
Device Power
Management for Idle
Ulf Hansson, Linaro, Power Management
ulf.hansson@linaro.org

Goal: Don’t waste energy when idle!
● System wide PM
● Runtime PM
● PM topologies and firmware interfaces
● Deployment and good practices
● Wakeup management

Feel free to ask questions!

System wide sleep - overview
System wide sleep for all devices/resources.

● Triggered from userspace.
○ Closing the lid on your laptop.

● Triggered internally by the kernel.
○ Autosleep - used by Android.

● Sleep may be prevented by wakeup sources (wake locks).
○ Kernel: pm_stay_awake(), pm_wakeup_event(timeout).
○ Userspace: /sys/power/wake_lock|unlock.

System wide sleep - low power states
● Suspend-to-idle - always supported.

● Suspend-to-standby.

● Suspend-to-RAM.

● Suspend-to-disk (aka hibernation).

System wide sleep - sysfs
● echo [state] > /sys/power/state

○ “freeze” == suspend-to-idle == ACPI S0 (always supported)
○ “standby” == ACPI S1 (platform specific)
○ “mem” == depends on /sys/power/mem_sleep (platform specific)
○ “disk” == hibernation

● echo [state] > /sys/power/mem_sleep
○ “s2idle” == suspend-to-idle
○ “shallow” == “standby”
○ “deep” == suspend-to-RAM

● echo [state] /sys/power/autosleep
○ State available in /sys/power/state
○ “off” == disable autosleep

Documentation/admin-guide/pm/sleep-states.rst

System suspend/resume

PM notifiers
Freeze tasks

Device suspend

->prepare()

->suspend()

->suspend_late()

->suspend_noirq()

Suspend

Offline/idle CPUs
Platform suspend

PM notifiers
Thaw tasks

Device resume

->complete()

->resume()

->resume_early()

->resume_noirq()

Resume

Online/wake CPUs
Platform resume

Wakeup

DPM List

I2C

SPI

UART

MMC

Runtime PM - overview
At request inactivity and for unused devices on a running system.

● Deployment needed by the subsystem/driver - per device.
○ pm_runtime_enable().

● Suspend and resumed state.
○ pm_runtime_resume().
○ pm_runtime_suspend().

● Allows reference counting.
○ pm_runtime_get_sync() - synchronous.
○ pm_runtime_put() - asynchronous.

● Defer suspend to after a period of idle.
○ pm_runtime_set_autosuspend_delay().
○ pm_runtime_use_autosuspend().
○ pm_runtime_mark_last_busy().

Runtime PM - sysfs
● echo [on|auto] > /sys/devices/*/*/power/control

○ Force a device to become and stay resumed.

● cat /sys/devices/*/*/power/runtime_*
○ State and stats.
○ CONFIG_PM_ADVANCED_DEBUG.

Runtime PM suspend/resume

->runtime_resume()

pm_runtime_get_sync()

Resume device

Complete some work

pm_runtime_put()
OR

pm_runtime_mark_last_busy()
pm_runtime_put_autosuspend()

->runtime_suspend()

Suspend device

SoC PM Topology - PM domains

I2C SPI UART MMC

Shared power rail

GPU

Power rail

C
om

m
unication Interface

C
oprocessor for P

M

The device PM callbacks
struct dev_pm_ops {
 int (*prepare)(struct device *dev);
 void (*complete)(struct device *dev);
 int (*suspend)(struct device *dev);
 int (*resume)(struct device *dev);
 int (*suspend_late)(struct device *dev);
 int (*resume_early)(struct device *dev);
 int (*suspend_noirq)(struct device *dev);
 int (*resume_noirq)(struct device *dev);
 …
 int (*runtime_suspend)(struct device *dev);
 int (*runtime_resume)(struct device *dev);
 int (*runtime_idle)(struct device *dev);
};

System wide suspend/resume

Runtime PM suspend/resume

Hierarchy of device PM callbacks
struct device {
…
struct device *parent;
...
struct dev_pm_domain *pm_domain;
struct bus_type *bus;
struct device_driver *driver;
...
};

The ACPI PM domain
● Used on x86 and ARM servers.

○ drivers/acpi/device_pm.c (etc) - Rafael J. Wysocki

● Centralized power management - based on firmware.
○ Devices, PM topology, clocks, power-rails, wakeups, etc - all in FW.

More details another time…

The generic PM domain (genpd) - overview
A generic/flexible solution for idle management of PM domains and devices.

● Widely used on ARM SoCs.
○ drivers/base/power/domain*, include/linux/pm_domain.h - Ulf Hansson, etc

● PM topology described in DT.
○ Documentation/devicetree/bindings/power/*

● Interface to register a genpd provider.
○ Callbacks to power on/off the PM domain (support for multiple idle states).
○ Callbacks to power on/off the devices.

● Attach/detach a device to a genpd, even multiple genpds per device.
● Deals with CPU devices - in another separate session.
● Deals with performance states - that’s another topic.

Genpd - topology in DT

PD master

PD slave

I2C
DEV

SPI
DEV

UART
DEV

MMC
DEV

pm_domains {
compatible = "foo,power-controller";
pd_master: pd_master {

#power-domain-cells = <0>;
};
pd_slave: pd_slave {

power-domains = <&pd_master>;
#power-domain-cells = <0>;

};
};

i2c@12350000 {
compatible = "foo,i-leak-current";
reg = <0x12350000 0x1000>;
power-domains = <&pd_slave>;

};
spi@12356000 {

compatible = "bar,i-leak-current";
reg = <0x12356000 0x1000>;
power-domains = <&pd_slave>;

};

Documentation/devicetree/bindings/power/power_domain.txt

The genpd governor
Problem: When is low latency more important than wasting energy?

Option 1:
● Use runtime PM autosuspend.

Option 2:
● Keep the device resumed.

Option 3:
● Use the genpd governor to obey to dev PM QoS constraints.

Genpd and runtime PM

->runtime_resume()
Enable clocks

Select pinctrl state

pm_runtime_get_sync()

Driver

Complete some work…
pm_runtime_mark_last_busy()

pm_runtime_put_autosuspend()

->runtime_resume()
genpd_power_on()

->power_on()

->runtime_suspend()
gov->suspend_ok()?

->runtime_suspend()
Select pinctrl state

Disable clks

genpd_power_off()
gov->power_down_ok()?

->power_off()

Genpd

Deploy PM support - what methods?
A rather common method:
● Deploy system wide PM support.
● Deploy runtime PM support.
● Add support for wakeup settings.
● Deploy genpd support.

A smother method:
● Deploy genpd support.
● Deploy runtime PM support.
● Use the runtime PM centric approach - get system wide PM support for “free”.
● Deal with wake-up settings.

Deploy genpd support
1. DT documentation about your PM domain(s).
2. Update DTB and add device nodes.
3. Implement the SoC specific parts for the PM domain(s).
4. Initialize a genpd via pm_genpd_init().
5. Register an genpd OF provider via of_genpd_add_provider_simple|onecell().
6. Build the PM domain topology via of_genpd_add_subdomain().

There are plenty of good examples: 36 callers of pm_genpd_init().

Combine runtime PM and system wide PM
Observation 1:
Operations to put a device into low power state, may be very similar during system
suspend as runtime PM suspend and vice versa for resume.

- Goal 1: Minimize open coding.

Observation 2:
Don’t runtime resume the device during system suspend and system resume, unless it’s
really going to be used.

- Goal 2: Avoid wasting energy.
- Goal 3: Decrease system suspend time and system resume time.

The runtime PM centric approach
● Runtime PM callbacks used for system suspend/resume - it’s flexible!

○ Call pm_runtime_force_suspend() from the ->suspend|_late|_noirq() callback.
○ Call pm_runtime_force_resume() from the ->resume|_early|_noirq() callback.

The simplest scenario:
mydrv.c:
static const struct dev_pm_ops mydrv_dev_pm_ops = {

SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(mydrv_ runtime_suspend, mydrv_runtime_resume, NULL)

};

There are plenty of good examples: ~140 users.

Remote wakeups - for runtime PM
● Enable if supported.

○ UART - wake on console. SDIO IRQs - WiFi.
● At ->runtime_suspend():

○ Enable wakeup IRQ and configure the logic.
○ Disable device IRQ.

● At ->runtime_resume():
○ Disable wakeup IRQ and reconfigure the logic.
○ Re-enable device IRQs.

If not supported - keep device runtime resumed!

Simplified by helpers:
● dev_pm_set_dedicated_wake_irq() - setup the IRQ.
● The runtime PM core enables/disables the IRQ!

System wakeups - for system suspend/resume
● Enable if supported and wanted by userspace.

○ GPIO power button. UART - wake on console. SDIO IRQs - WakeOnLan.
● At ->probe():

○ device_init_wakeup() - to announce wakeup support:
● At ->suspend():

○ device_may_wakeup() - enable wakeup IRQ and configure the logic -
enable_irq_wake().

○ Disable device IRQ.
● At ->resume():

○ device_may_wakeup() - disable wakeup IRQ and reconfigure the logic -
disable_irq_wake().

○ Re-enable device IRQs.

Simplified by helpers:
● dev_pm_set_dedicated_wake_irq() - setup the IRQ.
● The PM core enables/disables wakeup IRQs at the “noirq” phase.

Thank you
Join Linaro to accelerate deployment of your
Arm-based solutions through collaboration

contactus@linaro.org

mailto:contactus@linaro.org

