
Development -- table of contents

 4: Developing applications

 4.1: Programming model and environment

 4.1.1: Finding supported specifications
 4.1.1.1: Supported programming languages
 4.1.1.2: Supported XML/XSL APIs and specifications

 4.1.2: Tools for developing Web applications
 4.1.2.1: IBM Distributed Debugger and Object Level Trace
 4.1.2.2: Tips for using VisualAge for Java
 4.1.2.3: Tips for using IBM WebSphere Studio

 4.2: Building Web applications

 4.2.1: Developing servlets
 4.2.1.1: Servlet lifecycle
 4.2.1.2: Servlet support and environment in WebSphere
 4.2.1.2.1a: Features of Java Servlet API 2.2
 4.2.1.2.2: IBM extensions to the Servlet API
 4.2.1.2.3a: Invoking sevlets by classname and serving files
 4.2.1.2.3b: Security risk example of invoking servlets by class name
 4.2.1.3: Servlet content, examples, and samples
 4.2.1.3.1: Creating HTTP servlets
 Overriding HttpServlet methods
 4.2.1.3.2: Inter-servlet communication
 Example: Servlet communication by forwarding
 4.2.1.3.4: Filtering and chaining servlets
 Servlet filtering with MIME types
 Servlet filtering with servlet chains
 4.2.1.3.5: Enhancing servlet error reporting
 Public methods of the ServletErrorReport class
 4.2.1.3.6: Serving servlets by classname
 4.2.1.3.7: Serving all files from application servers
 4.2.1.3.8: Obtaining the Web application classpath from within a servlet
 4.2.1.3.9: PageListServlet support
 Extending PageListServlet
 Configuring page lists using the Application Assemby Tool
 Configuring page lists using an XML servlet configuration file
 Example of the XML servlet configuration file
 PageListServlet client type configuration file
 Example of a client type configuration file

 4.2.2: Developing JSP files

 4.2.2.1: JavaServer Pages (JSP) lifecycle
 4.2.2.1a: JSP access models
 4.2.2.2: JSP support and environment in WebSphere
 4.2.2.2.2: JSP processors
 4.2.2.2.3: Java Server Page attributes
 4.2.2.2.4: Batch compiling JSP files
 Compiling JSP 1.1 files as a batch
 4.2.2.3: Overview of JSP file content
 4.2.2.3.2: JSP syntax: Class-wide variables and methods
 4.2.2.3.3: JSP syntax: Inline Java code (scriptlets)
 4.2.2.3.4: JSP syntax: Java expressions
 4.2.2.3.5: JSP syntax: useBean tags
 JSP syntax: <useBean> tag syntax
 JSP syntax: Accessing bean properties
 JSP syntax: Setting useBean properties
 4.2.2.3.7: IBM extensions to JSP syntax
 JSP syntax: Tags for variable data
 JSP syntax: <tsx:getProperty> tag syntax and examples
 JSP syntax: <tsx:repeat> tag syntax
 JSP syntax: The repeat tag results set and the associated bean
 JSP syntax: Tags for database access
 JSP syntax: <tsx:dbconnect> tag syntax
 JSP syntax: <tsx:userid> and <tsx:passwd> tag syntax
 JSP syntax: <tsx:dbquery> tag syntax
 Example: JSP syntax: <tsx:dbquery> tag syntax
 JSP syntax: <tsx:dbmodify> tag syntax
 Example: JSP syntax: <tsx:dbmodify> tag syntax
 Example: JSP syntax: <tsx:repeat> and <tsx:getProperty> tags
 4.2.2.3a: JSP examples
 4.2.2.3a01: JSP code example - login
 4.2.2.3a02: JSP code example - view employee records
 4.2.2.3a03: JSP code example - EmployeeRepeatResults

 4.2.3: Incorporating XML
 4.2.3.2: Specifying XML document structure
 4.2.3.3: Providing XML document content
 4.2.3.4: Rendering XML documents
 4.2.3.6: Using DOM to incorporate XML documents into applications
 4.2.3.6.1: Quick reference to DOM object interfaces
 4.2.3.7: SiteOutliner sample

 4.2.4: Accessing data
 4.2.4.2: Obtaining and using database connections
 4.2.4.2.1: Accessing data with the JDBC 2.0 Optional Package APIs
 Creating datasources with the WebSphere connection pooling API
 Tips for using connection pooling
 Handling data access exceptions
 4.2.4.2.2: Accessing data with the JDBC 2.0 Core API

 4.2.4.2.3: Accessing relational databases with the IBM data access beans
 Example: Servlet using data access beans
 4.2.4.2.4: Database access by servlets and JSP files
 4.2.4.4.1: Providing Web clients a way to invoke JSP files
 Invoking servlets and JSP files by URLs
 Invoking servlets and JSP files within HTML forms
 Example: Invoking servlets within HTML forms
 4.2.4.4.2: Providing Web clients access to servlets
 Invoking servlets within JSP files

 4.2.5: Using the Bean Scripting Framework
 4.2.5.1: BSF examples and samples

 4.3: Developing enterprise beans

 4.3.4: Developing enterprise beans for use with the Connector Architecture

 Writing Enterprise Beans
 About this book

 An introduction to enterprise beans

 An architectural overview of the EJB programming environment

 WebSphere Programming Model Extensions

 More-advanced programming concepts for enterprise beans

 Enabling transactions and security in enterprise beans

 Developing enterprise beans

 Developing EJB clients

 Developing servlets that use enterprise beans

 Tools for developing and deploying enterprise beans in the EJB server (AE) environment

 Appendix A. Changes for version 1.1 of the EJB specification

 Appendix B. Example code provided with WebSphere Application Server

 Appendix D. Extensions to the EJB Specification

 4.4: Personalizing applications

 4.4.1: Tracking sessions
 4.4.1.1: Session programming model and environment
 4.4.1.1.1: Deciding between session tracking approaches
 Using cookies to track sessions
 Using URL rewriting to track sessions
 Using SSL information to track sessions
 4.4.1.1.2: Controlling write operations to persistent store
 4.4.1.1.3: Securing sessions
 4.4.1.1.4: Deciding between single-row and multirow schema for sessions
 4.4.1.1.5: Using sessions in a clustered environment
 4.4.1.1.7: Tuning session support
 Tuning session support: Session persistence
 Tuning session support: Session affinity
 Tuning session support: Multirow schema
 Tuning session support: Write frequency

 Tuning session support: Base in-memory session pool size
 Tuning session support: Write contents
 Tuning session support: Scheduled invalidation
 Tuning session support: Tablespace and page sizes
 4.4.1.1.8: Best practices for session programming

 4.4.2: Keeping user profiles
 4.4.2.1: Data represented in the base user profile
 4.4.2.2: Customizing the base user profile support
 4.4.2.2.1: Extending data represented in user profiles
 4.4.2.2.2: Adding columns to the base user profile implementation
 4.4.2.2.3: Extending the User Profile enterprise bean and importing legacy databases
 4.4.2.3: Accessing user profiles from a servlet

 4.5: Dynamic fragment cache
 4.5.0: Getting started with Dynamic fragment cache

 4.5.1: Custom ID and MetaData generators

 4.5.2: External caching

 4.5.3: Dynamic fragment cache frequently asked questions

 4.6: Java Technologies

 4.6.1: Using JavaMail
 4.6.1.1: Writing JavaMail applications
 4.6.1.2: Configuring JavaMail
 4.6.1.3: Debugging JavaMail
 4.6.1.4: Running the JavaMail sample

 4.6.2: JNDI (Java Naming and Directory Interface) overview
 4.6.2.1: JNDI implementation in WebSphere Application Server
 4.6.2.2: Using JNDI
 4.6.2.3: JNDI caching
 4.6.2.4: JNDI helpers and utilities
 4.6.2.4.1: JNDI helper class
 4.6.2.4.2: JNDI Name Space Dump utility

 4.6.3: Java Message Service (JMS) overview
 4.6.3.1: Using the JMS point-to-point messaging approach
 4.6.3.2: Using the JMS publish/subscribe messaging approach
 4.6.3.3: Support of Java Message Service resources
 4.6.3.4: Support for the use of MQSeries Java Message Service resources

 4.7: Java Clients

 4.7.1: Applet client programming model
 4.7.1.1: Developing an Applet client

 4.7.2: J2EE application client programming model
 4.7.2.1: Resources referenced by a J2EE application client
 4.7.2.2: Developing a J2EE application client
 4.7.2.3: Troubleshooting guide for the J2EE application client
 4.7.2.4: J2EE application client classloading overview

 4.7.3: Java thin application client programming model
 4.7.3.1: Developing a Java application thin client
 4.7.3.2: Java thin application client code example

 4.7.4: Quick reference to Java client functions

 4.7.5: Quick reference to Java client topics

 4.7.6: Packaging and distributing Java client applications

 4.7.7: Tracing and logging for the Java clients

 4.8: Web services

 4.8.1: Web services components
 4.8.1.1: UDDI4J Overview
 4.8.1.1.1: UDDI4J samples
 4.8.1.2: SOAP support
 4.8.1.2.1: SOAP samples
 4.8.1.2.2: Building a SOAP client
 Accessing enterprise beans through SOAP
 4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web service

 4.8.2: Apache SOAP deployment descriptors
 4.8.2.1: SOAP deployment descriptors

 4.8.3: Quick reference of Web services resources

 4.8.4: Securing SOAP services
 4.8.4.1: Running the security samples
 4.8.4.2: SOAP signature components
 4.8.4.2.1: Keystore files for testing purposes
 4.8.4.2.2: Envelope Editor
 4.8.4.2.3: Signature Header Handler
 4.8.4.2.4: Verification Header Handler

 4.9: Programming model for the Connector Architectue (J2C)

 4.9.1: Mapping the current implementation to the Connector Architecture (J2C) Specification
 4.9.1.1: Implementing connector architecture

 4.10: Developing custom services

 Samples

4: Developing applications
For IBM WebSphere Application Server, applications are combinations of building blocks that work together to
perform a business logic function.Synonymous with enterprise applications, applications can contain enterprise
beans, butdo not have to. At most:

enterprise applications = enterprise beans + Web applications

Web applications are groups of one or more servlets, plus static content.

Web applications = servlets + JSP files + XML files + HTML files + graphics

The J2EE (JavaTM2 Platform Enterprise Edition) model introduces a number of new programming concepts
including:

Thin clients●

WAR files●

EAR files●

Thin clients are remote clients that pass data for processing to an enterprisebean running on the application
server. See article Java clients for moreinformation.

The J2EE model packages enterprise and Web applications into the new categories of EAR files and WAR files.

WAR files or Web Archive Resource files are combinations of servlets, JSP files,HTML files, graphics,
and a Web deployment descriptor. The file extension for these files is .war.

●

EAR files or Enterprise Archive Resource files can consist of Web modules (.war files), EJB modules
(.jar files), client modules (.jar files), and an application deployment descriptor. The file extension
for these files is .ear

The Application Assembly Tool (AAT) creates the WAR, EAR, and JAR files, and assembles
application components into Web modules.

●

View the supported specification levels for servlet, JSP, and EJB APIs at theWebSphere Application Server
prerequisites Web site.

See article 4.1 to review the WebSphere application programming model and environment, including
information on various tools to help you develop and testyour application components.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/003501.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0103.html

4.1: Programming model and environment
IBM WebSphere Application Server supports a three-tier programmingmodel in which the application server
and its contents -- your applications -- reside in the middle tier.

In this multi-tiered programmingmodel, tier 0 represents Applets which run in a Web browser; tier 1, some
application resources such as JSP filesand servlets, which respond to HTTP requests; tier 2, the enterprise beans
that run on the EJB server; and tier 3, the databases that store thebusiness data.With version 4.0, WebSphere
Application Server provides tier 0 support byshipping a "thin" remote client. See article Java clientsfor more
information.

This documentation is geared towards the following layered approachto application development:

Determine what the application should do1.

Plan the application building blocks and their interactions2.

Create the Web application building blocks3.

Write the Web application deployment descriptor4.

Combine the Web application components and deployment descriptor into a Web module5.

Create the enterprise beans6.

Write the EJB deployment descriptor7.

Combine the enterprise beans and the deployment descriptor into an EJB module8.

Package the Web module and EJB module into a J2EE application.9.

A Web developer working in the J2EE environment is therefore responsible for the following tasks:

Writing, compiling, and testing the source code●

Writing the JSP and HTML files●

Specifying the deployment descriptor●

Bundling the servlet.class, .jsp, .html and deployment descriptor files into a Web application
archive or WAR file

●

Bundling the ejb.class and deployment descriptor file into a JAR file●

Assembling the EJB JAR and WAR files into a J2EE application enterprise archive resource or EAR file●

4.1.1: Finding supported APIs and specifications

Finding supported specification levels

See the WebSphere Application Server prerequisites Web page for the supported levels of specifications such as
the Java Servlet, Enterprise JavaBeans (EJB), and JavaServer Pages (JSP) specifications from Sun
Microsystems.

Refer to the Sun Microsystems Web site for additional information about Java specifications:

http://java.sun.com/products

Finding API documentation (Javadoc) pertaining to IBM WebSphere
Application Server

Access the Javadoc index for the packages included with IBM WebSphere Application Server (though not
necessarily produced by IBM) from the fullInfoCenter:

Index to API documentation (Javadoc)

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0103.html
http://java.sun.com/products
http://localhost/0802_makepdf/apidocs/index.html

4.1.1.1: Supported programming languages
WebSphere Application Server is designed and tested to support applications and clients based on the Java
programming language and technologies.

Accessing native libraries in C or C++ from Java servletsor Enterprise JavaBeans deployedon IBM WebSphere
Application Server is possible with theright coding and classpath practices.

4.1.1.2: Supported XML/XSL APIs and specifications
IBM WebSphere Application Server provides document parsers, document validators, and document generators
for server-side XML processing. The product supports the following XML-related recommendations:

W3C Extensible Markup Language (XML) 1.0●

W3C Namespaces in XML (Recommendation January 14, 1999)●

W3C Level 1 Document Object Model Specification (DOM) 1.0 (Recommendation October 1, 1998)●

XSL Transformations Version 1.0●

XML Path Language Version 1.0●

IBM WebSphere Application Server supports the following XML/XSL APIs:

XML4J Version 3.1 or Xerces Version 1.2.1●

LotusXSL Version 2.0 or Xalan Version 2.0.1●

Distributions of XML4J and LotusXSL areshipped with Version 4.0 for immediate use.However, if you prefer
to use implementations other than those shipped,you can easily override the default parser, becausethe order of
class resolution has been reversed from that of previous versions of the product.Version 4.0 uses any parser
classes specified in a module orapplicaton first;then the product uses the classes provided in the run-time
environment.

Note:Support is offered only for the parser implementations that areshipped with the product.

XML parsing and validation support

The components of XML for Java provide support for parsing, validating, and generating XML data. The
processor implements the base XML, namespace, and DOM W3C recommendations and SAX de facto
standard. For more information, see the product Javadoc.

xml4j.jarand its open-source version, xerces.jar,can be found in the product_installation_root\lib directory.

To obtain updates and source code for XML4J and other XML-related resources, visit the IBM alphaWorks site
athttp://alphaworks.ibm.com/.To obtain updates and source code for Xerces,visit the Apache site
athttp://xml.apache.org/.

XSL processing support

This includes APIs for formatting and transforming XML documents at the server.

lotusxsl.jarand its open-source version, xalan.jar,can be found in the product_installation_root\lib directory.

To obtain updates and source code for LotusXSL, visit the IBM alphaWorks site at the URL provided
previously.To obtain updates and source code for Xalan,visit the Apache site at the URL provided previously.

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/WD-xslt
http://www.w3.org/TR/xpath
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://alphaworks.ibm.com/
http://xml.apache.org/
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.1.2: Tools for developing Web applications
When you install IBM WebSphere Application Server from the product CD, the installation program provides
options to install IBM Distributed Debugger (DD) andObject Level Trace (OLT).

In addition, the following products can help you develop components for Web applications:

IBM VisualAge for Java, Enterprise Edition●

IBM WebSphere Studio●

These products are available separately.

4.1.2.1: IBM Distributed Debugger and Object Level
Trace
The IBM Distributed Debugger (DD) enables you to detect and diagnose errors in your code.Its client/server
design enables you to debug programs over a network connection.You can also debug programs running on
your local workstation.

Object Level Trace (OLT), which works closely with the IBM Distributed Debugger, enables you to monitor
the flow of a distributed application and debug code from a single workstation.

Tips for using OLT/DD

In order to trace and debug the application server,you must install the debugger on the machine on which the
application server is running. For remote tracing and debugging, you must also install the debugger on the
machine from which you plan to run the OLT tool and the debugger. For example,only remote debugging is
supported on Solaris, soif your application server is running on Solaris, you must install the Solaris component
of the debugger on that same machine.In addition, you must install OLT and the debugger on the AIX or
Windows NT (or Windows 2000) machine from which you plan to run the tools remotely.

For the latest information about OLT/DD, see the IBM Distributed Debuggerand OLTdocumentation.

http://localhost/0802_makepdf/ae_orig/olt/debugger/index.htm
http://localhost/0802_makepdf/ae_orig/olt/olt/index.htm

4.1.2.2: IBM VisualAge for Java
VisualAge for Java Enterprise Edition provides the following tools for developing Web application
components:

EJB Development Environment - Enables you to design and package enterprise beansas well as database
schemas to support persistent features.

●

JSP Execution Monitor - Enables you to monitor the execution of JSP source code, generated servlets,
and HTML source code as it is generated. This tool is available for Windows NT systems.

●

Servlet Launcher - Enables you to start a Web server, open your Web browser, and launch a servlet.
This tool is available for AIX and Windows NT systems.

●

WebSphere Test Environment - Enables you to test deployment of Web application components without
a full-fledgedWebSphere Application Server installation.You can set breakpoints within servlet code,
dynamically update the servlet at breakpoints, and continue running the servlet with the changes
incorporated. These tasks can be performed without restarting the servlet.

●

For more information about this product, visit the following Web site:

http://www.ibm.com/software/ad/vajava/

More about the WebSphere Test Environment

IBM VisualAge for Java provides a subset of the WebSphere Application Serverrun-time environment in a
component called the WebSphere Test Environment (WTE).The WebSphere Test Environment offers the
following:

A lightweight run-time environment with no dependency on WebSphere Application Server availability●

No dependency on an external database unlessentity bean support is required●

As a subset of the WebSphere Application Server,the WTE does not offer certainfeatures that the application
server product does, as follows:

Secure Socket Layer (SSL) and secure HTTP (HTTPS).●

HTTP-style user ID/password authentication challenge.●

Administrative server and services.●

The XMLConfig tool. Older XML grammar is used in the WTE configuration.●

Personalization APIs●

Security context and API for enterprise beans.●

Security APIs for servlet sessions, or other security classestypically involved in sign-on, authentication,
or authorization.

●

Support for running multiple Web applicationsin addition to the default Web application●

Tips for using VisualAge for Java

When you are ready to move from the WTE to deployment on the WebSphere Application Server, verify that
application class paths are properly set in the new environment.

http://www.ibm.com/software/ad/vajava/

4.1.2.3: IBM WebSphere Studio
IBM WebSphere Studio Professional Edition offers the following features:

Create Web applications for various devices, such as voice browsers and handheld devices.●

Select from two Web application models - Servlet or JSP.●

Close integration with IBM VisualAge for Java.●

Graphical display of the links between files in a project.●

Automatic updating of links whenever your files are changed or moved.●

Wizards that jump-start creation of dynamic pages that use databases and Java beans.Use the wizard
output as is or tailor it to your needs.

●

An import feature to quickly transfer existing Web site content into a Studio project.●

Staging and publishing your project to different (and to multiple) servers.●

The ability to archive a Web site into a single compressed file.●

Full-function visual editing of HTML and JSP files.●

Companion tools:

AnimatedGif Designer, for building GIF animations❍

Applet Designer, a visual authoring tool for building Java applets❍

WebArt Designer, for creating buttons, masthead images, and other graphics❍

●

For more information about this product, visit the following Web site:

http://www.ibm.com/software/webservers/studio/index.html

Tips for using WebSphere Studio

WebSphere Studio providesthe com.ibm.servlet.PageListServlet class to call JSP files.Servlets generated by the
WebSphere Studio wizardsare subclasses of this class.Such a servlet must have an associated servlet
configuration file (.servlet)that specifies all JSP files that the servlet might call.For more information, seeServlet
and JSP Programming with IBM WebSphere Studioand VisualAge for Java (SG24-5755),available from the
IBM Redbooks Web site.

http://www.ibm.com/software/webservers/studio/index.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

4.2: Building Web applications
Different types of Web applications exist, ranging from static document Web sitesto database-backed
systems.Some Web applications are front ends to traditional, non-Web applications.

See the What are enterprise applications? article for a description of applicationssupported by WebSphere
Application Server.

The J2EETM architecture organizes applications into reusable components, and provides underlying services (in
the form of containers) for different component types. The processof assembling the various pieces of a J2EE
application involves specifying such container settingsas security, Java Naming and Directory Interface
lookups, and remote connectivity.

J2EE applications also require deployment descriptors that are Exensible Markup Language (XML)text files to
define the operating parameters and the components that comprise the application.

This section provides considerations, instructions, and tips forcreating the building blocks that comprise Web
applications.

View article 6.6.8: Administering Web modules (overview) for information on configuring such Web
application settings as:

Classpaths●

Web paths●

Welcome pages●

Servlet filtering parameters●

Context attributes●

View article 6.6: Tools and resources quick reference for the list of new tools to assemble, deploy, and launch
your J2EE Web applications.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0001.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060608.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606.html

4.2.1: Developing servlets
Servlets are Java programs that build dynamic client responses, such as Web pages.Servlets receive and respond to requests from Web clients,
usually across HTTP, the HyperText Transfer Protocol.

Because servlets are written in Java, they can be ported without modification to different operating systems.Servlets are more efficient than CGI
programs because, unlike CGI programs, servlets are loaded into memory once, and each request is handled by a Java virtual machine thread, not an
operating system process.Moreover, servlets are scalable, providing support for a multi-application server configuration.Servlets also allow you to
cache data, access database information, and share data with other servlets, JSP files and (in some environments) enterprise beans.

Servlet coding fundamentals

In order to create an HTTP servlet, you should extend the javax.servlet.HttpServlet class and override any methods that you wish to
implement in the servlet. For example, a servlet would override the doGet method to handle GET requests from clients.

For more information on the HttpServlet class and methods, review articles:

4.2.1.3.1: Creating HTTP Servlets●

4.2.1.3.1.1: Overriding HttpServlet methods●

4.2.1.3.2: Inter-servlet communication●

The doGet and doPost methods take two arguments:

HttpServletRequest●

HttpServletResponse●

The HttpServletRequest represents a client's requests. This object gives a servlet access to incoming information such as HTML form data,
HTTP request headers, and the like.

The HttpServletResponse represents the servlet's response.The servlet uses this object to return data to the client such as HTTP errors (200,
404, and others), response headers (Content-Type, Set-Cookie, and others), and output data by writing to the response's output stream or output
writer.

Since doGet and doPost throw two exceptions (javax.servlet.ServletException and java.io.IOException), you must
include them in the declaration. You must also import classes in the following packages:

Package names Functions/Objects
java.io PrintWriter

javax.servlet HttpServlet

javax.servlet.http HttpServletRequest and HttpServletResponse

The beginning of your servlet might look like the following example:

import java.io.*;import javax.servlet.*;import javax.servlet.http.*;import java.util.*;public class
MyServlet extends HttpServlet { public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

After you create your servlet, you must:

Compile your servlet using the javac command, as for example:
 javac MyServlet.java

1.

Invoke your servlet using one of the methods described in article:
6.6.1.5.1: Creating an application

2.

You can also compile your servlet using the -classpath option on the javac compiler. To access the classes that were extended, reference
thej2ee.jar file in the product_installation_root\libdirectory. Using this method, you issue the following command to compile
your servlet:

 javac -classpath product_installation_root\lib\j2ee.jar MyServlet.java

Now that you successfully created, compiled, and tested your servlet on your local machine, you must install it in the WebSphere Application
Server runtime. View article 6: Administer applicationsfor this information.

Servlet lifecycle

The javax.servlet.http.HttpServlet class defines methods to:

Initialize a servlet●

Service requests●

Remove a servlet from the server●

These are known as life-cycle methods and are called in the following sequence:

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606010501.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServlet.html

The servlet is constructed1.

It is initialized with the init method2.

Calls from clients to the service method are handled3.

The servlet is taken out of service4.

It is destroyed with the destroy method5.

The servlet is finalized and the garbage is collected.6.

Review article 4.2.1.1 for more life cycle information.

4.2.1.1: Servlet lifecycle

Instantiation and initialization
The Web container (the Application Server entity that processes servlets, JSP files, and other types of
server-side include coding) creates an instance of the servlet. The Web container creates the servlet
configuration object and uses it to pass the servlet initialization parameters to the init method. The servlet
configuration object persists until the servlet is destroyed and are applied to all invocations of that servlet until
the servlet is destroyed.

If the initialization is successful, the servlet is available for service. If the initialization fails, the Web container
unloads the servlet. The administrator can set an application and its servlets to be unavailable for service. In
such cases, the application and servlets remain unavailable until the administrator changes them to available.

Servicing requests
A client request arrives at the Application Server. The Web container creates a request object and a response
object. The Web container invokes the servlet service method, passing the request and response objects.

The service method gets information about the request from the request object, processes the request, and uses
methods of the response object to create the client response. The service method can invoke other methods to
process the request, such as doGet(), doPost(), or methods you write.

Termination
The Web container invokes theservlet's destroy() method when appropriate and unloads the servlet. The Java
Virtual Machine performs garbage collection after the destroy.

More on the initialization and termination phases
A Web container creates an instance of a servlet at the following times:

Automatically at the application startup, if that option is configured for the servlet●

At the first client request for the servlet after the application startup●

When the servlet is reloaded●

The init method executes only one time during the lifetime of the servlet.It executes when the Web container
loads the servlet. The init method is not repeated regardless of how many clients access the servlet.

The destroy() method executes only one time during the lifetime of the servlet. That happens when the Web
container stops the servlet. Typically, servlets are stopped as part of the process of stopping the application.

4.2.1.2: Servlet support and environment in
WebSphere
IBM WebSphere Application Server supports the Java ServletAPI from Sun Microsystems. The product builds
upon the specificationin two ways.

Article 4.2.1.2.2 describes several IBMextensions to the specification to make it easier to manage sessionstate,
create personalized Web pages, generate better servlet errorreports, and access databases.

See article 4.2.1.2.1afor a description of the Servlet API 2.2 specification.

4.2.1.2.1a: Features of Java Servlet API 2.2
WebSphere Application Server supports Java Servlet API 2.2 and JSP 1.1.

Java Servlet API 2.2 contains many enhancements intended to make servlets part of a complete application
framework

The Servlet 2.2 specification is available atjava.sun.com/products/servlet/index.html

No new classes were added to the Java Servlet API 2.2. specification.The following table provides more
information on 27 new methods, 2 new constants and 6 deprecated methods supported by WebSphere
Application Server:

New methods Description
getServletName() Returns the servlet's registered name

getNamedDispatcher(java.lang.String name) Returns a dispatcher located by resource name

getInitParameter(java.lang.String name) Returns the value for the named context parameter

getInitParameterNames() Returns an enumeration of all the context parameter
names

removeAttribute(java.lang.String name) Added for completeness

getLocale() Gets the client's most preferred locale

getLocales() Gets a list of the client's preferred locales as an
enumeration of locale objects

isSecure() Returns true if the request was made using a secure
channel

getRequestDispatcher(java.lang.String name) Gets a RequestDispatcher using what can be a
relative path

setBufferSize(int size) Sets the minimum response buffer size

getBufferSize() Gets the current response buffer size

reset() Empties the response buffer, clears the response
headers

isCommitted() Returns true if part of the response has already been
sent

flushBuffer() Flushes and commits the response

setLocale(Locale locale) Sets the response locale, including headers and
charset

getLocale() Gets the current response locale

UnavailableException(String message) Replaces UnavailableException(Servlet
servlet, String message)

UnavailableException(String message, int sec) Replaces UnavailableException(int sec,
Servlet servlet, String message)

getHeader(String message) Returns all the values for a given header, as an
enumeration of strings

getContextPath() Returns the context path of this request

addHeader(String name, String value) Adds to the response another value for this header
name

http://java.sun.com/products/servlet/index.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletConfig.html#getServletName()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getNamedDispatcher(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getInitParameter(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletContext.html#getInitParameterNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#removeAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getLocale()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getLocales()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#isSecure()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html#getRequestDispatcher(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#setBufferSize(int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#getBufferSize()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#reset()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#isCommitted()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#flushBuffer()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#setLocale(java.util.Locale)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html#getLocale()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(java.lang.String, int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html#getHeader(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html#getContextPath()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addHeader(java.lang.String, java.lang.String)

addDateHeader(String name, long date) Adds to the response another value for this header
name

addIntHeader(String name, int value) Adds to the response another value for this header
name

getAttribute(String name) ObjectHttpSession.getValue(String
name)

getAttributeNames() Replaces String[]
HttpSession.getValueNames()

setAttribute(String name, Object value)
Replaces void
HttpSession.setValue(String name,
Object value)

removeAttribute(String name)
Replaces void
HttpSession.removeValue(String
name)

New constants Description
SC_REQUESTED_RANGE_NOT_SATISFIABLE New mnemonic for status code 416

SC_EXPECTATION_FAILED New mnemonic for status code 417

Newly deprecated methods Description

UnavailableException(Servlet servlet, String message)
Replaced by
UnavailableException(String
message)

UnavailableException(int sec, Servlet servlet, String
message)

Replaced by
UnavailableException(string
message, int sec)

getValue(String name)
Replaced by Object
HttpSession.getAttribute(String
name)

getValueNames() Replaced by numeration
HttpSession.getAttributeNames()

putValue(String message, Object value)
Replaced byvoid
HttpSession.setAttribute(String
name, Object value)

removeValue(String message) Replaced by void HttpSession
removeAttribute(String name)

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addDateHeader(java.lang.String, long)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#addIntHeader(java.lang.String, int)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getAttributeNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#setAttribute(java.lang.String, java.lang.Object)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#removeAttribute(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#SC_REQUESTED_RANGE_NOT_SATISFIABLE
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html#SC_EXPECTATION_FAILED
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(int, javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/UnavailableException.html#UnavailableException(int, javax.servlet.Servlet, java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getValue(java.lang.String)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#getValueNames()
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#putValue(java.lang.String, java.lang.Object)
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html#removeValue(java.lang.String)

4.2.1.2.2: IBM extensions to the Servlet API
The Application Server includes its own packages that extend and add to the Java Servlet API. Those extensions
and additions make it easier to manage session state, create personalized Web pages, generate better servlet
error reports, and access databases. The Javadoc for the Application Server APIs is installed in the product
product_installation_root\web\apidocs directory.

The Application Server API packages and classes are:

com.ibm.servlet.personalization.sessiontracking package

This Application Server extension to the Java Servlet API records the referral page that led a visitor to
your Web site, tracks the visitor's position within the site, and associates user identification with the
session. IBM has also added session clustering support to the API.

●

com.ibm.websphere.servlet.session.IBMSession interface

Extends HttpSession for session support and increased Web administrators' control in a session cluster
environment.

●

com.ibm.servlet.personalization.userprofile package

Provides an interface for maintaining detailed information about your Web visitors and incorporate it in
your Web applications, so that you can provide a personalized user experience. This information is made
persistent by storing it in a database.

●

com.ibm.websphere.userprofile package

User profile enhancements

●

com.ibm.websphere.servlet.error.ServletErrorReport class

A class that enables the application to provide more detailed and tailored messages to the client when
errors occur. See the enhanced servlet error reporting article, 4.2.1.3.5, for details.

●

com.ibm.websphere.servlet.event package

Provides listener interfaces for notifications of application lifecycle events, servlet lifecycle events, and
servlet errors. The package also includes an interface for registering listeners. See the package Javadoc
for details.

●

com.ibm.websphere.servlet.filter package

Provides classes that support servlet chaining. The package includes the ChainerServlet, the
ServletChain object, and the ChainResponse object. See the servlet filtering article, 4.2.1.3.4, for more
details.

●

com.ibm.websphere.servlet.request package

Provides an abstract class, HttpServletRequestProxy, for overloading the servlet engine's
HttpServletRequest object. The overloaded request object is forwarded to another servlet for processing.
The package also includes the ServletInputStreamAdapter class for converting an InputStream into a
ServletInputStream and proxying all method calls to the underlying InputStream. See the Javadoc for
details and examples.

●

com.ibm.websphere.servlet.response package

Provides an abstract class, HttpServletResponseProxy, for overloading the servlet engine's
HttpServletResponse object. The overloaded response object is forwarded to another servlet for
processing. The package includes the ServletOutputStreamAdapter class for converting an
OutputStream into a ServletOutputStream and proxying all method calls to the underlying

●

OutputStream. The package also includes the StoredResponse object that is useful for caching a servlet
response that contains data that is not expected to change for a period of time, for example, a weather
forecast. See the Javadoc for details and examples.

4.2.1.2.3a: Invoking servlets by classname and
serving files
IBM Application Server provides some optional functions for your Web applications.

The tables below describe the function and how to use the WebSphere ApplicationServer tools to enable the
function in your Web application.

Invoke servlets by class name

Objective Invoke servlets by class or code names (such as MyServletClass)

How to enable the
function

Use one of the following facilities:

If using the Application Assembly Tool (AAT),click serve servlets by classname
in the IBM Extensions panel.

●

In the ibm-web-ext.xmi file, change the
serveServletsByClassnameEnabled flag from false to true.

The ibm-web-ext.xmi file is in the WEB-INF directory of theWeb module.

●

Serve files without specifically configuring them

Objective

Serve HTML, servlets, or other files in the Web application document root
without extra configuration steps.

For HTML files, you will not need to add a pass rule to the Web server. For
servlets, you will not need to explicitlyconfigure the servlets in the WebSphere
administrative domain.

How to enable the
function

Use one of the following facilities:

If using the Application Assembly Tool (AAT),click File Serving
Enabled in the IBM Extensions panel.

●

In the ibm-web-ext.xmi file, change the fileServingEnabled flag
from false to true.

●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0605.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0605.html

4.2.1.2.3b: Security risk example of invoking servlets
by class name
Anyone enabling the "serve files by class name" function in WebSphere Application Server, should take steps
to avoid potential security risks. The administrator should remain aware of each and every servlet classplaced in
the classpath of an application, even if the servlets are to be invoked by their classnames.

A Web site may inadvertently include malicious HTML tags or scripts in a dynamically generated page
based on unvalidated input from untrustworthy sources.By accessing a malicious URL and then accessing an
application server, a usermay unknowingly execute script code on his machine that has full access to the data
and resources on that machine. The browser executes the script on the user machine without the knowledge of
the user.

The malicious tagsthat can be embedded in this way are <SCRIPT> and </SCRIPT>.

This problem can be prevented if the server generated pages are encoded to prevent thescripts from
executing.Developers generating responses containing client data, based on servlet or JSP requests, canencode
the response data using the following method:

com.ibm.websphere.servlet.response.ResponseUtils.encodeDataString(String)

Visit the Cert advisories Web sitefor more information.

Protecting servlets

See the article, Securing Applications, for information on securing servlets and Web resources.

http://www.cert.org/advisories/CA-2000-02.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/05.html

4.2.1.3: Servlet content, examples, and samples
Click the related topics to focus on particular aspects of servletdevelopment, including example and sample
code.

4.2.1.3.1: Creating HTTP servlets
To create an HTTP servlet, as illustrated in ServletSample.java:

Extend the HttpServlet abstract class.1.

Override the appropriate methods. The ServletSample overrides the doGet() method.2.

Get HTTP request information, if any.

Use the HttpServletRequest object to retrieve data submitted through HTML forms or as query strings
on a URL. The ServletSample example receives an optional parameter (myname) that can be passed to
the servlet as query parameters on the invoking URL. An example is:

http://your.server.name/application_URI/ServletSample?myname=Ann

The HttpServletRequest object has specific methods to retrieve information provided by the client:

getParameterNames()❍

getParameter(java.lang.String name)❍

getParameterValues(java.lang.String name)❍

3.

Generate the HTTP response.

Use the HttpServletResponse object to generate the client response. Its methods allow you to set the
response headers and the response body. The HttpServletResponse object also has the getWriter()
method to obtain a PrintWriter object for sending data to the client. Use the print() and println() methods
of the PrintWriter object to write the servlet response back to the client.

4.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/ServletSample.java.html

4.2.1.3.1.1: Overriding HttpServlet methods
HTTP servlets are specialized servlets that can receive HTTP client requests and return a response. To create an
HTTP servlet, subclass the HttpServlet class. A servlet can be invoked by its URL, from a JavaServer Page
(JSP), or from another servlet.

Methods to override
The javax.servlet.http.HttpServlet class contains the init, destroy, and service methods. The init
and destroy methods are inherited, while the service methodimplementation is specific to HttpServlet. The
method behaviors are described below; however, you might want to override methods in order to provide
specialized behavior in your servlet.

init

The default init method is usually adequate but can be overridden with a custom init method, typically to
register application-wide resources. For example, you might write a custom init method to load GIF
images only one time, improving the performance of servlets that return GIF images and have multiple
client requests. Other examples are initializing a database connection and registering servlet context
attributes.

●

destroy

The default destroy method is usually adequate, but can be overridden.Override the destroy method if
you need to perform actions during shutdown. For example, if a servlet accumulates statistics while it is
running, you might write a destroy() method that saves the statistics to a file when the servlet is
unloaded. Other examples are closing a database connection and freeing resources created during the
initialization.

When the server unloads a servlet, the destroy method is called after all service method calls complete or
after a specified time interval. Where threads have been spawned from within service method and the
threads have long-running operations, those threads may be outstanding when the destroy method is
called. Because this is undesirable, make sure those threads are ended or completed when the destroy
method is called.

●

service

The service method is the heart of the servlet. Unlike the init and destroy methods, it is invoked for each
client request. In the HttpServlet class, the service method already exists. The default service function
invokes the doXXX method corresponding to the method of the HTTP request. For example, if the
HTTP request method is GET, doGet method is called by default. Because the HttpServlet.service
method checks the HTTP request method and calls the appropriate handler method, it is usually not
desirable to override the service method. Rather, override the appropriate doXXX methods that the
servlet supports.

●

4.2.1.3.2: Inter-servlet communication
There are three types of servlet communication:

Accessing data within a servlet's scope●

Forwarding a request and including a response from another servlet using the RequestDispatcher●

Application-to-application communication via the ServletContext●

Sharing data within scope
JavaServerPages (JSPs) use this method to share data through beans. The ability of servlets to share data
depends on the scope of the bean. The possible scopes are request, session, and application.

Forwarding and including data
For session-scoped data and attributes, use the HttpSession.setAttribute and getAttribute methods to set and get
attributes in the HttpSession object. Session-scoped beans and objects bound to a session are examples of
session-scoped objects.

For application-scoped data, use the RequestDispatcher's forward and include methods to share data among
applications. The forward method sends the HTTP request from one servlet to a second servlet for additional
processing. The calling servlet adds the URL and request parameters in its HTTP request to the request object
passed to the target servlet. The forwarding servlet must not have committed any output to the client. The target
servlet generates the response and returns it to the client.

The include method enables a receiving servlet to include another servlet's response data in its response. The
included servlet cannot set response headers. The receiving servlet can fully access the request object but can
only write data to the ServletOutputStream or PrintWriter of the response object. If the servlets use session
tracking, you must create the session outside of the included servlet. The RequestDispatcher.forward method is
similar in function to the HttpServiceResponse.callPage method previously supported for JSP development.

Application-to-application communication
Web applications share data through the ServletContext. A Web application has a single servlet context. A
ServletContext object is accessible to any Web application associated with a virtual host. Servlet A in
application A can obtain the ServletContext for application B in the same virtual host. After Servlet A obtains
the servlet context for B, it can access the request dispatcher for servlets in application B and call the
getAttribute and setAttribute methods of the servlet context. An example of the coding in Servlet A is:

appBcontext = appAcontext.getContext("/appB");
appBcontext.getRequestDispatcher("/servlet5");

4.2.1.3.2.2: Example: Servlet communication by forwarding
In this example, the forward method is used to send a message to a JSP file (a servlet) that prints the message. The forwarding servlet code
is:

import java.io.*;import javax.servlet.*;import javax.servlet.http.*;public class UpdateJSPTest
extends HttpServlet{ public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException { String message = "This is a test";
req.setAttribute("message", message); RequestDispatcher rd =
getServletContext().getRequestDispatcher("/Update.jsp"); rd.forward(req, res); }}

The JSP file is:

<html><head></head><body><h1><servlet code=UpdateJSPTest></servlet></h1><% String message =
(String) request.getAttribute("message"); out.print("message: " + message +
"");%><p><% for (int i = 0; i < 5; i++) { out.println ("" + i);
}%></body></html>

4.2.1.3.4: Filtering and chaining servlets
The Application Server supports two kinds of filtering:

MIME-based filtering involves configuring the servlet engine to forward HTTP responses with the
specified MIME type to the designated servlet for further processing.

●

Servlet chaining involves defining a list (a sequence) of two or more servlets such that the request object
and the ServletOutputStream of the first servlet is passed to the next servlet in the sequence. This
process is repeated at each servlet in the list until the last servlet returns the response to the client.

●

4.2.1.3.4.1: Servlet filtering with MIME types
To configure MIME filters, use an administrative client to configure recognized MIME types for virtualhosts
containing servlets.

4.2.1.3.4.2: Servlet filtering with servlet chains
To configure a servlet chain, you must use an IBM supplied servlet
namedcom.ibm.websphere.servlet.filter.ChainerServlet

Add the com.ibm.websphere.servlet.filter.ChainerServlet to your Web application
during the application assembly stage and assign a servlet URL to the servlet instance.

1.

Define the following initialization parameter and value for the ChainerServlet:

Parameter Value
chainer.pathlist /first_servlet_URL /next_servlet_URL

The chainer.pathlist is a space-delimited list of servlet URLs. For example, if you want the sequence of
servlets to be three servlets that you added to the examples application (servletA, servletB, servletC),
specify:

Parameter Value
chainer.pathlist /servletA /servletB /servletC

2.

To invoke a servlet chain, invoke the servlet URL of the ChainerServlet in your application.3.

4.2.1.3.5: Enhancing servlet error reporting
A servlet can report errors by:

Calling the ServletResponse.sendError method●

Throwing an uncaught exception within its service method●

The enhanced servlet error reporting function in IBM WebSphere Application Server provides an easier way to implement error reporting. The
error page (a JSP file or servlet) is configured for the application and used by all of the servlets in that application. The new mechanism handles
caught and uncaught errors.

To return the error page to the client, the servlet engine:

Gets the ServletContext.RequestDispatcher for the URI configured for the application error path.1.

Creates an instance of the error bean (type com.ibm.websphere.servlet.errorServletErrorReport). The bean scope is
request, so that the target servlet (the servlet that encountered the error) can access the detailed error information.

2.

For the Application Server, the ServletResponse.sendError() method has been overriden to provide the functionality previously described. The
overriden method is shown below:

public void sendError(int statusCode, String message){ ServletException e = new
ServletErrorReport(statusCode, message); request.setAttribute(ServletErrorReport.ATTRIBUTE_NAME,
e); servletContext.getRequestDispatcher(getErrorPath()).forward(request, response);}

4.2.1.3.5.1: Public methods of the ServletErrorReport class
To create an error JSP or servlet, you need to know the public methods of the com.ibm.websphere.servlet.error.ServletErrorReport
class (the error bean), which are:

public class ServletErrorReport extends ServletException{ //Get the stacktrace of the error as
a string public String getStackTrace() //Get the message associated with the error. //The
same message is sent to the sendError() method. public String getMessage() //Get the error
code associated with the error. //he same error code is sent to the sendError() method. //This will
also be the same as the status code of the response. public int getErrorCode() //Get
the name of the servlet that reported the error public String getTargetServletName()}

4.2.1.3.6: Serving servlets by classname
To enable serving servlets by classname, you can either:

Click serve servlets by classname in the IBM Extensions panel of the Application Assembly Tool
(AAT), or

●

Change the serveServletsByClassnameEnabled flag in the ibm-web-ext.xmi file fromfalse to
true.

 The ibm-web-ext.xmi file is located in the WEB-INF directory of the installed
Web module

●

See section 4.2.1.2.3a for details and instructions.

4.2.1.3.7: Serving all files from application servers
Files are served on a per-web module, not a per-appserver basis.To enable file serving, you can either:

Click the File Serving Enabled checkbox in the IBM extensions panel of the Application Assembly
Tool (AAT), or

●

Change the fileServingEnabled flag fromfalse to true in the ibm-web-ext.xmi file.

 The ibm-web-ext.xmi file is located in the WEB-INF directory of the installed
Web module

●

See section 4.2.1.2.3a for details and instructions.

4.2.1.3.8: Obtaining the Web application classpath
from within a servlet
To have a servlet or JSP-generated servlet detect the classpathof the Web application to which it belongs, get
the

com.ibm.websphere.servlet.application.classpath

attribute from the ServletContext.

4.2.1.3.9: PageListServlet support
IBM WebSphere Application Server supplies the PageListServlet to call a Java Server Page (JSP) by name. The
PageListServlet uses configuration information to map a JSP name to the URI, where the URI specifies a JSP
file in the WAR module. This support allows application developers to stop hard-coding URLs in their servlets.

These mappings, or page lists, are logically grouped according to the markup-language type (HTML, WML,
and others) the JSP file is going to return to the requesting client. This allows applications, through the use of
servlets that extend the PageListServlet class, to call a JSP file that returns the proper markup-language data
type of the calling client. For example, if a request comes from a PDA, which requires WML data, and makes a
request to a servlet that extends the PageListServlet, then a Java Server Page that returns WML data is called.

PageListServlet configuration information can be defined either in the IBM Web Extensions file or in an XML
servlet configuration file. The IBM Web Extensions file is created and stored in the WAR file by the IBM
WebSphere Application Assembly Tool. An XML servlet configuration file can be created using IBM
WebSphere Studio or manually.

The PageListServlet has a callPage() method that invokes a Java Server Page in response to an HTTP
request for a page in a page list.

The callPage() method can be invoked as follows:

callPage(String pageName, HttpServletRequest request,
HttpServletResponse response)

pageName - A page name defined in the PageListServlet configuration❍

request - The HttpServletRequest object❍

response - The HttpServletResponse object❍

 For this method of invocation, the default markup-language is HTML.

1.

callPage(String mlName, String pageName, HttpServletRequest req,
HttpServletResponse resp)

mlName - A markup-language type.❍

pageName - A page name defined in the PageListServlet configuration❍

request - The HttpServletRequest object❍

response - The HttpServletResponse object❍

2.

See the Javadoc for the PageListServlet for a complete list of available APIs.

In addition to providing the page list mapping capability, the PageListServlet also has Client Type Detection
support. Using the configuration information in the client_types.xml file, a servlet can determine the
markup-language type the calling client requires for the response. This support allows the user's servlet to call
an appropriate JSP, based on markup-language type. Use the second version of the callPage() method
(described above) for Client Type Detection support.

In structuring the servlet code, keep in mind that the PageListServlet.callPage() method is not an
exit. Any servlet code that follows this method call will be executed.

http://localhost/0802_makepdf/apidocs/index.html

4.2.1.3.9.1: Extending PageListServlet
The HelloPervasiveServlet is an example of a servlet that extends the PageListServlet class and attempts to determine the markup-language
typerequired by the client. The servlet then uses the callPage() method to callthe JSP with the page name of "Hello.page".

public class HelloPervasiveServlet extends PageListServlet implements Serializable{ /* * doGet --
Process incoming HTTP GET requests */ public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException, ServletException { // This is the name of the
page to be called. String pageName = "Hello.page"; // First check if the servlet was
invoked with a queryString // that contained a markup-language value. For example, if this
// servlet was invoked like this: // http://localhost/servlets/HelloPervasive?mlname=VXML
String mlName = getMLNameFromRequest(request); // If no ML type was provided in the queryString,
then attempt to // determine the client type from the Request and use the ML name as //
configured in the client_types.xml file. if (mlName == null) { mlName =
getMLTypeFromRequest(request); } try { // Serve the Request page.
callPage(mlName, pageName, request, response); } catch (Exception e) {
handleError(mlName, request, response, e); } }}

4.2.1.3.9.2: Configuring page lists using the
Application Assembly Tool
PageListServlet configuration information can be defined in the IBM Web Extensions file or in an XML servlet
configuration file. The IBM Web Extensions file is created and stored in the WAR file by the IBM WebSphere
Application Assembly Tool (AAT). In the AAT, the page list information is configured under PageList
Extensions.

4.2.1.3.9.3: Configuring page lists using an XML
servlet configuration file
An alternative or legacy way of providing PageListServlet configuration information, is using an XML file
known as the XML Servlet Configuration file. This file provides configuration information for page lists, and
additional servlet configuration information. The file has a .servlet extension and resides in the same
directory as the servlet class file. The XML servlet configuration file must be created with one of the following
names:

servlet_class_name.servlet1.

servlet_name.servlet2.

IBM WebSphere Studio provides wizards that generate servlets with accompanying XML servlet configuration
files.If you are not using IBM WebSphere Studio, you can manually create XML servlet configuration
files.Each XML configuration file must be a well-formed XML document. The files are not validated against a
Document Type Definition (DTD). Althoughthere is no DTD, it is recommended that all elements in the file
appear in the same order as the elements described below:

XML Servlet configuration file elements

Elements Description
servlet The root element of an XML servlet configuration file.

code The class name of the servlet, that extends the PageListServlet, without the .class
extension.

description The description of the servlet.

init-parameter
The attributes of this element specify the name-value pair to be used as an initialization
parameter on the servlet. A servlet can have multiple initialization parameters, each within
its own init-parameter element.

markup-language Contains <ml-name>, <ml-mime>, and <page-list> elements. (The root element <servlet>
can contain multiple <markup-language> elements.)

ml-name A markup-language type, as for example: HTML, or WML, or VXML, and so forth

ml-mime A MIME type, as for example: text.html, or text/x-vxml, or
text/vnd.wap.wml, and so forth

page-list Contains <default-page>, <error-page>, and <page>+ elements. (A <page-list> element
can contain multiple <page> elements.)

default-page Contains a <uri> element. The URI specifies the JSP to be called if the requested page
does not exist or is not specified on the HTTP request.

error-page Contains a <uri> element. The URI specifies the JSP to be called when the
handleError() PageListServlet method is called.

page
Contains a <uri> and <page-name> element. The URI specifies the JSP file to be called
when a PageListServlet method callPage() is called with the same value as
<page-name>.

uri A JSP file within the WAR Module.

page-name The name in which a servlet, extending the PageListServlet, will use in the callPage()
method to call a JSP.

4.2.1.3.9.4: Example of the XML servlet configuration file
<?xml version="1.0"?><servlet> <code>HelloPervasiveServlet</code> <description>Shows how to use
PageListServlet class.<:/description> <init-parameter name="name1" value="value2"/>
<markup-language> <ml-name>HTML</ml-name> <ml-mime>text/html</ml-mime> <page-list>
<error-page> <uri>/mywebapp/HelloHTMLError.jsp</uri> </error-page> <page>
<page-name>Hello.page</page-name> <uri>/mywebapp/HelloHTML.jsp</uri> </page>
</page-list> </markup-language> <markup-language> <ml-name>VXML</ml-name>
<ml-mime>text/x-vxml</ml-mime> <page-list> <error-page>
<uri>/mywebapp/HelloVXMLError.jsp</uri> </error-page> <page>
<page-name>Hello.page</page-name> <uri>/mywebapp/HelloVXML.jsp</uri> </page>
</page-list> </markup-language> <markup-language> <ml-name>WML</ml-name>
<ml-mime>text/vnd.wap.wml</ml-mime> <page-list> <error-page>
<uri>/mywebapp/HelloWMLError.jsp</uri> </error-page> <page>
<page-name>Hello.page</page-name> <uri>/mywebapp/HelloWML.jsp</uri> </page>
</page-list> </markup-language></servlet>

4.2.1.3.9.5: PageListServlet client type configuration
file
In addition to providing the page list mapping capability, the PageListServlet also has Client Type Detection
support. Using the configuration information in the client_types.xml file, a servlet can determine the
markup-language type the calling client requires for the response.

This support allows the servlet, extending PageListServet, to call an appropriate JSP file,with the
callPage() method, based on the markup-language type of the request. The client type detection method,
getMLTypeFromRequest(HttpServletRequest request), provided by the PageListServlet,
inspects the HttpServletRequest object's request headers, and searches for a match in the
client_types.xml file.

The client type detection method does the following:

Using the input HttpServletRequest and the client_types.xml file, it checks for a matching HTTP
request name and value. If found, it returns the markup-language value configured for the
<client-type> element.

1.

If multiple matches are found, it returns the markup-language for the first <client-type> (for which
a match was found).

2.

If no match was found, it returns the value of the markup-language for the default page defined in the
PageListServlet configuration.

3.

The client_types.xml file is located in the product_installation_root/properties
directory.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.2.1.3.9.6: Example of a client type configuration file
<?xml version="1.0"?><!DOCTYPE clients [<!ELEMENT client-type
(description,markup-language,request-header+)><!ELEMENT description (#PCDATA)><!ELEMENT
markup-language (#PCDATA)><!ELEMENT request-header (name,value)><!ELEMENT clients
(client-type+)><!ELEMENT name (#PCDATA)><!ELEMENT value (#PCDATA)>]><clients> <client-type>
<description>IBM Speech Client</description> <markup-language>VXML</markup-language>
<request-header> <name>user-agent</name> <value>IBM VoiceXML pre-release version
000303</value> </request-header> <request-header> <name>accept</name>
<value>text/vxml</value> </request-header> </client-type> <client-type> <description>WML
Browser</description> <markup-language>WML</markup-language> <request-header>
<name>accept</name> <value>text/x-wap.wml</value> </request-header> <request-header>
<name>accept</name> <value>text/vnd.wap.wml</value> </request-header>
</client-type></clients>

4.2.2: Developing JSP files
If JSP files are fairly new to you, consider reading about their lifecycle and access model. When you are ready
to begin writing JSP files, see the article featuring JSP file content. Review the support and environment article
for topics such as JSP processors and APIs, recommended development tools, and batch compiling.

4.2.2.1: JavaServer Pages (JSP) lifecycle
JSP files are compiled into servlets. After a JSP is compiled, its lifecycle is similar to the servlet lifecycle:

Java source generation and compilation

When a Web container receives a request for a JSP file, it passes the request to the JSP processor .

If this is the first time the JSP file has been requested or if the compiled copy of the JSP file is not found, the
JSP compiler generates and compiles a Java source file for the JSP file. The JSP processor puts the Java source
and class file in the JSP processor directory.

By default, the JSP syntax in a JSP file is converted to Java code that is added to the service() method of the
generated class file. If you need to specify initialization parameters for the servlet or other initialization
information, add the method directive set to the value init.

Request processing

After the JSP processor places the servlet class file in the JSP processor directory, the Web container creates an
instance of the servlet and calls the servlet service() method in response to the request. All subsequent requests
for the JSP are handled by that instance of the servlet.

When the Web container receives a request for a JSP file, the engine checks to determine whether the JSP file
(.jsp) has changed since it was loaded. If it has changed, the Web container reloads the updated JSP file (that is,
generates an updated Java source and class file for the JSP). The newly loaded servlet instance receives the
client request.

Termination

When the Web container no longer needs the servlet or a newinstance of the servlet is being reloaded, the Web
container invokes theservlet's destroy() method. The Web container can also call the destroy() method if the
engine needs to conserve resources or a pending call to a servlet service() method exceeds the timeout. The Java
Virtual Machine performs garbage collection after the destroy.

4.2.2.1a: JSP access models
JSP files can be accessed in two ways:

The browser sends a request for a JSP file.

The JSP file accesses beans or other components that generate dynamic content that is sent to the
browser,as shown:

Request for a JSP file

When the Web server receives a request for a JSP file, the server sends therequest to the application
server. The application server parses theJSP file and generates Java source, which is compiled and
executed as aservlet.

●

The request is sent to a servlet that generates dynamic content and calls a JSP file to send the content to
the browser, as shown:

Request for a servlet

This access model facilitates separating content generation from content display.

The application server supplies a set of methods in the HttpServiceRequest object and the
HttpServiceResponse object. These methods allow an invoked servlet to place an object (usually a bean)
into a request object and pass that request to another page (usually a JSP file) for display. The invoked
page retrieves the beanfrom the request object and generates the client-side HTML.

●

4.2.2.2: JSP support and environment in WebSphere
IBM WebSphere Application Server supports the JSP 1.1 Specification from Sun Microsystems. If you are
going to develop new JSP files for use with IBMWebSphere Application Server, it is recommended you use JSP
1.1.

All APIs described in this section are supported at the JSP 1.1 level.

http://javasoft.com/products/jsp/index.html

4.2.2.2.2: JSP processors
When you install the Application Server product on a Web server, the Web server configuration is set to pass
HTTP requests for JSP files (files with the extension .jsp) to the Application Server product.

The JSP processor creates and compiles a servlet from each JSP file. The processor produces these files for each
JSP file:

.java file, which contains the Java language code for the servlet●

.class file, which is the compiled servlet●

.dat file, which contains the static part of the original jsp file●

The JSP processor puts the .java, the .class file, and the .dat file in the following path:

 <product_installation_root>\temp\<hostname>\<servername>\<webmodulename>

Like all servlets, a servlet generated from a JSP file extends javax.servlet.http.HttpServlet. The servlet Java
code contains import statements for the necessary classes and a package statement, if the servlet class is part of
a package.

If the JSP file contains JSP syntax (such as directives and scriptlets), the JSP processor converts the JSP syntax
to the equivalent Java code. If the JSP file contains HTML tags, the processor adds Java code so that the servlet
outputs the HTML character by character.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.2.2.2.3: Java Server Page attributes
Use the WebSphere Application Assembly Tool (AAT) to set the following Java Server Page attributes. The JSP
attributes are storedin the IBM extensions document for Web module, ibm-web-ext.xmi.

JSP file attribute names
JSP file attribute values

(Default values are in bold
text)

Purpose

keepgenerated true | false If true, the generated .javafile will be kept. If the
value is false, the .java file isnot saved.

dosetattribute true | false
By default, JSP files using the "usebean" tag
withScope="session" do not always work properly
when session persistence is enabled.

scratchdir product_installation_root\temp
Set scratchdir to a valid drive and directory
which the JSP enginewill use to store the generated
.class and .java files.

jsp.repeatTag.ignoreException true | false

In previous releases, the <tsx:repeat> tagwould
iterate until one of the following conditions was
met:

The end value was reached1.

An
ArrayIndexOutofBoundsException
was thrown

2.

Other types of exceptions were caught but not
thrown, which could result in numerous errors being
returned to the browser.

In version 4.0, the default behavior will now stop
therepeat tag iterations when any exception is
thrown.

To reinstate the old behavior, set this parameter's
valueto true.

defaultEncoding

Name of the desired character
set.
The value of the system
propertyfile.encoding is the
default.

Use this parameter to set the encoding for JSP
pages. If a JSP page contains a contentType
directive that defines an alternative character set,
that character set is used instead of the
defaultEncoding parameter's value.

The order of precedence is:

The JSP page's contentTypedirective's
charset.

1.

The defaultEncoding parameter's
value.

2.

The System property file.encoding
value

3.

ISO-8859-14.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.2.2.2.4: Batch Compiling JSP files
As an IBM enhancement to JSP support, IBM WebSphere Application Server provides a batch JSP compiler.
Use this function to batch compile your JSP files and thereby enable faster responses to the initial client
requests for the JSP files on your production Web server.

It is best to batch compile all of the JSP files associated with an application. Batch compiling saves system
resources and provides security on the application server by specifying if and/or when the server is to check for
a classfile or recompile a JSP file. The application server will monitor the compiled JSP file for changes, and
will automatically recompile and reload the JSP file whenever the application server detects that the JSP file has
changed. By modifying this process, you can eliminate time- and resource-consuming compilations and ensure
that you have control over the compilation of your JSP files. It is also useful as a fast way to resynchronize all
of the JSP files for an application.

4.2.2.2.4.2: Compiling JSP 1.1 files as a batch
To use the JSP batch compiler for JSP files, enter the following command on a single line at an operating system
command prompt:

JspBatchCompiler -enterpriseApp<name>-webModule<name>[-filename<jsp name>]
 [-keepgenerated<true|false>][-configFile<configfile name>]

Note: If the names specified for these arguments are comprised of two or more words separated by
spaces, you must add quotation marks around the names.

where:

enterpriseApp

The name of the Enterprise Application you want to compile.

❍

webModule

The name of the specific Web module that you want to compile.

❍

filename

The name of a single JSP file that you want to compile. If this argument is not set, all files in the Web
module are compiled.

❍

keepgenerated

If set to "yes" WebSphere Application Server will save the generated .java files used for compilation
on your server. By default, this is set to "no" and the .java files are erased after the class files have
been compiled.

❍

configFile

The configFile parameter is valid only on Advanced Single Server Edition for "Multiplatforms."
Use it to specify an alternative sever configuration file (the default is server-cfg.xml).

❍

4.2.2.3: Overview of JSP file content
JSP files have the extension .jsp. A JSP filecontains any combination of the following items. Click an item to
learn about its syntax. To learn how to put it all together, see the Related information for examples, samples,
and additional syntax references.

JSP syntax

Syntax format Details

Directives

Use JSP directives (enclosed within <%@ and %>) to specify:

Scripting language being used●

Interfaces a servlet implements●

Classes a servlet extends●

Packages a servlet imports●

MIME type of the generated response●

 See Sun's JSP Syntax Referencefor JSP 1.1
syntax descriptions and examples.

Class-wide variable and method declarations Use the <%! declaration(s) %> syntax to declareclass-wide
variables and class-wide methods for the servlet class.

Inline Java code (scriptlets), enclosed within
<% and %>

You can embed any valid Java language code inline withina
JSP file between the <% and %> tags. Suchembedded code is
called a scriptlet. If you do not specify the method directive,
the generated code becomes the body of the service method.

An advantage of embedding Java coding inline in JSP files is
that the servlet does not have to be compiled in advance, and
placed on the server. Thismakes it easier to quickly test servlet
coding.

Variable text, specified using IBM extensions
for variable data or Java expressions enclosed
within <%= and %>

The IBM extensions are the more user-friendly approach to
putting variable fields on your HTML pages.

A second method for adding variable data is to specify a Java
language expression that is resolved when the JSP file is
processed. Use the JSP expression tags <%= and %>. The
expression is evaluated, converted into a string, and displayed.
Primitive types, such as int and float, areautomatically
converted to string representation.

<jsp:useBean> tag
Use the <jsp:useBean> tag to create an instance of a bean that
will be accessed elsewhere within the JSP file. Then use JSP
tags to access the bean.

JSP tags for database access (JSP 1.1) The IBM extensions make it easy for non-programmers to
create Web pages that access databases.

http://java.sun.com/products/jsp/tags/11/tags11.html

HTML tags
A JSP file can contain any valid HTML tags. View article 0.70: What is HTML? for more informationon
HTML. Refer to your favorite HTMLreference for a description of HTML tags.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0070.html

4.2.2.3.2: JSP syntax: Class-wide variables and methods
Use the <%! declaration(s) %> syntax to declareclass-wide variables and class-wide methods for the servlet class.

An example of specifying class-widevariables and methods:

 <%! int i=0; String foo = "Hello"; %> <%! private void foo() {// code for the method } %>

4.2.2.3.3: JSP syntax: Inline Java code (scriptlets)
You can embed any valid Java language code inlinebetween the <% and %> tags. Suchembedded code is called a scriptlet. If you do not specify the
method directive, the generated code becomes the body of the service method.

Be sure to use the braces characters, { }, to enclose if, while, and for statements even if the scope contains a single statement. You can enclose the
entire statement with a single scriptlet tag. However, if you use multiple scriptlet tags with the statement, be sure to place the opening brace
character, {, in the same statement as the if, while, or for keyword. The following examples illustrate these points. The first example is the easiest.

<%for (int i = 0; i < 1; i++) { out.println("<P>This is written when " + i + " is < 1</P>");
}%>...<% for (int i = 0; i < 1; i++) { %><%
out.println("<P>This is written when " + i + " is < 1</P>"); %><% }
%>...<% for (int i = 0; i < 1; i++) {
%><% out.println("<P>This is written when " + i + " is < 1</P>"); %><% }
%>

4.2.2.3.4: JSP syntax: Java expressions
To specify a Java language expression that is resolvedwhen the JSP file is processed, use the JSP expression
tags <%= and%>. The expression is evaluated, converted into a string,and displayed. Primitive types, such as
int and float, areautomatically converted to string representation. In this example, foois the class-wide variable
declared in the class-wide variables and methods example:

<p>Translate the greeting <%= foo %>.</p>

When the JSP file is served, the text reads: Translate the greeting Hello.

4.2.2.3.5: JSP syntax: useBean tag
The <jsp:useBean> tag locates a Bean or creates an instance of a Bean if it does not exist.

JavaBeans can be class files, serializedbeans, or dynamically generated by a servlet.A JavaBean can even be a
servlet (that is, provide a service). If aservlet generates dynamic content and stores it in a bean, the bean can
thenbe passed to a JSP file for use within the Web page defined by thefile.

See Sun's JSP Syntax Referencefor JSP 1.1 syntax descriptions and examples.

http://java.sun.com/products/jsp/tags/11/tags11.html

4.2.2.3.5.1: JSP syntax: <jsp:useBean> tag
Use the <jsp:useBean> tag to locate or instantiate a JavaBeans component. The syntax for the <jsp:useBean> tag
is:

<jsp:useBean
 id="beanSomeName"
 scope="page|request|session|applicaton"
{ class="package_class" |
 type ="package_class" |
 class="package_class" type ="package_class" |
 beanName="{package.class| <%= expression%>}" type ="package_class"
}
{ />|
 > other elements
 </jsp:useBean>
}

See Sun's JSP syntax referencefor a description of the <jsp:useBean> attributes and examples.

http://java.sun.com/products/jsp/tags/11/syntaxref1115.html

4.2.2.3.5.2: JSP syntax: Accessing bean properties
After specifying the <jsp:useBean> tag, you can access the bean at any pointwithin the JSP file using the
<jsp:getProperty> tag.

For a description of the <jsp:getProperty> tag attributesand for coding examples, see Sun's JSP Syntax
Reference

http://java.sun.com/products/jsp/tags/11/syntaxref11.fm10.html
http://java.sun.com/products/jsp/tags/11/syntaxref11.fm10.html

4.2.2.3.5.3: JSP syntax: Setting bean properties
You can set bean properties by using the <jsp:setProperty> tag. The <jsp:setProperty> tag
specifies a list of properties and the corresponding values. The properties areset after the the bean is instantiated
using the <jsp:useBean> tag.

You must declare the bean with <jsp:useBean> before you can set a property value.

See the Sun's JSP syntax referencefor <jsp:setProperty> syntax details and examples.

http://java.sun.com/products/jsp/tags/11/syntaxref11.fm13.html

4.2.2.3.7: IBM extensions to JSP syntax
Refer to the Sun JSP Specification for the base JavaServer Pages (JSP) APIs. IBMWebSphere Application
Server Version 3.5 provided several extensions to the base APIs.The backward compatibility of the JSP 1.1
specification to JSP 1.0 allows users to invoke these APIs without modification.

The extensions belong to these categories:

Extension Use

Syntax for variable data
Put variable fields in JSP files and have servlets and JavaBeans
dynamicallyreplace the variables with values from a database when the JSP output
is returned tothe browser

Syntax for database access
Add a database connection to a Web page and then use that connection to query or
updatethe database. The user ID and password for the database connection can be
provided by theuser at request time, or can be hardcoded within the JSP file.

Scope of variables: Because the values specified by syntax apply onlyto the JSP file in which thesyntax is
embedded, identifiers and other tag data can be accessed only withinthe page.

See the Related information for syntax details.

4.2.2.3.7.1: JSP syntax: Tags for variable data
The variable data syntax enables you to put variable fields in your JSP file and have your servlets and
JavaBeansdynamically replace the variables with values from a database when the JSP output is returned to the
browser.

The table summarizes the tags. Click a tag to link to its syntax description.

Goal Tag Details

Get the value of a bean to display in a JSP. <tsx:getProperty>

This IBM extension of the Sun JSP
<jsp:getProperty> tag implements all of the
<jsp:getProperty> function and adds the
ability to introspect a database bean that was
created using the IBM extension
<tsx:dbquery> or <tsx:dbmodify>.

Note: You cannot assign the
value from this tag toa
variable. The value, generated
as output from this tag, is
displayed in the Browser
window.

Repeat a block of HTML tagging that
contains the <tsx:getProperty> syntax and
the HTML tags for formatting content.

<tsx:repeat>

Use the <tsx:repeat> syntax to iterate over a
database query results set. The <tsx:repeat>
syntax iterates from the start value to the end
value until one of the following conditions is
met:

The end value is reached.●

An exception is thrown.●

The output of a <tsx:repeat> block is buffered
until the block completes. If an exception is
thrown before a block completes, no output is
written for that block.

4.2.2.3.7.1.1: JSP syntax: <tsx:getProperty> tag syntax and
examples
<tsx:getProperty name="bean_name" property="property_name" />

where:

name

The name of the JavaBean declared by the id attribute of a <tsx:dbquery> syntax within the JSP file. See <tsx:dbquery> for an
explanation. The value of this attribute is case-sensitive.

●

property

The property of the bean to access for substitution. The value ofthe attribute is case-sensitive and is the locale-independent name
of theproperty.

●

Examples

<tsx:getProperty name="userProfile" property="username" /><tsx:getProperty name="request"
property=request.getParameter("corporation") />

In most cases, the value of the property attribute will be just theproperty name. However, to access the request bean or access a property
of a property(sub-property), you specify the full form of the property attribute.The full form also gives you the option to specify an
index for indexedproperties. The optional index can be a constant (such as 2) or anindex like the one described in <tsx:repeat>. Some
examples of using the full form of the property attribute:

<tsx:getProperty name="staffQuery" property=address(currentAddressIndex) /><tsx:getProperty
name="shoppingCart" property=items(4).price /><tsx:getProperty name="fooBean"
property=foo(2).bat(3).boo.far />

4.2.2.3.7.1.2: JSP syntax: <tsx:repeat> tag syntax
<tsx:repeat index=name start="starting_index" end="ending_index"></tsx:repeat>

where:

index

An optional name used to identify the index of this repeat block.The value is case-sensitive and its scope is
the JSP file.

●

start

An optional starting index value for this repeat block. The defaultis 0.

●

end

An optional ending index value for this repeat block. The maximumvalue is 2,147,483,647. If the value of
the end attribute is less thanthe value of the start attribute, the end attribute is ignored.

●

4.2.2.3.7.1.2a: JSP syntax: The repeat tag results set and the associated bean
The <tsx:repeat> iterates over a results set. The results set is contained within a JavaBean. The bean can be a static bean (for example, a bean created by using the IBM WebSphere Studio database wizard) or a dynamically generated bean (for example, a bean generated by the <tsx:dbquery> syntax). The
following table is a graphic representation of the contents of a bean, myBean:

 col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:

The column names in the database table become the property names of the bean. The section <tsx:dbquery> describes a technique for mapping the column names to different property names.●

The bean properties are indexed. For example, myBean.get(Col1(row2)) returns May.●

The query results are in the rows. The <tsx:repeat> iterates over the rows (beginning at the start row).●

The following table compares using the <tsx:repeat> to iterate over static bean versus a dynamically generated bean:

Static Bean Example <tsx:repeat> Bean Example
myBean.class

// Code to get a connection// Code to get the data Select * from myTable;// Code to close the connection

JSP file

<tsx:repeat index=abc> <tsx:getPropery name="myBean" property="col1(abc)" /></tsx:repeat>

The bean (myBean.class) is a static bean.●

The method to access the bean properties is myBean.get(property(index)).●

You can omit the property index, in which case the index of the enclosing <tsx:repeat> is used. You can also omit the index on the
<tsx:repeat>.

●

The <tsx:repeat> iterates over the bean properties row by row, beginning with the start row.●

JSP file

<tsx:dbconnect id="conn"userid="alice"passwd="test"url="jdbc:db2:sample"driver="COM.ibm.db2.jdbc.app.DB2Driver"></tsx:dbconnect
><tsx:dbquery id="dynamic" connection="conn" > Select * from myTable;</tsx:dbquery><tsx:repeat index=abc> <tsx:getProperty
name="dynamic" property="col1(abc)" /></tsx:repeat>

The bean (dynamic) is generated by the <tsx:dbquery> and does not exist until the syntax is executed.●

The method to access the bean properties is
dynamic.getValue("property", index).

●

You can omit the property index, in which case the index of the enclosing <tsx:repeat> is used. You can also omit the index on the <tsx:repeat>.●

The <tsx:repeat> syntax iterates over the bean properties row by row, beginning with the start row.●

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat>. Theexamples produce the same output if all indexed properties have 300 or fewerelements. If there are more than 300 elements, Examples 1 and 2 willdisplay all elements, while Example 3 will show only the first 300elements.

Example 1 shows implicit indexing with the default start and default endindex. The bean with the smallest number of indexed properties restricts the number of times the loop will repeat.

<table><tsx:repeat> <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /></tr></td> <tr><td><tsx:getProperty
name="serviceLocationsQuery" property="address" /></tr></td> <tr><td><tsx:getProperty name="serviceLocationsQuery"
property="telephone" /></tr></td></tsx:repeat></table>

Example 2 shows indexing, starting index, and ending index:

<table><tsx:repeat index=myIndex start=0 end=2147483647> <tr><td><tsx:getProperty name="serviceLocationsQuery"
property=city(myIndex) /></tr></td> <tr><td><tsx:getProperty name="serviceLocationsQuery" property=address(myIndex) /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property=telephone(myIndex) /></tr></td></tsx:repeat></table>

Example 3 shows explicit indexing and ending index with implicit startingindex. Although the index attribute is specified, the indexed propertycity can still be implicitly indexed because the (myIndex) is not required.

<table><tsx:repeat index=myIndex end=299> <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /t></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="address(myIndex)" /></tr></td> <tr><td><tsx:getProperty
name="serviceLocationsQuery" property="telephone(myIndex)" /></tr></td></tsx:repeat></table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separatelyindexed. This capability is useful for interleaving properties on twobeans, or properties that have sub-properties. In the example, two<tsx:repeat> blocks are nested to display the list of songs on each compactdisc in the user's shopping cart.

<tsx:repeat index=cdindex> <h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1> <table> <tsx:repeat>
<tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist /> </td></tr> </table>
</tsx:repeat></tsx:repeat>

4.2.2.3.7.2: JSP syntax: Tags for database access
Beginning with IBM WebSphere Application Server Version 3.x, the JSP 1.0 supportwas extended to provide
syntaxfor database access. The syntax makes it simple to add a database connectionto a Web page and then use
that connection to query or update the database.The user ID and password for the database connection can be
provided by theuser at request-time or hard coded within the JSP file.

The table summarizes the tags. Click a tag to link to its syntax description.

Goal Tag Details and examples

Specify information needed to
make a connection to a JDBC or
an ODBC database.

<tsx:dbconnect>

The <tsx:dbconnect> syntax does not
establish the connection. Instead,the
<tsx:dbquery> and <tsx:dbmodify> syntax
are used to referencea <tsx:dbconnect> in
the same JSP file and establish the
connection.

When the JSP file is compiled into a
servlet, the Java processor addsthe Java
coding for the <tsx:dbconnect> syntax to
the servlet'sservice() method, which means
a new database connection is created for
eachrequest for the JSP file.

Avoid hard coding the user ID
and password in
the<tsx:dbconnect>.

<tsx:userid> and
<tsx:passwd>

Use the <tsx:userid> and <tsx:passwd> to
acceptuser input for the values and then
add that data to the request object. The
request objectcan be accessed by a JSP file
(such as the JSPEmployee.jsp example)
that requests the databaseconnection.

The <tsx:userid> and <tsx:passwd> must
be used within a<tsx:dbconnect> tag.

Establish a connection to a
database, submit database queries,
and return the results set.

<tsx:dbquery>

The <tsx:dbquery>:

References a <tsx:dbconnect> in
the same JSP file and uses the
information it provides to
determine the database URL and
driver. The user ID and password
are also obtained from the
<tsx:dbconnect> if those values are
provided in the <tsx:dbconnect>.

1.

Establishes a new connection2.

Retrieves and caches data in the
results object

3.

Closes the connection (releases the
connection resource)

4.

Establish a connection to a
database and then add records to a
database table.

<tsx:dbmodify>

The <tsx:dbmodify>:

References a <tsx:dbconnect> in
the same JSP file and uses the
information provided by that to
determine the database URL and
driver. The user ID and password
are also obtained from the
<tsx:dbconnect> if those values are
provided in the <tsx:dbconnect>.

1.

Establishes a new connection2.

Updates a table in the database3.

Closes the connection (releases the
connection resource)

4.

Examples:
Basic example

Display query results.
<tsx:repeat> and
<tsx:getProperty>

The <tsx:repeat> loops through each of the
rows in the query results.The
<tsx:getProperty> uses the query results
object (for the <tsx:dbquery>syntax whose
identifier is specified by the
<tsx:getProperty> bean attribute)and the
appropriate column name (specified by the
<tsx:getProperty> propertyattribute) to
retrieve the value.

Note: You cannot assign
the value from the
<tsx:getProperty> tag toa
variable. The value,
generated as output from
this tag, is displayed in the
Browser window.

Examples:
Basic example

4.2.2.3.7.2.1: JSP syntax: <tsx:dbconnect> tag syntax
<tsx:dbconnect id="connection_id" userid="db_user" passwd="user_password"
url="jdbc:subprotocol:database" driver="database_driver_name"
jndiname="JNDI_context/logical_name"></tsx:dbconnect>

where:

id

A required identifier. The scope is the JSP file. This identifier is referenced by the connection attribute of a
<tsx:dbquery> tag.

●

userid

An optional attribute that specifies a valid user ID for the database to be accessed. If specified, this attribute
and its value are added to the request object.

Although the userid attribute is optional, the userid must be provided. See <tsx:userid> and <tsx:passwd> for
an alternative to hard coding this information in the JSP file.

●

passwd

An optional attribute that specifies the user password for the userid attribute. (This attribute is not optional if
the userid attribute is specified.) If specified, this attribute and its value are added to the request object.

Although the passwd attribute is optional, the password must be provided. See <tsx:userid> and <tsx:passwd>
for an alternative to hard coding this attribute in the JSP file.

●

url and driver

To establish a database connection, the URL and driver must be provided.

The Application Server Version 3 supports connection to JDBC databases and ODBC databases.

JDBC database

For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the sub-protocol
name, and the name of the database to be accessed. An example for a connection to the Sample database
included with IBM DB2 is:

url="jdbc:db2:sample"driver="COM.ibm.db2.jdbc.app.DB2Driver"

ODBC database

Use the Sun JDBC-to-ODBC bridge driver included in the Java Development Kit (JDK) oranother vendor's
ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the driver to
be used to establish the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC bridge
included with the JDK. If you want to use an ODBC driver, refer to the driver documentation for instructions
on specifying the database location (the url attribute) and the driver name.

In the case of the bridge, the url syntax is jdbc:odbc:database. An example is:

url="jdbc:odbc:autos"driver="sun.jdbc.odbc.JdbcOdbcDriver"

 To enable the Application Server to access the ODBC database, use the ODBC Data Source
Administrator to add the ODBC data source to the System DSN configuration. To access the

●

ODBC Administrator, click the ODBC icon on the Windows NT Control Panel.

jndiname

An optional attribute that identifies a valid context in the Application Server JNDI naming context and the
logical name of the data source in that context. The context is configured by the Web administrator using an
administrative client such as the WebSphere Administrative Console.

If the jndiname is specified, the JSP processor ignores the driver and url attributes on the <tsx:dbconnect> tag.

●

An empty element (such as <url></url>) is valid.

4.2.2.3.7.2.2: JSP syntax: <tsx:userid> and <tsx:passwd> tag syntax
<tsx:dbconnect id="connection_id" <userid><tsx:getProperty
name="request" property=request.getParameter("userid") /></userid> <passwd><tsx:getProperty name="request" property=request.getParameter("passwd")
/></passwd> url="protocol:database_name:database_table"
driver="JDBC_driver_name"> </tsx:dbconnect>

where:

<tsx:getProperty>

This syntax is a mechanism for embedding variable data. See JSP syntax for variable data.

●

userid

This is a reference to the request parameter that contains the userid. The parameter must have already been added to the request object that
was passed to this JSP file. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass
the user-specified request parameters.

●

passwd

This is a reference to the request parameter that contains the password. The parameter must have already been added to the request object
that was passed to this JSP. The attribute and its value can be set in the request object using an HTML form or a URL query string to pass
user-specified values.

●

4.2.2.3.7.2.3: JSP syntax: <tsx:dbquery> tag syntax
<%-- SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. --%><%-- Any
other syntax, including HTML comments, are not valid. --%><tsx:dbquery id="query_id"
connection="connection_id" limit="value" ></tsx:dbquery>

where:

id

The identifier of this query. The scope is the JSP file. This identifier is used to reference the query, for example, from the
<tsx:getProperty> to display query results.

The id becomes the name of a bean that contains the results set. The bean properties are dynamic and the property names are the names
of the columns in the results set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT
command. In the following example, the database table contains columns named FNAME and LNAME, but the SELECT statement uses
the AS keyword to map those column names to FirstName and LastName in the results set:

Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME='Jim'

●

connection

The identifier of a <tsx:dbconnect> in this JSP file. That <tsx:dbconnect> provides the database URL, driver name, and (optionally) the
user ID and password for the connection.

●

limit

An optional attribute that constrains the maximum number of records returned by a query. If the attribute is not specified, no limit is
used. In such a case, the effective limit is determined by the number of records and the system caching capability.

●

SELECT command and JSP syntax

The only valid SQL command is SELECT because the <tsx:dbquery> must return a results set. Refer to your database documentation for
information about the SELECT command. See other sections of this document for a description of JSP syntax for variable data and inline
Java code.

●

4.2.2.3.7.2.3a: Example: JSP syntax: <tsx:dbquery> tag syntax
In the following example, a database is queried for data about employees in a specified department. The department is specified using the
<tsx:getProperty> to embed a variable data field. The value of the field is based on user input.

<tsx:dbquery id="empqs" connection="conn" >select * from Employee where WORKDEPT='<tsx:getProperty
name="request" property=request.getParameter("WORKDEPT") />'</tsx:dbquery>

4.2.2.3.7.2.4: JSP syntax: <tsx:dbmodify> tag syntax
<%-- Any valid database update commands can be placed within the DBMODIFY tag. --><%-- Any other
syntax, including HTML comments, are not valid. --><tsx:dbmodify
connection="connection_id"></tsx:dbmodify>

where:

connection

The identifier of a <DBCONNECT> tag in this JSP file. The <DBCONNECT> tag provides the database URL, driver name, and
(optionally) the user ID and password for the connection.

●

Database commands

Valid database commands. Refer to your database documentation for details

●

4.2.2.3.7.2.4a: Example: JSP syntax: <tsx:dbmodify> tag syntax
In the following example, a new employee record is added to a database. The values of the fields are based on user input from this
JSP and referenced in the database commands using <tsx:getProperty>.

<tsx:dbmodify connection="conn" >insert into EMPLOYEE
(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)values('<tsx:getProperty name="request"
property=request.getParameter("EMPNO") />','<tsx:getProperty name="request"
property=request.getParameter("FIRSTNME") />','<tsx:getProperty name="request"
property=request.getParameter("MIDINIT") />','<tsx:getProperty name="request"
property=request.getParameter("LASTNAME") />','<tsx:getProperty name="request"
property=request.getParameter("WORKDEPT") />',<tsx:getProperty name="request"
property=request.getParameter("EDLEVEL") />)</tsx:dbmodify>

4.2.2.3.7.2.5a: Example: JSP syntax: <tsx:repeat> and
<tsx:getProperty> tags
<tsx:repeat><tr> <td><tsx:getProperty name="empqs" property="EMPNO" /> <tsx:getProperty
name="empqs" property="FIRSTNME" /> <tsx:getProperty name="empqs" property="WORKDEPT" />
<tsx:getProperty name="empqs" property="EDLEVEL" /> </td></tr></tsx:repeat>

4.2.2.3a: JSP examples
The example JSP application accesses the Sample database that you can install with IBM DB2. The example
application includes:

JSPLogin.jsp An interface for logging in to the application

JSPEmployee.jsp A dialog for querying and updating database records

JSPEmployeeRepeatResults.jsp A dialog for displaying update confirmations and query results

JSP code example - a login

<HTML><HEAD><TITLE>JSP: Login into the Employee Records
Center</TITLE></HEAD><BODY><H1><CENTER>Login into the Employee Records Center</CENTER></H1><FORM
NAME="LoginForm" ACTION="jsp10employee.jsp" METHOD="post"
ENCODE="application/x-www-form-urlencoded"><P>To login to the Employee Records Center, submit a
validuserid and password to access the Sample database installed under IBM DB2.</P><TABLE><TR
VALIGN=TOP ALIGN=LEFT><TD><I>Userid:</I></TD><TD><INPUT TYPE="text" NAME="USERID"
VALUE="userid">
</TD></TR><TR VALIGN=TOP ALIGN=LEFT><TD><I>Password:</I></TD><TD><INPUT
TYPE="password" NAME="PASSWD" VALUE="password"></TD></TR></TABLE><INPUT TYPE="submit" NAME="Submit"
VALUE="LOGIN"></FORM><HR></BODY></HTML>

JSP code example - view employee records

<HTML><HEAD><TITLE>JSP: Add and View Employee Records</TITLE></HEAD><BODY><H1><CENTER>Add and View
Employee Records</CENTER></H1><%-- Get a connection to the Sample DB2 database using parameters from
Login.jsp --%><tsx:dbconnect id="conn" url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver"><userid><tsx:getProperty name="request" property="USERID"
/></userid><passwd><tsx:getProperty name="request" property="PASSWD"
/></passwd></tsx:dbconnect><FORM NAME="EmployeeForm" ACTION="employeeRepeatResults.jsp"
METHOD="post" ENCODE="application/x-www-form-urlencoded"><h2>Add Employee Record</h2><P>To add a new
employee record to the database, submit the following data:</P><TABLE><TR VALIGN="TOP"
ALIGN="LEFT"><TD><I>Employee Number:
(1 to 6 characters)</I></TD><TD> <INPUT TYPE="text"
NAME="EMPNO"> </TD></TR><TR VALIGN="TOP" ALIGN="LEFT"><TD><I>First name:</I></TD><TD><INPUT
TYPE="text" NAME="FIRSTNME" VALUE="First Name">
</TD></TR><TR VALIGN="TOP"
ALIGN="LEFT"><TD><I>Middle Initial:</I></TD><TD><INPUT TYPE="text" NAME="MIDINIT"
VALUE="M">
</TD></TR><TR VALIGN="TOP" ALIGN="LEFT"><TD><I>Last Name: </I></TD><TD><INPUT
TYPE="text" NAME="LASTNAME" VALUE="Last Name">
</TD></TR><TR VALIGN="TOP" ALIGN="LEFT"><TD><%--
Query the database to get the list of departments --%><tsx:dbquery id="qs" connection="conn" >
select * from DEPARTMENT </tsx:dbquery><I>Department:</I></TD><TD><SELECT NAME="WORKDEPT"
><tsx:repeat> <OPTION VALUE= "<tsx:getProperty name="qs" property="DEPTNO" />" ><tsx:getProperty
name="qs" property="DEPTNAME" /></tsx:repeat></SELECT></TD></TR><TR VALIGN="TOP"
ALIGN="LEFT"><TD><I>Education:</I></TD><TD><SELECT NAME="EDLEVEL"><OPTION VALUE="1"
SELECTED>BS<OPTION VALUE="2">MS<OPTION VALUE="3">PhD</SELECT></TD></TR></TABLE><INPUT TYPE="submit"
NAME="Submit" VALUE="Update"><INPUT TYPE="hidden" NAME="USERID" VALUE="<tsx:getProperty
name="request" property="USERID" />"><INPUT TYPE="hidden" NAME="PASSWD" VALUE="<tsx:getProperty
name="request" property="PASSWD" />"></FORM><HR><FORM NAME="EmployeeForm"
ACTION="jsp10employeeRepeatResults.jsp" METHOD="post"
ENCODE="application/x-www-form-urlencoded"><h2>View Employees by Department</h2><P>To view records
for employees by department, select the departmentand submit the query:</P><TABLE><TR VALIGN="TOP"
ALIGN="LEFT"><TD><I>Department:</I></TD><TD><%-- Use the bean generated by earlier QUERY tag
--%><SELECT NAME="WORKDEPT" ><tsx:repeat> <OPTION VALUE= "<tsx:getProperty name="qs"
property="DEPTNO" />" ><tsx:getProperty name="qs" property="DEPTNAME"
/></tsx:repeat></SELECT></TD></TR></TABLE><INPUT TYPE="submit" NAME="Submit" VALUE="Query"><INPUT
TYPE="hidden" NAME="USERID" VALUE="<tsx:getProperty name="request" property="USERID" />"><INPUT
TYPE="hidden" NAME="PASSWD" VALUE="<tsx:getProperty name="request" property="PASSWD"
/>"></FORM><HR></BODY></HTML>

JSP code example - EmployeeRepeatResults

<HTML><HEAD><TITLE>JSP Employee Results</TITLE></HEAD><H1><CENTER>EMPLOYEE RESULTS</CENTER></H1><BODY><tsx:dbconnect id="conn"
url="jdbc:db2:sample" driver="COM.ibm.db2.jdbc.app.DB2Driver"><userid><tsx:getProperty name="request"
property=request.getParameter("USERID") /></userid><passwd><tsx:getProperty name="request"
property=request.getParameter("PASSWD") /></passwd></tsx:dbconnect><% if ((request.getParameter("Submit")).equals("Update"))
{ %><tsx:dbmodify connection="conn" > INSERT INTO EMPLOYEE (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL) VALUES (
'<tsx:getProperty name="request" property=request.getParameter("EMPNO") />', '<tsx:getProperty name="request"
property=request.getParameter("FIRSTNME") />', '<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />',
'<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />', '<tsx:getProperty name="request"
property=request.getParameter("WORKDEPT") />', <tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)
</tsx:dbmodify> UPDATE SUCCESSFUL

<tsx:dbquery id="qs" connection="conn" > select * from Employee
where WORKDEPT= '<tsx:getProperty name="request" property=request.getParameter("WORKDEPT")
/>'</tsx:dbquery><CENTER><U>EMPLOYEE LIST</U></CENTER>

<HR><TABLE><TR
VALIGN=BOTTOM><TD>EMPLOYEE
<U>NUMBER</U></TD><TD><U>NAME</U></TD><TD><U>DEPARTMENT</U></TD>
<TD><U>EDUCATION</U></TD></TR><tsx:repeat><TR><TD><I><tsx:getProperty name="qs" property="EMPNO"
/></I></TD><TD><I><tsx:getProperty name="qs" property="FIRSTNME" /></I></TD><TD><I><tsx:getProperty name="qs"
property="WORKDEPT" /></I></TD><TD><I><tsx:getProperty name="qs" property="EDLEVEL" /></I></TD></TR></tsx:repeat>
</TABLE><HR>
<% } %><% if ((request.getParameter("Submit")).equals("Query")) { %><tsx:dbquery id="qs2" connection="conn" >
select * from Employee where WORKDEPT= '<tsx:getProperty name="request" property=request.getParameter("WORKDEPT")
/>'</tsx:dbquery><CENTER><U>EMPLOYEE LIST</U></CENTER>

<HR><TABLE><TR><TR
VALIGN=BOTTOM><TD>EMPLOYEE
<U>NUMBER</U></TD><TD><U>NAME</U></TD><TD><U>DEPARTMENT</U></TD><TD><U>EDUCATION</U></TD></TR><tsx:repeat><TR><TD><I><tsx:getProperty
name="qs2" property="EMPNO" /></I></TD><TD><I><tsx:getProperty name="qs2" property="FIRSTNME"
/></I></TD><TD><I><tsx:getProperty name="qs2" property="WORKDEPT" /></I></TD><TD><I><tsx:getProperty name="qs2"
property="EDLEVEL" /></I></TD></TR></tsx:repeat> </TABLE><HR>
<% } %></BODY></HTML>

4.2.3: Incorporating XML
IBM WebSphere Application Server provides XML Document Structure Services, which consist of a document
parser, a document validator, and a document generator for server-side XML processing.

See article 4.1.1.2 for all of the details about XML supportin the product.If you are just becoming familiar with
XML, start with article 0.33, a primer on XML concepts, vocabulary, and uses.

Other related information provides guidance on the following topics:

Structure -- defining and obeying the syntax for an XML tag set●

Content -- determining the mechanism for filling XML tags with data●

Presentation -- determining the mechanism for formatting and displaying XML content●

In addition, some special topics are covered, including DOM objects andmanipulation of Channel Definition
Format (CDF) files as illustrated bythe SiteOutliner example.

When you install IBM WebSphere Application Server, the core XML APIs are automatically added to the
appropriate class path, enabling you to serve static XML documents as soon as the product is installed.

To serve XML documents that are dynamically generated, use the core APIs to develop servlets or Web
applications that generate XML documents (for example, the applications might read the document content
from a database) and then deploy those components on your application server.

4.2.3.2: Specifying XML document structure
The structure of an XML document is governed by syntax rules for its tag set. Those tags are defined formally
in an XML-based grammar, such as a Document Type Definition (DTD). At the time of this publication, DTD
is the most widely-implemented grammar. Therefore, this article discusses options for using DTDs.

Options for XML document structure include:

Do not use a DTD. Not using a DTD enables maximum flexibility in evolving XML document structure, but
this flexibility limits the ability to share the documents among users and applications. An XML document can
be parsed without a DTD. If the parser does not find an inline DTD or a reference to an external DTD, the
parser proceeds using the actual structure of the tags within the document as an implied DTD. The processor
evaluates the document to determine whether it meets the rules for well-formedness.

Use a public DTD. Various industry and other interest groups are developing DTDs for categories of
documents, such as chemical data and archival documents. Many of these DTDs are in the public domain and
are available over the Internet. Using an industry standard DTD maximizes sharing documents among
applications that act on the grammar. If the standard DTD does not accomodate the schema the applications
need, flexibility is limited.

Several industry and interest groups have developed and proposed DTD grammars for the types of documents
they produce and exchange. To make it easier for you to use those grammars, local copies are installed with the
product. Use the grammars as examples in developing your own grammars as well as for creating and validating
XML documents of those types. The library is located atproduct_installation_root\web\xml\grammar\

Develop a DTD. If none of the public DTDs meet an enterprise's needs and enforcing document validity is a
requirement, the XML implementers can develop a DTD. Developing a DTD requires careful analysis of the
information (data) that the documents will contain.

For DTD updates,visit the XML Industry Portal.For details about the DTD specifications and sample DTDs,
refer toIBM's developerWorkssite for education and other DTD resources.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.2.3.3: Providing XML document content
The content of an XML document is the actual data that appears within the document tags. XML implementers
must determine the source and the mechanism for putting the data into the document tags. The options include:

Static content. XML document content is created and stored on the Web server as static files. The XML
document author composes the document to include valid XML tags and data in a manner similar to how
HTML authors compose static HTML files. This approach works well for data that is not expected to change or
that will change infrequently. Examples are journal articles, glossaries, and literature.

Dynamically generated content. XML document content can be dynamically generated from a database and
user input. In this scenario, XML-capable servlets, Java beans, and even inline Java code within a JavaServer
Page (JSP) file can be used to generate the XML document content.

A hybrid of static and dynamically generated content. This scenario involves a prudent combination of static
and dynamically generated content.

You can also use XSL to add to or remove information from existing XML content.For details, see the Related
information.

4.2.3.4: Rendering XML documents
Options for presenting XML documents include:

Present the XML document in an XML-enabled browser. An XML-enabled browser can parse a document,
apply its XSL stylesheet, and present the document to the user. Searching and enabling users to modify an XML
document are other possible functions of XML-enabled browsers.

Present the XML document to a browser that converts XML to HTML. Until XML-enabled browsers are
readily available, presenting XML documents to users will involve converting the XML document to HTML.
That conversion can be handled by conversion-capable browsers. Another option is to use JavaScript or
ActiveX controls embedded within the XML document. Microsoft Internet Explorer Version 5 is an
XML-to-HTML converter. HTML is not the only format to which XML documents can be converted. It's just
the easiest to implement given the commerically available browsers and user agents.

Send an HTML file to the browser. If the users do not have XML-capable browsers, the XML document must
be converted at the server before being transmitted to the browser. The server-side XML application that
handles the conversion could also determine the capability of the browser before converting the document to
HTML, to avoid unnecessary processing if the browser is XML-capable. The XSL processor included with this
product supports such server-side functions.

Using XSL to convert XML documents to other formats

IBM WebSphere Application Server includes the Lotus XSL processor and its open-sourceversion, Xalan, for
formatting and converting XML documents. Processing can be done at the server or at the browser, to HTML or
to other XML-compliant markup languages.For sample code, see the Xalan documentation.

Converting XML documents at the server

One option for presenting an XML document is for the server to convert the XML document to HTML and
return the HTML document to the client. On the server side, this typically requires the creation of a servletto
handle the processing of one data stream (the XML document)with another (the XSL document).The output of
that process is then forwarded back to the browser.

Server-side processing often requires the passing in of parameters through theXSL processor to customize the
output.For an example, see the Xalan documentation.

4.2.3.6: Using DOM to incorporate XML documents
into applications
The Document Object Model (DOM) is an API for representing XML and HTML documentsas objects that can
be accessed by object-oriented programs, such as business logic, for the purposes of creating, navigating,
manipulating, and modifying the documents.

Article 0.33.3 introduces DOM concepts and vocabulary. Article 4.1.1.2 tells youwhere to find the DOM
specification and org.w3c.dom package.

Article 4.2.3.6.1 providesa quick reference so that you can jump right into DOM development, referring to
thepackage and specification as needed.

4.2.3.6.1: Quick reference to DOM object interfaces
This section highlights a few of the object interfaces. Refer to theDOM Specification for details (see article
4.1.1.2).

Node methods

Node methods include:

Method Description

hasChildNodes Returns a boolean to indicate whether a node has children

appendNode Appends a new child node to the end of the list of children for a
parent node

insertBefore Inserts a child node before the existing child node

removeChild Removes the specified child node from the node list and returns
the node

replaceChild Replaces the specified child node with the specified new node and
returns the new node

Document methods

The Document object represents the entire XML document. Document methods include:

Method Description

createElement Creates and returns an Element (tag) of the type specified. If the
document will be validated against a DTD, that DTD must contain
an Element declaration for the created element.

createTextNode Creates a Text node that contains the specified string

createComment Creates a Comment node with the specified content (enclosed
within <!-- and --> tags)

createAttribute Creates an Attribute node of the specified name. Use the
setAttribute method of Element to set the value of the Attribute. If
the document will be validated against a DTD, that DTD must
contain an Attribute declaration for the created attribute.

createProcessingInstruction Creates a Processing Instruction with the specified name and data
(enclosed within <? and ?> tags). A processing instruction is an
instruction to the application (such as an XML document formatter)
that receives the XML document.

Element methods

Element node methods include:

Method Description

getAttribute Returns the value of the specified attribute or empty string

setAttribute Adds a new attribute-value pair to the element

removeAttribute Removes the specified attribute from the element

getElementsByTagName Returns a list of the element descendants that have the specified
tag name

A Text node can be a child of an Element or Attribute node and contains the textual content (character data) for
the parent node. If the content does not include markup, all of the content is placed within a single Text node. If
the content includes markup, that markup is placed in one or more Text nodes that are siblings of the Text node
that contains the non-markup content.

The Text node extends the CharacterData interface, which has methods for setting, getting, replacing, inserting,
and making other modifications to a Text node. In addition to those methods, the Text node adds a method:

Method Description

splitText Splits the Text node at the specified offset. Returns a new Text node, which contains
the original content starting at the offset. The original Text node contains the content
from the beginning to the offset.

4.2.3.7: SiteOutliner sample
The SiteOutliner servlet illustrates how to use the XML Document Structure Services to generate and view a
Channel Definition Format (CDF) file for a target directory on the servlet's Web server. Use Lotus Notes 5 (the
Headlines page), Microsoft Internet Explorer 4 Channel Bar, PointCast, Netscape Navigator 4.06, orother
CDF-capable viewers to view and manipulate the CDF file.

SiteOutliner is part of the WebSphere Samples Gallery. When you open the gallery,follow the links to
SiteOutliner to run it on your local machine.

4.2.4: Accessing data
This section discusses data access programming:the JDBC 2.0 specification,WebSphere-specific
enhancements,best practices, error handling,and tips for specific databases.

4.2.4.2: Obtaining and using database connections
IBM WebSphere Application Server Version 4.0 provides two options for accessing database connections:

Programming directly to the connection pooling model through the JDBC 2.0 Optional Package API●

Use of the IBM data access beans, which also use connection pooling but give you additional ability to manipulate result sets●

WebSphere Application Server versions earlier than 4.0 also supported the connection manager model, which was based on JDBC 1.0. If your Web
applications used the connection manager model, you must migrate these in Version 4.0 to use connection pooling.

IBM WebSphere Application Server also provides data access beans, which offer a rich set of features for working with relational database queries
and result sets.

For a comprehensive treatment of WebSphere connection pooling and data access,be sure to read the IBM whitepaper to be published on the
Webduring the summer of 2001.

Tips for data access programming

If your product installation usesOracle or Sybase for the repository and you try to use DB2 datasourcesfor enterprise beans,the DB2 JDBC provider
might fail to load.To fix the problem, your administrator mustrun the db2profile and usejdbc2 scripts.For details, see the Related information.

For Merant users only:If your bean-managed persistence entity beans are used withSELECT ... FOR UPDATE andan isolation level of
READ_COMMITTED,you might lose updates when multiple transactionsto a single bean collide.You can avoid collision by using anover-qualified
update approach, as follows:

UPDATE Employee SET c1 = new_c1_value, SET c2 = new_c2_value WHERE (primaryKey = key_value AND c1
= old_c1_value AND c2 = old_c2_value)

In this example, old_c1_value and old_c2_valueare the values that were read from the database.new_c1_value and new_c2_valueare the values to be
stored back.

Considerations for DB2/390

Speak with your DB2/390 administrator about setting the RRULOCKparameter to YES.This ensures that SELECT ... FOR UPDATE statements
get an update lock rather than a sharable lock.If your database is using sharable locksand you attempt to commit updates later,the database can
become deadlocked.

http://www.ibm.com/software/webservers/appserv/whitepapers.html
http://www.ibm.com/software/webservers/appserv/whitepapers.html

4.2.4.2.1: Accessing data with the JDBC 2.0 Optional Package APIs
In JDBC 1.0 and the JDBC 2.0 Core API, the DriverManager class is used exclusively for obtaining a connection to a database. The database URL,
user ID, and password are used in the getConnection() call. In the JDBC 2.0 Optional Package API, the DataSource object provides a means for
obtaining connections to a database. The benefit of using datasourcesis that the creation and management of the connection factory is centralized.
Applications do not need to have specific information like the database name, user ID, or password in order to obtain a connection to the database.

The steps for obtaining and using a connection with the JDBC 2.0 Optional Package API differ slightly from those in the JDBC 2.0 Core API
example. Using the extensions, you access a relational database as follows:

Retrieve a DataSource object from the JNDI naming service1.

Obtain a Connection object from the datasource2.

Send SQL queries or updates to the database management system3.

Process the results4.

The connection obtained from the datasource is a pooled connection. This means that the Connection object is obtained from a pool of connections
managed by IBM WebSphere Application Server.The following code fragment shows how to obtain and use a connection with the JDBC 2.0
Optional Package API:

try {// Retrieve a DataSource through the JNDI Naming Service java.util.Properties parms = new
java.util.Properties(); parms.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory"); // Create the Initial Naming Context
javax.naming.Context ctx = new javax.naming.InitialContext(parms); // Lookup through the naming
service to retrieve a DataSource object javax.sql.DataSource ds =
(javax.sql.DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB"); // Obtain a Connection from the
DataSource java.sql.Connection conn = ds.getConnection(); // query the database
java.sql.Statement stmt = conn.createStatement(); java.sql.ResultSet rs =
stmt.executeQuery("SELECT EMPNO, FIRSTNME, LASTNAME FROM SAMPLE"); // process the results while
(rs.next()) { String empno = rs.getString("EMPNO"); String firstnme =
rs.getString("FIRSTNME"); String lastname = rs.getString("LASTNAME"); // work with results
}} catch (java.sql.SQLException sqle) {// handle SQLException} finally { try { if (rs !=
null) rs.close(); } catch (java.sql.SQLException sqle) { // can ignore } try { if
(stmt != null) stmt.close(); } catch (java.sql.SQLException sqle) { // can ignore } try {
if (conn != null) conn.close(); } catch (SQLException sqle) { // can ignore }} // end
finally

In the previous example, the first action is to retrieve a DataSource object from the JNDI namespace. This is done by creating a Properties object of
parameters used to set up an InitialContext object. After a context is obtained, a lookup on the context is performed to find the specific datasource
necessary, in this case, SampleDB.

(In this example, it is assumed the datasource has already been created and bound into JNDI by the WebSphere administrator. For information about
doing thisin application code, see the Related information.)

After a DataSource object is obtained, the application code calls getConnection()on the datasource to get a Connection object. After the connection is
acquired, the querying and processing steps are the same as for theJDBC 2.0 Core API example.

4.2.4.2.1.1: Creating datasources with the WebSphere connection
pooling API
IBM WebSphere Application Serverprovides a public API to enable you to configure a WebSphere datasource in application code.This is necessary
only when the application must create a datasource on demand.Otherwise, the datasource is configured by the administrator in the administrative
console.

The complete API specification can be found in javadoc for the class com.ibm.websphere.advanced.cm.factory.DataSourceFactory. See the Related
information.

To create a datasource on demand in an application, the application must do the following:

Create a Properties object with datasource properties1.

Obtain a datasource from the factory2.

Bind the datasource into JNDI3.

The following code fragment shows how an application would create a datasource and bind it into JNDI:

import com.ibm.websphere.advanced.cm.factory.DataSourceFactory;...try { // Create a properties
file for the DataSource java.util.Properties prop = new java.util.Properties();
prop.put(DataSourceFactory.NAME, "SampleDB"); prop.put(DataSourceFactory.DATASOURCE_CLASS_NAME,
"COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource"); prop.put(DataSourceFactory.DESCRIPTION, "My
sample datasource"); prop.put("databaseName", "sample");// Obtain a DataSource from
the factory DataSource ds = DataSourceFactory.getDataSource(prop);// Bind the DataSource into JNDI
DataSourceFactory.bindDataSource(ds);} catch (ClassNotFoundException cnfe) {// check the class path
for all necessary classes} catch (CMFactoryException cmfe) {// Example of exception: incorrect
properties} catch (NamingException ne) {// Example of exception: datasource by this name may
already exist}

To create a datasource for binding into JNDI, the application must firstcreate a Properties object to hold the DataSource configuration properties.The
only properties required for the datasource from a WebSphere perspective are:

NAME -The name of the datasource. This is used to identify the datasource when it is bound into JNDI.●

DATASOURCE_CLASS_NAME - The complete name of the DataSource class that can be found in the JDBC resource archive file(often
referred to as the JDBC provider package).This DataSource class will be used to create connections to the database. The class specified here
must implement javax.sql.ConnectionPoolDataSource or javax.sql.XADataSource.

●

However, depending on the DataSource class specified in the DATASOURCE_CLASS_NAME property, there may be other vendor-specific
properties required. In this example, the databaseName property is also required,because DB2ConnectionPoolDataSource is being used. For more
information on these vendor-specific properties, see the vendor's documentation for the complete list of properties supported for a datasource.

After a properties object is created, the application can create a new DataSource object by calling getDataSource() on the factory, passing in the
Properties object as a parameter. This creates an object of type DataSource, but it is not yet bound into JNDI. To bind a datasource into JNDI,call
bindDataSource() on the factory.At this point, other applications can share the datasource by retrieving it from JNDI with the name property
specified on creation.

All other APIs specific to connection pooling are not public APIs. Applications that use a WebSphere datasource should followthe JDBC 2.0 Core
and JDBC 2.0 Optional Package APIs.

4.2.4.2.1.2: Tips for using connection pooling
Most best practices have been documented elsewhere in Related information.The following are additional items
that have not been explicitly called out:

Obtain and close connection in the same method.An application should obtain and close its connection in the
method that requires the connection. This keeps the application from holding resources not being used and
leaves more available connections in the pool for other applications. In addition, this practice removes the
temptation to use the same connection in multiple transactions, which, by default, is not allowed. This practice
does not cost the application much in performance,because the Connection object is from a pool of connections,
where the overhead for establishing the connection has already been incurred.Lastly, make sure to declare the
Connection object in the same method as the getConnection() call in a servlet;otherwise, the Connection object
works as if it is a static variable(see "Worst Practices" later in this article for problems with this).

If you opened it, close it.All JDBC resources that have been obtained by an application should be explicitly
closed by that application. The product tries to clean up JDBC resources on a connection after the connection
has been closed. However, this behavior should not be relied upon, especially if the application might be
migrated to another platform in the future.

For servlets, obtain DataSource in the init() method.For performance reasons, it is usually a good idea to put
the JNDI lookup for the datasource into the init() method of the servlet. Because the datasource is simply a
factory for connections that does not typically change,retrieving it in this method ensures that the lookup
happens only once.

Worst practices

The following are some very common problems with applications that should be avoided, because they most
often result in unexpected failures:

Do not close connections in a finalize() method.If an application waits to close a connection or other JDBC
resource until the finalize() method, the connection is not closed until the object that obtained it is
garbage-collected. This leads to problems if the application is not very thorough about closing its JDBC
resources, such as ResultSet objects. Databases can quickly run out of the memory required to store the
information about all of the JDBC resources it currently has open. In addition, the pool can quickly run out of
connections to service other requests.

Do not declare connections as static objects.It is never recommended that connections be declared as static
objects. If a connection is declared as static, the same connection might get used on different threads at the same
time. This causes a great deal of difficulty, within both the product and the database.

In servlets, do not declare Connection objects as instance variables.In a servlet, all variables declared as
instance variables act as if they are class variables. For example, in a servlet with an instance variable

Connection conn = null;

this variable acts as if it were static. In this case, all instances of the servlet use the same Connection object.
This is because a single servlet instance can be used to serve multiple Web requests in different threads.

In CMP beans, do not manage data access.If a Container Managed Persistence (CMP) bean is writtenso that
it manages its own data access, this data access may be part of a global transaction. Generally, if specialized
data access is required,use a BMP session bean.

4.2.4.2.1.3: Handling data access exceptions
For data access, the standard Java exception class to catch is java.sql.SQLException.IBM WebSphere Application Servermonitors for specific SQL
exceptions thrown from the database. Several of these exceptions are mapped to WebSphere-specific exceptions. The product provides
WebSphere-specific exceptions to ease development by not requiring you to know all of the database-specific SQL exceptions that could be thrown
in typical situations. In addition, monitoring SQL exceptions enables the product and application to recover from common problems like
intermittent network or database outages.

ConnectionWaitTimeoutException

This exception (com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException) indicates that the application has waited for the connectionTimeout
(CONN_TIMEOUT) number of seconds and has not been returned a connection. This can occur when the pool is at its maximum size and all of the
connections are in use by other applications for the duration of the wait. In addition, there are no connections currently in use that the application
can share, because either the user ID and password are differentor it is in a different transaction.The following code fragment shows how to use this
exception:

java.sql.Connection conn = null;javax.sql.DataSource ds = null;...try {// Retrieve a DataSource
through the JNDI Naming Service java.util.Properties parms = new java.util.Properties();
setProperty.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory"); // Create the Initial Naming Context
javax.naming.Context ctx = new javax.naming.InitialContext(parms); // Lookup through the
naming service to retrieve a DataSource object javax.sql.DataSource ds =
(javax.sql.DataSource)ctx.lookup("java:comp/env/jdbc/SampleDB"); conn = ds.getConnection();
// work on connection} catch (com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException cw) {// notify the
user that the system could not provide a // connection to the database} catch
(java.sql.SQLException sqle) {// deal with exception}

In all cases in which the ConnectionWaitTimeoutException is caught, there is very little to do in terms of recovery. It usually doesn't make sense to
retry the getConnection() method, because if a longer wait time is required, the connectionTimeout datasource property should be set higher.
Therefore, if this exception is caught by the application, the administrator should review the expected usage of the application and tune the
connection pool and the database accordingly.

StaleConnectionException

This exception (com.ibm.websphere.ce.cm.StaleConnectionException) indicates that the connection currently being held is no longer valid. This
can occur for numerous reasons, including:

The application fails to get a connectionbecause of a problem such as the database not being started.●

A connection is no longer usable because of a database failure. When an application tries to use a connection it previously obtained, the
connection is no longer valid. In this case, all connections currently in use by the application may prompt this exception.

●

The application using the connection has already called close() and then tries to use the connection again.●

The connection has been orphaned, andthe application tries to use the orphaned connection.●

The application tries to use a JDBC resource, such as Statement, obtained on a now-stale connection.●

When application code catches StaleConnectionException, it should take explicit steps to handle the exception. StaleConnectionException extends
SQLException, so it can be thrown from any method that is declared to throw SQLException. The most common occasion for a
StaleConnectionException to be thrown is the first time a connection is used, just after it has been retrieved. Because connections are pooled, a
database failure is not detected until the operation immediately following its retrieval from the pool, which is the first time communication with the
database is attempted. It is only when a failure is detected thatthe connection is marked stale. StaleConnectionException occurs less often if each
method that accesses the database gets a new connection from the pool. Typically, this occurs because all connections currently allocatedto an
application are marked stale; the more connections the application has, the more connections can be stale.

Generally,when a StaleConnectionException is caught, the transaction in which the connection was involvedneeds to be rolled back and a new
transaction begun with a new connection.

For more information and detailed code samples,be sure to read the IBM whitepaper to be published on the Webduring the summer of 2001.

http://www.ibm.com/software/webservers/appserv/whitepapers.html

4.2.4.2.2: Accessing data with the JDBC 2.0 Core API
WebSphere applications can access a relational database directly through a JDBC provider that uses the JDBC 2.0 Core API.You access a relational
database in this manner as follows:

Establish a connection through the DriverManager class1.

Send SQL queries or updates to the database management system2.

Process the results3.

Only a single connection is obtained. This connection does not belong to a pool of connections and is not managed by IBM WebSphere Application
Server.It is the responsibility of the application to manage the use of this connection.

The following code fragment shows a simple example of obtaining and using a connection directly through a JDBC provider:

try {// establish a connection through the DriverManager
Class.forName("COM.ibm.db2.jdbc.app.DB2Driver"); String url = "jdbc:db2:sample"; String username
= "dbuser"; String password = "passwd"; java.sql.Connection conn =
java.sql.DriverManager.getConnection(url, username, password);// query the database
java.sql.Statement stmt = conn.createStatement(); java.sql.ResultSet rs =
stmt.executeQuery("SELECT EMPNO, FIRSTNME, LASTNAME FROM SAMPLE"); // process the results while
(rs.next()) { String empno = rs.getString("EMPNO"); String firstnme =
rs.getString("FIRSTNME"); String lastname = rs.getString("LASTNAME"); // work with results
}} catch (java.sql.SQLException sqle) {// handle the SQLException} finally { try { if(rs !=
null) rs.close(); } catch (SQLException sqle) { // can ignore } try { if(stmt !=
null) stmt.close(); } catch (SQLException sqle) { // can ignore } try { if(conn !=
null) conn.close(); } catch (SQLException sqle) { // can ignore }}

In the previous example, the first action is to establish a connection to the database. This is done by loading and registering the JDBC provider
andthen requesting a connection from DriverManager.DriverManager, a JDBC 1.0 class, is the basic service for managing a set of JDBC providers.It
is necessary to load the driver class before the call to getConnection(), because DriverManager can establish a connection only to a driver that has
registered with it. Loading the driver class also registers it with DriverManager.

After a connection has been obtained, the database is queried by creating a statement and executing a query on that statement. The query results are
put into a ResultSet object.

Lastly, the results are processed by stepping through the result set and pulling the data from each record retrieved.

According to the JDBC 2.0 Core API specification, the DriverManager class has been deprecated. Therefore, any application using this class should
be rewritten to use WebSphere connection pooling, which uses the datasource method described in the JDBC 2.0 Optional Package API to obtain
connections to the database. For more information, see the JDBC 2.0 Core API specification.

4.2.4.2.3: Accessing relational databases with the IBM
data access beans
Java programs that access JDBC-compliant relational databases typically use the classes and methods in the
java.sql package to access data. Instead of using the java.sql package, you can use the classes and methods in
the package com.ibm.db, the IBM data access beans. This gives you additional features for data access beyond
those available in the java.sql package.

The Related information discusses what the data access beans are, their advantages, and how to use them. A
data access bean uses a connection that you provide to it, such as a connection from a connection pool that you
get through a DataSource object.

4.2.4.2.3.1: Example: Servlet using data access beans
The sample servlet uses the data access beans and is based on the sample servlet discussed in Article 4.2.4.2.1.1.
The connection pooling sample servlet uses classes such as Connection, Statement, and ResultSet from the
java.sql package to interact with the database. In contrast, this sample servlet uses the data access beans, instead
of the classes in the java.sql package, to interact with the database. For convenience, call this sample servlet the
DA (for data access beans) and call the sample servlet on which it is based the CP (for connection pooling).

The CP and DA sample servlets benefit from the performance and resource management enhancements made
possible by connection pooling. The programmer coding the DA sample servlet benefits from the additional
features and functions provided by the data access beans.

The DA sample servlet differs slightly from the CP sample servlet. This discussion covers only the changes. See
Article 4.2.4.2.1.1 for the discussion of the CP sample servlet. The DA sample servlet shows the basics of
connection pooling and the data access beans, but keeps other code to a minimum. Therefore, the servlet is not
entirely realistic. You are expected to be familiar with basic servlet and JDBC coding.

The changes
This section describes how the DA sample servlet differs from the CP sample servlet. To view the coding in one
or both of the samples while you read this section, click these links:

DA sample●

CP sample●

Steps 1 through 6 of the CP sample servlet are mostly unchanged in the DA sample servlet. The main changes
to the DA sample servlet are:

New package

The com.ibm.db package (containing the data access beans classes) must be imported. The classes are in
the databeans.jar file, found in the lib directory under the Application Server root install directory. You
will need this jar file in your CLASSPATH in order to compile a servlet using the data access beans.

●

The metaData variable

This variable is declared in the Variables section at the start of the code, outside of all methods. This
allows a single instance to be used by all incoming user requests. The full specification of the variable is
completed in the init() method.

●

The init() method

New code has been appended to the init() method to do a one-time initialization on the metaData object
when the servlet is first loaded. The new code begins by creating the base query object sqlQuery as a
String object. Note the two "?" parameter placeholders. The sqlQuery object specifies the base query
within the metaData object. Finally, the metaData object is provided higher levels of data (metadata), in
addition to the base query, that will help with running the query and working with the results. The code
sample shows:

The addParameter() method notes that when running the query, the parameter idParm is supplied
as a Java Integer datatype, for the convenience of the servlet, but that idParm should be
converted (through the metaData object) to do a query on the SMALLINT relational datatype of
the underlying relational data when running the query.

A similar use of the addParameter() method for the deptParm parameter notes that for the same
underlying SMALLINT relational datatype, the second parameter will exist as a different Java

❍

●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/IBMDataAccessTest.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/ConnPoolTest.java.html

datatype within the servlet - as a String rather than as an Integer. Thus parameters can be Java
datatypes convenient for the Java application and can automatically be converted by the
metaData object to be consistent with the required relational datatype when the query is run.

Note that the "?" parameter placeholders in the sqlQuery object and the addParameter() methods
are related. The first addParameter() attaches idParm to the first "?", and so on. Later, a
setParameter() will use idParm as an argument to replace the first "?" in the sqlQuery object with
an actual value.

The addColumn() method performs a function somewhat similar to the addParameter() method.
For each column of data to be retrieved from the relational table, the addColumn() method maps
a relational datatype to the Java datatype most convenient for use within the Java application.
The mapping is used when reading data out of the result cache and when making changes to the
cache (and then to the underlying relational table).

❍

The addTable() method explicitly specifies the underlying relational table. This information is
needed if changes to the result cache are to be propagated to the underlying relational table.

❍

Step 5

Step 5 has been rewritten to use the data access beans to do the SQL query instead of the classes in the
java.sql package. The query is run using the selectStatement object, which is a SelectStatement data
access bean.

Step 5 is part of the process of responding to the user request. When steps 1 through 4 have run, the
conn Connection object from the connection pool is available for use. The code shows:

The dataAccessConn object (a DatabaseConnection bean) is created to establish the link between
the data access beans and the database connection - the conn object.

1.

The selectStatement object (a SelectStatement bean) is created, pointing to the database
connection through the dataAccessConn object, and pointing to the query through the metaData
object.

2.

The query is "completed" by specifying the parameters using the setParameter() method. The "?"
placeholders in the sqlQuery string are replaced with the parameter values specified.

3.

The query is executed using the execute() method.4.

The result object (a SelectResult bean) is a cache containing the results of the query, created
using the getResult() method.

5.

The data access beans offer a rich set of features for working with the result cache - at this point
the code shows how the first row of the result cache (and the underlying relational table) can be
updated using standard Java coding, without the need for SQL syntax.

6.

The close() method on the result cache breaks the link between the result cache and the
underlying relational table, but the data in the result cache is still available for local access within
the servlet. After the close(), the database connection is unnecessary. Step 6 (which is unchanged
from the CP sample servlet) closes the database connection (in reality, the connection remains
open but is returned to the connection pool for use by another servlet request).

7.

●

Step 7

Step 7 has been entirely rewritten (with respect to the CP sample servlet) to use the query result cache
retrieved in Step 5 to prepare a response to the user. The query result cache is a SelectResult data access
bean.

Although the result cache is no longer linked to the underlying relational table, the cache can still be
accessed for local processing. In this step, the response is prepared and sent back to the user. The code
shows the following:

The nextRow() and previousRow() methods are used to navigate through the result cache.❍

●

Additional navigation methods are available.

The getColumnValue() method is used to retrieve data from the result cache. Because of
properties set earlier in creating the metaData object, the data can be easily cast to formats
convenient for the needs of the servlet.

❍

A possible simplification
If you do not need to updatethe relational table, you can simplify the sample servlet:

At the end of the init() method, you can drop the lines with the addColumn() and addTable() methods,
since the metaData object does not need to know as much if there are no relational table updates.

●

You will also need to drop the lines with the setColumnValue() and updateRow() methods at the end of
step 5, because you are no longer updating the relational table.

●

Finally, you can remove most of the type casts associated with the getColumnValue() methods in step 7.
You will, however, need to change the type cast to (Short) for the "ID" and "DEPT" use of the
getColumnValue() method.

●

4.2.4.2.4: Database access by servlets and JSP files

Servlets using getConnection() to access a data source

When used without parameters, getConnection() assumes the default user ID and password for a data source.
The WebSphere administrative clients do not offer a way to configure a default user ID and password for a data
source to be used by a servlet.

Therefore, servlets using getConnection() to access a data source should specify a user ID and password:

getConnection(userid,password);

4.2.4.4.1: Providing Web clients access to JSP files
Suppose an application contains one or more JSP files -- how does the applicationdeveloper allow a user at a
Web client (browser) to invoke the JSP files? The tablesummarizes the available approaches. Click an approach
for details.

Programming approach How user accesses JSP file
Provide the JSP file URL to users for direct access, or include
an HREFlink to the JSP file on the Web site

Type the JSP URL in a browser, or follow a
link to it

Call JSP file from an HTML form Fill out an HTML form and submit it to the
JSP file for processing

4.2.4.4.1.1: Invoking servlets and JSP files by URLs
Users can invoke a servlet or JSP file by its URL, using a browser to open:

http://your.server.name/application_Web_path/servlet_or_JSP_Web_path

Users must be provided with the URL to use in order to invoke the servlet.See the Related information to learn
how to determine the URL.

Appending /$/foo to the URL allows you to access the servlet URL, butthe URL is then misunderstood by
the runtime environment.This type of URL may create a security exposure.The best practice for securing
servlets is to follow the Java security specifications documented in the Securing applications section.

Note that in order for servlets to be invoked by their class names,the administrator must have manually enabled
the option while configuring theWeb application to which the servlet belongs.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/05.html

4.2.4.4.1.2: Invoking servlets and JSP files within HTML forms
A Web page can be designed so that users can invoke a servlet or JSP file from an HTML form. An HTML form enables a user to enter data on
a Web page (from abrowser) and submit the data to a servlet, or a servlet generated by a JSP file.

The HTML FORM tag has attributes for specifying how to invoke the servlet or JSP file:

FORM attribute Description
METHOD Indicates how user information is to be submitted.

ACTION Indicates the URL used to invoke the servlet or JSP file

If the information entered by the user is to be submitted to a servlet by a GET or POST method, the servlet must override the doGet() method
or doPost() method. For JSP files, the override is notnecessary. The same service method that is called whether the form is submitted using
GET or POST.

Examples

Using GET:

<FORM METHOD="GET" ACTION="/application_Web path/servlet_Web_path"><!-- HTML tags for text entry
areas, buttons, and other prompts go here --></FORM>

Using POST:

<FORM METHOD="POST" ACTION="application_Web_path/servlet_Web_path"><!-- HTML tags for text entry
areas, buttons, and other prompts go here --></FORM>

4.2.4.4.1.2.1: Example: Invoking servlets within HTML
forms
Suppose the application programmer uses an HTML form toprovide users access to a servlet. Assuming the
METHOD attributeon the FORM tag is "GET," the flow is as follows:

The user views the form in a browser. The user providesinformation requested by the form and specifies
to submit theform (usually by clicking a Submit button or other button visibleon the form).

1.

The form encodes the user-supplied information into a URL-encodedquery string. It appends the query
string to the servlet URL andsubmits the entire URL.

2.

The servlet processes the information. The getParameterNames(), getParameter(),
andgetParameterValues() methods of the HttpServletRequest object provide accessto the form parameter
names and values in the client request.The extraction process also decodes the names and values.

3.

Often, the final action of the servlet is to dynamically create an HTMLresponse (based on parameter
input from the form) and pass it back to the userthrough the server. Methods of the HttpServletResponse
object are usedto send the response, which is sent back to the client as a complete HTMLpage.

4.

4.2.4.4.2: Providing Web clients access to servlets
Suppose an application contains one or more servlets -- how doesthe application developer allow a user at a
Web client (browser) toinvoke the servlets? The table summarizes the available approaches. Clickan approach
for details.

Programming approach How user accesses servlet
Provide the servlet URL to users for direct access,or include an
HREF link to the servlet URL on the Web site

Type the servlet URL in a browser, or follow
a link to it

Call servlet from an HTML form Fill out an HTML form and submit it to the
servlet for processing

Call servlet from a JSP file Open a JSP page that invokes the servlet

4.2.4.4.2.2: Invoking servlets within JSP files
Users can invoke servlets from within JavaServer Page (JSP)files. Application developers should consult the
JavaServer Pages (JSP)reference for a complete description of the JSP syntax.

To invoke a JSP file, a user can either:

Use a Web browser to open the JSP file●

Use a Web browser to invoke a servlet that invokes the JSP file●

4.2.5: Using the Bean Scripting Framework
Most Web developers are familiar with using scripting languages to generateuser-cued HTML pages or to
create new browser windows.

The Bean Scripting Framework (BSF) enables developers to usescripting language functions in their Java,
server-side applications. It also extends scripting languages so that existing Java classes and Java beanscan now
be invoked from that language.

With BSF, scripts can now create, manipulate and access values from Java objects and, conversely, Java
programs can now evaluate and accessresults from scripts.

BSF components:

WebSphere Application Server provides the Bean Scripting Framework (BSF),which consists of a BSF
Manager and a BSF Engine, and a scripting engine which is the Rhino version 1.5 environment from Netscape.

JavaScript from Netscape is the only language supported by WebSphere Application Server's implementation
of BSF.

The relationship of the BSF components is illustrated in the following graphic:

Features of BSF:

The BSF Manager is a bean that provides scripting services for the applicationand support services for the
scripting engine to enable it to interact with the JVM.

The BSF Engine is an interface that allows a specific scripting language,in this case Netscape's JavaScript, to
become part of the bean scripting framework.

Visit the BSF project Web sitefor news on the latest updates to BSF functionality.

See article "BSF examples and samples" when you are ready to delve into programming examples.

http://oss.software.ibm.com/developerworks/projects/BSF

4.2.5.1: BSF examples and samples
There are no WebSphere Application Server implementation restrictions on using BSF.Invoke BSF as you would any other Web application, using the
instructions in thearticle Installing application files to administer your application.

To test these code samples, from a Browser window,copy the code samples and paste them into your own file. You can use any file name, but the file
extension must be .jsp. To see the results, the file must be servedfrom a server with a JSP engine, such as WebSphere Application Server.

The following steps and code samples describe how to implement BSF:

Create a JSP file1.

Change the Java code to JavaScript2.

Add the required BSF tag as illustrated in the View 2 sample3.

Add the file to the Web application document root directory4.

Invoke the code.5.

See the file JSP access models for more JSP information.

Create a JSP file that looks like this next example:

<html> <head> <title> Temperature Table using Java >/title> </head> <body> <h1>Temperature
Table using Java</h1> <p>American tourists visiting Canada can use this handy temperature table
which converts from Fahrenheit to Celsius:

 <table BORDER COLS=2 WIDTH="20%" > <tr
BGCOLOR="#FFFF00"> <th>Fahrenheit</th> <th>Celsius</th> </tr> <% for (int i=0; i<101; i+=10) {
out.println ("<tr ALIGN=RIGHT BGCOLOR=\"#CCCCCC\">"); out.println ("<td>" + i + "</td>");
out.println ("<td>" + ((i - 32)*5/9) + "</td>"); out.println ("</tr>"); } %> </table> <p><i>
<%= new java.util.Date () %> </i></p> </body> </html>

1.

Change the Java code in the previous file to JavaScriptso the file now looks like the following example:

<%@ page language="javascript" %>
<html> <head> <title> Temperature Table using JavaScript >/title> </head> <body>
<h1>Temperature Table using JavaScript</h1> <p>American tourists visiting Canada can use this handy
temperature table which converts from Fahrenheit to Celsius:

 <table BORDER COLS=2
WIDTH="20%" > <tr BGCOLOR="#FFFF00"> <th>Fahrenheit</th> <th>Celsius</th> </tr> <% for (var
i=0; i<101; i+=10) { out.println ("<tr ALIGN=RIGHT BGCOLOR=\"#CCCCCC\">"); out.println
("<td>" + i + "</td>"); out.println ("<td>" + Math.round((i - 32)*5/9) + "</td>");
out.println ("</tr>"); } %> </table> <p><i> <%= new java.util.Date () %> </i></p> </body>
</html>

2.

The only BSF-specific tag that is required in your file is
<%@ page language="javascript" %>
This tag identifies the language to BSF. View 2 illustrates where thistag is located in the file.

3.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0604.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060302.html

4.3: Developing enterprise beans
Enterprise applications are applications that typically use enterprise beans. To develop enterprise applications,
you must:

Develop any session or entity beans your application will use1.

Create the deployment descriptor and the EJB JAR file.2.

Deploy the enterprise beans.3.

Enterprise applications support both transactions and security.

Writing Enterprise Beans is a programming guide for developing, packaging, anddeploying enterprise beans in
IBM WebSphere Application Server. It discussesboth the Advanced Edition and Enterprise Edition of the
product.

Format
PDF

HTML

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/pdf/atswpg00.pdf

4.3.4: Developing enterprise beans for use with the
Connector Architecture (J2C)
It is assumed that you know how to create enterprise beans. This topic contains additional hints and tips which
will help prepare your beans for successful deployment.

For information on the concepts behind EJB programming in WebSphere, see the following sources:

Writing Enterprise Beans in WebSphere, especially the topics An architectural overview of the EJB
programming environment and An introduction to enterprise beans.

●

The VisualAge for Java help topics under Concepts > EJB Development Environment.●

Developing enterprise beans

The Connector Architecture (technology preview) runtime is tuned to support the EAB Session Beans that are
produced by VisualAge for Java version 3.5.3 and later. You use the Enterprise Access Builder (EAB) feature
of VisualAge for Java to create Session Beans that interact with non-relational backend systems such as CICS
andIMS. VisualAge for Java also automatically generates significant parts of the enterprise bean code,
andcontains integrated tools for packaging and testing enterprise beans. For more information on using
VisualAge for Java to develop enterprise beans, refer to the appropriate topics under the VisualAge for Java
help topic Tasks > Developing EJB components.

Although use of VisualAge for Java is stronglyrecommended, it is not compulsory. For more information on
developing enterprise beans without using VisualAge for Java, see Tools for developing and deploying
enterprise beans in the EJB server (AE) environment, especially the subtopic Developing and deploying
enterprise beans with EJB server (AE) tools.

Exporting enterprise beans from VisualAge for Java

To export your enterprise bean package from VisualAge for Java as a JAR file, complete the following steps:

In the Workbench, click the EJB tab. The EJB page appears.1.

In the Enterprise Beans pane, select your EJB Group or an individual bean.2.

From the pop-up menu for your EJB Group or bean, select Export > EJB JAR.... The Export to an EJB
JAR File wizard opens.

3.

Type the name and full path for your exported .jar file in the JAR file field.4.

In the section What do you want to include in the JAR file?, complete the following steps:

Confirm that the checkboxes are enabled for beans and .class.a.

Confirm that the checkbox is cleared for .java and .resource.

 The reasons for not exporting .java and .resource files are that the.resource files are usually
not necessary, and if you export the .java files then the WebSphere deployment step will attempt
to re-compile these files and you will need additional .jar files on your classpath for the EAB
runtime and resource adapter classes.

b.

For .class, complete the following steps.

 To make your exported .jar file much smaller and quicker to process, you should only export
those classes that are required to support your bean. This includes your bean, home, and remote
interface, plus any utility or helper classes that might be contained in another project. The easiest
way to get all of these utility and helper classes is to use Select referenced types and resources
to pre-select all of the referenced classes that your EJB uses, then to deselect the projects that are

c.

5.

not required in the WebSphere environment.

Click Select referenced types and resources.i.

Click the .class Details button.ii.

Clear the checkboxes for the following Projects:

Connector CICS Beta■

IBM Common Connector Framework■

IBM Common Connector Framework 2■

Connector Architecture (J2C)■

IBM Enterprise Access Builder Library■

IBM Java Record Library■

Java Authentication and Authorization■

iii.

Click OK.iv.

Click Finish.6.

Your exported EJB jar file is now ready for deployment in WebSphere.

0.42: Introducing the Connector Architecture (J2C)●

6.6.42: Administering J2C related administrative objects (overview)●

6.6.42.6: Installing the Connector Architecture (J2C)●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060642.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0042.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060642.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06064206.html

About this book
This document focuses on the development of enterprise beans written to the Sun Microsystems Enterprise
JavaBeans(TM) specification in the WebSphere(TM) Application Server programming environment. It also
discusses development of EJB clients that can access enterprise beans.

Who should read this book

This document is written for developers and system architects who want an introduction to programming
enterprise beans and EJB clients in WebSphere Application Server. It is assumed that programmers are familiar
with the concepts of object-oriented programming, distributed programming, and Web-based programming.
Knowledge of the Sun Microsystems Java(TM) programming language is also assumed.

Document organization

This document is organized as follows:

An architectural overview of the EJB programming environment provides a high-level introduction to
the EJB server environment in WebSphere Application Server.

●

An introduction to enterprise beans explains the main concepts associated with enterprise beans.●

Tools for developing and deploying enterprise beans explains how to set up and use the tools used in
developing and deploying enterprise beans.

●

Developing enterprise beans explains how to develop entity beans with container-managed persistence
(CMP) and session beans. It also provides information on how to package enterprise beans for later
deployment.

●

Enabling transactions and security in enterprise beans explains how to enable transactions in enterprise
beans by using the appropriate deployment descriptor attributes.

●

Developing EJB clients explains the basic code required by an EJB client to use an enterprise bean. This
chapter covers generic issues relevant to enterprise beans, Java applications, and Java servlets that use
enterprise beans.

●

Developing servlets that use enterprise beans discusses the basic code required in a servlet that accesses
an enterprise bean.

●

More-advanced programming concepts for enterprise beans explains how to develop a simple entity
bean with bean-managed persistence and discusses the basic code required of an enterprise bean that
manages its own transactions.

●

Appendix A, Changes for version 1.1 of the EJB specification describes features that are new or have
changed in version 1.1 of the EJB specification and discusses migration issues for enterprise beans
written to version 1.0 of the EJB specification.

●

Appendix B, Example code provided with WebSphere Application Server describes the major example
used throughout this book and the additional examples that are delivered with the various editions of
WebSphere Application Server.

●

Appendix C, Extensions to the EJB Specification describes the extensions to the EJB Specification that
are specific to WebSphere Application Server. Use of these extensions is supported in VisualAge for
Java only.

●

Related information

For further information on the topics discussed in this manual, see the following documents:

Getting Started with WebSphere Application Server●

Building Business Solutions with WebSphere●

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information. If you have
any comments about this book, send your comments by e-mail to wasdoc@us.ibm.com. Be sure to include the
name of the book, the document number of the book, the edition and version of WebSphere Application Server,
and, if applicable, the specific location of the information you are commenting on (for example, a page number
or table number).

An introduction to enterprise beans
This chapter looks at the characteristics and purpose of enterprise beans. It describes the two basic types of
enterprise beans and their life cycles, and it provides an example of how enterprise beans can be combined to
create distributed, three-tiered applications.

Bean basics

An enterprise bean is a Java component that can be combined with other enterprise beans and other Java
components to create a distributed, three-tiered application. There are two types of enterprise beans:

An entity bean encapsulates permanent data, which is stored in a data source such as a database or a file
system, and associated methods to manipulate that data. In most cases, an entity bean must be accessed
in some transactional manner. Instances of an entity bean are unique and they can be accessed by
multiple users.

For example, the information about a bank account can be encapsulated in an entity bean. An account
entity bean might contain an account ID, an account type (checking or savings), and a balance variable
and methods to manipulate these variables.

●

A session bean encapsulates ephemeral (nonpermanent) data associated with a particular EJB client.
Unlike the data in an entity bean, the data in a session bean is not stored in a permanent data source, and
no harm is caused if this data is lost. However, a session bean can update data in an underlying database,
usually by accessing an entity bean. A session bean can also participate in a transaction.

When created, instances of a session bean are identical, though some session beans can store
semipermanent data that makes them unique at certain points in their life cycle. A session bean is always
associated with a single client; attempts to make concurrent calls result in an exception being thrown.

For example, the task associated with transferring funds between two bank accounts can be encapsulated
in a session bean. Such a transfer session bean can find two instances of an account entity bean (by using
the account IDs), and then subtract a specified amount from one account and add the same amount to the
other account.

●

Entity beans

This section discusses the basics of entity beans.

Basic components of an entity bean

Every entity bean must have the following components, which are illustrated in Figure 3:

Bean class--This class encapsulates the data for the entity bean and contains the developer-implemented
business methods that access the data. It also contains the methods used by the container to manage the
life cycle of an entity bean instance. EJB clients (whether they are other enterprise beans or user
components such as servlets) never access objects of this class directly; instead, they use the
container-generated classes associated with the home and remote interfaces to manipulate the entity
bean instance.

●

Home interface--This interface defines the methods used by the client to create, find, and remove
instances of the entity bean. This interface is implemented by the container during deployment in a class
known generically as the EJB home class; instances are referred to as EJB home objects.

●

Remote interface--Once the client has used the home interface to gain access to an entity bean, it uses
this interface to invoke indirectly the business methods implemented in the bean class. This interface is

●

implemented by the container during deployment in a class known generically as the EJB object class;
instances are referred to as EJB objects.

Primary key -- One or more variables that uniquely identify a specific entity bean instance. A primary
key that consists of a single variable of a primitive Java data type can be specified at deployment. A
primary key class is used to encapsulate primary keys that consist of multiple variables or more complex
Java data types. The primary key class also contains methods to create primary key objects and
manipulate those objects.

●

Figure 3. The components of an entity bean

Data persistence

Entity beans encapsulate and manipulate persistent (or permanent) business data. For example, at a bank, entity
beans can be used to model customer profiles, checking and savings accounts, car loans, mortgages, and
customer transaction histories.

To ensure that this important data is not lost, the entity bean stores its data in a data source such as a database.
When the data in an enterprise bean instance is changed, the data in the data source is synchronized with the
bean data. Of course, this synchronization takes place within the context of the appropriate type of transaction,
so that if a router goes down or a server fails, permanent changes are not lost. When you design an entity bean,
you must decide whether you want the enterprise bean to handle this data synchronization or whether you want
the container to handle it. An enterprise bean that handles its own data synchronization is said to implement
bean-managed persistence (BMP), while an enterprise bean whose data synchronization is handled by the
container is said to implement container-managed persistence (CMP).

Unless you have a good reason for implementing BMP, it is recommended that you design your entity beans to

use CMP. The code for an enterprise bean with CMP is easier to write and does not depend on any particular
data storage product, making it more portable between EJB servers. However, you must use entity beans with
BMP if you want to use a data source that is not supported by the EJB server.

Session beans

This section discusses the basics of session beans.

Basic components of a session bean

Every session bean must have the following components, which are illustrated in Figure 4:

Bean class--This class encapsulates the data associated with the session bean and contains the
developer-implemented business methods that access this data. It also contains the methods used by the
container to manage the life cycle of an session bean instance. EJB clients (whether they are other
enterprise beans or user applications) never access objects of this class directly; instead, they use the
container-generated classes associated with the home and remote interfaces to manipulate the session
bean.

●

Home interface--This interface defines the methods used by the client to create and remove instances of
the session bean. This interface is implemented by the container during deployment in a class known
generically as the EJB home class; instances are referred to as EJB home object.

●

Remote interface--After the client has used the home interface to gain access to an session bean, it uses
this interface to invoke indirectly the business methods implemented in the bean class. This interface is
implemented by the container during deployment in a class known generically as the EJB object class;
instances are referred to as EJB objects.

●

Unlike an entity bean, a session bean does not have a primary key class. A session bean does not require a
primary key class because you do not need to search for specific instances of session beans.

Figure 4. The components of a session bean

Stateless versus stateful session beans

Session beans encapsulate data and methods associated with a user session, task, or ephemeral object. By
definition, the data in a session bean instance is ephemeral; if it is lost, no real harm is done. For example, at a
bank, session beans can represent a funds transfer, the creation of a customer profile or new account, and a
withdrawal or deposit. If information about a fund transfer is already typed (but not yet committed), and a
server fails, the balances of the bank accounts remains the same. Only the transfer data is lost, which can always
be retyped.

The manner in which a session bean is designed determines whether its data is shorter lived or longer lived:

If a session bean needs to maintain specific data across methods, it is referred to as a stateful session
bean. When a session bean maintains data across methods, it is said to have a conversational state. A
Web-based shopping cart is a classic use of a stateful session bean. As the shopping cart user adds items
to and subtracts items from the shopping cart, the underlying session bean instance must maintain a
record of the contents of the cart. After a particular EJB client begins using an instance of a stateful
session bean, the client must continue to use that instance as long as the specific state of that instance is
required. If the session bean instance is lost before the contents of the shopping cart are committed to an
order, the shopper must load a new shopping cart.

●

If a session bean does not need to maintain specific data across methods, it is referred to as a stateless
session bean. The example Transfer session bean developed in Developing session beans provides an
example of a stateless session bean. For stateless session beans, a client can use any instance to invoke
any of the session bean's methods because all instances are the same.

●

Creating an EJB module

The last step in the development of an enterprise bean is the creation of an EJB module. An EJB module
consists of the following:

One or more deployable enterprise beans.●

A deployment descriptor, stored in an Extensible Markup Language (XML) file. This file contains
information about the structure and external dependencies of the beans in the module, and application
assembly information describing how the beans are to be used in an application.

●

The EJB module can be created by using the tools within an integrated development environment (IDE) like
IBM's VisualAge for Java Enterprise Edition or by using the tools contained in WebSphere. For more
information, see Tools for developing and deploying enterprise beans.

The EJB module

The EJB module is used to assemble enterprise beans into a single deployable unit; this file uses the standard
Java archive file format. The EJB module can contain individual enterprise beans or multiple enterprise beans.
For more information, see Creating an EJB module and deployment descriptor.

The deployment descriptor

The EJB module contains one or more deployable enterprise beans and one deployment descriptor. The
deployment descriptor contains attribute and environment settings for each bean in the module, and it defines
how the container invokes functionality for all beans in the module. The deployment descriptor attributes can be
set for the entire enterprise bean or for the individual methods in the bean. The container uses the definition of
the bean-level attribute unless a method-level attribute is defined, in which case the latter is used. The
deployment descriptor contains the following information about entity and session beans. These attributes can
be set on the bean only; they cannot be set on a specific method of the bean.

The bean's name, class, home interfaces, remote interfaces, and bean type (entity or session).●

Primary key class attribute--Identifies the primary key class for the bean. For more information, see
Writing the primary key class (entity with CMP) or Writing or selecting the primary key class (entity
with BMP).

●

Persistence management. Specifies whether persistence management is performed by the enterprise
bean or by the container.

●

Container-managed fields attribute--Lists those persistent variables in the bean class that the container
must synchronize with fields in a corresponding data source to ensure that this data is persistent and
consistent. For more information, see Defining variables.

●

Reentrant attribute--Specifies whether an enterprise bean can invoke methods on itself or call another
bean that invokes a method on the calling bean. Only entity beans can be reentrant. For more
information, see Using threads and reentrancy in enterprise beans.

●

State management attribute--Defines the conversational state of the session bean. This attribute must be
set to either STATEFUL or STATELESS. For more information on the meaning of these conversational
states, see Stateless versus stateful session beans.

●

Timeout attribute--Defines the idle timeout value in seconds associated with this session bean. (This
attribute is an extension to the standard deployment descriptor.)

●

References to external resources, such as resource connection factories, to the homes of other enterprise
beans, and to security roles.

●

The deployment descriptor contains the following application assembly information:

A display name and icons for identifying the module.●

The location of class files needed for a client program to access the beans in the module.●

Security roles-- Define a logical grouping of principals. Access to operations (such as EJB methods) is
controlled by granting access to a role.

●

Method permissions--Define a mapping between one or more security roles and one or more methods
that a member of the role can invoke. This value is set per method.

●

Transaction attributes--Define the transactional manner in which the container invokes a method for
enterprise beans that require container-managed transaction demarcation. This value is set per method.
The values for this attribute are described in Enabling transactions and security in enterprise beans.

●

Transaction isolation level attribute--Defines the degree to which transactions are isolated from each
other by the container. This value is set per method. The values for this attribute are described in
Enabling transactions and security in enterprise beans. (This attribute is an extension to the standard
deployment descriptor.)

●

RunAsMode and RunAsIdentity attributes--The RunAsMode attribute defines the identity used to invoke
the method. If a specific identity is required, the RunAsIdentity attribute is used to specify that identity.
This value is set per bean. The values for the RunAsMode attribute are described in Enabling
transactions and security in enterprise beans. (This attribute is an extension to the standard deployment
descriptor.)

●

The following binding attribute is stored in the repository (it is not part of the deployment descriptor):

JNDI home name attribute--Defines the Java Naming and Directory Interface (JNDI) home name that is
used to locate instances of an EJB home object. This value is set per bean. The values for this repository
attribute are described in Creating and getting a reference to a bean's EJB object.

●

Deploying an EJB module

When you deploy an EJB module, the deployment tool creates or incorporates the following elements:

The container-implemented EJBObject and EJBHome classes (hereafter referred to as the EJB object
and EJB home classes) from the enterprise bean's home and remote interfaces (and the persistor and
finder classes for entity beans with CMP).

●

The stub and skeleton files required for remote method invocation (RMI).●

Figure 5 shows a simplified version of a deployed entity bean.

Figure 5. The major components of a deployed entity bean

You can deploy an EJB module with a variety of different tools. For more information, see Tools for developing
and deploying enterprise beans.

Developing EJB applications

To create EJB applications, create the enterprise beans and EJB clients that encapsulate your business data and
functionality and then combine them appropriately. Figure 6 provides a conceptual illustration of how EJB
applications are created by combining one or more session beans, one or more entity beans, or both. Although
individual entity beans and session beans can be used directly in an EJB client, session beans are designed to be
associated with clients and entity beans are designed to store persistent data, so most EJB applications contain
session beans that, in turn, access entity beans.

Figure 6. Conceptual view of EJB applications

This section provides an example of the ways in which enterprise beans can be combined to create EJB
applications.

An example: enterprise beans for a bank

If you develop EJB applications for the banking industry, you can develop the following entity beans to
encapsulate your business data and associated methods:

Account bean--An entity bean that contains information about customer checking and savings accounts.●

CarLoan bean--An entity bean that contains information about an automobile loan.●

Customer bean--An entity bean that contains information about a customer, including information on
accounts held and loans taken out by the customer.

●

CustomerHistory bean--An entity bean that contains a record of customer transactions for specified
accounts.

●

Mortgage bean--An entity bean that contains information about a home or commercial mortgage.●

An EJB client can directly access entity beans or session beans; however, the EJB Specification suggests that
EJB clients use session beans to in turn access entity beans, especially in more complex applications. Therefore,
as an EJB developer for the banking industry, you can create the following session beans to represent client
tasks:

LoanApprover bean--A session bean that allows a loan to be approved by using instances of the
CarLoan bean, the Mortgage bean, or both.

●

CarLoanCreator bean--A session bean that creates a new instance of a CarLoan bean.●

MortgageCreator bean--A session bean that creates a new instance of a Mortgage bean.●

Deposit bean--A session bean that credits a specified amount to an existing instance of an Account bean.●

StatementGenerator bean--A session bean that generates a statement summarizing the activities
associated with a customer's accounts by using the appropriate instances of the Customer and
CustomerHistory entity beans.

●

Payment bean--A session bean that credits a payment to a customer's loan by using instances of the
CarLoan bean, the Mortgage bean, or both.

●

NewAccount bean--A session bean that creates a new instance of an Account bean.●

NewCustomer bean--A session bean that creates a new instance of a Customer bean.●

LoanReviewer bean--A session bean that accesses information about a customer's outstanding loans
(instances of the CarLoan bean, the Mortgage bean, or both).

●

Transfer bean--A session bean that transfers a specified amount between two existing instances of an
Account bean.

●

Withdraw bean--A session bean that debits a specified amount from an existing instance of an Account
bean.

●

This example is simplified by necessity. Nevertheless, by using this set of enterprise beans, you can create a
variety of EJB applications for different types of users by combining the appropriate beans within that
application. One or more EJB clients can then be built to access the application.

Using the banking beans to develop EJB banking applications

When using beans built to the Sun Microsystems JavaBeans(TM) Specification (as opposed to the EJB
Specification), you combine predefined components such as buttons and text fields to create GUI applications.
When using enterprise beans, you combine predefined components such as the banking beans to create
three-tiered applications.

For example, you can use the banking enterprise beans to create the following EJB applications:

Home Banking application--An Internet application that allows a customer to transfer funds between
accounts (with the Transfer bean), to make payments on a loan by using funds in an existing account
(with the Payment bean), to apply for a car loan or home mortgage (with the CarLoanCreator bean or the
MortgageCreator bean).

●

Teller application--An intranet application that allows a teller to create new customer accounts (with the
NewCustomer bean and the NewAccount bean), transfer funds between accounts (with the Transfer
bean), and record customer deposits and withdrawals (with the Withdraw bean and the Deposit bean).

●

Loan Officer application--An intranet application that allows a loan officer to create and approve car
loans and home mortgages (with the CarLoanCreator, MortgageCreator, LoanReviewer, and
LoanApprover beans).

●

Statement Generator application--A batch application that prints monthly customer statements related to
account activity (with the StatementGenerator bean).

●

These examples represent only a subset of the possible EJB applications that can be created with the banking
beans.

Life cycles of enterprise bean instances

After an enterprise bean is deployed into a container, clients can create and use instances of that bean as
required. Within the container, instances of an enterprise bean go through a defined life cycle. The events in an
enterprise bean's life cycle are derived from actions initiated by either the EJB client or the container in the EJB
server. You must understand this life cycle because for some enterprise beans, you must write some of the code
to handle the different events in the enterprise bean's life cycle.

The methods mentioned in this section are discussed in greater detail in Developing enterprise beans.

Session bean life cycle

This section describes the life cycle of a session bean instance. Differences between stateful and stateless
session beans are noted.

Creation state

A session bean's life cycle begins when a client invokes a create method defined in the bean's home interface. In
response to this method invocation, the container does the following:

Creates a new memory object for the session bean instance.1.

Invokes the session bean's setSessionContext method. (This method passes the session bean instance a
reference to a session context interface that can be used by the instance to obtain container services and
get information about the caller of a client-invoked method.)

2.

Invokes the session bean's ejbCreate method corresponding to the create method called by the EJB
client.

3.

Ready state

After a session bean instance is created, it moves to the ready state of its life cycle. In this state, EJB clients can
invoke the bean's business methods defined in the remote interface. The actions of the container at this state are
determined by whether a method is invoked transactionally or nontransactionally:

Transactional method invocations--When a client invokes a transactional business method, the session
bean instance is associated with a transaction. After a bean instance is associated with a transaction, it
remains associated until that transaction completes. (Furthermore, an error results if an EJB client
attempts to invoke another method on the same bean instance if invoking that method causes the
container to associate the bean instance with another transaction or with no transaction.)

The container then invokes the following methods:

The afterBegin method, if that method is implemented by the bean class.1.

The business method in the bean class that corresponds to the business method defined in the
bean's remote interface and called by the EJB client.

2.

The bean instance's beforeCompletion method, if that method is implemented by the bean class
and if a commit is requested prior to the container's attempt to commit the transaction.

3.

The transaction service then attempts to commit the transaction, resulting either in a commit or a roll
back. When the transaction completes, the container invokes the bean's afterCompletion method, passing
the completion status of the transaction (either commit or rollback).

If a rollback occurs, a stateful session bean can roll back its conversational state to the values contained
in the bean instance prior to beginning the transaction. Stateless session beans do not maintain a
conversational state, so they do not need to be concerned about rollbacks.

●

Nontransactional method invocations--When a client invokes a nontransactional business method, the
container simply invokes the corresponding method in the bean class.

●

Pooled state

The container has a sophisticated algorithm for managing which enterprise bean instances are retained in
memory. When a container determines that a stateful session bean instance is no longer required in memory, it
invokes the bean instance's ejbPassivate method and moves the bean instance into a reserve pool. A stateful
session bean instance cannot be passivated when it is associated with a transaction.

If a client invokes a method on a passivated instance of a stateful session bean, the container activates the
instance by restoring the instance's state and then invoking the bean instance's ejbActivate method. When this
method returns, the bean instance is again in the ready state.

Because every stateless session bean instance of a particular type is the same as every other instance of that

type, stateless session bean instances are not passivated or activated. These instances exist in a ready state at all
times until their removal.

Removal state

A session bean's life cycle ends when an EJB client or the container invokes a remove method defined in the
bean's home interface and remote interface. In response to this method invocation, the container calls the bean
instance's ejbRemove method.

If you attempt to remove a bean instance while it is associated with a transaction, the
javax.ejb.RemoveException is thrown. After a bean instance is removed, any attempt to invoke a method on
that instance causes the java.rmi.NoSuchObjectException to be thrown.

A container can implicitly call a remove method on an instance after the lifetime of the EJB object has expired.
The lifetime of a session EJB object is set in the deployment descriptor with the timeout attribute.

For more information on the remove methods, see Removing a bean's EJB object.

Entity bean life cycle

This section describes the life cycle of entity bean instances. Differences between entity beans with CMP and
BMP are noted.

Creation State

An entity bean instance's life cycle begins when the container creates that instance. After creating a new entity
bean instance, the container invokes the instance's setEntityContext method. This method passes the bean
instance a reference to an entity context interface that can be used by the instance to obtain container services
and get information about the caller of a client-invoked method.

Pooled State

After an entity bean instance is created, it is placed in a pool of available instances of the specified entity bean
class. While the instance is in this pool, it is not associated with a specific EJB object. Every instance of the
same enterprise bean class in this pool is identical. While an instance is in this pooled state, the container can
use it to invoke any of the bean's finder methods.

Ready State

When a client needs to work with a specific entity bean instance, the container picks an instance from the pool
and associates it with the EJB object initialized by the client. An entity bean instance is moved from the pooled
to the ready state if there are no available instances in the ready state.

There are two events that cause an entity bean instance to be moved from the pooled state to the ready state:

When a client invokes the create method in the bean's home interface to create a new and unique entity
of the entity bean class (and a new record in the data source). As a result of this method invocation, the
container calls the bean instance's ejbCreate and ejbPostCreate methods, and the new EJB object is
associated with the bean instance.

●

When a client invokes a finder method to manipulate an existing instance of the entity bean class
(associated with an existing record in the data source). In this case, the container calls the bean instance's
ejbActivate method to associate the bean instance with the existing EJB object.

●

When an entity bean instance is in the ready state, the container can invoke the instance's ejbLoad and ejbStore

methods to synchronize the data in the instance with the corresponding data in the data source. In addition, the
client can invoke the bean instance's business methods when the instance is in this state. All interactions
required to handle an entity bean instance's business methods in the appropriate transactional (or
nontransactional) manner are handled by the container.

When a container determines that an entity bean instance in the ready state is no longer required, it moves the
instance to the pooled state. This transition to the pooled state results from either of the following events:

When the container invokes the ejbPassivate method.●

When the EJB client invokes a remove method on the EJB object or on the EJB home object. When one
of these methods is called, the underlying entity is removed permanently from the data source.

●

Removal State

An entity bean instance's life cycle ends when the container invokes the unsetEntityContext method on an entity
bean instance in the pooled state. Do not confuse the removal of an entity bean instance with the removal of the
underlying entity whose data is stored in the data source. The former simply removes an uninitialized object; the
latter removes data from the data source.

For more information on the remove methods, see Removing a bean's EJB object.

An architectural overview of the EJB programming
environment
The World Wide Web (the Web) has transformed the way in which businesses work with their customers. At
first, it was good enough just to have a Web home page. Then, businesses began to deploy active Web sites that
allowed customers to order products and services. Today, businesses not only need to use the Web in all of
these ways, they need to integrate their Web-based systems with their other business systems. The IBM(R)

WebSphere Application Server, and specifically the support for enterprise beans, provides the model and the
tools to accomplish this integration.

Components of the EJB environment

IBM's implementation of the Sun Microsystems Enterprise JavaBeans (EJB) Specification enables users of the
WebSphere Application Server to integrate their Web-based systems with their other business systems. A major
part of this implementation is the WebSphere EJB server and its associated components, which are illustrated in
Figure 1.

Figure 1. The components of the EJB environment

The WebSphere EJB server environment contains the following components, which are discussed in more detail
in the specified sections:

EJB server--A WebSphere EJB server contains and runs one or more enterprise beans, which
encapsulate the business logic and data used and shared by EJB clients. The enterprise beans installed in
an EJB server do not communicate directly with the server; instead, an EJB container provides an
interface between the enterprise beans and the EJB server, providing many low-level services such as
threading, support for transactions, and management of data storage and retrieval. For more information,

●

see The EJB server.

Data source--There are two types of enterprise beans: session beans, which encapsulate short-lived,
client-specific tasks and objects, and entity beans, which encapsulate permanent or persistent data. The
EJB server stores and retrieves this persistent data in a data source, which can be a database, another
application, or even a file. For more information, see The data source.

●

EJB clients--There are two general types of EJB clients:

HTTP-based clients that interact with the EJB server by using either Java servlets or JavaServer
Pages(TM) (JSP) by way of the Hypertext Transfer Protocol (HTTP).

❍

Java applications that interact directly with the EJB server by using Java remote method
invocation over the Internet Inter-ORB Protocol (RMI/IIOP).

❍

For more information, see The EJB clients.

●

The administration interface--The administrative interface allows you to manage the EJB server
environment. For more information, see The administration interface.

●

The EJB server

The EJB server is the application server tier of WebSphere Application Server's three-tier architecture. The EJB
server has three components: the EJB server runtime, the EJB containers, and the enterprise beans. EJB
containers insulate the enterprise beans from the underlying EJB server and provide a standard application
programming interface (API) between the beans and the container. The EJB Specification defines this API.
Together, the EJB server and container components provide or give access to the following services for the
enterprise beans that are deployed into it:

A tool that deploys enterprise beans. When a bean is deployed, the deployment tool creates several
classes that implement the interfaces that make up the predeployed bean. In addition, the deployment
tool generates Java ORB, stub, and skeleton classes that enable remote method invocation. For entity
beans, the tool also generates persistor and finder classes to handle interaction between the bean and the
data source that stores the bean's persistent data. Before an enterprise bean can be deployed, the
developer must create an EJB module and associated deployment descriptor. The deployment descriptor
provides information about each enterprise bean in the module and instructions for the container on how
to handle the beans. For more information on deployment, see Deploying an EJB module.

●

A security service that handles authentication and authorization for principals that need to access
resources in an EJB server environment. For more information, see The security service.

●

A workload management service that ensures that resources are used efficiently. For more information,
see The workload management service.

●

A persistence service that handles interaction between an entity bean and its data source to ensure that
persistent data is properly managed. For more information, see The persistence service.

●

A naming service that exports a bean's name, as defined in the deployment descriptor, into the name
space. The EJB server uses the Java Naming and Directory Interface(TM) (JNDI) to implement a naming
service. For more information, see The naming service.

●

A transaction service that implements the transactional attributes in a bean's deployment descriptor. For
more information, see The transaction service.

●

The security service

When enterprise computing was handled solely by a few powerful mainframes located at a centralized site,
ensuring that only authorized users obtained access to computing services and information was a fairly

straightforward task. In distributed computing systems where users, application servers, and resource managers
can be spread out across the world, securing computing resources has become a much more complicated task.
Nevertheless, the underlying issues are basically the same.

Authentication and authorization

A good security service provides two main functions: authentication and authorization.

Authentication takes place when a principal (a user or a computer process) initially attempts to gain access to a
computing resource. At that point, the security service challenges the principal to prove that the principal is who
it claims to be. Human users typically prove who they are by entering a user ID and password; a process
normally presents an encrypted key. If the password or key is valid, the security service gives the user a token or
ticket that identifies the principal and indicates that the principal has been authenticated. After a principal is
authenticated, it can then attempt to use any of the resources within the boundaries of the computing system
protected by the security service; however, a principal can use a particular computing resource only if it has
been authorized to do so. Authorization takes place when an authenticated principal requests the use of a
resource and the security service determines if the user has been granted permission to use that resource.
Typically, authorization is handled by associating access control lists (ACLs) with resources that define which
principal (or groups of principals) are authorized to use the resource. If the principal is authorized, it gains
access to the resource.

In a distributed computing environment, principals and resources must be mutually suspicious of each other's
identity until both have proven that they are who they say they are. This is necessary because principals can
attempt to falsify an identity to get access to a resource, and a resource can be a trojan horse, attempting to get
valuable information from the principal. To solve this problem, the security service contains a security server
that acts as a trusted third party, authenticating principals and resources so that these entities can prove their
identities to each other. This security protocol is known as mutual authentication.

Using the security server

The security service does not use the access control and run-as identity security attributes defined in the
deployment descriptor. However, it does use the run-as mode attribute as the basis for mapping a user identity
to a user security context. For more information on this attribute, see The deployment descriptor.

The main component of the security service is an EJB server that contains security enterprise beans. When
system administrators administer the security service, they manipulate the security beans in the security EJB
server.

Once an EJB client is authenticated, it can attempt to invoke methods on the enterprise beans that it
manipulates. A method is successfully invoked if the principal associated with the method invocation has the
required permissions to invoke the method. These permissions can be set at the application level (an
administrator-defined set of Web and object resources) and at the method group level (an administrator-defined
set of Java interface/method pairs). An application can contain multiple method groups.

In general, the principal under which a method is invoked is associated with that invocation across multiple
Web servers and EJB servers (this association is known as delegation). Delegating the method invocations in
this way ensures that the user of an EJB client needs to authenticate only once. HTTP cookies are used to
propagate a user's authentication information across multiple Web servers. These cookies have a lifetime equal
to the life of the browser session, and a logout method is provided to destroy these cookies when the user is
finished.

For information on administering security, see the WebSphere InfoCenter and the online help available with the
WebSphere Administrative Console.

The workload management service

The workload management service improves the scalability of the EJB server environment by grouping multiple
EJB servers into server groups. Clients then access these server groups as if they are a single EJB server, and
the workload management service ensures that the workload is evenly distributed across the EJB servers in the
server groups. An EJB server can belong to only one server group. The creation of server groups is an
administrative task that is handled from within the WebSphere Administrative Console. For more information
on workload management, consult the WebSphere InfoCenter and the online help for the appropriate
administrative interface.

The persistence service

There are two types of enterprise beans: session beans and entity beans. Session beans encapsulate temporary
data associated with a particular client. Entity beans encapsulate permanent data that is stored in a data source.
For more information, see An introduction to enterprise beans.

The persistence service ensures that the data associated with entity beans is properly synchronized with their
corresponding data in the data source. To accomplish this task, the persistence service works with the
transaction service to insert, update, extract, and remove data from the data source at the appropriate times.

There are two types of entity beans: those with container-managed persistence (CMP) and those with
bean-managed persistence (BMP). In entity beans with CMP, the persistence service handles nearly all of the
tasks required to manage persistent data. In entity beans with BMP, the bean itself handles most of the tasks
required to manage persistent data.

The persistence service uses the following components to accomplish its task:

The Java Database Connectivity (JDBC(TM)) API, which gives entity beans a common interface to
relational databases.

●

Java transaction support, which is discussed in Using transactions in the EJB server environment. The
EJB server ensures that persistent data is always handled within the appropriate transactional context.

●

The naming service

In an object-oriented distributed computing environment, clients must have a mechanism to locate and identify
objects so that the clients, objects, and resources appear to be on the same machine. A naming service provides
this mechanism. In the EJB server environment, JNDI is used to mask the actual naming service and provide a
common interface to the naming service.

JNDI provides naming and directory functionality to Java applications, but the API is independent of any
specific implementation of a naming and directory service. This implementation independence ensures that
different naming and directory services can be used by accessing them by way of the JNDI API. Therefore, Java
applications can use many existing naming and directory services such as the Lightweight Directory Access
Protocol (LDAP), the Domain Name Service (DNS), or the DCE Cell Directory Service (CDS).

JNDI was designed for Java applications by using Java's object model. Using JNDI, Java applications can store
and retrieve named objects of any Java object type. JNDI also provides methods for executing standard
directory operations, such as associating attributes with objects and searching for objects by using their
attributes.

In the EJB server environment, the deployment descriptor is used to specify the JNDI name for an enterprise
bean. When an EJB server is started, it registers these names with JNDI.

The transaction service

A transaction is a set of operations that transforms data from one consistent state to another. This set of

operations is an indivisible unit of work, and in some contexts, a transaction is referred to as a logical unit of
work (LUW). A transaction is a tool for distributed systems programming that simplifies failure scenarios.
Transactions provide the ACID properties:

Atomicity: A transaction's changes are atomic: either all operations that are part of the transaction
happen or none happen.

●

Consistency: A transaction moves data between consistent states.●

Isolation: Even though transactions can run (or be executed) concurrently, no transaction sees another's
work in progress. The transactions appear to run serially.

●

Durability: After a transaction completes successfully, its changes survive subsequent failures.●

As an example, consider a transaction that transfers money from one account to another. Such a transfer
involves money being deducted from one account and deposited in the other. Withdrawing the money from one
account and depositing it in the other account are two parts of an atomic transaction: if both cannot be
completed, neither must happen. If multiple requests are processed against an account at the same time, they
must be isolated so that only a single transaction can affect the account at one time. If the bank's central
computer fails just after the transfer, the correct balance must still be shown when the system becomes available
again: the change must be durable. Note that consistency is a function of the application; if money is to be
transferred from one account to another, the application must subtract the same amount of money from one
account that it adds to the other account. Transactions can be completed in one of two ways: they can commit or
roll back. A successful transaction is said to commit. An unsuccessful transaction is said to roll back. Any data
modifications made by a rolled back transaction must be completely undone. In the money-transfer example, if
money is withdrawn from one account but a failure prevents the money from being deposited in the other
account, any changes made to the first account must be completely undone. The next time any source queries
the account balance, the correct balance must be shown.

Distributed transactions and the two-phase commit process

A distributed transaction is one that runs in multiple processes, often on several machines. Each process
participates in the transaction. This is illustrated in Figure 2, where each oval indicates work being done on a
different machine, and each arrow indicates a remote method invocation (RMI).

Figure 2. Example of a distributed transaction

Distributed transactions, like local transactions, must adhere to the ACID properties. However, maintaining
these properties is greatly complicated for distributed transactions because a failure can occur in any process,
and in the event of such a failure, each process must undo any work already done on behalf of the transaction.

A distributed transaction processing system maintains the ACID properties in distributed transactions by using
two features:

Recoverable processes: Recoverable processes are those that can restore earlier states if a failure occurs.●

A commit protocol: A commit protocol enables multiple processes to coordinate the committing or
rolling back (aborting) of a transaction. The most common commit protocol, and the one used by the
EJB server, is the two-phase commit protocol.

●

Transaction state information must be stored by all recoverable processes. However, only processes that manage
application data (such as resource managers) must store descriptions of changes to data. Not all processes
involved in a distributed transaction need to be recoverable. In general, clients are not recoverable because they
do not interact directly with a resource manager. Processes that are not recoverable are referred to as ephemeral
processes. The two-phase commit protocol, as the name implies, involves two phases: a prepare phase and a
resolution phase. In each transaction, one process acts as the coordinator. The coordinator oversees the
activities of the other participants in the transaction to ensure a consistent outcome. In the prepare phase, the
coordinator sends a message to each process in the transaction, asking each process to prepare to commit. When
a process prepares, it guarantees that it can commit the transaction and makes a permanent record of its work.
After guaranteeing that it can commit, it can no longer unilaterally decide to roll back the transaction. If a
process cannot prepare (that is, if it cannot guarantee that it can commit the transaction), it must roll back the
transaction. In the resolution phase, the coordinator tallies the responses. If all participants are prepared to
commit, the transaction commits; otherwise, the transaction is rolled back. In either case, the coordinator
informs all participants of the result. In the case of a commit, the participants acknowledge that they have
committed.

Using transactions in the EJB server environment

The enterprise bean transaction model corresponds in most respects to the OMG OTS version 1.1. An enterprise
bean instance that is transaction enabled corresponds to an object of the OTS TransactionalObject interface.
However, the enterprise bean transaction model does not support transaction nesting.

In the EJB server environment, transactions are handled by three main components of the transaction service:

A transaction manager interface that enables the EJB server to control transaction boundaries within its
enterprise beans based on the transactional attributes specified for the beans.

●

An interface (UserTransaction) that allows an enterprise bean or an EJB client to manage transactions.
The container makes this interface available to enterprise beans and EJB clients by way of the name
service.

●

Coordination by way of the X/Open XA interface that enables a transactional resource manager (such as
a database) to participate in a transaction controlled by an external transaction manager.

●

For most purposes, the enterprise bean developers can delegate the tasks involved in managing a transaction to
the container. The developer performs this delegation by setting the deployment descriptor attributes for
transactions. These attributes and their values are described in Setting transactional attributes in the deployment
descriptor.

In other cases, the enterprise bean developer will want or need to manage the transactions at the bean level or
involve the EJB client in the management of transactions. For more information on this approach, see Using
bean-managed transactions.

The data source

Entity beans contain persistent data that must be permanently stored in a recoverable data source. Although the
EJB Specification often refers to databases as the place to store persistent data associated with an entity bean, it
leaves open the possibility of using other data sources, including operating system files and other applications.
If you want to let the container handle the interaction between an entity bean and a data source, you must use
the data sources supported by that container.

If you write the additional code required to handle the interaction between a BMP entity bean and the data
source, you can use any data source that meets your needs and is compatible with the persistence service. For
more information, see Developing entity beans with BMP.

The EJB clients

An EJB client can take one of the following forms: it can be a Java application, a Java servlet, a Java
applet-servlet combination, or a JSP file. The EJB client code required to access and manipulate enterprise
beans is very similar across the different Java EJB clients. EJB client developers must consider the following
issues:

Naming and communications--A Java EJB client must use either HTTP or RMI to communicate with
enterprise beans. Fortunately, there is very little difference in the coding required to enable
communications between the EJB client and the enterprise bean, because JNDI masks the interaction
between the EJB client and the name service.

Java applications communicate with enterprise beans by using RMI/IIOP.❍

Java servlets and JSP files communicate with enterprise beans by using HTTP. To use servlets
with an EJB server, a Web server must be installed and configured on a machine in the EJB
server environment. For more information, see The Web server.

❍

●

Threading--Java clients can be either single-threaded or multithreaded depending on the tasks that the
client needs to perform. Each client thread that uses a service provided by a session bean must create or
find a separate instance of that bean and maintain a reference to that bean until the thread completes;
multiple client threads can access the same entity bean.

●

Security - EJB clients that access an EJB server over HTTP (for example, servlets and JSP files)
encounter the following two layers of security:

Universal Resource Locator (URL) security enforced by the WebSphere Application Server
Security Plug-in attached to the Web server in collaboration with the security service.

1.

Enterprise bean security enforced at the server working with the security service.2.

When the user of an HTTP-based EJB client attempts to access an enterprise bean, the Web server
(using the WebSphere Server plug-in) authenticates the user. This authentication can take the form of a
request for a user ID and password or it can happen transparently in the form of a certificate exchange
followed by the establishment of a Secure Sockets Layer (SSL) session.

The authentication policy is governed by an additional option: secure channel constraint. If the secure
channel constraint is required, an SSL session must be established as the final phase of authentication;
otherwise, SSL is optional.

●

Transactions--Both types of Java clients can use the transaction service by way of the JTA interfaces to
manage transactions. The code required for transaction management is identical in the two types of
clients. For general information on transactions and the Java transaction service, see The transaction
service. For information on managing transactions in a Java EJB client, see Managing transactions in an
EJB client.

●

The Web server

To access the functionality in the EJB server, Java servlets and JSP files must have access to a Web server. The
Web server enables communication between a Web client and the EJB server. The EJB server, Web server, and
Java servlet can each reside on different machines.

For information on the Web servers supported by the EJB servers, see the Advanced Application Server Getting
Started document.

The administration interface

The EJB server uses the WebSphere Administrative Console. For more information on this interface, consult
the WebSphere InfoCenter and the online help available with the WebSphere Administrative Console. You can
also administer the EJB server using the wscp command-line tool. For more information, see the Advanced
Edition Information Center.

WebSphere Programming Model Extensions
This section discusses facilities that are provided as part of the Programming Model Extensions in WebSphere Application
Server:

The exception-chaining package, which can be used by distributed applications to capture a sequence of exceptions.
For more information, see The distributed-exception package.

●

The command package, which can be used by distributed applications to reduce the number of remote invocations
they must make. For more information, see The command package.

●

The localizable-text package, which can be used by distributed applications spanning locales to deliver output in a
user-specified language. For more information, see The localizable-text package.

●

The exception-chaining and command packages are available as part of WebSphere Application Server Advanced Edition
and Enterprise Edition; the localizable-text package is available as part of WebSphere Application Server Advanced
Edition. All three packages are general-purpose utilities, designed to provide common functions in a reusable way.
Although these facilities are described in the context of enterprise beans, they are available to any WebSphere Application
Server Java application. They are not restricted to use with enterprise beans.

The distributed-exception package

Distributed applications require a strategy for exception handling. As applications become more complex and are used by
more participants, handling exceptions becomes problematic. To capture the information contained in every exception,
methods have to rethrow every exception they catch. If every method adopts this approach, the number of exceptions can
become unmanageable, and the code itself becomes less maintainable. Furthermore, if a new method introduces a new
exception, all existing methods that call the new method have to be modified to handle the new exception. Trying to
explicitly manage every possible exception in a complex application quickly becomes intractable.

In order to keep the number of exceptions manageable, some programmers adopt a strategy in which methods catch all
exceptions in a single clause and throw one exception in response. This reduces the number of exceptions each method must
recognize, but it also means that the information about the originating exception is lost. This loss of information can be
desirable, for example, when you wish to hide implementation details from end users. However, this strategy can make
applications much more difficult to debug.

The distributed-exception package provides a facility that allows you to build chains of exceptions. An exception chain
encapsulates the stack of previous exceptions. With an exception chain, you can throw one exception in response to another
without discarding the previous exceptions, so you can manage the number of exceptions without losing the information
they carry. Exceptions that support chaining are called distributed exceptions.

Distributed exceptions are packaged in the ras.jar file, which must be included in the application's CLASSPATH variable.

Overview

Support for chaining distributed exceptions is provided by the com.ibm.websphere.exception Java package. The following
classes and interfaces make up this package:

DistributedException--This class provides access to the methods on the DistributedExceptionInfo object. It acts as
the root class for exceptions in a distributed application. For more information, see The DistributedException class.

●

DistributedExceptionEnabled--This interface allows exceptions that cannot inherit from the DistributedException
class to be used in exception chains, so that exceptions based on predefined exceptions can be captured. For more
information, see The DistributedExceptionEnabled interface.

●

DistributedExceptionInfo--This class encapsulates the work necessary for distributed exceptions. An exception class
that extends the DistributedException class automatically gets access to this class. A class that implements the
DistributedExceptionEnabled interface must explicitly declare a DistributedExceptionInfo attribute. For more
information, see The DistributedExceptionInfo class.

●

ExceptionInstantiationException--This class defines the exception that is thrown if an exception chain cannot be
created. This exception is instantiated internally, but you can catch and re-throw it.

●

This section provides a general description of the interfaces and classes in the exception-chaining package.

The DistributedException class

The DistributedException class provides the root exception for exception hierarchies defined by applications. With this
class, you build chains of exceptions by saving a caught exception and bundling it into the new exception to be thrown. This
way, the information about the old exception is forwarded along with the new exception. The class declares six
constructors; Figure 55 shows the signatures for these constructors. When your exception is a subclass of the
DistributedException class, you must provide corresponding constructors in your exception class.

Figure 55. Code example: Constructors for the DistributedException class

...
public class DistributedException extends Exception
implements DistributedExceptionEnabled
{
 // Constructors
 public DistributedException() {...}
 public DistributedException(String message) {...}
 public DistributedException(Throwable exception) {...}
 public DistributedException(String message,Throwable exception) {...}
 public DistributedException(String resourceBundleName,
 String resourceKey,
 Object[] formatArguments,
 String defaultText)
 {...}
 public DistributedException(String resourceBundleName,
 String resourceKey,
 Object[] formatArguments,
 String defaultText,
 Throwable exception)
 {...}
 // Other methods
 ...
}

The class also provides methods for extracting exceptions from the chain and querying the chain. These methods include:

getMessage--This method returns the message string associated with the current exception.●

getPreviousException--This method returns the preceding exception in a chain as a Throwable object. If there are no
previous exceptions, it returns null.

●

getOriginalException--This method returns the original exception in a chain as a Throwable object. If there is no
prior exception, it returns null.

●

getException--This method returns the most recent instance of the named exception from the chain as a Throwable
object. If there are no instances present, it returns null.

●

getExceptionInfo--This method returns the DistributedExceptionInfo object for the exception.●

printStackTrace--These methods print the stack trace for the current exception, which includes the stack traces of all
previous exceptions in the chain.

●

Localization support

Support for localized messages is provided by two of the constructors for distributed exceptions. These constructors take
arguments representing a resource bundle, a resource key, a default message, and the set of replacement strings for variables
in the message. A resource bundle is a collection of resources or resource names representing information associated with a
specific locale. Resource bundles are provided as either a subclass of the ResourceBundle class or in a properties file. The
resource key indicates which resource in the bundle to retrieve. The default message is returned if either the name of the
resource bundle or the key is null or invalid.

The DistributedExceptionEnabled interface

Use the DistributedExceptionEnabled interface to create distributed exceptions when your exception cannot extend the
DistributedException class. Because Java does not permit multiple inheritance, you cannot extend multiple exception
classes. If you are extending an existing exception class, for example, javax.ejb.CreateException, you cannot also extend
the DistributedException class. To allow your new exception class to chain other exceptions, you must implement the
DistributedExceptionEnabled interface instead. The DistributedExceptionEnabled interface declares eight methods you
must implement in your exception class:

getMessage--This method returns the message string associated with the current exception.●

getPreviousException--This method returns the preceding exception in a chain as a Throwable object. If there are no
previous exceptions, it returns null.

●

getOriginalException--This method returns the original exception in a chain as a Throwable object. If there is no
prior exception, it returns null.

●

getException--This method returns the most recent instance of the named exception from the chain as a Throwable
object. If there are no instances present, it returns null.

●

getExceptionInfo--This method returns the DistributedExceptionInfo object for the exception.●

printStackTrace--These methods print the stack trace for the current exception, which includes the stack traces of all
previous exceptions in the chain.

●

printSuperStackTrace--This method is used by a DistributedExceptionInfo object to retrieve and save the current
stack trace.

●

When implementing the DistributedExceptionEnabled interface, you must declare a DistributedExceptionInfo attribute.
This attribute provides implementations for most of these methods, so implementing them in your exception class consists
of calling the corresponding methods on the DistributedExceptionInfo object. For more information, see Implementing the
methods from the DistributedExceptionEnabled interface.

The DistributedExceptionInfo class

The DistributedExceptionInfo class provides the functionality required for distributed exceptions. It must be used by any
exception that implements the DistributedExceptionEnabled interface (which includes the DistributedException class). A
DistributedExceptionInfo object contains the exception itself, and it provides constructors for creating exception chains and
methods for retrieving the information within those chains. It also provides the underlying methods for managing chained
exceptions.

Extending the DistributedException class

The DistributedException class provides the root exception for exception hierarchies defined by applications. The class also
provides methods for extracting exceptions from the chain and querying the chain. You must provide constructors
corresponding to the constructors in the DistributedException class (see Figure 55). The constructors can simply pass
arguments to the constructor in the DistributedException class by using super methods, as illustrated in Figure 56.

Figure 56. Code example: Constructors in an exception class that extends the DistributedException class

...
import com.ibm.websphere.exception.*;
public class MyDistributedException extends DistributedException
{
 // Constructors
 public MyDistributedException() {
 super();
 }
 public MyDistributedException(String message) {
 super(message);
 }
 public MyDistributedException(Throwable exception) {
 super(exception);
 }
 public MyDistributedException(String message, Throwable exception) {
 super(message, exception);

 }
 public MyDistributedException(String resourceBundleName,
 String resourceKey, Object[] formatArguments,
 String defaultText)
 {
 super(resourceBundleName, resourceKey, formatArguments, defaultText);
 }
 public MyDistributedException(String resourceBundleName,
 String resourceKey, Object[] formatArguments,
 String defaultText, Throwable exception)
 {
 super(resourceBundleName, resourceKey, formatArguments, defaultText,
 exception);
 }
}

Implementing the DistributedExceptionEnabled interface

Use the DistributedExceptionEnabled interface to create distributed exceptions when your exception cannot extend the
DistributedException class. To allow your new exception class to be chained, you must implement the
DistributedExceptionEnabled interface instead. Figure 57 shows the structure of an exception class that extends the existing
javax.ejb.CreateException class and implements the DistributedExceptionEnabled interface. The class also declares the
required DistributedExceptionInfo object.

Figure 57. Code example: The structure of an exception class that implements the DistributedExceptionEnabled
interface

...
import javax.ejb.*;
import com.ibm.websphere.exception.*;
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{
 DistributedExceptionInfo exceptionInfo = null;
 // Constructors
 ...
 // Methods from the DistributedExceptionEnabled interface
 ...
}

Implementing the constructors for the exception class

The exception-chaining package supports six different ways of creating instances of exception classes (see Figure 55).
When you write an exception class by implementing the DistributedExceptionEnabled interface, you must implement these
constructors. In each one, you must use the DistributedExceptionInfo object to capture the information for chaining the
exception. Figure 58 shows standard implementations for the six constructors.

Figure 58. Code example: Constructors for an exception class that implements the DistributedExceptionEnabled
interface

...
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{
 DistributedExceptionInfo exceptionInfo = null;
 // Constructors
 AccountCreateException() {
 super ();
 exceptionInfo = new DistributedExceptionInfo(this);
 }
 AccountCreateException(String msg) {

 super (msg);
 exceptionInfo = new DistributedExceptionInfo(this);
 }
 AccountCreateException(Throwable e) {
 super ();
 exceptionInfo = new DistributedExceptionInfo(this, e);
 }
 AccountCreateException(String msg, Throwable e) {
 super (msg);
 exceptionInfo = new DistributedExceptionInfo(this, e);
 }
 AccountCreateException(String resourceBundleName, String resourceKey,
 Object[] formatArguments, String defaultText)
 {
 super ();
 exceptionInfo = new DistributedExceptionInfo(resourceBundleName,
 resourceKey, formatArguments, defaultText, this);
 }
 AccountCreateException(String resourceBundleName, String resourceKey,
 Object[] formatArguments, String defaultText,
 Throwable exception)
 {
 super ();
 exceptionInfo = new DistributedExceptionInfo(resourceBundleName,
 resourceKey, formatArguments, defaultText, this, exception);
 }
 // Methods from the DistributedExceptionEnabled interface
 ...
}

Implementing the methods from the DistributedExceptionEnabled interface

The DistributedExceptionInfo object provides implementations for most of the methods in the DistributedExceptionEnabled
interface, so you can implement the required methods in your exception class by calling the corresponding methods on the
DistributedExceptionInfo object. Figure 59 illustrates this technique. The only two methods that do not involve calling a
corresponding method on the DistributedExceptionInfo object are the getExceptionInfo method, which returns the object,
and the printSuperStackTrace method, which calls the super.printStackTrace method.

Figure 59. Code example: Implementations of the methods in the DistributedExceptionEnabled interface

...
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{
 DistributedExceptionInfo exceptionInfo = null;
 // Constructors
 ...
 // Methods from the DistributedExceptionEnabled interface
 String getMessage() {
 if (exceptionInfo != null)
 return exceptionInfo.getMessage();
 else return null;
 }
 Throwable getPreviousException() {
 if (exceptionInfo != null)
 return exceptionInfo.getPreviousException();
 else return null;
 }
 Throwable getOriginalException() {
 if (exceptionInfo != null)
 return exceptionInfo.getOriginalException();

 else return null;
 }
 Throwable getException(String exceptionClassName) {
 if (exceptionInfo != null)
 return exceptionInfo.getException(exceptionClassName);
 else return null;
 }
 DistributedExceptionInfo getExceptionInfo() {
 if (exceptionInfo != null)
 return exceptionInfo;
 else return null;
 }
 void printStackTrace() {
 if (exceptionInfo != null)
 return exceptionInfo.printStackTrace();
 else return null;
 }
 void printStackTrace(PrintWriter pw) {
 if (exceptionInfo != null)
 return exceptionInfo.printStackTrace(pw);
 else return null;
 }
 void printSuperStackTrace(PrintWriter pw)
 if (exceptionInfo != null)
 return super.printStackTrace(pw);
 else return null;
 }
}

Using distributed exceptions

Defining a distributed exception gives you the ability to chain exceptions together. The DistributedExceptionInfo class
provides methods for adding information to an exception chain and for extracting information from the chain. This section
illustrates the use of distributed exceptions.

Catching distributed exceptions

You can catch exceptions that extend the DistributedException class or implement the DistributedExceptionEnabled
interface separately. You can also test a caught exception to see if it has implemented the DistributedExceptionEnabled
interface. If it has, you can treat it as any other distributed exception. Figure 60 shows the use of the instanceof method to
test for exception chaining.

Figure 60. Code example: Testing for an exception that implements the DistributedExceptionEnabled interface

....
try {
 someMethod();
}
catch (Exception e) {
 ...
 if (e instanceof DistributedExceptionEnabled) {
 ...
 }
...

Adding an exception to a chain

To add an exception to a chain, you must call one of the constructors for your distributed-exception class. This captures the
previous exception information and packages it with the new exception. Figure 61 shows the use of the
MyDistributedException(Throwable) constructor.

Figure 61. Code example: Adding an exception to a chain

void someMethod() throws MyDistributedException {
 try {
 someOtherMethod();
 }
 catch (DistributedExceptionEnabled e) {
 throw new MyDistributedException(e);
 }
 ...
}...

Retrieving information from a chain

Chained exceptions allow you to retrieve information about prior exceptions in the chain. For example, the
getPreviousException, getOriginalException, and getException(String) methods allow you to retrieve specific exceptions
from the chain. You can retrieve the message associated with the current exception by calling the getMessage method. You
can also get information about the entire chain by calling one of the printStackTrace methods. Figure 62 illustrates calling
the getPreviousException and getOriginalException methods.

Figure 62. Code example: Extracting exceptions from a chain

...
try {
 someMethod();
}
catch (DistributedExceptionEnabled e) {
 try {
 Throwable prev = e.getPreviousException();
 }
 catch (ExceptionInstantiationException eie) {
 DistributedExceptionInfo prevExInfo = e.getPreviousExceptionInfo();
 if (prevExInfo != null) {
 String prevExName = prevExInfo.getClassName();
 String prevExMsg = prevExInfo.getClassMessage();
 ...
 }
 }
 try {
 Throwable orig = e.getOriginalException();
 }
 catch (ExceptionInstantiationException eie) {
 DistributedExceptionInfo origExInfo = null;
 DistributedExceptionInfo prevExInfo = e.getPreviousExceptionInfo();
 while (prevExInfo != null) {
 origExInfo = prevExInfo;
 prevExInfo = prevExInfo.getPreviousExceptionInfo();
 }
 if (origExInfo != null) {
 String origExName = origExInfo.getClassName();
 String origExMsg = origExInfo.getClassMessage();
 ...
 }
 }
}
...

The command package

Distributed applications are defined by the ability to utilize remote resources as if they were local, but this remote work
affects the performance of distributed applications. Distributed applications can improve performance by using remote calls
sparingly. For example, if a server does several tasks for a client, the application can run more quickly if the client bundles
requests together, reducing the number of individual remote calls. The command package provides a mechanism for
collecting sets of requests to be submitted as a unit.

In addition to giving you a way to reduce the number of remote invocations a client makes, the command package provides
a generic way of making requests. A client instantiates the command, sets its input data, and tells it to run. The command
infrastructure determines the target server and passes a copy of the command to it. The server runs the command, sets any
output data, and copies it back to the client. The package provides a common way to issue a command, locally or remotely,
and independently of the server's implementation. Any server (an enterprise bean, a Java Database Connectivity (JDBC)
server, a servlet, and so on) can be a target of a command if the server supports Java access to its resources and provides a
way to copy the command between the client's Java Virtual Machine (JVM) and its own JVM.

Overview

The command facility is implemented in the com.ibm.websphere.command Java package. The classes and interfaces in the
command package fall into four general categories:

Interfaces for creating commands. For more information, see Facilities for creating commands.●

Classes and interfaces for implementing commands. For more information, see Facilities for implementing
commands.

●

Classes and interfaces for determining where the command is run. For more information, see Facilities for setting
and determining targets.

●

Classes defining package-specific exceptions. For more information, see Exceptions in the command package.●

This section provides a general description of the interfaces and classes in the command package.

Facilities for creating commands

The Command interface specifies the most basic aspects of a command. This interface is extended by both the
TargetableCommand interface and the CompensableCommand interface, which offer additional features. To create
commands for applications, you must:

Define an interface that extends one or more of interfaces in the command package.●

Provide an implementation class for your interface.●

In practice, most commands implement the TargetableCommand interface, which allows the command to be executed
remotely. Figure 63 shows the structure of a command interface for a targetable command.

Figure 63. Code example: The structure of an interface for a targetable command

...
import com.ibm.websphere.command.*;
public interface MySimpleCommand extends TargetableCommand {
 // Declare application methods here
}

The CompensableCommand interface allows the association of one command with another that can undo the work of the
first. Compensable commands also typically implement the TargetableCommand interface. Figure 64 shows the structure of
a command interface for a targetable, compensable command.

Figure 64. Code example: The structure of an interface for a targetable, compensable command

...
import com.ibm.websphere.command.*;
public interface MyCommand extends TargetableCommand, CompensableCommand {
 // Declare application methods here
}

Facilities for implementing commands

Commands are implemented by extending the class TargetableCommandImpl, which implements the TargetableCommand
interface. The TargetableCommandImpl class is an abstract class that provides some implementations for some of the
methods in the TargetableCommand interface (for example, setting return values) and declares additional methods that the
application itself must implement (for example, how to execute the command).

You implement your command interface by writing a class that extends the TargetableCommandImpl class and implements
your command interface. This class contains the code for the methods in your interface, the methods inherited from
extended interfaces (the TargetableCommand and CompensableCommand interfaces), and the required (abstract) methods
in the TargetableCommandImpl class. You can also override the default implementations of other methods provided in the
TargetableCommandImpl class. Figure 65 shows the structure of an implementation class for the interface in Figure 64.

Figure 65. Code example: The structure of an implementation class for a command interface

...
import java.lang.reflect.*;
import com.ibm.websphere.command.*;
public class MyCommandImpl extends TargetableCommandImpl
implements MyCommand {
 // Set instance variables here
 ...
 // Implement methods in the MyCommand interface
 ...
 // Implement methods in the CompensableCommand interface
 ...
 // Implement abstract methods in the TargetableCommandImpl class
 ...
}

Facilities for setting and determining targets

The object that is the target of a TargetableCommand must implement the CommandTarget interface. This object can be an
actual server-side object, like an entity bean, or it can be a client-side adapter for a server. The implementor of the
CommandTarget interface is responsible for ensuring the proper execution of a command in the desired target server
environment. This typically requires the following steps:

Copying the command to the target server by using a server-specific protocol.1.

Running the command in the server.2.

Copying the executed command from the target server to the client by using a server-specific protocol.3.

Common ways to implement the CommandTarget interface include:

A local target, which runs in the client's JVM.●

A client-side adapter for a server. For an example that implements the target as a client-side adapter, see Writing a
command target (client-side adapter).

●

An enterprise bean (either a session bean or an entity bean). Figure 66 shows the structure of the remote interface
and enterprise bean class for an entity bean that implements the CommandTarget interface. An enterprise bean is
provided with WebSphere that can be deployed and used as a CommandTarget. See Using the WebSphere
EJBCommandTarget bean as a command target.

●

Figure 66. Code example: The structure of a command-target entity bean

...
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;
import com.ibm.websphere.command.*;
// Remote interface for the MyBean enterprise bean (also a command target)
public interface MyBean extends EJBObject, CommandTarget {
 // Declare methods for the remote interface

 ...
}
// Entity bean class for the MyBean enterprise bean (also a command target)
public class MyBeanClass implements EntityBean, CommandTarget {
 // Set instance variables here
 ...
 // Implement methods in the remote interface
 ...
 // Implement methods in the EntityBean interface
 ...
 // Implement the method in the CommandTarget interface
 ...
}

Since targetable commands can be run remotely in another JVM, the command package provides mechanisms for
determining where to run the command. A target policy associates a command with a target and is specified through the
TargetPolicy interface. You can design customized target policies by implementing this interface, or you can use the
provided TargetPolicyDefault class. For more information, see Targets and target policies.

Exceptions in the command package

The command package defines a set of exception classes. The CommandException class extends the DistributedException
class and acts as the base class for the additional command-related exceptions: UnauthorizedAccessException,
UnsetInputPropertiesException, and UnavailableCompensableCommandException. Applications can extend the
CommandException class to define additional exceptions, as well.

Although the CommandException class extends the DistributedException class, you do not have to import the
distributed-exception package, com.ibm.websphere.exception, unless you need to use the features of the
DistributedException class in your application. For more information on distributed exceptions, see The
distributed-exception package.

Writing command interfaces

To write a command interface, you extend one or more of the three interfaces included in the command package. The base
interface for all commands is the Command interface. This interface provides only the client-side interface for generic
commands and declares three basic methods:

isReadyToCallExecute--This method is called on the client side before the command is passed to the server for
execution.

●

execute--This method passes the command to the target and returns any data.●

reset--This method reverts any output properties to the values they had before the execute method was called so that
the object can be reused.

●

The implementation class for your interface must contain implementations for the isReadyToCallExecute and reset
methods. The execute method is implemented for you elsewhere; for more information, see Implementing command
interfaces. Most commands do not extend the Command interface directly but use one of the provided extensions: the
TargetableCommand interface and the CompensableCommand interface.

The TargetableCommand interface

The TargetableCommand interface extends the Command interface and provides for remote execution of commands. Most
commands will be targetable commands. The TargetableCommand interface declares several additional methods:

setCommandTarget--This method allows you to specify the target object to a command.●

setCommandTargetName--This method allows you to specify the target by name to a command.●

getCommandTarget--This method returns the target object of the command.●

getCommandTargetName--This method returns the name of the target object of the command.●

hasOutputProperties--This method indicates whether or not the command has output that must be copied back to the●

client. (The implementation class also provides a method, setHasOutputProperties, for setting the output of this
method. By default, hasOutputProperties returns true.)

setOutputProperties--This method saves output values from the command for return to the client.●

performExecute--This method encapsulates the application-specific work. It is called for you by the execute method
declared in the Command interface.

●

With the exception of the performExecute method, which you must implement, all of these methods are implemented in the
TargetableCommandImpl class. This class also implements the execute method declared in the Command interface.

The CompensableCommand interface

The CompensableCommand interface also extends the Command interface. A compensable command is one that has
another command (a compensator) associated with it, so that the work of the first can be undone by the compensator. For
example, a command that attempts to make an airline reservation followed by a hotel reservation can offer a compensating
command that allows the user to cancel the airline reservation if the hotel reservation cannot be made.

The CompensableCommand interface declares one method:

getCompensatingCommand--This methods returns the command that can be used to undo the effects of the original
command.

●

To create a compensable command, you write an interface that extends the CompensableCommand interface. Such
interfaces typically extend the TargetableCommand interface as well. You must implement the getCompensatingCommand
method in the implementation class for your interface. You must also implement the compensating command.

The example application

The example used throughout the remainder of this discussion uses an entity bean with container-managed persistence
(CMP) called CheckingAccountBean, which allows a client to deposit money, withdraw money, set a balance, get a
balance, and retrieve the name on the account. This entity bean also accepts commands from the client. The code examples
illustrate the command-related programming. For a servlet-based example, see Writing a command target (client-side
adapter).

Figure 67 shows the interface for the ModifyCheckingAccountCmd command. This command is both targetable and
compensable, so the interface extends both TargetableCommand and CompensableCommand interfaces.

Figure 67. Code example: The ModifyCheckingAccountCmd interface

...
import com.ibm.websphere.exception.*;
import com.ibm.websphere.command.*;
public interface ModifyCheckingAccountCmd
extends TargetableCommand, CompensableCommand {
 float getAmount();
 float getBalance();
 float getOldBalance(); // Used for compensating
 float setBalance(float amount);
 float setBalance(int amount);
 CheckingAccount getCheckingAccount();
 void setCheckingAccount(CheckingAccount newCheckingAccount);
 TargetPolicy getCmdTargetPolicy();
 ...
}

Implementing command interfaces

The command package provides a class, TargetableCommandImpl, that implements all of the methods in the
TargetableCommand interface except the performExecute method. It also implements the execute method from the
Command interface. To implement an application's command interface, you must write a class that extends the
TargetableCommandImpl class and implements your command interface. Figure 68 shows the structure of the

ModifyCheckingAccountCmdImpl class.

Figure 68. Code example: The structure of the ModifyCheckingAccountCmdImpl class

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{
 // Variables
 ...
 // Methods
 ...
}

The class must declare any variables and implement these methods:

Any methods you defined in your command interface.●

The isReadyToCallExecute and reset methods from the Command interface.●

The performExecute method from the TargetableCommand interface.●

The getCompensatingCommand method from the CompensableCommand interface, if your command is
compensable. You must also implement the compensating command.

●

You can also override the nonfinal implementations provided in the TargetableCommandImpl class. The most likely
candidate for reimplementation is the setOutputProperties method, since the default implementation does not save final,
transient, or static fields.

Defining instance and class variables

The ModifyCheckingAccountCmdImpl class declares the variables used by the methods in the class, including the remote
interface of the CheckingAccount entity bean; the variables used to capture operations on the checking account (balances
and amounts); and a compensating command. Figure 69 shows the variables used by the ModifyCheckingAccountCmd
command.

Figure 69. Code example: The variables in the ModifyCheckingAccountCmdImpl class

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{
 // Variables
 public float balance;
 public float amount;
 public float oldBalance;
 public CheckingAccount checkingAccount;
 public ModifyCheckingAccountCompensatorCmd
 modifyCheckingAccountCompensatorCmd;
 ...
}

Implementing command-specific methods

The ModifyCheckingAccountCmd interface defines several command-specific methods in addition to extending other
interfaces in the command package. These command-specific methods are implemented in the
ModifyCheckingAccountCmdImpl class.

You must provide a way to instantiate the command. The command package does not specify the mechanism, so you can
choose the technique most appropriate for your application. The fastest and most efficient technique is to use constructors.
The most flexible technique is to use a factory. Also, since commands are implemented internally as JavaBeans
components, you can use the standard Beans.instantiate method. The ModifyCheckingAccountCmd command uses
constructors.

Figure 70 shows the two constructors for the command. The difference between them is that the first uses the default target

policy for determining the target of the command and the second allows you to specify a custom policy. (For more
information on targets and target policies, see Targets and target policies.)

Both constructors take a CommandTarget object as an argument and cast it to the CheckingAccount type. The
CheckingAccount interface extends both the CommandTarget interface and the EJBObject (see Figure 80). The resulting
checkingAccount object routes the command to the desired server by using the bean's remote interface. (For more
information on CommandTarget objects, see Writing a command target (server).)

Figure 70. Code example: Constructors in the ModifyCheckingAccountCmdImpl class

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{
 // Variables
 ...
 // Constructors
 // First constructor: relies on the default target policy
 public ModifyCheckingAccountCmdImpl(CommandTarget target,
 float newAmount)
 {
 amount = newAmount;
 checkingAccount = (CheckingAccount)target;
 setCommandTarget(target);
 }
 // Second constructor: allows you to specify a custom target policy
 public ModifyCheckingAccountCmdImpl(CommandTarget target,
 float newAmount,
 TargetPolicy targetPolicy)
 {
 setTargetPolicy(targetPolicy);
 amount = newAmount;
 checkingAccount = (CheckingAccount)target;
 setCommandTarget(target);
 }
 ...
}

Figure 71 shows the implementation of the command-specific methods:

setBalance--This method sets the balance of the account.●

getAmount--This method returns the amount of a deposit or withdrawal.●

getOldBalance, getBalance--These methods capture the balance before and after an operation.●

getCmdTargetPolicy--This method retrieves the current target policy.●

setCheckingAccount, getCheckingAccount--These methods set and retrieve the current checking account.●

Figure 71. Code example: Command-specific methods in the ModifyCheckingAccountCmdImpl class

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{
 // Variables
 ...
 // Constructors
 ...
 // Methods in ModifyCheckingAccountCmd interface
 public float getAmount() {
 return amount;
 }
 public float getBalance() {

 return balance;
 }
 public float getOldBalance() {
 return oldBalance;
 }
 public float setBalance(float amount) {
 balance = balance + amount;
 return balance;
 }
 public float setBalance(int amount) {
 balance += amount ;
 return balance;
 }
 public TargetPolicy getCmdTargetPolicy() {
 return getTargetPolicy();
 }
 public void setCheckingAccount(CheckingAccount newCheckingAccount) {
 if (checkingAccount == null) {
 checkingAccount = newCheckingAccount;
 }
 else
 System.out.println("Incorrect Checking Account (" +
 newCheckingAccount + ") specified");
 }
 public CheckingAccount getCheckingAccount() {
 return checkingAccount;
 }
 ...
}

The ModifyCheckingAccountCmd command operates on a checking account. Because commands are implemented as
JavaBeans components, you manage input and output properties of commands using the standard JavaBeans techniques. For
example, initialize input properties with set methods (like setCheckingAccount) and retrieve output properties with get
methods (like getCheckingAccount). The get methods do not work until after the command's execute method has been
called.

Implementing methods from the Command interface

The Command interface declares two methods, isReadyToCallExecute and reset, that must be implemented by the
application programmer. Figure 72 shows the implementations for the ModifyCheckingAccountCmd command. The
implementation of the isReadyToCallExecute method ensures that the checkingAccount variable is set. The reset method
sets all of the variables back to starting values.

Figure 72. Code example: Methods from the Command interface in the ModifyCheckingAccountCmdImpl class

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{
 ...
 // Methods from the Command interface
 public boolean isReadyToCallExecute() {
 if (checkingAccount != null)
 return true;
 else
 return false;
 }
 public void reset() {
 amount = 0;
 balance = 0;
 oldBalance = 0;

 checkingAccount = null;
 targetPolicy = new TargetPolicyDefault();
 }
 ...
}

Implementing methods from the TargetableCommand interface

The TargetableCommand interface declares one method, performExecute, that must be implemented by the application
programmer. Figure 73 shows the implementation for the ModifyCheckingAccountCmd command. The implementation of
the performExecute method does the following:

Saves the current balance (so the command can be undone by a compensator command)●

Calculates the new balance●

Sets the current balance to the new balance●

Ensures that the hasOutputProperties method returns true so that the values are returned to the client●

In addition, the ModifyCheckingAccountCmdImpl class overrides the default implementation of the setOutputProperties
method.

Figure 73. Code example: Methods from the TargetableCommand interface in the
ModifyCheckingAccountCmdImpl class

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{
 ...
 // Method from the TargetableCommand interface
 public void performExecute() throws Exception {
 CheckingAccount checkingAccount = getCheckingAccount();
 oldBalance = checkingAccount.getBalance();
 balance = oldBalance+amount;
 checkingAccount.setBalance(balance);
 setHasOutputProperties(true);
 }
 public void setOutputProperties(TargetableCommand fromCommand) {
 try {
 if (fromCommand != null) {
 ModifyCheckingAccountCmd modifyCheckingAccountCmd =
 (ModifyCheckingAccountCmd) fromCommand;
 this.oldBalance = modifyCheckingAccountCmd.getOldBalance();
 this.balance = modifyCheckingAccountCmd.getBalance();
 this.checkingAccount =
 modifyCheckingAccountCmd.getCheckingAccount();
 this.amount = modifyCheckingAccountCmd.getAmount();
 }
 }
 catch (Exception ex) {
 System.out.println("Error in setOutputProperties.");
 }
 }
 ...
}

Implementing the CompensableCommand interface

The CompensableCommand interface declares one method, getCompensatingCommand, that must be implemented by the
application programmer. Figure 74 shows the implementation for the ModifyCheckingAccountCmd command. The
implementation simply returns an instance of the ModifyCheckingAccountCompensatorCmd command associated with the

current command.

Figure 74. Code example: Method from the CompensableCommand interface in the
ModifyCheckingAccountCmdImpl class

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{
 ...
 // Method from CompensableCommand interface
 public Command getCompensatingCommand() throws CommandException {
 modifyCheckingAccountCompensatorCmd =
 new ModifyCheckingAccountCompensatorCmd(this);
 return (Command)modifyCheckingAccountCompensatorCmd;
 }
}

Writing the compensating command

An application that uses a compensable command requires two separate commands: the primary command (declared as a
CompensableCommand) and the compensating command. In the example application, the primary command is declared in
the ModifyCheckingAccountCmd interface and implemented in the ModifyCheckingAccountCmdImpl class. Because this
command is also a compensable command, there is a second command associated with it that is designed to undo its work.
When you create a compensable command, you also have to write the compensating command.

Writing a compensating command can require exactly the same steps as writing the original command: writing the interface
and providing an implementation class. In some cases, it may be simpler. For example, the command to compensate for the
ModifyCheckingAccountCmd does not require any methods beyond those defined for the original command, so it does not
need an interface. The compensating command, called ModifyCheckingAccountCompensatorCmd, simply needs to be
implemented in a class that extends the TargetableCommandImpl class. This class must:

Provide a way to instantiate the command; the example uses a constructor●

Implement the three required methods:

isReadyToCallExecute and reset--both from the Command interface❍

performExecute--from the TargetableCommand interface❍

●

Figure 75 shows the structure of the implementation class, its variables (references to the original command and to the
relevant checking account), and the constructor. The constructor simply instantiates the references to the primary command
and account.

Figure 75. Code example: Variables and constructor in the ModifyCheckingAccountCompensatorCmd class

...
public class ModifyCheckingAccountCompensatorCmd extends TargetableCommandImpl
{
 public ModifyCheckingAccountCmdImpl modifyCheckingAccountCmdImpl;
 public CheckingAccount checkingAccount;

 public ModifyCheckingAccountCompensatorCmd(
 ModifyCheckingAccountCmdImpl originalCmd)
 {
 // Get an instance of the original command
 modifyCheckingAccountCmdImpl = originalCmd;
 // Get the relevant account
 checkingAccount = originalCmd.getCheckingAccount();
 }
 // Methods from the Command and Targetable Command interfaces

}

Figure 76 shows the implementation of the inherited methods. The implementation of the isReadyToCallExecute method
ensures that the checkingAccount variable has been instantiated.

The performExecute method verifies that the actual checking-account balance is consistent with what the original command
returns. If so, it replaces the current balance with the previously stored balance by using the ModifyCheckingAccountCmd
command. Finally, it saves the most-recent balances in case the compensating command needs to be undone. The reset
method has no work to do.

Figure 76. Code example: Methods in ModifyCheckingAccountCompensatorCmd class

...
public class ModifyCheckingAccountCompensatorCmd extends TargetableCommandImpl
{
 // Variables and constructor

 // Methods from the Command and TargetableCommand interfaces
 public boolean isReadyToCallExecute() {
 if (checkingAccount != null)
 return true;
 else
 return false;
 }
 public void performExecute() throws CommandException
 {
 try {
 ModifyCheckingAccountCmdImpl originalCmd =
 modifyCheckingAccountCmdImpl;
 // Retrieve the checking account modified by the original command
 CheckingAccount checkingAccount = originalCmd.getCheckingAccount();
 if (modifyCheckingAccountCmdImpl.balance ==
 checkingAccount.getBalance()) {
 // Reset the values on the original command
 checkingAccount.setBalance(originalCmd.oldBalance);
 float temp = modifyCheckingAccountCmdImpl.balance;
 originalCmd.balance = originalCmd.oldBalance;
 originalCmd.oldBalance = temp;
 }
 else {
 // Balances are inconsistent, so we cannot compensate
 throw new CommandException(
 "Object modified since this command ran.");
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 public void reset() {}
}

Using a command

To use a command, the client creates an instance of the command and calls the command's execute method. Depending on
the command, calling other methods can be necessary. The specifics will vary with the application.

In the example application, the server is the CheckingAccountBean, an entity enterprise bean. In order to use this enterprise
bean, the client gets a reference to the bean's home interface. The client then uses the reference to the home interface and
one of the bean's finder methods to obtain a reference to the bean's remote interface. If there is no appropriate bean, the
client can create one using a create method on the home interface. All of this work is standard enterprise bean programming
covered elsewhere in this document.

Figure 77 illustrates the use of the ModifyCheckingAccountCmd command. This work takes place after an appropriate
CheckingAccount bean has been found or created. The code instantiates a command, setting the input values by using one
of the constructors defined for the command. The null argument indicates that the command should look up the server using
the default target policy, and 1000 is the amount the command attempts to add to the balance of the checking account. (For
more information on how the command package uses defaults to determine the target of a command, see The default target
policy.) After the command is instantiated, the code calls the setCheckingAccount method to identify the account to be
modified. Finally, the execute method on the command is called.

Figure 77. Code example: Using the ModifyCheckingAccountCmd command

{
 ...
 CheckingAccount checkingAccount
 ...
 try {
 ModifyCheckingAccountCmd cmd =
 new ModifyCheckingAccountCmdImpl(null, 1000);
 cmd.setCheckingAccount(checkingAccount);
 cmd.execute();
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 ...
}

Using a compensating command

To use a compensating command, you must retrieve the compensator associated with the primary command and call its
execute method. Figure 78 shows the code used to run the original command and to give the user the option of undoing the
work by running the compensating command.

Figure 78. Code example: Using the ModifyCheckingAccountCompensator command

{
 ...
 CheckingAccount checkingAccount

 try {
 ModifyCheckingAccountCmd cmd =
 new ModifyCheckingAccountCmdImpl(null, 1000);
 cmd.setCheckingAccount(checkingAccount);
 cmd.execute();
 ...
 System.out.println("Would you like to undo this work? Enter Y or N");
 try {
 // Retrieve and validate user's response
 ...
 }
 ...
 if (answer.equalsIgnoreCase(Y)) {
 Command compensatingCommand = cmd.getCompensatingCommand();
 compensatingCommand.execute();
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 ...
}

Using the WebSphere EJBCommandTarget bean as a command target

WebSphere ships a CommandTarget enterprise bean to allow administrators to execute a command in a designated server
without providing their own implementation of CommandTarget. The EJBCommandTarget class, along with the
EJBCommandTarget bean (CommandServerSessionBean), are located in the EJBCommandTarget.jar file in the lib
directory under the WebSphere installation directory. This is a deployed jar file. You can use this JAR file in a new
application or add it into an existing application.

The EJBCommandTarget class serves as a wrapper for a CommandTarget bean. CommandServerSessionBean is the
WebSphere implementation of this CommandTarget bean. A command developer can set this EJBCommandTarget object
into the Command. Figure 79 shows an example.

Figure 79. Code example: Using an EJBCommandTarget bean

EJBCommandTarget target = new EJBCommandTarget();

MyCommand cmd = new MyCommandImpl(Arguments...);
cmd.setCommandTarget(target);
cmd.execute();

In this example, the client creates a MyCommand object. It is then executed in the application server. When the execute
method is performed, the target (EJBCommandTarget) looks up the CommandServerSessionHome from the InitialContext
and executes the executeCommand method on the CommandServerSessionBean. The EJBCommandTarget object ensures
that there is only one CommandServerSessionBean per object to avoid extra naming lookup.

An EJBCommandTarget object can be created using four different constructors:

EJBCommandTarget("MyNamingServerName", "PortNumber", "JNDIName")●

EJBCommandTarget(InitialContext,"JNDIName")●

EJBCommandTarget("JNDIName")●

EJBCommandTarget()●

The first constructor allows the application to specify the naming server name and the port. The JNDI name of the
CommandServerSessionBean can also be specified. The EJBCommandTarget constructs a provider URL of
"iiop://MyNamingServerName:PortNumber" and looks up the CommandServerSessionBean with the given JNDI name. If
null values are passed in for any of the parameters the WebSphere defaults for server and port and a default JNDI name of
CommandServerSession are used.

The second constructor allows the application to specify its own initial context. The EJBCommandTarget object then uses
this initial context to look up the CommandServerSession bean with the specified JNDI name.

The third constructor allows the application to set up the naming server (the provider URL) in property files.

The default constructor uses the default values for the provider URL and default JNDI name for the
CommandServerSession bean (CommandServerSession).

You do not need to use the EJBCommandTarget class. You can instead create your own custom target policy that uses the
EJBCommandTarget bean (CommandServerSessionBean). The EJBCommandTarget object is a convenience class and
attempts to address most usage scenarios

Writing a command target (server)

In order to accept commands, a server must implement the CommandTarget interface and its single method,
executeCommand.

The example application implements the CommandTarget interface in an enterprise bean. (For a servlet-based example, see
Writing a command target (client-side adapter).) The target enterprise bean can be a session bean or an entity bean. You can
write a target enterprise bean that forwards commands to a specific server, such as another entity bean. In this case, all
commands directed at a specific target go through the target enterprise bean. You can also write a target enterprise bean that
does the work of the command locally.

Make an enterprise bean the target of a command by:

Extending the CommandTarget interface when you define the bean's remote interface, which must also extend the
EJBObject interface

●

Implementing the CommandTarget interface when you implement the bean class, which must also implement either
the SessionBean or EntityBean interface

●

The target of the example application is an enterprise bean called CheckingAccountBean. This bean's remote interface,
CheckingAccount, extends the CommandTarget interface in addition to the EJBObject interface. The methods declared in
the remote interface are independent of those used by the command. The executeCommand is declared in neither the bean's
home nor remote interfaces. Figure 80 shows the CheckingAccount interface.

Figure 80. Code example: The remote interface for the CheckingAccount entity bean, also a command target

...
import com.ibm.websphere.command.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;
public interface CheckingAccount extends CommandTarget, EJBObject {
 float deposit (float amount) throws RemoteException;
 float deposit (int amount) throws RemoteException;
 String getAccountName() throws RemoteException;
 float getBalance() throws RemoteException;
 float setBalance(float amount) throws RemoteException;
 float withdrawal (float amount) throws RemoteException, Exception;
 float withdrawal (int amount) throws RemoteException, Exception;
}

The enterprise bean class, CheckingAccountBean, implements the EntityBean interface as well as the CommandTarget
interface. The class contains the business logic for the methods in the remote interface, the necessary life-cycle methods
(ejbActivate, ejbStore, and so on), and the executeCommand declared by the CommandTarget interface. The
executeCommand method is the only command-specific code in the enterprise bean class. It attempts to run the
performExecute method on the command and throws a CommandException if an error occurs. If the performExecute
method runs successfully, the executeCommand method uses the hasOutputProperties method to determine if there are
output properties that must be returned. If the command has output properties, the method returns the command object to
the client. Figure 81 shows the relevant parts of the CheckingAccountBean class.

Figure 81. Code example: The bean class for the CheckingAccount entity bean, also a command target

...
public class CheckingAccountBean implements EntityBean, CommandTarget {
 // Bean variables
 ...
 // Business methods from remote interface
 ...
 // Life-cycle methods for CMP entity beans
 ...
 // Method from the CommandTarget interface
 public TargetableCommand executeCommand(TargetableCommand command)
 throws RemoteException, CommandException
 {
 try {
 command.performExecute();
 }
 catch (Exception ex) {
 if (ex instanceof RemoteException) {
 RemoveException remoteException = (RemoteException)ex;
 if (remoteException.detail != null) {
 throw new CommandException(remoteException.detail);
 }
 throw new CommandException(ex);
 }
 }

 if (command.hasOutputProperties()) {
 return command;
 }
 return null;
 }
}

Targets and target policies

A targetable command extends the TargetableCommand interface, which allows the client to direct a command to a
particular server. The TargetableCommand interface (and the TargetableCommandImpl class) provide two ways for a client
to specify a target: the setCommandTarget and setCommandTargetName methods. (These methods were introduced in The
TargetableCommand interface.) The setCommandTarget methods allows the client to set the target object directly on the
command. The setCommandTargetName method allows the client to refer to the server by name; this approach is useful
when the client is not directly aware of server objects. A targetable command also has corresponding getCommandTarget
and getCommandTargetName methods.

The command package needs to be able to identify the target of a command. Because there is more than one way to specify
the target and because different applications can have different requirements, the command package does not specify a
selection algorithm. Instead, it provides a TargetPolicy interface with one method, getCommandTarget, and a default
implementation. This allows applications to devise custom algorithms for determining the target of a command when
appropriate.

The default target policy

The command package provides a default implementation of the TargetPolicy interface in the TargetPolicyDefault class. If
you use this default implementation, the command determines the target by looking through an ordered sequence of four
options:

The CommandTarget value1.

The CommandTargetName value2.

A registered mapping of a target for a specific command3.

A defined default target4.

If it finds no target, it returns null. The TargetPolicyDefault class provides methods for managing the assignment of
commands with targets (registerCommand, unregisterCommand, and listMappings), and a method for setting a default name
for the target (setDefaultTargetName). The default target name is com.ibm.websphere.command.LocalTarget, where
LocalTarget is a class that runs the command's performExecute method locally. Figure 82 shows the relevant variables and
the methods in the TargetPolicyDefault class.

Figure 82. Code example: The TargetPolicyDefault class

...
public class TargetPolicyDefault implements TargetPolicy, Serializable
{
 ...
 protected String defaultTargetName = "com.ibm.websphere.command.LocalTarget";
 public CommandTarget getCommandTarget(TargetableCommand command) {
 ... }
 public Dictionary listMappings() {
 ... }
 public void registerCommand(String commandName, String targetName) {
 ... }
 public void unregisterCommand(String commandName) {
 ... }
 public void seDefaultTargetName(String defaultTargetName) {
 ... }
}

Setting the command target

The ModifyCheckingAccountImpl class provides two command constructors (see Figure 70). One of them takes a
command target as an argument and implicitly uses the default target policy to locate the target. The constructor used in
Figure 77 passes a null target, so that the default target policy traverses its choices and eventually finds the default target
name, LocalTarget.

The example in Figure 83 uses the same constructor to set the target explicitly. This example differs from Figure 77 as
follows:

The command target is set to the checking account rather than null. The default target policy starts to traverse its
choices and finds the target in the first place it looks.

●

It does not have to call the setCheckingAccount method to indicate the account on which the command should
operate; the constructor uses the target variable as both the target and the account.

●

Figure 83. Code example: Identifying a target with CommandTarget

{
 ...
 CheckingAccount checkingAccount

 try {
 ModifyCheckingAccountCmd cmd =
 new ModifyCheckingAccountCmdImpl(checkingAccount, 1000);
 cmd.execute();
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 ...
}

Setting the command target name

If a client needs to set the target of the command by name, it can use the command's setCommandTargetName method.
Figure 84 illustrates this technique. This example compares with Figure 77 as follows:

Both explicitly set the command target in the constructor to null.●

Both use the setCheckingAccount method to indicate the account on which the command should operate.●

This example sets the target name explicitly by using the setCommandTargetName method. When the default target
policy traverses its choices, it finds a null for the first choice and a name for the second.

●

Figure 84. Code example: Identifying a target with CommandTargetName

{
 ...
 CheckingAccount checkingAccount

 try {
 ModifyCheckingAccountCmd cmd =
 new ModifyCheckingAccountCmdImpl(null, 1000);
 cmd.setCheckingAccount(checkingAccount);
 cmd.setCommandTargetName("com.ibm.sfc.cmd.test.CheckingAccountBean");
 cmd.execute();
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 ...
}

Mapping the command to a target name

The default target policy also permits commands to be registered with targets. Mapping a command to a target is an
administrative task that most appropriately done through a configuration tool. The WebSphere Application Server
administrative console does not yet support the configuration of mappings between commands and targets. Applications
that require support for the registration of commands with targets must supply the tools to manage the mappings. These
tools can be visual interfaces or command-line tools.

Figure 85 shows the registration of a command with a target. The names of the command class and the target are explicit in
the code, but in practice, these values would come from fields in a user interface or arguments to a command-line tool. If a
program creates a command as shown in Figure 77, with a null for the target, when the default target policy traverses its
choices, it finds a null for the first and second choices and a mapping for the third.

Figure 85. Code example: Mapping a command to a target in an external application

{
 ...
 targetPolicy.registerCommand(
 "com.ibm.sfc.cmd.test.ModifyCheckingAccountImpl",
 "com.ibm.sfc.cmd.test.CheckingAccountBean");
 ...
}

Customizing target policies

You can define custom target policies by implementing the TargetPolicy interface and providing a getCommandTarget
method appropriate for your application. The TargetableCommandImpl class provides setTargetPolicy and getTargetPolicy
methods for managing custom target policies.

So far, the target of all the commands has been a checking-account entity bean. Suppose that someone introduces a session
enterprise bean (MySessionBean) that can also act as a command target. Figure 86 shows a simple custom policy that sets
the target of every command to MySessionBean.

Figure 86. Code example: Creating a custom target policy

...
import java.io.*;
import java.util.*;
import java.beans.*;
import com.ibm.websphere.command.*;
public class CustomTargetPolicy implements TargetPolicy, Serializable {
 public CustomTargetPolicy {
 super();
 }
 public CommandTarget getCommandTarget(TargetableCommand command) {
 CommandTarget = null;
 try {
 target = (CommandTarget)Beans.instantiate(null,
 "com.ibm.sfc.cmd.test.MySessionBean");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Since commands are implemented as JavaBeans components, using custom target policies requires importing the java.beans
package and writing some elementary JavaBeans code. Also, your custom target-policy class must also implement the
java.io.Serializable interface.

Using a custom target policy

The ModifyCheckingAccountImpl class provides two command constructors (see Figure 70). One of them implicitly uses
the default target policy; the other takes a target policy object as an argument, which allows you to use a custom target
policy. The example in Figure 87 uses the second constructor, passing a null target and a custom target policy, so that the
custom policy is used to determine the target. After the command is executed, the code uses the reset method to return the
target policy to the default.

Figure 87. Code example: Using a custom target policy

{
 ...
 CheckingAccount checkingAccount

 try {
 CustomTargetPolicy customPolicy = new CustomTargetPolicy();
 ModifyCheckingAccountCmd cmd =
 new ModifyCheckingAccountCmdImpl(null, 1000, customPolicy);
 cmd.setCheckingAccount(checkingAccount);
 cmd.execute();
 cmd.reset();
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
}

Writing a command target (client-side adapter)

Commands can be used with any Java application, but the means of sending the command from the client to the server
varies. The application described in The example application used enterprise beans. The example in this section shows how
you can send a command to a servlet over the HTTP protocol.

In this example, the client implements the CommandTarget interface locally. Figure 88 shows the structure of the client-side
class; it implements the CommandTarget interface by implementing the executeCommand method.

Figure 88. Code example: The structure of a client-side adapter for a target

...
import java.io.*;
import java.rmi.*;
import com.ibm.websphere.command.*;
public class ServletCommandTarget implements CommandTarget, Serializable
{
 protected String hostName = "localhost";
 public static void main(String args[]) throws Exception
 {

 }
 public TargetableCommand executeCommand(TargetableCommand command)
 throws CommandException
 {

 }
 public static final byte[] serialize(Serializable serializable)
 throws IOException {
 ... }
 public String getHostName() {
 ... }
 public void setHostName(String hostName) {
 ... }
 private static void showHelp() {
 ... }

}

The main method in the client-side adapter constructs and intializes the CommandTarget object, as shown in Figure 89.

Figure 89. Code example: Instantiating the client-side adapter

public static void main(String args[]) throws Exception
{
 String hostName = InetAddress.getLocalHost().getHostName();
 String fileName = "MyServletCommandTarget.ser";
 // Parse the command line
 ...
 // Create and initialize the client-side CommandTarget adapter
 ServletCommandTarget servletCommandTarget = new ServletCommandTarget();
 servletCommandTarget.setHostName(hostName);
 ...
 // Flush and close output streams
 ...
}

Implementing a client-side adapter

The CommandTarget interface declares one method, executeCommand, which the client implements. The
executeCommand method takes a TargetableCommand object as input; it also returns a TargetableCommand. Figure 90
shows the implementation of the method used in the client-side adapter. This implementation does the following:

Serializes the command it receives●

Creates an HTTP connection to the servlet●

Creates input and output streams, to handle the command as it is sent to the server and returned●

Places the command on the output stream●

Sends the command to the server●

Retrieves the returned command from the input stream●

Returns the returned command to the caller of the executeCommand method●

Figure 90. Code example: A client-side implementation of the executeCommand method

public TargetableCommand executeCommand(TargetableCommand command)
 throws CommandException
{
 try {
 // Serialize the command
 byte[] array = serialize(command);
 // Create a connection to the servlet
 URL url = new URL
 ("http://" + hostName +
 "/servlet/com.ibm.websphere.command.servlet.CommandServlet");
 HttpURLConnection httpURLConnection =
 (HttpURLConnection) url.openConnection();
 // Set the properties of the connection
 ...
 // Put the serialized command on the output stream
 OutputStream outputStream = httpURLConnection.getOutputStream();
 outputStream.write(array);
 // Create a return stream
 InputStream inputStream = httpURLConnection.getInputStream();
 // Send the command to the servlet
 httpURLConnection.connect();
 ObjectInputStream objectInputStream =
 new ObjectInputStream(inputStream);
 // Retrieve the command returned from the servlet

 Object object = objectInputStream.readObject();
 if (object instanceof CommandException) {
 throw ((CommandException) object);
 }
 // Pass the returned command back to the calling method
 return (TargetableCommand) object;
 }
 // Handle exceptions

}

Running the command in the servlet

The servlet that runs the command is shown in Figure 91. The service method retrieves the command from the input stream
and runs the performExecute method on the command. The resulting object, with any output properties that must be
returned to the client, is placed on the output stream and sent back to the client.

Figure 91. Code example: Running the command in the servlet

...
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.websphere.command.*;
public class CommandServlet extends HttpServlet {
 ...
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 try {
 ...
 // Create input and output streams
 InputStream inputStream = request.getInputStream();
 OutputStream outputStream = response.getOutputStream();
 // Retrieve the command from the input stream
 ObjectInputStream objectInputStream =
 new ObjectInputStream(inputStream);
 TargetableCommand command = (TargetableCommand)
 objectInputStream.readObject();
 // Create the command for the return stream
 Object returnObject = command;

 // Try to run the command's performExecute method
 try {
 command.performExecute();
 }
 // Handle exceptions from the performExecute method
 ...

 // Return the command with any output properties
 ObjectOutputStream objectOutputStream =
 new ObjectOutputStream(outputStream);
 objectOutputStream.writeObject(returnObject);
 // Flush and close output streams
 ...
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }

}

In this example, the target invokes the performExecute method on the command, but this is not always necessary. In some
applications, it can be preferable to implement the work of the command locally. For example, the command can be used
only to send input data, so that the target retrieves the data from the command and runs a local database procedure based on
the input. You must decide the appropriate way to use commands in your application.

The localizable-text package

Overview

Users of distributed applications can come from widely varying areas; they can speak different languages, represent dates
and times in regionally specific ways, and use different currencies. An application intended to be used by such an audience
must either force them all to use the same interface (for example, an English-based interface), or it can be written in such a
way that it can be configured to the linguistic conventions of the users, so English-speaking users can use the English
interface but French-speaking users can interact with the application through a French interface.

An application that can present information to users in formats that abide by the users' linguistic conventions is said to be
localizable: the application can be configured to interact with users from different localities in linguistically appropriate
ways. In a localized application, a user in one region sees error messages, output, and interface elements (like menu options)
in the requested language. Additionally, other elements that are not strictly linguistic, like date and time formats and
currencies, are presented in the appropriate style for users in the specified region. A user in another region sees output in the
conventional language or format for that region.

Historically, the creation of localizable applications has been restricted to large corporations writing complex systems. The
strategies for writing localizable code, collectively called internationalization techniques, have traditionally been expensive
and difficult to implement, so they have been applied only to major development efforts. However, given the rise in
distributed computing and in use of the World Wide Web, application developers have been pressured to make a much
wider variety of applications localizable. This requires making internationalization--the techniques for writing localizable
programs--much more accessible to application developers. The WebSphere localizable-text package is a set of Java classes
and interfaces that can be used by WebSphere application developers to localize distributed WebSphere applications easily.
Language catalogs for distributed WebSphere applications can be stored centrally, so the catalogs can be maintained and
administered efficiently.

Writing localizable programs

In a nonlocalizable application, parts of the application that a user sees are unalterably coded into the application. For
example, a routine that prints an error message simply prints a string, probably in English, to a file or the console. A
localizable program adds a layer of abstraction into the design. Instead of going simply from error condition to output
string, a localizable program represents error messages with some language-neutral information; in the simplest case, each
error condition corresponds to a key. In order to print a usable error string for the user, the application looks up the key in
the configured message catalog. A message catalog is a list of keys with corresponding strings. Different message catalogs
provide the strings in different languages. The application looks up the key in the appropriate catalog, retrieves the
corresponding error message in the desired language, and prints this string for the user.

The technique of localization can be used for far more than translating error messages. For example, by using keys to
represent each element--button, label, menu item, and so forth--in a graphical user interface and by providing a message
catalog containing translations of the button names, labels, and menu items, the graphical interface can be automatically
translated into multiple languages. In addition, extending support to additional languages requires providing message
catalogs for those languages; the application itself requires no modification.

Localization of an application is driven by two variables, the time zone and the locale. The time zone variable indicates how
to compute the local time as an offset from a standard time like Greenwich Mean Time. The locale is a collection of
information that indicates a geographic, political, or cultural region. It provides information on language, currency, and the
conventions for presenting information like dates, and in a localizable program, the locale also indicates the message
catalog from which an application retrieves messages. A time zone can cover many locales, and a single locale can span
time zones. With both time zone and locale, the date, time, currency, and language for users in a specific region can be
determined.

Identifying localizable text

To write a localizable application, an application developer must determine which aspects of the application need to be
translatable. These are typically the parts of an application a user must read and understand. Application developers must
consider the parts of an application with which all users directly interact, like the application's interface, and the parts
serving more specialized purposes, like messages in log files. Good candidates for localization include:

Elements in graphical user interfaces

Title bars for windows❍

Menu names, and the items on the menus (for example, "select File > Open")❍

Labels on buttons (for example, "click the OK button")❍

Instructions directing users to fill in fields (for example, "enter the account number")❍

Any other elements that users must read❍

●

Prompts in command-line interfaces●

Output from the program

Responses to user input❍

Error messages❍

Text returned when exceptions are thrown❍

Other status messages (warnings, audit messages, and others)❍

●

After identifying each element of the application to be localized, application developers must assign a unique key to each
element and provide a message catalog for each language to be supported. Each message catalog consists of keys and the
corresponding language-specific strings. The key, therefore, is the link between the program and the message catalog; the
program internally refers to localizable elements by key and uses the message catalog to generate the output seen by the
user. Translated strings are generated by calling the format method on a LocalizableTextFormatter object, which represents
a key and a resource bundle (a set of message catalogs). The locale setting of the program determines the message catalog
in which to search for the key.

Creating message catalogs

After identifying each element to be localized, message catalogs must be created for each language to be supported. These
catalogs, which are implemented as Java resource bundles, can be created in two ways, either as subclasses of the
ResourceBundle class or as Java properties files. Resource bundles have a variety of uses in Java; for message catalogs, the
properties-file approach is more common. If properties files are used, support for languages to be added or removed without
modifying the application code, and catalogs can be prepared by people without programming expertise.

A message catalog implemented in a properties file consists of a line for each key, where a key identifies a localizable
element. Each line in the file has the following structure:

key = String corresponding to the key

For example, a grapical user interface for a banking system can have a pull-down menu to be used for selecting a type of
account, like savings or checking. The label for the pull-down menu and the account types on the menu are good choices for
localization. There are three elements that require keys: the label for the account menu and the two items on the menu. If the
keys are accountString, savingsString, and checkingString, the English properties file associates each with an English string.

Figure 92. Three elements in an English message catalog

accountString = Accounts
savingsString = Savings
checkingString = Checking
...

In the German properties files, each key is given a corresponding German value.

Figure 93. Three elements in a German message catalog

accountString = Konten
savingsString = Sparkonto

checkingString = Girokonto
...

Properties files can be added for any other needed languages, as well.

Naming the properties files

To enable resolution to a specific properties file, Java specifies naming conventions for the properties files in a resource
bundle: resourceBundleName_localeID.properties

Each file takes a fixed extension, .properties. The set of files making up the resource bundle is given a collective
name; for a simple banking application, an obvious name, like BankingResources, suffices for the resource bundle. Each
file is given the name of the resource bundle with a locale identifier; the specific value of the locale ID varies with the
locale. These are used internally by the Java.util.ResourceBundle class to match files in a resource bundle to combinations
of locale and time-zone settings. The details of the algorithm vary with the release of the JDK; see your Java documentation
for information specific to your installation.

In the banking application, typical files in the BankingResources resource bundle include BankingResources_en.properties
for the English message catalog and BankingResources_de.properties for the German catalog. Additionally, a default
catalog, BankingResources.properties, is provided for use when the requested catalog cannot be found. The default catalog
is often the English-language catalog.

Resource bundles containing message catalogs for use with localizable text need to be installed only on the systems where
the formatting of strings is actually performed. The resource bundles are typically placed in an application's JAR file. See
WebSphere support for more information.

Localization support in WebSphere and Java

The Java package com.ibm.websphere.i18n.localizabletext contains the classes and interfaces constituting the
localizable-text package. This package makes extensive use of the internationalization and localization features of the Java
language; programmers using the WebSphere localizable-text package must understand the underlying Java support, which
are not documented in any detail here.

Java support

The WebSphere localizable-text package relies primarily on the following Java components:

java.util.Locale●

java.util.TimeZone●

java.util.ResourceBundle●

java.text.MessageFormat●

This list is not exhaustive. WebSphere and these Java classes can also use related Java classes, but the related classes--for
example, java.util.Calendar--are typically special-purposes classes. This section briefly describes only the primary classes.

Locale

A Locale object in Java encapsulates a language and a geographic region, for example, the java.util.Locale.US object
contains locale information for the United States. An application that specifies a locale can then take advantage of the
locale-sensitive formatters built into the Java language. These formatters, in the java.text package, handle the presentation
of numbers, currency values, dates, and times.

TimeZone

A TimeZone object in Java encapsulates a representation of the time and provides methods for tasks like reporting the time
and accommodating seasonal time shifts. Applications use the time zone to determine the local date and time.

ResourceBundle

A resource bundle is a named collection of resources--information used by the application, for example, strings, fonts, and
images--used by a specific locale. The ResourceBundle class allows an application to retrieve the named resource bundle
appropriate to the locale. Resource bundles are used to hold the messages catalogs, as described in Writing localizable
programs. Resource bundles can be implemented in two ways, either as subclasses of the ResourceBundle class or as Java
properties files.

MessageFormat

The MessageFormat class can be used to construct strings based on parameters. As a simple example, suppose a localized
application represents a particular error condition with a numeric key. When the application reports the error condition, it
uses a message formatter to convert the numeric key into a meaningful string. The message formatter constructs the output
string by looking up the code (the parameter) in an appropriate resource bundle and retrieving the corresponding string from
the message catalog. Additional parameters--for example, another key representing the program module--can also be used
in assembling the output message.

WebSphere support

The WebSphere localizable-text package wraps the Java support and extends it for efficient and simple use in a distributed
environment. The primary class used by application programmers is the LocalizableTextFormatter class. Objects of this
class are created, typically in server programs, but clients can also create them. LocalizableTextFormatter objects are
created for specific resource-bundle names and keys. Client programs that receive LocalizableTextFormatter objects call the
object's format method. This method uses the locale of the client application to retrieve the appropriate resource bundle and
assemble the locale-specific message based on the key.

For example, suppose that a WebSphere client-server application supports both French and English locales; the server is
using an English locale and the client, a French locale. The server creates two resource bundles, one for English and one for
French. When the client makes a request that triggers a message, the server creates a LocalizableTextFormatter object
containing the name of the resource bundle and the key for the message, and passes the object back to the client.

When the client receives the LocalizableTextFormatter object, it calls the object's format method, which returns the
message corresponding to the key from the French resource bundle. The format method retrieves the client's locale and,
using the locale and name of the resource bundle, determines the resource bundle corresponding to the locale. (If the client
has set an English locale, calling the format method results in the retrieval of an English message.) The formatting of the
message is transparent to the client. In this simple client-server example, the resource bundles reside centrally with the
server. The client machine does not have to install them. Part of what the WebSphere localizable-text package provides is
the infrastructure to support centralized catalogs. WebSphere uses an enterprise bean, a stateless session bean provided with
the localizable-text package, to access the message catalogs. When the client calls the format method on the
LocalizableTextFormatter object, the following events occur internally:

The client application sets the time zone and locale values in the LocalizableTextFormatter object, either by passing
them explicitly or through defaults.

1.

A call, LocalizableTextFormatterEJBFinder, is made to retrieve a reference to the formatting enterprise bean.2.

Information from the LocalizableTextFormatter object, including the client's time zone and locale, is sent to the
formatting bean.

3.

The formatting bean uses the name of the resource bundle, the message key, the time zone, and the locale to
assemble the language-specific message.

4.

The enterprise bean returns the formatted message to the client.5.

The formatted message is inserted into the LocalizableTextFormatter object and returned by the format method.6.

A call to a LocalizableTextFormatter.format method requires at most one remote invocation, to contact the formatting
enterprise bean. However, the LocalizableTextFormatter object can optionally cache formatted messages, eliminating the
formatting call for subsequent uses. It also allows the application to set a fallback string; this means the application can still
return a readable string even if it cannot access a message catalog to retrieve the language-specific string. Additionally, the
resource bundles can be stored locally. The localizable-text package provides a static variable that indicates whether the
bundles are stored locally (LocalizableConfiguration.LOCAL) or remotely (LocalizableConfiguration.REMOTE), but the
setting of this variable applies to all applications running within a Java Virtual Machine (JVM).

The LocalizableTextFormatter class

The LocalizableTextFormatter class, found in the package com.ibm.websphere.i18n.localizabletext, is the primary
programming interface for using the localizable-text package. Objects of this class contain the information needed to create
language-specific strings from keys and resource bundles.

Location of message catalogs and the ApplicationName value

Applications written with the WebSphere localizable-text package can store message catalogs locally or remotely. In a
distributed environment, the use of remote, centrally stored catalogs is appropriate. All applications can use the same
catalogs, and administration and maintenance of the catalogs are simplified; each component does not need to store and
maintain copies of the message catalogs. Local formatting is useful in test situations and appropriate under some
circumstances. In order to support both local and remote formatting, a LocalizableTextFormatter object must indicate the
name of the formatting application. For example, when an application formats a message by using remote, centrally stored
catalogs, the message is actually formatted by a simple enterprise bean (see WebSphere support for more information).
Although the localizable-text package contains the code to automate looking up the enterprise bean and issuing a call to it,
the application needs to know the name of the formatting enterprise bean. Several methods in the LocalizableTextFormatter
class use a value described as application name; this refers to the name of the formatting application, which is not
necessarily the name of the application in which the value is set.

Caching messages

The LocalizableTextFomatter object can optionally cache formatted messages so that they do not have to be reformatted
when needed again. By default, caching is not used, but the LocalizableTextFormatter.setCacheSetting method can be used
to enable caching. When caching is enabled and the LocalizableTextFormatter.format method is called, the method
determines whether the message has already been formatted. If so, the cached message is returned. If the message is not
found in the cache, the message is formatted and returned to the caller, and a copy of the message is cached for future use.

If caching is disabled after messages have been cached, those messages remain in the cache until the cache is cleared by a
call to the LocalizableTextFormatter.clearCache method. The cache can be cleared at any time. The cache within a
LocalizableTextFormatter object is automatically cleared when any of the following methods are called on the object:

setResourceBundleName(String resourceBundleName)●

setPatternKey(String patternKey)●

setArguments(Object[] args)●

setApplicationName(String appName)●

Fallback information

Under some circumstances, it can be impossible to format a message. The localizable-text package implements a fallback
strategy, making it possible to get some information even if a message cannot be correctly formatted into the desired
language. The LocalizableTextFomatter object can optionally store a fallback value for a message string, the time zone, and
the locale. These can be ignored unless the LocalizableTextFormatter object throws an exception.

Application-specific variables

The localizable-text package provides native support for localization based on time zone and locale, but application
developers can construct messages on the basis of other values as well. The localizable-text package provides an illustrative
class, LocalizableTextDateTimeArgument, which reports the date and time. The date and time information is localized by
using the locale and time-zone values, but the class also uses additional variables to determine how the output is presented.
The date and time information can be requested in a variety of styles, from the fully detailed to the terse. In this example,
the construction of message strings is driven by three variables: the locale, the time zone, and the style. Applications can use
any number of variables in addition to locale and time zone for constructing messages. See Using optional arguments for
more information.

Writing a localizable application

To develop a WebSphere application that uses localizable text, application developers must do the following:

Determine the parts of the application to be localized.

Identify the application elements to be localized and assign each a key.❍

●

Create message catalogs for each language by associating a string with each key.❍

These tasks were described previously. See Identifying localizable text and Creating message catalogs for more
information.

Assemble language-specific strings from keys, resource bundles, and other arguments.

Create a LocalizableTextFormatter object.❍

Set the values within the object for the key, the name of the resource bundle, the name of the remote
formatting application, and any optional arguments.

❍

Call the format method on the LocalizableTextObject, which returns the assembled string.❍

This section describes these tasks.

●

Creating a LocalizableTextFormatter object

Server programs typically create LocalizableTextFormatter objects, which are sent to clients as the result of some operation;
clients format the objects at the appropriate time. Less typically, clients can create LocalizableTextFormatter objects
locally. To create a LocalizableTextFormatter object, applications use one of the constructors in the
LocalizableTextFormatter class:

LocalizableTextFormatter()●

LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName)●

LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName, Object[] args)●

The LocalizableTextFormatter object must have values set for the name of the resource bundle, the key, the name of the
formatting application, and for any optional values so the object can be formatted. The LocalizableTextFormatter object can
be created and the values set in one step by using the constructor that takes the necessary arguments, or the object can be
created and the values set in separate steps. Values are set by using methods on the LocalizableTextFormatter object; for
setting the values manually, rather than by using a constructor, use these methods:

setResourceBundleName(String resourceBundleName)●

setPatternKey(String patternKey)●

setApplicationName(String appName)●

setArguments(Object[] args)●

Note:

When values in the array of optional arguments are set within a LocalizableTextFormatter object, they are copied
into the object, not referenced. If an array variable holding a value is changed after the value has been copied into
the LocalizableTextFormatter object, the value in the LocalizableTextFormatter object will not reflect the change
unless it is also reset.

A LocalizableTextFormatter object also has methods that can be used to set values that cannot be set when the object is
created, for example:

To toggle the cache setting for the LocalizableTextFormatter object, use the setCacheSetting(boolean setting)
method (See Caching messages for more information.)

●

To clear the cache, use the clearLocalizableTextFormatter method●

To set fallback values, use these methods:

setFallBackString❍

setFallBackLocale❍

setFallBackTimeZone❍

(See Fallback information for more information.)

●

Each of these set methods also has a corresponding get method for retrieving the value. The clearLocalizableTextFormatter
method unsets all values, returning the LocalizableTextFormatter object to a blank state. After clearing the object, reuse the
object by setting new values and calling the format method again.

Figure 94 creates a LocalizableTextFormatter object by using the default constructor and uses methods on the new object to
set values for the key, name of the resource bundle, name of the formatting application, and fallback string on the object.

Figure 94. Code example: Creating a LocalizableTextFormatter object and setting values on it

import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;
public void drawAccountNumberGUI(String accountType) {
 ...
 LocalizableTextFormatter ltf = new LocalizableTextFormatter();
 ltf.setPatternKey("accountNumber");
 ltf.setResourceBundleName("BankingSample.BankingResources");
 ltf.setApplicationName("BankingSample");
 ltf.setFallBackString("Enter account number: ");
 ...
}

Setting localization values

The application requesting a localized message can specify the locale and time zone for which the message is to be
formatted, or the application can use the default values set for the JVM. For example, a graphical user interface can allow
users to select the language in which to display the menus. A default value must be set, either in the environment or
programmatically, so the menus can be generated when the application first starts, but users can then change the menu
language to suit their needs. Figure 95 illustrates how to change the locale used by the application based on the selection of
a menu item.

Figure 95. Code example: Setting the locale programmatically

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
...
import java.util.Locale;
public void actionPerformed(ActionEvent event) {
 String action = event.getActionCommand();
 ...
 if (action.equals("en_us")) {
 applicationLocale = new Locale("en", "US");
 ...
 }
 else if (action.equals("de_de")) {
 applicationLocale = new Locale("de", "DE");
 ...
 }
 else if (action.equals("fr_fr")) {
 applicationLocale = new Locale("fr", "FR");
 ...
 }
 ...
}

When an application calls a format method, it can specify no arguments, which causes the message to be formatted using
the JVM's default values for locale and time zone, or a combination of locale and time zone can be specified to override the
JVM's defaults. (See Generating the localized text for more information on the arguments to the format methods.)

Generating the localized text

After the LocalizableTextFormatter object has been created and the appropriate values set, the object can be formatted to
generate the string appropriate to the locale and time zone. The format methods in the LocalizableTextFormatter class
perform the work necessary to generate a string from a set of message keys and resource bundles, based on locale and time
zone. The LocalizableTextFormatter class provides four format methods. Each format method returns the formatted

message string. The methods take a combination of java.util.Locale and java.util.TimeZone objects and throw
LocalizableException objects:

String format();●

String format(locale);●

String format(timeZone);●

String format(locale, timeZone);●

The format method with no arguments uses the locale and time-zone values set as defaults for the JVM. The other format
methods can be used to override either or both of these values.

Figure 96 shows the creation of a localized string for the LocalizableTextFormatter object created in Figure 94; formatting
is based on the locale set in Figure 95. If the formatting fails, the application retrieves and uses the fallback string instead of
the localized string.

Figure 96. Code example: Formatting a LocalizableTextFormatter object

import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;
public void drawAccountNumberGUI(String accountType) {
 ...
 LocalizableTextFormatter ltf = new LocalizableTextFormatter();
 ltf.setPatternKey("accountNumber");
 ltf.setResourceBundleName("BankingSample.BankingResources");
 ltf.setApplicationName("BankingSample");
 ltf.setFallBackString("Enter account number: ");
 try {
 msg = new Label (ltf.format(this.applicationLocale) , Label.CENTER);
 }
 catch (LocalizableException le) {
 msg = new Label(ltf.getFallBackString(), Label.CENTER);
 }
 ...
}

Using optional arguments

The localizable-text package allows users to specify an array of optional arguments in a LocalizableTextFormatter object.
These optional arguments can greatly enhance the kinds of localization done in WebSphere applications. This section
describes two ways in which applications can use the optional arguments:

To assemble and format complex strings with variable substrings●

To customize the formatting of strings, taking variables other than locale and time zone into account●

Assembling complex strings

All of the keys discussed so far have represented flat strings; during localization, a string in the appropriate language is
substituted for the key. The localizable-text package also supports substitution into the strings, which can include variables
as placeholders. For example, an application that needs to report that an operation on a specified account was successful
must provide a string like "The operation on account number was successful"; the variable number is to be replaced by the
actual account number. Without support for creating strings with variable pieces, each possible string would need its own
key, or the strings would have to be built phrase by phrase.

Both of these approaches quickly become intractable if a variable can take many values or if a string has several variable
components. Instead, the localizable text package supports substitution of variables in strings with optional arguments. A
string in a message catalog uses integers in braces--for example, {0} or {1}--to represent variable components. Figure 97
shows an example from an English message catalog for a string with a single variable substitution. (The same key in
message catalogs for other languages has a translation of this string with the variable in the appropriate location for the
language.)

Figure 97. A message-catalog entry with a variable substring

successfulTransaction = The operation on account {0} was successful.

The values that are substituted into the string come from an array of optional arguments. One of the constructors for
LocalizableTextFormatter objects takes an array of objects as an argument, and such an array of objects can be set within
any LocalizableTextFormatter object. The array is used to hold values for variable parts of a string. When a format method
is called on the object, the array is passed to the format method, which takes an element of the array and substitutes it into a
placeholder with the matching index in the string. The value at index 0 in the array replaces the {0} variable in the string,
the value at index 1 replaces {1}, and so forth.

Figure 98 shows the creation of a single-element argument array and the creation and use of a LocalizableTextFormatter.
The element in the argument array is the account number entered by the user. The LocalizableTextFormatter is created by
using a constructor that takes the array of optional arguments; this can also be set directly by using the setArguments
method on the LocalizableTextFormatter object. Later in the code, the application calls the format method. The format
method automatically substitutes values from the array of arguments into the string returned from the appropriate message
catalog.

Figure 98. Code example: Formatting a message with a variable substring

public void updateAccount(String transactionType) {
 ...
 Object[] arg = { new String(this.accountNumber)};
 ...
 LocalizableTextFormatter successLTF =
 new LocalizableTextFormatter("BankingResources",
 "successfulTransaction",
 "BankingSample",
 arg);
 ...
 successLTF.format(this.applicationLocale);
 ...
}

Nesting LocalizableTextFormatter objects

The ability to substitute variables into the strings in message catalogs adds a level of flexibility to the localizable-text
package, but the additional flexibility is limited, at least in an international environment, unless the substituted arguments
themselves can be localized. For example, if an application needs to report that an operation on a specific account was
successful, a string like "The operation on account number was successful"--where the only variable is an account
number--can be translated and used in message catalogs for multiple languages. A string in which a variable is also a string,
for example, "The type operation on account number was successful"--where the new type variable takes values like
"deposit" and "withdrawal"--cannot be as easily translated. The values assumed by the type variable also need to be
localized.

Figure 99 shows a message string in an English catalog with two variables, one of which will be localized, and the keys for
two possible values. (The second variable in the string, the account number, is simply a number that must be substituted
into the string; it does not need to be localized.)

Figure 99. A message-catalog entry with two variable substrings

sucessfulTransaction = The {0} operation on account {1} was successful.
depositOpString = deposit
withdrawOpString = withdrawal

To support localization of substrings, the localizable-text package allows the nesting of LocalizableTextFormatter objects.
This is done simply by inserting a LocalizableTextFormatter object into the array of arguments for another
LocalizableTextFormatter. When the format method does the variable substitution, it formats any LocalizableTextFormatter
objects as it substitutes array elements for variables. This allows substrings to be formatted independently of the string in
which they are embedded.

Figure 100 modifies the example in Figure 98 to format a message with a localizable substring. First, a
LocalizableTextFormatter object for the localizable substring (referring to a deposit operation) is created. This object is

inserted, along with the account-number information, into the array of arguments. The array of arguments is then used in
constructing the LocalizableTextFormatter object for the complete string; when the format method is called, the embedded
LocalizableTextFormatter object is formatted to replace the first variable, and the account number is substituted for the
second variable.

Figure 100. Code example: Formatting a message with a localizable variable substring

public void updateAccount(String transactionType) {
 ...
 // Successful Deposit.
 LocalizableTextFormatter opLTF =
 new LocalizableTextFormatter("BankingResources,
 "depositOpString", "BankingSample");
 Object[] args = {opLTF, new String(this.accountNumber)};
 LocalizableTextFormatter successLTF =
 new LocalizableTextFormatter("BankingResources",
 "successfulTransaction",
 "BankingSample",
 args);
 ...
 successLTF.format(this.applicationLocale);
 ...
}

Customizing the behavior of a format method

The array of optional arguments can contain simple values, like an account number to be substituted into a formatted string,
and other LocalizableTextFormatter objects, representing localizable substrings to be substituted into a larger formatted
string. These techniques are described in Assembling complex strings. In addition, the optional-argument array can contain
objects of user-defined classes.

User-defined classes used as optional arguments provide application-specific format methods, which programmers can use
to perform localization on the basis of any number of values, not just locale and time zone. These user-defined classes need
to be available only on the systems where they are constructed and inserted into LocalizableTextFormatter objects and
where the actual formatting is done; client applications do not need to install these classes.

The localizable-text package provides an example of such a user-defined class in the LocalizableTextDateTimeArgument
class. This class allows date and time information to be selectively formatted according to the style values defined in the
java.text.DateFormat class and according to the constants defined by the LocalizableTextDateTimeArgument class.

The DateFormat styles determine how information is reported about a date. For example, when the DateFormat.FULL style
is chosen, the twenty-second day of February in 2000 is represented in English as Tuesday, February 22, 2000. When the
DateFormat.SHORT style is used, the same date is represented as 2/22/00. The valid values are:

DateFormat.FULL●

DateFormat.LONG●

DateFormat.MEDIUM●

DateFormat.SHORT●

DateFormat.DEFAULT●

The LocalizableTextDateTimeArgument class defines constants that can be used to request only date or time information,
or both, either in date-time order or in time-date order. The defined values are:

LocalizableTextDateTimeArgument.TIME●

LocalizableTextDateTimeArgument.DATE●

LocalizableTextDateTimeArgument.TIMEANDDATE●

LocalizableTextDateTimeArgument.DATEANDTIME●

An object of a user-defined class like the LocalizableTextDateTimeArgument class can be set in the optional-argument
array of a LocalizableTextFormatter object, and when the LocalizableTextFormatter object attempts to format the

user-defined object, it calls the format method on that object. That format method, written by the application developer, can
do whatever is appropriate with the application-specific values. In the case of the LocalizableTextDateTimeArgument class,
the format method determines if date, time, or both are required, formats them according to the DateFormat value, and
assembles them in the order requested in the LocalizableTextDateTimeArgument style. The date and time information are
also affected by the locale and time-zone values, but the refinements in the formatting are accomplished by the DateFormat
class and the user-defined values.

The string assembled from a user-defined class like the LocalizableTextDateTimeArgument class can then be substituted
into a larger string, just as the return values of nested LocalizableTextFormatter objects can be. When writing such
user-defined classes, it is helpful to think of them as specialized versions of the generic LocalizableTextFormatter class, and
the way in which the LocalizableTextFormatter class is written provides a model for writing user-defined classes.

Structure of the LocalizableTextFormatter class

The LocalizableTextFormatter class is a general-purpose class for localizable text. It extends the java.lang.Object class and
implements the java.io.Serializable interface and four localizable-text interfaces:

LocalizableTextLTZ●

LocalizableTextL●

LocalizableTextTZ●

LocalizableText●

Each of the localizable-text interfaces implemented by the LocalizableTextFormatter class implements the Localizable
interface (which simply extends the Serializable interface) and defines a single format method:

The LocalizableTextLTZ interface defines format(locale, timezone).●

The LocalizableTextL defines format(locale).●

The LocalizableTextTZ defines format(timezone).●

The LocalizableText defines format().●

Because the LocalizableTextFormatter class implements all four of these interfaces, it must provide an implementation for
each of these format methods.

Writing a user-defined class

A user-defined class must implement at least one of the localizable-text interfaces and its corresponding format method, as
well as the Serializable interface. If the class implements more than one of the localizable-text interfaces and format
methods, the order of evaluation of the interfaces is:

LocalizableTextLTZ1.

LocalizableTextL2.

LocalizableTextTZ3.

LocalizableText4.

For example, the LocalizableTextDateTimeArgument class implements only the LocalizableTextLTZ interface, as shown in
Figure 101.

Figure 101. Code example: The structure of the LocalizableTextDateTimeArgument class

package com.ibm.websphere.i18n.localizabletext;
import java.util.Locale;
import java.util.Date;
import java.text.DateFormat;
import java.util.TimeZone;
import java.io.Serializable;
public class LocalizableTextDateTimeArgument implements LocalizableTextLTZ,
 Serializable
{
 ...
}

A user-defined class must contain a constructor and an implementation of the format methods as defined in the
localizable-text interfaces that the class implements. It can also contain other methods as needed. The
LocalizableTextDateTimeArgument class contains a constructor, a single format method, an equality method, a hash-code
generator, and a string-conversion method.

Figure 102. Code example: The methods in the LocalizableTextDateTimeArgument class

...
public class LocalizableTextDateTimeArgument implements LocalizableTextLTZ,
 Serializable
{
 public final static int DATE = 1;
 public final static int TIME = 2;
 public final static int DATEANDTIME = 3;
 public final static int TIMEANDDATE = 4;
 private Date date = null;
 private dateTimeStyle = LocalizableTextDateTimeArgument.DATE;
 private int dateFormatStyle = DateFormat.FULL;
 ...
 public LocalizableTextDateTimeArgument(Date date, int dateTimeStyle,
 int dateFormatStyle)
 { ... }
 public boolean equals(Object param)
 { ... }
 public format (Locale locale, TimeZone timeZone)
 throws IllegalArgumentException
 { ... }

 public int hashCode()
 { ... }

 public String toString()
 { ... }
}

Each format method in the user-defined class can do whatever is appropriate for the application. In the
LocalizableTextDateTimeArgument class, the format method (see Figure 103 for the implementation) examines the setting
of the date-time style set within the object, for example, DATEANDTIME. It then assembles the requested information in
the requested order, according to the date-format value.

Figure 103. Code example: The format method in the LocalizableTextDateTimeArgument class

public format (Locale locale, TimeZone timeZone)
 throws IllegalArgumentException
{
 String returnString = null;

 switch(dateTimeStyle) {
 case LocalizableTextDateTimeArgument.DATE :
 {
 returnString = DateFormat.getDateInstance(dateFormatStyle,
 locale).format(date);
 break;
 }
 case LocalizableTextDateTimeArgument.TIME :
 {
 df = DateFormat.getTimeInstance(dateFormatStyle, locale);
 df.setTimeZone(timeZone);
 returnString = df.format(date);
 break;
 }
 case LocalizableTextDateTimeArgument.DATEANDTIME :

 {
 dateString = DateFormat.getDateInstance(dateFormatStyle,
 locale).format(date);
 df = DateFormat.getTimeInstance(dateFormatStyle, locale);
 df.setTimeZone(timeZone);
 timeString = df.format(date);
 returnString = dateString + " " + timeString;
 break;
 }
 case LocalizableTextDateTimeArgument.TIMEANDDATE :
 {
 dateString = DateFormat.getDateInstance(dateFormatStyle,
 locale).format(date);
 df = DateFormat.getTimeInstance(dateFormatStyle, locale);
 df.setTimeZone(timeZone);
 returnString = timeString + " " + dateString;
 break;
 }
 default :
 {
 throw new IllegalArgumentException();
 }
 }
 return returnString;
}

An application can create a LocalizableTextDateTimeArgument object (or an object of any other user-defined class) and
place it in the optional-argument array of a LocalizableTextFormatter object. When the LocalizableTextFormatter object
reaches the user-defined object, it will attempt to format it by calling the object's format method. The returned string is then
substituted for a variable as the LocalizableTextFormatter processes each element in the array of optional arguments.

Deploying the formatter enterprise bean

The LocalizableTextEJBDeploy tool is used by the application deployer to create a deployed LocalizableText JAR file for
the LocalizableText service. You must deploy the enterprise bean for each server per application where the service is to be
run. There may be servers for which the LocalizableText service does not need to be installed. The same deployed JAR file
can be included in several application Enterprise Archive (EAR) files, but additional steps are required when the EAR file is
deployed. The application deployer must also make sure that the application resource bundles are added to the application
EAR file as files. The server's CLASSPATH variable must be adjusted to include the deployed location of the EAR file.
This is so that the resource bundles can be located on the host and server.

Setting up the tool

Before the LocalizableTextEJBDeploy tool can be used, the following conditions must be met:

A JAR file called ltext.jar must exist in the lib directory under the WebSphere installation directory.●

A working directory has to exist for the tool to use. The location is passed to the tool.●

Using the LocalizableTextEJBDeploy Tool

After the prerequisites for the tool have been met, the tool can be used to deploy formatting session beans. The tool requires
values for five arguments:

LocalizableTextEJBDeploy -a <appName>
 -h <hostName>
 -i <installationDir>
 -s <serverName>
 -w <workingDir>

The required arguments, which can be specified in any order, follow:

appName: The name of the formatting session bean. This name is used in LocalizableTextFormatter objects to
specify where the actual formatting takes place. If a LocalizableTextFormatter object specifies a name that cannot be
resolved, an exception is thrown by the format method.

●

hostName: The name of the machine on which the formatting session bean is deployed. This value specified here is
case sensitive on all platforms.

●

installationDir: The location at which WebSphere Application Server is installed on the machine.●

serverName: The name of the WebSphere Application Server. If this argument is not specified, the value Default
Server is used.

●

workingDir: The name of the working directory for the tool to use.●

After the tool is run, a deployed JAR file is located in the working directory specified to the tool. This JAR file can be
included in the application EAR or WAR file.

Special considerations when deploying a LocalizableText enterprise bean

When the application is being deployed onto a host and server, during the deployment process you will be asked if you want
to regenerate the deployment code for the LocalizableText enterprise bean. Do not redeploy the bean. If the bean is
redeployed, the JNDI name will be wrong.

If more than one LocalizableText enterprise bean is deployed with an application, there are two ways to handle the
situation.

Run the LocalizableTextEJBDeploy tool for each host/server combination. The tool generates a unique JNDI name
for each enterprise bean. Otherwise, even though the bean has been deployed on multiple hosts and servers, the
JNDI name is not changed, and there is only one entry in the naming service.

●

During the deployment of the application, change the JNDI name for the localizable-text bean should begin with
com/ibm/websphere/i18n/localizabletext/homes/. This should be followed by the application and
host names, the server name, and by the string LocalizableTextEJBHome, all separated by two underscores,
as follows:

<AppName>/<HostName>__<ServerName> __LocalizableTextEJBHome

●

More-advanced programming concepts for enterprise beans
This chapter discusses some of the more advanced programming concepts associated with developing and using enterprise
beans. It includes information on developing entity beans with bean-managed persistence (BMP), writing the code required by
a BMP bean to interact with a database, and developing session beans that directly participate in transactions.

Developing entity beans with BMP

In an entity bean with container-managed persistence (CMP), the container handles the interactions between the enterprise
bean and the data source. In an entity bean with bean-managed persistence (BMP), the enterprise bean must contain all of the
code required for the interactions between the enterprise bean and the data source. For this reason, developing an entity bean
with CMP is simpler than developing an entity bean with BMP. However, you must use BMP if any of the following is true
about an entity bean:

The bean's persistent data is stored in more than one data source.●

The bean's persistent data is stored in a data source that is not supported by the EJB server that you are using.●

This section examines the development of entity beans with BMP. For information on the tasks required to develop an entity
bean with CMP, see Developing entity beans with CMP.

Every entity bean must contain the following basic parts:

The enterprise bean class. For more information, see Writing the enterprise bean class (entity with BMP).●

The enterprise bean's home interface. For more information, see Writing the home interface (entity with BMP).●

The enterprise bean's remote interface. For more information, see Writing the remote interface (entity with BMP).●

In an entity bean with BMP, you can create your own primary key class or use an existing class for the primary key. For more
information, see Writing or selecting the primary key class (entity with BMP).

Writing the enterprise bean class (entity with BMP)

In an entity bean with BMP, the bean class defines and implements the business methods of the enterprise bean, defines and
implements the methods used to create instances of the enterprise bean, and implements the methods invoked by the container
to move the bean through different stages in the bean's life cycle.

By convention, the enterprise bean class is named NameBean, where Name is the name you assign to the enterprise bean. The
enterprise bean class for the example AccountBM enterprise bean is named AccountBMBean. Every entity bean class with
BMP must meet the following requirements:

It must be public, it must not be abstract, and it must implement the javax.ejb.EntityBean interface. For more
information, see Implementing the EntityBean interface.

●

It must define instance variables that correspond to persistent data associated with the enterprise bean. For more
information, see Defining instance variables.

●

It must implement the business methods used to access and manipulate the data associated with the enterprise bean. For
more information, see Implementing the business methods.

●

It must contain code for getting connections to, interacting with, and releasing connections to the data source (or
sources) used to store the persistent data. For more information, see Using a database with a BMP entity bean.

●

It must define and implement an ejbCreate method for each way in which the enterprise bean can be instantiated. It can,
but is not required to, define and implement a corresponding ejbPostCreate method for each ejbCreate method. For
more information, see Implementing the ejbCreate and ejbPostCreate methods.

●

It must implement the ejbFindByPrimaryKey method that takes a primary key and determines if it is valid and unique.
It can also define and implement additional finder methods as required. For more information, see Implementing the
ejbFindByPrimaryKey and other ejbFind methods.

●

Note:

The enterprise bean class can implement the enterprise bean's remote interface, but this is not recommended. If the
enterprise bean class implements the remote interface, it is possible to inadvertently pass the this variable as a method

argument.

Figure 42 shows the import statements and class declaration for the example AccountBM enterprise bean.

Figure 42. Code example: The AccountBMBean class

...
import java.rmi.RemoteException;
import java.util.*;
import javax.ejb.*;
import java.lang.*;
import java.sql.*;
import com.ibm.ejs.doc.account.InsufficientFundsException;
public class AccountBMBean implements EntityBean {
 ...
}

Defining instance variables

An entity bean class can contain both persistent and nonpersistent instance variables; however, static variables are not
supported in enterprise beans unless they are also final (that is, they are constants). Persistent variables are stored in a database.
Unlike the persistent variables in a CMP entity bean class, the persistent variables in a BMP entity bean class can be private.

Nonpersistent variables are not stored in a database and are temporary. Nonpersistent variables must be used with caution and
must not be used to maintain the state of an EJB client between method invocations. This restriction is necessary because
nonpersistent variables cannot be relied on to remain the same between method invocations outside of a transaction because
other EJB clients can change these variables or they can be lost when the entity bean is passivated.

The AccountBMBean class contains three instance variables that represent persistent data associated with the AccountBM
enterprise bean:

accountId, which identifies the account ID associated with an account●

type, which identifies the account type as either savings (1) or checking (2)●

balance, which identifies the current balance of the account●

The AccountBMBean class contains several nonpersistent instance variables including the following:

entityContext, which identifies the entity context of each instance of an AccountBM enterprise bean. The entity context
can be used to get a reference to the EJB object currently associated with the bean instance and to get the primary key
object associated with that EJB object.

●

jdbcUrl, which encapsulates the database universal resource locator (URL) used to connect to the data source. This
variable must have the following format: dbAPI:databaseType:databaseName. For example, to specify a database
named sample in an IBM DB2 database with the Java Database Connectivity (JDBC) API, the argument is
jdbc:db2:sample.

●

driverName, which encapsulates the database driver class required to connect to the database.●

DBLogin, which identifies the database user ID required to connect to the database.●

DBPassword, which identifies password for the specified user ID (DBLogin) required to connect to the database.●

tableName, which identifies the database table name in which the bean's persistent data is stored.●

jdbcConn, which encapsulates a Java Database Connectivity (JDBC) connection to a data source within a
java.sql.Connection object.

●

Figure 43. Code example: The instance variables of the AccountBMBean class

...
public class AccountBMBean implements EntityBean {
 private EntityContext entityContext = null;
 ...
 private static final String DBRULProp = "DBURL";
 private static final String DriverNameProp = "DriverName";
 private static final String DBLoginProp = "DBLogin";
 private static final String DBPasswordProp = "DBPassword";
 private static final String TableNameProp = "TableName";

 private String jdbcUrl, driverName, DBLogin, DBPassword, tableName;
 private long accountId = 0;
 private int type = 1;
 private float balance = 0.0f;

 private Connection jdbcConn = null;
 ...
}

To make the AccountBM bean more portable between databases and database drivers, the database-specific variables (jdbcUrl,
driverName, DBLogin, DBPassword, and tableName) are set by retrieving corresponding environment variables contained in
the enterprise bean. The values of these variables are retrieved by the getEnvProps method, which is implemented in the
AccountBMBean class and invoked when the setEntityContext method is called. For more information, see Managing database
connections in the EJB server environment.

Although Figure 43 shows database access compatible with version 1.0 of the JDBC specification, you can also perform
database accesses that are compatible with version 2.0 of the JDBC specification. An administrator binds a
javax.sql.DataSource reference (which encapsulates the information that was formerly stored in the jdbcURL and driverName
variables) into the JNDI namespace. The entity bean with BMP does the following to get a java.sql.Connection:

DataSource ds = (dataSource)initialContext.lookup("java:comp/env/jdbc/MyDataSource");
Connection con = ds.getConnection();

where MyDataSource is the name the administrator assigned to the datasource.

Implementing the business methods

The business methods of an entity bean class define the ways in which the data encapsulated in the class can be manipulated.
The business methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB
client invokes the corresponding methods defined in the enterprise bean's remote interface by using an EJB object associated
with an instance of the enterprise bean, and the container invokes the corresponding methods in the instance of the enterprise
bean.

Therefore, for every business method implemented in the enterprise bean class, a corresponding method must be defined in the
enterprise bean's remote interface. The enterprise bean's remote interface is implemented by the container in the EJB object
class when the enterprise bean is deployed.

There is no difference between the business methods defined in the AccountBMBean bean class and those defined in the CMP
bean class AccountBean shown in Figure 10.

Implementing the ejbCreate and ejbPostCreate methods

You must define and implement an ejbCreate method for each way in which you want a new instance of an enterprise bean to
be created. For each ejbCreate method, you can also define a corresponding ejbPostCreate method. Each ejbCreate method
must correspond to a create method in the EJB home interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate methods cannot be invoked directly by the client.
Instead, the client invokes the create method of the enterprise bean's home interface by using the EJB home object, and the
container invokes the ejbCreate method followed by the ejbPostCreate method.

Unlike the method in an entity bean with CMP, the ejbCreate method in an entity bean with BMP must contain all of the code
required to insert the bean's persistent data into the data source. This requirement means that the ejbCreate method must get a
connection to the data source (if one is not already available to the bean instance) and insert the values of the bean's variables
into the appropriate fields in the data source.

Each ejbCreate method in an entity bean with BMP must meet the following requirements:

It must be public and return the bean's primary key class.●

Its arguments and return type must be valid for Java remote method invocation (RMI).●

It must contain the code required to insert the values of the persistent variables into the data source. For more
information, see Using a database with a BMP entity bean.

●

Each ejbPostCreate method must be public, return void, and have the same arguments as the matching ejbCreate method. If

necessary, both the ejbCreate method and the ejbPostCreate method can throw the java.rmi.RemoteException exception, the
javax.ejb.CreateException exception, the javax.ejb.DuplicateKeyException exception, and any user-defined exceptions.

Figure 44 shows the two ejbCreate methods required by the example AccountBMBean bean class. No ejbPostCreate methods
are required.

As in the AccountBean class, the first ejbCreate method calls the second ejbCreate method; the latter handles all of the
interaction with the data source. The second method initializes the bean's instance variables and then ensures that it has a valid
connection to the data source by invoking the checkConnection method. The method then creates, prepares, and executes an
SQL INSERT call on the data source. If the INSERT call is executed correctly, and only one row is inserted into the data
source, the method returns an object of the bean's primary key class.

Figure 44. Code example: The ejbCreate methods of the AccountBMBean class

public AccountBMKey ejbCreate(AccountBMKey key) throws CreateException,
 RemoteException {
 return ejbCreate(key, 1, 0.0f);
}
...
public AccountBMKey ejbCreate(AccountBMKey key, int type, float balance)
 throws CreateException, RemoteException
{
 accountId = key.accountId;
 this.type = type;
 this.balance = balance;
 checkConnection();
 // INSERT into database
 try {
 String sqlString = "INSERT INTO " + tableName +
 " (balance, type, accountid) VALUES (?,?,?)";
 PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
 sqlStatement.setFloat(1, balance);
 sqlStatement.setInt(2, type);
 sqlStatement.setLong(3, accountId);
 // Execute query
 int updateResults = sqlStatement.executeUpdate();
 ...
 }
 catch (Exception e) { // Error occurred during insert
 ...
 }
 return key;
}

Implementing the ejbFindByPrimaryKey and other ejbFind methods

At a minimum, each entity bean with BMP must define and implement the ejbFindByPrimaryKey method that takes a primary
key and determines if it is valid and unique for an instance of an enterprise bean; if the primary key is valid and unique, it
returns the primary key. An entity bean can also define and implement other finder methods to find enterprise bean instances.
All finder methods can throw the javax.ejb.FinderException exception to indicate an application-level error. Finder methods
designed to find a single bean can also throw the javax.ejb.ObjectNotFoundException exception, a subclass of the
FinderException class. Finder methods designed to return multiple beans should not use the ObjectNotFoundException to
indicate that no suitable beans were found; instead, such methods should return empty return values. Throwing the
java.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity beans for more information.

Like the business methods of the bean class, the ejbFind methods cannot be invoked directly by the client. Instead, the client
invokes a finder method on the enterprise bean's home interface by using the EJB home object, and the container invokes the
corresponding ejbFind method. The container invokes an ejbFind method by using a generic instance of that entity bean in the
pooled state.

Because the container uses an instance of an entity bean in the pooled state to invoke an ejbFind method, the method must do
the following:

Get a connection to the data source (or sources).1.

Query the data source for records that match specifications of the finder method.2.

Drop the connection to the data source (or sources).3.

For more information on these data source tasks, see Using a database with a BMP entity bean. Figure 45 shows the
ejbFindByPrimaryKey method of the example AccountBMBean class. The ejbFindByPrimaryKey method gets a connection to
its data source by calling the makeConnection method shown in Figure 45. It then creates and invokes an SQL SELECT
statement on the data source by using the specified primary key.

If one and only one record is found, the method returns the primary key passed to it in the argument. If no records are found or
multiple records are found, the method throws the FinderException. Before determining whether to return the primary key or
throw the FinderException, the method drops its connection to the data source by calling the dropConnection method described
in Using a database with a BMP entity bean.

Figure 45. Code example: The ejbFindByPrimaryKey method of the AccountBMBean class

public AccountBMKey ejbFindByPrimaryKey (AccountBMKey key)
 throws FinderException {
 boolean wasFound = false;
 boolean foundMultiples = false;
 makeConnection();
 try {
 // SELECT from database
 String sqlString = "SELECT balance, type, accountid FROM " + tableName
 + " WHERE accountid = ?";
 PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
 long keyValue = key.accountId;
 sqlStatement.setLong(1, keyValue);

 // Execute query
 ResultSet sqlResults = sqlStatement.executeQuery();

 // Advance cursor (there should be only one item)
 // wasFound will be true if there is one
 wasFound = sqlResults.next();

 // foundMultiples will be true if more than one is found.
 foundMultiples = sqlResults.next();
 }
 catch (Exception e) { // DB error
 ...
 }
 dropConnection();
 if (wasFound && !foundMultiples)
 {
 return key;
 }
 else
 {
 // Report finding no key or multiple keys
 ...
 throw(new FinderException(foundStatus));
 }
}

Figure 46 shows the ejbFindLargeAccounts method of the example AccountBMBean class. The ejbFindLargeAccounts
method also gets a connection to its data source by calling the makeConnection method and drops the connection by using the
dropConnection method. The SQL SELECT statement is also very similar to that used by the ejbFindByPrimaryKey method.
(For more information on these data source tasks and methods, see Using a database with a BMP entity bean.)

While the ejbFindByPrimaryKey method needs to return only one primary key, the ejbFindLargeAccounts method can be
expected to return zero or more primary keys in an Enumeration object. To return an enumeration of primary keys, the

ejbFindLargeAccounts method does the following:

It uses a while loop to examine the result set (sqlResults) returned by the executeQuery method.1.

It inserts each primary key in the result set into a hash table named resultTable by wrapping the returned account ID in
a Long object and then in an AccountBMKey object. (The Long object, memberId, is used as the hash table's index.)

2.

It invokes the elements method on the hash table to obtain the enumeration of primary keys, which it then returns.3.

Figure 46. Code example: The ejbFindLargeAccounts method of the AccountBMBean class

public Enumeration ejbFindLargeAccounts(float amount) throws FinderException {
 makeConnection();
 Enumeration result;
 try {
 // SELECT from database
 String sqlString = "SELECT accountid FROM " + tableName
 + " WHERE balance >= ?";
 PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
 sqlStatement.setFloat(1, amount);
 // Execute query
 ResultSet sqlResults = sqlStatement.executeQuery();
 // Set up Hashtable to contain list of primary keys
 Hashtable resultTable = new Hashtable();
 // Loop through result set until there are no more entries
 // Insert each primary key into the resultTable
 while(sqlResults.next() == true) {
 long acctId = sqlResults.getLong(1);
 Long memberId = new Long(acctId);
 AccountBMKey key = new AccountBMKey(acctId);
 resultTable.put(memberId, key);
 }
 // Return the resultTable as an Enumeration
 result = resultTable.elements();
 return result;
 } catch (Exception e) {
 ...
 } finally {
 dropConnection();
 }
}

Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from the javax.ejb.EntityBean interface. The container invokes
these methods to move the bean through different stages in the bean's life cycle. Unlike an entity bean with CMP, in an entity
bean with BMP, these methods must contain all of the code for the required interaction with the data source (or sources) used
by the bean to store its persistent data.

ejbActivate--This method is invoked by the container when the container selects an entity bean instance from the
instance pool and assigns that instance to a specific existing EJB object. This method must contain the code required to
activate the enterprise bean instance by getting a connection to the data source and using the bean's
javax.ejb.EntityContext class to obtain the primary key in the corresponding EJB object.

In the example AccountBMBean class, the ejbActivate method obtains the bean instance's account ID, sets the value of
the accountId variable, and invokes the checkConnection method to ensure that it has a valid connection to the data
source.

●

ejbLoad--This method is invoked by the container to synchronize an entity bean's persistent variables with the
corresponding data in the data source. (That is, the values of the fields in the data source are loaded into the persistent
variables in the corresponding enterprise bean instance.) This method must contain the code required to load the values
from the data source and assign those values to the bean's instance variables.

In the example AccountBMBean class, the ejbLoad method obtains the bean instance's account ID, sets the value of the
accountId variable, invokes the checkConnection method to ensure that it has a valid connection to the data source,
constructs and executes an SQL SELECT statement, and sets the values of the type and balance variables to match the

●

values retrieved from the data source.

ejbPassivate--This method is invoked by the container to disassociate an entity bean instance from its EJB object and
place the enterprise bean instance in the instance pool. This method must contain the code required to "passivate" or
deactivate an enterprise bean instance. Usually, this passivation simply means dropping the connection to the data
source.

In the example AccountBMBean class, the ejbPassivate method invokes the dropConnection method to drop the
connection to the data source.

●

ejbRemove--This method is invoked by the container when a client invokes the remove method inherited by the
enterprise bean's home interface (from the javax.ejb.EJBHome interface) or remote interface (from the
javax.ejb.EJBObject interface). This method must contain the code required to remove an enterprise bean's persistent
data from the data source. This method can throw the javax.ejb.RemoveException exception if removal of an enterprise
bean instance is not permitted. Usually, removal involves deleting the bean instance's data from the data source and
then dropping the bean instance's connection to the data source.

In the example AccountBMBean class, the ejbRemove method invokes the checkConnection method to ensure that it
has a valid connection to the data source, constructs and executes an SQL DELETE statement, and invokes the
dropConnection method to drop the connection to the data source.

●

setEntityContext--This method is invoked by the container to pass a reference to the javax.ejb.EntityContext interface
to an enterprise bean instance. This method must contain any code required to store a reference to a context.

In the example AccountBMBean class, the setEntityContext method sets the value of the entityContext variable to the
value passed to it by the container.

●

ejbStore--This method is invoked by the container when the container needs to synchronize the data in the data source
with the values of the persistent variables in an enterprise bean instance. (That is, the values of the variables in the
enterprise bean instance are copied to the data source, overwriting the previous values.) This method must contain the
code required to overwrite the data in the data source with the corresponding values in the enterprise bean instance.

In the example AccountBMBean class, the ejbStore method invokes the checkConnection method to ensure that it has a
valid connection to the data source and constructs and executes an SQL UPDATE statement.

●

unsetEntityContext--This method is invoked by the container, before an enterprise bean instance is removed, to free up
any resources associated with the enterprise bean instance. This is the last method called prior to removing an
enterprise bean instance.

In the example AccountBMBean class, the unsetEntityContext method sets the value of the entityContext variable to
null.

●

Writing the home interface (entity with BMP)

An entity bean's home interface defines the methods used by EJB clients to create new instances of the bean, find and remove
existing instances, and obtain metadata about an instance. The home interface is defined by the enterprise bean developer and
implemented in the EJB home class created by the container during enterprise bean deployment. The container makes the
home interface accessible to clients through the Java Naming and Directory Interface (JNDI).

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For
example, the AccountBM enterprise bean's home interface is named AccountBMHome. Every home interface for an entity
bean with BMP must meet the following requirements:

It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the
javax.ejb.EJBHome interface. See The javax.ejb.EJBHome interface for information on these methods.

●

Each method in the interface must be either a create method, which corresponds to an ejbCreate method (and possibly
an ejbPostCreate method) in the enterprise bean class, or a finder method, which corresponds to an ejbFind method in
the enterprise bean class. For more information, see Defining create methods and Defining finder methods.

●

The parameters and return value of each method defined in the home interface must be valid for Java RMI. For more
information, see The java.io.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must
include the java.rmi.RemoteException exception class.

●

Figure 47 shows the relevant parts of the definition of the home interface (AccountBMHome) for the example AccountBM
bean. This interface defines two abstract create methods: the first creates an AccountBM object by using an associated
AccountBMKey object, the second creates an AccountBM object by using an associated AccountBMKey object and

specifying an account type and an initial balance. The interface defines the required findByPrimaryKey method and the
findLargeAccounts method.

Figure 47. Code example: The AccountBMHome home interface

...
import java.rmi.*;
import javax.ejb.*;
import java.util.*;
public interface AccountBMHome extends EJBHome {
 ...
 AccountBM create(AccountBMKey key) throws CreateException,
 RemoteException;
 ...
 AccountBM create(AccountBMKey key, int type, float amount)
 throws CreateException, RemoteException;
 ...
 AccountBM findByPrimaryKey(AccountBMKey key)
 throws FinderException, RemoteException;
 ...
 Enumeration findLargeAccounts(float amount)
 throws FinderException, RemoteException;
}

Defining create methods

A create method is used by a client to create an enterprise bean instance and insert the data associated with that instance into
the data source. Each create method must be named create and it must have the same number and types of arguments as a
corresponding ejbCreate method in the enterprise bean class. (The ejbCreate method can itself have a corresponding
ejbPostCreate method.) The return types of the create method and its corresponding ejbCreate method are always different.

Each create method must meet the following requirements:

It must be named create.●

It must return the type of the enterprise bean's remote interface. For example, the return type for the create methods in
the AccountBMHome interface is AccountBM (as shown in Figure 13).

●

It must have a throws clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException
exception, and all of the exceptions defined in the throws clause of the corresponding ejbCreate and ejbPostCreate
methods.

●

Defining finder methods

A finder method is used to find one or more existing entity EJB objects. Each finder method must be named findName, where
Name further describes the finder method's purpose.

At a minimum, each home interface must define the findByPrimaryKey method that enables a client to locate an EJB object by
using the primary key only. The findByPrimaryKey method has one argument, an object of the bean's primary key class, and
returns the type of the bean's remote interface.

Every other finder method must meet the following requirements:

It must return the type of the enterprise bean's remote interface, the java.util.Enumeration interface, or the
java.util.Collection interface (when a finder method can return more than one EJB object or an EJB collection).

●

It must have a throws clause that includes the java.rmi.RemoteException and javax.ejb.FinderException exception
classes.

●

Although every entity bean must contain only the default finder method, you can write additional ones if needed. For example,
the AccountBM bean's home interface defines the findLargeAccounts method to find objects that encapsulate accounts with
balances of more than a specified dollar amount, as shown in Figure 47. Because this finder method can be expected to return a
reference to more than one EJB object, its return type is java.util.Enumeration.

Unlike the implementation in an entity bean with CMP, in an entity bean with BMP, the bean developer must fully implement
the ejbFindByPrimaryKey method that corresponds to the findByPrimaryKey method. In addition, the bean developer must

write each additional ejbFind method corresponding to the finder methods defined in the home interface. The implementation
of the ejbFind methods in the AccountBMBean class is discussed in Implementing the ejbFindByPrimaryKey and other
ejbFind methods.

Writing the remote interface (entity with BMP)

An entity bean's remote interface provides access to the business methods available in the bean class. It also provides methods
to remove an EJB object associated with a bean instance and to obtain the bean instance's home interface, object handle, and
primary key. The remote interface is defined by the EJB developer and implemented in the EJB object class created by the
container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example,
the AccountBM enterprise bean's remote interface is named AccountBM. Every remote interface must meet the following
requirements:

It must extend the javax.ejb.EJBObject interface. The remote interface inherits several methods from the
javax.ejb.EJBObject interface. See Methods inherited from javax.ejb.EJBObject for information on these methods.

●

It must define a corresponding business method for every business method implemented in the enterprise bean class.●

The parameters and return value of each method defined in the interface must be valid for Java RMI. For more
information, see The java.io.Serializable and java.rmi.Remote interfaces.

●

Each method's throws clause must include the java.rmi.RemoteException exception class.●

Figure 48 shows the relevant parts of the definition of the remote interface (AccountBM) for the example AccountBM
enterprise bean. This interface defines four methods for displaying and manipulating the account balance that exactly match
the business methods implemented in the AccountBMBean class. All of the business methods throw the
java.rmi.RemoteException exception class. In addition, the subtract method must throw the user-defined exception
com.ibm.ejs.doc.account.InsufficientFundsException because the corresponding method in the bean class throws this
exception. Furthermore, any client that calls this method must either handle the exception or pass it on by throwing it.

Figure 48. Code example: The AccountBM remote interface

...
import java.rmi.*;
import javax.ejb.*;
import com.ibm.ejs.doc.account.InsufficientFundsException;
public interface AccountBM extends EJBObject {
 ...
 float add(float amount) throws RemoteException;
 ...
 float getBalance() throws RemoteException;
 ...
 void setBalance(float amount) throws RemoteException;
 ...
 float subtract(float amount) throws InsufficientFundsException,
 RemoteException;
}

Writing or selecting the primary key class (entity with BMP)

Every entity EJB object has a unique identity within a container that is defined by a combination of the object's home interface
name and its primary key, the latter of which is assigned to the object at creation. If two EJB objects have the same identity,
they are considered identical.

The primary key class is used to encapsulate an EJB object's primary key. In an entity bean (with BMP or CMP), you can write
a distinct primary key class or you can use an existing class as the primary key class, as long as that class is serializable. For
more information, see The java.io.Serializable and java.rmi.Remote interfaces.

The example AccountBM bean uses a primary key class that is identical to the AccountKey class contained in the Account
bean shown in Figure 16, with the exception that the key class is named AccountBMKey.

Note:

The primary key class of an entity bean with BMP must implement the hashCode and equals method. In addition, the
variables that make up the primary key must be public.

The java.lang.Long class is also a good candidate for a primary key class for the AccountBM bean.

Using a database with a BMP entity bean

In an entity bean with BMP, each ejbFind method and all of the life cycle methods (ejbActivate, ejbCreate, ejbLoad,
ejbPassivate, and ejbStore) must interact with the data source (or sources) used by the bean to maintain its persistent data. To
interact with a supported database, the BMP entity bean must contain the code to manage database connections and to
manipulate the data in the database. The EJB server uses a set of specialized beans to encapsulate information about databases
and an IBM-specific interface to JDBC to allow entity bean interaction with a connection manager. For more information, see
Managing database connections in the EJB server environment

In general, there are three approaches to getting and releasing connections to databases:

The bean can get a database connection in the setEntityContext method and release it in the unsetEntityContext
method. This approach is the easiest for the enterprise bean developer to implement. However, without a connection
manager, this approach is not viable because under it bean instances hold onto database connections even when they
are not in use (that is, when the bean instance is passivated). Even with a connection manager, this approach does not
scale well.

●

The bean can get a database connection in the ejbActivate and ejbCreate methods, get and release a database
connection in each ejbFind method, and release the database connection in the ejbPassivate and ejbRemove methods.
This approach is somewhat more difficult to implement, but it ensures that only those bean instances that are activated
have connections to the database.

●

The bean can get and release a database connection in each method that requires a connection: ejbActivate, ejbCreate,
ejbFind, ejbLoad, and ejbStore. This approach is more difficult to implement than the first approach, but is no more
difficult than the second approach. This approach is the most efficient in terms of connection use and also the most
scalable.

●

The example AccountBM bean, uses the second approach described in the preceding text. The AccountBMBean class contains
two methods for making a connection to the DB2 database, checkConnection and makeConnection, and one method to drop
connections: dropConnection.The code required to make the AccountBM bean work with the connection manager is shown in
Managing database connections in the EJB server environment

The code required to manipulate data in a database is described in Manipulating data in a database.

Managing database connections in the EJB server environment

In the EJB server environment, the administrator creates a specialized set of entity beans that encapsulate information about
the database and the database driver. These specialized entity beans are created by using the WebSphere Administrative
Console.

An entity bean that requires access to a database must use JNDI to create a reference to an EJB object associated with the right
database bean instance. The entity bean can then use the IBM-specific interface (named
com.ibm.db2.jdbc.app.stdext.javax.sql.DataSource) to get and release connections to the database.

The DataSource interface enables the entity bean to transparently interact with the connection manager of the EJB server. The
connection manager creates a pool of database connections, which are allocated and deallocated to individual entity beans as
needed.

Getting an EJB object reference to a data source bean instance

Before a BMP entity bean can get a connection to a database, the entity bean must perform a JNDI lookup on the data source
entity bean associated with the database used to store the BMP entity bean's persistent data. Figure 49 shows the code required
to create an InitialContext object and then get an EJB object reference to a database bean instance. The JNDI name of the
database bean is defined by the administrator; it is recommended that the JNDI naming convention be followed when defining
this name. The value of the required database-specific variables are obtained by the getEnvProps method, which accesses the
corresponding environment variables from the deployed enterprise bean.

Because the connection manager creates and drops the actual database connections and simply allocates and deallocates these

connections as required, there is no need for the BMP entity bean to load and register the database driver. Therefore, there is
no need to define the driverName and jdbcUrl variables discussed in Defining instance variables.

Figure 49. Code example: Getting an EJB object reference to a data source bean instance in the setEntityContext
method (rewritten to use DataSource)

...
import com.ibm.db2.jdbc.app.stdext.javax.sql.DataSource;
import javax.naming.*;
...
InitialContext initContext = null;
DataSource ds = null;
...
 public void setEntityContext(EntityContext ctx)
 throws EJBException {
 entityContext = ctx;
 try {
 getEnvProps();
 ds = initContext.lookup("jdbc/sample");
 } catch (NamingException e) {
 ...
 }
 }
...

Allocating and deallocating a connection to a database

After creating an EJB object reference for the appropriate database bean instance, that object reference is used to get and
release connections to the corresponding database. Unlike when using the DriverManager interface, when using the
DataSource interface, the BMP entity bean does not really create and close data connections; instead, the connection manager
allocates and deallocates connections as required by the entity bean. Nevertheless, a BMP entity bean must still contain code to
send allocation and deallocation requests to the connection manager.

In the AccountBMBean class, the checkConnection method is called within other bean class methods that require a database
connection, but for which it can be assumed that a connection already exists. This method checks to make sure that the
connection is still available by checking if the jdbcConn variable is set to null. If the variable is null, the makeConnection
method is invoked to get the connection (that is a connection allocation request is sent to the connection manager).

The makeConnection method is invoked when a database connection is required. It invokes the getConnection method on the
data source object. The getConnection method is overloaded: it can take either a user ID and password or no arguments, in
which case the user ID and password are implicitly set to null (this version is used in Figure 50).

Figure 50. Code example: The checkConnection and makeConnection methods of the AccountBMBean class (rewritten
to use DataSource)

private void checkConnection() throws EJBeException {
 if (jdbcConn == null) {
 makeConnection();
 }
 return;
}
...
private void makeConnection() throws EJBeException {
 ...
 try {
 // Open database connection
 jdbcConn = ds.getConnection();
 } catch(Exception e) { // Could not get database connection
 ...
 }
}

Entity beans with BMP must also release database connections when a particular bean instance no longer requires it (that is,
they must send a deallocation request to the connection manager). The AccountBMBean class contains a dropConnection

method to handle this task. To release the database connection, the dropConnection method does the following (as shown in
Figure 51):

Invokes the close method on the connection object to tell the connection manager that the connection is no longer
needed.

1.

Sets the connection object reference to null.2.

Putting the close method inside a try/catch/finally block ensures that the connection object reference is always set to null even
if the close method fails for some reason. Nothing is done in the catch block because the connection manager must clean up
idle connections; this is not the job of the enterprise bean code.

Figure 51. Code example: The dropConnection method of the AccountBMBean class (rewritten to use DataSource)

private void dropConnection() {
 try {
 // Close the connection
 jdbcConn.close();
 catch (SQLException ex) {
 // Do nothing
 } finally {
 jdbcConn = null;
 }
}

Manipulating data in a database

After an instance of a BMP entity bean obtains a connection to its database, it can read and write data. The AccountBMBean
class communicates with the DB2 database by constructing and executing Java Structured Query Language (JSQL) calls by
using the java.sql.PreparedStatement interface.

As shown in Figure 52, the SQL call is created as a String (sqlString). The String variable is passed to the
java.sql.Connection.prepareStatement method; and the values of each variable in the SQL call are set by using the various
setter methods of the PreparedStatement class. (The variables are substituted for the question marks in the sqlString variable.)
Invoking the PreparedStatement.executeUpdate method executes the SQL call.

Figure 52. Code example: Constructing and executing an SQL update call in an ejbCreate method

private void ejbCreate(AccountBMKey key, int type, float initialBalance)
 throws CreateException, EJBException {
 // Initialize persistent variables and check for good DB connection
 ...
 // INSERT into database
 try {
 String sqlString = "INSERT INTO " + tableName +
 " (balance, type, accountid) VALUES (?,?,?)";
 PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
 sqlStatement.setFloat(1, balance);
 sqlStatement.setInt(2, type);
 sqlStatement.setLong(3, accountId);
 // Execute query
 int updateResults = sqlStatement.executeUpdate();
 ...
 }
 catch (Exception e) { // Error occurred during insert
 ...
 }
 ...
}

The executeUpdate method is called to insert or update data in a database; the executeQuery method is called to get data from
a database. When data is retrieved from a database, the executeQuery method returns a java.sql.ResultSet object, which must
be examined and manipulated using the methods of that class.

Note:

To improve scalability and performance, you do not need to call PreparedStatement for each database update. Instead,
you can cache the results of the first PreparedStatement call.

Figure 53 provides an example of how the data in a ResultSet is manipulated in the ejbLoad method of the AccountBMBean
class.

Figure 53. Code example: Manipulating a ResultSet object in the ejbLoad method

public void ejbLoad () throws EJBeException {
 // Get data from database
 try {
 // SELECT from database
 ...
 // Execute query
 ResultSet sqlResults = sqlStatement.executeQuery();
 // Advance cursor (there should be only one item)
 sqlResults.next();
 // Pull out results
 balance = sqlResults.getFloat(1);
 type = sqlResults.getInt(2);
 } catch (Exception e) {
 // Something happened while loading data.
 ...
 }
}

Using bean-managed transactions

In most situations, an enterprise bean can depend on the container to manage transactions within the bean. In these situations,
all you need to do is set the appropriate transactional properties in the deployment descriptor as described in Enabling
transactions and security in enterprise beans.

Under certain circumstances, however, it can be necessary to have an enterprise bean participate directly in transactions. By
setting the transaction attribute in an enterprise bean's deployment descriptor to BeanManaged, you indicate to the container
that the bean is an active participant in transactions.

Note:

The value BeanManaged is not a valid value for the transaction deployment descriptor attribute in entity beans. In
other words, entity beans cannot manage transactions.

When writing the code required by an enterprise bean to manage its own transactions, remember the following basic rules:

An instance of a stateless session bean cannot reuse the same transaction context across multiple methods called by an
EJB client. Therefore, it is recommended that the transaction context be a local variable to each method that requires a
transaction context.

●

An instance of a stateful session bean can reuse the same transaction context across multiple methods called by an EJB
client. Therefore, make the transaction context an instance variable or a local method variable at your discretion. (When
a transaction spans multiple methods, you can use the javax.ejb.SessionSynchronization interface to synchronize the
conversational state with the transaction.)

●

Figure 54 shows the standard code required to obtain an object encapsulating the transaction context. There are three basics
steps involved:

The enterprise bean class must set the value of the javax.ejb.SessionContext object reference in the setSessionContext
method.

1.

A javax.transaction.UserTransaction object is created by calling the getUserTransaction method on the SessionContext
object reference.

2.

The UserTransaction object is used to participate in the transaction by calling transaction methods such as begin and
commit as needed. If a enterprise bean begins a transaction, it must also complete that transaction either by invoking
the commit method or the rollback method.

Note:

In both EJB servers, the getUserTransaction method of the javax.ejb.EJBContext interface (which is inherited

3.

by the SessionContext interface) returns an object of type javax.transaction.UserTransaction rather than type
javax.jts.UserTransaction. While this is a deviation from the 1.0 version of the EJB Specification, the 1.1
version of the EJB Specification requires that the getUserTransaction method return an object of type
javax.transaction.UserTransaction and drops the requirement to return objects of type javax.jts.UserTransaction.

Figure 54. Code example: Getting an object that encapsulates a transaction context

...
import javax.transaction.*;
...
public class MyStatelessSessionBean implements SessionBean {
 private SessionContext mySessionCtx = null;
 ...
 public void setSessionContext(.SessionContext ctx) throws EJBException {
 mySessionCtx = ctx;
 }
 ...
 public float doSomething(long arg1) throws FinderException, EJBException {
 UserTransaction userTran = mySessionCtx.getUserTransaction();
 ...
 // User userTran object to call transaction methods
 userTran.begin();
 // Do transactional work
 ...
 userTran.commit();
 ...
 }
 ...
}

The following methods are available with the UserTransaction interface:

begin--Begins a transaction. This method takes no arguments and returns void.●

commit--Attempts to commit a transaction; assuming that nothing causes the transaction to be rolled back, successful
completion of this method commits the transaction. This method takes no arguments and returns void.

●

getStatus--Returns the status of the referenced transaction. This method takes no arguments and returns int; if no
transaction is associated with the reference, STATUS_NO_TRANSACTION is returned. The following are the valid
return values for this method:

STATUS_ACTIVE--Indicates that transaction processing is still in progress.❍

STATUS_COMMITTED--Indicates that a transaction has been committed and the effects of the transaction
have been made permanent.

❍

STATUS_COMMITTING--Indicates that a transaction is in the process of committing (that is, the transaction
has started committing but has not completed the process).

❍

STATUS_MARKED_ROLLBACK--Indicates that a transaction is marked to be rolled back.❍

STATUS_NO_TRANSACTION--Indicates that a transaction does not exist in the current transaction context.❍

STATUS_PREPARED--Indicates that a transaction has been prepared but not completed.❍

STATUS_PREPARING--Indicates that a transaction is in the process of preparing (that is, the transaction has
started preparing but has not completed the process).

❍

STATUS_ROLLEDBACK--Indicates that a transaction has been rolled back.❍

STATUS_ROLLING_BACK--Indicates that a transaction is in the process of rolling back (that is, the
transaction has started rolling back but has not completed the process).

❍

STATUS_UNKNOWN--Indicates that the status of a transaction is unknown.❍

●

rollback--Rolls back the referenced transaction. This method takes no arguments and returns void.●

setRollbackOnly--Specifies that the only possible outcome of the transaction is rollback. This method takes no
arguments and returns void.

●

setTransactionTimeout--Sets the timeout (in seconds) associated with the transaction. If some transaction participant
has not specifically set this value, a default timeout is used. This method takes a number of seconds (as type int) and
returns void.

●

Enabling transactions and security in enterprise
beans
This chapter examines how to enable transactions and security in enterprise beans by setting the appropriate
deployment descriptor attributes:

For transactions, a session bean can either use container-managed transactions or implement
bean-managed transactions; entity beans must use container-managed transactions. To enable
container-managed transactions, you must set the transaction attribute to any value except BeanManged
and set the transaction isolation level attribute. To enable bean-managed transactions, you must set the
transaction attribute to BeanManaged and set the transaction isolation level attribute. For more
information, see Setting transactional attributes in the deployment descriptor.

If you want a session bean to manage its own transactions, you must write the code that explicitly
demarcates the boundaries of a transaction as described in Using bean-managed transactions.

If you want an EJB client to manage its own transactions, you must explicitly code that client to do so as
described in Managing transactions in an EJB client.

●

For security, the run-as mode attribute is used by the EJB server environments. For information on the
valid values of this attribute, see Setting the security attribute in the deployment descriptor.

●

These attributes, like the other deployment descriptor attributes, are set by using one of the tools available. For
more information, see Tools for developing and deploying enterprise beans.

Setting transactional attributes in the deployment descriptor

The EJB Specification describes the creation of applications that enforce transactional consistency on the data
manipulated by the enterprise beans. However, unlike other specifications that support distributed transactions,
the EJB specification does not require enterprise bean and EJB client developers to write any special code to use
transactions. Instead, the container manages transactions based on two deployment descriptor attributes
associated with the EJB module, and the enterprise bean and EJB application developers are freed to deal with
the business logic of their applications.

Enterprise bean developers can specifically design enterprise beans and EJB applications that explicitly manage
transactions. For more information, see Using bean-managed transactions.

Under most conditions, transaction management can be handled within the enterprise beans, freeing the EJB
client developer of this task. However, EJB clients can participate in transactions if required or desired. For
more information, see Managing transactions in an EJB client.

Two attributes determine the way in which an enterprise bean is managed from a transactional perspective:

The transaction attribute defines the transactional manner in which the container invokes a method. This
attribute is part of the standard deployment descriptor. Setting the transaction attribute defines the valid
values of this attribute and explains their meanings.

●

The transaction isolation level attribute defines the manner in which transactions are isolated from each
other by the container. This attribute is an extension to the standard deployment descriptor. Setting the
transaction isolation level attribute defines the valid values of this attribute and explains their meanings.

●

Setting the transaction attribute

The transaction attribute defines the transactional manner in which the container invokes enterprise bean
methods. This attribute is set for individual methods in a bean. The following are valid values for this attribute
in decreasing order of transactional strictness:

BeanManaged

Notifies the container that the bean class directly handles transaction demarcation. This attribute value
can be specified only for session beans and it cannot be specified for individual bean methods. For more
information on designing session beans to implement this attribute value, see Using bean-managed
transactions.

Mandatory

Directs the container to always invoke the bean method within the transaction context associated with
the client. If the client attempts to invoke the bean method without a transaction context, the container
throws the javax.jts.TransactionRequiredException exception to the client. The transaction context is
passed to any EJB object or resource accessed by an enterprise bean method.

EJB clients that access these entity beans must do so within an existing transaction. For other enterprise
beans, the enterprise bean or bean method must implement the BeanManaged value or use the Required
or RequiresNew value. For non-enterprise bean EJB clients, the client must invoke a transaction by
using the javax.transaction.UserTransaction interface, as described in Managing transactions in an EJB
client.

Required

Directs the container to invoke the bean method within a transaction context. If a client invokes a bean
method from within a transaction context, the container invokes the bean method within the client
transaction context. If a client invokes a bean method outside of a transaction context, the container
creates a new transaction context and invokes the bean method from within that context. The transaction
context is passed to any enterprise bean objects or resources that are used by this bean method.

RequiresNew

Directs the container to always invoke the bean method within a new transaction context, regardless of
whether the client invokes the method within or outside of a transaction context. The transaction context
is passed to any enterprise bean objects or resources that are used by this bean method.

Supports

Directs the container to invoke the bean method within a transaction context if the client invokes the
bean method within a transaction. If the client invokes the bean method without a transaction context,
the container invokes the bean method without a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

NotSupported

Directs the container to invoke bean methods without a transaction context. If a client invokes a bean
method from within a transaction context, the container suspends the association between the transaction
and the current thread before invoking the method on the enterprise bean instance. The container then
resumes the suspended association when the method invocation returns. The suspended transaction
context is not passed to any enterprise bean objects or resources that are used by this bean method.

Never

Directs the container to invoke bean methods without a transaction context.

If the client invokes a bean method from within a transaction context, the container throws the
java.rmi.RemoteException exception.

❍

If the client invokes a bean method from outside a transaction context, the container behaves in
the same way as if the NotSupported transaction attribute was set. The client must call the
method without a transaction context.

❍

Table 1. Effect of the enterprise bean's transaction attribute on the transaction context

Transaction attribute Client transaction context Bean transaction context
Mandatory No transaction Not allowed

Client transaction Client transaction

RequiresNew No transaction New transaction

Client transaction New transaction

Required No transaction New transaction

Client transaction Client transaction

Supports No transaction No transaction

Client transaction Client transaction

NotSupported No transaction No transaction

Client transaction No transaction

Never No transaction No transaction

No transaction No transaction

When setting the deployment descriptor for an entity bean, you can mark getter methods as "Read-Only"
methods to improve performance. If a transaction unit of work includes no methods other than "Read-Only"
designated methods, then the entity bean state synchronization does not invoke store.

Setting the transaction isolation level attribute

The transaction isolation level determines how strongly one transaction is isolated from another. This attribute
is set for individual methods in a bean. However, within a transactional context, the isolation level associated
with the first method invocation becomes the required isolation level for all other methods invoked within that
transaction. If a method is invoked with a different isolation level from that of the first method, the
java.rmi.RemoteException exception is thrown.

The following are valid values for this attribute, in decreasing order of isolation:

Serializable

This level prohibits all of the following types of reads:

Dirty reads, where a transaction reads a database row containing uncommitted changes from a
second transaction.

❍

Nonrepeatable reads, where one transaction reads a row, a second transaction changes the same
row, and the first transaction rereads the row and gets a different value.

❍

Phantom reads, where one transaction reads all rows that satisfy an SQL WHERE condition, a
second transaction inserts a row that also satisfies the WHERE condition, and the first
transaction applies the same WHERE condition and gets the row inserted by the second
transaction.

❍

RepeatableRead

This level prohibits dirty reads and nonrepeatable reads, but it allows phantom reads.

ReadCommitted

This level prohibits dirty reads, but allows nonrepeatable reads and phantom reads.

ReadUncommitted

This level allows dirty reads, nonrepeatable reads, and phantom reads.

These isolation levels correspond to the isolation levels defined in the Java Database Connectivity (JDBC)

java.sql.Connection interface.

The container uses the transaction isolation level attribute as follows:

Session beans and entity beans with bean-managed persistence (BMP)--For each database connection
used by the bean, the container sets the transaction isolation level at the start of each transaction.

●

Entity beans with container-managed persistence (CMP)--The container generates database access code
that implements the specified isolation level.

●

None of these values permits two transactions to update the same data concurrently; one transaction must end
before another can update the same data. These values determine only how locks are managed for reading data.
However, risks to consistency can arise from read operations when a transaction does further work based on the
values read. For example, if one transaction is updating a piece of data and a second transaction is permitted to
read that data after it has been changed but before the updating transaction ends, the reading transaction can
make a decision based on a change that is eventually rolled back. The second transaction risks making a
decision on transient data.

Deciding which isolation level to use depends on several factors:

The acceptable level of risk to data consistency●

The acceptable levels of concurrency and performance●

The isolation levels supported by the underlying database●

The first two factors, risk to consistency and level of concurrency, are related. Decreasing the risk to
consistency requires you to decrease concurrency because reducing the risk to consistency requires holding
locks longer. The longer a lock is held on a piece of data, the longer concurrently running transactions must
wait to access that data. The Serializable value protects data by eliminating concurrent access to it. Conversely,
the ReadUncommitted value allows the highest degree of concurrency but entails the greatest risk to
consistency. You need to balance these two factors appropriately for your application.

By default, most developers deploy enterprise beans with the transaction isolation level set to Serializable. This
is the default value in IBM VisualAge for Java Enterprise Edition and other deployment tools. It is also the most
restrictive and protected transaction isolation level incurring the most overhead. Some workloads do not require
the isolation level and protection afforded by Serializable. A given application might never update the
underlying data or be run with other applications that also make concurrent updates. In that case, the application
would not have to be concerned with dirty, non-repeatable, or phantom reads. The ReadUncommitted isolation
level would probably be sufficient.

Because the transaction isolation level is set in the EJB module's deployment descriptor, the same enterprise
bean could be reused in different applications with different transaction isolation levels. The isolation level
requirements should be reviewed and adjusted appropriately to increase performance.

The third factor, isolation levels supported in the database, means that although the EJB specification allows
you to request one of the four levels of transaction isolation, it is possible that the database being used in the
application does not support all of the levels. Also, vendors of database products implement isolation levels
differently, so the precise behavior of an application can vary from database to database. You need to consider
the database and the isolation levels it supports when deciding on the value for the transaction isolation attribute
in deployment descriptors. Consult your database documentation for more information on supported isolation
levels.

Setting the security attribute in the deployment descriptor

When an EJB client invokes a method on an enterprise bean, the user context of the client principal is
encapsulated in a CORBA Current object, which contains credential properties for the principal. The Current
object is passed among the participants in the method invocation as required to complete the method.

The security service uses the credential information to determine the permissions that a principal has on various
resources. At appropriate points, the security service determines if the principal is authorized to use a particular
resource based on the principal's permissions.

If the method invocation is authorized, the security service does the following with the principal's credential
properties based on the value of the run-as mode attribute of the enterprise bean. If a specific identity is
required, the RunAsIdentity attribute is used to specify that identity.

Identity of Caller

The security service makes no changes to the principal's credential properties.

Identity of EJB Server

The security service alters the principal's credential properties to match the credential properties
associated with the EJB server.

Identity Assigned to Specified Role

A security principal that has been assigned to the specified role is used for the execution of the bean's
methods. This association is part of the application binding where the role is associated with a user ID
and password of a user who is granted that role.

Developing enterprise beans
This chapter explains the basic tasks required to develop and package the most common types of enterprise beans. Specifically, this
chapter focuses on creating stateless session beans and entity beans that use container-managed persistence (CMP); in the discussion of
stateless session beans, important information about stateful beans is also provided. For information on developing entity beans that use
bean-managed persistence (BMP), see Developing entity beans with BMP.

The information in this chapter is not exhaustive; however, it includes the information you need to develop basic enterprise beans. For
information on developing more complicated enterprise beans, consult a commercially available book on enterprise bean development.
The example enterprise beans discussed in this chapter and the example Java applications and servlets that use them are described in
Information about the examples described in the documentation.

This chapter describes the requirements for building each of the major components of an enterprise bean. If you do not intend to use one
of the commercially available integrated development environments (IDE), such as IBM's VisualAge for Java, you must build each of
these components manually (by using tools in the Java Development Kit and WebSphere). Manually developing enterprise beans is much
more difficult and error-prone than developing them in an IDE. Therefore, it is strongly recommended that you choose an IDE with
which you are comfortable.

Developing entity beans with CMP

In an entity bean with CMP, the container handles the interactions between the entity bean and the data source. In an entity bean with
BMP, the entity bean must contain all of the code required for the interactions between the entity bean and the data source. For this
reason, developing an entity bean with CMP is simpler than developing an entity bean with BMP.

This section examines the development of entity beans with CMP. While much of the information in this section also applies to entity
beans with BMP, there are some major differences between the two types. For information on the tasks required to develop an entity bean
with BMP, see Developing entity beans with BMP.

Every entity bean must contain the following basic parts:

The enterprise bean class. For more information, see Writing the enterprise bean class (entity with CMP).●

The enterprise bean's home interface. For more information, see Writing the home interface (entity with CMP).●

The enterprise bean's remote interface. For more information, see Writing the remote interface (entity with CMP).●

The enterprise bean's primary key class. For more information, see Writing the primary key class (entity with CMP).●

Writing the enterprise bean class (entity with CMP)

In a CMP entity bean, the bean class defines and implements the business methods of the enterprise bean, defines and implements the
methods used to create instances of the enterprise bean, and implements the methods used by the container to inform the instances of the
enterprise bean of significant events in the instance's life cycle. Enterprise bean clients never access the bean class directly; instead, the
classes that implement the home and remote interfaces are used to indirectly invoke the methods defined in the bean class.

By convention, the enterprise bean class is named NameBean, where Name is the name you assign to the enterprise bean. The enterprise
bean class for the example Account enterprise bean is named AccountBean. Every entity bean class with CMP must meet the following
requirements:

It must be public, it must not be abstract, and it must implement the javax.ejb.EntityBean interface. For more information, see
Implementing the EntityBean interface.

●

It must define instance variables that correspond to persistent data associated with the enterprise bean. For more information, see
Defining variables.

●

It must implement the business methods used to access and manipulate the data associated with the enterprise bean. For more
information, see Implementing the business methods.

●

It must define and implement an ejbCreate method for each way in which the enterprise bean can be instantiated. A corresponding
ejbPostCreate method must be defined for each ejbCreate method. For more information, see Implementing the ejbCreate and
ejbPostCreate methods.

●

Note:

The enterprise bean class can implement the enterprise bean's remote interface, but this is not recommended. If the enterprise bean
class implements the remote interface, it is possible to inadvertently pass the this variable as a method argument.

An enterprise bean class cannot implement two different interfaces if the methods in the interfaces have the same name, even if
the methods have different signatures, due to the Java-IDL mapping specification. Errors can occur when the enterprise bean is

deployed.

Figure 8 shows the main parts of the enterprise bean class for the example Account enterprise bean. (Emphasized code is in bold type.)
The sections that follow discuss these parts in greater detail.

Figure 8. Code example: The AccountBean class

...
import java.util.Properties;
import javax.ejb.*;
import java.lang.*;
public class AccountBean implements EntityBean {
 // Set instance variables here
 ...
 // Implement methods here
 ...
}

Defining variables

An entity bean class can contain both persistent and nonpersistent instance variables; however, static variables are not supported in
enterprise beans unless they are also final (that is, they are constants). Static variables are not supported because there is no way to
guarantee that they remain consistent across enterprise bean instances.

Container-managed fields (which are persistent variables) are stored in a database. Container-managed fields must be public.

Nonpersistent variables are not stored in a database and are temporary. Nonpersistent variables must be used with caution and must not
be used to maintain the state of an EJB client between method invocations. This restriction is necessary because nonpersistent variables
cannot be relied on to remain the same between method invocations outside of a transaction because other EJB clients can change these
variables, or they can be lost when the entity bean is passivated.

The AccountBean class contains three container-managed fields (shown in Figure 9):

accountId, which identifies the account ID associated with an account●

type, which identifies the account type as either savings (1) or checking (2)●

balance, which identifies the current balance of the account●

Figure 9. Code example: The variables of the AccountBean class

...
public class AccountBean implements EntityBean {
 private EntityContext entityContext = null;
 private ListResourceBundle bundle =
 ResourceBundle.getBundle(
 "com.ibm.ejs.doc.account.AccountResourceBundle");
 public long accountId = 0;
 public int type = 1;
 public float balance = 0.0f;
 ...
}

The deployment descriptor is used to identify container-managed fields in entity beans with CMP. In an entity bean with CMP, each
container-managed field must be initialized by each ejbCreate method (see Implementing the ejbCreate and ejbPostCreate methods).

A subset of the container-managed fields is used to define the primary key class associated with each instance of an enterprise bean. As is
shown in Writing the primary key class (entity with CMP), the accountId variable defines the primary key for the Account enterprise
bean. The AccountBean class contains two nonpersistent variables:

entityContext, which identifies the entity context of each instance of an Account enterprise bean. The entity context can be used to
get a reference to the EJB object currently associated with the bean instance and to get the primary key object associated with that
EJB object.

●

bundle, which encapsulates a resource bundle class (com.ibm.ejs.doc.account.AccountResourceBundle) that contains
locale-specific objects used by the Account bean.

●

Implementing the business methods

The business methods of an entity bean class define the ways in which the data encapsulated in the class can be manipulated. The
business methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB client invokes

the corresponding methods defined in the enterprise bean's remote interface, by using an EJB object associated with an instance of the
enterprise bean, and the container invokes the corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise bean class, a corresponding method must be defined in the enterprise
bean's remote interface. The enterprise bean's remote interface is implemented by the container in the EJB object class when the
enterprise bean is deployed.

Figure 10 shows the business methods for the AccountBean class. These methods are used to add a specified amount to an account
balance and return the new balance (add), to return the current balance of an account (getBalance), to set the balance of an account
(setBalance), and to subtract a specified amount from an account balance and return the new balance (subtract). The subtract method
throws the user-defined exception com.ibm.ejs.doc.account.InsufficientFundsException if a client attempts to subtract more money from
an account than is contained in the account balance. The subtract method in the Account bean's remote interface must also throw this
exception as shown in Figure 15. User-defined exception classes for enterprise beans are created as are any other user-defined exception
class. The message content for the InsufficientFundsException exception is obtained from the AccountResourceBundle class file by
invoking the getMessage method on the bundle object.

Note:

If an enterprise bean container catches a system exception from the business method of an enterprise bean, and the method is
running within a container-managed transaction, the container rolls back the transaction before passing the exception on to the
client. However, if the business method is throwing an application exception, then the transaction is not rolled back (it is
committed), unless the application has called setRollbackOnly function. In this case, the transaction is rolled back before the
exception is re-thrown.

Figure 10. Code example: The business methods of the AccountBean class

...
public class AccountBean implements EntityBean {
 ...
 public long accountId = 0;
 public int type = 1;
 public float balance = 0.0f;
 ...
 public float add(float amount) {
 balance += amount;
 return balance;
 }
 ...
 public float getBalance() {
 return balance;
 }
 ...
 public void setBalance(float amount) {
 balance = amount;
 }
 ...
 public float subtract(float amount) throws InsufficientFundsException {
 if(balance < amount) {
 throw new InsufficientFundsException(
 bundle.getMessage("insufficientFunds"));
 }
 balance -= amount;
 return balance;
 }
 ...
}

Standard application exceptions for entity beans

Version 1.1 of the EJB specification defines several standard application exceptions for use by enterprise beans. All of these exceptions
are subclasses of the javax.ejb.EJBException class. For entity beans with both container- and bean-managed persistence, the EJB
specification defines the following application exceptions:

javax.ejb.CreateException●

javax.ejb.DuplicateKeyException●

javax.ejb.RemoveException●

javax.ejb.FinderException●

javax.ejb.ObjectNotFoundException●

Application programmers can use the generic EJBException class or one of the provided subclassed exceptions, or programmers can
define their own exceptions by subclassing any of this family of exceptions. All of these exceptions inherit from the
javax.ejb.RuntimeException class and do not have to be explicitly declared in throws clauses.

Each exception is discussed in more detail within the relevant section; for more information on:

CreateException and DuplicateKeyException (a subclass of the CreateException class), see Implementing the ejbCreate and
ejbPostCreate methods.

●

javax.ejb.RemoveException, see Implementing the EntityBean interface.●

FinderException and ObjectNotFoundException (a subclass of the FinderException class), see Defining finder methods.●

Note:

Version 1.0 of the EJB specification used the java.rmi.RemoteException class to capture application-specific exceptions; the
EJBException class and its subclasses are new in the 1.1 version of the specification. Therefore, using the RemoteException class
is now deprecated in favor of the more precise exception classes. Older applications that use the RemoteException class can still
run, but enterprise beans compliant with version 1.1 of the specification must use the new exception classes.

Implementing the ejbCreate and ejbPostCreate methods

You must define and implement an ejbCreate method for each way in which you want a new instance of an enterprise bean to be created.
For each ejbCreate method, you must also define a corresponding ejbPostCreate method. Each ejbCreate and ejbPostCreate method must
correspond to a create method in the home interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate methods cannot be invoked directly by the client. Instead,
the client invokes the create method of the enterprise bean's home interface by using the EJB home object, and the container invokes the
ejbCreate method followed by the ejbPostCreate method. If the ejbCreate and ejbPostCreate methods are executed successfully, an EJB
object is created and the persistent data associated with that object is inserted into the data source.

For an entity bean with CMP, the container handles the required interaction between the entity bean instance and the data source between
calls to the ejbCreate and ejbPostCreate methods. For an entity bean with BMP, the ejbCreate method must contain the code to directly
handle this interaction. For more information on entity beans with BMP, see Developing entity beans with BMP.

Each ejbCreate method in an entity bean with CMP must meet the following requirements:

It must be public and return the same type as the primary key. The actual return value must be null.●

Its arguments must be valid for Java remote method invocation (RMI). For more information, see The java.io.Serializable and
java.rmi.Remote interfaces.

●

It must initialize the container-managed fields of the enterprise bean instance. The container extracts the values of these variables
and writes them to the data source after the ejbCreate method returns.

●

Each ejbPostCreate method must be public, return void, and have the same arguments as the matching ejbCreate method. If necessary,
both the ejbCreate method and the ejbPostCreate method can throw the javax.ejb.EJBException exception or one of the creation-related
subclasses, the CreateException or the DuplicateKeyException exceptions. The DuplicateKeyException class is a subclass of the
CreateException class. Throwing the java.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity
beans for more information.

Figure 11 shows two sets of ejbCreate and ejbPostCreate methods required for the example AccountBean class. The first set of ejbCreate
and ejbPostCreate methods are wrappers that call the second set of methods and set the type variable to 1 (corresponding to a savings
account) and the balance variable to 0 (zero dollars).

Figure 11. Code example: The ejbCreate and ejbPostCreate methods of the AccountBean class

...
public class AccountBean implements EntityBean {
 ...
 public long accountId = 0;
 public int type = 1;
 public float balance = 0.0f;
 ...
 public Integer ejbCreate(AccountKey key) {
 ejbCreate(key, 1, 0.0f);
 }
 ...
 public Integer ejbCreate(AccountKey key, int type, float initialBalance)
 throws EJBException {
 accountId = key.accountId;

 type = type;
 balance = initialBalance;
 }
 ...
 public void ejbPostCreate(AccountKey key)
 throws EJBException {
 ejbPostCreate(key, 1, 0);
 }
 ...
 public void ejbPostCreate(AccountKey key, int type, float initialBalance) { }
 ...
}

Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from the javax.ejb.EntityBean interface. The container invokes these
methods to inform the bean instance of significant events in the instance's life cycle. (For more information, see Entity bean life cycle.)
All of these methods must be public and return void; they can throw the javax.ejb.EJBException exception or, in the case of the
ejbRemove method, the javax.ejb.RemoveException exception. Throwing the java.rmi.RemoteException exception is deprecated; see
Standard application exceptions for entity beans for more information.

ejbActivate--This method is invoked by the container when the container selects an entity bean instance from the instance pool
and assigns that instance to a specific existing EJB object. This method must contain any code that you want to execute when the
enterprise bean instance is activated.

●

ejbLoad--This method is invoked by the container to synchronize an entity bean's container-managed fields with the
corresponding data in the data source. (That is, the values of the fields in the data source are loaded into the container-managed
fields in the corresponding enterprise bean instance.) This method must contain any code that you want to execute when the
enterprise bean instance is synchronized with associated data in the data source.

●

ejbPassivate--This method is invoked by the container when the container disassociates an entity bean instance from its EJB
object and places the enterprise bean instance in the instance pool. This method must contain any code that you want to execute
when the enterprise bean instance is "passivated" or deactivated.

●

ejbRemove--This method is invoked by the container when a client invokes the remove method inherited by the enterprise bean's
home interface from the javax.ejb.EJBHome interface. This method must contain any code that you want to execute before an
enterprise bean instance is removed from the container (and the associated data is removed from the data source). This method
can throw the javax.ejb.RemoveException exception if removal of an enterprise bean instance is not permitted.

●

setEntityContext--This method is invoked by the container to pass a reference to the javax.ejb.EntityContext interface to an
enterprise bean instance. If an enterprise bean instance needs to use this context at any time during its life cycle, the enterprise
bean class must contain an instance variable to store this value. This method must contain any code required to store a reference
to a context.

●

ejbStore--This method is invoked by the container when the container needs to synchronize the data in the data source with the
values of the container-managed fields in an enterprise bean instance. (That is, the values of the variables in the enterprise bean
instance are copied to the data source, overwriting the previous values.) This method must contain any code that you want to
execute when the data in the data source is overwritten with the corresponding values in the enterprise bean instance.

●

unsetEntityContext--This method is invoked by the container, before an enterprise bean instance is removed, to free up any
resources associated with the enterprise bean instance. This is the last method called prior to removing an enterprise bean
instance.

●

In entity beans with CMP, the container handles the required data source interaction for these methods. In entity beans with BMP, these
methods must directly handle the required data source interaction. For more information on entity beans with BMP, see More-advanced
programming concepts for enterprise beans.

These methods have several possible uses, including the following:

They can contain audit or debugging code.●

They can contain code for allocating and deallocating additional resources used by the bean instance (for example, an SNA
connection to a mainframe).

●

As shown in Figure 12, except for the setEntityContext and unsetEntityContext methods, all of these methods are empty in the
AccountBean class because no additional action is required by the bean for the particular life cycle states associated with the these
methods. The setEntityContext and unsetEntityContext methods are used in a conventional way to set the value of the entityContext
variable.

Figure 12. Code example: Implementing the EntityBean interface in the AccountBean class

...
public class AccountBean implements EntityBean {

 private EntityContext entityContext = null;
 ...
 public void ejbActivate() throws EJBException { }
 ...
 public void ejbLoad () throws EJBException { }
 ...
 public void ejbPassivate() throws EJBException { }
 ...
 public void ejbRemove() throws EJBException { }
 ...
 public void ejbStore () throws EJBException { }
 ...
 public void setEntityContext(EntityContext ctx) throws EJBException {
 entityContext = ctx;
 }
 ...
 public void unsetEntityContext() throws EJBException {
 entityContext = null;
 }
}

Writing the home interface (entity with CMP)

An entity bean's home interface defines the methods used by clients to create new instances of the bean, find and remove existing
instances, and obtain metadata about an instance. The home interface is defined by the enterprise bean developer and implemented in the
EJB home class created by the container during enterprise bean deployment.

The container makes the home interface accessible to enterprise bean clients through the Java Naming and Directory Interface (JNDI).
JNDI is independent of any specific naming and directory service and allows Java-based applications to access any naming and directory
service in a standard way.

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For example, the
Account enterprise bean's home interface is named AccountHome. Every home interface must meet the following requirements:

It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the javax.ejb.EJBHome
interface. See The javax.ejb.EJBHome interface for information on these methods.

●

Each method in the interface must be either a create method that corresponds to a set of ejbCreate and ejbPostCreate methods in
the EJB object class, or a finder method. For more information, see Defining create methods and Defining finder methods.

●

The parameters and return value of each method defined in the home interface must be valid for Java RMI. For more information,
see The java.io.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must include the
java.rmi.RemoteException exception class.

●

Figure 13 shows the relevant parts of the definition of the home interface (AccountHome) for the example Account bean. This interface
defines two abstract create methods: the first creates an Account object by using an associated AccountKey object, the second creates an
Account object by using an associated AccountKey object and specifying an account type and an initial balance. The interface defines the
required findByPrimaryKey method and a findLargeAccounts method, which returns a collection of accounts containing balances greater
than a specified amount.

Figure 13. Code example: The AccountHome home interface

...
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public interface AccountHome extends EJBHome {
 ...
 Account create (AccountKey id) throws CreateException, RemoteException;
 ...
 Account create(AccountKey id, int type, float initialBalance)
 throws CreateException, RemoteException;
 ...
 Account findByPrimaryKey (AccountKey id)
 RemoteException, FinderException;
 ...
 Enumeration findLargeAccounts(float amount)
 throws RemoteException, FinderException;
}

Defining create methods

A create method is used by a client to create an enterprise bean instance and insert the data associated with that instance into the data
source. Each create method must be named create and it must have the same number and types of arguments as a corresponding
ejbCreate method in the enterprise bean class. (The ejbCreate method must itself have a corresponding ejbPostCreate method.)

Each create method must meet the following requirements:

It must be named create.●

It must return the type of the enterprise bean's remote interface. For example, the return type for the create methods in the
AccountHome interface is Account (as shown in Figure 13).

●

It must have a throws clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException exception, and
all of the application exceptions defined in the throws clause of the corresponding ejbCreate and ejbPostCreate methods.

●

Defining finder methods

A finder method is used to find one or more existing entity EJB objects. Each finder method must be named findName, where Name
further describes the finder method's purpose.

At minimum, each home interface must define the findByPrimaryKey method that enables a client to locate an EJB object by using the
primary key only. The findByPrimaryKey method has one argument, an object of the bean's primary key class, and returns the type of the
bean's remote interface.

Every other finder method must meet the following requirements:

It must return the type of the enterprise bean's remote interface, the java.util.Enumeration interface, or the java.util.Collection
interface (when a finder method can return more than one EJB object or an EJB collection).

●

It must have a throws clause that includes the java.rmi.RemoteException and javax.ejb.FinderException exception classes.●

While every entity bean must contain the default finder method, you can write additional finder methods if needed. For example, the
Account bean's home interface defines the findLargeAccounts method to find objects that encapsulate accounts with balances of more
than a specified amount, as shown in Figure 14. Because this finder method can be expected to return a reference to more than one EJB
object, its return type is Enumeration.

Figure 14. Code example: The findLargeAccounts method

Enumeration findLargeAccounts(float amount)
 throws RemoteException, FinderException;

Every EJB server can implement the findByPrimaryKey method. During enterprise bean deployment, the container generates the code
required to search the database for the appropriate enterprise bean instance.

However, for each additional finder method that you define in the home interface, the enterprise bean deployer must associate finder
logic with that finder method. This logic is used by the EJB server during deployment to generate the code required to implement the
finder method.

The EJB Specification does not define the format of the finder logic, so the format can vary according to the EJB server you are using.
For more information on creating finder logic, see Creating finder logic in the EJB server.

Writing the remote interface (entity with CMP)

An entity bean's remote interface provides access to the business methods available in the bean class. It also provides methods to remove
an EJB object associated with a bean instance and to obtain the bean instance's home interface, object handle, and primary key. The
remote interface is defined by the enterprise bean developer and implemented in the EJB object class created by the container during
enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example, the
Account enterprise bean's remote interface is named Account. Every remote interface must meet the following requirements:

It must extend the javax.ejb.EJBObject interface. The enterprise bean's remote interface inherits several methods from the
javax.ejb.EJBObject interface. See Methods inherited from javax.ejb.EJBObject for information on these methods.

●

You must define a corresponding business method for every business method implemented in the enterprise bean class.●

The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The java.io.Serializable and java.rmi.Remote interfaces.

●

Each method's throws clause must include the java.rmi.RemoteException exception class.●

Figure 15 shows the relevant parts of the definition of the remote interface (Account) for the example Account enterprise bean. This
interface defines four methods for displaying and manipulating the account balance that exactly match the business methods implemented
in the AccountBean class. All of the business methods in the remote interface throw the java.rmi.RemoteException exception class. In
addition, the subtract method must throw the user-defined exception com.ibm.ejs.doc.account.InsufficientFundsException because the
corresponding method in the bean class throws this exception. Furthermore, any client that calls this method must either handle the
exception or pass it on by throwing it.

Figure 15. Code example: The Account remote interface

...
import java.rmi.*;
import javax.ejb.*;
public interface Account extends EJBObject
{
 ...
 float add(float amount) throws RemoteException;
 ...
 float getBalance() throws RemoteException;
 ...
 void setBalance(float amount) throws RemoteException;
 ...
 float subtract(float amount) throws InsufficientFundsException,
 RemoteException;
}

Writing the primary key class (entity with CMP)

Within a container, every entity EJB object has a unique identity that is defined by using a combination of the object's home interface
name and its primary key, the latter of which is assigned to the object at creation. If two EJB objects have the same identity, they are
considered identical.

Primary keys are specified in two ways:

Simple primary keys, which map to a single field in the entity bean class and are comprised of primitive Java data types (such as
integer or long), are specified in the deployment descriptor.

●

Composite primary keys, which map to multiple fields in the entity bean class (or to data structures built from the primitive Java
data types), must be encapsulated in a primary key class. More complicated enterprise beans are likely to have composite primary
keys, with multiple instance variables representing the primary key.

●

The primary key class is used to manage an EJB object's primary key. By convention, the primary key class is named NameKey, where
Name is the name of the enterprise bean. For example, the Account enterprise bean's primary key class is named AccountKey. The
primary key class must meet the following requirements:

It must be public and it must be serializable. For more information, see The java.io.Serializable and java.rmi.Remote interfaces.●

Its instance variables must be public, and the variable names must match a subset of the container-managed field names defined in
the enterprise bean class.

●

It must have a public default constructor, at a minimum.●

Note:

The primary key class of a CMP entity bean must override the equals method and the hashCode method inherited from the
java.lang.Object class.

Figure 16 shows a composite primary key class for an example enterprise bean, Item. In effect, this class acts as a wrapper around the
string variables productId and vendorId. The hashCode method for the ItemKey class invokes the corresponding hashCode method in the
java.lang.String class after creating a temporary string object by using the value of the productId variable. In addition to the default
constructor, the ItemKey class also defines a constructor that sets the value of the primary key variables to the specified strings.

Figure 16. Code example: The ItemKey primary key class

...
import java.io.*;
// Composite primary key class
public class ItemKey implements java.io.Serializable {

 public String productId;
 public String vendorId;
 // Constructors
 public ItemKey() { };
 public ItemKey(String productId, String vendorId) {

 this.productId = productId;
 this.vendorId = vendorId;
 }

 public String getProductId() {
 return productId;
 }
 public String getVendorId() {
 return vendorId;
 }
 ...
 // EJB server-specific method
 public boolean equals(Object other) {
 if (other instanceof ItemKey) {
 return (productId.equals(((ItemKey)
 other).productId)
 && vendorId.equals(((ItemKey)
 other).vendorId));
 }
 else
 return false;
 }
 ...
 // EJB server-specific method
 public int hashCode() {
 return (new productId.hashCode());
 }
 }

A primary key class can also be used to encapsulate a primary key that is not known ahead of time -- for instance, if the entity bean is
intended to work with several persistent data stores, each of which requires a different primary key structure. The entity bean's primary
key type is derived from the primary key type used by the underlying database that stores the entity objects; it does not necessarily have
to be known to the enterprise bean developer.

To specify an unknown primary key, do the following:

Declare the argument of the findByPrimaryKey class as java.lang.Object.●

Declare the return value of the ejbCreate method as java.lang.Object●

In the deployment descriptor, specify the primary key class as being of the type java.lang.Object.●

When the primary key selection is deferred to deployment, client applications cannot use methods that rely on knowledge of the primary
key type. In addition, applications cannot always depend on methods that return the type of the primary key (such as the
EntityContext.getPrimaryKey method) because the return type is determined at deployment.

Interacting with databases

This section contains general information and tips on enterprise beans and database access.

Although it is not necessary, it is good practice to specify the user ID and password for a data source either in the enterprise bean
to be using the data source, or in the container of the bean.

●

The container supports Option A and Option C caching. When Option A caching is in use, the application server hosting the
enterprise bean container must be the only updater of the data in the persistent store. As such, Option A caching is incompatible
with the following:

Workload managed servers (such as a cluster of clones)❍

Databases with data being shared among multiple applications❍

The default caching option is C (multiple entity bean instances, possibly in different servers, can update bean state in the
database). The default caching option can be changed from Option C to Option A by selecting "exclusive persistent store" in the
administrative console when creating the entity bean.

●

Shared database access corresponds to Option C caching. Option A and Option C caching are also known as commit option A and
commit option C, respectively.

Developing session beans

In their basic makeup, session beans are similar to entity beans. However, their purposes are very different.

From a component perspective, one of the biggest differences between the two types of enterprise beans is that session beans do not have
a primary key class and the session bean's home interface does not define finder methods. Session enterprise beans do not require primary
keys and finder methods because session EJB objects are created, associated with a specific client, and then removed as needed, whereas
entity EJB objects represent permanent data in a data source and can be uniquely identified with a primary key. Because the data for
session beans is never permanently stored, the session bean class does not have methods for storing data to and loading data from a data
source.

Every session bean must contain the following basic parts:

The enterprise bean class. For more information, see Writing the enterprise bean class (session).●

The enterprise bean's home interface. For more information, see Writing the home interface (session).●

The enterprise bean's remote interface. For more information, see Writing the remote interface (session).●

Writing the enterprise bean class (session)

A session bean class defines and implements the business methods of the enterprise bean, implements the methods used by the container
during the creation of enterprise bean instances, and implements the methods used by the container to inform the enterprise bean instance
of significant events in the instance's life cycle. By convention, the enterprise bean class is named NameBean, where Name is the name
you assign to the enterprise bean. The enterprise bean class for the example Transfer enterprise bean is named TransferBean. Every
session bean class must meet the following requirements:

It must define and implement the business methods that execute the tasks associated with the enterprise bean. For more
information, see Implementing the business methods.

●

It must define and implement an ejbCreate method for each way in which you want it to be able to instantiate the enterprise bean
class. For more information, see Implementing the ejbCreate methods.

●

It must be public, it must not be abstract, and it must implement the javax.ejb.SessionBean interface. For more information, see
Implementing the SessionBean interface.

●

Note:

Version 1.0 of the EJB specification allowed the methods in the session bean class to throw the java.rmi.RemoteException
exception to indicate a non-application exception. This practice is deprecated in version 1.1 of the specification. A session bean
compliant with version 1.1 of the specification should throw the javax.ejb.EJBException exception (a subclass of the
java.lang.RuntimeException class) or another RuntimeException exception instead. Because the javax.ejb.EJBException class is a
subclass of the java.lang.RuntimeException, EJBException exceptions do not need to be explicitly listed in the throws clause of
methods.

A session bean can be either stateful or stateless. In a stateless session bean, none of the methods depend on the values of variables set by
any other method, except for the ejbCreate method, which sets the initial (identical) state of each bean instance. In a stateful enterprise
bean, one or more methods depend on the values of variables set by some other method. As in entity beans, static variables are not
supported in session beans unless they are also final. Stateful session beans possibly need to synchronize their conversational state with
the transactional context in which they operate. For example, a stateful session bean possibly needs to reset the value of some of its
variables if a transaction is rolled back or it possibly needs to change these variables if a transaction successfully completes.

If a bean needs to synchronize its conversational state with the transactional context, the bean class must implement the
javax.ejb.SessionSynchronization interface. This interface contains methods to notify the session bean when a transaction begins, when it
is about to complete, and when it has completed. The enterprise bean developer can use these methods to synchronize the state of the
session enterprise bean instance with ongoing transactions.

The enterprise bean class can implement the enterprise bean's remote interface, but this is not recommended. If the enterprise bean class
implements the remote interface, it is possible to inadvertently pass the this variable as a method argument.

Figure 17 shows the main parts of the enterprise bean class for the example Transfer bean. The sections that follow discuss these parts in
greater detail.

The Transfer bean is stateless. If the Transfer bean's transferFunds method were dependent on the value of the balance variable returned
by the getBalance method, the TransferBean would be stateful.

Figure 17. Code example: The TransferBean class

...
import java.rmi.RemoteException;
import java.util.Properties;
import java.util.ResurceBundle;
import java.util.ListResourceBundle;
import javax.ejb.*;
import java.lang.*;
import javax.naming.*;

import com.ibm.ejs.doc.account.*;
...
public class TransferBean implements SessionBean {
 ...
 private SessionContext mySessionCtx = null;
 private InitialContext initialContext = null;
 private AccountHome accountHome = null;
 private Account fromAccount = null;
 private Account toAccount = null;
 ...
 public void ejbActivate() throws EJBException { }
 ...
 public void ejbCreate() throws EJBException {
 ...
 }
 ...
 public void ejbPassivate() throws EJBException { }
 ...
 public void ejbRemove() throws EJBException { }
 ...
 public float getBalance(long acctId) throws FinderException,
 EJBException {
 ...
 }
 ...
 public void setSessionContext(javax.ejb.SessionContext ctx)
 throws EJBException {
 ...
 }
 ...
 public void transferFunds(long fromAcctId, long toAcctId, float amount)
 throws EJBException {
 ...
 }
}

Implementing the business methods

The business methods of a session bean class define the ways in which an EJB client can manipulate the enterprise bean. The business
methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB client invokes the
corresponding methods defined in the enterprise bean's remote interface, by using an EJB object associated with an instance of the
enterprise bean, and the container invokes the corresponding methods in the enterprise bean instance.

Therefore, for every business method defined in the enterprise bean's remote interface, a corresponding method must be implemented in
the enterprise bean class. The enterprise bean's remote interface is implemented by the container in the EJBObject class when the
enterprise bean is deployed.

Figure 18 shows the business methods for the TransferBean class. The getBalance method is used to get the balance for an account. It
first locates the appropriate Account EJB object and then calls that object's getBalance method.

The transferFunds method is used to transfer a specified amount between two accounts (encapsulated in two Account entity EJB objects).
After locating the appropriate Account EJB objects by using the findByPrimaryKey method, the transferFunds method calls the add
method on one account and the subtract method on the other. Like all finder methods, findByPrimaryKey can throw both the
FinderException and RemoteException exceptions. The try/catch blocks are set up around invocations of the findByPrimaryKey method
to handle the entry of invalid account IDs by users. If the session bean user enters an invalid account ID, the findByPrimaryKey method
cannot locate an EJB object, and the finder method throws the FinderException exception. This exception is caught and converted into a
new FinderException exception containing information on the invalid account ID.

To call the findByPrimaryKey method, both business methods need to be able to access the EJB home object that implements the
AccountHome interface discussed in Writing the home interface (entity with CMP). Obtaining the EJB home object is discussed in
Implementing the ejbCreate methods.

Figure 18. Code example: The business methods of the TransferBean class

public class TransferBean implements SessionBean {
 ...
 private Account fromAccount = null;
 private Account toAccount = null;

 ...
 public float getBalance(long acctId) throws FinderException, EJBException {
 AccountKey key = new AccountKey(acctId);
 try {
 fromAccount = accountHome.findByPrimaryKey(key);
 } catch(FinderException ex) {
 throw new FinderException("Account " + acctId
 + " does not exist.");
 } catch(RemoteException ex) {
 throw new FinderException("Account " + acctId
 + " could not be found.");
 }
 return fromAccount.getBalance();
 }
 ...
 public void transferFunds(long fromAcctId, long toAcctId, float amount)
 throws EJBException, InsufficientFundsException, FinderException {
 AccountKey fromKey = new AccountKey(fromAcctId);
 AccountKey toKey = new AccountKey(toAcctId);
 try {
 fromAccount = accountHome.findByPrimaryKey(fromKey);
 } catch(FinderException ex) {
 throw new FinderException("Account " + fromAcctId
 + " does not exist.");
 } catch(RemoteException ex) {
 throw new FinderException("Account " + acctId
 + " could not be found.");
 }
 try {
 toAccount = accountHome.findByPrimaryKey(toKey);
 } catch(FinderException ex) {
 throw new FinderException("Account " + toAcctId
 + " does not exist.");
 } catch(RemoteException ex) {
 throw new FinderException("Account " + acctId
 + " could not be found.");
 }
 try {
 toAccount.add(amount);
 fromAccount.subtract(amount);
 } catch(InsufficientFundsException ex) {
 mySessionCtx.setRollbackOnly();
 throw new InsufficientFundsException("Insufficient funds in "
 + fromAcctId);
 }
 }
}

Implementing the ejbCreate methods

You must define and implement an ejbCreate method for each way in which you want an enterprise bean to be instantiated.

Each ejbCreate method must correspond to a create method in the enterprise bean's home interface. (Note that there is no ejbPostCreate
method in a session bean as there is in an entity bean.) Unlike the business methods of the enterprise bean class, the ejbCreate methods
cannot be invoked directly by the client. Instead, the client invokes the create method in the bean instance's home interface, and the
container invokes the ejbCreate method. If an ejbCreate method is executed successfully, an EJB object is created.

An ejbCreate method for a session bean must meet the following requirements:

The method must be declared as public and cannot be declared as final or static.●

It must return void.●

A stateless session bean must have only one ejbCreate method, which must return void and contain no arguments. A stateful
session bean can have multiple ejbCreate methods.

●

The throws clause can define arbitrary application exceptions. The javax.ejb.EJBException or another runtime exception can be used to
indicate non-application exceptions.

An ejbCreate method for an entity bean must meet the following requirements:

The method must be declared as public and cannot be declared as final or static.●

It must return the entity bean's primary key type.●

It must contain code to set the values of any variables needed by the EJB object.●

The throws clause can define arbitrary application exceptions. The javax.ejb.EJBException or another runtime exception can be used to
indicate non-application exceptions. Figure 19 shows the ejbCreate method required by the example TransferBean class. The Transfer
bean's ejbCreate method obtains a reference to the Account bean's home object. This reference is required by the Transfer bean's business
methods. Getting a reference to an enterprise bean's home interface is a two-step process:

Construct an InitialContext object by setting the required property values. For the example Transfer bean, these property values
are defined in the environment variables of the Transfer bean's deployment descriptor.

1.

Use the InitialContext object to create and get a reference to the home object. For the example Transfer bean, the JNDI name of
the Account bean is stored in an environment variable in the Transfer bean's deployment descriptor.

2.

Creating the InitialContext object

When a container invokes the Transfer bean's ejbCreate method, the enterprise bean's initialContext object is constructed by creating a
Properties variable (env) that requires the following values:

The location of the name service (javax.naming.Context.PROVIDER_URL).●

The name of the initial context factory (javax.naming.Context.INITIAL_CONTEXT_FACTORY).●

The values of these properties are discussed in more detail in Creating and getting a reference to a bean's EJB object.

Figure 19. Code example: Creating the InitialContext object in the ejbCreate method of the TransferBean class

...
public class TransferBean implements SessionBean {
 private static final String INITIAL_NAMING_FACTORY_SYSPROP =
 javax.naming.Context.INITIAL_CONTEXT_FACTORY;
 private static final String PROVIDER_URL_SYSPROP =
 javax.naming.Context.PROVIDER_URL;
 ...
 private String nameService = null;
 ...
 private String providerURL = null;
 ...
 private InitialContext initialContext = null;
 ...
 public void ejbCreate() throws EJBException {
 // Get the initial context
 try {
 Properties env = System.getProperties();
 ...
 env.put(PROVIDER_URL_SYSPROP, getProviderUrl());
 env.put(INITIAL_CONTEXT_FACTORY_SYSPROP, getNamingFactory());
 initialContext = new InitialContext(env);
 } catch(Exception ex) {
 ...
 }
 ...
 // Look up the home interface using the JNDI name
 ...
}

Although the example Transfer bean stores some locale specific variables in a resource bundle class, like the example Account bean, it
also relies on the values of environment variables stored in its deployment descriptor. Each of these InitialContext Properties values is
obtained from an environment variable contained in the Transfer bean's deployment descriptor. A private get method that corresponds to
the property variable is used to get each of the values (getNamingFactory and getProviderURL); these methods must be written by the
enterprise bean developer. The following environment variables must be set to the appropriate values in the deployment descriptor of the
Transfer bean.

javax.naming.Context.INITIAL_CONTEXT_FACTORY●

javax.naming.Context.PROVIDER_URL●

Figure 20 illustrates the relevant parts of the getProviderURL method that is used to get the PROVIDER_URL property value. The
javax.ejb.SessionContext variable (mySessionCtx) is used to get the Transfer bean's environment in the deployment descriptor by

invoking the getEnvironment method. The object returned by the getEnvironment method can then be used to get the value of a specific
environment variable by invoking the getProperty method.

Figure 20. Code example: The getProviderURL method

...
public class TransferBean implements SessionBean {
 private SessionContext mySessionCtx = null;
 ...
 private String getProviderURL() throws RemoteException {
 //get the provider URL property either from
 //the EJB properties or, if it isn't there
 //use "iiop:///", which causes a default to the local host
 ...
 String pr = mySessionCtx.getEnvironment().getProperty(
 PROVIDER_URL_SYSPROP);
 if (pr == null)
 pr = "iiop:///";
 return pr;
 }
 ...
}

Getting the reference to the home object

An enterprise bean is accessed by looking up the class implementing its home interface by name through JNDI. Methods on the home
interface provide access to an instance of the class implementing the remote interface.

After constructing the InitialContext object, the ejbCreate method performs a JNDI lookup using the JNDI name of the Account
enterprise bean. Like the PROVIDER_URL and INITIAL_CONTEXT_FACTORY properties, this name is also retrieved from an
environment variable contained in the Transfer bean's deployment descriptor (by invoking a private method named getHomeName). The
lookup method returns an object of type java.lang.Object.

The returned object is narrowed by using the static method javax.rmi.PortableRemoteObject.narrow to obtain a reference to the EJB
home object for the specified enterprise bean. The parameters of the narrow method are the object to be narrowed and the class of the
object to be created as a result of the narrowing. For a more thorough discussion of the code required to locate an enterprise bean in JNDI
and then narrow it to get an EJB home object, see Creating and getting a reference to a bean's EJB object.

Figure 21. Code example: Creating the AccountHome object in the ejbCreate method of the TransferBean class

...
public class TransferBean implements SessionBean {
 ...
 private String accountName = null;
 ...
 private InitialContext initialContext = null;
 ...
 public void ejbCreate() throws EJBException {
 // Get the initial context
 ...
 // Look up the home interface using the JNDI name
 try {
 java.lang.Object ejbHome = initialContext.lookup(accountName);
 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
 ejbHome, AccountHome.class);
 } catch (NamingException e) { // Error getting the home interface
 ...
 }
 ...
 }
 ...
}

Looking up an enterprise bean's environment naming context

The enterprise bean's environment is implemented by the container. It enables the bean's business logic to be customized without the
need to access or change the bean's source code. The container provides an implementation of the JNDI naming context that stores the
enterprise bean environment. Business methods access the environment by using the JNDI interfaces. The deployment descriptor

provides the environment entries that the enterprise bean expects at runtime.

Each enterprise bean defines its own environment entries, which are shared between all of its instances (that is, all instances with the
same home). Environment entries are not shared between enterprise beans.

An enterprise bean's environment entries are stored directly in the environment naming context (or one of its subcontexts). To retrieve its
environment naming context, an enterprise bean instance creates an InitialContext object by using the constructor with no arguments. It
then looks up the environment naming via the InitialContext object under the name java:comp/env.

The enterprise bean in Figure 22 changes an account number by looking up an environment entry to find the new account number.

Figure 22. Code example: Looking up an enterprise bean's environment naming context

public class AccountService implements SessionBean {
...
 public void changeAccountNumber(int accountNumber, ...)
 throws InvalidAccountNumberException{

 // Obtain the bean's environment naming context
 Context initialContext = new InitialContext();
 Context myEnvironment = (Context)initialContext.lookup("java:comp/env);
 ...
 // Obtain new account number from environment
 Integer newNumber = (Integer)myEnvironment.lookup("newAccountNumber");
 ... }
}

Implementing the SessionBean interface

Every session bean class must implement the methods inherited from the javax.ejb.SessionBean interface. The container invokes these
methods to inform the enterprise bean instance of significant events in the instance's life cycle. All of these methods must be public, must
return void, and can throw the javax.ejb.EJBException. (Throwing the java.rmi.RemoteException exception is deprecated; see *** for
more information.)

ejbActivate--This method is invoked by the container when the container selects an enterprise bean instance from the instance
pool and assigns it a specific existing EJB object. This method must contain any code that you want to execute when the
enterprise bean instance is activated.

●

ejbPassivate--This method is invoked by the container when the container disassociates an enterprise bean instance from its EJB
object and places the enterprise bean instance in the instance pool. This method must contain any code that you want to execute
when the enterprise bean instance is passivated (deactivated).

●

ejbRemove--This method is invoked by the container when a client invokes the remove method inherited by the enterprise bean's
home interface (from the javax.ejb.EJBHome interface). This method must contain any code that you want to execute when an
enterprise bean instance is removed from the container.

●

setSessionContext--This method is invoked by the container to pass a reference to the javax.ejb.SessionContext interface to a
session bean instance. If an enterprise bean instance needs to use this context at any time during its life cycle, the enterprise bean
class must contain an instance variable to store this value. This method must contain any code required to store a reference to the
context.

A session context can be used to get a handle to a particular instance of a stateful session bean. It can also be used to get a
reference to a transaction context object, as described in Using bean-managed transactions.

●

As shown in Figure 23, except for the setSessionContext method, all of these methods in the TransferBean class are empty because no
additional action is required by the bean for the particular life cycle states associated with the these methods. The setSessionContext
method is used in a conventional way to set the value of the mySessionCtx variable.

Figure 23. Code example: Implementing the SessionBean interface in the TransferBean class

...
public class TransferBean implements SessionBean {
 private SessionContext mySessionCtx = null;
 ...
 public void ejbActivate() throws EJBException { }
 ...
 public void ejbPassivate() throws EJBException { }
 ...
 public void ejbRemove() throws EJBException { }
 ...
 public void setSessionContext(SessionContext ctx) throwEJBException {

 mySessionCtx = ctx;
 }
 ...
}

Writing the home interface (session)

A session bean's home interface defines the methods used by clients to create and remove instances of the enterprise bean and obtain
metadata about an instance. The home interface is defined by the enterprise bean developer and implemented in the EJB home class
created by the container during enterprise bean deployment. The container makes the home interface accessible to clients through JNDI.

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For example, the
Transfer enterprise bean's home interface is named TransferHome. Every session bean's home interface must meet the following
requirements:

It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the javax.ejb.EJBHome
interface. See The javax.ejb.EJBHome interface for information on these methods.

●

Each method in the interface must be a create method that corresponds to a ejbCreate method in the enterprise bean class. For
more information, see Implementing the ejbCreate methods. Unlike entity beans, the home interface of a session bean contains no
finder methods.

●

The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The java.io.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must include the
java.rmi.RemoteException exception class.

●

Figure 24 shows the relevant parts of the definition of the home interface (TransferHome) for the example Transfer bean.

Figure 24. Code example: The TransferHome home interface

...
import javax.ejb.*;
import java.rmi.*;
public interface TransferHome extends EJBHome {
 Transfer create() throws CreateException, RemoteException;
}

A create method is used by a client to create an enterprise bean instance. A stateful session bean can contain multiple create methods;
however, a stateless session bean can contain only one create method with no arguments. This restriction on stateless session beans
ensures that every instance of a stateless session bean is the same as every other instance of the same type. (For example, every Transfer
bean instance is the same as every other Transfer bean instance.)

Each create method must be named create and have the same number and types of arguments as a corresponding ejbCreate method in the
EJB object class. The return types of the create method and its corresponding ejbCreate method are always different. Each create method
must meet the following requirements:

It must return the type of the enterprise bean's remote interface. For example, the return type for the create method in the
TransferHome interface is Transfer.

●

It must have a throws clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException exception
class, and all of the exceptions defined in the throws clause of the corresponding ejbCreate method.

●

Writing the remote interface (session)

A session bean's remote interface provides access to the business methods available in the enterprise bean class. It also provides methods
to remove an enterprise bean instance and to obtain the enterprise bean's home interface and handle. The remote interface is defined by
the enterprise bean developer and implemented in the EJB object class created by the container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example, the
Transfer enterprise bean's remote interface is named Transfer. Every remote interface must meet the following requirements:

It must extend the javax.ejb.EJBObject interface. The remote interface inherits several methods from the EJBObject interface. See
Methods inherited from javax.ejb.EJBObject for information on these methods.

●

You must define a corresponding business method for every business method implemented in the enterprise bean class.●

The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The java.io.Serializable and java.rmi.Remote interfaces.

●

Each method's throws clause must include the java.rmi.RemoteException exception class.●

Figure 25 shows the relevant parts of the definition of the remote interface (Transfer) for the example Transfer bean. This interface
defines the methods for transferring funds between two Account bean instances and for getting the balance of an Account bean instance.

Figure 25. Code example: The Transfer remote interface

...
import javax.ejb.*;
import java.rmi.*;
import com.ibm.ejs.doc.account.*;
public interface Transfer extends EJBObject {
 ...
 float getBalance(long acctId) throws FinderException, RemoteException;
 ...
 void transferFunds(long fromAcctId, long toAcctId, float amount)
 throws InsufficientFundsException, RemoteException;
}

Implementing interfaces common to multiple types of enterprise beans

Enterprise beans must implement the interfaces described here in the appropriate enterprise bean component.

Methods inherited from javax.ejb.EJBObject

The remote interface inherits the following methods from the javax.ejb.EJBObject interface, which are implemented by the container
during deployment:

getEJBHome--Returns the enterprise bean's home interface.●

getHandle--Returns the handle for the EJB object.●

getPrimaryKey--Returns the EJB object's primary key. (For session beans, this cannot be used because session beans do not have
a primary key.)

●

isIdentical--Compares this EJB object with the EJB object argument to determine if they are the same.●

remove--Removes this EJB object.●

These methods have the following syntax:

public abstract EJBHome getEJBHome();
public abstract Handle getHandle();
public abstract Object getPrimaryKey();
public abstract boolean isIdentical(EJBObject obj);
public abstract void remove();

These methods are implemented by the container in the EJB object class.

The javax.ejb.EJBHome interface

The home interface inherits two remove methods and the getEJBMetaData method from the javax.ejb.EJBHome interface. Just like the
methods defined directly in the home interface, these inherited methods are also implemented in the EJB home class created by the
container during deployment.

The remove methods are used to remove an existing EJB object (and its associated data in the database) either by specifying the EJB
object's handle or its primary key. (The remove method that takes a primaryKey variable can be used only in entity beans.) The
getEJBMetaData method is used to obtain metadata about the enterprise bean and is mainly intended for use by development tools.

These methods have the following syntax:

public abstract EJBMetaData getEJBMetaData();
public abstract void remove(Handle handle);
public abstract void remove(Object primaryKey);

The javax.ejb.EJBHome interface also contains a method to get a handle to the home interface. It has the following syntax:

public abstract HomeHandle getHomeHandle();

The java.io.Serializable and java.rmi.Remote interfaces

To be valid for use in a remote method invocation (RMI), a method's arguments and return value must be one of the following types:

A primitive type; for example, an int or a long.●

An object of a class that directly or indirectly implements java.io.Serializable; for example, java.lang.Long.●

An object of a class that directly or indirectly implements java.rmi.Remote.●

An array of valid types or objects.●

If you attempt to use a parameter that is not valid, the java.rmi.RemoteException exception is thrown. Note that the following atypical
types are not valid:

An object of a class that directly or indirectly implements both Serializable and Remote.●

An object of a class that directly or indirectly implements Remote, but contains a method that does not throw the
RemoteException or an exception that inherits from RemoteException.

●

Using threads and reentrancy in enterprise beans

An enterprise bean must not contain code to start new threads (nor can methods be defined with the keyword synchronized). Session
beans can never be reentrant; that is, they cannot call another bean that invokes a method on the calling bean. Entity beans can be
reentrant, but building reentrant entity beans is not recommended and is not documented here.

The EJB server enforces single-threaded access to all enterprise beans. Illegal callbacks result in a java.rmi.RemoteException exception
being thrown to the EJB client.

Creating an EJB module for enterprise beans

There are two tasks involved in preparing an enterprise bean for deployment:

Making the components of the bean part of the same Java package. For more information, see Making bean components part of a
Java package.

●

Creating an EJB module and associated deployment descriptor. For more information, see Creating an EJB module and
deployment descriptor.

●

If you develop enterprise beans in an IDE, these tasks are handled from within the tool that you use. If you do not develop enterprise
beans in an IDE, you must handle each of these tasks by using tools contained in the Java Software Development Kit (SDK) and
WebSphere Application Server. For more information on the tools used to create an EJB module in the EJB server programming
environment, see Tools for developing and deploying enterprise beans.

Making bean components part of a Java package

You determine the best way to allocate your enterprise beans to Java packages. A Java package can contain one or more enterprise beans.
The example Account and Transfer beans are stored in separate packages. All of the Java source files that make up the Account bean
contain the following package statement:

package com.ibm.ejs.doc.account;

All of the Java source files that make up the Transfer bean contain the following package statement:

package com.ibm.ejs.doc.transfer;

Creating an EJB module and deployment descriptor

An EJB module contains one or more deployable enterprise beans. It also contains a deployment descriptor that provides information
about each enterprise bean and instructions for the container on how to handle all enterprise beans in the module. The deployment
descriptor is stored in an XML file.

During creation of the EJB module, you specify the files for each enterprise bean to be included in the module. These files include:

The class files associated with each component of the enterprise bean.●

Any additional classes and files associated with the enterprise bean; for example: user-defined exception classes, properties files,
and resource bundle classes.

●

You also specify other information about the bean, such as references to other enterprise beans, resource connection factories, and
security roles. After defining the enterprise beans to be included in the module, you specify application assembly instructions that apply
to the module as a whole. Both bean and module information are used to create a deployment descriptor. See The deployment descriptor
for a list of deployment descriptor settings and attributes.

Developing EJB clients
An enterprise bean can be accessed by all of the following types of EJB clients in both EJB server environments:

Java servlets. For more information about writing Java servlets that use enterprise beans, see Developing servlets that
use enterprise beans.

●

Java Server Pages (JSP). For more information about writing JSP, consult a commercially available book.●

Java applications that use remote method invocation (RMI). For more information on writing Java applications, consult
a commercially available book.

●

Other enterprise beans. For example, the Transfer session bean acts as a client to the Account bean, as described in
Developing enterprise beans.

●

It is recommended that you avoid accessing EJB entity beans from client or servlet code. Instead, wrap and access EJB entity
beans from EJB session beans. This improves performance in two ways:

It reduces the number of remote method calls. When the client application accesses the entity bean directly, each getter
method is a remote call. A wrapping session bean can access the entity bean locally, and collect the data in a structure,
which it returns by value.

●

It provides an outer transaction context for the EJB entity bean. An entity bean synchronizes its state with its
underlying data store at the completion of each transaction. When the client application accesses the entity bean
directly, each getter method becomes a complete transaction. A store and a load action follow each method. When the
session bean wraps the entity bean to provide an outer transaction context, the entity bean synchronizes its state when
the outer session bean reaches a transaction boundary.

●

Except for the basic programming tasks described in this chapter, creating a Java servlet, JSP, or Java application that is a
client to an enterprise bean is not very different from designing standard versions of these types of Java programs. This chapter
assumes that you understand the basics of writing a Java servlet, a Java application, or a JSP file.

Except where noted, all of the code described in this chapter is taken from the example Java application named
TransferApplication. This Java application and the other EJB clients available with the documentation example code are
explained in Information about the examples described in the documentation.

To access and manipulate an enterprise bean in any of the Java-based EJB client types listed previously, the EJB client must do
the following:

Import the Java packages required for naming, remote method invocation (RMI), and enterprise bean interaction.●

Get a reference to an instance of the bean's EJB object by using the Java Naming and Directory Interface (JNDI). For
more information, see Creating and getting a reference to a bean's EJB object.

●

Handle invalid EJB objects when using session beans. For more information, see Handling an invalid EJB object for a
session bean.

●

Remove session EJB objects when they are no longer required or remove entity EJB objects when the associated data
in the data source must be removed. For more information, see Removing a bean's EJB object.

●

In addition, an EJB client can participate in the transactions associated with enterprise beans used by the client. For more
information, see Managing transactions in an EJB client.

Importing required Java packages

Although the Java packages required for any particular EJB client vary, the following packages are required by all EJB clients:

java.rmi -- This package contains most of the classes required for remote method invocation (RMI).●

javax.rmi -- This package contains the PortableRemoteObject class required to get a reference to an EJB object.●

java.util -- This package contains various Java utility classes, such as Properties, Hashtable, and Enumeration used in a
variety of ways throughout all enterprise beans and EJB clients.

●

javax.ejb -- This package contains the classes and interfaces defined in the EJB specification.●

javax.naming -- The package contains the classes and interfaces defined in the Java Naming and Directory Interface
(JNDI) specification and is used by clients to get references to EJB objects.

●

The package or packages containing the enterprise beans with which the client interacts.●

The Java client object request broker (ORB), which is automatically initialized in EJB clients, does not support dynamic
download of implementation bytecode from the server to the client. As a result, all classes required by the EJB client at
runtime must be available from the files and directories identified in the client's CLASSPATH environment variable. For
information on the JAR files required by EJB clients, see Setting the CLASSPATH environment variable in the EJB server
environment. You can install needed files on your client machine by doing a WebSphere Application Server installation on the
machine. Select the Developer's Client Files option. You also need to make sure that the ioser and ioserx executable files are
accessible on your client machine; these files are normally part of the Java install. If you are using a Windows System, make
sure that EJB clients can locate the ioser.dll library file at run time. Figure 26 shows the import statements for the example
Java application com.ibm.ejs.doc.client.TransferApplication. In addition to the required Java packages mentioned previously,
the example application imports the com.ibm.ejs.doc.transfer package because the application communicates with a Transfer
bean. The example application also imports the InsufficientFundsException class contained in the same package as the
Account bean.

Figure 26. Code example: The import statements for the Java application TransferApplication

...
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.rmi.*
...
import javax.naming.*;
import javax.ejb.*;
import javax.rmi.PortableRemoteObject;
...
import com.ibm.ejs.doc.account.InsufficientFundsException;
import com.ibm.ejs.doc.transfer.*;
...
public class TransferApplication extends Frame implements
 ActionListener, WindowListener {
 ...
}

Creating and getting a reference to a bean's EJB object

To invoke a bean's business methods, a client must create or find an EJB object for that bean. After the client has created or
found this object, it can invoke methods on it in the standard way.

To create or find an instance of a bean's EJB object, the client must do the following:

Locate and create an EJB home object for that bean. For more information, see Locating and creating an EJB home
object.

1.

Use the EJB home object to create or (for entity beans only) find an instance of the bean's EJB object. For more
information, see Creating an EJB object.

2.

The TransferApplication client contains one reference to a Transfer EJB object, which the application uses to invoke all of the
methods on the Transfer bean. When using session beans in Java applications, it is a good idea to make the reference to the
EJB object a class-level variable rather than a variable that is local to a method. This allows your EJB client to repeatedly
invoke methods on the same EJB object rather than having to create a new object each time the client invokes a session bean
method. As discussed in Threading issues, this approach is not recommended for servlets, which must be designed to handle
multiple threads.

Locating and creating an EJB home object

JNDI is used to find the name of an EJB home object. The properties that an EJB client uses to initialize JNDI and find an EJB
home object vary across EJB server implementations. To make an enterprise bean more portable between EJB server
implementations, it is recommended that you externalize these properties in environment variables, properties files, or resource
bundles rather than hard code them into your enterprise bean or EJB client code.

The example Transfer bean uses environment variables as discussed in Implementing the ejbCreate methods. The
TransferApplication uses a resource bundle contained in the com.ibm.ejs.doc.client.ClientResourceBundle.class file. To
initialize a JNDI name service, an EJB client must set the appropriate values for the following JNDI properties:

javax.naming.Context.PROVIDER_URL

This property specifies the host name and port of the name server used by the EJB client. The property value must have
the following format: iiop://hostname:port, where hostname is the IP address or hostname of the machine on which the
name server runs and port is the port number on which the name server listens.

For example, the property value iiop://bankserver.mybank.com:9019 directs an EJB client to look for a
name server on the host named bankserver.mybank.com listening on port 9019. The property value
iiop://bankserver.mybank.com directs an EJB client to look for a name server on the host named
bankserver.mybank.com at port number 900. The property value iiop:/// directs an EJB client to look for a name
server on the local host listening on port 900. If not specified, this property defaults to the local host and port number
900, which is the same as specifying iiop:///. The port number used by the name service can be changed by using
the administrative interface.

javax.naming.Context.INITIAL_CONTEXT_FACTORY

This property identifies the actual name service that the EJB client must use. This property must be set to
com.ibm.ejs.ns.jndi.CNInitialContextFactory.

Locating an EJB home object is a two-step process:

Create a javax.naming.InitialContext object. For more information, see Creating an InitialContext object.1.

Use the InitialContext object to create the EJB home object. For more information, see Creating EJB home object.2.

Creating an InitialContext object

Figure 27 shows the code required to create the InitialContext object. To create this object, construct a java.util.Properties
object, add values to the Properties object, and then pass the object as the argument to the InitialContext constructor. In the
TransferApplication, the value of each property is obtained from the resource bundle class named
com.ibm.ejs.doc.client.ClientResourceBundle, which stores all of the locale-specific variables required by the
TransferApplication. (This class also stores the variables used by the other EJB clients contained in the documentation
example, described in Information about the examples described in the documentation). The resource bundle class is
instantiated by calling the ResourceBundle.getBundle method. The values of variables within the resource bundle class are
extracted by calling the getString method on the bundle object.

The createTransfer method of the TransferApplication can be called multiple times as explained in Handling an invalid EJB
object for a session bean. However, after the InitialContext object is created once, it remains good for the life of the client
session. Therefore, the code required to create the InitialContext object is placed within an if statement that determines if the
reference to the InitialContext object is null. If the reference is null, the InitialContext object is created; otherwise, the
reference can be reused on subsequent creations of the EJB object.

Figure 27. Code example: Creating the InitialContext object

...
public class TransferApplication extends Frame implements ActionListener,
 WindowListener {
 ...
 private InitialContext ivjInitContext = null;
 private Transfer ivjTransfer = null;
 private ResourceBundle bundle = ResourceBundle.getBundle(
 "com.ibm.ejs.doc.client.ClientResourceBundle");
 ...
 private String nameService = null;
 private String accountName = null;
 private String providerUrl = null;
 ...
 private Transfer createTransfer() {
 TransferHome transferHome = null;
 Transfer transfer = null;
 // Get the initial context
 if (ivjInitContext == null) {

 try {
 Properties properties = new Properties();
 // Get location of name service
 properties.put(javax.naming.Context.PROVIDER_URL,
 bundle.getString("providerUrl"));
 // Get name of initial context factory
 properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
 bundle.getString("nameService"));
 ...
 ivjInitContext = new InitialContext(properties);
 } catch (Exception e) { // Error getting the initial context
 ...
 }
 }
 ...
 // Look up the home interface using the JNDI name
 ...
 // Create a new Transfer object to return
 ...
 return transfer;
}

Creating EJB home object

After the InitialContext object (ivjInitContext) is created, the application uses it to create the EJB home object, as shown in
Figure 28. This creation is accomplished by invoking the lookup method, which takes the JNDI name of the enterprise bean in
String form and returns a java.lang.Object object. The JNDI name specified in the deployment descriptor is used.

The example TransferApplication gets the JNDI name of the Transfer bean from the ClientResourceBundle class. After an
object is returned by the lookup method, the static method javax.rmi.PortableRemoteObject.narrow is used to obtain an EJB
home object for the specified enterprise bean. The narrow method takes two parameters: the object to be narrowed and the
class of the EJB home object to be returned by the narrow method. The object returned by the
javax.rmi.PortableRemoteObject.narrow method is cast to the class associated with the home interface.

Figure 28. Code example: Creating the EJBHome object

private Transfer createTransfer() {
 TransferHome transferHome = null;
 Transfer transfer = null;
 // Get the initial context
 ...
 // Look up the home interface using the JNDI name
 try {
 java.lang.Object homeObject = ivjInitContext.lookup(
 bundle.getString("transferName"));
 transferHome = (TransferHome)javax.rmi.PortableRemoteObject.narrow(
 homeObject, TransferHome.class);
 } catch (Exception e) { // Error getting the home interface
 ...
 }
 ...
 // Create a new Transfer object to return
 ...
 return transfer;
}

Creating an EJB object

After the EJB home object is created, it is used to create the EJB object. Figure 29 shows the code required to create the EJB
object by using the EJB home object. A create method is invoked to create an EJB object or (for entity beans only) a finder
method is invoked to find an existing EJB object. Because the Transfer bean is a stateless session bean, the only choice is the
default create method.

Figure 29. Code example: Creating the EJB object

private Transfer createTransfer() {
 TransferHome transferHome = null;
 Transfer transfer = null;
 // Get the initial context
 ...
 // Look up the home interface using the JNDI name
 ...
 // Create a new Transfer object to return
 try {
 transfer = transferHome.create();
 } catch (Exception e) { // Error creating Transfer object
 ...
 }
 ...
 return transfer;
}

Handling an invalid EJB object for a session bean

Because session beans are ephemeral, the client cannot depend on a session bean's EJB object to remain valid. A reference to
an EJB object for a session bean can become invalid if the EJB server fails or is restarted or if the session bean times out due to
inactivity. (The reference to an entity bean's EJB object is always valid until that object is removed.) Therefore, the client of a
session bean must contain code to handle a situation in which the EJB object becomes invalid.

An EJB client can determine if an EJB object is valid by placing all method invocations that use the reference inside of a
try/catch block that specifically catches the java.rmi.NoSuchObjectException, in addition to any other exceptions that the
method needs to handle. The EJB client can then invoke the code to handle this exception.

You determine how to handle an invalid EJB object. The example TransferApplication creates a new Transfer EJB object if the
one it is currently using becomes invalid. The code to create a new EJB object when the old one becomes invalid is the same
code used to create the original EJB object and is described in Creating and getting a reference to a bean's EJB object. For the
example TransferApplication client, this code is contained in the createTransfer method.

Figure 30 shows the code used to create the new EJB object in the getBalance method of the example TransferApplication.
The getBalance method contains the local boolean variable sessionGood, which is used to specify the validity of the EJB
object referenced by the variable ivjTransfer. The sessionGood variable is also used to determine when to break out of the
do-while loop. The sessionGood variable is initialized to false because the ivjTransfer can reference an invalid EJB object
when the getBalance method is called. If the ivjTransfer reference is valid, the TransferApplication invokes the Transfer bean's
getBalance method and returns the balance. If the ivjTransfer reference is invalid, the NoSuchObjectException is caught, the
TransferApplication's createTransfer method is called to create a new Transfer EJB object reference, and the sessionGood
variable is set to false so that the do-while loop is repeated with the new valid EJB object. To prevent an infinite loop, the
sessionGood variable is set to true when any other exception is thrown.

Figure 30. Code example: Refreshing the EJB object reference for a session bean

private float getBalance(long acctId) throws NumberFormatException, RemoteException,
 FinderException {
 // Assume that the reference to the Transfer session bean is no good
 ...
 boolean sessionGood = false;
 float balance = 0.0f;
 do {
 try {
 // Attempt to get a balance for the specified account
 balance = ivjTransfer.getBalance(acctId);
 sessionGood = true;
 ...
 } catch(NoSuchObjectException ex) {
 createTransfer();

 sessionGood = false;
 } catch(RemoteException ex) {
 // Server or connection problem
 ...
 } catch(NumberFormatException ex) {
 // Invalid account number
 ...
 } catch(FinderException ex) {
 // Invalid account number
 ...
 }
 } while(!sessionGood);
 return balance;
}

Removing a bean's EJB object

When an EJB client no longer needs a stateful session EJB object, the EJB client should remove that object. Instances of
stateful session beans have affinity to specific clients. They will remain in the container until they are explicitly removed by
the client, or removed by the container when they time out. Meanwhile, the container might need to passivate inactive stateful
session beans to disk. This requires overhead for the container and impacts performance of the application. If the passivated
session bean is subsequently required by the application, the container activates it by restoring it from disk. By explicitly
removing stateful session beans when finished with them, applications can decrease the need for passivation and minimize
container overhead.

You remove entity EJB objects only when you want to remove the information in the data source with which the entity EJB
object is associated.

To remove an EJB object, invoke the remove method on the object. As discussed in Creating and getting a reference to a
bean's EJB object, the TransferApplication contains only one reference to a Transfer EJB object that is created when the
application is initialized.

Figure 31 shows how the example Transfer EJB object is removed in the TransferApplication in the killApp method. To
parallel the creation of the Transfer EJB object when the TransferApplication is initialized, the application removes the final
EJB object associated with ivjTransfer reference right before closing the application's GUI window. The killApp method
closes the window by invoking the dispose method on itself.

Figure 31. Code example: Removing a session EJB object

...
private void killApp() {
 try {
 ivjTransfer.remove();
 this.dispose();
 System.exit(0); } catch (Throwable ivjExc) {
 ...
 }
}

Managing transactions in an EJB client

In general, it is practical to design your enterprise beans so that all transaction management is handled at the enterprise bean
level. In a strict three-tier, distributed application, this is not always possible or even desirable. However, because the middle
tier of an EJB application can include two subcomponents--session beans and entity beans--it is much easier to design the
transactional management completely within the application server tier. Of course, the resource manager tier must also be
designed to support transactions.

Note:

EJB clients that access entity beans with CMP that use Host On-Demand (HOD) or the External Call Interface (ECI)
for CICS or IMS applications must begin a transaction before invoking a method on these entity beans. This restriction

is required because these types of entity beans must use the Mandatory transaction attribute.

Nevertheless, it is still possible to program an EJB client (that is not an enterprise bean) to participate in transactions for those
specialized situations that require it. To participate in a transaction, the EJB client must do the following:

Obtain a reference to the javax.transaction.UserTransaction interface by using JNDI as defined in the Java Transaction
Application Programming Interface (JTA).

1.

Use the object reference to invoke any of the following methods:

begin--Begins a transaction. This method takes no arguments and returns void.❍

commit--Attempts to commit a transaction; assuming that nothing causes the transaction to be rolled back,
successful completion of this method commits the transaction. This method takes no arguments and returns
void.

❍

getStatus--Returns the status of the referenced transaction. This method takes no arguments and returns int; if
no transaction is associated with the reference, STATUS_NO_TRANSACTION is returned. The following are
the valid return values for this method:

STATUS_ACTIVE--Indicates that transaction processing is still in progress.■

STATUS_COMMITTED--Indicates that a transaction has been committed and the effects of the
transaction have been made permanent.

■

STATUS_COMMITTING--Indicates that a transaction is in the process of committing (that is, the
transaction has started committing but has not completed the process).

■

STATUS_MARKED_ROLLBACK--Indicates that a transaction is marked to be rolled back.■

STATUS_NO_TRANSACTION--Indicates that a transaction does not exist in the current transaction
context.

■

STATUS_PREPARED--Indicates that a transaction has been prepared but not completed.■

STATUS_PREPARING--Indicates that a transaction is in the process of preparing (that is, the
transaction has started preparing but has not completed the process).

■

STATUS_ROLLEDBACK--Indicates that a transaction has been rolled back.■

STATUS_ROLLING_BACK--Indicates that a transaction is in the process of rolling back (that is, the
transaction has started rolling back but has not completed the process).

■

STATUS_UNKNOWN--Indicates that the status of a transaction is unknown.■

❍

rollback--Rolls back the referenced transaction. This method takes no arguments and returns void.❍

setRollbackOnly--Specifies that the only possible outcome of the transaction is for it to be rolled back. This
method takes no arguments and returns void.

❍

setTransactionTimeout--Sets the timeout (in seconds) associated with the transaction. If some transaction
participant has not specifically set this value, a default timeout is used. This method takes a number of seconds
(as type int) and returns void.

❍

2.

Figure 32 provides an example of an EJB client creating a reference to a UserTransaction object and then using that object to
set the transaction timeout, begin a transaction, and attempt to commit the transaction. (The source code for this example is not
available with the example code provided with this document.) Notice that the client does a simple type cast of the lookup
result, rather than invoking a narrow method as required with other JNDI lookups. In both EJB server environments, the JNDI
name of the UserTransaction interface is java:comp/UserTransaction.

Figure 32. Code example: Managing transactions in an EJB client

...
import javax.transaction.*;
...
// Use JNDI to locate the UserTransaction object
Context initialContext = new InitialContext();
UserTransaction tranContext = (
 UserTransaction)initialContext.lookup("java:comp/UserTransaction");
// Set the transaction timeout to 30 seconds
tranContext.setTransactionTimeout(30);
...
// Begin a transaction
tranContext.begin();
// Perform transaction work invoking methods on enterprise bean references

...
// Call for the transaction to commit
tranContext.commit();

Developing servlets that use enterprise beans
A servlet is a Java application that enables users to access Web server functionality. To use servlets, a Web server is
required. The WebSphere Application Server plugs into a number of commonly used Web servers. The IBM HTTP Server
with the Advanced Application Server. For more information, consult the Advanced Edition InfoCenter.

Java servlets can be combined with enterprise beans to create powerful EJB applications. This chapter describes how to use
enterprise beans within a servlet. The example CreateAccount servlet, which uses the example Account bean, is used to
illustrate the concepts discussed in this chapter. The example servlet and enterprise bean discussed in this chapter are
explained in Information about the examples described in the documentation.

An overview of standard servlet methods

Usually, a servlet is invoked from an HTML form on the user's browser. The first time the servlet is invoked, the servlet's
init method is run to perform any initializations required at startup. For the first and all subsequent invocations of the
servlet, the doGet method (or, alternatively, the doPost method) is run. Within the doGet method (or the doPost method),
the servlet gets the information provided by the user on the HTML form and uses that information to perform work on the
server and access server resources.

The servlet then prepares a response and sends the response back to the user. After a servlet is loaded, it can handle multiple
simultaneous user requests. Multiple request threads can invoke the doGet (or doPost) method at the same time, so the
servlet needs to be made thread safe.

When a servlet shuts down, the destroy method of the servlet is run in order to perform any needed shutdown processing.

Writing an HTML page that embeds a servlet

Figure 33 shows the HTML file (named create.html) used to invoke the CreateAccount servlet. The HTML form is used to
specify the account number for the new account, its type (checking or savings), and its initial balance. The request is passed
to the doGet method of the servlet, where the servlet is identified with its full Java package name, as shown in the example.

Figure 33. Code example: Content of the create.html file used to access the CreateAccount servlet

<html>
<head>
<title>Create a new Account</title>
</head>
<body>
<h1 align="center">Create a new Account</h1>
<form method="get"
action="/servlet/com.ibm.ejs.doc.client.CreateAccount">
<table border align="center">
<!-- specify a new account number -->
<tr bgcolor="#cccccc">
<td align="right">Account Number:</td>
<td colspan="2"><input type="text" name="account" size="20"
maxlength="10">
</tr>
<!-- specify savings or checking account -->
...
<!-- specify account starting balance -->
...
<!-- submit information to servlet -->
...
<input type="submit" name ="submit" value="Create">
...
<!-- message area -->
...

</form>
</body>
</html>

The HTML response from the servlet is designed to produce a display identical to create.html, enabling the user to continue
creating new accounts. Figure 34 shows what create.html looks like on a browser.

Figure 34. The initial form and output of the CreateAccount servlet

Developing the servlet

This section discusses the basic code required by a servlet that interacts with an enterprise bean. Figure 35 shows the basic
outline of the code that makes up the CreateAccount servlet. As shown in the example, the CreateAccount servlet extends
the javax.servlet.http.HttpServlet class and implements an init method and a doGet method.

Figure 35. Code example: The CreateAccount class

package com.ibm.ejs.doc.client;
// General enterprise bean code.
import java.rmi.RemoteException;
import javax.ejb.DuplicateKeyException;
// Enterprise bean code specific to this servlet.
import com.ibm.ejs.doc.account.AccountHome;
import com.ibm.ejs.doc.account.AccountKey;
import com.ibm.ejs.doc.account.Account;
// Servlet related.
import javax.servlet.*;
import javax.servlet.http.*;
// JNDI (naming).
import javax.naming.*; // for Context, InitialContext, NamingException
// Miscellaneous:
import java.util.*;

import java.io.*;
...
public class CreateAccount extends HttpServlet {
 // Variables
 ...
 public void init(ServletConfig config) throws ServletException {
 ...
 }
 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 // --- Read and validate user input, initialize. ---
 ...
 // --- If input parameters are good, try to create account. ---
 ...
 // --- Prepare message to accompany response. ---
 ...
 // --- Prepare and send HTML response. ---
 ...
}

The servlet's instance variables

Figure 36 shows the instance variables used in the CreateAccount servlet. The nameService, accountName, and providerUrl
variables are used to specify the property values required during JNDI lookup. These values are obtained from the
ClientResourceBundle class as described in Creating and getting a reference to a bean's EJB object.

The CreateAccount class also initializes the string constants that are used to create the HTML response sent back to the
user. (Only three of these variables are shown, but there are many of them). The init method in the CreateAccount servlet
provides a way to read strings from a resource bundle to override these US English defaults in order to provide a response
in a different national language. The instance variable accountHome is used by all client requests to create a new Account
bean instance. The accountHome variable is initialized in the init method as shown in Figure 36.

Figure 36. Code example: The instance variables of the CreateAccount class

...
public class CreateAccount extends HttpServlet {
 // Variables for finding the home
 private String nameService = null;
 private String accountName = null;
 private String providerURL = null;
 private ResourceBundle bundle = ResourceBundle.getBundle(
 "com.ibm.ejs.doc.client.ClientResourceBundle");
 // Strings for HTML output - US English defaults shown.
 static String title = "Create a new Account";
 static String number = "Account Number:";
 static String type = "Type:";
 ...
 // Variable for accessing the enterprise bean.
 private AccountHome accountHome = null;
 ...

}

The servlet's init method

The init method of the CreateAccount servlet is shown in Figure 37. The init method is run once, the first time a request is
processed by the servlet, after the servlet is started. Typically, the init method is used to do any one-time initializations for a
servlet. For example, the default US English strings used in preparing the HTML response can be replaced with another
national language. The init method is also the best place to initialize the value of references to the home interface of any
enterprise beans used by the servlet. In the CreateAccount's init method, the accountHome variable is initialized to

reference the EJB home object of the Account bean.

As in other types of EJB clients, the properties required to do a JNDI lookup are specific to the EJB implementation.
Therefore, these properties are externalized in a properties file or a resource bundle class. For more information on these
properties, see Creating and getting a reference to a bean's EJB object.

Note that in the CreateAccount servlet, a HashTable object is used to store the properties required to do a JNDI lookup
whereas a Properties object is used in the TransferApplication. Both of these classes are valid for storing these properties.

Figure 37. Code example: The init method of the CreateAccount servlet

// Variables for finding the EJB home object
private String nameService = null;
private String accountName = null;
private String providerURL = null;
private ResourceBundle bundle = ResourceBundle.getBundle(
 "com.ibm.ejs.doc.client.TransferResourceBundle");
...
public void init(ServletConfig config) throws ServletException {
 super.init(config);
 ...
 try {
 // Get NLS strings from an external resource bundle
 ...
 createTitle = bundle.getString("createTitle");
 number = bundle.getString("number");
 type = bundle.getString("type");
 ...
 //Get values for the naming factory and home name.
 nameService = bundle.getString("nameService");
 accountName = bundle.getString("accountName");
 providerURL = bundle.getString("providerURL");
 }
 catch (Exception e) {
 ...
 }
 // Get home object for access to Account enterprise bean.
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, nameService);
 try {
 // Create the initial context.
 Context ctx = new InitialContext(env);
 // Get the home object.
 Object homeObject = ctx.lookup(accountName);
 // Get the AccountHome object.
 accountHome = (AccountHome) javax.rmi.PortableRemoteObject.narrow(
 homeObject, AccountHome.class);
 }
 // Determine cause of failure.
 catch (NamingException e) {
 ...
 }
 catch (Exception e) {
 ...
 }
}

Note:

Although the init method is a good place to obtain references to EJB home objects, it is not a good place to create
enterprise beans or access other beans that might be protected with WebSphere security. Depending upon the
authorization policy on the protected objects, creating or accessing these objects from within the init method could
fail for authentication or authorization reasons because they were not accessed with the proper security credentials.

Creating or accessing protected objects should be done after the init method, in one of the servlet's doXXX methods.

The servlet's doGet method

The doGet method is invoked for every servlet request. In the CreateAccount servlet, the method does the following tasks to
manage user input. These tasks are fairly standard for this method:

Read the user input from the HTML form and decide if the input is valid--for example, whether the user entered a
valid number for an initial balance.

●

Perform the initializations required for each request.●

Figure 38 shows the parts of the doGet method that handle user input. Note that the req variable is used to read the user
input from the HTML form. The req variable is a javax.servlet.http.HttpServletRequest object passed as one of the
arguments to the doGet method.

Figure 38. Code example: The doGet method of the CreateAccount servlet

public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 // --- Read and validate user input, initialize. ---
 // Error flags.
 boolean accountFlag = true;
 boolean balanceFlag = true;
 boolean inputFlag = false;
 boolean createFlag = true;
 boolean duplicateFlag = false;
 // Datatypes used to create new account bean.
 AccountKey key;
 int typeAcct = 0;
 String typeString = "0";
 float initialBalance = 0;
 // Read input parameters from HTML form.
 String[] accountArray = req.getParameterValues("account");
 String[] typeArray = req.getParameterValues("type");
 String[] balanceArray = req.getParameterValues("balance");
 // Convert input parameters to needed datatypes for new account.
 // (account)
 long accountLong = 0;
 ...
 key = new AccountKey(accountLong);
 // (type)
 if (typeArray[0].equals("1")) {
 typeAcct = 1; // Savings account.
 typeString = "savings";
 }
 else if (typeArray[0].equals("2")) {
 typeAcct = 2; // Checking account
 typeString = "checking";
 }
 // (balance)
 try {
 initialBalance = (Float.valueOf(balanceArray[0])).floatValue();
 } catch (Exception e) {
 balanceFlag = false;
 }
 ...
 // --- If input parameters are good, try to create account bean. ---
 ...
 // --- Prepare message to accompany response. ---
 ...
 // --- Prepare and send HTML response. ---

 ...
}

Creating an enterprise bean

If the user input is valid, the doGet method attempts to create a new account based on the user input as shown in Figure 39.
Besides the initialization of the home object reference in the init method, this is the only other piece of code that is specific
to the use of enterprise beans in a servlet.

Figure 39. Code example: Creating an enterprise bean in the doGet method

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 // --- Read and validate user input, initialize ---.
 ...
 // --- If input parameters are good, try to create account bean. ---
 if (accountFlag && balanceFlag) {
 inputFlag = true;
 try {
 // Create the bean.
 Account account = accountHome.create(key, typeAcct, initialBalance);
 }
 // Determine cause of failure.
 catch (RemoteException e) {
 ...
 }
 catch (DuplicateKeyException e) {
 ...
 }
 catch (Exception e) {
 ...
 }
 }
 // --- Prepare message to accompany response. ---
 ...
 // --- Prepare and send HTML response. ---
 ...
 }

Determining the content of the user response

Next, the doGet method prepares a response message to be sent to the user. There are three possible responses:

The user input was not valid.●

The user input was valid, but the account was not created for some reason.●

The account was created successfully. If the previous two errors do not occur, this response is prepared.●

Figure 40 shows the code used by the servlet to determine which response to send to the user. If no errors are encountered,
then the response indicates success.

Figure 40. Code example: Determining a user response in the doGet method

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 // --- Read and validate user input, initialize. ---
 ...
 // --- If input parameters are good, try to create account bean. ---
 ...
 // --- Prepare message to accompany response. ---
 ...
 String messageLine = "";

 if (inputFlag) {
 // If you are here, the client input is good.
 if (createFlag) {
 // New account enterprise bean was created.
 messageLine = createdaccount + " " + accountArray[0] + ", " +
 createdtype + " " + typeString + ", " +
 createdbalance + " " + balanceArray[0];
 }
 else if (duplicateFlag) {
 // Account with same key already exists.
 messageLine = failureexists + " " + accountArray[0];
 }
 else {
 // Other reason for failure.
 messageLine = failureinternal + " " + accountArray[0];
 }
 }
 else {
 // If you are here, something was wrong with the client input.
 String separator = "";
 if (!accountFlag) {
 messageLine = failureaccount + " " + accountArray[0];
 separator = ", ";
 }
 if (!balanceFlag) {
 messageLine = messageLine + separator +
 failurebalance + " " + balanceArray[0];
 }
 // --- Prepare and send HTML response. ---
 ...
 }

Sending the user response

With the type of response determined, the doGet method then prepares the full HTML response and sends it to the user's
browser, incorporating the appropriate message. Relevant parts of the full HTML response are shown in Figure 41. The res
variable is used to pass the response back to the user. This variable is an HttpServletResponse object passed as an argument
to the doGet method. The response code shown here mixes both display (HTML) and content in one servlet. You can
separate the display and the content by using JavaServer Pages (JSP). A JSP allows the display and content to be developed
and maintained separately.

Figure 41. Code example: Responding to the user in the doGet method

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {
 // --- Read and validate user input, initialize. ---
 ...
 // --- If input parameters are good, try to create account bean. ---
 ...
 // --- Prepare message to accompany response. ---
 ...
 // --- Prepare and send HTML response. ---
 // HTML returned looks like initial HTML that invoked this servlet.
 // Message line says whether servlet was successful or not.
 res.setContentType("text/html");
 res.setHeader("Pragma", "no-cache");
 res.setHeader("Cache-control", "no-cache");
 PrintWriter out = res.getWriter();
 out.println("<html>");
 ...
 out.println("<title> " + createTitle + "</title>");

 ...
 out.println(" </html>");
}

Threading issues

Except for the instance variable required to get a reference to the Account bean's home interface and to support multiple
languages (which remain unchanged for all user requests), all other variables used in the CreateAccount servlet are local to
the doGet method. Each request thread has its own set of local variables, so the servlet can handle simultaneous user
requests.

As a result, the CreateAccount servlet is thread safe. By taking a similar approach to servlet design, you can also make your
servlets thread safe.

Tools for developing and deploying enterprise beans
There are two basic approaches to developing and deploying enterprise beans:

You can use one of the available integrated development environments (IDEs) such as IBM
VisualAge(TM) for Java Enterprise Edition. IDE tools automatically generate significant parts of the
enterprise bean code and contain integrated tools for packaging and testing enterprise beans. VisualAge
for Java is the recommended development tool. For more information on using VisualAge for Java, see
Using VisualAge for Java.

●

You can use the tools available in the Java Software Development Kit (SDK) and the Advanced
Application Server. For more information, see Developing and deploying enterprise beans.

●

Using VisualAge for Java

Before you can develop enterprise beans in VisualAge for Java, you must set up the EJB development
environment. You need to perform this setup task only once. This setup procedure directs VisualAge for Java to
import all of the classes and interfaces required to develop enterprise beans.

After generating an enterprise bean, you complete its development by following these general steps:

Implement the enterprise bean class.1.

Create the required abstract methods in the bean's home and remote interfaces by promoting the
corresponding methods in the bean class to the appropriate interface.

2.

For entity beans, do the following:

Create any additional finder methods in the home interface by using the appropriate menu items.a.

Create a finder helper interface, if required.b.

3.

Create the EJB module and corresponding deployment descriptor.4.

Generate the deployment code for the bean.5.

VisualAge for Java contains a complete WebSphere Application Server run time environment and a mechanism
to generate a test client to test your enterprise beans. For much more detailed information on developing
enterprise beans in VisualAge for Java, refer to the VisualAge for Java documentation.

Developing and deploying enterprise beans

If you have decided to develop enterprise beans without an IDE, you need at minimum the following tools:

An ASCII text editor. (You can use also use a Java development tool that does not support enterprise
bean development.)

●

The SDK Java compiler (javac) and Java Archiving tool (jar).●

The WebSphere Application Assembly Tool and the WebSphere Administrative Console.●

This section describes steps you can follow to develop enterprise beans by using these tools. The following
tasks are involved in the development of enterprise beans:

Ensure that you have installed and configured the prerequisite software to develop, deploy, and run
enterprise beans in the EJB server environment. For more information, see Installing and configuring the
software for the EJB server.

1.

Set the CLASSPATH environment variable required by different components of the EJB server
environment. For more information, see Setting the CLASSPATH environment variable in the EJB

2.

server environment.

Write and compile the components of the enterprise bean. For more information, see Creating the
components of an enterprise bean.

3.

(Entity beans with CMP only) Create a finder helper interface for each entity bean with CMP that
contains specialized finder methods (other than the findByPrimaryKey method). For more information,
see Creating finder logic in the EJB server.

4.

Create an EJB module and corresponding deployment descriptor by using the Application Assembly
Tool. For more information, see Creating an EJB module.

5.

(Entity beans only) Create a database schema to enable storage of the entity bean's persistent data in a
database. For more information, see Creating a database for use by entity beans.

6.

Generate deployment code for the EJB module by using the Application Assembly Tool. For more
information, see the WebSphere InfoCenter and the online help available with the Application Assembly
Tool.

7.

Install the EJB module into an EJB server and start the server by using the WebSphere Administrative
Console.

8.

Installing and configuring the software for the EJB server

You must ensure that you have installed and configured the following prerequisite software products before you
can begin developing enterprise beans and EJB clients with the EJB server:

WebSphere Application Server Advanced Edition●

One or more of the following databases for use by entity beans with container-managed persistence
(CMP):

DB2❍

Oracle❍

Sybase❍

Informix❍

Microsoft SQL Server❍

InstantDB❍

●

The Java Software Development Kit (SDK)●

For information on the appropriate version numbers of these products and instructions for setting up the
environment, see the WebSphere InfoCenter.

Setting the CLASSPATH environment variable in the EJB server environment

In addition to the classes.zip file contained in the SDK, the following WebSphere JAR files must be appended
to the CLASSPATH environment variable for developing enterprise beans:

ejs.jar●

ujc.jar●

otherDeployedBean.jar (if the enterprise bean uses another enterprise bean). This is the deployed JAR
file containing the enterprise bean being used by this enterprise bean.

●

For developing and running an EJB client, the following WebSphere JAR files must be appended to the
CLASSPATH environment variable:

ejs.jar●

ujc.jar●

servlet.jar (required by EJB clients that are servlets)●

otherDeployedBean.jar. This is the deployed JAR file containing the enterprise bean being used by this
EJB client.

●

Creating the components of an enterprise bean

If you use an ASCII text editor or a Java development tool that does not support enterprise bean development,
you must create each of the components that compose the enterprise bean you are creating. You must ensure
that these components match the requirements described in Developing enterprise beans.

To manually develop a session bean, you must write the bean class, the bean's home interface, and the bean's
remote interface. To manually develop an entity bean, you must write the bean class, the bean's primary key
class, the bean's home interface, the bean's remote interface, and if necessary, the bean's finderHelper interface.
After you have properly coded these components, use the Java compiler to create the corresponding Java class
files. For example, because the components of the example Account bean are stored in a specific directory, the
bean components can be compiled by issuing the following command:

C:\MYBEANS\COM\IBM\EJS\DOC\ACCOUNT> javac *.java

This command assumes that the CLASSPATH environment variable contains all of the packages used by the
Account bean.

Creating finder logic in the EJB server

For the EJB server environment, the following finder logic is required for each finder method (other than the
findByPrimaryKey method) contained in the home interface of an entity bean with CMP:

The logic must be defined in a public interface named NameBeanFinderHelper, where Name is the name
of the enterprise bean (for example, AccountBeanFinderHelper).

●

The logic must be contained in a String constant named findMethodNameWhereClause, where
findMethodName is the name of the finder method. The String constant can contain zero or more
question marks (?) that are replaced from left to right with the value of the finder method's arguments
when that method is invoked.

●

Note:

Encapsulating the logic in a String constant named findMethodNameQueryString has been deprecated.

If you define the findLargeAccounts method shown in Figure 14, you must also create the
AccountBeanFinderHelper interface shown in Figure 7.

Figure 7. Code example: AccountBeanFinderHelper interface for the EJB server

...
public interface AccountBeanFinderHelper{
 String findLargeAccountsWhereClause = "balance > ?";
}

Creating an EJB module

The WebSphere Application Server Application Assembly Tool can be used to create an EJB module. An EJB
module can contain one or more enterprise beans. The tool automatically creates the required deployment
descriptor for the module based on information specified by the user.

Using the Application Assembly Tool

To create an EJB module and corresponding deployment descriptor, use the Create EJB Module wizard in the
Application Assembly Tool. This wizard prompts you to specify the following information for each enterprise
bean to be included in the module:

The enterprise bean class, home interface class, and remote interface class.●

The bean type (entity or session), and associated attributes (such as persistence management type and
primary key class for entity beans).

●

References to another enterprise bean's home interface and to resource connection factories.●

References to security roles for the enterprise bean.●

CMP fields, if applicable.●

Transaction isolation level attributes for enterprise bean methods.●

The wizard also prompts you to specify the following application assembly information for the module itself:

General properties of the EJB module, such as the location of class files needed for a client program to
access the enterprise beans in the module and the icons to be associated with the module.

●

The deployable enterprise beans that the module will contain.●

Security roles used to access resources in the module.●

Transaction attributes for the enterprise bean methods.●

Both bean and module information are used to create the deployment descriptor. See the WebSphere InfoCenter
and the online help for details on how to use the Application Assembly Tool.

Creating a database for use by entity beans

For entity beans with container-managed persistence (CMP), you must store the bean's persistent data in one of
the supported databases. The Application Assembly Tool automatically generates SQL code for creating
database tables for CMP entity beans. The tool names the database schema and table ejb.beanNamebeantbl,
where beanName is the name of the enterprise bean (for example, ejb.accountbeantbl). If your CMP entity
beans require complex database mappings, it is recommended that you use VisualAge for Java to generate code
for the database tables. At run time, the WebSphere Administrative Console displays a prompt asking whether
you want to execute the generated SQL code that creates the database table.

For entity beans with bean-managed persistence (BMP), you can create the database and database table by
using the database tools or use an existing database and database table. Because entity beans with BMP handle
the database interaction, any database or database table name is acceptable.

For more information on creating databases and database tables, consult your database documentation and the
online help for the WebSphere Administrative Console.

Appendix A. Changes for version 1.1 of the EJB
specification
WebSphere Application Server supports version 1.1 of the EJB specification. This appendix describes features
that are new or have changed in version 1.1 and discusses migration issues for enterprise beans written to
version 1.0 of the EJB specification.

New and updated features

The following enterprise bean features are new or have changed for version 1.1.

Environmental dependencies for enterprise beans are now specified using entries in a JNDI naming
context. An instance of an enterprise bean creates a javax.naming.InitialContext object by invoking the
constructor with no arguments specified. It looks up the environment naming context by using the
InitialContext object under the name java:comp/env.

●

Primary keys are handled differently in version 1.1 of the EJB specification. Entity bean providers are
not required to specify the primary key class for entity beans with container-managed persistence
(CMP), enabling the deployer to select the primary key fields when the bean is deployed into a
container.

●

The deployment descriptor has enhanced support for application assembly.●

Migrating from version 1.0 to version 1.1

From the client's perspective, enterprise beans written to version 1.1 of the EJB specification appear nearly
identical to enterprise beans written to version 1.0 of the specification. However, the following EJB 1.1 changes
do affect clients:

Enterprise beans written to version 1.1 of the EJB specification are registered in a different part of the
JNDI namespace. For example, a client can look up the initial context of a version 1.0 enterprise bean in
JNDI by using the initialContext.lookup method as follows:

initialContext.lookup("com/ibm/Hello")

The JNDI lookup for the equivalent version 1.1 enterprise bean is:

initialContext.lookup("java:comp/env/ejb/Hello")

●

The UserTransaction object is obtained differently for enterprise beans written to version 1.1 of the EJB
specification. Under version 1.0, it was obtained as:

initialContext.lookup("jta/UserTransaction")

Under version 1.1, it is obtained as:

initialContext.lookup("java:comp/UserTransaction")

●

Because entity beans written to version 1.1 of the EJB specification now support primitive primary keys
(instead of having to encapsulate them in a primary key class), the client needs to look up these
primitive keys directly. For example, a client can look up a primitive key of the type java.lang.Integer as
follows:

accountHome.findByPrimaryKey(new Integer(5))

Primary key classes are still supported, although their use for primitive data types is deprecated.

●

From the application developer's perspective, the following changes need to be made to make enterprise beans
written to version 1.0 of the EJB specification compatible with version 1.1 of the specification.

All deployment descriptors must be converted to the XML format specified in version 1.1 of the EJB
specification.

●

In general, enterprise beans written to version 1.0 of the EJB specification are compatible with version
1.1. However, you need to modify or recompile enterprise bean code in the following cases:

The return value of the ejbCreate method must be modified for all entity beans with CMP. The
ejbCreate method is now required to return the same type as the primary key; the actual value
returned must be null. These beans also must be recompiled. For more information, see
Implementing the ejbCreate and ejbPostCreate methods

❍

If the javax.jts.UserTransaction interface is used. This interface has been renamed to
javax.transaction.UserTransaction. Enterprise beans that use this interface must be modified to
use the new interface name. There have also been minor changes to the exceptions thrown by
this interface.

❍

If the getCallerIdentity or isCallerInRole methods of the javax.ejb.EJBContext interface are
used. These methods were deprecated because the javax.security.Identity class is deprecated
under the Java 2 platform.

❍

If an entity bean uses the UserTransaction interface, which is not permitted under version 1.1 of
the EJB specification.

❍

If an entity bean whose finder methods do not define the FinderException in the methods' throws
classes. Under version 1.1, the finder methods of entity beans must define this exception.

❍

If an entity bean uses the UserTransaction interface and implements the SessionSynchronization
interface. Entity beans can neither use the UserTransaction interface nor implement the
SessionSynchronization interface under version 1.1.

❍

If a stateless session bean implements the SessionSynchronization interface. Stateless session
beans should not implement the SessionSynchronization interface under version 1.1.

❍

If an enterprise bean violates any of the new semantic restrictions defined in version 1.1 of the
EJB specification.

❍

Throwing the javax.ejb.RemoteException exception from the bean implementations is
deprecated in version 1.1. This exception should be replaced by the javax.ejb.EJBException or a
more specific exception such as the javax.ejb.CreateException. The javax.ejb.EJBException
inherits from the javax.ejb.RuntimeException and does not need to be explicitly declared in
throws clauses.

Declare the javax.ejb.RemoteException exception in the remote and home interfaces, as required
by RMI. Throwing this exception directly by the bean implementation is deprecated. However, it
can be thrown by the container due to a system exception or by mapping an exception thrown by
the bean implementation.

❍

●

Appendix B. Example code provided with WebSphere
Application Server
This appendix contains information on the example code provided with the WebSphere Application Server.

Information about the examples described in the documentation

The example code discussed throughout this document is taken from a set of examples provided with the
product. This set of examples is composed of the following main components:

The Account entity bean, which models either a checking or savings bank account and maintains the
balance in each account. An account ID is used to uniquely identify each instance of the bean class and
to act as the primary key. The persistent data in this bean is container managed and consists of the
following variables:

accountId--The account ID that uniquely identifies the account. This variable is of type long.❍

type--An integer that identifies the account as either a savings account (1) or a checking account
(2). This variable is of type int.

❍

balance--The current balance of the account. This variable is of type float.❍

The major components of this bean are discussed in Developing entity beans with CMP.

●

The AccountBM entity bean, which is nearly identical to the Account entity bean; however, the
AccountBM bean implements bean-managed persistence. This bean is not used by any other enterprise
bean, application, or servlet contained in the documentation example set. The major components of this
bean are discussed in Developing entity beans with BMP.

●

The Transfer session bean, which models a funds transfer session that involves moving a specified
amount between two instances of an Account bean. The bean contains two methods: the transferFunds
method transfers funds between two accounts, the getBalance method retrieves the balance for a
specified account. The bean is stateless. The major components of this bean are discussed in Developing
session beans.

●

The CreateAccount servlet, which can be used to easily create new bank accounts (and corresponding
Account bean instances) with the specified account ID, account type, and initial balance. Although this
servlet is designed to make it easy for you to create accounts and demonstrate the other components in
the example set, it also illustrates servlet interaction with an entity bean. This servlet is discussed in
Developing servlets that use enterprise beans.

●

The TransferApplication Java application, which provides a graphical user interface that was built with
the abstract windowing toolkit (AWT). The application creates an instance of the Transfer session bean,
which is then manipulated to transfer funds between two selected accounts or to get the balance for a
specified account. The TransferApplication code implements many of the requirements for using
enterprise beans in an EJB client. The parts of this application that are relevant to interacting with an
enterprise bean are discussed in Developing EJB clients.

●

The TransferFunds servlet, which is a servlet version of the TransferApplication Java application. This
servlet is provided so that you can compare the use of enterprise beans between a Java application and a
Java servlet that basically are doing the same tasks. This document does not discuss this servlet in any
detail.

●

Note:

The example code in the documentation was written to be as simple as possible. The goal of these
examples is to provide code that teaches the fundamental concepts of enterprise bean and EJB client
development. It is not meant to provide an example of how a bank (or any similar company) possibly

approaches the creation of a banking application. For example, the Account bean contains a balance
variable that has a type of float. In a real banking application, you must not use a float type to keep
records of money; however, using a class like java.math.BigDecimal or a currency-handling class within
the examples would complicate them unnecessarily. Remember this as you examine these examples.

Information about other examples

Table 2 provides a summary of the enterprise bean-specific examples provided with the EJB server

Table 2. Examples available with the EJB server

Name Bean types EJB client types Additional information
Hello Stateless session Java servlet Very simple example of a session bean.

Increment CMP entity Java servlet Very simple example of an entity bean.

Appendix C. Extensions to the EJB Specification
This appendix briefly discusses functional extensions to the EJB Specification that are available in the EJB
server environments contained in WebSphere Application Server. These extensions are specific to WebSphere
Application Server and use of these features is supported only with VisualAge for Java, Enterprise Edition. For
information on implementing these features, consult your VisualAge for Java documentation.

Access beans

Access beans are Java components that adhere to the Sun Microsystems JavaBeans(TM) Specification and are
meant to simplify development of EJB clients. An access bean adapts an enterprise bean to the JavaBeans
programming model by hiding the home and remote interfaces from the access bean user (that is, an EJB client
developer).

There are three types of access beans, which are listed in ascending order of complexity:

Java bean wrapper--Of the three types of access beans, a Java bean wrapper is the simplest to create. It is
designed to allow either a session or entity enterprise bean to be used like a standard Java bean and it
hides the enterprise bean home and remote interfaces from you. Each Java bean wrapper that you create
extends the com.ibm.ivj.ejb.access.AccessBean class.

●

Copy helper--A copy helper access bean has all of the characteristics of a Java bean wrapper, but it also
incorporates a single copy helper object that contains a local copy of attributes from a remote entity
bean. A user program can retrieve the entity bean attributes from the local copy helper object that resides
in the access bean, which eliminates the need to access the attributes from the remote entity bean.

●

Rowset--A rowset access bean has all of characteristics of both the Java bean wrapper and copy helper
access beans. However, instead of a single copy helper object, it contains multiple copy helper objects.
Each copy helper object corresponds to a single enterprise bean instance.

●

VisualAge for Java provides a SmartGuide to assist you in creating or editing access beans.

Associations between enterprise beans

In the EJB server environment, an association is a relationship that exists between two CMP entity beans. There
are three types of associations: one-to-one and one-to-many. In a one-to-one association, a CMP entity bean is
associated with a single instance of another CMP entity bean. For example, an Employee bean could be
associated with only a single instance of a Department bean, because an employee generally belongs only to a
single department.

In a one-to-many association, a CMP entity bean is associated with multiple instances of another CMP entity
bean. For example, a Department bean could be associated with multiple instances of an Employee bean,
because most departments are made up of multiple employees.

The Association Editor is used to create or edit associations between CMP entity beans in VisualAge for Java.

Inheritance in enterprise beans

In Java, inheritance is the creation of a new class from an existing class or a new interface from an existing
interface. The EJB server environment permits two forms of inheritance: standard class inheritance and EJB
inheritance. In standard class inheritance, the home interface, remote interface, or enterprise bean class inherits
properties and methods from base classes that are not themselves enterprise bean classes or interfaces.

In enterprise bean inheritance, by comparison, an enterprise bean inherits properties (such as CMP fields and
association ends), methods, and method-level control descriptor attributes from another enterprise bean that
resides in the same group.

VisualAge for Java provides a SmartGuide to assist you in implementing inheritance in enterprise beans.

4.4: Personalizing applications
Personalization describes a range of features that enable applications to treat visitors as particular individuals.
For a really simple example, consider a site that issues the message "Hello, John Smith" when the customer
John Smith logs onto the site.

Personalized service can give your Web site a competitive edge, much like a good customer service team can
add value to human-to-human interactions at your physical site and keep customerscoming back.
Personalization can also increase the chance that your Web site presents a user with content that is of particular
interest to that person.

For an e-business site, personalization can be fairly necessary, even if it does not go so far as to call customers
by name. For example,suppose several Web site visitors are performing various transactions concurrently.
Applications need some way to group each user's transactions into a unit that is separate from the transactions
of other users. Session tracking provides such functionality.

See articles 0.11 and 0.12 to learn about two complementary personalizationapproaches supported by IBM
WebSphere Application Server -- trackinguser sessions and maintaining user profiles.

If you are already familiar withthe concepts, skip ahead to 4.4.1 and 4.4.2 for programming details. See 6.6.11
and 6.6.12 to take a look at the administrative aspects.

For additional capability offered by the IBM WebSphere Personalization product,visit the following Web site:

http://www.ibm.com/software/webservers/personalization/

http://www.ibm.com/software/webservers/personalization/

4.4.1: Tracking sessions
IBM WebSphere Application Server provides a service for trackinguser sessions -- the Session Manager. The
service is provided in the form of IBM classes and packages.

The key activities for session tracking are summarized.

Become familiar with the programming model for accessing session support from servlets. See article
4.4.1.1 for an overviewwith links to details about security, clustering, limitations,and other topics.

1.

Create or modify your own servlets to use session support to maintain sessions onbehalf of Web
applications.

Follow the model outlined in the previous step.

2.

Ensure the administrator appropriately configures Session Managers in theadministrative domain. See
article 6.6.11.

3.

Adjust configuration settings and perform other tuning activities foroptimal use of sessions in your
environment. See article 4.4.1.1.7.

4.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060611.html

4.4.1.1: Session programming model and
environment
The session lifecycle, from creation to completion, is as follows:

Get the HttpSession object1.

Store and retrieve user-defined data in the session2.

(Optional) Output an HTML response page containing data from the HttpSession object3.

(Optional) Notify Listeners4.

End the session5.

The steps are described in detail below. This information, combined with thecoding example
SessionSample.java, provides a programming model for implementing sessions in your own servlets.

It is also recommended that you read the topics listed in therelated information. They can influence how you
implement sessions in your own servlets.

Lifecycle in detail

Get the HttpSession object.

To obtain a session, use the getSession() method of thejavax.servlet.http.HttpServletRequest object in
the Java Servlet 2.2API.

When you first obtain the HttpSession object, the Session Manager uses one of three ways to establish
tracking of the session: cookies, URL rewriting, or SSL information. See section 4.4.1.1.1 for a
discussion to help you decide which is more appropriate for your situation.

Assume the Session Manager uses cookies. In such a case, the Session Manager creates a unique session
ID and typically sends it back to the browser as a cookie. Each subsequent request from this user (at the
same browser) passes the cookie containing the session ID, and the Session Manager uses this to find the
user's existing HttpSession object.

In Step 1 of the code sample, the Boolean(create) is set to true so that the HttpSession is created if it
does not already exist. (With the Servlet 2.2API, the javax.servlet.http.HttpServletRequest.getSession()
method with no boolean defaults to true and creates a session if one does not already exist for this
user.)

1.

Store and retrieve user-defined data in the session.

After a session is established, you can add and/or retrieve user-defined data to the session. The
HttpSession object has methods similar to those in java.util.Dictionary for adding, retrieving, and
removing arbitrary Java objects.

In Step 2 of the code sample, the servlet reads an integer object from the HttpSession, increments it, and
writes it back. You can use any name to identify values in the HttpSession object. The code sample uses
the name sessiontest.counter.

Because the HttpSession object is shared among servlets that the user might access, consider adopting a
site-wide naming convention to avoid conflicts.

2.

(Optional) Output an HTML response page containing data from the HttpSession object.

In order to provide feedback to the user that an action has taken place during the session, you may wish

3.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/SessionSample.java.html

to pass HTML code to the client browser that indicates that an action has occurred.

For example, in step 3 of the code sample the servlet generates a Web page that is returned to the user
and displays the value of the sessiontest.counter each time the user visits that Web page during the
session.

(Optional) Notify Listeners.

Objects stored in a session that implement the javax.servlet.http.HttpSessionBindingListener interface
are notified when the session is preparing to end, that is, about to be invalidated. This notice enables you
to perform post-session processing, including permanently saving to a database data changes made
during the session.

4.

End the session.

You can end a session:

Automatically with the Session Manager, if a session has been inactive for a specified time. The
administrative clients provide a way to specify the amount of time after which to invalidate a
session.

❍

By coding the Servlet to call the invalidate() method on the session object.❍

5.

4.4.1.1.1: Deciding between session tracking
approaches
Suppose a servlet implementing sessions is receiving requests from three differentusers. For each user request,
the servlet must be able to figure out the session towhich the user request pertains. Each user request belongs to
just one of the threeuser sessions being tracked by the servlet. Currently, the product offers threeways to address
the problem.

Cookies provide a fairly simple approach to tracking sessions. Because cookies donot work in all situations,
URL rewriting provides an alternative. IBM WebSphere Application Server also provides a more secure
mechanism for tracking sessions, through the use of a session ID that is derived from a uniqueidentifier in SSL
information.When deciding whether to use URL rewriting or SSL information,carefully review the
codingrequirements it imposes on applications that require session support.

Cookies

When session management is enabled and a client makes a request, the HttpSession object is created and the
session ID is sent to the browser as a cookie. On subsequent requests, the browser sends the session ID back as
a cookie and the Session Manager uses the cookie to find the HttpSession associated with the user.

URL rewriting

There are situations in which cookies will not work. Some browsers do not support cookies. Other browsers
allow the user to disable cookie support. In such cases, the Session Manager must resort to a second method,
URL rewriting, to manage the user session.

With URL rewriting, links returned to the browser or redirect have the session ID appended to them. For
example, the following link in a Web page:

is rewritten as:

When the user clicks the link, the rewritten form of the URL is sent to the server as part of the client's request.
The Web containerrecognizes

;jsessionid=DA32242SSGE2

as the session ID and saves it for obtaining the proper HttpSession object for this user.

Note:Do not make assumptions aboutthe length or exact content of the ID that follows the equals sign (=).In
fact, the IDs are longer than what this example shows.

To use URL rewriting, applications must follow certain coding guidelines. Also,special preparation is required.
See the related information for details.

Secure Socket Layer (SSL)

For requests over SSL, SSL information is used to track session requests.When SSL session tracking is enabled
for requests over SSL,SSL information is used as the session ID.SSL information takes precedence over cookies
and URL rewriting.SSL session information cannot be shared between SSL and non-SSL requests.

When SSL is used as the tracking mechanism in a clustered environment, session affinity can be maintained

through the use ofcookies or URL rewriting. More specifically, the cookie or rewitten URL contains session
affinity information that enables the session to be routed to the correct server in the cluster. (The application
server uses a separate cookie that contains session affinity information.)The SSL ID is not sent in the cookie or
rewritten URL butis derived from the SSL information.

4.4.1.1.1.1: Using cookies to track sessions
No special programming is required to track sessions with cookies. Followthe programming model and example
described in section 4.4.1.1.

4.4.1.1.1.2: Using URL rewriting to track sessions
An application that uses URL rewriting to track sessions must adhere to certain programming guidelines. The application
developer needs to:

Program session servlets to encode URLs●

Supply a servlet or JSP file as an entry point to theapplication●

Avoid using plain HTML files in the application●

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser orredirecting them, include either encodeURL() or
encodeRedirectURL() inthe servlet code. Here are examples demonstrating what toreplace in your current servlet code.

Rewrite URLs to return to the browser

Suppose you currently have this statement:

out.println("catalog<a>");

Change the servlet to call the encodeURL method before sending the URL to the output stream:

out.println("<a href=\"");out.println(response.encodeURL
("/store/catalog"));out.println("\">catalog");

Rewrite URLs to redirect

Suppose you currently have the following statement:

response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL to the output stream:

response.sendRedirect (response.encodeRedirectURL ("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the HttpServletResponse object. These calls check to see
if URL rewriting is configuredbefore encoding the URL. If it is not configured, they return the original URL.

If both cookies and URL rewriting are enabled and response.encodeURL() or encodeRedirectURL() is called, the URL is
encoded, even if the browser making the HTTP request processed the session cookie.

You can also configure session support to enable protocol switch rewriting.When this option is enabled, the product
encodes the URL with the session IDfor switching between HTTP and HTTPS protocols.For details, see the Related
information.

Supply a servlet or JSP file as an entry point

The entry point to an application (such as the initial screen presented) may not require the use of sessions. However, if the
application in general requires session support (meaning some part of it, such as a servlet, requires session support) then
after a session is created, all URLs must encoded in order to perpetuate the session ID for the servlet (or other application
component) requiring the session support.

The following example shows how Java code can be embedded within a JSP file:

<%response.encodeURL ("/store/catalog");%>

Avoid using plain HTML files in the application

Note that to use URL rewriting to maintain session state, do notlink to parts of your applications from plain HTML files
(files with .html or .htm extensions).

The restriction is necessary because URL encoding cannot be used in plain HTML files. To maintain state using URL
rewriting, every page that the user requests during the session must have code that can be understood by the Java
interpreter.

If you have such plain HTML files in your application (or Web application) and portions of the site that the user might
access during the session, convert them to JSP files.

This impacts the application writer because maintaining sessions with URL rewriting requires that each servlet in the
application must use URL encoding for every HREF attribute on <A> tags, as described previously.

Sessions will be lost if one or more servlets in an application do not call theencodeURL(String url)
orencodeRedirectURL(String url) methods.

4.4.1.1.1.3: Using SSL information to track sessions
No special programming is required to track sessions with SSL information. Followthe programming model and
example described in section 4.4.1.1.

To use SSL information,turn on Enable SSL Tracking in the Session Manager property sheet.Because the SSL
session ID is negotiated between the Web browser and HTTP server, it cannot survive an HTTP server
failure.However, the failure of an application server does not affect the SSL session ID. (Of course, if session
persistence is notconfigured, the session itself is lost.)In environments that use WebSphere Edge Server with
multiple HTTP servers, an affinity mechanism must be used when the SSL session ID is to be used as the
session tracking mechanism.

SSL tracking is supported only for the IBM HTTP Server andiPlanet Web servers. The lifetime of an SSL
session ID can be controlled by configuration options in the Web server. For example, in the IBM HTTP
Server, the configuration variable SSLV3TIMEOUT must be set to allow for an adequate lifetime for the SSL
session ID.Too short an interval could result in premature termination of a session. Also, some Web
browsersmight have their own timers that affect the lifetime of the SSL session ID.These Web browsers might
not leave the SSL session ID activelong enough to be useful as a mechanism for session tracking.

When the SSL session ID is to be used as the session tracking mechanism in a cloned environment, either
cookies or URL rewriting must be used to maintain session affinity. The cookie or rewritten URL contains
session affinity information that enables the Web server to properly route a session back to the same server for
each request.

4.4.1.1.2: Controlling write operations to persistent
store
You can manually control when modified session data can be persisted to the datastore by using the sync()
method in the interface com.ibm.websphere.servlet.session.IBMSession, which extends the
javax.servlet.http.HttpSession interface.

By calling sync() from the service() method of a servlet, you send any changes in the session to the database.

If neither the manual updatenor the time-based write option is enabled,the sync() call performs no updates.It
merely returns.

Ideally, call sync() after all updates have been made to the session andthe session will not be accessed any
more. In other words, wait until theend of the servlet service() method to call sync().

4.4.1.1.3: Securing sessions
HTTP sessions and security can beintegrated in IBM WebSphere Application Server. When security integration
is enabled in Session Managerand a session is accessed in a protected resource,every resource from then onmust
be secured.You cannot mix secured and unsecured resources.Security integration in Session Manager is not
supported in form-based log-inunless LPTA is used.

Security integration rules for HTTP sessions

Sessions in unsecured pages are treated as accesses by "anonymous" users.●

Sessions created in unsecured pages are created under the identity of that "anonymous" user.●

Sessions in secured pages are treated as accesses by the authenticated user.●

Sessions created in secured pages are created under the identity of the authenticated user. They can only
be accessed in other secured pages by the same user. To protect these sessions from use by unauthorized
users, they cannot be accessed from an insecure page.

●

Programmatic details and scenarios

IBM WebSphere Application Server maintains the security ofindividual sessions.

An identity or user name, readable by thecom.ibm.websphere.servlet.session.IBMSession interface, is
associated witha session. An unauthenticated identity is denoted by the user name "anonymous." IBM
WebSphere Application Server includes the
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestExceptioninterface,which is used when a
session is requested without the necessary credentials.

The Session Manager uses the WebSphere security infrastructure todetermine the authenticated identity
associated with a client HTTP requestthat either retrieves or creates a session. WebSphere security
determinesidentity using certificates, LPTA, and other methods.

After obtaining the identity of the current request, the Session Managerdetermines whether the session
requested using a getSession() call should be returned.

The table lists possible scenarios in which security integration is enabledwhose outcomes depend on whetherthe
HTTP request was authenticated and whether a valid session IDand user name was passed to the Session
Manager.

 Unauthenticated HTTP request is used to
retrieve a session

HTTP request is authenticated, with an
identity of "FRED" used to retrieve a

session
No session ID
was passed in
for this request,
or the ID is for
a session that is
no longer valid

A new session is created. The user name is
"anonymous"

A new session is created. The user name is
"FRED"

A session ID
for a valid
session is
passed in. The
current session
user name is
"anonymous"

The session is returned. The session is returned. TheSession Manager
changes the user name to "FRED"

A session ID
for a valid
session is
passed in. The
current session
user name is
"FRED"

The session is not returned.
UnauthorizedSessionRequest Exception is
thrown*

The session is returned.

A session ID
for a valid
session is
passed in. The
current session
user name is
"BOB"

The session is not returned.
UnauthorizedSessionRequestException is
thrown*

The session is not returned.
UnauthorizedSessionRequestException is
thrown*

* com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException is thrown to the servlet.

4.4.1.1.4: Deciding between single-row and multirow
schema for sessions
Using the single-row schema, each user session maps to a single database row. Using the multirow schema,
each user session maps to multiple database rows.(In a multirow schema, each session attribute maps to a
database row.)

In addition to allowing larger session records, using multirow schemacan yield performance benefits, as
discussed in article 4.4.1.1.7.3. However, itrequires a little work to switch to from single-row to multirow
schema, as shown in the instructions below.

Switching from single-row to multirow schema

To switch from single-row to multirow schema for sessions:

Modify the Session Manager properties to switch from single to multirowschema.1.

Manually drop the database table or delete all the rows in the databasetable that the product uses to
maintain HttpSession objects.

To drop the table:

Determine which data source configuration the Session Manager is using.1.

In the data source configuration, look up the database name.2.

Use the database facilities to connect to the database.3.

Drop the SESSIONS table.4.

2.

Restart the Session Manager.3.

Coding considerations and test environment

Consider configuring direct single-row usage to one database and multirow usageto another database while you
verify which option suits your application's specific needs.(Do this in code by switching the datasource
used;then monitor performance.)

Programming issue Application scenario
Reasons to use single-row You can read or write all values with just one record read/write.●

This takes up less space in a database, because you are guaranteed that
each session is only one record long.

●

Reasons not to use single-row 2-megabyte limit of stored data per session.

Reasons to use multirow The application can store an unlimited amount of data; that is, you are
limited only by the size of the database and a 2-megabyte-per-record
limit.

●

The application can read individual fields instead of the whole record.
When large amounts of data are stored in the session but only small
amounts are specifically accessed during a given servlet's processing of
an HTTP request, multirow sessions can improve performance by
avoiding unneeded Java object serialization.

●

Reasons not to use multirow If data is small in size, you probably do not want the extra overhead of
multiple row reads when everything could be stored in one row.

In the case of multirow usage, design your application data objects not to have references to each other, to

prevent circular references. For example, suppose you are storing two objects A and B in the session using
HttpSession.put(..) , and A contains a reference to B. In the multirow case, because objects are stored in
different rows of the database, when objects A and B are retreived later, the object graph between A and B is
different than stored. A and B behave as independent objects.

4.4.1.1.5: Using sessions in a clustered environment
Consider the following issues regarding how session management works within a clustered environment.
Clustered environments includeany environments in which requests are being handled by multiple Web servers,
multipleapplication servers, or both. See section 7 for more about clustering and workload management.

Session support requires an affinity mechanism

Session clustering requires an affinity mechanism so that all requests for a particular session are directed tothe
same Java Virtual Machine (JVM) in the cluster. One such solution provided by IBMWebSphere Application
Server is Session Affinity in a server group; this solution is available aspart of the WebSphere plug-ins for Web
servers.

For use in a clustered environment, objects placed in persistent
sessions must be serializable

To make your applications portable to a clustered environment, you must make any objects placed in a
persistent session serializable. If you place an object that does not implement the Serializable interface, you lack
a way to propagate the object with a given session, disallowing proper persistence among servlets in the cluster.

(If failover support for the session is not required,implementing the Serializable interface is not necessary.If you
use the Session Affinity plug-in,you can now chooseto use only the in-memory HttpSession object.This is
possible because the plug-in redirects all requests that refer to a given HttpSession object to the server group in
which the session was initially created and resides.)

In addition to java.io.Serializable objects, Session Manager also supports the placement of the following objects
into HttpSession for clustered (distributable) environments:

javax.ejb.EJBObject●

javax.ejb.EJBHome●

javax.naming.Context●

javax.transaction.UserTransaction●

EJBObject, EJBHome, and Context objects can be placed directly into HttpSession. For UserTransaction
objects in clustered environments, use com.ibm.websphere.servlet.session.UserTransactionWrapper, which
requires you to include the InitialContext object from which this transactionobject was retrieved.(If failover
support for the session is not required, you can place the UserTransaction object directly into HttpSession.)

Within a Web application that is marked as distributable, all objects that are placed into the session must
implement theSerializable interface; otherwise, an IllegalArgumentException is thrown.

For additional notes on programming for clustered environments, seethe related information.

Session binding occurs on a certain application server in the cluster

When HttpSessionBindingListener and HttpSessionBindingEvent are used in a clustered Web server
environment, the event is fired in the application server on which the session is currently being processed. The
action will occur in situations where:

A listener is put into a session●

A listener is removed from a session●

The servlet explicitly invalidates the session that contains listeners●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/07.html

If the session times out, this (unbound) event may be fired in any one of the application servers in the cluster.

Certain changes might require restarting all Session Managers in a
cluster

See the related information for details.

4.4.1.1.7: Tuning session support
IBM WebSphere Application Server session support has features for tuning session performance and operating
characteristics, particularly whensessions are persisted in a database. These options allow the administrator
flexibility in determining the performance and failovercharacteristics for their environment.

The table summarizesthe features, including whether they apply to sessions tracked in memory, in a database, or
either.Click a feature for details about the feature. Some features are easily manipulatedusing administrative
settings; others require code or database changes.

Feature or option Goal Applies to sessions in
memory or database?

Write frequency Minimize database write operations. Database

Session affinity Access the session in the same JVM. Either

Multirow schema Fully utilize database capacities. Database

Base in-memory session
pool size

Fully utilize system capacity withoutoverburdening
system. Either

Write contents Allow flexibility in determining what session data to
write Database

Scheduled invalidation

Minimize contention between session requests and
invalidation of sessions by Session
Manager.Minimize write operations to databasefor
updates to last access time only.

Database

Tablespace and row size Increase efficiency of write operations to database. Database

4.4.1.1.7.1: Tuning session support: Session
persistence
IBM WebSphere Application Server avoids using the database to read in or access the session when it is
determined that the entry in the session cache is still the most recently updated copy.To tune the cache,set the
base in-memory session pool sizeand allow overflow.

In addition to the cache table itself,the product maintains a list of the most recently used sessions in
memory,ordered from least to most recently used.Whenever a session is accessed, it is added to the
most-recently-used end of the list.When the cache table becomes full and a session that is not in the cache is
accessed, the least recently used session is removed from the cache (but not from the database; the session is
still valid until explicitly invalidated or timed out)to make room for the new entry.

This removal occurs whether or not overflow is enabled.However, under heavy-concurrent-access scenarios,
multiple new sessions might competefor the space vacated by the single, least recently used entry.

When overflow is disabled, only one new session is placed in the cache;the others must be reread from
the database.To optimize performance,the product does not retry to add the next new sessionby
removing the next least recently used entry.

●

When overflow is enabled, one new session is added to the base table, and the rest reside in memory in
the overflow table. Analysis and customer experience show that the size of this table remains relatively
small comparedto the base in-memory session pool size.

●

It is also important to establish sessionaffinity so that the caching can be most effective. See the Related
informationfor details.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06061100.html

4.4.1.1.7.2: Tuning session support: Session affinity
In a clustered environment, the Session Manager requires an affinity mechanism so that requests for a particular
session are always sent to the same server. This satisfies the Servlet 2.2 requirement that a session be active in
only one JVM at a time. It also provides for better performance, because the sessions are cached in memory.
Session affinity is provided in a server group by the Web server plug-ins. In clustered environments other than
server groups, an affinity mechanism (for example, IBM WebSphere Edge Server affinity) must be used.

4.4.1.1.7.3: Tuning session support: Multirow schema
By default, a single session maps to a single row in the database table used tohold sessions. With this setup,
there are hard limits to the amount of user-defined,application-specific data that WebSphere Application Server
can access.

IBM WebSphere Application Server supports the use of a multirow schema option in which each piece of
application specific data is stored in a separate row of the database. With this setup, the total amount that can be
placed in a session is now bound only by the database capacities. The only practical limit that remains is the
size of a session attribute object itself.

The multirow schema potentially has performance benefits in certain usage scenarios, such as when larger
amounts of data are stored in the session but only small amounts are specifically accessed during a given
servlet's processing of a http request. In such a scenario, avoiding unneeded Java object serialization is
beneficial to performance.

It should be stressed that switching between multirow and single row is not a trivial proposition. See the Related
information for details.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06061100.html

4.4.1.1.7.4: Tuning session support: Write frequency
In the Session Manager, you can configure the frequency for writing session data to the database. This
flexibility enables you to weigh session performance gains against varying degrees of failover support. The
following options are available in Session Manager for tuning write frequency:

End of service method (the default) - Write session data at the end of the servlet's service() method call.●

Manual update - Write session data when the servlet calls the IBMSession.sync() method.●

Time-based write - Write session data every so many seconds (called the write interval).●

When a session is first created,session information is always written to the databaseat the end of the service()
call.

End of service method

By default, IBM WebSphere Application Server updates the database with any changes made to the session
during the servlet processing of an HTTP request (for example, during the execution of the service() method).
These updates minimally include the last access time of the session and typically also include changes affected
by the servlet, such as updating or removing application data.Exactly how much is written back can be
configured with the write contentsoption.

Manual update

With manual updates, the servlet using a session determines when to write session information to the database.
Switching to manual updates improves performance when the number of times an HTTP request's processing
leads to changing a session (typically its application data) is typically less than the number of times the session
is accessed or read in.

When manual update is set, the product session support no longer automatically updates the database at the end
of a servlet's service() method.(However, when an HttpSession object is first created, session information is
written to the database as part of postprocessing for the servlet request in which the session was created.)The
last update times are cached and updated asynchronously prior to checks for session invalidation.

For any permanent changes to the session as part of servlet processing, the servlet code must specifically call
the sync() method of the com.ibm.websphere.servlet.session.IBMSession interface.

Programming issue Application scenario
Reasons to use manual update You want direct control over when session information is persisted

to the database.
●

The servlets of the application typically read in the session data but
do not write it back as much.

●

Reasons not to use manual update You do not want to control persistence of session information by
using the IBMSession object, or you prefer that WebSphere
explicitly control persistence to the database.

●

The servlets of the application are writing session information
frequently.

●

Your code must comply completely with the Servlet 2.2
specification. The sync() method is not part of the Servlet
specification; it is an IBM extension.

●

Time-based write

With time-based write, session data is written back to the database every time the write interval expires.
Expiration of the write interval does not force a write operation; data is written only if the session has been
retrieved or modified.

For example, suppose that a web application updates a session object every five seconds.

If the Write Frequency option is set to End of service method,session information gets written every
five seconds.

●

If the Write Frequency option is set to Manual update,session information gets written whenever the
application codecalls IBMSession.sync().

●

If the Write Frequency option is set to Time based writeand the write interval is set to 120
seconds,session information gets written no more frequently than every 120 seconds.

●

Using the time based write setting requires that the session invalidation time be at least twice as large asthe
write interval. This is needed to ensure that a session is not prematurely invalidated.

4.4.1.1.7.5: Tuning session support: Base in-memory
session pool size
The base in-memory session pool size number has different meanings, dependingon session support
configuration:

When sessions are being stored in memory, sessionaccess is optimized for up to this number of sessions.●

When sessions are being stored in a database, it also specifies the cache size andthe number of last
access time updates that are saved in manual update mode.

●

For persistent sessions,when the session cache has reached its maximum sizeand a new session is requested,
Session Manager removes the least recently used sessionfrom the cache to make room for the new one.

General memory requirements for the hardware system, and the usagecharacteristics of the e-business site, will
determine the optimum value.

Note that increasing the base in-memory session pools size can necessitateincreasing the heap sizes of the Java
processes for the correspondingWebSphere application servers.

Overflow in non-persistent sessions

By default, the number of sessions maintained in memory is specified byBase in-memory session pool size. If
you do notwish to place a limit on the number of sessions maintained in memory and allowoverflow, set
overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust systemmemory and even allow for system
sabotage. Someone could write a maliciousprogram that continually hits your site and creates sessions, but
ignoresany cookies or encoded URLs and never utilizes the same session from oneHTTP request to the next.

When overflow is disallowed, the Session Manager still returns a session with the HttpServletRequest's
getSession(true) method if the memory limit has currently been reached, but it would be an invalid session that
is not saved in any fashion.

With the WebSphere extension to HttpSession, com.ibm.websphere.servlet.session.IBMSession, an
isOverflow() method returns true if the session is such an invalid session. An application could check this and
react accordingly.

4.4.1.1.7.6: Tuning session support: Write contents
In Session Manager,you can configure which session data is written to the database. This flexibility allows for
fewer code changes for the JSP writer when the application will be operating in a clustered environment. The
following options are available in Session Manager for tuning what is to be written back to the database:

Write changed (the default) - Write only session data properties that have been updated through
setAttribute() and removeAttribute() method calls.

●

Write all - Write all session data properties.●

The Write all setting might benefit servlet and JSP writers who changeJava objects that reside as attributes in
an HttpSession instance.Previously, every programmatic change in an attributewould require a setAttribute()
callto make sure changes werereflected in the database in a timely manner.In most cases, the use of this setting
eliminates the need for all but the initialsetAttribute() call to bind the object to the session.

However, the use of Write allcould result in more being written back to the database than is necessary.If this
situation applies to you, consider combining the use of Write all with Time-based write to boostperformance
overall.As always, be sure to evaluate the advantages and disadvantages for your installation.

With either Write Contents setting,when a session is first created,complete session information is written to the
database,including all of the objects bound to the session.In subsequent session requests,what is written to the
databasedepends on whether a single-row or multirowschema has been set for the session database, as follows:

Write Contents setting Behavior with single-row
schema Behavior with multirow schema

Write changed If any session attribute is
updated, all objects bound to
the session are written.

Only the session datamodified through
setAttribute() or removeAttribute() calls is written.

Write all All bound session attributes are
written.

All session attributes that currently reside in the
cache are written.If the session has never left the
cache, all session attributes are written.

4.4.1.1.7.7: Tuning session support: Scheduled
invalidation
You can set specific times for the Session Manager to scan for invalidated sessions. When used with persistent
sessions, this feature has the following benefits:

The scan for invalidated sessions can be scheduled for times of low application server activity,avoiding
database contention between invalidation scans andread/write operations to service HTTP session
requests.

●

There may be significantly fewer database write operations when running with the End of Service
Method" write mode,because the session's last access time need not be written out after each HTTP
session request. (Manual Update and Time Based Write options already minimize the writing of the last
access time.)

●

Usage considerations

With scheduled invalidation configured,HttpSession time-outs are not strictly enforced. Instead, all
invalidation processing is handled at the configured invalidationtimes.

●

HttpSessionBindingListener processing is handled at the configuredinvalidation times unless
HttpSession.invalidate() is explicitly called.

●

The HttpSession.invalidate() method immediately invalidates thesession from both the session cache and
the database.

●

4.4.1.1.7.8: Tuning session support: Tablespace and page sizes for DB2
session databases
If you are using DB2 for session persistence, you can increase the page size to optimize performancefor the writing of large amounts of data to the
database.In versions earlier than 4.0, IBM WebSphere Application Server supported only a 4K page size.Page sizes of 8K, 16K, or 32K are supported
in Version 4.0.

To use a page size other than the default (4K), do the following:

If the SESSIONS table already exists, drop it from the DB2 database.●

Create a new DB2 buffer pool and tablespace, specifying the same page size (8K, 16K or 32K) for both, and assign the new buffer pool to this
tablespace. A simple example follows:

DB2 Connect to sessionDB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8KDB2 Connect resetDB2
Connect to sessionDB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM USING
('D:\DB2\NODE0000\SQL00005\sessionTS.0') BUFFERPOOL sessionBPDB2 Connect reset

Refer to DB2 product documentation for details.

●

Configure the correct tablespace name and page size in the Session Manager. (Page size is referred to as row size in the Session Manager
console.)

●

When the product is restarted, the Session Manager creates a new SESSIONS tablein the specified tablespace based on the page size specified.

4.4.1.1.8: Best practices for session programming
When developing new objects to be stored in the HTTP session, make sure to implement the Serializable
interface.This enables the object to properly persist session information to the database. An example of this is:

public class MyObject implements java.io.Serializable {...}

Without this extension, the object will not persist correctly and will throw an error.

When adding Java objects to a session, make sure they are in the correct class path. If Java objects will be
added to a session, be sure to place the class files for those objects in the application server class path or in the
web application path.In the case of session clustering, this applies to every node in the cluster. Because the
HttpSession object is shared among servlets that the user might access, consider adopting a site-wide naming
convention to avoid conflicts.

Do not store large Object graphs in HttpSession.In most applications, each servlet requires only a fraction of
the total session data. However, by storing the data in HttpSession as one large object, an application forces
WebSphere to process all of it each time.

Release HttpSession objects when you are finished.HttpSession objects live inside the Web container until:

The application explicitly and programmatically releases it using
javax.servlet.http.HttpSession.invalidate(); quite often, programmatic invalidation is part of an
application logout function.

●

The application server destroys the allocated HttpSession object when it expires (default is 1800 seconds
or 30 minutes).When session persistence is used, the application server can maintain only a certain
number of HttpSession objects in memory. When this limit is reached,The application server removes
the least recently used session entries from thecache to make a room for new ones. If Allow Overflow is
enabled,the product also uses an overflow memory table to cache the entries when there is a racing
condition for a entry in the cache.The product makes its best effort to keep the cache at base memory
size.

●

Do not try to save and reuse the HttpSession object outside of each servlet or JSP.The HttpSession object
is a function of the HttpRequest (you can get it only through req.getSession()), and a copy of it is valid only for
the life of the service() method of the servlet or JSP. You cannot cache the HttpSession object and refer to it
outside the scope of a servlet or JSP.

Session clustering requires an affinity mechanismso that all requests for a particular session are directed
to the same Java Virtual Machine (JVM)in the cluster. This conforms to the Servlet 2.2 Specification in that
multiple requests for a session cannot coexist in multiple JVMs.One such solution provided by IBM WebSphere
Application Server is Session Affinity, which is available as part of the WebSphereplug-ins for Web servers.If
one of the servers in the cluster fails,it is possible for the request to be rerouted to another server in the cluster.
The new server can access session data from the common SESSIONS table. This is transparent to the servlet,
browser, and user.This helps to achieve a greater use of the in-memory cache and reduces hits to the session
database.

4.4.2: Keeping user profiles
IBM WebSphere Application Server provides a service for processing user profiles, called the User Profile
Manager. The service is provided in the form of an EJB entity bean that servlets can call whenever they
arerequired to access a user profile.

The key activities for implementing user profilesare summarized. For more information about each point,
consult the Related information below.

Customize the user profile support as necessary. Options include:

Using the data representation class with exactly the name/value pairs it currently allows (no
action required)

❍

Extending the data representation class to allow additional, arbitrary name/value pairs❍

Adding columns to the base user profile representation❍

Extending the User Profile enterprise bean itself to import existing databases❍

Basically, you need to evaluate whether the user profilerepresentation provided by IBM represents the
kind of data youwould like to keep about your users. You might find it desirableto customize the IBM
user profile support in one or more of theabove ways.

1.

Create or modify servlets to use the User Profile Manager and related user profile support classes to
maintain user profiles on behalf of Web applications.

2.

Ensure the administrator appropriately configures User Profile Managers in the administrative domain.

If the programmer andadministrator are not the same person, the programmer might needto provide
settings information to the administrator, based onhow the programmer implemented user profiles.

3.

4.4.2.1: Data represented in the base user profile
WebSphere Application Server provides a base implementation for data representation in user profiles through
the interfacecom.ibm.websphere.userprofile.UserProfile.

The interface includes these columns corresponding to fields for demographic data on individual users:

Address (first line)●

Address (second line)●

First Name●

Surname●

Day phone number●

Night phone number●

City●

Nation●

Employer●

Fax number●

Language●

Email address●

State/Province●

Postal code●

4.4.2.2: Customizing the base user profile support
The application developer has a few options for customizing the user profile supportprovided by IBM
WebSphere Application Server. The Related information provides instructionsand additional details about each
option.

Extend the data represented in user profiles

As discussed in section 4.4.2.1, the base implementation allows Web applications to maintain several pieces of
data about users. The data representation canbe extended to allow the collection of arbitrary name/value pairs.

Adding columns to the base user profile implementation

Application developers can customize userprofiles by adding columns to the base user profile implementation.
Adding new columns is accomplished by implementing the interface:

com.ibm.websphere.userprofile.UserProfileExtender

and extending the base class:

com.ibm.servlet.personalization.userprofile.UserProfile

Extending the User Profile enterprise bean and importing legacy
databases

Application developers can extend the User Profile enterprisebean itself and import legacy databases into the
user profile. The main advantagein extending the User Profile enterprise bean is to gain theability to import
existing databases into the user profile. It can also be extendedto simply add columns to the base user profile
implementation.

4.4.2.2.1: Extending data represented in user profiles
Use following interface withcom.ibm.websphere.userprofile.UserProfileExtender to extend a user profile hash
table:

com.ibm.websphere.userprofile.UserProfileProperties

This enables you to place arbitrary name/value pairs in theuser profile.Extending the hash table is similar to
using the java.util.Dictionaryclass in the base JDK 1.x or any of the classes that extend it.

4.4.2.2.2: Adding columns to the base user profile
implementation
The base implementation of the user profile is contained in the class:

com.ibm.servlet.personalization.userprofile.UserProfile

It contains the columns discussed in section 4.4.2.1. The application developer can add columns to the base
implementation,but cannot delete columns from it.

Adding columns is a two-step process, as follows:

Extend the UserProfile class.1.

Modify your existing servlets to use the new columns.2.

Several examples are available to demonstrate how to extend thebase user profile implementation and utilize the
extension with aservlet.

Example Description

UPServletExample.java Demonstrates how a servlet opens a user profile and prints the fields
contained within it

UserProfileExtendedSample.java

Shows how to extend the UserProfile class to add a column to the user
profile for a cellular phone number.

The WebSphere administrator needs to configure the User Profile Manager
to point tothe extended class.

UPServletExampleExtended.java Shows how to modify the UPServletExample servlet to include the cellular
phone number in the output

UserProfileExtended.java Shows how to extend a hash table to place arbitraryname/value pairs into
the user profile

UPServletExtended.java
Shows how to extend the servlet. When any of the newly added columnsare
removed or replaced, look for the table named "USERPROFILE" in the
database to which the user profile is configured and drop that table.

The examples are encoded in HTML for viewing in a browser.The documentation directory also contains
non-HTML versions (.javafiles) that are ready for use.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPServletExample.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UserProfileExtendedSample.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPServletExampleExtended.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UserProfileExtended.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPServletExtended.java.html

4.4.2.2.3: Extending the User Profile enterprise bean
and importing legacy databases
IBM WebSphere Application Server implements user profile support as an entity bean. Although you can
extend the base user profile by adding columns to it, you can also extend the user profile enterprise bean itself
as an alternative customization approach.

Extending the User Profile enterprise bean is more involved than extending the base user profile. You should be
familiar with the concepts that underlie enterprise beans(Java components written to the EJB specification). For
detailed information regarding enterprise beans and their implementation in IBM WebSphere Application
Server, see section 4.3.

The table below summarizes the procedure for extending the user profile enterprise bean and importing data
from an enterprise (legacy) database, with links to example code.

Importing data requires an enterprise bean that maps to the legacy database. For simplicity, the examples
assume that the primary keys of the two enterprise beans are identical, although there is no such requirement.
The primary key of the legacy enterprise bean does not have to match the primary key of the user profile
enterprise bean (the userName column).

Extending the user profile bean to set and get user cell phone data

Task Examples
1. Start with the base user profile bean and its remote
interface.

These contain the methods for setting and getting the
base user profile fields

User profile bean●

Remote interface●

2. Define a home interface and finder helper for the
UPBaseChild bean. Specify the create and finder
methods for the bean.

Because inheritance between home interfaces is not
supported in WebSphere Application Server, you will
need to define all of the methods found in the
UPBaseHome interface in order to use the managerial
functions of the User Profile Manager.

You can also add more methods as necessary to further
customize the User Profile.

For the home interface●

For the bean●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseBean.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBase.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildHome.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildBeanFinderHelper.java.html

3. Create read-only and read-write extensions of the
UPBaseChild bean.

In the base implementation of the User Profile beans
provided, read-only and read-write beans are simple
extensions of the UPBase bean. You would similarly
extend your UPBaseChild bean with read-only and
read-write extensions.

Read-only bean extension classes:

Bean●

Remote interface●

Home interface●

Finder class●

Read-write bean extension classes:

Bean●

Remote interface●

Home interface●

Finder class●

4. Define a deployment descriptor for your beans

Using the Application Assembly Tool or IBM
VisualAge for Java, map both beans to the same table
(that is, the same user profile table)and corresponding
columns.Then define the deployment descriptor.

In the base read-only implementation provided, all of the
business methods are marked as read-only, so updating
the fields using setter methods on the read-only bean
does not update the persistent store.

Mark all the business methods in this example as
constant (read-only):

Read only●

Assuming you are not updating any instance
variables in getter methods, you may also mark all
your getter methods this example as constant to
improve performance:

Read write●

Mark some or all of the fields (except the remote
interface to the legacy bean) as container managed
fields. Define other properties to your beans
depending on your requirements.

5. Extend the User Profile data wrapper to include the
new methods

The example shows how to extend the base User Profile
data wrapper class to include the methods for setting and
getting cell phone information in the User Profile

EJB extension

6. Use a WebSphere Application Server administrative
client to configure user profile support. The
administrative configuration includes:

The data wrapper class name●

JNDI lookup names●

Home and remote interfaces for the read-only
and read-write beans

●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadOnlyBean.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadOnly.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadOnlyHome.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadOnlyBeanFinderHelper.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadWriteBean.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadWrite.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadWriteHome.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadWriteBeanFinderHelper.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadOnlyBean.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UPBaseChildReadWriteBean.java.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/UserProfileEJBExtension.java.html

4.4.2.3: Accessing user profiles from a servlet
Servlets and other application building blocks requiring user profile support should make calls to the class:

com.ibm.websphere.userprofile.UserProfileManager

The class supports the following functions:

Creating and deleting user profiles●

Getting and updating (cached and immediate) to and from the database●

Getting user profiles for read-only tasks●

Performing queries on database columns●

4.5: Dynamic fragment cache
A WebSphere Application Server performance enhancement is the ability to cache the output of dynamic
servlets and JSP files, a technology that improves application performance. This technology, working within an
application server's Java Virtual Machine (JVM), intercepts calls to a servlet's service method, and checks
whether the invocation can be served from a cache. Because J2EE applications have such high read-write ratios
and can tolerate a small degree of latency in the freshness of their data, fragment caching creates an opportunity
for significant gains in server response time, throughput, and scalability.

After a servlet is invoked once (generating the output that will be cached), a cache entry is created containing
not only the output, but also side effects of the invocation as, for example, calls to other servlets or JSP files, as
well as meta data about the entry including timeout and entry priority information.

Unique entries are distinguished by an id string generated from the HttpServletRequest object for each
invocation of the servlet.Servlet caching can then be based on:

Request parameters and attributes●

the URI used to invoke the servlet●

Session information●

Other options, including cookies●

Since JSP files are compiled by WebSphere Application Server into servlets,the dynamic cache function treats
them the same, except in specifically documented situations.

Summary of dynamic fragment caching articles

The dynamic fragment caching documentation describes how to configure dynamic caching in WebSphere
Application Server. For both global configuration and the definition of individual cache policies, users can
configure dynamic fragment cachingthrough XML files installed on the server, or with graphical user interface
(GUI) tools such as theadministrative console or the Application Assembly Tool. The XML files are the
preferred method for configuring dynamic caching because, in some cases, they are easier to implement and
include more function than the GUI configuration.

The dynamic fragment caching articles also discuss advanced features of the cache, such as how to control
external caches and how to build user-defined drop in components to customize the cache operation.

The dynamic fragment caching articles are:

6.6.0.16: Dynamic fragment cache configuration overview●

6.6.0.16.1: Global configuration●

6.6.0.16.2: Policy configuration●

6.6.0.16.4: Dynamic fragment cache XML examples●

6.6.0.16.4: Dynamic fragment cache monitor●

4.5.1: Custom ID and MetaData generators●

4.5.2: External Cache Adapter building●

4.5.3: Dynamic fragment cache frequently asked questions●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060016.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001601.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001603.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001604.html

4.5.0: Getting started with Dynamic fragment cache
This article provides you with a quick list of tasks that you must completeto enable dynamic fragment caching
with XML. Click any of the links for more informationon a specific topic.

Create a global configuration file

In the <product_installation>/properties directory, locate the
dynacache.sample.xml file. Copy the dynacache.sample.xml file to dynacache.xml.

The sample is a valid cache configuration file that will enable caching with default values. With caching
enabled, the application server will look for a servlet configuration file in the /properties directory
that declares which servlets should be cached. The options selected are discussed in detail in article,
Global configuration.

1.

Create a servlet configuration file

In the <product_installation>/properties directory, locate the
servletcache.sample.xml file. Copy the servletcache.sample.xml to
servletcache.xml.

This sample file configures WebSphere's default server's snoop servlet for caching. Article Policy
configuration describes the different ways for definining how to cache individual servlets or JSP files.

2.

Reinitialize the Application Server

Stop and restart the WebSphere Application Server.

3.

Verify the cacheable page.

Using a Web Browser, access URI: /servlet/snoop to view the snoop servlet in the default
application. Invoking and reloading the URI several times should return the same output for the snoop
servlet.

 The snoop servlet is now operating incorrectly, since it displays the request
information from its first invocation rather than from the current request. You can inspect
the entry in the cache with the Servlet cache monitor

4.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001601.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001604.html

4.5.1: Custom ID and MetaData generators
WebSphere Application Server's dynamic cache technology allows users to replace the standard configuration
functions with their own custom configuration classes. The configuration duties managed by cache fall into two
categories:

Generating cache and group ids●

Defining meta data such as timeout, priority, and external caching●

Application developers can supply classes to handle either or both of these sets of responsibilities, by
implementing com.ibm.websphere.servlet.cache.IdGenerator and
com.ibm.websphere.servlet.cache.MetaDataGenerator.

Overriding the default MetaDataGenerator allows users to access configuration information from some other
source. or makes timeout, priority, or external cache group a function of a variable rather than a constant.A new
IdGenerator gives users the ability to determine cache entry ids and their group ids.Both classes can still use the
cache policy attributes defined for a servlet (<timeout>, <priority>, <request>, and others) to relay data to their
generators using the com.ibm.websphere.servlet.cache.CacheConfig class.

Each servlet class has individual IdGenerator and MetaDataGenerator objects associated with it.So if the same
servlet is being executed by WebSphere Application Server in different threads, all threads will use the same
pair of generator objects.

Several dynamic caching classes are not described in detail in this article. See the
com.ibm.websphere.servlet.cache package (Javadoc) for more inforamtionon the classes and
interfaces used by the cache function.

Custom Id generators

Configuring the cache to use a custom IdGenerator:

To specify your IdGenerator in the XML file, use the <idgenerator> tag.

<servlet>
 <timeout seconds="0"/>
 <path uri="/servlet/CommandProcessor" />
 <idgenerator class="SampleIdGeneratorImpl" />
</servlet>

You can also use the Application Assembly Tool to define the IdGenerator class in the cache policy's
Advanced tab.

●

Building a custom IdGenerator:

Your IdGenerator must implement the com.ibm.websphere.servlet.cache.IdGenerator
interface. There are three methods in the IdGenerator interface:

public void initialize(CacheConfig cc);1.

public String getId(ServletCacheRequest request);2.

public int getSharingPolicy(ServletCacheRequest request);3.

The getSharingPolicy method should return EntryInfo.NOT_SHARED

The initialize method is called during startup. Normally, the cache processes a servlet's XML
configuration and builds a CacheConfig object that is made available to the IdGenerator. The initialize
method then builds a list of request and session variables that must be included in the cache ids for the

●

http://localhost/0802_makepdf/apidocs/index.html

servlet. Since the "plugged-in" IdGenerator is created with a specific servlet's behavior in mind, working
with the CacheConfig is unnecessary; just hard code the configuration into the getId method.

The getId method returns the unique String cache id when the servlet is invoked. If the servlet is
cached, the getId method returns null. Typically, an Id will incorporate the following:

The URI of the servlet●

The character encoding of the request (when the result is not null)●

The names and values of the input variables that determine the servlet's output●

See the coding example for implementation details.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/SampleIdGeneratorImpl.html

4.5.2: External caching
WebSphere Application Server's dynamic cache has the ability to control external caches on Web servers, such as IBM Edge
Server and IBM HTTP Server. When external caching is enabled, the cache matches pages with their URIs and pushes
matching pages to the external cache. The entries can then be served from the external cache instead of the application
server.This creates a significant savings in performance.

Only certain fragments are eligible for external caching. Since the external cache must use the full URI as a cache id, the
servlet being externally cached uses that URI as its internal cache id as well.Also, because the the cache automatically uses the
URI to build cache ids, it is illegal to define cache variables (for example, request, session, and cookie variables) in an
externally cacheable servlet.

Only full pages are pushed out to external caches, so only externally accessible servlets should be defined as externally
cacheable. For example, if page1.jsp includes page2.jsp and page3.jsp, then only page1.jsp should be declared externally
cacheable.If page3.jsp is invalidated, then the cache also invalidates the external entry for page1.jsp. Therefore the next request
for page1.jsp is sent to WebSphereApplication Server.

Servlet and JSP file content that is private, requires authentication, or uses SSL should not be cached externally. The
authentication required for those servlet or JSP file fragments cannot be performed on the edge. A suitable timeout value
should be specified if the content is likely to become stale.

Enabling external caching of servlets and JSP files with IBM Edge Server

Edge Server users should consult the Edge Server documentation for information on configuring external caching between
WebSphere Application Server and Edge Server.

Enabling high speed caching of Servlets and JSP files with IBM HTTP Server for
Windows NT/2000

IBM HTTP Server for Windows NT/2000 contains a high speed cache referred to as the Fast Response Cache Accelerator, or
Cache Accelerator. WebSphere Application Server's fragment cache can use IBM HTTP Server as an external cache with
appropriate configuration.

After installing WebSphere Application Server and IBM HTTP Server for Windows NT, you must do the following to enable
the Cache Accelerator:

Configure caching on the Web server.

In the IBM HTTP Server conf directory, locate the httpd.conf configuration file, and add the following two lines
at the end of the file:

 LoadModule afpaplugin_module c:/WebSphere/AppServer/bin/afpaplugin.dll
 AfpaPluginHost 127.0.0.1:9081

The first line loads the IBM HTTP Server plug-in that connects the Cache Acceleratorto WebSphere's fragment
cache.Ensure the LoadModule path points to your Websphere Application Server installation.

The second line defines the application server instances that should be connectedto this module. When multiple
instances of WebSphere Application Server are defined,repeat the second line for each application server. If the
instances are on different machines from the Web server, use the instances' IP address instead of the localhost address
defined inthis example. In the case of multiple application servers on the same host, choose a different port number for
each instance.

1.

Configure an external cache group on the application server.

For each application server that uses the Cache Accelerator, define an external cache group named afpa. Add a member
to that group with an adapter bean name of com.ibm.servlet.dynacache.Afpa. For the address, enter the
assigned port number from the Web server's httpd.conf file. An example of this configuration is available in the
dyncache.sample.xml file located at:
product_installation/properties/dynacache.sample.xml
See the global configuration section in this file for more information.

2.

Configure a cache policy using external cache.3.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

Now you can use the external cache attribute when building your cache policies. See article Policy configurationfor
information on building cache policies.

You can test your configuration by doing the following:

Do a CD (change directory) to the product_installation/propertiesdirectory.a.

Copy the servletcache.sample.xml file to servletcache.xml.b.

Update the first entry with the following definitions to enable the external high speed cache:

<servlet>
 <timeout seconds="0" />
 <servletimpl class="SnoopServlet.class" />
 <externalcache id="afpa" />
</servlet>

You can test your changes using the SnoopServlet sample for external caching. The SnoopServlet.class is located in:

product_installation\installedApps\sampleApp.ear\default_app.war\WEB-INF\classes

The first request for http://yourhost/servlet/SnoopServlet results in the response being loaded in the
high speed cache. Subsequent requests are served directly from the cache, which significantly enhances performance.

Setting the "timeout seconds" to "0" means the cached entry remains permanently cached. Setting it to a positive
non-zero value, as for example, 30, causes the high speed cache entry to be deleted after the specified number of
seconds, in this case 30.

To enable JSP files for caching, add the following stanza to the servletcache.xml file:

 <servlet>
 <timeout seconds="10" />
 <path uri="/very_simple.jsp" />
 <externalcache id="afpa" />
</servlet>

In this example, you cache the response for 10 seconds when the http://yourhost/very_simple.jsp file is
requested.The file, very_simple.jsp is located in:

product_installation\installedApps\sampleApp.ear\default_app.war

After 10 seconds, the cache entry is deleted. The cache entry is updated when a new request occurs for the JSP file.

 The IBM HTTP Server Fast Response Cache Accelerator isavailable on both Windows NT/2000
and AIX. However, dynamic caching support is currently only available on Windows NT/2000.

c.

Configuring the Fast Response Cache Accelerator cache size.

In the default IBM HTTP Server configuration, the maximum Cache Accelerator dynamic cache size is calculated as 1/8 of
physical (pin-able) memory. On a machine with 384Meg of RAM, it allows a maximum of approximately 50Meg for the
Cache Accelerator dynamic cache. When this limit is reached, the Cache Accelerator then deletes older entries to cache new
ones.

The IBM HTTP Server directive, AfpaDynaCacheMax, can be used to fine tune the maximum allowed cache size. This
directive must be placed in the global server configuration scope (along with the other default Cache Accelerator directives),
and Cache Accelerator must be enabled.

Update the following directives in the httpd.conf file of IBM HTTP Server :

 AfpaEnable
 AfpaCache on
 AfpaLogFile "c:/Program Files/IBM HTTP Server/logs/afpalog" V-ECLF
 AfpaDynaCacheMax 10

The above settings enable the Cache Accelerator and limit the dynamic cache size to 10 Meg.If you use these directive to
increase the cache size, do not make thecache so large that all physical memory is consumed. You can determine how much
memory is available, when all the applications are running, by using the Windows Task Manager.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001602.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

Assign no more than 50% of available physical memory to the dynamic cache. Specifying too large a cache not only decreases
the performance of other applications,but also puts you at risk for completely running out of memory.

The default configuration does not include the AfpaDynaCacheMax directive where the cache size is automatically
calculated as 1/8 of physical memory.

4.5.3: Dynamic fragment cache frequently asked
questions
View frequntly asked questions related to:

General cache information●

Cache architecture●

Application design●

Cache configuration●

General cache information

Question: What is new in dynamic fragment cache WebSphere Application Server version 4.0?

Answer: Version 4.0 allows you to configure dynamic cache through the GUI. The administrative
console offers parallel configuration options to the dynacache.xml file. Cache policies can be
attached to .war files using the Application Assembly Tool. While XML adds some advanced cache
policy options, the AAT makes cache policies portable, by installing them along with the application.

The Servlet Cache Monitor is also new in version 4.0. This Web application installs on an application
server, and allows administrators to inspect the contents of the fragment cache.

Finally, the APIs for programmatically manipulating the cache have been enhanced. These APIs are
located in the com.ibm.websphere.servlet.cache package, and contain classes and methods
to customize cache operations.

●

Question: What are the security implications of using the fragment cache?

Answer: The cache does all the processing within the Web container after the security processing
completes. Within the application server, there are no extra security problems to be considered.

When using an external cache, security risks change dramatically. Caches outside of WebSphere
Application Server do not undergo security processing. It is important not to store sensitive data in an
external cache.

●

Return

Cache architecture

Question: What type of servlets and JSP files does the cache support most effectively, simple
presentation JSP files? What about servlets that use enterprise java beans or JDBC? What about
personalized fragments?

Answer: While caching a simple presentation JSP file gives moderate performance gains, caching
servlets that request information from enterprise java beans or databases saves WebSphere Application
Server processing power, and decreases load on the back end. You should cache fragments that pull
information from outside WebSphere Application Server since the biggest performance gains come from
caching servlets that obtain information from outside the application server.

Personalized information can be cached, though how effective it will be depends on the architecture of
the application. See the Dynamic fragment cache XML examples for a discussion of personalization.

●

http://localhost/0802_makepdf/apidocs/index.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001603.html

Question: The dynamic cache caches the JSP and servlet output. Does this mean it caches the
HttpServletResponse object?

Answer: Not quite. It caches the output of the servlet (what is written to the response.getWriter
method, for example). It also caches side effects of the servlet's execution, like setting cookies and
headers, including and forwarding other servlets, and setting content type and character encoding.

●

Question: Is this an "in memory" cache, or an "on disk" cache? Does it use the java heap?

Answer: The cache resides completely inside the Java heap. This keeps it in memory, but allows it to
use virtual memory if necessary.

●

Question: Does the dynamic cache always need an external cache for caching?

Answer: The dynamic cache does not require an external cache to be present for caching. It will,
however, extend the abilities of such static caches to include caching certain servlets and JSP files.

●

Question: If using an external cache that is associated with the dynamic cache (for private user
information), how is the security of the information at the external cache enforced?

Answer: Because private information almost always involves session information, requests for private
user information are usually not externally cacheable. However, in the case of a user id being present in
the URL, or of pages that should only be accessible over HTTPS and not HTTP, external caching can
short circuit the authentication or encryption processes. For sensitive information, external caching is
not the best choice unless specific measures are taken, such as encrypting that user id.

●

Return

Application design

Question: My application has a control servlet that works as a dispatcher for 10 other services, and we
only want to cache the output of one or two services from this servlet. Is this servlet cacheable?

Answer: Definitely. Cache policies can be built to "cache" or "not cache" a servlet depending on
whether input variables are present or have a specific value. Therefore, you can "cache" the control
servlet when it is performing some read only action, and "not cache" it when it is updating application
information. In addition, if the cache policy rules are not specific enough for the caching you want to
perform, WebSphere Application Server provides a pluggable interface for writing your own Id
Generators. See the Custom Generators article for more information.

●

Question: If I have a chain of forwards or includes, can I cache some of the fragments and not others?
If one cached fragment in the chain is invalidated, do the rest of them get evicted from the cache, too?

Answer: Any of the servlets or JSP files in the chain can be cached. If some or all of them are cached,
and one changes (invalidating only its cache entry) then the output of upstream, cached servlets will
reflect this change. Cached servlets have 'place holders' in their output for the results of any includes or
forwards that servlets might perform.

●

Return

Cache configuration

Question: I have existing XML configuration files from WebSphere Application Server version 3.5.x
that I would like to use. Are they still valid?

Answer: Yes. Dynacache.xml and servletcache.xml files from version 3.5.x will work with version 4.0

●

Question: How can I tell whether the cache is enabled?

Answer: Check the standard output file for the application server that you configured. You will see a
message indicating whether the cache is enabled or not. Alternatively, use the servlet cache monitor to
inspect the fragment cache.

●

Question: Is there a way to know whether a fragment is getting cached?

Answer: After executing the servlet or JSP file, you can check for the presence of an entry in the cache
using the servlet cache monitor. See article Dynamic fragment cache monitor for more information on
this tool.

●

Question: How big should my cache be?

Answer: Cache sizes should typically stay in the 1-10K entries range. Ideally, the cache should be big
enough to contain an entry for each invocation of the fragments to be cached. More likely you will make
the cache big enough to hold the most expensive and most often served fragments, and use the LRU
algorithm to elimate less useful quotes. The capacity can only be measured in number of entries, not in
memory size. Increase the memory available to WebSphere Application Server according to the size and
number of cached responses.

●

Question: Can I use cache policies defined in a servletcache.xml file and policies attached to an
.ear or .war file on the same server?

Answer: Yes. In the case of a URI being defined in both, the XML file takes precedence.

●

Question: I do not understand how the <invalidateonly/> tag works. Aren't the invalidate and exclude
rules enough to invalidate a cache entry?

Answer: While the methods in the Cache class are sufficient for manipulating cache entries, users are
not required to implement any java code to enable caching The <invalidate> and <invalidateonly> tags
extend the capabilities of rule based XML configuration to more completely cover the operations you
can perform when using the API directly.

The <invalidate> element allows you to use a fragment invocation to invalidate other cache entries The
classic example is a "buy" servlet that adds objects to a shopping cart. Whenever you perform a buy, you
would then invalidate the cache entry for that user's shopping cart.

The <invalidateonly/> element exists for efficiency. Some servlets may not be cacheable, but have
invalidation side effects. With this tag, WebSphere Application Server performs the invalidations, but
does not attempt to cache the servlet. (The caching attempt would have failed, anyway.)

●

Return

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606001604.html

4.6: Java Technologies
The J2EE (Java TM 2 Platform Enterprise Edition) technologies providestandard architectures for defining and
supporting a multi-tiered programming model.

The technologies support all application components, namely:

Application clients●

Enterprise JavaBeans TM●

Servlets and JavaServer PagesTM●

Applets●

The Java technologies are:

JavaMail●

Java Naming and Directory Interface (JNDI)●

Java Message Service (JMS)●

See the Related information links for information on other programming topics.

4.6.1: Using JavaMail
WebSphere Application Server supports JavaMail version 1.1.3 and the JavaBeans Activation Framework (JAF) version 1.0.1.

In WebSphere Application Server, JavaMail is supported in all Web applicationcomponents, namely:

servlets●

JSP files●

enterprise beans●

application clients●

The JavaMail APIs model a mail system. These APIs provide a platform and protocol independent framework to build Java based,
e-mail clientapplications. The JavaMail APIs only provide general mail facilities for reading and sending mail. These APIs require
service providers to implement the protocols.

In addition to service providers, JavaMail requires the JavaBeans Activation Framework or JAFto handle mail content that is not
plain text as, for example, MIME (Multipurpose Internet Mail Extensions),URL (Uniform Resource Locator) pages, and file
attachments.

The service providers implement specific protocols. For example, SMTP (or SimpleMail Transfer Protocol), is a transport protocol
for sending mail. POP3 or Post Office Protocol 3 is the standardprotocol for receiving mail. IMAP or Internet Message Access
Protocol is an alternative protocol to POP3.

The following graphic illustrates the relationship among the different JavaMail components:

JavaMail APIs●

JavaBeans Activation Framework●

Service providers●

Mail protocols●

The dotted line around specific objects represents the grouping that comprises a working JavaMail installation. With the exception
of POP3, all the components in the installation view are shipped as part of WebSphere Application Server using the following Sun
licensed packages:

mail.jar - contains JavaMail APIs, the SMTP service provider, and the IMAP service provider.●

activation.jar - contains the JavaBeans Activation Framework.●

4.6.1.1: Writing JavaMail applications
According to the J2EE specifications, each javax.mail.Sessioninstance must be treated as a resource factory. Therefore, to use JavaMail, do the following:

Declare mail resource references in your application component's deployment descriptors,as described in this example:

<resource-ref><description>description</description><res-ref-name>mail/MailSession</res-ref-name><res-type>javax.mail.Session</res-type><res-auth>Container</res-auth></resource-ref>

1.

Configure, during deployment, each referenced mail resource.See article, 4.6.1.2: Configuring JavaMail, for a description of the parameters requiredto configure a mail resource.2.

Locate in your application component, during runtime, each specific JavaMail session using JNDI lookup. An example of the code follows:

Session session = (Session)ctx.lookup("java:comp/env/mail/MailSession");

Your application component can now use session to create messages and get store access.

3.

Coding example for sending and saving a message

The following code segment shows how an application component sends a messageand saves it to the mail account's Sent folder:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
mail_session = (javax.mail.Session) ctx.lookup("java:comp/env/mail/MailSession");

MimeMessage msg = new MimeMessage(mail_session);
msg.setRecipients(Message.RecipientType.TO, InternetAddress.parse("bob@coldmail.net"));

msg.setFrom(new InternetAddress("alice@mail.eedge.com"));
msg.setSubject("Important message from eEdge.com");
msg.setText(msg_text);
Transport.send(msg);

Store store = mail_session.getStore();
store.connect();
Folder f = store.getFolder("Sent");
if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);
f.appendMessages(new Message[] {msg});

See the related information links for the JavaMail APIs.

http://www.javasoft.com/products/javamail/1.2/docs/javadocs/javax/mail/Session.html

4.6.1.2: Configuring JavaMail
A mail resource is configured using appropriate system management facilities,as for example, the
administrative console.

Refer to article 6.6.37: Administering mail providers and mail sessionsfor detailed configuration instructions.

 The "mail originator" setting (the exact name in the administrative console varies depending
on the product edition; see 6.6.37.0.1 for a description) can beoverridden for individual messages
in your application, using methodMessage.setFrom()

See the related topics for more JavaMail documentation.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060637.html
http://www.javasoft.com/products/javamail/1.2/docs/javadocs/javax/mail/Message.html#setFrom()

4.6.1.3: Debugging JavaMail
There will be times when you need to debug your JavaMail applications.One option is to turn on JavaMail's debugging feature. With this
option on, JavaMail will print to stdout its interactions with the mail servers. These interactions are printed in detail, in a step-by-step
format.

 With WebSphere Application Server,stdout and stderr are usually redirected to files.The specific file paths can be set
with an application server's Properties > File panel.For example, for the Default Server, stdout is redirected by defaultto
the file:
<WAS_HOME>\logs\default_server_stdout.log
See the Problem determination section for moreinformation on stdout and stderr.

Enable debugging programmatically, through the console, or through the command line.

The easiest way to turn on debugging is to call methodsetDebug()on the mail session after session is obtained through a JNDI
lookup, as shownbelow:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
mail_session = (javax.mail.Session) ctx.lookup("java:comp/env/mail/MailSession");
mail_session.setDebug(true);
...

This debugging approach requires re-compiling and, very likely, re-loading the applicationcomponent in which this code is
embedded. This approach may be impractical at times.

●

One alternative is to set the system property mail.debug through the console.If your JavaMail code is embedded in a servlet, a
JSP, or an EJB, from the Administrative Console:

Select the server that owns the component1.

Open the Properties > JVM Settings panel2.

Add an entry to System Properties with Name=mail.debug and Value=true.3.

Restart the server.4.

●

If your JavaMail code is in a Java client which is invoked from the commandline, add the -Dmail.debug=true flag to the java
command, and the debugging output will be displayed in the command window.

 Property mail.debug,set with the last two approaches, is shared by all mail session instances within the
sameJVM process. When debugging is enabled in this manner, JavaMail will print out step-by-step,
mail-relatedinteractions to stdout for all these mail sessions.

●

The output in stdout looks like the following example:

...

DEBUG: getProvider() returning javax.mail.Provider[TRANSPORT,smtp]
DEBUG SMTP: useEhlo true, useAuth false

DEBUG: SMTPTransport trying to connect to host "smtp3.eedge.com", port 25

DEBUG SMTP RCVD: 220 relay14.eedge.com ESMTP Sendmail; Tue, 19 Dec 2000 15:08:42 -0700

DEBUG: SMTPTransport connected to host "smtp3.eedge.com", port: 25

DEBUG SMTP SENT: EHLO y2001
DEBUG SMTP RCVD: 250-relay14.eedge.com Hello testpc.eedge.com, pleased to meet you
250-8BITMIME
250-SIZE 20000000
250-DSN
250-ONEX
250-ETRN
250-XUSR
250 HELP

DEBUG SMTP SENT: MAIL FROM:<alice@mail.eedge.com>
DEBUG SMTP RCVD: 250 <alice@mail.eedge.com>... Sender ok

DEBUG SMTP SENT: RCPT TO:<bob@coldmail.net>

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/08.html
http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/mail/Session.html#setDebug(boolean)

DEBUG SMTP RCVD: 250 <bob@coldmail.net>... Recipient ok

Verified Addresses
 bob@coldmail.net
DEBUG SMTP SENT: DATA
DEBUG SMTP RCVD: 354 Enter mail, end with "." on a line by itself

DEBUG SMTP SENT:
...
DEBUG SMTP RCVD: 250 PAA125654 Message accepted for delivery

DEBUG SMTP SENT: QUIT

4.6.1.4: Running the JavaMail sample
The JavaMail sample is packaged in an ear file called jmsample.ear that is locatedin directory:

 product_installation_root/installableApps

The JavaMail sample contains three application components:

one stateful session bean1.

one servlet2.

one JSP file3.

Each component, when invoked, gathers data to compose a mail message,and then sends the message. Optionally, the sent message can also be saved in anIMAP account, in a folder named Sent. See article Writing JavaMail applicationsfor the coding example to send a message and create the Sent folder.

Complete the following tasks to use jmsample.ear:

Set up mail servers1.

Configure a MailSession resource2.

Install the jmsample.ear components3.

Set up mail servers

To send out email messages, you need a mail transport server.Since SMTP is the most widely used transport protocol, such a mailserver is also known as a SMTP server. An alternative to installing and configuringyour own SMTP server, is to use an existing implementation.For example, if your Internet mail address is john_smith@mycompany.com,then
mycompany.com could serve as your SMTP server. Ask your company's email administratorfor more information.

The components in the jmsample.ear file can optionally save a copy of thesent message into an email account. If you plan to try this capability, you will also need to set up an IMAP mail account.

1.

Configure a MailSession resource

See article Properties related to JavaMail supportfor information on MailSession resource properties.

One property that requires your attention when you configure the MailSession resource for jmsample.ear is JNDI Name.You can explicitly define this property or allow System Management to define it for you.

Since for all componentsin this sample the MailSession resource references have been pre-boundto the JNDI path mail/DefaultMailSession, enter this pathin the JNDI Name property.

If, at this time, you do not define the JNDI Name as shown above,you will have to bind the application's mail resource references to this mail sessionwhen you install jmsample.ear.

Review the tutorial, Create a JavaMail session,for detailed information on configuring the mail session resource.

2.

Install the jmsample.ear components

Install the jmsample.ear file as an enterprise application.See article Installing EJB modules with the JAVA administrative consolefor information on installing the jmsample.ear.

After the install, you can invoke the servlet or JSP by using one of the following URLs:

http://localhost:9080/jmsample/servlet

http://localhost:9080/jmsample/Email.jsp

To test the JavaMail servlet, do the following:

Open a browser window1.

Enter http://localhost:9080/jmsample/servlet
(The servlet GUI should display.)

2.

Enter the following information, replacing variable input as appropriate:

To: Your e-mail address as for example, anybody@mycompany.com●

Cc: Optionally enter another e-mail address here.●

From: somebody@mycompany.com●

Subject: JavaMail Servlet Test●

Message to send: Any text as for example, This is a test message that isbeing sent from the JavaMail Mail Servlet.●

Check the Save the sent message into mail store box.●

Send Option: As is●

Click the Send button.
(If the test number at the top of the page was incremented from 1 to 2, the message was sent successfully.)

●

3.

Log on to your e-mail account and verify that you received the mail4.

To test the JavaMail Java Server Page, do the following:

Open a browser window1.

Enter http://localhost:9080/jmsample/Email.jsp
(The Java Server Page GUI should display.)

2.

Enter the following information, replacing variable input as appropriate:

To: Your e-mail address as for example, anybody@mycompany.com●

Cc: Optionally enter another e-mail address here.●

From: somebody@mycompany.com●

Subject: JavaMail JSP Test●

Message to send: Any text as for example, This is a test message that isbeing sent from the JavaMail Mail JSP.●

Check the Save the sent message into mail store box.●

Send Option: As is●

Click the Send button.
(If the test number at the top of the page was incremented from 1 to 2, the message was sent successfully.)

●

3.

Log on to your e-mail account and verify that you received the mail4.

Use these instructions to invoke the EJB:

Locate file deplmtest.jar in the product_installation_root/InstalledApps/jmsample.ear directory.A.

Copy the deplmtest.jar file to the product_installation_root/classes directory.

 The deplmtest.jar file contains all the artifacts for the EJB, including the proxies and a simple client.

B.

The client uses the system properties as data input forthe message creation.The following example demonstrates how Java system properties are gathered for the EJB client on Windows NT:

 The line breaks in this example were added to make the information more legible. This information really exists as one line of input.

Change the property values in this example to the ones you defined for your test.

C.

3.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06063700.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0607.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606050101.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

For the Windows platform, specify the following:

product_installation_root\java\bin\java
-Djava.ext.dirs=product_installation_root\java\jre\lib\ext;product_installation_root\classes;product_installation_root\lib-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory-Dmailtest.to=bob@mycompany.com
-Dmailtest.cc=alice@mycompany.com-Dmailtest.from=john@mycompany.com -Dmailtest.subj="Important message sent from an
EJB"-Dmailtest.message="As the subject line says, this is a very important message." -Dmailtest.save_msg=off
-Dmailtest.ejbhome=ejb/JMSampEJB mailtest.MailClient

For UNIX platforms, specify the following:

 Entering the following command as one, continuous lineof input at a command prompt might not work on some UNIX platforms. Use the back slashto indicate the command continues on the next line, or invoke the command from a shell script.

product_installation_root/java/bin/java
-Djava.ext.dirs=product_installation_root/java/jre/lib/ext:product_installation_root/classes:product_installation_root/lib-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory-Dmailtest.to=bob@mycompany.com
-Dmailtest.cc=alice@mycompany.com-Dmailtest.from=john@mycompany.com -Dmailtest.subj="Important message sent from an
EJB"-Dmailtest.message="As the subject line says, this is a very important message." -Dmailtest.save_msg=off
-Dmailtest.ejbhome=ejb/JMSampEJB mailtest.MailClient

See the related topics for links to Javadoc and the Create a JavaMail session tutorial.

4.6.2: JNDI (Java Naming and Directory Interface)
overview
Distributed computing environments often employ namingand directory services to obtain shared components
and resources.Naming and directory services associate names with locations, services, information, and
resources.

Naming services provide name-to-object mappings. Directory services provideinformation on objects and the
search tools required to locate those objects.There are many naming and directory service implementations, and
theinterfaces to them vary.

Java Naming and Directory Interface or JNDI provides a common interface thatis used to access the various
naming and directory services.See URL java.sun.com/products/jndi/serviceproviders.htmlfor a list of naming
and directory service providers which supportaccess through the JNDI interface.

JNDI is an integral part of other Java programming models and technologies, such as:

Enterprise JavaBeans (EJB)●

JavaMail●

Java Database Connection Service (JDBC)●

Java Message Service (JMS)●

http://java.sun.com/products/jndi/serviceproviders.html

4.6.2.1: JNDI implementation in WebSphere
Application Server
IBM WebSphere Application Server includes a name server to provideshared access to Java components, and
an implementation of thejavax.naming JNDI package which allows users to accessthe WebSphere name
server through the JNDI naming interface.

WebSphere Application Server does not provide implementations for:

javax.naming.directory or●

javax.naming.ldap packages●

Also, WebSphere Application Server does not support interfaces defined in the

javax.naming.event package.

However, to provide access to LDAP servers, the JDK shipped with WebSphere Application Server supports
Sun's implementation of:

javax.naming.ldap and●

com.sun.jndi.ldap.LdapCtxFactory●

WebSphere Application Server's JNDI implementation is based on version 1.2 of the JNDIinterface, and was
tested with version 1.2.1 of Sun's JNDI SPI (Service Provider Interface).

The default behavior of this JNDI implementation should be adequatefor most users. However, users with
specific requirements cancontrol certain aspects of the JNDI behavior. See the following section for information
on modifying the JNDI behavior:

JNDI caching - Description of the caching feature and properties, andthe effects of the different
properties on caching behavior.

●

http://www.javasoft.com/products/jndi/1.2/javadoc/index.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/directory/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/ldap/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/event/package-summary.html
http://www.javasoft.com/products/jndi/1.2/javadoc/javax/naming/ldap/package-summary.html
http://java.sun.com/products/jndi/tutorial/beyond/env/source.html#SYS

4.6.2.2: Using JNDI
Refer to these examples to learn how to use JNDI.

Get an initial context●

Get an initial context using JNDI properties found in the current environment●

Get an initial context by explicitly setting JNDI properties●

Look up a home for an EJB●

Look up a JavaMail session●

Get an initial context

In general, JNDI clients should assume the correct environment isalready configured so there is no need to explicitly set property values and passthem to the
InitialContext constructor. However, a JNDI client may needto access a name space other than the one identified in its environment.In this event, it is
necessary toexplicitly set one or more properties used by the InitialContext constructor. Anyproperty values passed in directly to the InitialContext
constructor take precedenceover settings of those same properties found elsewhere in the environment.

View the following examples for information on passing property values to the InitialContext constructor:

Get an initial context using JNDI properties found in the current environment:

The current environment includes the Java system properties and properties defined inproperties files found in the JNDI client's
CLASSPATH. See article Installing files and setting classpathsfor information on defining CLASSPATHs.

 ... import javax.naming.Context; import javax.naming.InitialContext; ... Context
initialContext = new InitialContext(); ...

■

Get an initial context by explicitly setting JNDI properties:

 ... import java.util.Hashtable; import javax.naming.Context; import
javax.naming.InitialContext; ... Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:900"); Context initialContext = new
InitialContext(env); ...

■

Look up a home for an EJB

The example below shows a lookup of an EJB home. The actual home lookup nameis determined by the application's deployment descriptors.

 // Get the initial context as shown in the previous example ... // Look up the home interface
using the JNDI name try { java.lang.Object ejbHome =
initialContext.lookup("java:comp/env/comp/mycompany/accounting"); accountHome =
(AccountHome)javax.rmi.PortableRemoteObject.narrow((org.omg.CORBA.Object) ejbHome,
AccountHome.class); } catch (NamingException e) { // Error getting the home interface ...
}

■

Look up a JavaMail session:

The example below shows a lookup of a JavaMail resource. The actual lookup nameis determined by the application's deployment
descriptors.

 // Get the initial context as shown above ... Session session = (Session)
initialContext.lookup("java:comp/env/mail/MailSession");

■

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0604.html

4.6.2.3: JNDI caching
To increase the performance of JNDI operations, WebSphere Application Server'sJNDI implementation employs caching to reduce the number of remote
calls to thename server. For most cases, use the default cache setting.

JNDI context objects employ caching to increase the performanceof JNDI lookup operations. Objects bound and looked up are cached in orderto speed up
subsequent lookups of those objects. Objects are cached asthey are bound or initially looked up. Normally, JNDI clients should beable to use the default
cache behavior. The following sectionsdescribe in detail cache behavior, and how JNDI clients can override defaultcache behavior if necessary.

Cache behavior●

Cache properties●

Coding examples●

Cache behavior

A cache is associated withan initial context when a javax.naming.InitialContext object is instantiatedwith the
java.naming.factory.initial property set to:

com.ibm.websphere.naming.WsnInitialContextFactory

WsnInitialContextFactory searches the environment properties for a cachename, defaulting to the provider URL. If no provider URL is defined,
acache name of "iiop:///" is used. All instances of InitialContext whichuse a cache of a given name share the same cache instance.

After an associationbetween an InitialContext instance and cache is established, the associationdoes not change. A javax.naming.Context object
returned from a lookup operationwill inherit the cache association of the Context object on which the lookupwas performed. Changing cache property values
with the Context.addToEnvironment()or Context.removeFromEnvironment() method does not affect cache behavior.Properties affecting
a given cache instance, however, may be changed witheach InitialContext instantiation.

A cache is restricted toa process and does not persist past the life of the process. A cached objectis returned from lookup operations until either the max
cache life forthe cache is reached, or themax entry life for the object's cache entryis reached.

After this time, a lookup on the object will cause the cacheentry for the object to be refreshed. If a bind or rebind operation isexecuted on an object, the
change will not be reflected in any caches otherthan the one associated with the context from which the bind or rebindwas issued. This "stale data" scenario
is most likely to happen when multipleprocesses are involved, since different processes do not share the samecache, and Context objects in all threads in a
process will typically sharethe same cache instance for a given name service provider.

Usually, cached objects are relatively static entities, and objects becoming staleshould not be a problem. However, timeout values can be set on cache
entriesor on a cache itself so that cache contents are periodically refreshed.

Cache properties

JNDI clients can use several properties to control cache behavior.These properties can be set in theenvironment Hashtable passed to the InitialContext
constructor.

You can set properties:

From the command line❍

In a properties file❍

Within a Java program❍

To set properties through the command line,enter the actual string value as indicated in this example:

 java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

●

To set properties in a file,create a text file listing the properties, as for example:

 ... com.ibm.websphere.naming.jndicache.cacheobject=none ...

●

To set properties in a Java program,use the following PROPS.JNDI_CACHE* Java constants, defined in com.ibm.websphere.naming.PROPS:

 public static final String JNDI_CACHE_OBJECT =
"com.ibm.websphere.naming.jndicache.cacheobject"; public static final String
JNDI_CACHE_OBJECT_NONE = "none"; public static final String JNDI_CACHE_OBJECT_POPULATED =
"populated"; public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared"; public static
final String JNDI_CACHE_OBJECT_DEFAULT = JNDI_CACHE_OBJECT_POPULATED; public static final
String JNDI_CACHE_NAME = "com.ibm.websphere.naming.jndicache.cachename"; public static final
String JNDI_CACHE_NAME_DEFAULT = "providerURL"; public static final String JNDI_CACHE_MAX_LIFE =
"com.ibm.websphere.naming.jndicache.maxcachelife"; public static final int
JNDI_CACHE_MAX_LIFE_DEFAULT = 0; public static final String JNDI_CACHE_MAX_ENTRY_LIFE =
"com.ibm.websphere.naming.jndicache.maxentrylife"; public static final int
JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To set a property in your program, enter the following:

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE). // Sets a property to a value

●

Cache properties are evaluated when an InitialContext instance iscreated. The resulting cache association, including"none", cannot bechanged. The "max
life" cache properties affectthe individual cache's behavior. If the cache already exists, cache behavior will beupdated according to the new "max life"
property settings. If no"max life" properties exist in the environment, the cachewill assume default "max life"settings, irrespective of the previous

settings.The various cache properties are describedbelow. All property values must be string values.

com.ibm.websphere.naming.jndicache.cacheobject

Caching is turned on or off with this property. Additionally, an existingcache can be cleared.Listed below are the valid values for this property and
the resulting cachebehavior:

"populated" (default): Use a cache with the specified name. If the cache already exists, leave existing cache entries in cache; otherwise,
create a new cache.

■

"cleared": Use a cache with the specified name. If the cache already exists, clear all cache entries from cache; otherwise, create a new cache.■

"none": Do not cache. If this option is specified, the cache name is irrelevant. Therefore, this option will not disable a cache that is already
associated with other InitialContext instances. The InitialContext being instantiated will not be associated with any cache.

■

●

com.ibm.websphere.naming.jndicache.cachename

It is possible to createmultiple InitialContext instances, each operating on the namespace of adifferent name service provider. By default, objects
from each serviceprovider are cached separately, since they each involve independent namespacesand name collisions could occur if they used the
same cache. The providerURL specified when the initial context is created serves as the defaultcache name. With this property, a JNDI client can
specify a cache nameother than the provider URL. Listed below are the valid options forcache names:

"providerURL" (default): Use the value for java.naming.provider.url property as the cache name. The default provider URL is "iiop:///".
URLs are normalized by stripping off everything after the port. For example, "iiop://server1:900" and "iiop://server1:900/com/ibm/initCtx"
are normalized to the same cache name.

■

Any string: Use the specified string as the cache name. Any arbitrary string with a value other than "providerURL" can be used as a cache
name.

■

●

com.ibm.websphere.naming.jndicache.maxcachelife

By default, cached objects remain in the cache for the life of the process oruntil cleared with the com.ibm.websphere.naming.jndicache.cacheobject
propertyset to "cleared". This property enables a JNDI client to set the maximum lifeof a cache as follows:

"0" (default): Make the cache lifetime unlimited.■

Positive integer: Set the maximum lifetime of the cache, in minutes, to the specified value. When the maximum cache lifetime is reached, the
cache is cleared before another cache operation is performed. The cache is repopulated as bind, rebind, and lookup operations are executed.

■

●

com.ibm.websphere.naming.jndicache.maxentrylife

By default, cached objects remain in the cache for the life of the processor until cleared with the
com.ibm.websphere.naming.jndicache.cacheobjectproperty set to "cleared". This property enables a JNDI client to set themaximum lifetime of
individual cache entries as follows:

"0" (default): Lifetime of cache entries is unlimited.■

Positive integer: Set the maximum lifetime of individual cache entries, in minutes, to the specified value. When the maximum lifetime for an
entry is reached, the next attempt to read the entry from the cache will cause the entry to be refreshed.

■

●

Coding examples

import java.util.Hashtable;import javax.naming.InitialContext;import javax.naming.Context;/*****
Caching discussed in this section pertains to the WebSphere Application Server initial context
factory. Assume the property, java.naming.factory.initial, is set to
"com.ibm.ejs.ns.WsnInitialContextFactory" as a java.lang.System property.*****/Hashtable env;Context
ctx;// To clear a cache:env = new Hashtable();env.put(PROPS.JNDI_CACHE_OBJECT,
PROPS.JNDI_CACHE_OBJECT_CLEARED);ctx = new InitialContext(env);// To set a cache's maximum cache
lifetime to 60 minutes:env = new Hashtable();env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");ctx = new
InitialContext(env);// To turn caching off:env = new Hashtable();env.put(PROPS.JNDI_CACHE_OBJECT,
PROPS.JNDI_CACHE_OBJECT_NONE);ctx = new InitialContext(env);// To use caching and no caching:env =
new Hashtable();env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_POPULATED);ctx = new
InitialContext(env);env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);Context
noCacheCtx = new InitialContext(env);Object o;// Use caching to look up home, since the home should
rarely change.o = ctx.lookup("com/mycom/MyEJBHome");// Narrow, etc. ...// Do not use cache if data
is volatile.o = noCacheCtx.lookup("com/mycom/VolatileObject");// ...

4.6.2.4: JNDI helpers and utilities
Refer to the Sun JNDI specificationfor information on the base JNDI APIs. IBM WebSphere Application Server
provides the following JNDI extension and utility to help you implement and debug JNDI.

View the specific files for details.

JNDI helper class●

Name Space Dump utility●

http://www.javasoft.com/products/jndi/1.2/javadoc/index.html

4.6.2.4.1: JNDI helper class
The class com.ibm.websphere.naming.JndiHelpers contains static methodsto simplify common tasks. Refer to theAPI documentationfor more
information.

JNDI helper methods provide assistance with:

Recursively creating subcontexts.

 [...] import com.ibm.websphere.naming.JndiHelper; [...] try { Context
startingContext = new InitialContext(); startingContext =
startingContext.lookup("com/mycompany"); // Creates each intermediate subcontext, if
necessary, as well as leaf context. // AlreadyBoundException is not thrown.
JndiHelper.recursiveCreateSubcontext(startingContext, "apps/accounting"); } catch
(NamingException e) // Handle error. } [...]

●

Rebinding objects and creating intermediate contexts that do not already exist.

 [...] import com.ibm.websphere.naming.JndiHelper; [...] try { Context
startingContext = new InitialContext(); // Creates each intermediate subcontext, if necessary,
and rebinds object. JndiHelper.recursiveRebind(startingContext,
"com/mycompany/apps/accounting", someObject); } catch (NamingException e) // Handle
error. } [...]

●

Binding objects and throwing a NameAlreadyBoundException if the object is already bound.

There are two versions of this JndiHelper method:

 public static void recursiveBind(Context startingContext, Name name, Object obj) public
static void recursiveBind(Context startingContext, String name, Object obj)

 [...] import com.ibm.websphere.naming.JndiHelper; [...] try { Context
startingContext = new InitialContext(); // Creates each intermediate subcontext, if necessary,
and binds object. JndiHelper.recursiveBind(startingContext, "com/mycompany/apps/accounting",
someObject); } catch (NamingException e) // Handle error. } } catch
(Exception e) // Handle other errors. } [...]

●

http://localhost/0802_makepdf/apidocs/index.html

4.6.2.4.2: JNDI Name Space Dump utility
The name space stored by a given name server can be dumped withthe name space dump utility that is shipped with WebSphere Application Server.This
utility can be invoked from the command line or from a Java program. Thenaming service for the WebSphere Application Server host must be active when
this utilityis invoked.

To invoke this utility using the class com.ibm.websphere.naming.DumpNameSpace API, see the API documentation.

To invoke the utility through the command line, enter the following commandfrom the AppServer/bin directory:

 UNIX: dumpNameSpace.sh [[-keyword value]...]

 Windows NT: dumpNameSpace [[-keyword value]...]

The keywords and associated values for the dumpNameSpace utility are:

-host myhost.austin.ibm.com

Represents the bootstrap host or the WebSphere Application Server host whose name space youwant to dump. The value defaults to
localhost.

-port nnn

Represents the bootstrap port which, if not specified, defaults to 900.

-factory com.ibm.websphere.naming.WsnInitialContextFactory

Indicates the initial context factory to be used to get the JNDI initialcontext. The value defaults to:
com.ibm.websphere.naming.WsnInitialContextFactory
The default value generally does not need to be changed.

-startAt some/subcontext/in/the/tree

Indicates the path from the bootstrap host's root context to the toplevel context where the dump should begin. The utility recursively dumps
subcontextsbelow this point. It defaults to an empty string, that is, the bootstrap host root context.

-format {jndi | ins}

jndi Displays name components as atomic strings.

 The default format is jndi.

 ins Displays name components parsed per INS rules (id.kind).

-report {short | long}

short Dumps the binding name and bound object type. This output is also provided by JNDI Context.list().

 The default report option is short.

long Dumps the binding name, bound object type, local object type, and stringrepresentation of the local object (that is, the IORs,
string values, and other values that are printed).

For objects of user-defined classes to display correctly with the long report option, it may be necessary to add their
containing directories to the list of directories searched. This can be done by setting the environment variable
WAS_USER_DIRS.The value can include one or more directories, as for example:

UNIX:

 WAS_USER_DIRS=/usr/classdir1:/usr/classdir2 export WAS_USER_DIRS

Windows NT:

 set WAS_USER_DIRS=c:\classdir1;d:\classdir2

All zip, jar, and class files in the specified directories can then be resolved bythe class loader when running
dumpNameSpace

-traceString "some.package.name.to.trace.*=all=enabled"

Represents the trace string with the same format as that generated by the servers. The outputis sent to file, DumpNameSpaceTrace.out.

-help

Provides a description of Name Space Dump utility and command line usage.

Examples of Name Space Dump utility usage and output

Invoke the name space dump utility through a Java program.●

Invoke the name space dump utility through the command line.●

View the name space dump utility output.●

Invoke the name space dump utility by adding the following code to your Java program:■

http://localhost/0802_makepdf/apidocs/index.html

{ [...] java.io.PrintStream filePrintStream = ... Context ctx = new InitialContext(); ctx =
(Context) ctx.lookup("ejsadmin/node"); // Starting context for dump DumpNameSpace dumpUtil = new
DumpNameSpace(filePrintStream, DumpNameSpace.SHORT); dumpUtil.generateDump(ctx); [...]}

Invoke the name space dump utility from the command line by entering the following command:

dumpNameSpace -host myhost.mycompany.com -port 901

■

The generated output will look like the following example, which isthe SHORT dump format:

Getting the initial contextGetting the starting
context==Name
Space Dump Provider URL: iiop://will:901 Context factory:
com.ibm.websphere.naming.WsnInitialContextFactory Starting context: (top)=bootstrap host root
context Formatting rules: jndi Time of dump: Fri Mar 09 15:11:48 CST
2001==
==Beginning of
Name Space Dump==
1 (top) 2 (top)/jta
javax.naming.Context 3 (top)/jta/usertransaction
com.ibm.ejs.jts.jta.UserTransactionImpl 4 (top)/SecurityCurrent
com.ibm.ejs.security.util.SecurityCurrentRef 5 (top)/ContextHome
com.ibm.ejs.ns.CosNaming.EJSRemoteContextHome 6 (top)/PropertyHome
com.ibm.ejs.ns.CosNaming.EJSRemotePropertyHome 7 (top)/BindingHome
com.ibm.ejs.ns.CosNaming.EJSRemoteBindingHome 8 (top)/will
javax.naming.Context 9 (top)/will/resources javax.naming.Context
10 (top)/will/resources/sec javax.naming.Context 11
(top)/will/resources/sec/SecurityServer com.ibm.WebSphereSecurityImpl.SecurityServerImpl
12 (top)/ejsadmin javax.naming.Context 13 (top)/ejsadmin/node
javax.naming.Context 14 (top)/ejsadmin/node/will javax.naming.Context
15 (top)/ejsadmin/node/will/homes javax.naming.Context 16
(top)/ejsadmin/node/will/homes/DeployEJBHome com.ibm.ejs.sm.tasks.EJSRemoteDeployEJBHome 17
(top)/ejsadmin/node/will/homes/ServletEngineHome
com.ibm.ejs.sm.beans.EJSRemoteServletEngineHome[etc.]
==End of Name
Space Dump==

■

4.6.3: Java Message Service (JMS) overview
IBM WebSphere Application Server supports messaging as a method of communication based on the Java
MessageService programming interface.

Unlike JavaMail that enables communication initiated by people or by software components to people, Java
Message Service (or JMS)only provides communication between software components and applications.
Communication provided by JMS is loosely coupled, which meansthe sender and receiver do not have to be
active or aware of each other. The communication is also asynchronous. This meansclients do not have to
request messages from the JMS provider in order to receive them, and software components can send messages
to other components without stopping their processes to wait for a response.

In this peer-to-peer communication system, each client connects to a messaging agent that provides the
framework for sending and receiving messages.The client is required to know only the following:

message format●

destination of the message●

There are two approaches to messaging:

Point-to-point●

Publish/subscribe●

The point-to-point messaging approach uses such facilities as message queues, senders (or message producers),
and receivers (or message consumers). Clients send messages that are destined for a specific receiver to a
unique queue. When the receiving client extracts a message from the specific queue, it sends an
acknowledgement indicating the message was processed. Queues hold all messages until the messages are
received or until they expire.

The publish/subscribe messaging approach uses the concepts of publishers, subscribers, and topics. Clients send
messages to a topic or a content hierarchy.In order to receive the message, the message consumers must
subscribe to that topic. So, in this approach,the message producers are known as publishers and the message
consumers are known assubscribers. The JMS provider distributes the messages sent from the multiple
publishers to the topic, to the multiplesubscribers of that topic.

The MQSeries product is the default JMS provider for WebSphere Application Server. The MQSeries
administration tool, JMSAdmin, is used to bind JMS objects (connection factories and destinations) into the
namespace, and to set their properties.

WebSphere Application Server Enterprise Edition Version 4.0 also provides the JMS Listener function. Similar
to an event listener, the JMS Listenerenables WebSphere Application Server to react to anonymous, incoming
JMS messagesby invoking an appropriate enterprise java bean. The invoked enterprise bean is a stateless
session bean with anonMessage() method.

http://www.ibm.com/software/ts/mqseries/api/mqjava.html

4.6.3.1: Using the JMS point-to-point messaging
approach
This article describes the point-to-point messaging approach using WebSphere ApplicationServer's default JMS
provider, MQSeries. The MQSeries messaging server implements point-to-point communication. To enable the
MQSeries point-to-point messaging support, you need:

MQSeries Version 5.2 or greater●

With MQSeries Version 5.2, you need MQSeries SupportPac MA88●

MQSeries can now act as a resource manager in application transactions, and WebSphere Application Server can act as
the transaction coordinator.For example, when a client application sends a request, WebSphere Application Server,
using MQSeries, puts the message on an outqueue and waits for a response to return to the in queue.In this scenario,
there is no guarantee the message was sent, or that the receiver received the message. These types of messages are
known as non persistentmessages.

The point-to-point messaging approach in WebSphere Application Server and MQSeriesis illustrated in the following
graphic:

Message delivery can be defined as:

Persistent - this is the default mode of delivery. The "message send" is logged into stable storage.●

Non persistent - message delivery is not guaranteed. This mode of delivery improves performance and reduces
storage overhead.

●

Message delivery properties can be set:

On the queue within the queue manager●

On the queue object using the JMSAdmin tool●

On individual messages within your JMS application●

To define a queue in the JNDI namespace and to set thepersistence properties for the queue,enter the following
command in the MQSeries JMSAdmin tool:

 InitCtx> DEFINE Q(TESTQ) PERSISTENCE(xxx)

Where xxx is one of the following:

APP (Default) Persistence is defined by the application

QDEF Persistence is defined by the queue default (Set in the queue manager)

PERS Messages are persistent

NON Messages are non-persistent

If your application sends a message and requires a reply, set a reasonable timeoutvalue in your application to handle a
delayed or "no" reply situation. The followingapplication code waits for a maximum of 5000 milliseconds:

 Message inMessage = queueReceiver.receive(5000);

Set a similar timeout in your reply message.

Transactions to MQSeries are boundary transactions not end-to-end transactions.This means that only a put to a queue,
or a get from a queue is part of the transaction. The flow to a remote application is notpart of the transaction. In order to
guarantee the message is received bythe remote application, define that message in the JMSAdmin tool as a persistent
message.

WebSphere enterprise applications can use the JMS Listener function to automaticallyreceive messages from input
queues (JMS destinations) and to coordinate the processing of those messages. This enables automatic
asynchronousdelivery of messages to an enterprise application, instead of the applicationhaving to explicitly poll for
messages on the queue. For more information on the JMS Listener function, see An overview of the JMS Listener.

 The link to the JMS Listener documentation will not work unless the WebSphere Application
Server Enterprise Edition product extensions are installed on your system.

See the Support of the MQSeries Java Message Service resources article for configuration information.

http://localhost/0802_makepdf/ae_orig/jmslistn/concepts/cjlovrvw.htm

4.6.3.2: Using the JMS publish/subscribe messaging
approach
This article describes the "publish/subscribe" messaging approach using WebSphere ApplicationServer's default
JMS provider, MQSeries. You can implement the "publish/subscribe"messaging approach in MQSeries with the
Pub-Sub SupportPac or with Integrator.

To alleviate the complexity of a multiple queue manager topology, MQSeries introduced the concept of
Message Brokers with the MQSeries Integrator product. The following graphic illustrates five queue managers
configured to use a Message Broker:

In addition to the Message Broker, the Integrator product also supportsa Message Repository Manager, and the
publish and subscribe messaging approach.With this approach, the Message Broker matches a topic on a
published message with a list of clients who have subscribed to that topic. Neither publisher nor subscriber is
aware of each other. Publishers only know of the topics they describe for their messages, and subscribers only
know of the topicsthey requested.

In this topology, WebSphere Application Server can be a publisher or subscriber, or both, but requires the
configuration and resource support of the MQSeries Integrator product.

Visit the MQSeries Integratorsite for more information.

http://www.ibm.com/software/ts/mqseries/v5/pubsub.html
http://www.ibm.com/software/ts/mqseries/integrator/v202/

4.6.3.3: Support of Java Message Service resources
Unlike other J2EE resources that are typically objects that run in and are part of the application server, JMS
resources are external to WebSphere Application Server.This means administrators must first use a JMS
provider's administration tool to create the connection factories and destinations, and to assign these objects
with correctconfiguration attributes. After this step is completed, administrators can then use WebSphere
Application Servers' administrative client to create JMS resource objects to reference the external objects.

In WebSphere Application Server Version 4.0, the MQSeries product is defined as thedefault JMS provider.
However, since MQSeries is not shipped with WebSphere Application Server, this JMS provider is not installed
on any node.
Since this provider is predefined, after you install the MQSeries product, you only need to go to the Nodes tab
of theproperties editor for the Provider to install it on the desired nodes.

The following steps describe how to implement JMS support in WebSphere Application Server:

Configure a JMS provider. By default this will be the MQSeries product.1.

Create the destination and connection factory with the JMS provider's admin tool.
This will bind references to these objects in the JNDI namespace.

2.

Create corresponding JMS resources in WebSphere Application Server, declaring the location where
they were bound by the JMS admin tool as an attribute.
The RepositoryObjectimplementation for the resource binds the resource into the WebSphere
Application Servernamespace.

3.

Deploy the application, which resolves the JMS resource references with the JMS objects.4.

Start the application server containing the application.

At this point, the ResourceBinder object in the application server binds theJMS resource
objects into the namespace.

5.

The application code performs a "lookup" on a JMS resource.
The "lookup" finds the IndirectJNDILookup bound at the target WebSphere Application Server
location, and uses it to perform a subsequent lookup of the actualresource in the provider's namespace.

6.

4.6.3.4: Support for the use of MQSeries Java Message
Service resources
WebSphere Application Server Enterprise JavaBeans support the transactional use of MQSeries Java Message Service
(JMS) resources.

To use this feature, install MQSeries version 5.2 and the MQSeries classes for Java and JMS.Only MQSeries V5.2
provides this support; earlier versions will not work.

To configure JMS resources for use with WebSphere Application Server:

Download the MQSeries Java and JMS classes, or the pub-sub packagefrom one of the following URLs:

http://www.ibm.com/software/ts/mqseries/api/mqjava.html❍

http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html❍

1.

Review the MQSeries Using Java book for a description of the parameters required for WebSphere Application
Server.

 The instructions in this book refer to a WebSphere Application Server Version 3.5.3
environment, and are not valid for WebSphere Application Server Version 4.0. For example, the
following content in the book is invalid for Version 4.0:

Names of jar files❍

Dependent classpath❍

Adminserver classpath❍

2.

Do the following to configure WebSphere Application Server and MQSeries for JMS support:

Modify the JMSAdmin.bat file to include the option -java.ext.dirs=<WS AE>\lib when
running the MQSeries administration tool, JMSAdmin.

a.

Modify the JMSAdmin.config file by uncommenting the following lines:
INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory
PROVIDER_URL=iiop://localhost/ (or iiop://host-name)

b.

Comment out the following lines in the JMSAdmin.config file:
INITIAL_CONTEXT_FACTORY=com.ibm.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:/C:/JNDI-Directory/

c.

Add the following to the application server classpath:

 You can add these classes in the console'sdefault JVM settings, or by editing
WebSphere Application Server's admin.config file.

<MQ JMS>\lib directory■

com.ibm.mq.jar file■

com.ibm.mqjms.jar file■

 An alternative way to set up the configuration isto use the administrative console. In
the Resources, JMS Providers folder, specifythe ContextFactory, the provider URL, and
the path to the MQSeries JMS .jar files.See the article about administering JMS
support resources for more information.

d.

3.

Bind the classes provided by the new function into the JNDI namespace using the MQSeries administration
tool, JMSAdmin.The JMSAdmin tool provides for two, new WebSphere Application Server JMS connection
factories:

WSQCF - a new type of queue connection factory❍

WSCTF - a new type of topic connection factory❍

4.

http://www.ibm.com/software/ts/mqseries/api/mqjava.html
http://www.ibm.com/software/ts/mqseries/txppacs/ma0c.html
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm
http://www.ibm.com/software/ts/mqseries/library/manualsa/csqzaw04/csqzaw11.htm

WebSphere Application Server connection factory objects

The following calls can be used either in a global transactionor in an unspecified transaction context:

QueueSender.send●

MessageConsumer.receive●

MessageConsumer.receiveNoWait●

TopicPublisher.publish●

If another resource manager, as for example JDBC, is involved in a globaltransaction, the MQSeries JMS resources are
involved in a 2-phase commit.The 1-phase commit occurs if only the JMS resources are involved in a global
transaction. This is a feature of the Transaction Manager optimization.

In a global transaction, messages sent with QueueSender.send or published with TopicPublisher.publish
do not become visible until thetransaction is committed. Messages received by MessageConsumer.receiveor
MessageConsumer.receiveNoWait are requeued if the transaction isrolled back. Both bean-managed
transaction demarcation and container-managedtransaction demarcation are supported.

If no global transaction is active, then an "unspecified transaction context"situation occurs. The following
circumstances cause an "unspecified transaction context:"

EJB methods when a global transaction cannot occur (for example, ejbCreate)●

Bean Managed Transaction methods where the bean writer chose not to begin a transaction●

Container Managed Transaction NOT_SUPPORTED or NEVER methods●

Container Managed Transaction SUPPORTS methods when no transaction exists●

In an unspecified transaction context, the transactional behavior is specified in thetransacted flag that is passed when
the session is created. If the transacted flag is setto false, the messaging operations occur immediately. This is also
known as the 0-phase commit.If the flag is set to true, the send, receive, and publish operations occur on the commit of
the session,or also known as the 1-phase commit.

A summary of the transactional behavior for objects created on WSQCF or WSTCF is described in the following table:

Global transaction context Unspecified transaction context
transacted=false 2-phase commit 0-phase commit

transacted=true 2-phase commit 1-phase commit

To commit or to roll back the messaging work done on a transacted session, call method session.commit()or
session rollback().First check whether session.getTransacted() returns true before committing the
session.Session.getTransacted() returns true if:

The user passed in true as the transacted parameter when the session was created, and●

No global transaction is active at the moment of the call.●

If both tests are met, you can commit the session. Trying to commit a session when a global transaction is active will
result in the JMS exception, IllegalStateException, being thrown.

JMS XA support in WebSphere Application Server is integrated with local transactions.For container managed
transactions, an "unspecified transaction context" causes WebSphereApplication Server to start a local transaction.In
Version 4.0, the scope of the local transaction is the EJB method.The action taken at the end of the EJB method
(commit or rollback of the local transaction)depends on the information contained in the deployment descriptor. This
information is aWebSphere Application Server extension. The transaction manager will commit or rollback
anyoutstanding, uncommitted work done within the local transaction without any user intervention. The default is to
roll back.

Any work performed on a JMS session in an unspecified transaction context, will be rolled back or committed if the
corresponding local transaction is rolled back or committed.

 Requestors are only used with non-transacted sessions. Therefore, QueueRequestorand
TopicRequestor cannot be used with sessions created by WebSphere ApplicationServer JMS connection
factories.

Unsupported interfaces and methods

The following JMS interfaces are not designed for application use and, therefore,cannot be invoked:

Unsupported interfaces
javax.jms.ServerSession
javax.jms.ServerSessionPool
javax.jms.ConnectionConsumer
all the javax.jms.XA interfaces

The following JMS methods are inappropriatein this environment and interfere with connection management by the
container. Therefore, these methods cannot be used:

Unsupported methods
javax.jms.Connection.setExceptionListener
javax.jms.Connection.stop
javax.jms.Connection.setClientID
javax.jms.Connection.setMessageListener
javax.jms.Session.getMesssageListener
javax.jms.QueueConnection.createConnectionConsumer
javax.jms.TopicConnection.createConnectionConsumer
javax.jms.TopicConnection.createDurableConnectionConsumer
javax.jms.MessageConsumer.setMessageListener

All the above methods throw the JMS exception, IllegalStateException, when invoked.

 You cannot register a MessageListenerwith a QueueReceiver or TopicSubscriber.

The following methods throw the JMS exception, IllegalStateException, if used within a global transaction:

javax.jms.Session.commit
javax.jms.Session.rollback
javax.jms.Session.recover

 With the Enterprise JavaBeans programming model, you must ensure all JMS resources are closed
correctly.Since JMS resources never time-out, JMS resources that are not closed correctly will continue
to consume MQSeries resources.The MQSeries resources also persist until the application server or
MQSeries Queue manager is restarted.

Restrictions

The following restrictions exist regarding the use of JMS XA support in WebSphere Application Server:

A subscriber can only be used in the same type of transactional context (for example, a global transaction or
anunspecified transaction context) as the one that existed when the subscriber was created.

If this restriction is not respected, the JMS exception, subscriber restriction, is thrown.

If a global transaction is active at the creation of the subscriber, that subscriber can be used to receive messages
in different global transactions, but not in an unspecified transaction context.

If an unspecified transaction context is active when the subscriber is created, that subscriber cannotbe used with
a global transaction.

●

The use of JMS sessions across methods with different transactional attributes is restricted.

If a session was used within a global transaction, it cannot be reused in a differentglobal transaction or in an
unspecified context until the first transaction commits.Similarly, if there is work outstanding in a local
transaction then the session cannot be used in a global transaction until the local transaction has
finished.Session use, in this case, refers to the send, receive, and publish operations usingthe message producers
or consumers that were created on the session.

●

4.7: Java Clients
In a traditional client server environment, the client requests a service and theserver fulfills the request. A single
server is used by multiple clients.Clients can also access several different servers. This model persists for Java
clients except now these requests make use of a client's runtime environment.

Prior to J2EE (Java TM 2 Platform Enterprise Edition), a typical Web-based client application consisted of the
following model:

browser (HTML file) -> servlet -> EJB

In this model, the client application requires a servlet to communicate with the Enterprise Java Bean (EJB), and
the servlet must reside on the same machineas WebSphere Application Server.

With version 4.0, Java application clients cannow consist of the following models:

Applet client●

J2EE application client●

Java thin application client●

In the Applet client model, a Java applet is embedded in a HyperText Markup Language(HTML) document
residing on a client machine that is remote from WebSphere Application Server.With this type of client, the
user accesses an EJB in WebSphere Application Serverthrough the java applet in the HTML document.

The J2EE application client is a Java applicationprogram that accesses EJBs, JDBC databases, and Java
Message Service message queues. The J2EE application client program runs on client machines. This program
follows the same Java programming model as other Java programs; however, theJ2EE application client
depends on the application client runtime to configure its execution environment, and it uses the JNDI name
space to access resources.

The Java thin application client provides a light-weight Java client programming model. This client is best
suited for use in situations where a Java client application exists but the application must be enhanced to make
use of EJBs, or where the client application requires a thinner, more light-weight environment than the one
offered by the J2EE application client.

4.7.1: Applet client programming model
The Java Applet client provides a browser-based Java runtime that is capable of interacting with EJBs directly instead of indirectly through a
servlet.

This client is designed to support those users who want a browser-based Java client application programming environment that provides a richer
and more robust environment than the one offered by theApplet->Servlet->EJB model.

The programming model for this client is a cross between the Java application thin client and a servlet client. When accessing EJBs from this client,
the EJB object references can be considered CORBA object references by the applet.

There is no tooling support for this client for developing, assembling or deploying the applet. You are responsible for developing the applet,
generating the necessary client bindings for the EJBs and CORBA objects, and bundling these pieces together to be installed on or downloaded to
the client machine. The Java applet client provides the necessary runtime to support communication between the client and the server.

Client side bindings are generated during the deployment phase of J2EE developmentusing the Application Assembly Tool. An applet can utilize
these bindings, or you can generate client side bindings using the rmic command that is partof the IBM JDK installed with the WebSphere
Application Server.

See article Packaging and distributing Java clients formore information.

The Applet client makes use of the RMI-IIOP protocol. The use of this protocol enables the applet to access EJB references and CORBA object
references, but it is restricted in the usage of some supported CORBA services. If you combine the EJB and CORBA environments in one applet,
you must understand the differences between the two programming models, and you must use and manage each appropriately.

The Applet client provides the runtime to support the J2EE Applet client. The J2EE Applet client does not have any tooling support for developing,
assembling or deploying the Applet. The applet client runtime is provided through the use of the Java applet browser plug-in that is installed on the
client machine using the WebSphere ApplicationServer Client CD.

Because the Applet client does not provide for a deployment descriptor, the Applet code cannot make use of the JNDI java:/comp lookup. The
Applet must know the fully qualified location of the EJB in the JNDI namespace. For example, the JNDI:java:/comp allows lookup of
enterprise java beans using a short name or a nickname such as:

java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome");MyEJBHome =
(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

But the code in an applet client must be more explicit:

java.lang.Object ejbHome =
initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");MyEJBHome =
(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

The Applet environment restricts accessing external resources from the browser runtime environment. Some of these resources can be made
available to the Applet by setting the correct security policy settings in the JRE java.policy file. If given the correct set of permissions, the
Applet client must explicitly create the connection to the resource using the appropriate API (JDBC, JMS, and others). This client does not perform
any initialization of any of the services that the client applet may need. For instance, the client application is responsible for the initialization of the
naming service, either through CosNaming or JNDI.

The following table describes the advantages and disadvantages of the Applet client:

Advantages Disadvantages

Light-weight client suitable for download.●

Provides access to JNDI interfaces for EJB object resolution.●

No distribution of the applet to the client machine required
(performed through the browser)

●

Designed for use in an intranet environment.●

Lack of client runtime initialization of environment and services.●

Lack of built-in support for local resource resolution and
configuration.

●

Does not promote portability of client application code.●

Requires a browser to be installed on the client machine.●

4.7.1.1: Developing an Applet client
Unlike typical applets that reside on either Web servers or WebSphere ApplicationServers and can only communicate
using the HTTP protocol, the WebSphere Applet clients are capable of communciating over the HTTP protocol and the
RMI-IIOPprotocol. This additional capability gives the Applet direct access to enterprise java beans. As such, Applet
clients have the following setup requirements:

These clients are currently available on the Windows NT or Windows 2000 platforms.

 Support for additional platforms will be added in the near future.
Check the prerequisites page for information on new platform support.

●

They require one of these browsers:

Internet Explorer version 5.0+❍

Netscape Navigator 4.7+❍

●

The browser must be installed before the client code is installed.●

The Applet client is installed from the WebSphere Clients for Windows CD by selecting option, "Java
Application/Applet Thin Client."

●

You must install the WebSphere Application Server Plug-in for the browser.Select option, "Java
Application/Applet Thin Client," from the WebSphere Clients for Windows CD.

●

From the WebSphere Application Server Java Plug-in Control, enter:

 -Djava.ext.dirs=\WebSphere\AppClient\lib

The Java Run Time Parameters field issimilar to the command prompt when using
command line options.Therefore, most options available from the command prompt (for
example, -cp, classpath, and others),can be entered in this field as well.

1.

The control panel can be accessed from the Start menu.
Click start > control panel > WebSphere Java Plug-in Control.

2.

The applet container is the Web browser and the Java Plug-in combination.You must first
install the WebSphere Application Server Applet client so that the browser recognizes the
IBM Java Plug-in.

3.

●

Tag requirements

Standard applets require the HTML <APPLET> tag to identify the applet to the browser. The <APPLET> tag invokes the
browser's Java Virtual Machine (JVM). Soan applet running on Internet Explorer will use Microsoft's JVM.

For applets to communicate with EJBs in the WebSphere Application Server environment, the<APPLET> tag must be
replaced with these two new tags:

<OBJECT>
<EMBED>

Additionally, the classid and type attributes cannot be modified,and must be entered as described in the applet client
example. Finally, the codebaseattribute on the <OBJECT> tag must be excluded.

 Do not confuse the codebase attribute on the<OBJECT> tag with the codebase attribute on the
<PARAM> tag. Althoughboth are called codebase, they are separate entities.

The following code snippet illustrates the applet code. In this example, MyApplet.classis the applet code, applet.jar is the
file that contains the applet code, and EJB.jar is the file that contains the EJB code:

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0103.html

<OBJECT classid="clsid:8AE2D840-EC04-11D4-AC77-006094334AA9"
 width="600" height="500">
<PARAM NAME=CODE VALUE=MyAppletClass.class>
<PARAM NAME="archive" VALUE='Applet.jar, EJB.jar'>
<PARAM TYPE="application/x-java-applet;version=1.3">
<PARAM NAME="scriptable" VALUE="false">
<PARAM NAME="cache-option" VALUE="Plugin">
<PARAM NAME="cache-archive" VALUE="Applet.jar, EJB.jar">
<COMMENT>
<EMBED type="application/x-websphere-client" CODE=MyAppletClass.class
 ARCHIVE="Applet.jar, EJB.jar" WIDTH="600" HEIGHT="500"
 scriptable="false">
<NOEMBED>
 </COMMENT>
</NOEMBED>WebSphere Java Application/Applet Thin Client for
 Windows is required.
</EMBED>
 </OBJECT>

 The value of the type attribute on the <EMBED> tag can also be:
<EMBED type="application/x-websphere-client, version=4.0" ...

Code requirements

The code used by an applet to talk to an EJB is the same as that used by a standaloneJava program or a servlet, except for
one additional property called java.naming.applet.This property informs the InitialContext and the ORB that this
client is anapplet rather than a standalone Java application or servlet.

When initializing an instance of the InitialContext class, the first two lines in this code snippet illustrate what both
a standalone Java program and a servlet issue to specify the computer name, domain, and port. In this example,
<yourserver.yourdomain.com> isthe computer name and domain where WebSphere Application Server resides,
and 900 isthe configured port. After the bootstrap values (<yourserver.yourdomain.com>:900) are defined,the client to
server communications occur within the underlying infrastructure. In addition to the first two lines, for applets, you must
add the highlighted third line to your code. That line identifies this program as an applet:

prop.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "iiop://<yourserver.yourdomain.com>:900");
prop.put("java.naming.applet", this);

Security requirements

When code is loaded, it is assigned "permissions" based on the security policy in effect.This policy, specifying which
permissions are available for code from various locations,can be initialized from an external policy file.For each client,
the java.policy file should be updated with the classes that the applet client needs to access, and with the ports on the host
machines where it needs different permissions.

The following lines of code must be added to existing java.policy files.This code allows access to the required ports so
that the applet client can communicate with an EJB.

In the example below, the java.net.SocketPermission "localhost:1024--", "listen"entry grants
permision for Applets to open sockets for listening on the localhost for any portfrom 1024 to 65535. Port can be specified
as a range of port numbers or a specific port. A port range specification of the form "N-", where N is a port number,
signifies all ports numbered N and above. A specification of the form "-N" indicatesall ports numbered N and below.

The first SocketPermission statement grants permission to theclient to have ports opened for listening. The second grants
permission toopen a port and make a connection to a host machine, which is your WebSphere Application Server.In this
example, yourserver.yourcompany.com is the complete hostname of yourWebSphere Application Server:

permission java.util.PropertyPermission "server.root", "read";
permission java.util.PropertyPermission "*", "read,write";
permission java.io.FilePermission "traceSettingsFile", "read,write";
permission java.util.PropertyPermission "traceSettingsFile", "read,write";
permission java.lang.RuntimePermission "modifyThread";
permission java.net.SocketPermission "localhost:1024-", "listen";
permission java.net.SocketPermission "yourserver.yourcompany.com", connect";

 For more information on security relatingto user authentication and signed jars, read the official
documentation forJava security architecture

Learn more about the WebSphere Applet client by running the Applet sample.You can install the Applet client sample
from the WebSphere Application Client CD.This sample is called HelloEJB and is installed in
theproduct_installation/WSsamples/Clientsubdirectory on the client machine.

http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.7.2: J2EE application client programming model
The J2EE application client programming model provides the benefits of the J2EE platform for the Java client
application. The J2EE platform offers the ability to seamlessly develop, assemble,deploy and launch a client
application. The tooling provided with the WebSphere platform supports the seamless integration of these
stages to help the developer create a client application from start to finish.

When a client application is developed using and adhering to the J2EE platform, the client application code is
portable from one J2EE platform implementation to another. The client application package might require
redeployment using each J2EE platform's deployment tool, but the code that comprises the client application
will not change.

The J2EE application client runtime supplies a container that provides access to system services for the client
application code. The client application code must contain a main method. The application client runtime
invokes this main method after the environment is initialized and runs until the Java virtual machine is
terminated.

The J2EE platform allows the J2EE application client to make use of "nicknames" or "short names," defined
within the client application deployment descriptor. These deployment descriptors identify EJBs or local
resources (JDBC, JMS, JavaMail and URL) for simplified resolution through the use of JNDI. This simplified
resolution to the EJB reference and local resource reference also eliminates changes to the client application
code when the underlying object or resource either changes or moves to a different server. Should these changes
occur, the J2EE application client might require redeployment.

The J2EE application client also provides for initialization of the runtime environment for the client application.
This initialization is unique for each client application and is defined by the deployment descriptor. In addition,
the J2EE application client runtime provides support for security authentication to the EJBs and local resources.

The J2EE application client makes use of the RMI-IIOP protocol. The use of this protocol enables the client
application to access EJB references and to make use of CORBA services that are provided by the J2EE
platform implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services assist users in
developing a client application that requires access to both EJB references and CORBA object references. When
users combine the J2EE and CORBA environments or programming models in one client application, they need
to understand the differences between the two programming models, and they must use and manage each
appropriately.

The following table describes the advantages and disadvantages of the J2EE application client.

Advantages Disadvantages
Provides the user with the benefits of the J2EE
platform.

●

Allows the use of nicknames in the
Deployment Descriptor for reference identity

●

Client application code is portable across J2EE
compliant platforms (may need to be
redeployed for each distinct J2EE platform).

●

Supports CORBA services (usage of CORBA
services may render the client application code
non-portable).

●

A heavier client than the Java application thin
client, and is not suited for downloading.

●

Designed for use in an intranet environment.●

Requires distribution of the application to the
client machine.

●

4.7.2.1: Resources referenced by a J2EE application client
J2EE application clients access resources by performing lookup operations in the JNDI name space. The application client runtime then
provides a mapping of the resource names, used and configured by client application programs, to the actual resource objects.This allows client
application programs to access different resources, such as test or productiondatabases, without the need for updates or recompiles.

To provide this service, the application client runtime requires information about the names and types ofresources used by the client application
program.
The three types of resources a J2EE application client can reference are:

EJB references - are references to Enterprise Java Beans (EJBs) running on WebSphere Application Server.1.

Resource references - are references to other types of resources, such as:

JDBC databases❍

URLs❍

Java Message Service message queues❍

Java Mail❍

2.

Environment entries - are references to simple data types that you would not want to code in your application program, such as timeout
values or SQL query strings. The following Java basic data types are supported:

 java.lang.Boolean java.lang.String java.lang.Integer java.lang.Double
java.lang.Byte java.lang.Short java.lang.Long java.lang.Float

3.

The resource information is defined and configured using these two WebSphere Application Server tools:

Application Assembly Tool (AAT) (used for the definition)●

Application Client Resource Configuration Tool (used for the configuration)

The Application Assembly Tool manages:

EJB references❍

non-client specific Resource references❍

all Environment entries❍

The Application Client Resource Configuration Tool manages:

client specific Resource references such as a JDBC Datasource name
This information is stored with theclient application program in an Enterprise Archive File (.ear file).

❍

●

4.7.2.2: Developing a J2EE application client
From an application developer's point of view, creating a J2EE application client program involves these steps:

Writing the client application program1.

Assembling the application client (using the Application Assembly Tool)2.

Assembling the Enterprise Archive (EAR) file3.

Distributing the EAR file4.

Configuring the application client resources5.

Launching the application client6.

Writing the client application program

Write the J2EE application client program on any development machine. At this stage, you do not require access to WebSphere Application Server.

A J2EE application client program is similar to a standard Java program in that it runs in its own Java virtual machine and is invoked at its main
method. The J2EE application client program differs from a standardJava program because it uses the JNDI name space to access resources. In a
standardJava program, the resource information is coded in the program.

Storing the resource information separately from the client application program makes the client application program portable and more flexible.

Using the javax.naming.InitialContext class, the client application program uses the lookup operation to access the JNDI name space.The
InitialContext class provides the lookup method to locate resources. For more information on JNDI, see file, JNDI overview.

The following example illustrates how a client application program uses the InitialContext class:

import javax.naming.*public class myAppClient{ public static void main(String argv[]) {
InitialContext ctx = new InitialContext(); Object myObj =
ctx.lookup("java:comp/env/ejb/HelloBean"); HelloHome home
=(HelloHome)javax.rmi.PortableRemoteObject.narrow(myObj, HelloHome.class);
... }}

In this example, the program is looking up an Enterprise Java Bean called HelloBean. The HelloBean EJB reference is located in the client JNDI
name spaceat java:comp/env/ejb/HelloBean. Since the actual Enterprise Java Bean is running on the server, the application client
runtimereturns a reference to HelloBean's home interface.

If the client application program's lookup was for aResource reference or an Environment entry, then lookup would return an instance of the
configured typeas defined by the client application's Deployment Descriptor.For example, if the program's lookup was a JDBC datasource, the
lookup would return an instance ofjavax.sql.DataSource.

1.

Assembling the application client (using the Application Assembly Tool)

The JNDI name space knows what to return on a lookup because of the information that is assembled by the Application Assembly Tool (AAT).

Assemble the J2EE application client on any development machine that has the AATinstalled.

When you use the Application Assembly Tool to assemble your application client, you provide the application client runtime with the required
information to initialize the execution environment for your client application program.Refer to the Application Assembly Tool description for
implementation details.

Here is a list of things to keep in mind when you configure resources used by yourclient application program:

When configuring Resource references and EJB references in the Application Assembly Tool, the General tab contains a required Name
field. This field specifies where the application client runtime will bind the reference to the real object in thejava:comp/env portion of the
JNDI namespace. The application client runtimealways binds these references relative to java:comp/env. So, for the
programmingexample above, you would specify ejb/HelloBean in the Name field on theGeneral tab of the Application Assembly Tool,
which would require the program to perform a lookup of java:comp/env/ejb/HelloBean. If the Name fieldwere set to myString,
the resulting lookup would be java:comp/env/myString.

●

When configuring Resource references in the Application Assembly Tool, the Name field on the General tab is used for:

binding a reference of that object type into the JNDI name space.■

retrieving client specific resource configuration information that was configured using the Application Client Resource Configuration
Tool.

■

●

When configuring a Resource reference in the Application Assembly Tool, the value in the Name field on the General tab must match the
value in the JNDIName field on the General tab for the resource in theApplication Client Resource Configuration Tool.

●

When configuring URL resources using the Client Resource Configuration Tool, the URL provider panel allows you to specify a protocol and
a class that handles that protocol. If you want to use the default protocols, such as HTTP, you can leave those fields blank.

●

When configuring Resource references using the Application Assembly Tool, the General tab contains a field called Authorization. This
field can be set to either Container or Application. If the field is set to Container, then the application client runtime will use authorization
information configured in the Application Client ResourceConfiguration tool for the resource. If the field is set to Application, thenthe
Application Client runtime expects the user application to provide authorizationinformation for the resource. The application client runtime
will ignore any authorization information configured with the Application Client Resource Configuration tool for that resource.

●

2.

Assembling the Enterprise Archive (EAR) file3.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html

The application is contained in an Enterprise Archive or .ear file.The .ear file is composed of:

EJB, Application Client, and user-defined modules or .jar files■

Web applications or .war files■

Metadata describing the applications or application .xml files■

You must assemble the .ear file on the server machine.

Distributing the EAR file

The .ear file must be made accessible to those client machines that are configured to run this client.

If all the machines in your environment share the same image and platform, run the Application Client Resource Configuration Tool (ACRCT) on
one machine to configure the external resources, and then distribute the configured .ear file to the other machines.

If your environment is set up with a variety of client installations and platforms, you must run the ACRCTfor each unique configuration.

The .ear files can either be distributed to the correct client machines, or made availableon a network drive.

See article Packaging and distributing Java clientsfor more information.

Distributing the .ear files is the responsibility of the system and network administrator.

4.

Configuring the application client resources

If local resources are defined for use by the client application, run the ACRCT on the local machine to reconfigure the .ear file. Use the ACRCTto
change the configuration. The ACRCT is the Application Client Resource Configuration Tool described in the previous steps. For example, the .ear
file may contain a a DB2 resource, which is configured as C:\DB2. If, however, the user has DB2installed in directory, D:\Program
Files\DB2, that user must use the ACRCT to create a local version of the .ear file.

5.

Launching the application client

Using the fully assembled and configured .ear file,issue the launchClient command tolaunch the J2EE application client on the client
machine.

Note: Learn more about the WebSphere J2EE client by running the client sample.You can install the client sample from the
WebSphere Application Client CD.On a server machine, the J2EE client sample is part of the samples gallery. See the "Application
Client" section of Samples.ear.This sample is called HelloEJB and is installed in
theproduct_installation/WSsamples/Clientsubdirectory on the client machine.

6.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.7.2.3: Troubleshooting guide for the J2EE application
client
This section provides some debugging tips for resolving common J2EE application client problems. To use this
troubleshooting guide, review the trace entries for one of the J2EE application client exceptions, and then locate the
exception in the guide. See the Problem determination section formore information on starting traces and reading trace
entries. Also see the WSCL Messages for a description ofapplication client messages. These messages help identify
problems and can provide recovery information.

java.lang.NoClassDefFoundError●

com.ibm.websphere.naming.CannotInstantiateObjectException●

javax.naming.ServiceUnavailableException●

javax.naming.CommunicationException●

javax.naming.NameNotFoundException●

java.lang.ClassCastException●

com.ibm.etools.archive.exception.OpenFailureException (message numbers WSCL0206E and WSCL0100E)●

Error: java.lang.NoClassDefFoundError

Explanation: This exception is thrown when Java cannot load the specified class.

Possible causes:

Invalid or non-existent class●

Classpath problem●

Manifest problem●

User response: First check to determine if the specified class exists in a jar filewithin your ear file. If it does, make
sure the path for the class is correct. For example, if you get the exception:

java.lang.NoClassDefFoundError: WebSphereSamples.HelloEJB.HelloHome

ensure the class HelloHome exists in one of the jar files in your ear file.If it exists, ensure the path for the class is
WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a classpath issue. Most likely, you do not have the failing class's jar file
specified in the client jar file's manifest. To check this, open your ear file with the Application Assembly Tool and click
on the Application Client. Add the names of the other jar files in the ear file to the Classpath field. This exception is
generally caused by a missing EJB module name from the Classpath field.

If you have multiple jars to enter in the Classpath field, be sure to separate the jar names with spaces.

If you still have the problem, you have a situation where a class is being loaded from the harddrive instead of the ear
file. This is a very difficult situation to debug because the offending class is not the one specified in the exception.
Instead, another class is loaded from the hard drivebefore the one specified in the exception. To correct this, review the
classpathsspecified with the -CCclasspath option and the classpaths configured with theApplication Client
Resource Configuration Tool. Look for classes that also exist in the ear file. You must resolve the situation whereone
of the classes is found on the hard drive instead of in the .ear file. You do this by removingentries from the classpaths
or by including the .jar files and classes in the .ear file instead of referencing them from the hard drive.

If you are using the -CCclasspath parameter or resourceclasspaths in the Application Client Resource
Configuration Tool, and you have configuredmultiple jars or classes, verify they are separated with the correct
character for your operating system. Unlike the classpath field in the Application Assembly Tool,these classpath fields
use platform-specific separator characters, usually acolon (on UNIX platforms) or a semi-colon (on Windows).

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/08.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0802_messages.html#WSCL
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060009.html

Note: The system classpath is not used by the Application Client runtime if you use the
launchClient batch or shell files. In this case, the system classpath wouldnot cause this problem.
However, if you load the launchClient class directly, you dohave to search through the system
classpath as well.

Return

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception
occurred while attempting to get an instance of the object for the specified
reference object. [Root exception is javax.naming.NameNotFoundException:
xxxxxxxxxx]

Explanation: This exception occurs when you perform a lookup on an object that is not installed on the host server.
Your program can look up the name in the local client JNDI name space, but received a NameNotFoundException
exception because it is not located on the host server. One typical example is looking up an EJB that is not installed on
the host server that you access.This exception might also occur if the JNDI name you configured in your
ApplicationClient module does not match the actual JNDI name of the resource on the host server.

Possible causes:

Incorrect host server invoked●

Resource is not defined●

Resource is not installed●

Application server is not started●

Invalid JNDI configuration●

User response: If you are accessing the wrong host server, run the launchClient command again with the
-CCBootstrapHost parameter specifying the correct host server name. If you are accessing the correct host server,
use the WebSphere dumpnamespace command line tool tosee a listing of the host server's JNDI name space. If you
do not see the failing object's name, the resourceis either not installed on the host server or the appropriate application
server is not started.If you determine the resource is already installed and started, your JNDI name in your
clientapplication does not match the global JNDI name on the host server. Use the Application Assembly Tool to
compare the JNDI bindings value of the failing object's name in the client applicationto the JNDI bindings value of the
object in the host server application. They must match.

Return

Error: javax.naming.ServiceUnavailableException: Caught exception when resolving
initial reference=NameService. Root exception is org.omg.CORBA.INTERNAL:
JORB00105: In Profile.getIPAddress(), InetAddress.getByName(invalidhostname)
threw an UnknownHostException minor code: 0 completed: No

Explanation: This exception occurs when you specify an invalid host server name.

Possible causes:

Incorrect host server invoked●

Invalid host server name●

User response: Run the launchClient command again and specify the correct name of your host server with the
-CCBootstrapHost parameter.

Return

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html

Error: javax.naming.CommunicationException: Caught CORBA.COMM_FAILURE when
resolving initial reference=WsnNameService. Root exception is
org.omg.CORBA.COMM_FAILURE: minor code: 3 completed: No

Explanation: This exception occurs when you run launchClient to a host server that does not have the
Application Server started. You also receive this exceptionwhen you specify an invalid host server name. This might
happen if you do not specify a host server name when you run launchClient. The default behavior is for
launchClientto run to localhost, because WebSphere Application Server does not know the name of yourhost
server. This default behavior only works when you are running the client on the samecomputer as where WebSphere
Application Server is installed.

Possible causes:

Incorrect host server invoked●

Invalid host server name●

Invalid reference to localhost●

Application server is not started●

Invalid bootstrap port●

User Response: If you are not running to the correct host server, run the launchClient command again and
specify the name of your host server with the -CCBootstrapHost parameter. Otherwise, start the Application
Server on thehost server and run the launchClient command again.

Return

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in context
"java:"
Explanation: This exception is thrown when Java cannot locate the specified name in the localJNDI name space.

Possible causes:

No binding information for the specified name●

Binding information for the specified name is incorrect●

Wrong class loader was used to load one of the program's classes●

User Response: Open the ear file with the Application Assembly Tool and check the bindings for the failing name.
Ensure this information is correct. If it is correct, you could have a class loader issue.

Return

Error: java.lang.ClassCastException: Unable to loadclass:
org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stubat
com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(portableRemoteObject.java:269)
Explanation: This exception occurs when the application programattempts to narrow to the EJB's home class and the
classloaders cannot find theEJB's client side bindings.

Note: The HelloHome_Stub reference in the Errordescription, is a sample

Possible causes:

The files, *_Stub.class and _Tie.class, are notin the EJB .jar file●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html

Classloader could not find the classes●

User Response: Look at the EJB .jar file located in the .earand verify the class contains the EJB client side
bindings. These are class files whosenames end in _Stub and _Tie. If these files are not present, then use the
Application Assembly Toolto generate the binding classes. For more information, see article Generating deployment
code for modules.If the binding classes are in the EJB .jar file, then you might have a classloader issue.

Return

Error: WSCL0206E: File [EAR file name] is not avalid Enterprise Archive file.
WSCL0100E: Exception received:
com.ibm.etools.archive.exception.OpenFailureException
Explanation: This error occurs when the Application Client runtime cannot read the Enterprise Archive file.

Possible cause: The most likely cause of this error is the EAR filecannot be found in the path specified on the
launchClient command.

User Response: Verify that the path and filename specified on the launchclient command are correct. If you are
running on Windows NTand the path and file name are correct, use a short version of the path and file name (8
character file name and3 character extension). For additional information, read the cause and recovery documentation
for message WSCL0206E in the 8.2 Messages section.

Return

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060303.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060303.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0802_messages.html#WSCL

4.7.2.4: J2EE application client classloading overview
When you run your J2EE client application using the WebSphere Application ServerlaunchClient command, a
hierarchy of classloadersis created to load classes used by your application. The parent classloader isused to
load the WebSphere Application Client runtime and any classes placed in the WebSphere Application Client
user directories. The directories used by this classloaderare defined by the WS_EXT_DIRS System property in
the product_installation/bin/setupcmdline command shell.

As the J2EE Application Client runtime initializes, additional classloaders are createdas children of this parent
classloader. If your client application uses resources such as JDBC, JMS, or URLs, adifferent classloader is
created to load eachof those resources. Finally, a classloader is created to load classes within the .ear file.
Before invoking your clientapplication's main method, this classloader is set as the thread's context classloader.

 The system classpath is never used and is not part of thehierarchy of classloaders.

In order to package your client application correctly, you must understand which classloader loads your classes.
When Java loads a class, the classloader used to loadthat class is assigned to it.Any classes subsequently loaded
by that class will use that classloader or any ofits parents, but it will not use children classloaders.

Unfortunately, Java does not providea good way for determining which classloader loaded your classes. This
makes itdifficult to debug classloading problems. See the Configuring the classpath fields section formore
information on configuring the classpath fields in your application.

In some cases the WebSphere Application Client runtime can detect when your client application class is loaded
by a different classloader from the one created for it by the WebSphere Application Client runtime. When that
occurs, you will see message:
WSCL0205W: The incorrect class loader was used to load {0}.

This message occurs when your client application class is loaded by one of the parentclassloaders in the
hierarchy. This is typically caused by having the sameclasses in the .ear file and on the hard drive. If one of
the parentclassloaders locates a class, that classloader will load it before the Application Client
runtimeclassloader. In some cases, your client application will still functioncorrectly. In most cases, however,
you will receive "class not found"exceptions.

Configuring the classpath fields

When packaging your J2EE client application, you must configurevarious classpath fields. Ideally, you should
package everything required by yourapplication into your .ear file. This is theeasiest way to distribute your
J2EE client application to your clients. However, you should not package such resources as JDBC, JMS, or
URLs. In the case of these resources, you want to use classpath referencesto access those classes on the hard
drive. You might also have other classes installed on your client machines thatyou do not need to redistribute. In
that case, you also want to useclasspath references to access the classes on the hard drive, as described below.

Referencing classes within the EAR file

WebSphere J2EE applications do not use the system path.Instead, use the MANIFEST Class-Path entries to
refer to other classeswithin the .ear file. Configure these values using the module Classpath fieldsin the
Application Assembly Tool. For example, if your client application needs to accessan Enterprise Java Bean, you
would add the deployed EJB module's name to your applicationclient's Classpath field in the
ApplicationAssembly Tool. The format of the Classpath field for each of thedifferent modules (Application
Client, EJB, Web) is the same:

The values must refer to .jar and .class files that are contained within the .ear file.●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html

The values must be relative to the root of the .ear file.●

The values cannot refer to absolute paths in the file systems.●

Multiple values must be separated by spaces, not colons or semi-colons.

Note: This is Java's method for allowing applications to be platform-independent.

●

Typically, you add modules (.jar files) to the root of the .ear file. In this case, you only need to specify the
name of the module (.jar file) in the Classpath field. If you choose to add a module with a path, you need
tospecify the path relative to the root of the .ear file.

For referencing .class files, you must specify the directory relative tothe root of the .ear file. While the
Application Assembly Tool allows you to add individual class files to the .earfile, it is recommended that
these additional class files are packaged in a .jarfile. That .jar file should then be added to the module
Classpath fields. If you add .class files to the root of the .ear file, add "./" to the module Classpath fields.

Consider the following example directory structure in which the file myapp.ear contains an application client
JAR file named client.jar and an EJB module called mybeans.jar. Additional classes reside in class1.jar and
utility/class2.zip. A class named xyz.class is not packaged in a JAR file but is in the root of the EAR file.

Specify "./ mybeans.jar utility/class2.zip class1.jar" as the value of the Classpath
property.

The search order is:

 myapp.ear/client.jar
 myapp.ear/mybeans.jar
 myapp.ear/class1.jar
 myapp.ear/utility/class2.zip
 myapp.ear/xyz.class

View article the 6.4.1: Setting classpaths for more information.

Referencing classes that are not in the EAR file

You have two options to reference classes that are not contained in the .ear file. Which option you choose
depends on the relationship of theexternal classes and the classes internal to the .ear file. You might use
acombination of both options. Your options are:

Use the product_installation/app directory.

Use this option when your external classes do not reference classes within the .ear file. One example
would be stand-alone utility classes. To use this option, addyour .jar files to the
product_installation/app directory.For .class files, add them to this directory in
subdirectories that correspond to thepackage names.

1.

If the external classes reference classes within the .ear file, thefirst option will not work because of the
hierarchy ofWebSphere classloaders. In this case, you can do one of the following:

Package the external classes in the .ear file.❍

Use the launchClient -CCclasspath parameter.

This parameter is specified at run-time and takes platform-specific classpath values, which
means multiple values are separated by semi-colons or colons.

❍

2.

Refer to article 6.4.1 about installing application files into the environment, and setting classpaths, for a
description of the WebSphere Application Server classloaders.There are many similarities between the client
andthe server in this respect.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

Resource classpaths

When you configure resources used by your client application using the Application Client Resource
Configuration Tool, you can specify classpaths that are required by the resource. For example, if your
application is using JDBC to a DB2 database, you want to add db2java.zip to the classpath field of the
database provider. These classpath values are platform-specific and require semi-colons or colons to separate
multiple values.

Using the launchClient API

If you use the launchClient shell/bat command, the WebSphere classloaderhierarchy is created for you.
However, if you use the launchClient API, you mustperform this setup yourself. You should mimic
thelaunchClient shell command in defining the Java system properties.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html

4.7.3: Java thin application client programming model
The Java application thin client provides the user a light weight, downloadable Java application runtime that is
capable of interacting with Enterprise Java Beans. This client is designed to support those users who want a
light weight Java client application programming environment without the overhead of the J2EE platform on
the client machine. The programming model for this client is heavily influenced by the CORBA programming
model but supports access to Enterprise Java Beans. When accessing Enterprise Java Beans from this client, the
EJB object references can be considered CORBA object references by the client application.

There is no tooling support for this client for developing, assembling or deploying the client application. The
user is responsible for developing the client application, generating the necessary client bindings for the EJB
and CORBA objects, and bundling these pieces together to be installed on the client machine.

Client side bindings for Enterprise Java Beans are generated during the deployment phase of J2EE
developmentusing the Application Assembly Tool. A Java application can utilize these bindings or you can
generate client side bindingsusing the rmic command that is part of the IBM JDK installed withWebSphere
Application Server. See article Packaging anddistributing Java clients for more information.

The Java application thin client provides the necessary runtime to support the communication needs between
the client and the server.

The Java application thin client makes use of the RMI-IIOP protocol. The use of this protocol enables the client
application to access not only EJB references and CORBA object references, but it also allows the client
application to make use of any supported CORBA services. Use of the RMI-IIOP protocol and the accessibility
of CORBA services can assist a user in developing a client application that needs to access both EJB references
and CORBA object references. When users combine the J2EE and CORBA environments in one client
application, they need to understand the differences between the two programming models, and they must use
and manage each appropriately.

The Java application thin client runtime provides the necessary support for the client application for object
resolution, security, RAS and other services. However, it does not support a container that provides ease of use
to these services. For instance, there is no support for the use of "nicknames" for EJB or local resource
resolution. When resolving to an EJB (using either JNDI or CosNaming) the client application must know the
location of the name server and the fully qualified name that was used when the reference was bound into the
namespace. When resolving to a local resource, the client application cannot resolve to the resource through a
JNDI lookup. Instead the client application must explicitly create the connection to the resource using the
appropriate API (JDBC, JMS, etc.). This client does not perform any initialization of any of the services that the
client applicationmight require. For instance, the client application is responsible for the initialization of the
naming service, either through CosNaming or JNDI.

The following table describes the advantages and disadvantages of the Java thin application client:

Advantages Disadvantages

A light-weight client suitable for download●

Requires access to CosNaming or JNDI
interfaces for EJB or CORBA object
resolution

●

Designed for use in an intranet environment●

Lack of client runtime initialization of
environment and services

●

Lack of built-in support for local resource
resolution and configuration

●

Does not promote portability of client
application code

●

Requires distribution of the application to the
client machine.

●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html

4.7.3.1: Developing a Java application thin client
Install the Java application thin client from the WebSphere Application Client CDby selecting option "Java Application Thin Client" or "Java
Application/Applet Thin Client."

The Java application thin client offers access to most of the client services that are available in the J2EE application client; however, these
services are not as easily accessed in the thin client as they are in the J2EE application client. The J2EE client has the advantage of
performing a simple JNDI namespace lookup to access the desired service or resource. The thin client must code explicitly for each resource
in the client application. For example, looking up an EJB Home requires the following code in a J2EE application client:

 java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome");
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

However, the code in a Java thin application client must be more explicit:

 java.lang.Object ejbHome =
initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the java:/comp namespace. The J2EE client runtime resolves
that name to the physical location, and returns the reference to the client application. The thin client, on the other hand, must know the fully
qualified physical location of the EJB Home in the namespace. If this location changes, the thin client application also must change the value
placed on the lookup() statement. In the J2EE client, the client application is protected from these changes because it makes use of the logical
name.A change might require a re-deploy of the EAR file, but the actual client application code remains the same.

The Java thin application client is a traditional Java application that contains a "main" function. WebSphere's Java thin application client
provides runtime support for accessing remote EJBs, and provides the implementation for various services (security, WLM, and others). This
client can also access CORBA objects and CORBA based services. When using both environments in one client application, the user is
responsible for understanding the differences between the EJB and CORBA programming models and for managing both environments.

For instance, the CORBA programming model requires using the CORBA CosNaming name service for object resolution in a namespace
while the EJB programming model requires using the JNDI name service. The client application must initialize and properly manage the use
of these two naming services.

Another difference applies to the EJB model.The ORB is initialized using JNDI implementation in the EJB model, and the client application
is unaware that an ORB is present. The CORBA model, however, requires the client application to explicitly initialize the ORB through the
ORB.init() static method.

The Java application thin client provides a batch command that you can use to setthe CLASSPATH and JAVA_HOME environment variables
to enable the Java application thinclient runtime.

Set the Java application thin client environment by using the setupClientshell, located in:

 product_installation\AppletClient\bin\setupClient.bat (on Windows)
 product_installation/AppletClient/bin/setupClient.sh (on UNIX platforms)

After setting the environment variables, add your specific Java client applicationJAR files to the CLASSPATH and start your Java client
application from this environment.

See article Packaging and distributing Java clientsfor more information.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.7.3.2: Java thin application client code example
The code required by a Java application thin client to communicate with an enterprise java bean is similar to
servlet code that communicates with enterprise java beans.

The following code example illustrates how a Java application thin client uses the InitialContext to do the
following:

Perform a lookup●

Narrow the returned object into the EJBHome object●

Invoke the create method.●

Click a link to view the referenced line of code in the example. Each line in the code snippet is described in this
next section.

The first three lines in the try section of the code example show how to:

Create a properties class❍

Set the initial context factory❍

Define the provider URL used during the lookup operation❍

1.

The fields in the provider URL represent:

iiop://myComputer.myDomain.com:900

iiop:// myComputer myDomain.com 900

protocol
name of the server where
WebSphere Application
Server is installed

name of the domain for the
server where WebSphere
Application Server is installed

configured port

 Since port 900
is the default port
value, thismay be
omitted.

2.

This line in the example shows how to:

create an InitialContext class passing the Properties file

3.

Now do a lookup the EJB Home on the server

For more information on JNDI, see article 4.6.1: JNDI overview.

4.

The narrow operation in this line:

safely casts the object into an instance of HelloHome

5.

Finally, call the create method on the HelloHome object to create a Hello object.

You can also use findByPrimary key instead of create.Use the findByPrimaryKey method to
find an existing Hello object.

6.

Code example

 import javax.naming.*;
 import javax.rmi.*;
 import java.rmi.*;
 import java.util.*;
 import javax.ejb.*;
 import WebSphereSample.HelloEJB.*; //package for HelloEJB beans
 public class HelloClient
 {
 public static void main(String argv[])
 {
 try
 {
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ibm.websphere.naming.WsnInitialContextFactory");
 props.put(Context.PROVIDER_URL,
 "iiop://myComputer.myDomain.com:900");
 InitialContext ctx = new InitialContext(props);
 Object myObj = ctx.lookup("WSsamples/HelloEJBHome");
 HelloHome myHome = (HelloHome)
 javax.rmi.PortableRemoteObject.narrow(obj, HelloHome.class);
 Hello hello = myHome.create();
 }
 catch(NamingException e)

 catch(RemoteException e)

 catch(CreateException e)

 }
 }

Learn more about the WebSphere Java application thin client by running the client sample.You can install the
client sample from the WebSphere Application Client CD.This sample is called HelloEJB and is installed in
theproduct_installation/WSsamples/Clientsubdirectory on the client machine.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.7.4: Quick reference to Java client functions
Use the following table to identify the available functions in the different types of Java client.

Available functions Applet client J2EE Application client Java thin application client

Provides all the benefits of a J2EE
platform

No Yes No

Portable across all J2EE platforms No Yes No

Provides the necessary runtime to
support communication between client
and server

Yes Yes Yes

Allows the use of nicknames in the
deployment descriptors

No Yes No

Supports use of the RMI-IIOP protocol Yes Yes Yes

Supports use of the HTTP protocol Yes No No

Enables development of client
applications that can access EJB
references and CORBA object
references

Yes Yes Yes

Enables the initialization of the client
application's runtime environment

No Yes No

Supports security authentication to
Enterprise Java Beans

No Yes Yes

Supports security authentication to
local resources

No Yes No

Requires distribution of application to
client machines

No Yes Yes

4.7.5: Quick reference to Java client topics
Use the following table to locate additional Java client topics.

Click a Topics entry to view a description.Click a References entry for additional information on that topic.

Topics References

Java clients overview
J2EE application model●

J2EE architecture●

Quick reference to Java client functions●

Applet clients
Developing an Applet client●

Packaging, distributing, and installing●

Tracing and logging●

J2EE application clients

Resources referenced by a J2EE application client●

Developing a J2EE application client●

Troubleshooting guide for a J2EE application client●

J2EE application client client class loading overview●

Packaging, distributing, and installing●

Tracing and logging●

Configuring application client resources●

Launching Java application clients in the J2EE application client
container

●

Assembling modules and setting properties for applications●

Assembling J2EE application modules (.ear files) with theapplication
assembly tool

●

Java thin application clients

Developing a Java thin application client●

Java thin application client code example●

Packaging, distributing, and installing●

Tracing and logging●

http://java.sun.com/j2ee/overview2.html
http://java.sun.com/j2ee/tutorial/doc/Overview3.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/060301.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606010501.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606010501.html

4.7.6: Packaging and distributing Java client applications
After a client application has been developed the next step in the process is packaging and distributing the client application for use on client
machines. Packaging consists of pulling together the various artifacts that the client application requires. Distributing applies to making the
client application available on the target client machines. Each of the WebSphere Java clients differ slightly from each other in the packaging
and distributing phases of the development process.These differences are described below.

Application
client type Packaging Distribution

J2EE
Application
Client

Packaging of the WebSphere J2EE Application Client is accomplished through the
Application Assembly Tool (AAT). This tool generates an Enterprise Archive (.ear)
file as the output from the the assembly and deployment process. The .ear file contains
all of the class files that are required by the client application to run.

The .ear file must be deployed. The deployment can be done throughthe Application
Assembly Tool or when the EJB modules within the .earfile are installed in WebSphere
Application Server. The deployment phasegenerates the client bindings needed by the
client application.

Distributing the J2EE Application
Client .ear file to the target client
machine that has WebSphere J2EE
Application Client installed, is a
manual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the
J2EE Application Client .ear
files.

The J2EE Application Client might
require further configuration if the
application makes use of external
resources (such as: JDBC,
JavaMail, JMS or URL). Perform
this configuration with the
Application Client Resource
Configuration Tool.

When the resource configuration is
complete, the application can be
started using the launchClient
command.

Java
Application
Thin Client

The Java application thin client is packaged by manually collecting appropriate JAR files
and Java classes to support the client application.

The Enterprise Java Beans that the client application uses, require that client side
bindings are available on the client target machine. The client side bindings are available
from the deployed EJB JAR files.

The .jar files, containing the Enterprise Java Beans, are invoked by the application.
These JAR files are located in directory:
product_installation\InstalledApps\<YourEJBapplication.ear>\

Distributing the Java application
thin client JAR files to the target
client machine where WebSphere
Java Thin Application Client is
installed, is a manual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the JAR
files.

When the client application files
are present on the target client
machine, you must set up the
environment. WebSphere
Application Server provides a
command that assists users in
setting up the environment by
defining several environment
variables. Use the setupClient
command located in the
product_installation\bin
directory. After running this
command, add your client
application JAR files to the
CLASSPATH or use the
-classpath parameter on the
java command.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060009.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

Applet
Client

The Applet client is packaged manually by collecting the appropriate JAR files, Java
classes, and HTML files to support the Applet.

The Enterprise Java Beans that the Applet uses, require client side bindings. The client
side bindings are available from the deployed EJB JAR files. What .jar files are used
depends on the Enterprise Java Beans invoked. These JAR files are located inthe
product_installation\InstalledApps\<YourEJBapplication.ear>\
directory.

Distributing the Applet client to the
target client machine that has the
Applet client installed or to the
target WebServer machine (if you
want to make the Applet available
for download), is a manual process.

WebSphere Application Server
does not provide any tooling to
assist in the distribution of the JAR
files.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.7.7: Tracing and logging for the Java clients
Tracing and logging functions are available for the WebSphere client runtime. How this support is enabled and the level of support provided,
differs for each client model.

Applet client

You enable the tracing and logging functions for ORB level tracing only, by specifying the following system properties in the Java
Runtime parameters field of the WebSphere Application Server Java Plug-in Control Panel:

 -Dcom.ibm.CORBA.CommTrace=true
 -Dcom.ibm.CORBA.Debug=true

All verbose, trace, and debug messages are sent to the Java console window on thebrowser. Applets restrict using files for trace
output.

●

J2EE Application Client

You enable the tracing and logging functions by specifying one of the following flags on the launchClient command when starting
the J2EE client application:

CCtrace■

CCtracefile■

CCtrace flag

The -CCtrace flag enables trace. You can trace all or specific components:

-CCtrace=true
(This flag enables trace for all components and all events.)

■

-CCtrace=com.ibm.<component>=<entryexit | debug | event | all>=enabled
(This flag enables trace for specific components. For example,
-CCtrace=com.ibm.ws.client.*=all=enabled enables trace for all loggers with names starting with com.ibm.ws.client.)

■

 If the -CCtrace flag is not specified, trace is disabled.

CCtracefile flag

Use the -CCtracefile flag to send the trace output to a specific file:

-CCtracefile=<fully_qualified_output_filename>

(For example,
-CCtracefile=c:\MyTraceFile.log directs the trace output to file, c:\MyTraceFile.log.)

 If the -CCtracefile flag is not set, all output is directed to stdout.

●

Java thin application client

You enable the tracing and logging functions by specifying the following system property on the java command when starting the
client application:

 -DtraceSettingsFile=<filename>

(Filename is the name of a properties file that must be placed in the classpath accessible by the application.)

The properties file is used for specifying the output file and the components to enable for trace. When you install WebSphere
Application Server, a sample trace settings properties file is provided in:
<product_installation>/properties/TraceSettings.properties

The TraceSettings.properties file looks like the following example:

●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0804.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060007.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

property to specify the fully qualified file name for the tracefile
traceFileName=c:\\MyTraceFile.log
Specify trace strings here. Trace strings take the form of:
logger={level}={type} where:
level = entryexit || debug || event || all
type = enabled || disabled
examples:
com.ibm.ejs.ras.SharedLogBase=all=enabled enables all tracing for the single logger
created in class com.ibm.ejs.ras.SharedLogBase.
com.ibm.ejs.*=debug=enabled enables debug tracing for all loggers with names starting
with com.ibm.ejs.
Multiple trace strings can be specified, one per line.
com.ibm.ejs.ras.*=all=enabled

 If you specify a filename but no trace string,only message events are written to the specified file. If you specify
a filenameand a trace string, both message events and diagnostic trace entries are written to the specified file. If you
do not specify a filename for the trace file, all output is directed to stdout.

4.8: Web services - an overview
Web services are self-contained, modular applications that can be described, published, located, and invoked
over a network.Web services could be weather reports or stock quotes. Transaction Web services,supporting
business-to-business (B2B) or business-to-client (B2C) operations, could be airline reservationsor purchase
orders.

Web services reflect a new "service-oriented" approach to programming, based on the idea of building
applications by discovering and implementing network-available services, or by invoking available
applicationsto accomplish some task. This "service-oriented" approach is independent of specific programming
languages or operating systems.Instead, Web services rely on pre-existing transport technologies (such as
HTTP) and standard data encoding techniques (such as XML)for their implementation.

The Web services architecture describes three roles:

Service provider1.

Service requester2.

Service broker3.

Web services components provide three basic operations:

Publish1.

Find2.

Bind3.

In order for some component to become a Web service, it must be:

Created, and its interfaces and invocation methods must be defined●

Published to some repository●

Easy to locate by potential users●

Invoked and implemented by users●

Unpublished when it is no longer available●

As illustrated in the graphic,

Web service descriptions can be created and published by service providers who create on-line resources
for personal and business use.

●

Web services can be categorized and searched by specific broker services.●

Web services can be located and invoked by requesters of the services.●

With Web services, programming complexity is reduced because application designers do not have to worry
about implementing the services they are invoking. Interactions in Web services are bound dynamically at
runtime.A service requester describes the features of the required service and uses the service broker to find an
appropriate service.

WebSphere Application Server supports making the following artifacts into Web services:

Java beans●

Enterprise Java Beans●

BSF supported scripts●

DB2 stored procedures●

See article Web services components for a description of the key components that comprisea Web service.

Visit URL, www.alphaworks.ibm.com/tech/webservicestoolkit,to access the Web services toolkit on
Alphaworks. This site provides tools for creating WSDL files and SOAP clients, and describes working
examples.

Learn more about Web services. Register for the Web services tutorialon Alphaworks.

http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument

4.8.1: Web services components
These are the key components of a Web service:

SOAP (simple object access protocol)●

WSDL (Web Services Description Language)●

UDDI (Universal Discovery , Description and Integration Protocol)●

UDDI4J (client version of UDDI)●

SOAP or Simple Object Access Protocol

is a new protocol created by IBM, Microsoft, Userland, and DevelopMentor to support remote procedure calls and other requests over HTTP.Built on
HTTP and XML, SOAP attempts to convert application servers into object servers.

See the W3C SOAP protocol site for more information on SOAP messages, supported datatypes, and attributes. For SOAP implementation guidelines,
visit the Apache site.

SOAP requests and the responses are XML based. The following examples illustrate a SOAP request and response:

Sample SOAP Request
 Sample SOAP Request POST /Supplier HTTP/1.1 Host: www.somesupplier.com Content-Type: text/xml;
charset="utf-8" Content-Length: nnnn SOAPAction: "Some-URI" <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <SOAP-ENV:Body>
<m:OrderItem xmlns:m="Some-URI"> <RetailerID>557010<</RetailerID>
<ItemNumber>1050420459</ItemNumber> <ItemName>AMF Night Hawk Pearl M2</ItemName>
<ItemDesc>Bowling Ball</ItemDesc> <OrderQuantity>100</OrderQuantity>
<WholesalePrice>130.95</WholeSalePrice> <OrderDateTime>2000-06-19 10:09:56</OrderDateTime>
</m:OrderItem> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

The SOAP request indicates that the OrderItem method, from the "Some-URI" namespace, should be invoked from
http://www.somesupplier.com/Supplier.Upon receiving this request, the supplier application at www.somesupplier.com executes the business logic that
corresponds to OrderItem.

The SOAP protocol does not specify how to process the order. The supplier could run a CGI script, invoke a servlet, or perform any other process that
generates the appropriate response.

 See article SOAP support for the list of artifacts that WebSphere Application Server supports as Web services.

In this example, the SOAP Envelope element is the top element of the XML document that represents the SOAP message. The reference to the XML
namespace (xmlns:m="Some-URI") specifies the namespace to use for the SOAP identifiers. This request is asking the application to place an
order for the item identified by the elements:

RetailerId❍

ItemNumber❍

ItemName❍

ItemDesc❍

OrderQuantity❍

WholesalePrice❍

OrderDateTime❍

The response comes in the form of an XML document that contains the results of the processing, in this case, the order number for the order placed by
the retailer. The response is sent by the service provider located at http://www.somesupplier.com/Supplier.

Sample SOAP Response
 HTTP/1.1 200 OK Content-Type: text/xml; charset="utf-8" Content-Length: nnnn <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/> <SOAP-ENV:Body>
<m:OrderItemResponse xmlns:m="Some-URI"> <OrderNumber>561381</OrderNumber>
</m:OrderItemResponse> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

The response does not include a SOAP-specified header.The results are placed in an element whose name matches the method name (OrderItem) with
the suffix, "Response" as inOrderItemResponse.

Although Apache SOAP allows for SOAP over SMTP, WebSphere Application Server only supports SOAP over HTTP.

The SOAP Javadoc is shipped with WebSphere Application Server.

Review WebSphere Application Server's Javadoc for SOAP implementation details.

●

WSDL or Web Services Description Language●

http://www.w3.org/TR/SOAP/
http://xml.apache.org/dist/soap
http://localhost/0802_makepdf/apidocs/index.html

is an XML-based interface definition language that provides operational information about a service, such as the service interface, implementation
details, access protocol, and contact endpoints. Compliant server applications must support these interfaces, and client users can learn from
thedocument how a service should be accessed.

 WebSphere Application Server does not provide toolsfor generating WSDL files.

View a WSDL representation in the AddressBook2 sample.

See article UDDI4J samples for more information.

Review the WSDL specifications at W3C WSDL protocol site.

UDDI or Universal Discovery Description and Integration (Project)

is a comprehensive, open industry initiative enabling businesses to:

Discover each other1.

Define how they interact over the Internet, and share information in a global registry architecture.2.

WebSphere Application Server does not provide a private UDDI directory. IBM, among others,provides public UDDI registries. For more information
about UDDI, see www.uddi.org.Also visitAlphaworksfor the Web services toolkit, which includes an IBM implementation of a private UDDI
registry.

UDDI is the building block which enables businesses to quickly, easily, and dynamically find and transact with one another by means of their
preferred applications.

As described in the Web services overview, UDDI provides the three basic Web services functions: publish, find, and bind.

●

UDDI4J

is an open-source Java implementation of the Universal Discovery, Description, and Integration protocol (UDDI).UDDI4J contains an implementation
of the client side of UDDI (everything your application needs to publish, find, and bind a Web service).It also includes the source code, and the
complete Javadoc for the APIs. For more information,visit the UDDI4J open source site at oss.software.ibm.com/developerworks/projects/uddi4j.

Review IBM's Javadoc for UDDI4J implementation details.

●

http://www.w3.org/TR/wsdl#_introduction
http://www.uddi.org/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://oss.software.ibm.com/developerworks/projects/uddi4j
http://localhost/0802_makepdf/apidocs/index.html

4.8.1.1: UDDI4J Overview
UDDI4J is a Java class library that provides an API that is used to interact with a UDDI registry. This class
library generates and parses messages sent toand received from a UDDI server.

The central class in this set of APIs is:

com.ibm.uddi.client.UDDIProxy

This class is a proxy for the UDDI server thatis accessed from the client code. Its methods map to theUDDI
Programmer's API Specification.Review IBM's Javadoc foradditional implementation details.

The classes within com.ibm.uddi.datatype represent data objects that send or receiveUDDI information.
In the business and servicemodel, the data objects are also known as subpackages.

The subpackage com.ibm.uddi.request contains messages sent to the server.Generally, these classes are
not used directly;rather, they are invoked by the UDDIProxy class.

Similarly, the subpackage com.ibm.uddi.response represents response messages from a UDDIserver.

UDDI4J error handling

When invoking UDDIProxy inquiry methods, UDDIException is thrown when errors are received fromthe
UDDI proxy.UDDIException can contain a DispositionReport with information regarding the error.

APIs that do not return a data object, providethe disposition report.

SOAPException is thrown if a communication error occursor if the resulting data cannot be parsed as a valid
SOAP message.

View the file 4.8.1.1.1: UDDI4J Samples for API usage examples.

For more information,visit the UDDI4J open source site at
oss.software.ibm.com/developerworks/projects/uddi4j.

http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://www.uddi.org/pubs/UDDI_Programmers_API_Specification.pdf
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j

4.8.1.1.1: UDDI4J samples
A set of samples is provided to illustrateusing the inquiry and publishAPIs, and to demonstrate error handling.

Note: WebSphere Application Server does notprovide a UDDI registry. The IBM UDDI test registry is located at www.ibm.com/services/uddi/

Any sample that requires you to "publish," "save," or "delete" requires a userid and password. You can only invoke the "find" sample without a userid and password.

To get a userid and password:

Access the UDDI test registry1.

Register for your userid and password

The registration process requires you to activate your id beforeattempting to use the publish or delete examples.

Note: If the registry is not operational, keep trying. This is a test registry andat times it is not available.

2.

Use your registered userid and password when running the SaveBusinessExampleand DeleteBusinessExample samples.3.

Your samples consist of:

FindExample - is the "Hello world" of UDDI programs. It is the simplest sample of the UDDI API.●

SaveBusinessExample - is an example of using the publish API. It logs into the server using the get_authToken method; then attempts to save a business.●

DeleteBusinessExample - searches for a particular business using the inquiry API, finds the associated businesskey, logs into the server, and then attempts to delete
the business it found.

 When running DeleteBusinessExample, you might receive the following error messages:

Get authtokenReturned authToken:ADA3DC40-2531-11D5-9EB0-832611502FD0Search for 'Sample business' to
deleteFound business key:D3DD4036-00E4-F124-050B-C6113996AA77Errno:10140 ErrCode:E_userMismatch
ErrText:E_userMismatch (10140) Cannot change data that is controlled by another party.
businessEntity = D3DD4036-00E4-F124-050B-C6113996AA77Found business
key:61AE2CC0-0F2C-11D5-BC1E-B763254A2930Errno:10140 ErrCode:E_userMismatch
ErrText:E_userMismatch (10140) Cannot change data that is controlled by another party.
businessEntity = 61AE2CC0-0F2C-11D5-BC1E-B763254A2930Found business
key:3BB274CF-00E3-FA94-9B72-C6113996AA77

This is not a problem with the sample. DeleteBusinessExample issues a query for the business name specified in the code and receives a list of
entries with that name. The sample then tries to delete each entry in the list. These error messages occur when the sample tries to delete entries that
you do not own.

●

Accessing the samples

To access these samples, you can either installthe soapsamples.ear, or you canexpand the soapsamples.ear using the EarExpandertool.

These are the steps to access the samples:

Create a directory to hold the expanded soapsamples.earcontents.1.

From the product_installation_root\bin directory,enter the following commands:

EarExpander -ear ..\installableApps\soapsamples.ear-expandDir ..\temp\soapsamples -operationexpand
-expansionFlags war

2.

Issue the cd command to change to the installedApps/soapsamples.ear orto the target directory specified in the-expandDir argument3.

Issue the cd command to change to UDDISamples directory. The source for the samplesis included in the src directory.4.

The samples require several pieces of information.The sample source files can be edited and these valuessubstituted. The required values are:

InquiryURL: The URL of the UDDI server against which to run inquiries.●

PublishURL: The URL of the UDDI server to run publish requests. Typically, this is a SSL connection.●

Userid: When publishing, a userid is required for authentication.●

Password: This is the password for the referenced userid. Password is referred to as a credential in UDDI terminology.●

Running the samples

WebSphere Application Server provides an number of UNIX scripts and DOS .bat files to run the samples. These scripts (or .bat files) add the required jar files to the
classpath. Use a text editor (such as Notepad on Windows NT or VI or E3 on UNIX) to view the scripts (or .bat files). They describethe resources that you need to run the
samples.

The scripts are located in directory UDDISamples/unix_scripts.On Windows NT, the .bat files are located in directory UDDISamples\nt_bat.

 The scripts are put in this locationas a result of running the EarExpandercommand.

All the scripts (or .bat files) are named after the samples they run. So, for example, to invoke the FindExample sample, you would run theFindExample.sh script.

A UDDI registry might limit the number of business entities that you publish.The IBM Test registry limits you to one business entity.This means, for example, that after
running the SaveBusinessExample, youmust run the DeleteBusinessExample before attempting to publish another business entity.

See the related information links for an enablement scenario.

http://www.ibm.com/services/uddi/
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.8.1.2: SOAP support
Version 2.2 of the Apache SOAP implementation is integrated into WebSphere Application Server Version 4.0.
Apache SOAP Version 2.2 is a Java-based implementation of the SOAP 1.1 specification with support for
SOAP with attachments.

WebSphere Application Server Version 4.0 allows you to expose the following artifacts as SOAP services:

Standard Java classes●

Enterprise beans●

Bean Scripting Framework (BSF) supported scripts●

DB2 stored procedures●

Tools are provided to assist you with deployingthese artifacts as SOAP services. See article Deploying a
programming artifact as a SOAP accessible Web service for more information.

As part of deploying your services,you can choose to enable the XML-SOAP Admin tool,which allows you to
manage your SOAP-enabled services.

WebSphere Application Server also contains an implementation of the security extensions for SOAP. These
security extensions provide secure connections and enable digitally signed messages.See article Securing SOAP
services for more information.

See the related information links for an enablement scenario.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060014.html

4.8.1.2.1: SOAP samples
WebSphere Application Server 4.0 provides sample services and clients that demonstrate how to access SOAP
services. The SOAP samples code is based on the the Apache SOAP 2.2 samples.These samples are contained in the
soapsamples.ear that is located in the installableApps directory. The source for the sample services is
located in the soapsamples.ear.

See article DB2 Stored procedure sample setupfor information on configuring a datasource to set the db2-userid and
db2-password entries.

Perform the following steps to install the samples in your server:

Use the enterprise application wizard in theadministrative console to install the EAR file. See article Installing
files and setting classpaths for more information.

1.

To access the sample services from an external Web server, run the file GenPluginCfg.sh on UNIX or
GenPluginCfg.bat on Windows NT. This file makes the Web server aware of the SOAP samples.

2.

Start the product.3.

Check on the availability of the sample services using the XML-SOAP Admin tool:

From a browser, go to URL
http://localhost/soapsamples/admin/index.html

a.

At this site, you can:

List available services■

View the Apache SOAP descriptors■

Stop and start sample services■

b.

4.

Running the sample clients

Sample clients are provided to demonstrate how to access the installed SOAP services.These scripts require you to
specify the server that will handle the request.

 If you run the script with no arguments, as for example StockQuoteSample, you will be provided
with help on how to use the sample, and you will receive a description of the command line arguments
that the script requires.

To access the samples, change the directory to the following on Windows NT:
product_installation_root\installedApps\soapsamples.ear\ClientCode\nt_bat

On UNIX platforms, the samples directory is:
product_installation_root/installedApps/soapsamples.ear/ClientCode/unix_scripts

 Issue the chmod 755 *.sh command to restore the executionpermissions of the UNIX scripts.

Sample Command (entered on a single line)

Stock quote (requires Internet access)

stockquotesample localhost IBM

 If the request appears to hang, and then you receive an
"Operation timed out" error, the service was unable to reach a
server on the Internet to obtain the stock quote information.
You may need a direct connection to the Internet.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0607.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0604.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0604.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606a.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060014.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

Address book

AddressBookSample
GET localhost "John B. Good"
AddressBookSample
ALL localhost
AddressBookSample
PUT localhost "Herman Munster" 1313 "Mockingbird
Lane" Salem MA 10013 111 222 3434

Address book example 2 Addressbook2sample localhost

EJB
EJBAdderSample localhost
On UNIX platforms, enter:
EJBAdderSample.sh localhost

Send Message sendMessageSample localhost ..\data\msg1.xml

Calculator Sample

CalculatorSample localhost

 Unlike the other SOAP samples, which are either java or
enterprise beans, the Calculator Sample is a JavaScript sample.
The actual calculator processing is performed by the Web
service.

Mime Client sample MimeClientSample localhost ..\data\foo.txt

DB2SPSample sample
DB2SPSample localhost
On UNIX platforms, enter:
DB2SPSample.sh localhost

Troubleshooting SOAP sample problems

If you cannot run the SOAP samples, check for the following problems:

Can you run any of the samples, such as http://localhost/servlet/snoop?If not, make sure the
Web server is running.

If you can run the snoop sample, try accessing one of the SOAP samples again, butthis time specify
the port number 9080 in addition to the host name, as for example:

MimeClientSample localhost:9080 ...\data\foo.txt

If adding the port number resolves the problem, you need to update the plugin configurationby running
the GenPluginCfg.bat file on the Windows platform, or theGenPluginCfg.sh file on UNIX
platforms.

●

If the stockquote sample fails but the other samples work, you are having problems accessing the external
Internet.

●

See the Related topics section for links to an enablement tutorial.

4.8.1.2.2: Building a SOAP client
Creating clients to access the SOAP services published in WebSphere Application Server is a straightfoward process.The Apache SOAP
implementation, integrated with WebSphere Application Server, contains a clientAPI to assist in SOAP client application development.

The SOAP API documentation is available in WebSphere Application Server's javadoc.

These are the steps for creating a client thatinteracts with a SOAP RPC service:

Obtain the interface descriptionof the SOAP service

This provides you with thesignatures of the methods that you wish toinvoke.You can either look at a WSDL file for theservice, or view the
service itself to see its implementation.

1.

Create the "Call" object

The SOAP "Call" object is the main interfaceto the underlying SOAP RPC code.

2.

Set the target URI (Uniform Resource Identifier) in the "Call"object using the setTargetObjectURI() method.

Pass the URN (Uniform Resource Name, a type of URI), that the service uses for itsidentifier, in the deployment descriptor.

3.

Set the method name that you want to invoke in the "Call" object using the setMethodName() method

This method must be one of the methods exposed bythe service located at the URN from the previousstep.

4.

Create the necessary "Parameter" objectsfor the RPC call and then set them in the "Call"object using the setParams()
method.

Ensure you have the same number and same type ofparameters as those required by the service.

5.

Execute the "Call" object's invoke()method and retrieve the "Response" object

Remember the RPC call is synchronous, so it may take some time to complete.

6.

Check the response for a fault using thegetFault() method, and then extract any results or returnedparameters

While most of the providers only returna result, the DB2 stored procedure providercan also return output parameters.

7.

Interacting with a "document-oriented" SOAP service requires you to use lower-levelApache SOAP API calls. You must first construct an
"Envelope" object which containsthe contents of the message (including thebody and any headers) that you wish to send.Then create a "Message"
object where you invoke the send() method to perform theactual transmission.

To create a secure SOAP service, do the following:

Create a simple object1.

Define an envelope editor2.

Specify a pluggable envelope editor3.

Define the transports4.

Your code may look like the following example:

EnvelopeEditor editor=new PluggableEnvelopeEditor(new InputSource(conf), home);SOAPTransport
transport =new FilterTransport(editor, new SOAPHTTPConnection());call.setSOAPTransport(transport);

The characteristics of the secure session are specified by the configuration file, "conf."

See article Securing SOAP servicesfor more information on creating secure Web services.

See article 4.8.1.2.2.1: Accessing enterprise beans through SOAPfor information on calling an EJB service.

Since the SOAP API is a standard for Web services, any clients that you create to access the WebSphere Application Server SOAP services can
also runin different implementations.

See the related information links for an enablement scenario.

http://localhost/0802_makepdf/apidocs/index.html

4.8.1.2.2.1: Accessing enterprise beans through SOAP
Calling enterprise beans through SOAP is handled in the same manner ascalling Java bean methods through SOAP. The SOAP runtime handles the
bean cases for you, such as calling anenterprise bean's create method if the create was not calledpreviously.

A Web service can be a simple stateless sessionbean that performs number processing and returns a data value.When the client code makes a call to
the data processing method of this service and aninstance of the stateless session is not available, the SOAP runtimedoes the following:

Calls the EJB create method to obtain a stateless session●

Calls the requested method●

At times the client code must do additional work to use enterprise beans throughSOAP. For example, if a Web application intends to use stateful or
entity beans that persist data between calls, the clientrequires a reference to identify the bean instance that must be accessedin subsequent calls to
methods. This reference/key can be obtained from the response objectthat the client receives on the initial call to the bean.

Response objects are created:

When the client explicitly calls a create method●

From a findByPrimaryKey() Entity Bean method call●

From a regular bean method call●

The following code example demonstrates calling a bean'screate method with parameters:

/*This code snippet is from a simple MessageBoard bean thatstores strings sent to it for retrieval
at a later date.*/
...
/*Call create with \"This is a test\"to initialize the EJB*/
 call = new Call();
 call.setTargetObjectURI("urn:messageboard");

/*Note, you can explicitly call a create. Parameters for the bean's create can be passed like
parameters to any SOAP RPC call.*/
 call.setMethodName("create");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 params = new Vector();
 params.addElement(new Parameter("msg", String.class, "This is a test", null));
 call.setParams(params);

 System.out.println("Calling create with \"This is a test\"");
 resp = call.invoke(url, "");

/*Now use the same instance of the bean that you just 'created' and initialized.Obtain the reference
from the response object through the method getFullTargetObjectURI()*/
 ejbKeyURI = resp.getFullTargetObjectURI();

/*Subsequent calls to this bean can now be made by using theobtained ejb key.*/
/*Call getMessage using the handle from the create*/
 call = new Call();
 call.setFullTargetObjectURI(ejbKeyURI);
 call.setMethodName("getMessage");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 System.out.println("Calling getMessage:");
 resp = call.invoke(url, "");
...

4.8.1.2.3: Deploying a programming artifact as a SOAP accessible Web
service
Complete these steps to deploy a SOAP accessible Web service in WebSphere Application Server:

Create or locate the software resourceto be exposed as a service

To deploy a service,create a programming artifact, one of the supported types,or locate an existing piece of code of the supported type.

1.

Assemble an Enterprise Archive (EAR)file

Package the code artifactinto an Enterprise Archive (EAR). This stepis a deployment packaging requirement of WebSphere Application Server. Use
the Application Assembly Tool (AAT)to package the artifact. See article Application Assembly Toolfor information on using the tool.

2.

Create the Apache SOAP deploymentdescriptor for the desired service

In order to deploy an artifact as a SOAPservice, create a Apache SOAP deploymentdescriptor that describes the service you are creating.This step
exposes the programming artifact as a "service." The descriptor describes and defines the parts of the code that will be invoked with the SOAP calls.

The information containedin the deployment descriptor varies, depending on the type of artifact you are exposing.For example, the following
deployment descriptor might be used with the StockQuoteSample:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn"
[type="message"]> <isd:provider type="java" scope="Request | Session |
Application" methods="exposed-methods"> <isd:java class="implementing-class"
[static="true|false"]/> </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

View the Apache SOAP deployment descriptor documentationfor more information.

3.

Execute the SoapEarEnabler tool toenable your Web service

As mentioned above, your code artifact must first be packagedinto an Enterprise Archive (EAR). Next, using thedeployment descriptor as input, add
thenecessary pieces to the EAR file to enable the artifact as a Web service. To facilitate this process,use the Java based tool called
SoapEarEnabler.Depending on whether you secure the Web service, this tool will add two Web modules: soap.war and soap-sec.war to
the EAR file.These Web modules include the SOAP deployment descriptors plus the necessary parts to deploy the service into the WebSphere
Application Server runtime.

 The service does not become available until the soap-enabled EAR file is installed, and the server is restarted.

View the SoapEarEnabler tool documentationfor more information on SoapEarEnabler.

4.

Install the service-enabled EAR file

Take the modified EARfile, created in the previous step,and install it in WebSphere Application Server.

View article Installing application filesfor information on installing EAR files.

5.

Update the Web server plugin configuration

Run the GenPluginCfg.bat file on Windows NT or the GenPluginCfg.sh script on UNIX to regenerate the plugin configuration.

6.

Restart the application server7.

See the related information links for an enablement scenario.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060005.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06060010.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0604.html

4.8.2: Apache SOAP deployment descriptors
Apache SOAP utilizes XML documents called"deployment descriptors" to provide the SOAP runtime with
information on client services.

Deployment descriptors provide an array ofinformation such as the:

Service's URN (Uniform Resource Name)(which is used to route the request whenit arrives)●

Method and class details, ifthe service is being provided by a Java class●

User ID and password information, if the serviceprovider must connect to a database●

The contents of the deployment descriptor vary,depending on the type of artifact that isbeing exposed using
SOAP.

4.8.2.1: SOAP deployment descriptors in WebSphere Application Server
This article describes the different types of deploymentdescriptors that can be used in WebSphere Application Server.Deployment descriptors for each of the
soap samples are included in the soapsamples.ear file in the ServerSamplesCode directory(for example,
<product_installation>/installedApps/soapsamples.ear/ServerSampleCode/src/addressbook/DeploymentDescriptor)

Standard Java class deployment descriptor

A deployment descriptor which exposes a servicethat is implemented with a standard Javaclass (including a normal java bean) lookslike this example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn"
[type="message"]> <isd:provider type="java" scope="Request | Session |
Application" methods="exposed-methods"> <isd:java class="implementing-class"
[static="true|false"]/> </isd:provider>
 <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:

service-urn is the URN that you give to a service.(All services deployed within a single EARfile must have URNs that are unique withinthat EAR file.)●

exposed-methods is a list of methods, separated by spaces,which are being exposed●

implementing-class is a fully qualified class name (that is, a packagename.classname)that provides the methods that are beingexposed.●

On the <service> element,there is an optional attribute called type which is set to the value "message"if the service is document-oriented insteadof
RPC-invoked.

On the <java>element, there is an optional attribute calledstatic, which may be set to either "true"or "false", depending on whetherthe methods are exposed or
not exposed. If exposed, this attribute indicates whetherthe method is static or not static.

On the <provider> element, there isa scope attribute which indicates the lifetime ofthe instantiation of the implementing class.

"Request" indicates the objectis removed after the request completes.●

"Session" indicates the objectlasts for the current lifetime of theHTTP session.●

"Application" indicates the object lasts until the servlet thatis servicing the requests, is terminated.●

EJB deployment descriptor

A deployment descriptor that exposes a servicewhich is implemented with an Enterprise JavaBean looks like this next example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn">
<isd:provider type="provider-class" scope="Application"
methods="exposed-methods"> <isd:option key="JNDIName" value="jndi-name"/>
<isd:option key="FullHomeInterfaceName" value="home-name" /> </isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

 The default values for the iiop URL and context provider keys are:

 <isd:option key="ContextProviderURL" value="iiop://localhost:900" /> <isd:option
key="FullContextFactoryName" value="com.ibm.websphere.naming.WsnInitialContextFactory" />

To use your own values, you must specify:

 <isd:option key="ContextProviderURL" value="<URL to the JNDI provider>" /> <isd:option
key="FullContextFactoryName" value="<Context factory full class name>" />

A description of the keys and variables follows:

service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor●

provider-class is one of the following depending on the implementation of the bean:

Provider class Bean implementation
com.ibm.soap.providers.WASStatelessEJBProvider stateless session bean

com.ibm.soap.providers.WASStatefulEJBProvider stateful session bean

com.ibm.soap.providers.WASEntityEJBProvider entity bean

●

jndi-name is the registered JNDI name of the EJB●

home-name is the fully qualified class name of theEJB's home.●

Bean Scripting Framework (BSF) script deployment descriptor

A deployment descriptor that exposes a servicewhich is implemented with a BSF script lookslike the following example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn">
<isd:provider type="script" scope="Request | Session | Application"
methods="exposed-methods"> <isd:script language="language-name"
[source="source-filename"]>[script-body] </isd:script> </isd:provider>

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:

service-urn, exposed-methods, and scope have the same meaning as in the standardJava class deployment descriptor●

language-name is the name of the BSF-supported language that isused to write the script.●

The deploymentdescriptor must also have a source attribute on the <script> element,or a script-body attribute. The script-body attribute contains the actual
script that is used to providethe service. If the deployment descriptorhas the source attribute, then source-filename refers to the file which contains the
serviceimplementation.

DB2 stored procedure deployment descriptor

A deployment descriptor which exposes oneor more DB2 stored procedures as a serviceslooks like the following example:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" id="urn:service-urn">
<isd:provider type="com.ibm.soap.providers.WASDB2SPProvider" scope="Application"
methods="* | exposed-methods"> <isd:option key="userID" value="db-userid"/>
<isd:option key="password" value="db-password"/> [<isd:option
key="fullContextFactoryName" value="context-factory"/> <isd:option key="datasourceJNDI"
value="jndi-name"/>] [<isd:option key="dbDriver" value="db-driver"/>
<isd:option key="dbURL" value="db-url"/>] </isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:

service-urn and exposed-methods have the same meaning as in the standardJava class deployment descriptor.●

db-userid is a valid user ID used to access the databasewhere the stored procedures reside.●

db-password is a valid password for the specified user ID

 The db-userid and db-passwordentries are optional. These entries can be set in the datasource.In WebSphere Application Server, the
preferred way for administering the db-userid and db-password entriesis with a datasource. Changing the user ID and password is easier
when the information is located in a datasource rather than in a separate deployment descriptor file. See article DB2 Stored procedure
sample setupfor more information.

●

context-factory is the name of the context factoryused to access the database●

jndi-name is the datasource used to accessthe database●

db-driver is the database driver usedto access the database.

 A db-driver is not required if a datasource JNDI name is specified.

●

db-url is the URL that specifies the database to access●

The methods attribute on the <provider> elementcan contain a list of space separatedprocedure names to expose, or an "*" (asterisk).An asterisk indicates all
available stored procedures shouldbe exposed.

See the related topics section for links to an enablement scenario.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0607.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0607.html

4.8.3: Quick reference of Web services resources
Use the following table to link directly to Web services descriptions, and additional resources.

Click on any heading in the Topic category for a description of that topic.

Click on any heading in the Resources category for links to external sites that provide sample scenarios,
toolkits, tutorials, and additional information.

Reference the Related topics section for links to the SOAP EAR enabler tool and to a Web servicesenablement
tutorial.

Topic Resources

Web services overview

Web services topics and development
environment

●

Web services wizard●

Web services toolkit●

Web services tutorial●

SOAP overview●

SOAP support in WebSphere Application
Server

●

SOAP samples●

Building a SOAP client●

Deploying a programming artifact as a SOAP
accessible Web service

●

Apache SOAP implementation

UDDI overview●

IBM's UDDI test registry●

IBM's UDDI registry implementation

UDDI4J overview●

UDDI4J support in WebSphere Application
Server

●

UDDI4J samples●

IBM's Javadoc●

UDDI4J topics

WSDL overview WSDL topics

See the Related topics section for links to an enablement tutorial.

http://www.ibm.com/developerworks/webservices
http://www.ibm.com/developerworks/webservices
http://www.alphaworks.ibm.com/tech/wsde
http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-bytitle/BA84142372686CFB862569A400601C18?OpenDocument
http://xml.apache.org/soap
http://www.ibm.com/services/uddi/
http://www.alphaworks.ibm.com/tech/webservicestoolkit?open&c=cdws&p=uddi
http://localhost/0802_makepdf/apidocs/index.html
http://oss.software.ibm.com/developerworks/projects/uddi4j/
http://www.ibm.com/developerworks/library/w-wsdl.html

4.8.4: Securing SOAP services
Since the SOAP specification left security issuesopen, several proposals evolved to bridge the security gaps.
Recentlythe SOAP Security Extension [SOAP-SEC] was published as a W3C Note, specifically addressing the
XML Digital Signature.

The SOAP security extension, included withWebSphere Application Server Version 4.0, is a security
architecturebased on the SOAP security specification,and widely-accepted security technologiessuch as Secure
Sockets Layer or SSL.

There are three options for security when using HTTP as the transport protocol.

HTTP basic authentication●

SSL (HTTPS)●

SOAP signature●

Application developers are free to combine these security options according to their security requirements.The
following scenarios describe the implementation of the security options.

HTTP basic authentication

Many applications require users toprovide identifying information.You cannot provide access control for
individual services. You can onlyprovide access control for the router servlets (as for example the rpcrouter
servlet URI). If auser can get to a servlet, he can access any of the Web services served through the
servlet.Therefore, if you have a set of "secure" services and "unprotected" services, you have to partition them
differently so that "secure" servicesare accessed through an URI that is secured (for example,
/secureRPCRouter) andthe unprotected services are open for everyone to access (for example,
/uprotectedRCPRouter).

Using the ApplicationAssembly tool, you can set authorization levels by assigning roles to HTTP methods and
byassigning users to roles. You can then authenticate users, verifying they are authorized to view specific
information. There are many ways to prompt users for authentication data.See articles Overview: Using
programmatic and custom login andThe WebSphere authorization modelfor more information on different
authentication methods, and on role-based authorization scenarios.

SOAP on SSL with HTTP basic authentication

To make a request over HTTPS, using the SSL support of Apache SOAP, you needa separate Java Secure
Socket Extension (JSSE) provider.

WebSphere Application Server includesthe ibmjsse.jar in the JDK extensions.

The "SOAP on SSL" scenario is useful for many business-to-business (B2B) applications because:

The data in transit is protected from eavesdropping or forgery by SSL.●

The client identity is authenticated through userid and password, which are encrypted by the SSL
transport.

●

For example, if an inventory application is configured as a Web service, the service provider has the following
two SOAP service entries:

https://foo.com/inventory/inquiry●

https://foo.com/inventory/update●

http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0505.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0505.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0504.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0504.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/050103.html
http://java.sun.com/products/jsse/
http://java.sun.com/products/jsse/

Each SOAP service entry should be deployedas a separate enterprise application (EAR)because each service has
a different access controlpolicy, which is: anyone can inquire about the inventorybut only the inventory clerks
can updatethe contents.

The SOAP enablement model limits you to one context root for theunsecured services and another for the
secured services. In this example, you want to make the inquiry service unsecured and the update service
secured. Ifyou want different levels of security for a "secured" service, then you mustdeploy the entries in the
"secured" service as separate EAR files.

Do the following to enable the "SOAP on SSL" scenario:

Configure the web server (httpd.conf) so that it only allows SSL access to these servlets.●

Configure the security role for the RPCRouterServlet in the inquiry services EAR so that the
RPCRouterServlet for the 'inquiry' service is accessible by everyone, while the
RPCRouterServlet for the 'update' service requires authentication based on the HTTP basic
authentication (userid/pasword).

●

In this case, the 'update' application does not know the identity of the requester; it only knows that access is
granted. In other words, the "update" application is not concerned with the identity ofthe user because it knows
WebSphere Application Server is ensuring that only authenticated usershave access.

SOAP on SSL with SOAP Signature

Applications might need non-repudiable proof of exchanged messages.One example is a web service that
accepts part orders.The business partners establish a form of trust relationship based on public keys. This can be
done using the public key infrastructure (PKI) through a third party certificate authority (CA), or by exchanging
public keys with a secure channel. The following service is deployed with a signature verification function:

 https://foo.com/partorder

Configure signature verification with the following information:

Scope of signature (indicates the portion of the SOAP envelope that must be authenticated. The default
is the content of SOAP-ENV:Body).

●

Trusted keys or trusted root keys.●

Default key to verify signature if no KeyInfo is specified.●

Other policies regarding signature validation.●

Behavior when signature verification fails.●

Additional requirements on signature (as for example, specific requirements on hash/C14N algorithms
to be used, timestamp validity, and so forth).

●

If the signature is missing or if signatureverification fails, the signature verification function canbe configured
so that the servlet returnsa SOAP fault.

To send part orders to the https://foo.com/partorder service,the service requester should sign his
SOAP messages with a signature component.The signature component is initialized using two templates:

<ds:SignedInfo> template1.

<ds:KeyInfo> template2.

The <ds:SignedInfo> template controls the following:

What parts of the SOAP envelope must be signed●

What algorithms (canonicalization, transformation, digest, sign) should be used●

The <ds:KeyInfo> template controls the following:

Whether or not to include the entire certificate chain in <ds:KeyInfo>●

Decision to include only certificate and serial number●

Public key value●

Decision to provide no key information (so that the default key must be used for verification).●

You can combine the service request with HTTP basic authentication, if necessary.

4.8.4.1: Running the security samples
The process for running the SOAP signed samples is identical to the process forrunning the non-signed samples. The soapsamples.ear must be
installed, and the server must be started before these samples are invoked.

See article SOAP samples for informationon installing the SOAP samples.

SOAP Signature

The client samples are included in the soapsamples.ear file.Do the following to locate and execute the samples:

Change your directory (cd) to

 product_installation_root/installedApps/soapsamples.ear/ClientCode

A set of batch files or script files (on UNIX platforms) have beenincluded to facilitate running the client samples. These batch or script files are
located inthe nt_bat subdirectory on Windows NT, or in the unix_scriptssubdirectory on UNIX platforms. These scripts setthe classpath
and supply parameters.

1.

Invoke the samples using the following scripts:

DSigAddressSample localhost "c:\WebSphere\AppServer\installedApps\soapsamples.ear""John B. Good"

DSigMessageSample localhost "c:\WebSphere\AppServer\installedApps\soapsamples.ear"..\data\msg1.xml

 If you run the script with no arguments, as for example DSigAddressSample, you will be provided with help on how to use the
sample, and you will receive a description of the command line arguments that the script requires.

2.

View the output.

For each sample, at the server, you should see that the signature ofthe request is validated. At the client,you should see that the signature of the
responseis validated.

The validation results for both theclient and server are logged to thefollowing files that are created in
theproduct_installation_root/InstalledApps/soapsamples.ear/soapsec.war/logs directory

SOAPVHH-all-cl.log❍

SOAPVHH-fail-cl.log❍

SOAPVHH-all-sv.log❍

SOAPVHH-fail-sv.log❍

3.

Soap signature with SSL connection

Ensuring that a connection is over SSL isnot specific to Web services. You must configurethe Web server to ensure that the clientto Web server
connection is over SSL. You must also configure WebSphere Application Server to ensure thatthe Web server to WebSphere Application Server
connection isover SSL.

Article Configuring SSL in WebSphere Application Serverdiscusses how to configure SSL in WebSphere.See your Web server documentation for
information on configuring the SSL server.

For testing purposes, sample client and server keystoredatabases are shipped with the SOAP samples.You must use the IBM Key ManagementTool to
extract the certificates located in files:

test●

keystore●

databases●

Import the certificatesinto your key databases. See article, Tools for managing certificates and keysfor more information on the IBM Key Management
tool.

The test keystores are described in articleKeystore files.

Export the client certificates from the testkeystore file

Perform the following steps to export the client cerificates:

Invoke the Key Management Tool (IKeyman)1.

From the file menu, select open2.

Change directory (CD) to
product_installation_root/InstalledApps/soapsamples.ear/soapsec.war/key/

3.

Select the SOAPClient keystore file.
(The keystore password is "client".)

4.

Change the key database content type to "Signer Certificates".5.

Highlight the soapca certificate.6.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/06061801a07.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/050506.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

Click the Export button.7.

Change the exported file name to "soapca.arm".8.

Highlight the "intca1" certificate9.

Click the Export button.10.

Change the exported file name to "intca1.arm".11.

Import the certificates into the web serverkey database

Invoke the Key Management Tool (IKeyman)1.

From the file menu, select open (or new if you are creating a new keystore)2.

Change directory (CD) to the directory where the keystore file is located.3.

Select the file.4.

For Signer Certificates, add the "intca1.arm" and the "soapca.arm" you exported in the previous section.5.

For Personal Certificates, click Import.6.

Specify a key type of PKCS127.

Browse the sslserver.p12 file located in:
product_installation_root/InstalledApps/soapsamples.ear/soapsec.war/key/

8.

Click OK.9.

Enter "server" when prompted for a password.10.

Select "sslserver" from the key list and press OK.11.

Save the updated keystore file12.

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.8.4.2: SOAP signature components
An overview of the SOAP signature architecture is illustrated in the figure below.

Using the SOAP transport hook, you can plug-in the security components:

signer●

verifier with logging capability●

The transport hook is called the EnvelopeEditor. A PluggableEnvelopeEditor is also provided, which allows you to plugin your
security components. As illustrated, the EnvelopeEditor is encapsulated in the SOAPTransport on the client side.On the server
side, EnvelopeEditor is encapsulated in RPC/MessageRouterServlet.This means the same components can be used on either
side.

When a client application sends a request, the request is signed and transmitted to the server. At the server side, the request is
verified and delivered to a server application or, in the case of a RPC, to a Java object.The response is processed in the same
manner.The verifier component also has a logging function to log the verified messages in a file.Signatures and verifier
components are configurable. You can specify encryption, digest message algorithm, certificate path policy, and other security
technologies.

Signature Components
There are two signature components:

Signature Header Handler●

Verification Header Handler●

Signature Header Handler (SHH)

The Signature Header Handler is a XML-based configuration file, which enables:

Template for <SignedInfo> (for customizing references, sign/hash algorithms, C14N algorithms, optional
timestamp)

❍

Template for <KeyInfo> (for customizing the public key such as X.509 certificate)❍

Verification Header Handler (VHH)

The Verification Header Handler is a XML-based configuration file, which enables:

Configurable policy (required scope of signature, trusted root, certstore, certpathchecker) (more sophisticated
policy such as timestamp validation may not be included in 2/15 deliverable)

❍

Exit for Logging (additional application-specific verification) A reference implementation of logging component
is also provided.

❍

The digital signature configuration can be changed by editing the configuration for the following components:

Envelope Editor●

Signature Component●

Verification Component●

SOAP Security-related Files

The following table provides an inventory of the SOAP security elements contained in the SOAP security samples module
(soapsec.war).a quick reference for SOAP security topics.

Path Contents Description

/installedApps/soapsamples.ear/soapsec.war Web-INF, conf, key, log,
etc.

Home of the soap
security servlets

/installedApps/soapsamples.ear/soapsec.war/WEB-INF web.xml
Servlet configuration
file for SOAP security
samples

/installedApps/soapsamples.ear/soapsec.war/conf config files
Configuration files for
envelope editors and
signature components

/installedApps/soapsamples.ear/soapsec.war/key SOAPclient
SOAPserver

See article Keystore
files for more
information.

/installedApps/soapsamples.ear/soapsec.war/logs Log files Logs generated during
security exchange

/installedApps/soapsamples.ear/ServerSamplesCode/src/<service_name> server side
samples

Source for both the
non-secure and secure
samples

/installedApps/soapsamples.ear/ClientCode/nt_bat scripts to run
client samples

Batch files for invoking
the client side samples
to interact with the
server-side services

/installedApps/soapsamples.ear/ClientCode/unix_scripts scripts to run client
samples

Batch files for invoking
the client side samples
to interact with the
server-side services

/installedApps/soapsamples.ear/ClientCode/data data files used by samples

/installedApps/soapsamples.ear/ClientCode/src client side samples source

/lib soap.jar, soap-sec.jar,
ws-soap-ext.jar Location of all jar files

Related Documents
Simple Object Access Protocol (SOAP) 1.1 - W3C NOTE.●

SOAP Security Extensions: Digital Signature - W3C NOTE.●

XML-Signature Syntax and Processing - W3C CR.●

XML Security Suite - XML digital signature, encryption, access control.●

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/TR/xmldsig-core/
http://www.alphaworks.ibm.com/tech/xmlsecuritysuite

4.8.4.2.1: Keystore files for testing purposes
Two keystore files, (SOAPserver and SOAPclient), are available for testing purposes.These files are located in
directory:

product_installation_root/installedApps/soapsamples.ear/soapsec.war/key

This article describes the certificates that are stored in these two keystore files.

File name Store password Description
SOAPserver server This keystore is used by a service provider.

SOAPclient client This keystore is used by a service requester.

Common Certificate Authority certificates

The following three certificates are commonly stored in both keystore files.

Alias Issuer Description
soapca soapca itself The certificate of the root Certificate Authority (CA) used for testing purposes.

intca1 soapca The certificate of the CA to issue SSL-related certificates.

intca2 soapca The certificate of the CA to issue SOAP-DSIG-related certificates.

Certificates for service providers

The following two certificates are stored in the SOAPserver keystore.

Alias Issuer Description

sslserver intca1
This is the certificate of the SSL server. This is also stored in the SOAPclient keystore
as a trusted certificate. The PKCS12 file including the corresponding private key for
this certificate is sslserver.p12.

soapprovider intca2 This certificate might be used by a service provider to digitally sign its response
message. The key password is "server".

Certificates for service requesters

The following three certificates are stored in the SOAPclient keystore.

Alias Issuer Description

sslclient intca1 This certificate might be used for the SSL client authentication. The key password is
"client".

sslserver intca1
This is the certificate of the trusted SSL server and the same as the one stored in the
SOAPserver keystore. The PKCS12 file, including the corresponding private key for
this certificate, is sslserver.p12.

soaprequester intca2 This certificate might be used by a service requester to digitally sign its request
message. The key password is "client".

IBM HTTP Server documentation on configuring SSL●

Tools for managing certificates and keys●

http://www.ibm.com/software/webservers/httpservers/doc/v1312/ibm/9atstart.htm
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/050506.html

4.8.4.2.2: Envelope Editor
The Envelope Editor is a component thatcan be plugged into the Apache SOAP transports.At the server side, it is embedded into theRPC and
MessageRouterServlets. At the clientside, it is embedded in the FilterTransport,which implements the SOAPTransport interface.WebSphere
Application Server provides a PluggableEnvelopeEditor,which can be usedto plug-in some editing componentssuch as signature and verification.

Enabling Envelope Editor

At the client side, the configuration ofthe eEnvelope eEditor is explicitly programmed.On the server side, the transport hook isenabled automatically
in the soapsec.war filewhen you add the "init" param to the RPC and Messagerouter servlets for the EnvelopeEditorFactory.This entry in
the web.xml for the soapsec.war fileis added automatically when you "soap enable"an application and indicate the service is secure.

Description of the factory class to instantiate Envelope Editors

A factory class creates Envelope Editors at runtime. The factory class is called DSigFactory. The DSigFactory class consumes an editor
configuration file, and creates an instance of Envelope Editor. The factory class and the configuration file are specified in:

product_installation_root\installedApps\ear_file_name\soapsec.war\WEB-INF\web.xml

The factory class is describedunder the <servlet id="Servlet_1">and <servlet id="Servlet_2">elements:

 <display-name>Apache-SOAP-SEC</display-name> <description>SOAP Security Enablement
WAR</description> <servlet id="Servlet_1"> <servlet-name>rpcrouter</servlet-name>
<display-name>Apache-SOAP Secure RPC Router</display-name> <description>no
description</description>
<servlet-class>com.ibm.soap.server.http.WASRPCRouterServlet</servlet-class> <init-param
id="InitParam_1"> <param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value> </init-param>
<init-param id="InitParam_2"> <param-name>EnvelopeEditorFactory</param-name>
<param-value>com.ibm.soap.dsig.dsigfactory.DSigFactory</param-value> </init-param>
<init-param id="InitParam_3"> <param-name>SOAPEvnelopeEditorConfigFilePath</param-name>
<param-value>conf/sv-editor-config.xml</param-value> </init-param> </servlet>
<servlet id="Servlet_2"> <servlet-name>messagerouter</servlet-name>
<display-name>Apache-SOAP Secure Message Router</display-name>
<servlet-class>com.ibm.soap.server.http.WASMessageRouterServlet</servlet-class> <init-param
id="InitParam_5"> <param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value> </init-param>
<init-param id="InitParam_6"> <param-name>EnvelopeEditorFactory</param-name>
<param-value>com.ibm.soap.dsig.dsigfactory.DSigFactory</param-value> </init-param>
<init-param id="InitParam_7"> <param-name>SOAPEnvelopeEditorConfigFilePath</param-name>
<param-value>conf/sv-editor-config.xml</param-value> </init-param> </servlet>

EnvelopeEditorFactory is a factory class.SOAPEnvelopeEditorConfigFilePath is a configurationfile for Envelope Editor.

Configuration file of Envelope Editor

The configuration file, sv-editor-config.xml is located in:

product_install_root\installedApps\<ear_file_name>\soapsec.war\conf\sv-editor-config.xml

Under the SOAPEnvelopeEditorConfig element, thereare two optional elements:

incoming●

outgoing●

The incoming and incoming element definitions look like the following example:

 <incoming class="com.ibm.xml.soap.security.dsig.SOAPVerifier"> <init-param>
<param-name>filename</param-name> <param-value>conf/sv-ver-config.xml</param-value>
</init-param> </incoming> <outgoing class="com.ibm.xml.soap.security.dsig.SOAPSigner">
<init-param> <param-name>filename</param-name>
<param-value>conf/sv-sig-config.xml</param-value> </init-param> </outgoing>

The incoming element specifies a class which "edits" incoming messages, and a configuration file for the editing class. The outgoing element
specifies a class for outgoing message and a configuration file.

Changing the configuration

You do not have a digital signature for response messages if you remove the outgoing element from

product_installation_root\installedApps\<ear_file_name>\soapsec.war\conf\sv-editor-config.xml

and remove the incoming element from

product_installation _root\installedApps\<ear_file_name>\soapsec.war\conf\cl-editor-config.xml

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.8.4.2.3: Signature Header Handler
The Signature Header Handler (SHH) insertsa digital signature header into a SOAP envelope.You can customize the SHH configuration
with a configuration file. For example, you canspecify a signing policy and the key storefile.

There are two signature configurationfiles:

product_installation_root\installedApps\<ear_file_name>\soapsec\conf\sv-sign-config.xml
product_installation_root\installedApps\<ear_file_name>\soapsec\conf\cl-sign-config.xml

The soapsamples.ear file contains samples of these configuration files.

An explanation of each configuration element in the Signature Header follows:

KeyStore

The KeyStore element specifies a keystore file that holds the signingkey. In the following example, the attribute "type" indicates a
keystore type, and "jks" indicates Java Key Store. "path" is a keystorefile, and "storepass" is its store password.

 <KeyStore type="jks" path="key\SOAPserver" storepass="server" />

The Key Management tool (iKeyman) can beused to create a keystore file.

●

Policy

The PublicKey element specifies the information that should be included inthe <ds:KeyInfo> element. With the current
implementation, you must either include the complete certificate chain, oromit the <ds:KeyInfo> When <ds:KeyInfo> is ommitted,
the recipientmust know the default key to verify the signature.

●

Template

The contents of the Template element specify all the details relatedto XML Signature, including signature algorithms, digest
algorithms,canonicalization algorithms, transform algorithms, the portion of theSOAP envelope to be signed, and so on.

●

Object

The template can also have Object element(s) for additionalauthentication information, such as a timestamp.

●

ValueOfTimestamp

This SHH understands one special element type, ValueOfTimestamp, whichis replaced with a current time and date before being
inserted intothe signature.

●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.8.4.2.4: Verification Header Handler
The Verification Header Handler (VHH) validatesa digital signaure header in a SOAP envelope.Its configuration can be customized usinga configuration file
where you specify the following:

a verification policy●

the certificate path●

logging files to record verified messages●

There are two signature configuration files:

product_installation_root\installedApps\<ear_file_name>\soapsec.war\conf\sv-ver-config.xml
product_installation_root\installedApps\<ear_file_name>\soapsec.war\conf\cl-ver-config.xml

Samples of these configuration files areprovided in the soapsamples.ear file.

An explanation of each configuration element in the Verification Header follows:

AllowedAlgorithms

All the algorithms supported by this VHH must be listed in this element. Algorithms other than these cannot be used in SOAP-SEC:Signature
header. The current implementation supports all required algorithms in the XML Signature specification, except for SHA1-MAC.

●

RequiredAuthenticatedParts

This section specifies what parts of SOAP message need to be authenticated through the SOAP-SEC:Signature header. Currently two values are
supported for the part attribute:

When part="root," the whole evelope must be signed through the enveloped-signature transform.1.

When part="body," the SOAP-ENV:Body element in the SOAP envelope must be referenced by one of the reference elements in the
signature.

2.

Part="" allows an attachment to be specified.

If the specified parts are not authenticated through the signature header entry, verification fails.

●

DefaultVerificationKeys

When KeyInfo is missing in the signature, the content of this elementis used as a part of the signature. When communicatingparties know the
identity of each other, the default KeyInfo can beused to reduce the communication data volume.

●

Log

Specifies the logging behavior. The following versions of logging exist:

When target="all," all verification attempts are logged.❍

When target="success," only successful verification are logged.❍

When target="fail," only unsuccessful verification are logged.❍

 Multiple LogFile elements can be specified.

The following example illustrates how to specify logging:

 <Log> <SOAPDSigLogger class="com.ibm.xml.soap.security.dsig.SOAPDSigLoggerImpl">
<LogFile target="all" path="SOAPVHH-all.log" append="yes"/> </SOAPDSigLogger> <SOAPDSigLogger
class="com.ibm.xml.soap.security.dsig.SOAPDSigLoggerImpl"> <LogFile target="fail"
path="SOAPVHH-fail.log" append="yes"/> </SOAPDSigLogger> </Log>

●

PKIXParameters

Currently VHH supports X.509/PKIX certificates only (no HMAC, no PGP, and so forth). The policies for PKIX certificate verification are specified
in this element. This is a straightforward mapping of Java CertPath API. Not all of the entries are meaningful in this initial release.

Current implementation only allows the useof keystore as the means of specifying trustedroot.

●

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/root.html

4.9: Programming model for the Connector
Architecture (J2C)
The Connector Architecture Specification (JCA Specification) is astandard architecture for integrating Java
applications with existing enterpriseinformation systems. The IBM WebSphere Application Server
implementation is based on the Proposed Final Draft #2 versionof the JCA Specification
(http://java.sun.com/aboutJava/communityprocess/jsr/jsr_016_connect.html).

Much of the JCA Specification depends on knowledge of the EnterpriseJavaBeans (EJB) specification, versions
1.1 and 2.0, which are available athttp://java.sun.com/products/ejb/.

This topic defines the functionality and capabilitiesof the current implementation of the Connector Architecture
for WebSphere Application Server (technology preview)per the JCA Specification. This topic does not restate
the JCA Specification.

Information in this topic has been structured so it mapsto the JCA Specification.

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_016_connect.html
http://java.sun.com/products/ejb/

4.9.1: Mapping the current implementation to the
Connector Architecture (J2C) Specification
The sections referenced in this article map to sections of the JCA Specification.Download the JCA Specification
from the Sun Web site before proceeding. The download site is located at:
java.sun.com/j2ee/download.html

The following aspects of the JCA Specification are currently implementedin WebSphere Application Server:

Connection Management (Section 5) in the JCA Specification

WebSphere Application Server provides an implementation of javax.resource.spi.ConnectionManager
(section 5.5.2).

The implementation of the J2C Connection Manager is separate from the JDBC Connection Manager
implementationthat was already part of IBM WebSphere Application Server.

The ConnectionManager receives requests for Connectionobjects from the ConnectionFactory object.
The requests are thenprocessed by the application server. The Connection Manager implementation
delegates to the application serverruntime to provide generic Qualities of Service (security,
transactions,and others). These Qualities of Service are supported and managed by the application
server.

WebSphere Application Server also provides an implementation of
javax.resource.spi.ConnectionEventListener(section 5.5.6). The ConnectionEventListener is used for
event notification for managingthe connection pool, cleaning up invalid or terminated connections,
andmanaging local transactions.

Only the EJB container is supported for managed connections in the current release.

●

Pool Management (Section 5.5.3 and the scenarios in Section 5.8)
in the JCA Specification

Very much related to Connection Management is the Connection Pool Implementation.In the JCA
Specification, only guidelines are given for the implementationof the pool manager.

The current release has a pool manager implementationwhich involves aspects of both WebSphere
ApplicationServer and the Enterprise Access Builder component of VisualAge for Java.The resulting
class files and jar file are used by both environments.

●

Transaction Management (Section 6) in the JCA Specification

The transaction manager requirements (section 6.6.3) are satisfied by theJTA implementation provided
within IBM WebSphere Application Server. The"last resource optimization" is an
implementation-specific option, andis not part of the JTA implementation as provided.

All three transaction-support types (NoTransaction,LocalTransaction, and XATransaction)on the
Resource Adapter deployment descriptor are supported in the current release. LocalTransaction one
phase commit protocol (1PC) resources are wrappered within a "local transaction wrapper",thus
allowing these 1PC resources to be used within a global JTA transaction.If there is an attempt to use
more than one of these resources within aglobal transaction, then the prepare() method throws an
exception and thetransaction is rolled back.

●

http://java.sun.com/j2ee/download.html#connectorspec

The use of Common Client Interface (CCI), for local transactions (6.7 and 9.6.3), is allowed, with
theserestrictions:

Downstream calls must not share the same local transaction context.■

Resource adapters must detect and handle the case of CCI local transaction begin() when there is
a global transaction in existence (that is, when SPI transaction begin has first been invoked on
the resource adapter).

■

Applications must do their own cleanup, since the container/connector runtime in the current
release does not detect "dangling local transactions" and cleanup on behalf of the application.

■

Local transaction optimization (section 6.12)is not provided by the Advanced Container.

Connection sharing (section 6.9) is supportedwithin the global XA transactions, but not within CCI local
transactions.Connection sharing is assumed (default action). The ability to turn offconnection sharing
via the res-sharing-scope attribute on the resource-refdeployment descriptor is not supported in the
current release (thisis deemed an Enterprise Java Beans 2.0 Specification item).

Related to this connection sharing concept is connection association(section 6.11). The
ManagedConnection.associateConnectionmethod is not supported in the current release. Instead, the
programmingmodel of get/use/close connections on every method request (which isthe inferred
programming model of the JCA Specification) is stronglyencouraged.This means that each usage
(getConnection, Interaaction usage, and close) of a connection should be completed with a transaction
(either CMT or BMT).

In general, policing and cleaning up of badly behaved or untidy applicationsis minimal in the current
release. Applications are expected to properlycomplete or terminate their resources.

The requirement for XA Recovery as noted in Section 5.5.3 of the JCASpecification is not supported in
the current release.

Security Management (Sections 7 and 8) in the JCA Specification

Only component-managed signon (Option C in the specification) is supportedin the current release. This
allows the component to pass in userid and password credentials through the ConnectionSpecobject. If
nothing is passed in through the ConnectionSpecobject, then the ManagedConnectionFactory is
interrogated by the ResourceAdapter for a user id and password credential and that is used for signonto
the EIS.

WebSphere Application Server ignores the setting of the authentication-mechanism-typeelement of the
deployment descriptor and operates as though credential-interfaceis set to PasswordCredential and
authentication-mechanism-typeis set to BasicPassword. That is, the settingsof GenericCredential or
Kerbv5 are ignored.

Security Permissions (Section 11.2) are not implemented for the current release. This means that all
permissions are automatically givento the resource adapters.

●

RAS (Section 5.6)in the JCA Specification

The current release supports error logging and tracing through theTR facility of IBM WebSphere
Application Server. The LogWriter on the ManagedConnectionFactoryis set to propagate to the
ManagedConnections that are created by thisfactory.

Notes:

To enable tracing for the J2C runtime,the following trace setting can be used:❍

●

com.ibm.ejs.j2c.*=all=enabled.

To enable tracing for the IBM-supplied Resource Adapters, the followingtrace setting can be
used:com.ibm.connector2.*=all=enabled.

❍

Tracing can be enabled for other third party Resource Adapters by specifyingtheir package
name: package.*=all=enabled.

❍

Packaging and Deployment (Section 10) in the JCA Specification

Resource Adapters are packaged into J2EE modules called Resource AdapterArchives (.rar files). These
.rar files contain a deployment descriptoralong with the Java interfaces, implementation, and utility
classes requiredby the Resource Adapter.

Assembly Tool (Section 10.1):

In Section 10.2, there is mention of bundling .rar modules into an .ear file. This configuration is
not supported in the current release, which only processes stand-alone .rar modules.

❍

Deployment Tool (Sections 10.3.2 and 10.3.3):

In WebSphere Application Server, .rar files are deployed through the Systems Management
adminClient.

■

You can configure individual connection factories through properties declared in the resource
adapter's deployment descriptors.

■

There is support for multiple property sets (one per configured ManagedConnectionFactory
instance) for a resource adapter.

■

You can remove resource adapters from an operational environment. The impact of this removal
does not take effect until the server is recycled.

■

Systems Management (All of Section 10):

Systems Management encompasses all aspects of the deployment and configuration of resource
adapters as well as the server environments. The current release enables the two main areas of
functionality:

Resource Adapter (Connector) SM Support.■

ConnectionFactory SM Support.■

■

●

4.9.1.1: Implementing connector architecture
As indicated in the Connector Architecture (J2C) specification, each EIS (Enterprise InformationSystem) needs a Resource Adapter and a Connection Factory. This Connection Factory is then accessed via the following programming model.If you are using the Enterprise Access Builder (EAB) feature of Visual Age for Java
(VAJ),most of the following deployment descriptors and code are already generated for you.This example shows the "manual" method of accessing and EIS resource

For each EISconnection, do the following:

Declare a connection factory resource references inyour application component's deployment descriptors, as described in thisexample:

<resource-ref> <description>description</description> <res-ref-name>eis/myConnection</res-ref-name> <res-type>javax.resource.cci.ConnectionFactory</res-type> <res-auth>Application</res-auth></resource-ref>

1.

Configure, during deployment, each Resouce Adapter andassociated connection factory through the console. See article, Configuring J2C, for a description of the parameters required to configurea resource adapter.2.

Locate in your application component,during runtime, the corresponding connection factory for the EIS resourceadapter using JNDI lookup.3.

Get the connection to the EIS from the connectionfactory. 4.

Create an Interaction from the Connectionobject. 5.

Create an InteractionSpec object. Set the function to be executed in the InteractionSpec object.6.

Create a Record instance for the input and/oroutput data used by function.7.

Execute the function via the Interaction object.8.

Process the Record data from the function. 9.

Close the connection. 10.

Coding example for creating and executing an Interaction

The following code segment shows how an application component might create aninteraction and execute it on the EIS:

javax.resource.cci.ConnectionFactory connectionFactory = null;
javax.resource.cci.Connection connection = null;
javax.resource.cci.Interaction interaction = null;
javax.resource.cci.InteractionSpec interactionSpec = null;
javax.resource.cci.Record inRec = null;
javax.resource.cci.Record outRec = null;

try {
// Locate the application component and perform a JNDI lookup
 javax.naming.InitialContext ctx = new javax.naming.InitialContext();
 connectionFactory = (javax.resource.cci.ConnectionFactory)ctx.lookup("java:comp/env/eis/myConnection");

// create a connection
 connection = connectionFactory.getConnection();

// Create Interaction and an InteractionSpec
 interaction = connection.createInteraction();
 interactionSpec = new InteractionSpec();
 interactionSpec.setFunctionName("GET");

// Create input record
 inRec = new javax.resource.cci.Record();

// Execute an interaction
 interaction.execute(interactionSpec, inRec, outRec);

// Process the output...

// close the interaction and connection
 interaction.close();
 connection.close();

} catch (Exception e) {
 // Exception Handling
}

http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/0606420101.html

4.10: Developing custom services
You can write a custom service class that implements the com.ibm.websphere.runtime.CustomService interface (shown below). The administrator
can then create a custom service configuration for an applicationserver, supplying the class name. When the application server is started, thecustom
service will be started and initialized.

The properties passed by the application server runtime to the initialize method can include one for an external file containing configuration
information for the service (retrieved with the externalConfigURLKey). In addition, the properties can contain any name-value pairs that are stored
for the service, along with the other system administrations configuration data for the service. The properties are passed to the initialize method of the
service as a Properties object.

There is a shutdown method for the interface as well. Both methods of the interface declare that they may throw an Exception, although no specific
exception subclass is defined. If an exception is thrown, the runtime will log it, disable the CustomService, and proceed with Server startup.

The interface does not pass in the context for the services to use for registration binding. This is how it differs from the ServiceInitializer interface
providedin Version 3.5.

Custom service interface

The following code is the complete source for the interface.

package com.ibm.websphere.runtime;/** * The CustomService interface must be implemented by all *
WebSphere Custom Service extensions. * The application server runtime will call the initialize
method of * this interface on every enabled Custom Service configured in the server. * */public
interface CustomService { static final java.lang.String externalConfigURLKey =
"com.ibm.websphere.runtime.CustomService.externalConfigURLKey";/** * The initialize method is called
by the application server runtime during * server startup. The Properties object
passed in on this method must * contain all configuration information necessary for this
service to * initialize properly. * * @param configProperties java.util.Properties */
void initialize(java.util.Properties configProperties) throws Exception;/** * The shutdown method is
called by the application server runtime when the * server begins it shutdown
processing. * * @param configProperties java.util.Properties */ void shutdown() throws Exception;}

Limitations of the custom service implementation

There are restrictions on the functions that can be executed within a custom service. The initialize method of all custom services is invoked by the
server runtime before most other components have been initialized, including the ORB, Trace, Naming, Transaction Manager, and Connection
Manager. This provides the custom service with great flexibility in effecting the server runtime environment, but also prevents the custom service
initialize method implementation from being able to take advantage of the application server runtime services.

For example, a custom service cannot count of being able to make JNDI lookup method calls in its initialize method, since the Naming Service has
not been initialized within the server runtime at that point in server process startup. A custom service can execute code in its initialize method that
reads its configuration values and processes them in whatever manner makes sense for that service. This includes executing code that reads the
external configuration file for the custom service, provided that the permissions set for the external config file match those of the server identity
under which the custom service code runs. A JDBC Connection can be obtained and used as long as the pooling services of the WebSphere
Connection Manager are not expected to be used (since the Connection Manager has not been initialized at the time that the custom service initialize
method is invoked).

Specifically, within the implementation of a custom service:

The initialize and sutdown methods must return control to the runtime.●

No work will be dispatched into the server instance until all custom service initialize methods return.●

Custom services are initialized serially, but in no predictable order.●

The initialize and shutdown methods will be called only once on each service, and once for each operating system process that makes up the
server instance.File I/O is supported.

●

Initialization of process level "static" data without leaving the process is supported.●

The identity/credential that the custom service code runs under is the server identity.●

Only JDBC RMLT (local tran) operations are supported. All UOW must be completed before the methods return.●

JNDI operations are not supported.●

Creation of threads is not supported.●

Creation of sockets and I/O other than file I/O is not supported.●

Execution of standard J2EE code (client code, servlets, enterprise beans) is not supported.●

The JTA interface is not available.This feature is available in J2EE server processes and distributed generic server processes only.●

While the runtime will make a best effort to call shutdown, there is no gaurantee that shutdown will be called prior to process
termination.These restrictions apply to shutdown and init equally.

●

WebSphere Application Server Samples

The Samples gallery offers a set of samples that show
you how to perform common Web application tasks,
provide reusable components and demonstrate handy
techniques.

The gallery includes:

The YourCo intranet Web site, which integrates
many of the small samples into one common
application.

●

The Java Pet Store Application, which
demonstrates J2EE technology via an online
pet store.

●

A Trade application, which demonstrates an
online brokerage.

●

Once installed on your local machine, the Samples are
located at
http://localhost/WSsamples/index.html
.

Open the above URL in your Web browser, follow the
database configuration instructions, and try the
Samples.
On Windows 2000, it has been found that localhost is
not always recognized. In such a case, use the actual
host name.

The above links will not work if:

The Samples are not installed on the machine
on which you are viewing this documentation
("localhost").

●

Your Web server is not running.●

You are viewing this documentation from the
IBM Web site instead of viewing locally
installed documentation.

●

If you don't find the Samples on your localhost,
confirm their installation. The Samples are an option in
the product installation. See the installation
documentation for a variety of case-specific
installation steps.

http://localhost/WSsamples/index.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/02.html
http://localhost/0802_makepdf/ae_orig/nav_Devguidenav/02.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

	P75:
	Numbers:
	Numbx:
	L:
	C:
	R: 75

	P76:
	Numbers:
	Numbx:
	L: 76
	C:
	R:

	P77:
	Numbers:
	Numbx:
	L:
	C:
	R: 77

	P78:
	Numbers:
	Numbx:
	L: 78
	C:
	R:

	P79:
	Numbers:
	Numbx:
	L:
	C:
	R: 79

	P80:
	Numbers:
	Numbx:
	L: 80
	C:
	R:

	P81:
	Numbers:
	Numbx:
	L:
	C:
	R: 81

	P82:
	Numbers:
	Numbx:
	L: 82
	C:
	R:

	P83:
	Numbers:
	Numbx:
	L:
	C:
	R: 83

	P84:
	Numbers:
	Numbx:
	L: 84
	C:
	R:

	P85:
	Numbers:
	Numbx:
	L:
	C:
	R: 85

	P86:
	Numbers:
	Numbx:
	L: 86
	C:
	R:

	P87:
	Numbers:
	Numbx:
	L:
	C:
	R: 87

	P88:
	Numbers:
	Numbx:
	L: 88
	C:
	R:

	P89:
	Numbers:
	Numbx:
	L:
	C:
	R: 89

	P90:
	Numbers:
	Numbx:
	L: 90
	C:
	R:

	P91:
	Numbers:
	Numbx:
	L:
	C:
	R: 91

	P92:
	Numbers:
	Numbx:
	L: 92
	C:
	R:

	P93:
	Numbers:
	Numbx:
	L:
	C:
	R: 93

	P94:
	Numbers:
	Numbx:
	L: 94
	C:
	R:

	P95:
	Numbers:
	Numbx:
	L:
	C:
	R: 95

	P96:
	Numbers:
	Numbx:
	L: 96
	C:
	R:

	P97:
	Numbers:
	Numbx:
	L:
	C:
	R: 97

	P98:
	Numbers:
	Numbx:
	L: 98
	C:
	R:

	P99:
	Numbers:
	Numbx:
	L:
	C:
	R: 99

	P100:
	Numbers:
	Numbx:
	L: 100
	C:
	R:

	P101:
	Numbers:
	Numbx:
	L:
	C:
	R: 101

	P102:
	Numbers:
	Numbx:
	L: 102
	C:
	R:

	P103:
	Numbers:
	Numbx:
	L:
	C:
	R: 103

	P104:
	Numbers:
	Numbx:
	L: 104
	C:
	R:

	P105:
	Numbers:
	Numbx:
	L:
	C:
	R: 105

	P106:
	Numbers:
	Numbx:
	L: 106
	C:
	R:

	P107:
	Numbers:
	Numbx:
	L:
	C:
	R: 107

	P108:
	Numbers:
	Numbx:
	L: 108
	C:
	R:

	P109:
	Numbers:
	Numbx:
	L:
	C:
	R: 109

	P110:
	Numbers:
	Numbx:
	L: 110
	C:
	R:

	P111:
	Numbers:
	Numbx:
	L:
	C:
	R: 111

	P112:
	Numbers:
	Numbx:
	L: 112
	C:
	R:

	P113:
	Numbers:
	Numbx:
	L:
	C:
	R: 113

	P114:
	Numbers:
	Numbx:
	L: 114
	C:
	R:

	P115:
	Numbers:
	Numbx:
	L:
	C:
	R: 115

	P116:
	Numbers:
	Numbx:
	L: 116
	C:
	R:

	P117:
	Numbers:
	Numbx:
	L:
	C:
	R: 117

	P118:
	Numbers:
	Numbx:
	L: 118
	C:
	R:

	P119:
	Numbers:
	Numbx:
	L:
	C:
	R: 119

	P120:
	Numbers:
	Numbx:
	L: 120
	C:
	R:

	P121:
	Numbers:
	Numbx:
	L:
	C:
	R: 121

	P122:
	Numbers:
	Numbx:
	L: 122
	C:
	R:

	P123:
	Numbers:
	Numbx:
	L:
	C:
	R: 123

	P124:
	Numbers:
	Numbx:
	L: 124
	C:
	R:

	P125:
	Numbers:
	Numbx:
	L:
	C:
	R: 125

	P126:
	Numbers:
	Numbx:
	L: 126
	C:
	R:

	P127:
	Numbers:
	Numbx:
	L:
	C:
	R: 127

	P128:
	Numbers:
	Numbx:
	L: 128
	C:
	R:

	P129:
	Numbers:
	Numbx:
	L:
	C:
	R: 129

	P130:
	Numbers:
	Numbx:
	L: 130
	C:
	R:

	P131:
	Numbers:
	Numbx:
	L:
	C:
	R: 131

	P132:
	Numbers:
	Numbx:
	L: 132
	C:
	R:

	P133:
	Numbers:
	Numbx:
	L:
	C:
	R: 133

	P134:
	Numbers:
	Numbx:
	L: 134
	C:
	R:

	P135:
	Numbers:
	Numbx:
	L:
	C:
	R: 135

	P136:
	Numbers:
	Numbx:
	L: 136
	C:
	R:

	P137:
	Numbers:
	Numbx:
	L:
	C:
	R: 137

	P138:
	Numbers:
	Numbx:
	L: 138
	C:
	R:

	P139:
	Numbers:
	Numbx:
	L:
	C:
	R: 139

	P140:
	Numbers:
	Numbx:
	L: 140
	C:
	R:

	P141:
	Numbers:
	Numbx:
	L:
	C:
	R: 141

	P142:
	Numbers:
	Numbx:
	L: 142
	C:
	R:

	P143:
	Numbers:
	Numbx:
	L:
	C:
	R: 143

	P144:
	Numbers:
	Numbx:
	L: 144
	C:
	R:

	P145:
	Numbers:
	Numbx:
	L:
	C:
	R: 145

	P146:
	Numbers:
	Numbx:
	L: 146
	C:
	R:

	P147:
	Numbers:
	Numbx:
	L:
	C:
	R: 147

	P148:
	Numbers:
	Numbx:
	L: 148
	C:
	R:

	P149:
	Numbers:
	Numbx:
	L:
	C:
	R: 149

	P150:
	Numbers:
	Numbx:
	L: 150
	C:
	R:

	P151:
	Numbers:
	Numbx:
	L:
	C:
	R: 151

	P152:
	Numbers:
	Numbx:
	L: 152
	C:
	R:

	P153:
	Numbers:
	Numbx:
	L:
	C:
	R: 153

	P154:
	Numbers:
	Numbx:
	L: 154
	C:
	R:

	P155:
	Numbers:
	Numbx:
	L:
	C:
	R: 155

	P156:
	Numbers:
	Numbx:
	L: 156
	C:
	R:

	P157:
	Numbers:
	Numbx:
	L:
	C:
	R: 157

	P158:
	Numbers:
	Numbx:
	L: 158
	C:
	R:

	P159:
	Numbers:
	Numbx:
	L:
	C:
	R: 159

	P160:
	Numbers:
	Numbx:
	L: 160
	C:
	R:

	P161:
	Numbers:
	Numbx:
	L:
	C:
	R: 161

	P162:
	Numbers:
	Numbx:
	L: 162
	C:
	R:

	P163:
	Numbers:
	Numbx:
	L:
	C:
	R: 163

	P164:
	Numbers:
	Numbx:
	L: 164
	C:
	R:

	P165:
	Numbers:
	Numbx:
	L:
	C:
	R: 165

	P166:
	Numbers:
	Numbx:
	L: 166
	C:
	R:

	P167:
	Numbers:
	Numbx:
	L:
	C:
	R: 167

	P168:
	Numbers:
	Numbx:
	L: 168
	C:
	R:

	P169:
	Numbers:
	Numbx:
	L:
	C:
	R: 169

	P170:
	Numbers:
	Numbx:
	L: 170
	C:
	R:

	P171:
	Numbers:
	Numbx:
	L:
	C:
	R: 171

	P172:
	Numbers:
	Numbx:
	L: 172
	C:
	R:

	P173:
	Numbers:
	Numbx:
	L:
	C:
	R: 173

	P174:
	Numbers:
	Numbx:
	L: 174
	C:
	R:

	P175:
	Numbers:
	Numbx:
	L:
	C:
	R: 175

	P176:
	Numbers:
	Numbx:
	L: 176
	C:
	R:

	P177:
	Numbers:
	Numbx:
	L:
	C:
	R: 177

	P178:
	Numbers:
	Numbx:
	L: 178
	C:
	R:

	P179:
	Numbers:
	Numbx:
	L:
	C:
	R: 179

	P180:
	Numbers:
	Numbx:
	L: 180
	C:
	R:

	P181:
	Numbers:
	Numbx:
	L:
	C:
	R: 181

	P182:
	Numbers:
	Numbx:
	L: 182
	C:
	R:

	P183:
	Numbers:
	Numbx:
	L:
	C:
	R: 183

	P184:
	Numbers:
	Numbx:
	L: 184
	C:
	R:

	P185:
	Numbers:
	Numbx:
	L:
	C:
	R: 185

	P186:
	Numbers:
	Numbx:
	L: 186
	C:
	R:

	P187:
	Numbers:
	Numbx:
	L:
	C:
	R: 187

	P188:
	Numbers:
	Numbx:
	L: 188
	C:
	R:

	P189:
	Numbers:
	Numbx:
	L:
	C:
	R: 189

	P190:
	Numbers:
	Numbx:
	L: 190
	C:
	R:

	P191:
	Numbers:
	Numbx:
	L:
	C:
	R: 191

	P192:
	Numbers:
	Numbx:
	L: 192
	C:
	R:

	P193:
	Numbers:
	Numbx:
	L:
	C:
	R: 193

	P194:
	Numbers:
	Numbx:
	L: 194
	C:
	R:

	P195:
	Numbers:
	Numbx:
	L:
	C:
	R: 195

	P196:
	Numbers:
	Numbx:
	L: 196
	C:
	R:

	P197:
	Numbers:
	Numbx:
	L:
	C:
	R: 197

	P198:
	Numbers:
	Numbx:
	L: 198
	C:
	R:

	P199:
	Numbers:
	Numbx:
	L:
	C:
	R: 199

	P200:
	Numbers:
	Numbx:
	L: 200
	C:
	R:

	P201:
	Numbers:
	Numbx:
	L:
	C:
	R: 201

	P202:
	Numbers:
	Numbx:
	L: 202
	C:
	R:

	P203:
	Numbers:
	Numbx:
	L:
	C:
	R: 203

	P204:
	Numbers:
	Numbx:
	L: 204
	C:
	R:

	P205:
	Numbers:
	Numbx:
	L:
	C:
	R: 205

	P206:
	Numbers:
	Numbx:
	L: 206
	C:
	R:

	P207:
	Numbers:
	Numbx:
	L:
	C:
	R: 207

	P208:
	Numbers:
	Numbx:
	L: 208
	C:
	R:

	P209:
	Numbers:
	Numbx:
	L:
	C:
	R: 209

	P210:
	Numbers:
	Numbx:
	L: 210
	C:
	R:

	P211:
	Numbers:
	Numbx:
	L:
	C:
	R: 211

	P212:
	Numbers:
	Numbx:
	L: 212
	C:
	R:

	P213:
	Numbers:
	Numbx:
	L:
	C:
	R: 213

	P214:
	Numbers:
	Numbx:
	L: 214
	C:
	R:

	P215:
	Numbers:
	Numbx:
	L:
	C:
	R: 215

	P216:
	Numbers:
	Numbx:
	L: 216
	C:
	R:

	P217:
	Numbers:
	Numbx:
	L:
	C:
	R: 217

	P218:
	Numbers:
	Numbx:
	L: 218
	C:
	R:

	P219:
	Numbers:
	Numbx:
	L:
	C:
	R: 219

	P220:
	Numbers:
	Numbx:
	L: 220
	C:
	R:

	P221:
	Numbers:
	Numbx:
	L:
	C:
	R: 221

	P222:
	Numbers:
	Numbx:
	L: 222
	C:
	R:

	P223:
	Numbers:
	Numbx:
	L:
	C:
	R: 223

	P224:
	Numbers:
	Numbx:
	L: 224
	C:
	R:

	P225:
	Numbers:
	Numbx:
	L:
	C:
	R: 225

	P226:
	Numbers:
	Numbx:
	L: 226
	C:
	R:

	P227:
	Numbers:
	Numbx:
	L:
	C:
	R: 227

	P228:
	Numbers:
	Numbx:
	L: 228
	C:
	R:

	P229:
	Numbers:
	Numbx:
	L:
	C:
	R: 229

	P230:
	Numbers:
	Numbx:
	L: 230
	C:
	R:

	P231:
	Numbers:
	Numbx:
	L:
	C:
	R: 231

	P232:
	Numbers:
	Numbx:
	L: 232
	C:
	R:

	P233:
	Numbers:
	Numbx:
	L:
	C:
	R: 233

	P234:
	Numbers:
	Numbx:
	L: 234
	C:
	R:

	P235:
	Numbers:
	Numbx:
	L:
	C:
	R: 235

	P236:
	Numbers:
	Numbx:
	L: 236
	C:
	R:

	P237:
	Numbers:
	Numbx:
	L:
	C:
	R: 237

	P238:
	Numbers:
	Numbx:
	L: 238
	C:
	R:

	P239:
	Numbers:
	Numbx:
	L:
	C:
	R: 239

	P240:
	Numbers:
	Numbx:
	L: 240
	C:
	R:

	P241:
	Numbers:
	Numbx:
	L:
	C:
	R: 241

	P242:
	Numbers:
	Numbx:
	L: 242
	C:
	R:

	P243:
	Numbers:
	Numbx:
	L:
	C:
	R: 243

	P244:
	Numbers:
	Numbx:
	L: 244
	C:
	R:

	P245:
	Numbers:
	Numbx:
	L:
	C:
	R: 245

	P246:
	Numbers:
	Numbx:
	L: 246
	C:
	R:

	P247:
	Numbers:
	Numbx:
	L:
	C:
	R: 247

	P248:
	Numbers:
	Numbx:
	L: 248
	C:
	R:

	P249:
	Numbers:
	Numbx:
	L:
	C:
	R: 249

	P250:
	Numbers:
	Numbx:
	L: 250
	C:
	R:

	P251:
	Numbers:
	Numbx:
	L:
	C:
	R: 251

	P252:
	Numbers:
	Numbx:
	L: 252
	C:
	R:

	P253:
	Numbers:
	Numbx:
	L:
	C:
	R: 253

	P254:
	Numbers:
	Numbx:
	L: 254
	C:
	R:

	P255:
	Numbers:
	Numbx:
	L:
	C:
	R: 255

	P256:
	Numbers:
	Numbx:
	L: 256
	C:
	R:

	P257:
	Numbers:
	Numbx:
	L:
	C:
	R: 257

	P258:
	Numbers:
	Numbx:
	L: 258
	C:
	R:

	P259:
	Numbers:
	Numbx:
	L:
	C:
	R: 259

	P260:
	Numbers:
	Numbx:
	L: 260
	C:
	R:

	P261:
	Numbers:
	Numbx:
	L:
	C:
	R: 261

	P262:
	Numbers:
	Numbx:
	L: 262
	C:
	R:

	P263:
	Numbers:
	Numbx:
	L:
	C:
	R: 263

	P264:
	Numbers:
	Numbx:
	L: 264
	C:
	R:

	P265:
	Numbers:
	Numbx:
	L:
	C:
	R: 265

	P266:
	Numbers:
	Numbx:
	L: 266
	C:
	R:

	P267:
	Numbers:
	Numbx:
	L:
	C:
	R: 267

	P268:
	Numbers:
	Numbx:
	L: 268
	C:
	R:

	P269:
	Numbers:
	Numbx:
	L:
	C:
	R: 269

	P270:
	Numbers:
	Numbx:
	L: 270
	C:
	R:

	P271:
	Numbers:
	Numbx:
	L:
	C:
	R: 271

	P272:
	Numbers:
	Numbx:
	L: 272
	C:
	R:

	P273:
	Numbers:
	Numbx:
	L:
	C:
	R: 273

	P274:
	Numbers:
	Numbx:
	L: 274
	C:
	R:

	P275:
	Numbers:
	Numbx:
	L:
	C:
	R: 275

	P276:
	Numbers:
	Numbx:
	L: 276
	C:
	R:

	P277:
	Numbers:
	Numbx:
	L:
	C:
	R: 277

	P278:
	Numbers:
	Numbx:
	L: 278
	C:
	R:

	P279:
	Numbers:
	Numbx:
	L:
	C:
	R: 279

	P280:
	Numbers:
	Numbx:
	L: 280
	C:
	R:

	P281:
	Numbers:
	Numbx:
	L:
	C:
	R: 281

	P282:
	Numbers:
	Numbx:
	L: 282
	C:
	R:

	P283:
	Numbers:
	Numbx:
	L:
	C:
	R: 283

	P284:
	Numbers:
	Numbx:
	L: 284
	C:
	R:

	P285:
	Numbers:
	Numbx:
	L:
	C:
	R: 285

	P286:
	Numbers:
	Numbx:
	L: 286
	C:
	R:

	P287:
	Numbers:
	Numbx:
	L:
	C:
	R: 287

	P288:
	Numbers:
	Numbx:
	L: 288
	C:
	R:

	P289:
	Numbers:
	Numbx:
	L:
	C:
	R: 289

	P290:
	Numbers:
	Numbx:
	L: 290
	C:
	R:

	P291:
	Numbers:
	Numbx:
	L:
	C:
	R: 291

	P292:
	Numbers:
	Numbx:
	L: 292
	C:
	R:

	P293:
	Numbers:
	Numbx:
	L:
	C:
	R: 293

	P294:
	Numbers:
	Numbx:
	L: 294
	C:
	R:

	P295:
	Numbers:
	Numbx:
	L:
	C:
	R: 295

	P296:
	Numbers:
	Numbx:
	L: 296
	C:
	R:

	P297:
	Numbers:
	Numbx:
	L:
	C:
	R: 297

	P298:
	Numbers:
	Numbx:
	L: 298
	C:
	R:

	P299:
	Numbers:
	Numbx:
	L:
	C:
	R: 299

	P300:
	Numbers:
	Numbx:
	L: 300
	C:
	R:

	P301:
	Numbers:
	Numbx:
	L:
	C:
	R: 301

	P302:
	Numbers:
	Numbx:
	L: 302
	C:
	R:

	P303:
	Numbers:
	Numbx:
	L:
	C:
	R: 303

	P304:
	Numbers:
	Numbx:
	L: 304
	C:
	R:

	P305:
	Numbers:
	Numbx:
	L:
	C:
	R: 305

	P306:
	Numbers:
	Numbx:
	L: 306
	C:
	R:

	P307:
	Numbers:
	Numbx:
	L:
	C:
	R: 307

	P308:
	Numbers:
	Numbx:
	L: 308
	C:
	R:

	P309:
	Numbers:
	Numbx:
	L:
	C:
	R: 309

	P310:
	Numbers:
	Numbx:
	L: 310
	C:
	R:

	P311:
	Numbers:
	Numbx:
	L:
	C:
	R: 311

	P312:
	Numbers:
	Numbx:
	L: 312
	C:
	R:

	P313:
	Numbers:
	Numbx:
	L:
	C:
	R: 313

	P314:
	Numbers:
	Numbx:
	L: 314
	C:
	R:

	P315:
	Numbers:
	Numbx:
	L:
	C:
	R: 315

	P316:
	Numbers:
	Numbx:
	L: 316
	C:
	R:

	P317:
	Numbers:
	Numbx:
	L:
	C:
	R: 317

	P318:
	Numbers:
	Numbx:
	L: 318
	C:
	R:

	P319:
	Numbers:
	Numbx:
	L:
	C:
	R: 319

	P320:
	Numbers:
	Numbx:
	L: 320
	C:
	R:

	P321:
	Numbers:
	Numbx:
	L:
	C:
	R: 321

	P322:
	Numbers:
	Numbx:
	L: 322
	C:
	R:

	P323:
	Numbers:
	Numbx:
	L:
	C:
	R: 323

	P324:
	Numbers:
	Numbx:
	L: 324
	C:
	R:

	P325:
	Numbers:
	Numbx:
	L:
	C:
	R: 325

	P326:
	Numbers:
	Numbx:
	L: 326
	C:
	R:

	P327:
	Numbers:
	Numbx:
	L:
	C:
	R: 327

	P328:
	Numbers:
	Numbx:
	L: 328
	C:
	R:

	P329:
	Numbers:
	Numbx:
	L:
	C:
	R: 329

	P330:
	Numbers:
	Numbx:
	L: 330
	C:
	R:

	P331:
	Numbers:
	Numbx:
	L:
	C:
	R: 331

	P332:
	Numbers:
	Numbx:
	L: 332
	C:
	R:

	P333:
	Numbers:
	Numbx:
	L:
	C:
	R: 333

	P334:
	Numbers:
	Numbx:
	L: 334
	C:
	R:

	P335:
	Numbers:
	Numbx:
	L:
	C:
	R: 335

	P336:
	Numbers:
	Numbx:
	L: 336
	C:
	R:

	P337:
	Numbers:
	Numbx:
	L:
	C:
	R: 337

	P338:
	Numbers:
	Numbx:
	L: 338
	C:
	R:

	P339:
	Numbers:
	Numbx:
	L:
	C:
	R: 339

	P340:
	Numbers:
	Numbx:
	L: 340
	C:
	R:

	P341:
	Numbers:
	Numbx:
	L:
	C:
	R: 341

	P342:
	Numbers:
	Numbx:
	L: 342
	C:
	R:

	P343:
	Numbers:
	Numbx:
	L:
	C:
	R: 343

	P344:
	Numbers:
	Numbx:
	L: 344
	C:
	R:

	P345:
	Numbers:
	Numbx:
	L:
	C:
	R: 345

	P346:
	Numbers:
	Numbx:
	L: 346
	C:
	R:

	P347:
	Numbers:
	Numbx:
	L:
	C:
	R: 347

	P348:
	Numbers:
	Numbx:
	L: 348
	C:
	R:

	P349:
	Numbers:
	Numbx:
	L:
	C:
	R: 349

	P350:
	Numbers:
	Numbx:
	L: 350
	C:
	R:

	P351:
	Numbers:
	Numbx:
	L:
	C:
	R: 351

	P352:
	Numbers:
	Numbx:
	L: 352
	C:
	R:

	P353:
	Numbers:
	Numbx:
	L:
	C:
	R: 353

	P354:
	Numbers:
	Numbx:
	L: 354
	C:
	R:

	P355:
	Numbers:
	Numbx:
	L:
	C:
	R: 355

	P356:
	Numbers:
	Numbx:
	L: 356
	C:
	R:

	P357:
	Numbers:
	Numbx:
	L:
	C:
	R: 357

	P358:
	Numbers:
	Numbx:
	L: 358
	C:
	R:

	P359:
	Numbers:
	Numbx:
	L:
	C:
	R: 359

	P360:
	Numbers:
	Numbx:
	L: 360
	C:
	R:

	P361:
	Numbers:
	Numbx:
	L:
	C:
	R: 361

	P362:
	Numbers:
	Numbx:
	L: 362
	C:
	R:

	P363:
	Numbers:
	Numbx:
	L:
	C:
	R: 363

	P364:
	Numbers:
	Numbx:
	L: 364
	C:
	R:

	P365:
	Numbers:
	Numbx:
	L:
	C:
	R: 365

	P366:
	Numbers:
	Numbx:
	L: 366
	C:
	R:

	P367:
	Numbers:
	Numbx:
	L:
	C:
	R: 367

	P368:
	Numbers:
	Numbx:
	L: 368
	C:
	R:

	P369:
	Numbers:
	Numbx:
	L:
	C:
	R: 369

	P370:
	Numbers:
	Numbx:
	L: 370
	C:
	R:

	P371:
	Numbers:
	Numbx:
	L:
	C:
	R: 371

	P372:
	Numbers:
	Numbx:
	L: 372
	C:
	R:

	P373:
	Numbers:
	Numbx:
	L:
	C:
	R: 373

	P374:
	Numbers:
	Numbx:
	L: 374
	C:
	R:

	P375:
	Numbers:
	Numbx:
	L:
	C:
	R: 375

