
DevOps Done Right
Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

Table of Contents
Introduction		 03

Chapter 1	 Balancing SLO With Fast Application Delivery	 04

Chapter 2	 Creating a Fair and Effective On-Call Policy	 08

Chapter 3	 Responding to Incidents Effectively	 11

Chapter 4	 Overcoming Microservices Complexity	 14

Chapter 5	 Using Data to Speed Software Development	 17

Conclusion		 19

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

eBook

Your team has embraced DevOps. You’re establishing new processes, adopting

new tools, and forming a culture that emphasizes cross-functional collabora-

tion. But you haven’t yet reached maximum velocity. There’s something missing,

something that’s keeping your organization from truly becoming a high-

performing DevOps machine.

Often that missing piece is measurement of data. Although measurement

is one of the five pillars of the CALMS framework (Culture, Automation, Lean,

Measurement, Sharing) coined by DevOps expert Jez Humble, it’s frequently

neglected by DevOps teams in their push for increased velocity and autonomy.

However, this can create huge problems, as accurate data is critical to the

successful functioning of a DevOps team—from effective incident response

to navigating microservices complexity and more.

This ebook is for all of the teams and organizations that have been dipping their

toes in the water and are now ready to take the plunge into all things DevOps.

It ’s also aimed at those who are treading water without making the DevOps

progress they need to achieve a true digital transformation.

By sharing real-world experiences—particularly lessons we’ve learned here at

New Relic—we want to help you knock down your remaining barriers to DevOps

success. From understanding how to set reliability goals to untangling the

unique communications and development requirements of your microservices

approach, we’re bringing together proven best practices that show you how

to move faster and more effectively than ever before.

Monolith Ruby

Siloed teams

Infrequent releases

Reactive response

THEN NOW

200+ microservices

50+ engineering teams with
embedded site reliability engineers

Up to 70 deploys per day

Proactive monitoring and response

New Relic then and now: The Journey to DevOps

03

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

Introduction

https://devops.com/using-calms-to-assess-organizations-devops/
http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

CHAPTER 1

Balancing SLO With Fast
Application Delivery

eBook

Balancing SLO With Fast Application Delivery
Your development cycles are faster and you’re deploying code more frequently,

but how’s your reliability? Quality and reliability are equally important outcomes

of a successful DevOps approach.

That’s where SRE comes in. Site reliability engineering (SRE) is a cross-func-

tional role, assuming responsibilities traditionally dedicated and segregated

within development, operations, and other IT groups. Because SRE relies

on both dev and ops collaboration, it goes hand-in-hand with the DevOps culture.

And while DevOps and SRE have much in common, SRE elevates the focus

on continuous improvement and managing to measurable outcomes, partic-

ularly through the use of service level objectives (SLOs).

Let’s start with some important definitions:

TERM DEFINITION EXAMPLE

Service level
indicator
(SLI)

The SLI is your core measure-
ment of performance.

“Customers can log in and
view their data …”

Service level
objective
(SLO)

SLOs are the target values or
goals for the performance of
your system. SLOs represent
an ongoing commitment.

“99.9% of the time …”

Service level
agreement
(SLA)

The SLA defines what happens
if you don’t meet your SLI/SLO
commitments.

“… or they can request a
refund for losses incurred
due to unavailability of
the service.”

Learn more about SRE in our ebook, Site Reliability Engineering: Philosophies,

Habits, and Tools for SRE Success

“Fundamentally, [SRE is] what happens when you ask
a software engineer to design an operations function.”

Ben Treynor Sloss, Vice President of Engineering, Google

Setting appropriate SLIs and SLOs
While industry best practices for SRE call for setting SLIs and SLOs for each

service that you provide, it can be quite challenging to define and deploy

them if you haven’t done this before. Here are seven steps that we use at New

Relic to set SLOs and SLIs:

1.	 Identify system boundaries: A system boundary is where one or more

components expose one or more capabilities to external customers.

While internally your platform may have many moving parts—service

nodes, database, load balancer, and so on—the individual pieces aren’t

considered system boundaries because they aren’t directly exposing

a capability to customers. Instead multiple pieces work together as a

whole to expose capabilities. For example, a login service which exposes

an API with the capability of authenticating user credentials is a logical

group of components that work together as a system. Before you set your

SLIs, start by grouping elements of your platform into systems and

defining their boundaries. This is where you’ll focus your effort in the

remaining steps because boundary SLIs and SLOs are the most useful.

05

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

https://newrelic.com/resource/site-reliability-engineering
https://newrelic.com/resource/site-reliability-engineering
http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

eBook

Ul/API Tier

Login Service

Data Storage/
Query Tier

Legacy
Data Tier

Data Ingest
& Routing

Systems and boundaries within a platform

2.	 Define capabilities exposed by each system: Now group the com-

ponents of the platform into logical units (e.g., UI/API tier, login service,

data storage/query tier, legacy data tier, data ingest & routing). Here

at New Relic, our system boundaries line up with our engineering

team boundaries. Using these groupings, articulate the set of capabilities

that are exposed at each system boundary.

Data Ingest Tier
Multiple capabilities
 • Data ingested
 • Data routed

Acme Monitoring Product

Capabilities defined at a system boundary

3.	 Create a clear definition of “available” for each capability: For example,

“delivery of messages to the correct destination” is a way to describe

expectations of availability for a data-routing capability. Using plain English

to describe what is expected for availability—versus using technical

terms that not everyone is familiar with—helps avoid misunderstandings.

4.	 Define corresponding technical SLIs: Now it’s time to define one

or more SLIs per capability using your definition of availability of each

capability. Building on our example above, an SLI for a data-routing

capability could be “time to deliver message to correct destination.”

5.	 Measure to get a baseline: Obviously, monitoring is how you’ll know

whether you are achieving your availability goals or not. Using your

monitoring tool, gather baseline data for each SLI before you actually

set your SLOs.

6.	 Apply SLO targets (per SLI/capability): Once you have the data, but

before you set your SLOs, ask your customers questions that help you

identify what their expectations are and how you can align your SLOs to

meet them. Then choose SLO targets based on your baselines, customer

input, what your team can commit to supporting, and what’s feasible

based on your current technical reality. Following our SLI example for data

routing, the SLO could be “99.5% of messages delivered in less than 5

seconds.” Don’t forget to configure an alert trigger in your monitoring

application with a warning threshold for the SLOs you define.

SLI Example for Data Routing Capability

7.	 Iterate and tune: Don’t take a set-it-and-forget-it approach to SLOs

and SLIs. You should assume that they will, and should, evolve over time

as your services and customer needs change.

06

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

eBook

Additional tips for SLOs and SLIs
•	 Make sure each logical instance of a system has its own SLO:

For instance, for hard-sharded (versus horizontally scaled) systems,

measure SLIs and SLOs separately for each shard.

•	 Know that SLIs are not the same as alerts: The SRE process

is not a replacement for thorough alerting.

•	 Use compound SLOs where appropriate: You can express a single,

compound SLO to capture multiple SLI conditions and make it easier

for customers to understand.

•	 Create customer-specific SLOs as needed: It ’s not unusual for

major customers to receive SLAs that give better availability of services

than those provided to other customers.

“To achieve operational excellence, we measure
everything. Only in that way can we manage and
improve everything.”

Craig Vandeputte, Director of DevOps, CarRentals.com

07

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

https://newrelic.com/case-studies/carrentals-com
http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

CHAPTER 2

Creating a Fair and
Effective On-Call Policy

eBook

Creating a Fair and Effective On-Call Policy
The next step in improving reliability while accelerating deployments is to make

sure that your organization can handle any software issues that arise—anytime

day or night—quickly and effectively. For this, you need an on-call policy.

Wait … don’t skip to the next chapter yet. We know the “on call” term can evoke

many emotional responses in people. But that’s primarily because many orga-

nizations get the concept of on-call rotation wrong. And getting it wrong means

not only the stress and negative attention of missing your SLAs with customers,

but working in an unproductive, unpleasant culture with a team of exhausted

and frustrated engineers.

Start with the fundamentals
An effective and fair on-call policy starts with two important prerequisites:

1.	 Structured system and organization: Responding to issues effectively

is far easier when both your systems (services or applications) and your

product teams are well organized and structured into logical units.

For instance, at New Relic our 57 engineering teams support 200 individ-

ual services, with each team acting autonomously to own at least three

services throughout the product lifecycle, from design to deployment

to maintenance.

2.	 A culture of accountability: With DevOps, each team is accountable for

the code that it deploys into production. Teams naturally make different

decisions about changes and deployments when they are responsible and

on call for the service versus traditional environments where someone else

is responsible for supporting code once it ’s running in production.

Apply these best practices to
improve your on-call practice
Structure your team and organization fairly
Here at New Relic, every engineer and engineering manager in the product

organization rotates on-call responsibilities for the team’s services. Teams are

responsible for at least three services, but the number of services supported

depends on the complexity of the services and the size of the team. For your

organization, look at the size of the total engineering organization and of indi-

vidual teams before choosing an on-call rotation approach. For instance, if the

team has six engineers, then each engineer could be the primary person on call

every six weeks.

Be flexible and creative when designing rotations
Consider letting each team design and implement its own on-call rotation policy.

Give teams the freedom and autonomy to think out-of-the-box about ways

to organize rotations that best suit their individual needs. At New Relic, each

team has the autonomy to create and implement its own on-call system. For

instance, one team uses a script that randomly rotates the on-call order of the

non-primary person.

Track metrics and monitor incidents
An important part of making the on-call rotation fair and effective is monitor-

ing and tracking incident metrics. Here at New Relic, we track number of pages,

number of hours paged, and number of off-hours pages. We look at these

09

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

eBook

metrics at the engineer, team, and group levels. Tracking metrics helps draw

attention to teams that are faced with unmanageable call loads (if a team

averages more than one off-hours page per week, that team is considered

to have a high on-call burden). Staying on top of these metrics lets us shift

priorities to paying down a team’s technical debt or providing more support

to improve the services.

Adapt your policy to align with your
company’s situation
An on-call policy that works for a team at New Relic might be completely

unsustainable for your company. To create an on-call rotation that is both

fair and effective, consider additional inputs such as:

•	 Growth: How fast is your company and your engineering group growing?

How much turnover are you experiencing?

•	 Geography: Is your engineering organization centralized or

geographically distributed? Do you have the resources to deploy

“follow-the-sun” rotations?

•	 Complexity: How complex are your applications and how are they

structured? How complex are dependencies across services?

•	 Tooling: Do you have incident response tools that give engineers

automatic, actionable problem notification?

•	 Culture: Have you made being on call an essential part of the job in

your engineering culture? Do you have a blameless culture that is focused

on finding and solving the root cause instead of seeking to lay blame?

MORE CODE DEPLOYS
46%

FASTER MTTR

96x

COMPARED TO LOW PERFORMERS,
HIGH PERFORMERS IN DEVOPS HAVE1

1: Source, “2017 State of DevOps Report,” Puppet and DORA

“[DevOps] high performers were twice as likely to
exceed their own goals for profitability, market share,
and productivity.” 1

10

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

CHAPTER 3

Responding to
Incidents Effectively

eBook

Responding to Incidents Effectively
Concomitant to on-call rotations is the concept of incident management.

What’s an incident? That’s when a system behaves in an unexpected way

that might negatively impact customers (or partners or employees).

A core competency within the “you build it, you own it” DevOps approach, inci-

dent management is often given short shrift, with teams losing interest once

an issue is resolved. Often organizations without effective incident management

take on “firefighting” responsibilities using ad-hoc organization, methods, and

communications. When something blows up, everyone scrambles to work out

a plan to solve the problem.

There’s a much better way to approach incidents, one that not only minimizes

the duration and frequency of outages, but also gives responsible engineers

the support they need to respond efficiently and effectively

Creating an effective incident
management process

1.	 Define severities: Severities determine how much support will be

needed and the potential impact on customers. For example, at New Relic

we use a scale of 1 to 5 for severities:

°° Level 5 does not impact customers and may be used to raise

awareness about an issue.

°° Level 4 involves minor bugs or minor data lags that affect, but don’t

hinder, customers.

°° Level 3 is for major data lags or unavailable features.

°° Levels 2 and 1 are serious incidents that cause outages.

2.	 Instrument your services: Every service should have monitoring and

alerting for proactive incident reporting. The goal is to discover incidents

before customers do to avoid worst-case scenarios where irritated cus-

tomers are calling support or posting comments on social media. With

proactive incident reporting, you can respond to and resolve incidents

as quickly as possible.

3.	 Define responder roles: At New Relic, team members from engineering

and support fill the following roles during an incident: incident commander

(drives resolutions), tech lead (diagnoses and fixes), communications lead

(keeps everyone informed), communications manager (coordinates emer-

gency communication strategy), incident liaison (interacts with support

and the business for severity 1s), emergency commander (optional for

severity 1s), and engineering manager (manages the post-incident process).

4.	 Create a game plan: This is the series of tasks by role that covers every-

thing that happens throughout the lifecycle of an incident, including

declaring an incident, setting the severity, determining the appropriate

tech leads to contact, debugging and fixing the issue, managing the

flow of communications, handing off responsibilities, ending the incident,

and conducting a retrospective.

5.	 Implement appropriate tools and automation to support the entire
process: From monitoring and alerts, to dashboards and incident track-

ing, automating the process is critical to keeping the appropriate team

members informed and on task, and executing the game plan efficiently.

12

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

eBook

6.	 Conduct retrospectives: After the incident, require your teams to conduct

a retrospective within one or two days of the incident. Emphasize that the

retrospective is blameless and should focus instead on uncovering the true

root causes of a problem.

7.	 Implement a Don’t Repeat Incidents (DRI) policy: If a service issue

impacts your customers, then it’s time to identify and pay down technical

debt. A DRI policy says that your team stops any new work on that service

until the root cause of the issue has been fixed or mitigated.

Example incident declared in Slack

 HOW DEVOPS TEAMS FIND OUT ABOUT ISSUES2

2: Source: “DevOps Survey Results,” 2nd Watch, 2018.

13

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

CHAPTER 4

Overcoming
Microservices Complexity

eBook

Overcoming Microservices Complexity
Like peanut butter and chocolate, microservices and DevOps are better together.

By now, companies understand that transforming monolithic applications into

decomposed services can drive dramatic gains in productivity, speed, agility,

scalability, and reliability.

But while teams recognize the changes required in developing, testing, and

deploying microservices, they often overlook the substantial changes required

in collaboration and communications. Engineers at New Relic developed the fol-

lowing best practices to foster a collaborative environment that simplifies the

complexities and communication challenges inherent in a microservices world.

Good communication practices
for a microservices environment

•	 Let upstream and downstream dependencies know of major changes:
Before you deploy any major changes to your microservice, notify the

teams that depend on it both upstream and downstream so that in case

any issues arise, they won’t waste time trying to track down the root cause.

•	 Communicate early and often: This is particularly important for ver-

sioning, deprecations, and situations where you may need to temporarily

provide backwards compatibility.

•	 Treat internal APIs like external ones: Make your API developer-

friendly with documentation, informational error messages, and a process

for sending test data.

•	 Treat downstream teams like customers: Create a README with

an architecture diagram, description, instructions for running locally,

and information on how to contribute.

•	 Create an announcements-only channel: It’s essential to have a single

source of truth for important announcements rather than expecting

teams to glean important information from multiple boards, discussions,

and emails.

•	 Focus on your service “neighborhood”: Your upstream, downstream,

infrastructure, and security teams are all “neighbors” of your service. As

a good neighbor, you should attend their demos and standups, give your

neighbors access to your service’s roadmap, and maintain a contact list.

Using data to better understand
how microservices are working
Breaking up your monolithic applications into microservices isn’t an easy

task. First you need deep understanding of a system before you can parti-

tion it into service boundaries. Even then, partitioning it accurately so that

you create true microservices (ones that are single-function, fine-grained,

and only loosely coupled with applications and other services) can be tricky.

Here are some metrics and monitoring tips you can use to sniff out micros-

ervices in your environment that still have too many interdependencies with

other services and applications:

15

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

eBook

1.	 Deployments: Is your team synchronizing deployments across upstream

and downstream teams? If you see deployment markers in your monitor-

ing solution that are synchronized across multiple services, you haven’t

truly decoupled your services.

2.	 Communications: A microservice should only need minimal communica-

tion with other services to execute its function. If you see a service that has

many back-and-forth requests to the same downstream services, that’s a

clear sign that it’s not decoupled. Throughput is another marker to check.

If the number of calls per minute for a given microservice is significantly

higher than the throughput of the application overall, it’s a leading indicator

that the service is not decoupled.

3.	 Data stores: Each microservice should have its own data store to prevent

deployment problems, database contention issues, and schema changes

that create problems for other services sharing the data store. Proper mon-

itoring can show you whether each microservice is using its own data store.

4.	 Scalability: In a true microservices environment, spikes in services popu-

lating on hosts should correspond with spikes in throughput on individual

services. This indicates dynamic scaling, one of the top benefits of micros-

ervices. On the other hand, if you see corresponding spikes across all

services and hosts, there’s good reason to believe that your services

aren’t decoupled.

5.	 Developers per application: If you have effective communication across

your microservices teams, then you won’t need “architecture gurus” who

touch every microservice to ensure they play nicely. If you have 100 engi-

neers and 10 services, and two of your engineers are developing on all

10 services, that’s probably a sign that those services aren’t really decou-

pled, and that the development of all your services relies on the tribal

knowledge and communication skills of those two developers.

MOST BELIEVE THAT MICROSERVICES
AND CONTAINERS ARE ESSENTIAL3

80%
Believe microservices and
container-based enablement
capabilities are essential,
very important, or important,
but only one in four believe
their organization can quickly
deliver those capabilities.

3: Source: “Enterprise Priorities for Hybrid Cloud Management,” Ponemon Institute, June 2018.

16

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

CHAPTER 5

Using Data to Speed
Software Development

eBook

Using Data to Speed Software Development
The fundamental driver for DevOps is speed—faster delivery of software, faster

resolution of problems, faster innovation. But how can your business achieve

the speed it needs to grab nascent market opportunities, out-innovate the

competition, and keep customers happy?

Here at New Relic, we know that data is the fuel for DevOps success because

it helps you:

•	 Measure and track DevOps performance

•	 Provide instant feedback that gets everyone focused on the right things

•	 Optimize software delivery, performance, and business results

One of the most common questions we get from customers regarding DevOps

is “How should we start?” Here are some core principles that should guide your

journey to DevOps at scale:

Eliminate data silos
While measurement is a core tenet of DevOps, many teams don’t realize that

data silos mean that everyone is looking at something different when it comes

to performance. When there are silos of performance data, there’s no cohesive,

common language across applications, infrastructure, and user experience.

Deploying instrumentation across all of your systems to see everything in one

platform gets everyone on the same page, using common data and metrics

to bring together different functions into one team.

Here at New Relic, our engineering teams were struggling with a proliferation

of tools and competing priorities. Getting everyone to agree on which SLOs

were most important, and then putting those SLOs in shared dashboards,

allowed these teams to starting pulling in the same direction.

Simplify the complex
While modern application architectures help simplify and accelerate develop-

ment in many ways, the dynamic quality of today’s modular architecture

creates a new type of complexity, with many individual components that make

up a cohesive whole. Getting a complete view of your architecture, no matter

how ephemeral, is key to coping with this complexity. Having the right data will

tell you what’s working and where to focus your team.

Understand the impact of changes
With DevOps, code deploys and changes are more frequent and your team

needs to stay on top of them to avoid potential issues. Make sure you have a

reporting capability that shows recent deployments and the before/after impact

on application performance and customer experience, including any errors that

occurred. This way you can quickly correlate changes to potential impacts and

allow your team to respond quickly and rollback a release or provide a quick

resolution to any incidents that have occurred.

18

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

eBook

Conclusion
The popularity of DevOps has reached mainstream proportions, with organi-

zations across many different industries pursuing improved speed, productivity,

quality, and innovation through the adoption of DevOps principles. By reaching

optimal digital velocity, high-performing DevOps organizations have been

shown to deploy far more frequently with dramatically faster time to recover

from downtime than their low-performing peers.

The fuel for a high-performance DevOps engine is data. Best practices, like

those in this ebook, are all about how to use that data effectively to drive success.

New Relic gives you the end-to-end visibility you need to monitor your DevOps

efforts and continuously improve outcomes at every stage.

Successful DevOps starts here. Get started at newrelic.com/devops

19

DevOps Done Right: Best Practices to Knock Down Barriers to Success

© 2018 New Relic, Inc. | US +888-643-8776 | www.newrelic.com | www.twitter.com/newrelic | blog.newrelic.com

https://www.newrelic.com/devops
http://www.newrelic.com
https://twitter.com/newrelic
http://blog.newrelic.com

©2008-18 New Relic, Inc. All rights reserved. 08.2018

	Introduction
	Chapter 1: Balancing SLO With Fast Application Delivery
	Chapter 2: Creating a Fair and Effective On-Call Policy
	Chapter 3: Responding to Incidents Effectively
	Chapter 4: Overcoming Microservices Complexity
	Chapter 5: Using Data to Speed Software Development
	Conclusion

	Button 16:
	Button 15:
	Button 14:
	Button 13:
	Button 12:

