
Developments in
Cisco IOS Forensics

Felix ‘FX’ Lindner
BlackHat Briefings

Las Vegas, August 2008

Agenda

� Why Network Equipment Forensics?
� Types of Attacks
� Types of Evidence
� Binary Evidence Analysis
� Reality Check IOS Exploitation

Why Cisco?

� This talk is Cisco centric
� 92% market share* for routers above $1,500
� 71% market share* enterprise switch market

� What about Juniper?
� From both attacker and forensics point of view,

Juniper routers are just FreeBSD
� What about <someCheapHomeRouter>
� From both attacker and forensics point of view,

they are just embedded Linux systems
*Source: Randomly stolen

Why Network
Equipment Forensics?

� By definition, the goal of computer forensics is
to explain the current state of a digital artifact.
� Forensic investigations always consist of
� Acquisition of evidence
� Recovering information from evidence
� Analysis of the information

� For common operating systems, the methods
and tools are well established
� For network equipment, they are not

Who would hack routers?

� Compromising one machine
... gains you access to one machine.

� Compromising one important machine
... gains you access to a couple machines.

� Compromising one switch
... gains you access to all machines connected.

� Compromising one router
... gains you access to everything in the network.

Who would hack routers?

BBI
(The Big Bad Internet)

„Behind“ the
Firewall

Switch
separates

Hosts

ARP games
blocked by the

switch.

Neighbor
systems have
local firewalls.

Who would hack routers?

BBI
(The Big Bad Internet)

� Separation broken (ARP tricks are transparent now)
� Modification of any traffic
� Hard to recognize from the host

There just is no Reverse-NAC.

Who would hack routers?

BBI
(The Big Bad Internet)

� Control over the entire network
� Impersonation of the network against the

Internet

And on a larger scale...

The InternetThe Internet
(OK, maybe this is too large)(OK, maybe this is too large)

One scale down:
Network Security

EIGRP 1

EIGRP 2 EIGRP 3

EIGRP 4

OSPF

(_x_)Network Firewall,
IDS, IPS

Ingress & Egress
Filtering,
anti-spoofing,
route redistribution

Full Trust
within the
autonomous
system

Network Security

� Network security is hierarchical
� Defending against your downstream is common
� Defending against your upstream is rather hard
� Defending against your peers is rare

� Control anything in the hierarchy and you
control everything below

Hierarchical Compromises

EIGRP 1

EIGRP 2 EIGRP 3

EIGRP 4

OSPF

(_x_) Local network
compromise

Hierarchical Compromises

EIGRP 1

EIGRP 2 EIGRP 3

EIGRP 4

OSPF

(_x_)

Just another
router: full control

But we got
<secureProtocol>

� Secure protocols can guarantee that nobody
…modified the protocol messages
…spoofed the communication peer
…replayed the protocol messages

� But if someone did exactly that, they cannot
do anything about it.
� The choice is: Availability or Security
� What would your boss / mom do?

But we got
<secureProtocol>

EIGRP 1

EIGRP 2 EIGRP 3

EIGRP 4

OSPF

(_x_)

If the user could control
the path his
communication is using,
it would be called „source
routing“ and there is a
reason this is no longer
in use anywhere in the
Internet: The user would
have power over the
network.

All this is by design

� In IP networks
� The network node makes the forwarding decisions
� The leaf node cannot control the traffic flow

Types of Attacks
against Network Equipment

� Protocol based attacks
� Functionality attacks
� Binary exploitation

Protocol attacks

� Injection of control protocol messages into the
network (routing protocol attacks)
� Attacker becomes part of the network’s internal

communication
� Attacker influences how messages are forwarded

� Typical examples include:
� ARP poisoning
� DNS poisoning
� Interior routing protocol injections (OSPF, EIGRP)
� Exterior routing subnet hijacking (BGP)

Functionality attacks

� Configuration problems
� Weak passwords (yes, they are still big)
� Weak SNMP communities
� Posting your configuration on Internet forums

� Access check vulnerabilities
� Cisco’s HTTP level 16++ vulnerability
� SNMPv3 HMAC verification vulnerability (2008!)
� memcmp(MyHMAC, PackHMAC, PackHMAC_len);

� Debianized SSH keys
� Queuing bugs (Denial of Service)

Binary exploitation

� Router service vulnerabilities:
� Phenoelit’s TFTP exploit
� Phenoelit’s HTTP exploit
� Andy Davis’ FTP exploit

� Router protocol vulnerabilities:
� Phenoelit’s OSPF exploit
� Michael Lynn’s IPv6 exploit

Detection and Monitoring
� SNMP
� Polling mechanisms, rarely push messages (traps)

� Syslog
� Free-form push messages

� Configuration polling
� Polling and correlation

� Route monitoring and looking glasses
� Real-time monitoring of route path changes

� Traffic accounting
� Not designed for security monitoring, but can yield

valuable information on who does what

Who detects what?
SNMP Syslog Config

polling
Route
monitoring

Traffic
accounting

Poisioning
attacks

Yes Yes - Yes Yes

Interrior routing
attacks

Yes Yes (rare) - Yes Yes

Exterrior routing
attacks

Yes Yes - Yes Yes

Illegal access
due to config
issues

Yes Yes Maybe - -

Access check
vulns

- Yes Maybe - -

Binary exploits - - Maybe
(if stupid)

- -

What do binary exploits do?

� Binary modification of the runtime image
� Patch user access credential checking (backdoor)
� Patch logging mechanisms
� Patch firewall functionality

� Data structure patching
� Change access levels of VTYs (shells)
� Bind additional VTYs (Michael Lynn’s attack)
� Terminate processes

What do binary exploits do?

� Runtime configuration changes
� Change the running configuration
� Change settings of state machines (SNMP, etc.)

� Load TCL backdoors
� Later IOS versions support TCL scripting
� TCL scripts can bind to TCP ports
� In some IOS versions, TCL scripts survive VTY

termination

Forensics for the
Binary Exploit class

What we need:
� Evidence acquisition
� Recovering of information from raw data
� Analysis of information
Plus:
� Good understanding of Cisco IOS internals

Cisco IOS Device Memory
� IOS devices start from the ROMMON

� Loading an IOS image from Flash or network into RAM
� The image may be self-decompressing
� The image may contain firmware for additional hardware

� Configuration is loaded as ASCII text from NVRAM or network
� Parsed on load
� Mixed with image version dependent defaults of configuration settings

� Everything is kept in RAM
� Configuration changes have immediate effect
� Configuration is written back into NVRAM by command

Evidence Acquisition

� Common operating system:
� Most evidence is non-volatile
� Imaging the hard-drive is the acquisition method
� Capturing volatile data is optional

� Cisco IOS:
� Almost all evidence is volatile
� What we need is memory imaging
� On-demand or when the device restarts
� Restarting is the default behavior on errors!

Non-volatile Cisco Evidence

� Flash file system
� If the attacker modified the IOS image statically

� NVRAM
� If the attacker modified the configuration and

wrote it back into NVRAM
� Both cases are rare for binary exploits

Evidence Acquisition

� Using debugging features for evidence
acquisition:
� IOS can write complete core dump files
� Dump targets: TFTP (broken), FTP, RCP, Flash
� Complete dump
� Includes Main Memory
� Includes IO Memory
� Includes PCI Memory

� Raw dump, perfect evidence

Evidence gathering
must be configured beforehand
� Core dumps are enabled by configuration
� Configuration change has no effect on the

router’s operation or performance
� Configure all IOS devices to dump core onto one

or more centrally located FTP servers
� Minimizes required monitoring of devices
� Preserves evidence
� Allows crash correlation between different routers

� Why wasn’t it used before?
� Core dumps were useless, except for Cisco

developers and exploit writers

What to do with the core?

� The raw memory dump data must be turned
into state information
� What was going on in the router when the memory

dump was taken?
� What processes handled what data?
� Where did the data come from?
� Which packet crashed the router?

Core Dump
Analyzer Requirements

� Must be 100% independent
� No Cisco code
� No disassembly based analysis

� Must gradually recover abstraction
� No assumptions about anything
� Ability to cope with massively corrupted data

� Should not be exploitable itself
� Preferably not written in C

� As you probably figured out by now, we
developed such a tool:
Cisco Incident Response (CIR)

Analyzing Cores:
Inside Cisco IOS

� One large ELF binary
� Essentially a large, statically linked UNIX

program
� Loaded by ROMMON, a kind-of BIOS

� Runs directly on the router’s main CPU
� If the CPU provides privilege separation, it will not

be used
� e.g. privilege levels on PPC

� Virtual Memory Mapping will be used, minimally

Inside Cisco IOS

� Processes are rather like threads
� No virtual memory mapping per process

� Run-to-completion, cooperative multitasking
� Interrupt driven handling of critical events

� System-wide global data structures
� Common heap
� Very little abstraction around the data structures
� No way to force abstraction

The Image Blueprint

� The IOS image (ELF file) contains all required
information about the memory mapping on the router
� The image serves as the memory layout blueprint, to be

applied to the core files
� We wish it were as easy as it sounds

� Using a known-to-be-good image also allows
verification of the code and read-only data segments
� Now we can easily and reliably detect runtime patched

images

Image vs. Core

ELF Header
Code Segment

Read-Only Data

Data

Code Segment

Read-Only Data

Data

IO Memory

BSS data

Simple Detections Work Best

Recurity Labs CIR vs. Topo‘s DIK
(at PH-Neutral 0x7d8)

CIR Online case: 120EF269A5BC2320730E60289A4B84D9047CECEE

Heap Reconstruction
� IOS uses one large heap
� The IOS heap contains plenty of meta-data for

debugging purposes
� 40 bytes overhead per heap block in IOS up to 12.3
� 48 bytes overhead per heap block in IOS 12.4

� Reconstructing the entire heap allows extensive
integrity and validity checks
� Exceeding by far the on-board checks IOS performs during

runtime
� Showing a number of things that would have liked to stay

hidden in the shadows /

Heap Verification
� Full functionality of “CheckHeaps”
� Verify the integrity of the allocated and free heap block

doubly linked lists
� Find holes in addressable heap
� Invisible to CheckHeaps

� Identify heap overflow footprints
� Values not verified by CheckHeaps
� Heuristics on rarely used fields

� Map heap blocks to referencing processes
� Identify formerly allocated heap blocks
� Catches memory usage peaks from the recent past

Process List

� Extraction of the IOS Process List
� Identify the processes’ stack block
� Create individual, per process back-traces
� Identify return address overwrites

� Obtain the processes’ scheduling state
� Obtain the processes’ CPU usage history
� Obtain the processes’ CPU context

� Almost any post mortem analysis method
known can be applied, given the two
reconstructed data structures.

TCL Backdoor Detection

� We can extract any TCL script “chunk” from
the memory dump
� Currently only rare chunks
� There is still some reversing to do
� Potentially, a TCL decompiler will be required

Random Applications

� Find occasional CPU hogs
� Detect Heap fragmentation causes
� Determine what processes where doing
� Finding attacked processes
� Which process had 200 packets in his hands

when he died?
� Research tool
� Pointer correlation becomes really easy
� Essential in a shared memory environment

IOS Packet
Forwarding Memory

� IOS performs routing either as:
� Process switching
� Fast switching
� Particle systems
� Hardware accelerated switching

� Except hardware switching, all use IO memory
� IO memory is written as separate code dump
� By default, about 6% of the router’s memory is dedicated

as IO memory
� In real world installations, it is common to increase the percentage

to speed up forwarding
� Hardware switched packets use PCI memory
� PCI memory is written as separate core dump

IO Memory Buffers
� Routing (switching) ring buffers are grouped by

packet size
� Small
� Medium
� Big
� Huge

� Interfaces have their own buffers for locally handled
traffic

� IOS tries really hard to not copy packets around in
memory

� New traffic does not automatically erase older traffic
in a linear way

Traffic Extraction

� CIR dumps packets that were process switched by
the router from IO memory into a PCAP file
� Traffic addressed to and from the router itself
� Traffic that was process switching inspected

� Access List matching
� QoS routed traffic

� CIR could dump packets that were forwarded
through the router too
� Reconstruction of packet fragments possible
� Currently not in focus, but can be done if desired

Traffic Extraction

What about crashinfo?

� Later IOS versions write a text file called
“crashinfo” to the flash file system when the
router crashes
� Crashinfo contains fairly little information
� Contents depend on what IOS thought was the cause

of the crash
� We found exploitation cases where the router

failed to write core dumps, but did write crashinfo
� Crashinfo correlation to core dumps will likely become

an analysis method in future versions of CIR

State of CIR

� Development of Version 1.0 completed
� Online Service at http://cir.recurity-labs.com
� Available since February 2008

� Free rootkit detection version available
� Professional version available

� There is a large list of things we want in
version 1.1 – feel free to add stuff ☺

Challenges with IOS

� The challenge with IOS is the combinatory
explosion of platform, IOS version and additional
hardware

� Every IOS image is compiled individually
� Over 100.000 IOS images currently used in the

wild (production networks)
� Around 15.000 officially supported by Cisco
� Cisco IOS is rarely updated and cannot be patched

� This is a great headache for IOS forensics, but
also for IOS exploit writers

Reality Check IOS Exploits

� The entire code is in the image
� Remotely, you have a 1-in-100.000 chance to

guess the IOS image (conservative estimate)
� Any exception causes the router to restart
� This is inherent to a monolithic firmware design,

as it looses integrity entirely with a single error
� Stacks are heap blocks
� Always at different memory addresses
� Addresses vary even within the same image

Reality Check IOS Exploits

� So far, all IOS exploits published use fixed
addresses that depend on the exact IOS
image being known before the attack
� IOS’s address diversity is a similar “protection” to

the Source Port Randomization patch you applied
to your DNS servers recently
� We perform our own research in this area, to

make CIR ready for the next generation exploits
� It will most certainly not stay this way!

Let the arms race begin!

Next Attack Detection
Rootkit code patching core dump writing GDB debug protocol memory acquisition
GDB debugger stub patching ROMMON privilege mode memory

acquisition
Data segement only backdooring Data structure validation
Compiled configuration patching Configuration de-compilation

Once we get all those Cisco IOS platforms
covered, we do pretty good in terms of detection
mechanisms. But getting there is a lot of work!

Want to learn more?

� We are constantly writing about Cisco IOS
related information in the
“IOS Crash Analysis and Rootkit Wiki”
� CIR Online is available (registration free)

http://cir.recurity-labs.com/

http://cir.recurity-labs.com/

Felix ´FX´ Lindner
Head

fx@recurity-labs.com

Recurity Labs GmbH, Berlin, Germany
http://www.recurity-labs.com

