell elements.  
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Fig. 7.16 FE Model for Test Example 13 Cantilever I – Beam  

 

Geometric Data: 

 Length L  = 40.0 in. 

 Width = 10.0 in. 

 Height h  = 5.0 in. 

 Thickness t  = 0.25 in. 

 

Material Properties: 

 Modulus of elasticity E = 10000 ksi. 

 Poisson’s ratio ν  = 0.3  

 

Boundary Conditions: 

 One end of the cantilever is fixed. 
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Loading:  

 A concentrated load of 1.6 kips is applied at the top and bottom of the flange in 

opposite directions as shown in Fig. 7.16. 

 

Comparison of Results: 

 

 This verification example was selected, as it is very efficient in determining the 

effect of inplane rotations in the element. The displacements at nodes 63 and 9 and the 

stresses at nodes 2, 46 and 27 are compared to those obtained from the SAP 2000 (See 

Table 7.14). The percentage difference in displacements is within 3 %, which is 

acceptable because the different plate bending elements are used for the development of 

three node triangular shell elements in the author’s program and SAP 2000. The stresses 

from the program differ considerably from those obtained from SAP 2000. In this test 

example, torsional load is applied to the structure that causes inplane rotations in the 

elements. These inplane rotations are not included in the shell elements developed in this 

research while the triangular shell element in SAP 2000 include the rotational degrees of 

freedom in the development of element stiffness matrix of the shell element and hence is 

more accurate. The results indicate that the shell element developed is suitable for 

computing deflections but additional work is necessary to modify the element to take 

inplane rotations in to account. This is left on a topic of future study. 

 

Table 7.14 Displacements and Stresses for Test Example 13 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX -0.015376 -0.014921 3.049% 

UY 0.088021 0.085471 2.983% 
Point – A 

(Node – 63) 
UZ 0.150498 0.146070 3.031% 

UX -0.015281 -0.014834 3.013% 

UY -0.088024 -0.085475 2.982% 
Point – B 

(Node – 9) 
UZ -0.148408 -0.144533 2.681% 
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Table 7.14 Displacements and Stresses for Test Example 13 (Continue) 

 
Point – C 

(Node – 2) 
S11  -6.517417 -5.441100    19.78% 

Point – D 

(Node – 46) 
S22  2.688420 2.009748     33.769% 

Point – E 

(Node – 27) 
S12  -1.4427 -1.450483 0.539% 

  

Test Example 14  

  

 The second verification example is a folded plate structure as shown in the Fig. 

7.18. The length of the plate is 7.62 in. and the thickness is 1 in. A uniformly distributed 

surface load of 1 kips/ sq. in. is applied at the top and the two inclined sides of the plate. 

A finite element model of the folded plate structure is generated using 128 three node 

triangular plate bending elements. The folded plate structure is a good example for 

studying the effect of membrane and bending coupling that occurs at the edges of the 

shell elements. The finite element model of the folded plate is shown in Fig. 7.18 

.  

 
Fig. 7.17 Dimensions of the Folded Plate Structure  
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Fig. 7.18 FE Model for Test Example 14 – Folded Plate. 

 

 

Geometric Data: 

 Length of the plate L = 7.62 in. 

 The other geometric data are shown in Fig. 7.17 
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Material Properties:  

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.2  

 

Boundary Conditions: 

 The folded plate structure is simply supported at the bottom.  

 

Loading: 

 A uniformly distributed surface load of 1 kips/sq.in. is applied to the top and two 

inclined faces of the folded plate. 

 

Comparison of Results: 

 

 Table 7.15 shows analysis results at a few points obtained from the program and 

SAP 2000. The displacements at nodes 43 and node 63 which are the center nodes of the 

top and inclined faces of the folded plate structure are shown in the table. It can be seen 

that displacements obtained from the program are almost identical except for the 

displacements in y direction that have percentage difference of approximately 2 %. The 

stresses at nodes 43, 63 and 71 given by the program are different from those obtained 

from SAP 2000. Again, as in the previous example the reason for this difference is due to 

the fact that drilling degrees of freedom are not included in the triangular shell elements 

developed in this research. The inclusion of drilling degrees of freedom can have 

significant effect on stresses while inplane bending stresses are present in the structure.  
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Table 7.15 Displacements and Stresses for Test Example 14 

 

Location  
Result from 

Program 

Result from 

SAP-2000 

% 

Difference 

UX 0.003291 0.003293 -0.061% 

UY 0.000567 0.000581 -2.410% 
Point – A 

(Node – 43) 
UZ -0.012889 -0.012844 0.350% 

UX 0.008567 0.008551     0.187% 

UY 0.000422 0.000431    -2.088% 
Point – C 

(Node – 63) 
UZ -0.013089 -0.013055    0.260% 

Point – A 

(Node – 43) 
S11  -4.02949 -3.62061 11.293% 

Point – C 

(Node – 63) 
S22  -6.03507 -6.90214 -12.562% 

Point – D 

(Node 71) 
S12  -0.362579 -0.28533 27.074% 

 

Test Example 15  

 

The third verification problem is the standard test for triangular shell elements 

which is the  Scordelis – Lo roof problem (Chen, 1992). The length of the roof is 50 in. 

and the radius of 25 in. The angle of inclination is 40° . A uniform surface load of 90 

kips/sq. in. is applied to the cylindrical shell roof. Restraints are provided at the two ends 

of the roof. The geometric and material properties are described in the following sections. 

The finite element mesh is generated using 32 three node triangular shell elements. The 

finite element model of Scordelis – Lo roof is shown in Fig. 7.19.  
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Fig. 7.19 FE Model for Test Example 15 - Scordelis – Lo Roof.  

 

Geometric Data: 

 Length of the plate L = 50.0 in. 

 Radius = 25.0 in. 

 Angle φ  = 40°  

 

Material Properties:  

 Modulus of elasticity E = 43200000 ksi. 

 Poisson’s ratio ν  = 0  

 

Loading: 

 A uniformly distributed surface load of 90 kips/sq.in. is applied to the roof. 
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Comparison of Results: 

 

The standard test consists of computing the downward displacement at center of 

the free edge of the roof (node 11). The exact value of this displacement is 0.3024 in. The 

displacement at node 11 from the program and from SAP 2000 are in good agreement 

with the theoretical value. The percentage difference is less than 3% (See Table 7.16). 

The displacements at the top of the roof (node 13) are also compared to those obtained 

from the SAP 2000 and are found satisfactory. Stresses at nodes 1, 12 and 21 are 

compared and the percentage difference was approximately less than 5 % in results was 

observed. It can be concluded that for this test example, that the developed triangular flat 

shell element gives accurate results, however; the SAP 2000 triangular shell element is 

more accurate since the inplane rotational degrees of freedom are included and hence 

more accurately represents the inplane bending behavior of the structure. 

 

Table 7.16 Displacements and Stresses for Test Example 15 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX 0.002265 0.002148     5.447% 

UY 0.178983 0.176408    1.460% 
Point – A 

(Node – 11) 
UZ -0.328725 -0.323447     1.632% 

UX 0.002281 0.002164    5.407% 

UY -0.000005 -0.0000049 2.041% 
Point – B 

(Node – 13) 
UZ 0.036906 0.035615     3.625% 

Point – C 

(Node – 1) 
S11 32942.582 34730.135 -5.147% 

Point – D 

(Node – 12) 
S22 227009.341 222166.846 2.189% 

Point – E 

(Node – 21) 
S12 214256.364 220455.581 -2.812% 
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7.6 Example Problems for Verification of Four Node Quadrilateral Shell Elements 

 

 This section presents the comparison of displacements and stresses obtained from 

the developed program with those obtained from SAP 2000. Three example problems 

were selected for the verification of four node quadrilateral shell element. A description 

of each example problem and the discussion of the results are presented in the following 

sections. 

 

Test Example 16  

 

The first example problem for the verification of the four node quadrilateral shell 

elements is a cantilever channel section with tip load applied to the free end. The length 

of the cantilever is 6 in., the height 3 in., and the flange width is 2 in. The thickness of the 

channel section is 1 in. A tip load of 30 kips is applied at the free end of the cantilever. 

The finite element model is generated using 56 four node quadrilateral shell elements. 

Fig. 7.20 shows the finite element discretization for the structure. One end of the 

cantilever is restrained in all six directions and the concentrated loads of 10 kips each (in 

the downward vertical direction) are applied to the three nodes at the free end.  

 

Geometric Data: 

 Length = 6.0 in. 

Flange width = 2.0 in. 

 Height of the section = 3.0 in. 

 Thickness t  = 1.0 in. 

Material Properties: 

 Modulus of elasticity E = 3600 ksi. 

 Poisson’s ratio ν  = 0.2  

 

Boundary Conditions: 

 Restraints in all six directions are provided at the left end of the cantilever. 
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Fig. 7.20 FE Model for Test Example 16 – Cantilever Channel Section 

 

Loading:  

 A concentrated loads of 10 kips each is applied to the nodes at the top of the free 

end of the cantilever (nodes 7, 14, and 21) as shown in Fig. 7.20. 

 

Comparison of Results: 

 

Table 7.17 shows the comparison of displacements and stresses for the 

verification example. The displacements at nodes 11 and 14 are compared with those 

obtained from SAP 2000. The difference in the displacements is less than 5%. This 

difference is because of the different element types are used in the author’s program and 

SAP 2000. It is observed that the membrane action of the four node quadrilateral shell 

element in SAP 2000 is internally represented by eight node quadrilateral plane elements.  

Also the SAP 2000 shell element includes inplane rotational degrees of freedom in the 
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membrane part of the shell element. In the developed program a four node quadrilateral 

plane element is used in combination with four node quadrilateral plate bending (DKQ) 

element. The four node quadrilateral plate element is initially formulated as an eight node 

quadrilateral plate element and then constraints are provided at the mid nodes. However, 

the shape functions of eight node quadrilateral element is used in the development of the 

four node quadrilateral plate bending element. When combining this four node 

quadrilateral plate bending element with four node quadrilateral plane element to develop 

the quadrilateral shell element, it was concluded that convergence may not be accurate at 

the edges of the element and hence the difference in the results were found different. 

Also, the four node quadrilateral shell element developed in this study does not include 

the inplane rotational degrees of freedom which is important while analyzing the 

structure in which pure membrane or bending action is not present. The stresses obtained 

at nodes 1 and 14 are compared to those obtained from SAP 2000 and the difference in 

the results are found less than 3 % as shown in Table 7.17. 

 

Table 7.17 Displacements and Stresses for Test Example 16 

 

Location  
Result from 

Program 

Result from 

SAP 2000 
% Difference 

UX 0.014098     0.014522 -3.263% 

UY -0.074297    -0.077952 -4.689% 
Point – A 

(Node – 14) 
UZ -0.218509     -0.223337 -2.162% 

UX 0.009755 0.010005 -2.499% 

UY -0.024764 -0.025712 -3.687% 
Point – B 

(Node – 11) 
UZ -0.069415 -0.070682 -1.793% 

Point – C 

(Node – 1) 
S11 60.253877    59.538842 -1.187% 

Point – C 

(Node – 1) 
S22  11.907768 12.050775    -1.187% 

Point – D 

(Node – 7) 
S12  -26.076878 -26.862638    -2.925% 
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Test Example 17 

 

The second example consists of the same cantilever I – beam used to verify the 

three node triangular shell elements. This example tests the behavior of the element when 

the inplane bending stresses are severe.  A cantilever I – beam has a length of 40 in., 

height of 5 in. and flange width of 10 in.  The thickness of the beam is 0.25 in. A torque 

is applied to the I – section by applying point loads of 1.6 kips each in two opposite 

directions at the top and bottom flanges of the beam (See Fig. 7.21). The finite element 

model of this example problem contains 48 four node quadrilateral shell elements and is 

shown in Fig. 7.21. 

 

 
 

Fig. 7.21 FE Model for Example 17 - Cantilever I – Beam (Alladin v. 1.0, 1996). 
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Geometric Data: 

 Length L  = 40.0 in. 

 Width = 10.0 in. 

 Height h  = 5.0 in. 

 Thickness t  = 0.25 in. 

 

Material Properties: 

 Modulus of elasticity E = 10000 ksi. 

 Poisson’s ratio ν  = 0.3  

 

Boundary Conditions: 

 One end of the cantilever is fixed. 

 

Loading:  

 A concentrated load of 1.6 kips is applied at the top and bottom of the flange in 

opposite directions as shown in Fig. 7.21. 

 

Comparison of Results: 

 

 The displacements at nodes 9 and 63 and stresses at nodes 1, 46, and 27 are 

obtained from the developed program and SAP 2000 are shown in Table 7.18. It is seen 

from the Table 7.18 that the effect of inplane bending stresses in the four node 

quadrilateral shell element is more severe than in the triangular shell element. The 

displacements are compared at nodes 63 and node 9, which are the nodes opposite to the 

nodes where the loads are applied. When a torque is applied to a cantilever I – beam it 

was expected that the displacements in y and z should be in the opposite directions and of 

same value. The tabulated results agree with the expected results thus verifying the 

accuracy of the assembly of structure stiffness matrix and the equation solver used in this 

program. There is a large difference in the results obtained for stresses from the two 

programs for the same reasons indicated for the Test Example 16. 
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Table 7.18 Displacements and Stresses for Test Example 17 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX -0.025120 -0.027162     -7.518% 

UY 0.139963 0.151049     -7.339% 
Point – A 

(Node – 63) 
UZ 0.209469 0.255308     -17.954% 

UX -0.025120 -0.027162    -7.518% 

UY -0.139963 -0.151049    -7.339% 
Point – E 

(Node – 9) 
UZ -0.209469 -0.255308     -17.954% 

Point – B 

(Node – 1) 
S11 -10.824349 -12.256818    -11.687% 

Point – C 

(Node – 46) 
S22 4.430982 4.683511     -5.392% 

Point – D 

(Node – 27) 
S12  -1.523552 -1.683754     -9.515% 

 

Text Example 18 

 

 The structure chosen for the third verification example for quadrilateral shell 

elements is the same cantilever I – beam as in the previous example but now a 

concentrated tip load of 15 kips is applied at the free end of the cantilever. The length of 

the cantilever is 40 in., flange width is 10 in., height is 5 in. and thickness is 0.25 in. The 

cantilever I – beam has same number of elements as in Test Example 17 and is modeled 

using four node quadrilateral shell elements. The cantilever I – beam was chosen to 

verify the magnitude of the error in analysis due to inplane bending stresses present in the 

structure. The finite element model of the cantilever I – beam is shown in Fig. 7.22.  
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Fig. 7.22 FE Model for Test Example 18 – Tip Loaded Cantilever I – Beam.  

 

Geometric Data: 

 Length L  = 40.0 in. 

 Width = 10.0 in. 

 Height h  = 5.0 in. 

 Thickness t  = 0.25 in. 

 

Material Properties: 

  

 Modulus of elasticity E = 10000 ksi. 

 Poisson’s ratio ν  = 0.3  
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Boundary Conditions: 

 Restraints in all six directions are provided at the left end of the cantilever. 
 

Loading:  

 A concentrated load of 5 kips each is applied to nodes 9, 18 and 21. 
 

Comparison of Results: 
 

 From Table 7.19 it can be seen that the difference in the displacements at nodes 

18 and 54 is approximately 3 %. The maximum displacement is observed at node 9 where 

the difference between the results obtained from the developed program and SAP 2000 is 

found 0.6 %. Normal stresses at nodes 1 and 46 differ by 3 %. For shearing stress the 

difference is approximately 8 %. Thus it can be concluded that the four node quadrilateral 

shell element gives better results when inplane bending stresses are not significant. 
 

Table 7.19 Displacements and Stresses for Test Example 18 

 

Location  
Result from 

Program 

Result from 

SAP-2000 
% Difference 

UX 0.086634 0.089327    -3.015% 

UY 0.00 0.00    0.00% 
Point – A 

(Node – 18) 
UZ -1.051681 -1.084128    -2.993% 

UX -0.082022 -0.084834    -3.315% Point – B 

(Node – 54) UZ -1.045458 -1.082865    -3.454% 

Point – C 

(Node – 9) 
UZ -4.658466 -4.630571    0.602% 

Point – D 

(Node – 1) 
S11 44.204776    42.776400 -3.231% 

Point – E 

(Node – 1) 
S22 13.261433     12.832920 -3.231% 

Point – E 

(Node – 46) 
S12 -4.119114   -4.437667 7.734% 
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Chapter 8 

Summary and Conclusions 

 

8.1 Summary 

 

The purpose of this study was to develop membrane, plate and flat shell elements 

using an object oriented approach and the Java programming language. The membrane 

elements developed in the program included the three node triangular plane (CST) 

element and a four node quadrilateral plane element. The plate elements developed were 

based on the discrete Kirchoff theory. The two plate elements developed were the three 

node discrete Kirchoff triangular (DKT) element and the four node discrete Kirchoff 

quadrilateral (DKQ) element. The triangular flat shell element was developed by 

combining the CST element and the DKT Element (Batoz et al., 1980). The quadrilateral 

flat shell element was developed by assembling the four node isoparametric quadrilateral 

element and the DKQ Element (Batoz and Tahar, 1982). A computer program for finite 

element analysis was also written in Java programming language to check and verify the 

accuracy of results obtained from the developed membrane, plate and flat shell elements. 

The program is based on the object oriented approach. 

 

Input to the program is through a text file. The format for the input file is similar 

to the SAP 2000 S2k file. This makes it possible to generate the finite element model for 

the verification examples using the SAP 2000 graphical user interface. However, a few 

changes were made in the format of input text file for compatibility with the developed 

program. The loads that can be applied to the structure include concentrated loads, and 

uniformly distributed surface loads. Various load combinations can also be used. The 

program computes displacements and stresses at each node of the finite element model.  

 

Several test examples were analyzed using the program and results were 

compared with those obtained from the commercial finite element analysis program SAP 
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2000. Results were compared at the points of maximum displacements and stresses. The 

average stress was taken in to consideration to calculate stresses at specific point. 

 

8.2 Conclusions  

 

This thesis presented the development of six finite elements using the object 

oriented programming concept in Java as an alternative to the traditional procedural 

programming approach. A finite element analysis program was developed to verify the 

accuracy of the results. 

 

A series of test example problems were analyzed using the developed program. 

The results from these analyses were compared with those obtained from the commercial 

finite element analysis program SAP 2000 in order to verify the accuracy of the 

developed program. 

 

The results obtained from the analysis of the example problems using the plane 

stress triangular elements and the plane stress quadrilateral elements were found to be 

very accurate when compared to those obtained from the SAP 2000. The difference in 

displacements computed by the two programs was less than 1 %. The difference in 

stresses was also quite close. However, stresses in a few cases differed by 6 to 7 %.  

 

 The displacements for the verification examples using the triangular plate bending 

(DKT) elements (Batoz et al., 1980) were in agreement with those obtained from the SAP 

2000. The difference in displacements was found to be less than 3 % for the three node 

triangular plate bending (DKT) element and less than 5 % for the four node quadrilateral 

plate bending (DKQ) element. The computed stresses were also in agreement for most 

cases. The margin of difference in stresses was about 10 %.  

 

An important observation was made when analyzing the clamped plate using the 

DKT elements. It was founded that orientation of the mesh pattern affects the analysis 

results in clamped plate problem analyzed using DKT elements.  
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Three structures were analyzed using the three node triangular flat shell elements. 

The displacements found from these analyses were found to be in good agreement. 

However, there was a significant difference in the stress results. The reason for the 

difference is because the drilling degrees of freedom were neglected in the development 

of the element. It can be concluded that although the developed element gives reasonable 

results for displacements it does not accurately model the behavior of the shell structures 

when it comes to computing stresses. Thus, it is proposed that this element be modified 

by including drilling degrees of freedom in the membrane part of the element.  

 

The results from the quadrilateral shell elements were satisfactory only when 

either membrane or bending action is present in the structure, but gave poor results when 

inplane bending stresses were also present in the structure. The main reason for poor 

results is again the negligence of inplane rotational stiffness in the membrane stiffness 

matrix. The stiffness parameter for the drilling degree of freedom was approximated in 

the quadrilateral shell element developed in this study, while SAP 2000 uses a 

quadrilateral shell element with inplane rotational degree of freedom and hence gives 

more accurate results. McNeal and Harder (1988) have arrived at a similar conclusion. 

According to them, the flat shell element gives more accurate results when inplane 

rotational degree of freedom is included.  Knowles et al. (1976) also observed in his 

studies that, the flat shell elements are more accurate when the response of the structure is 

either membrane action or bending, but when membrane-bending coupling is present in 

the structure the flat shell element gives poor results. They also demonstrated the 

complete failure in performance of flat shell elements while analyzing the torsional 

behavior of a slit cylinder.  

 

In conclusion, the plane stress and plate bending elements developed in this study 

were found to be accurate. The triangular shell element performed better than the 

quadrilateral shell elements. From an analysis of different structures using the program, it 

can be concluded that the assembly of the structure stiffness matrix and the equation 

solver used in the program are accurate.  



 156

8.3 Future Development 

 

 This study illustrates the use of the object oriented Java programming language 

for developing membrane, plate bending and flat shell elements. Suggestions for future 

work include: (1) developing flat shell elements in which the membrane elements have 

rotational degrees of freedom, (2) using a band storage scheme for storing the structure 

stiffness matrix and band solvers in the program to solve large finite element analysis 

problems, (3) modifying the program to include a graphical user interface and, (4) 

extending the program to include other elements such as truss, and frame elements. 
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Appendix – A 

 

Input File Format for Program 

 

The input for the program can be provided in the form of a text file. The format of 

the text file essentially follows that used in the SAP 2000 program. However, several 

modifications were made to this format. 

 

All input data is provided in inches and kips. The data to be provided is in the 

form of data blocks. Each data block is separated by a specific title, which defines and 

separates the data blocks. The data blocks must be in the same order as shown in Table 

A-1. 

 

Table A-1 List of data blocks in input file 

 

Title of the data block Function 

SYSTEM Defines system properties. 

JOINT Defines joint coordinates. 

RESTRAINT Defines the restraints provided to nodes. 

MATERIAL Defines material properties. 

SHELL SECTION Defines shell section properties. 

SHELL Defines the joint connectivity for each element. 

LOAD Defines applied loads applied and load cases. 

END Ends the input file. 

 

SYSTEM Data Block: 

 

SYSTEM data block provides information regarding the degrees of freedom for 

the whole structure. The restraint conditions for the structure can be derived from this 

data block.  
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Table A- 2 SYSTEM data block 

 

SYSTEM 

     DOF = UX, UY, UZ, RX, RY, RZ Shell Element 

     DOF = UX, RY, RZ or UY, RX, RZ or UZ, RX, RY Plate Element 

     DOF = UX, UY or UY, UZ or UX, UZ Plane Element 

 

JOINT Data Block: 

 

 The JOINT data block contains data for joint coordinates. For each joint, X, Y 

and Z coordinates must be provided. 

 

Table A- 3 JOINT data block 

 

JOINT 

1 X=0.5 Y=0.5 Z=0 

Node number X-coordinate Y-coordinate Z-coordinate 

   

RESTAINT Data Block: 

 

 The RESTRAINT data block provides data for the restraints provided at different 

nodes of the structure. The notations U1, U2, U3 and R1, R2, R3 represents translational 

and rotational restraints in THE global X, Y, and Z directions respectively.  

 

Table A-4 RESTRAINT data block 

 

RESTRAINT 

       ADD=1 DOF=U1, U2, U3, R1, R2, R3 

Adds restraint to joint number 1 Provides restraints in the specified direction for 

joint 1. 
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MATERIAL Data Block: 

 

 The MATERIAL data block defines material properties for the elements such as 

modulus of elasticity and Poisson’s ratio.  

 

Table A-5 MATERIAL data block 

 

MATERIAL 

        E=29000 U=0.3 

Modulus of elasticity Poisson’s ratio 

 

SHELL SECTION Data Block: 

 

The SHELL SECTION data block provides information regarding section 

properties such as the thickness of the plane, plate or shell element. This data block also 

provides information on the type of stress condition (plane stress or plane strain). 

 

Table A-6 SHELL SECTION data block 

 

SHELL SECTION 

        TH=1.0 TYPE=STRESS or STRAIN 

Thickness of the element. Stress conditions (plane stress or plane 

strain) 

 

SHELL Data Block: 

 

 SHELL data block provides information regarding joint connectivity for each 

element. 
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Table A-7 SHELL data block 

 

SHELL 

1 J=1,2,3,4 

Element no. Defines nodes i, j, k, and l in counterclockwise direction (Quadrilateral 

element)  

1 J=1,2,3 

Element no. Defines nodes i, j, and k in counterclockwise direction (Triangular element) 

 

LOAD Data Block: 

 

 LOAD data block defines load values, load cases and load types. Two types of 

loads are considered in this study. One is a concentrated load that can be applied at any 

joint and the other is a uniformly distributed surface load that can be applied to elements 

in the element local Z – direction. A multiplication factor for any load case can also be 

defined in this data block. 

 

Table A-8 LOAD data block 

 

LOAD  

      NAME = DEAD LOAD MULT = 1 

Defines the load case. Defines the multiplication factor. 

             TYPE = FORCE  

Defines the load type for this load case.  

                       ADD = 1 UX = 5, UY = 2, UZ = 4, RX = 4, RY = 1, RZ = 2 

Adds joint load to specified node. Defines the value of load in specified direction. 

           TYPE = UDL  

Defines uniformly distributed load.  

                      ADD=1 P = -1 

Applies surface load to specified element. Defines the value of the applied load. 
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END Data Block: 

 

 The END data block must be placed at the end of the input text file to indicate the 

end of all input data. 
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