Development of New H2O95N Fluid Properties

J. Hope Forsmann

RELAP5-3D International Users Seminar Date: May 3, 2018

Overview

- Project Introduction
- Method
- H2O95 Table Generator Updates
- H2O95N Table Generator
- H2O95N Fluid Property Added to RELAP5-3D
- Update Accuracy Based Methodology
- Update Polated Driver Program
- Testing
- Results
- Follow-on Efforts
- Conclusions

Project Introduction

- Develop a hybrid fluid property table (H2O95N)
 - NBS/NRC Steam Tables from 1984 (H2ON)
 - NIST/ASME Steam Tables from 1995 (H2O95)
- Independent parameters
 - Pressure (P)
 - Specific internal energy (U)
- Extend into the metastable regions like H2ON
- Properties generated using H2O95 fluid table

Method

- Compiling and updating the H2O95 fluid property generator
- Adapting portions of the H2ON fluid property generator
- Extend the accuracy based generation methodology to work with H2O95, H2ON, and H2O95N
- Modify the polate utility for testing purposes
- Modify the developmental assessment (DA) scripts to compare the new fluid to both H2ON and H2O95

H2O95 Table Generator Updates

- The RELAP5-3D H2O95 steam table was created from an ASCII file
- The NIST/ASME STEAM properties database
- Tested
 - Spot checking
 - state.i verification case

H2O95N Table Generator

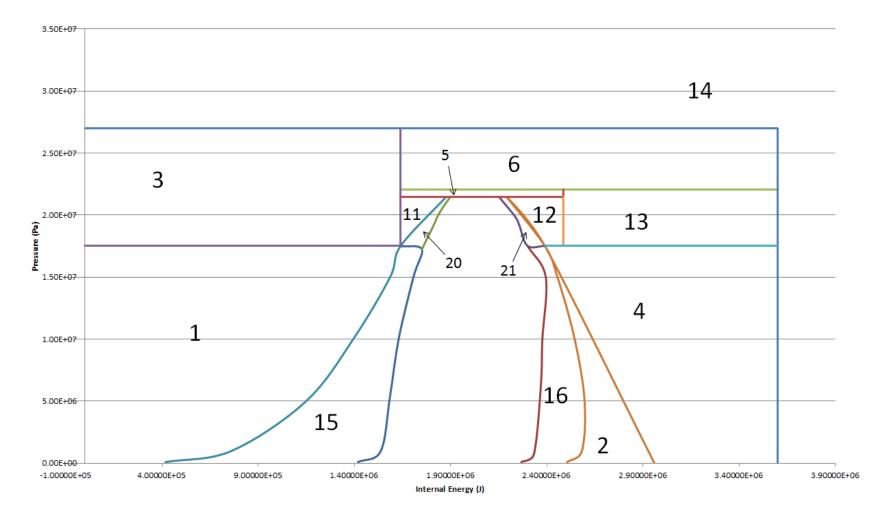
- Rebrand H2O95 generator as H2O95N
- The NIST (H2ON) generators use T and ρ as independent parameters
 - Convert pressure and internal energy to temperature and density
 - Used conversion subroutine from the H2ON generator
 - Used property subroutine from H2O95 generator
 - Preserve the H2O95 fluids characteristics
- Extended the new generator from three to six states
 - 0 = noncnvgd => 0 value in table
 - -1 = liquid
 - 2 = metastable liquid
 - 3 = metastable vapor
 - -4 = vapor
 - 5 = unstable => 0 value in table

H2ON Table Generator Bug

- A bug was identified in the conversion subroutine
 - Initial guess for the T, ρ values corresponds to given P, U
 - Newton's method converges on the correct T, ρ combination
 - Pressures greater than 16 MPa and low temperatures converged to temperatures close to the critical point and low densities
- Corrected by modifying the method of calculating the change in density
- Fixed issues addressed by manual correction implemented in user problem #15020 "Error in h2on generator at high pressure and low temperature"
- Correction implemented and tested with the H2ON generator
 - Modifications and new fluid table submitted to the code custodian
 - Included in the next release of RELAP5-3D

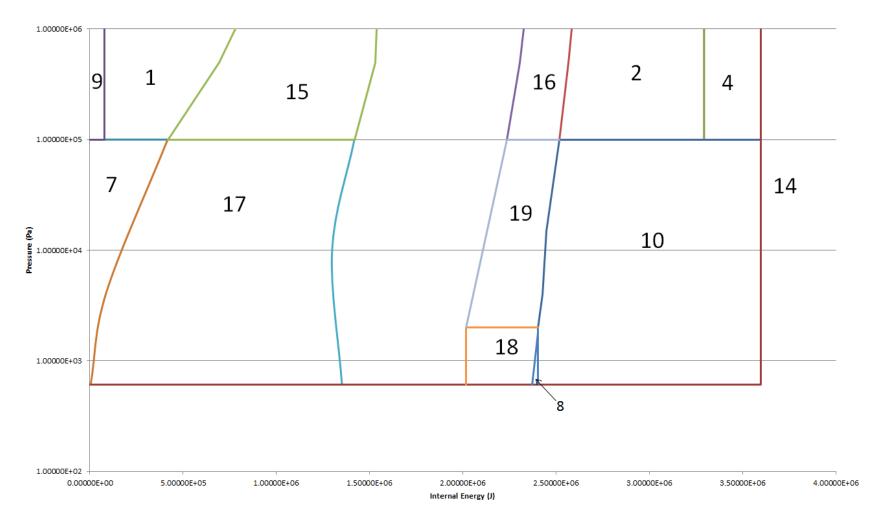
H2O95N Fluid Property Added to RELAP5-3D

- Modify RELAP5-3D to recognize 'h2o95n' input
 - Test with H2ON fluid file (called H2O95N)
- Compared typ12002.i, typ1200n2.i, typKryNemSS.i, and typpwrr2.i
 - H2ON vs H2O95N (copy of H2ON)
 - Differences in output were
 - Designation fluid (i.e. H2ON, H2O95N),
 - Date
 - CPU times
- Modified input files
 - (typ1200295n.i, typ1200n295n.i, typKryNemSS95n.i, typpwrr295n.i)
 - Added to installation suite
 - Submitted to the code custodian
 - Included in next release of RELAP5-3D


Define Grid

- Pressure and Temperature OR
- Pressure and Internal Energy
- Grid Cells = Boxes

PI,T1	P1,T2	P1,T3	P1,T4
P2,T1	P2,T2	P2,T3	
P3,T1	P3,T2	P3,T3	



Define High Pressure Regions

Define Low Pressure Regions

Update Accuracy Based Methodology

- Specifies level of accuracy for thermodynamic properties
- Methodology produces an input pressure and temperature mesh
 - Uses pressure and temperature input
 - Generates the fluid property tables
 - Generates a table of properties at midpoints in the grid
 - Generates a table of properties at midpoints using the RELAP5-3D interpolators
 - Calculates errors from midpoint tables
 - Provides a summary and statistics for midpoint tables
 - Creates a pressure and temperature mesh (new generator input)
 - Written specifically for H2O
- Modified to work with H2O95N
 - Use the transport properties and the H2O95 fluid generators
 - Modify the input to P, U rather than P, T
 - Include the metastable states

Update Polated Driver Program

- Plots the H2O95N fluid properties over range of thermodynamic states
- Polated uses normalized pressures and relative temperatures
 - P based on the triple point and critical values
 - Saturation temperatures
 - Normalized similar to the pressures
- Modified to use actual values of thermodynamic input data
- Unusable for metastable regions with PU input
 - Developed Polatem
 - Uses P and U as input values
 - Works for metastable states

Testing

Accuracy based property generation tool

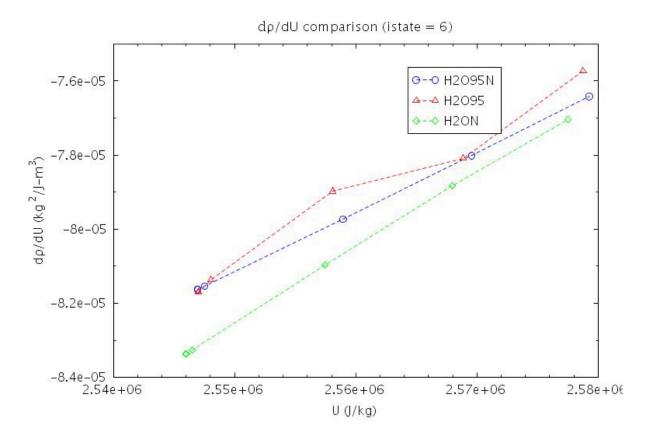
- Compare the generated versus interpolated values
- Identified significant discrepancies
- Worst box in each region selected based on density (ρ)

Polated utility

- Generate plots of the relative error
- Compare analytical and numerical derivatives
- H2ON, H2O95, and H2O95N for each region's worst box
- Primary variables (β , κ , μ , ρ , c_p , h, k, S, and T) in each region's worst box
- Plot using pressure and temperature or internal energy at the midpoint of the worst box and two adjacent boxes
- **Developmental Assessment** use light water for working fluid
 - Modified input to use H2O95N, H2ON, and H2O95
 - Compared H2O95N to H2ON and H2O95N to H2O95

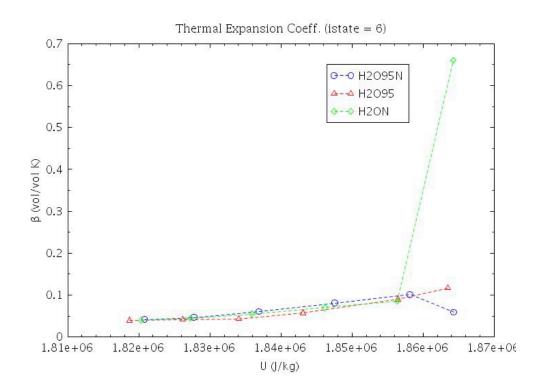
Results Verification Test Suite

- Test changes made to implement the new H2O95N fluid
 - To confirm that nothing outside of the fluid scope was affected
 - The verification suite on original 4.3.4t and modified 4.3.4t
 - Resulting verification directories and their contents were compared
 - Differences detected in the time stamps and CPU clock cycles


Results Polated Utility

- Accuracy based generation method used to compare H2ON, H2O95, and H2O95N
- Method used to generate statistics on the worst boxes for each region using the H2O95N fluid
- Pressure and temperature values for that box and adjacent boxes were determined from output
- Polated used to generate comparison plots of primary variables and principal derivatives
- Results showed that the new fluid performs as well as H2ON and is smoother than H2O95 in the derivatives in region 2 (normal vapor)

Region 2 Normal Vapor dp/dU


P = 9.86E+06 (Pa) T ~ 580 (K)

Results in Other Regions

- Plots for the other liquid and vapor regions (regions 1, 3 through 14) were compared and show the new fluid performs as well as H2ON and H2O95
- **Region 11**, Liquid near critical point provides examples of the H2O95N properties that are better behaved than H2ON

Some Exceptions

- Region 5, near the critical point
 - contains the worst box from the accuracy generator
 - next to a unstable/nonconvergent box
 - after inspection poor performance cause is in the NIST generator
 - derivatives sensitive to slight changes
 - results are unreliable at best
- Region 6, above the critical pressure
 - density from H2ON and H2O95N increases with internal energy
 - caused by interpolation problem with H2ON and H2O95N
 - Reported as user problem #16030
- Region 10, low pressure vapor
 - Relative error between the analytical and numerical derivatives of dT/dP is very large for H2ON and H2O95N
 - An issue with the analytical derivative for dT/dP returned by polate
 - Discrepancy is noted for further investigation

Results Polatem Utility

- **Regions 15 21** are metastable regions
- Worst box of H2O95N provided results generally consistent with H2ON
- Thermal conductivity and viscosity
 - Based on H2O95 tables with some metastable values
 - Does not extend as far as H2ON into metastable regions
 - Values based on extrapolation of properties from liquid or vapor
 - Bound by minimum values
 - Also based on P and T
 - Conversion to P and U affects results
- Regions 15, 17, 18, and 19
 - H2O95 interpolators fail to return properties
 - Only able to compare H2ON and H2O95N

Region 16 "Normal MetaVapor" Cp

Slight shift between • Specific Heat (istate = 6) H2ON and H2O95N 8e+06 where generator G-0 H2095N transitions from ▲-- ▲ H2095 unconverged or →-
→ H2ON
 6e + 06unstable to a metastable condition Cp (J/kg K) can result in large 4e+06 differences 2e+06

2.345e + 06

2.35e + 06

2.355e + 06

P (Pa)

2.36e + 06

2.365e + 06

2.37e+06

2.34e + 06

Accuracy Based Generation Results

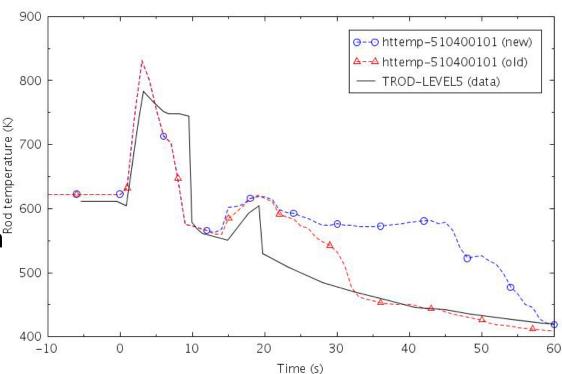
- Comparison shows errors are in reasonable agreement
- Results not expected to be equivalent
 - differences in property generators
 - differences introduced by the use of internal energy rather than temperature
- Region 1 average errors generally agree with those from H2O; in some cases, the maximum errors tend to be higher for the new fluid
- Region 2 errors are similar and in most cases better than H2O

Developmental Assessment Results

- New fluid compared to H2ON and H2O95
 - separate effects
 - integral effects
- Phenomenological cases fluid effect in most cases judged negligible

Developmental Assessment Results cont..

- MB-2 1712 full power steady state calculation (mb2_1712.i) failed to run with H2O95N
 - Initial conditions were grossly inconsistent,
 - Cause severe pressure oscillations on primary side of U-tubes
 - Resulted in huge amounts (> 100K) of liquid superheat early in the transient with both fluids
 - Choking was turned off at exit of U-tubes
 - Steady-state temperature profiles with both fluids nearly the same
- Moby Dick nitrogen/water test no. 3141 failed to execute for H2O95N
 - Inconsistent initial conditions
 - Inconsistent pressure in the gas supply time-dependent volume with steady-state pressure in the system
 - Corrected by decreasing an initial pressure and air supply pressure
 - The axial pressure profiles with both fluids were nearly identical


Developmental Assessment Results cont..

- Models failed to complete when using the H2O95 fluid
 - UPTF test number 6 run 131
 - (uptf131_2lp.i and uptf131_2lp_pipe.i)
 - Dukler-Smith air water test 130-1000 lb/hr
 - (dukler100.i,dukler250.i,dukler500.i,dukler1000.i)
 - Input processing errors not flagged for H2O, H2ON, or H2O95N
 - LOFT L2-5 1D and 3D (I2-5_1D.i and I2-5_3D.i)
 - LOBI (LOBI-A1-4R.i) all failed with NaN's occurring in the output
- Submitted user trouble report #16032 which has been resolved
- Issue was incorrectly set variable indices

Developmental Assessment Results cont..

- LOBI results significant difference in heater rod temperature between H2ON and H2O95N
- Same parameter in previous DA reports show similar differences between code versions, although at different elevations
- Similar results were seen with the LOFT L2-1D

Conclusions

- H2O95N hybrid fluid property table based on H2ON and H2O95
 - Independent parameters PU
 - Extends into the metastable regions similar to the H2ON
- Updated the H2O95 fluid property generator
 - Resulted in new H2O95 fluid property table for RELAP5-3D
- Improved H2ON fluid property table for use with RELAP5-3D
- Accuracy based generation extended to H2O95, H2ON, and H2O95N
- The polate utility modified to allow use of absolute and relative values of pressure, temperature, and internal energy
 - Minor script errors identified and corrected
- Potential error in the RELAP5-3D interpolation routines UTR #16030
- Polatem developed based on polated to test metastable regions
- Several areas for follow on work were identified