
DFRWS

CNN based Zero-day Malware Detection Using Small Binary
Segments

Wen Qiaokuna, *, K.P. Chowa
a. the University of Hong Kong, Hong Kong, China

Abstract

Malware detection is always an important task in digital forensics. With the advancement of technology, malware have become
more and more polymorphic. In the process of digital investigation, forensics always cannot get the entire file of the malware.
For example, when conducting corporate cybersecurity forensics, because the limit length of network packages, packets capture
tools established by different companies often fail to get the entire file. Otherwise, deleting files may also cause residues of
malware segments. Because we even do not know which part the segment we get is, so, we cannot use much domain knowledge
to do the detection. Therefore, this paper proposes to detect malwares according to very small sequence binary fragments of PE
files by using a CNN-based model. Datasets especially test set are often one of the most difficult problems in zero-day malware
detection, because it means that the virus has never appeared before. In this paper, we collect the data by taking advantage of the
differences in anti-virus tools at different time points. And Experiments are performed on malwares of different lengths, positions,
and combinations. Through experiments, we found that only a short segment is needed to achieve a relatively good accuracy. In
the end, for a random piece of continuous malicious code, we achieved an accuracy of up to 0.86 when the length of continuous
fragments is 60,000 bytes. For non- contiguous and unordered random pieces of malicious code, we get an accuracy of up to 0.83
using only 1024 bytes(1KB) length fragments. And when using 60,000 bytes length fragment as the baseline, we can finally
receive a 0.91 accuracy.

Keyword: Malware detection; Malware segments detection; CNN.

1. Introduction

In recent years, the development of computer and
Internet technologies has led to an exponential
increase in the number of malwares. The security
situation of the network has also become more and
more serious. Symantec's annual report shows that
more than 200 million new malicious entities were
discovered in 2018. In addition, the functions of
malware are also gradually enriched. They can
achieve malicious functions such as obtaining
identity or other privacy information, extortion,
currency stealing, and these even gradually forming
an underground economy[1]. As technology
advances and the demand for attacks diversifies, the
technology used to make malware is becoming more
complex as well. The requirement for malware
detection is also increasingly appearing in digital
forensics scenarios. Due to the special nature of
digital forensics tasks, forensics often have to deal

with fragmented files, which undoubtedly makes it
difficult to do malware detection.

On the other hand, according to statistics,
Windows still accounts for nearly 80% of the market
share of many personal computer operating systems
[2]. Among the malware intercepted by Symantec in
2018, malwares targeting Windows operating system
accounted for 97.2% of the total, which was far
higher than other operating systems[1]. Therefore, we
have identified the malware studied in this article as
portable executable files(PE files) for Windows
systems.

Most traditional anti-virus tool uses signature as
their detection method. This technique is primarily
based on the idea of pattern matching. The staff
manually or automatically creates a unique label for
each malware, which is called signature. These
signatures can include a variety of different attributes,
such as file hashes, content strings or bytes. And then,
the staffs create a malware signature database.

————

* Corresponding author. Tel.: +852-56176724 .
E-mail address: u3556283@connect.hku.hk .

DFRWS APAC 2021 Author Preprint

When detecting, anti-virus tools will compare the
signature of the unknown code with the contents of
the database, if it matches, the code will be judged as
malicious code. This method has the advantages of
simple, convenient, fast detection speed and low false
alarm rate, but the downside is that this method
cannot do anything in the face of viruses that have
not appeared before.

In order to detect new viruses, scientists have
proposed a number of AI based methods. They hope
to find out the underlying rules in all malicious code
through some machine learning methods, and so that
unknown viruses can be detected. However, some
malwares began to adopt more sophisticated
techniques, such as splitting a complete file into
several parts and achieving its malicious purpose by
calling each other between programs. There are also a
lot of malware that launches a self-destruction
program after the attack is executed[3], and it’s
nearly impossible to recover the whole file even
though we use some recover techniques. In addition,
companies generally use packet capture analysis to
analyze the transmitted files which go through their
systems, this sometimes results in only a partial
segment of the file can be captured because of the
limited length of the packets and the indefinite order
of reception. This undoubtedly adds to the difficulty
of digital forensics because it makes some static
methods based on file header feature extraction or
disassembly instruction analysis and all dynamic
methods difficult to achieve its purpose. Therefore,
this paper proposes a method for detecting small
fragments of PE file, and it should also be able to
handle fragments of various lengths.

The mainstream methods of malicious code
detection generally require some domain knowledge
to extract features. This part has been introduced in
detail in Section 2. However, if there is only one
fragment of the program, and we cannot know where
the fragment is in the whole file, it is very difficult to
use those kinds of methods. Deep learning is a new
field in machine learning research. It mimics the
mechanism of the human brain to interpret data, and
is widely used in images, sounds and texts, also
information security. To the lack of experience with
small malware fragments features, deep learning has
become a good way to solve this problem. It can
combine low-level features to form more abstract
high-level representation attribute categories or
features to discover distributed feature
representations of data. And so that we can give the
model raw input directly, in malware detection area,
the raw input should be binary.

2. Related works

At present, malware detection methods based on
machine learning are mainly divided into two
categories, static analysis and dynamic analysis.
Static analysis is to analyze whether the files are
malicious by analyzing the static characteristics of
some files without executing the program itself. And
dynamic detection is performed by actually running
the virus in the sandbox and observing the
characteristics of its running state.

2.1. Static Analysis

There are three basic ideas in all methods of static
detection. The first one is feature based, those
features are mainly based on the value of flag bits in
PE- Header. The researchers analyze some of the flag
bits in the header of the file, and then combine other
simple features outside PE-Header but easy to find,
such as entropy values, strings to form a feature set.
These features are then screened by some methods,
and finally trained by using some machine learning
methods. In 2009, Fauzan Mirza and his group
trained their model by using totally 189 features and
gained over 99% accuracy on their dataset[4].

The second method is to use assembly codes.
Researchers can obtain the assembly instructions of
PE file through some disassembly tools[5-6]. By
sorting the assembly instructions such as encoding
the opcode to make the synonym distance shorter or
extracting the n-gram features, the detection effect
can be effectively improved. In 2018, Zeliang Kan
and his group obtained over 95% accuracy on their
dataset by using grouped instructions[6].

The third method is to directly throw the binary
into the machine learning method for training. In past
studies, scientists often used n-gram frequency
statistics to get results. In recent years, with the wide
use of deep learning methods based on neural
networks in various fields, scientists devote to input
binary directly into the network without any pre-
processing. However, compared to other fields, PE
files have a very long sequence, which is usually a
few million or even more bytes, this become the
bottleneck of this kind of method. In 2017, Edward
Raff used only binary in PE-Header and gained over
90% accuracy in his dataset[7]. And in the same year,
they also proposed a new network which used a very
large kernel in Convolutional Neural Network (CNN)
for detecting whole exe, finally they got over 98%
accuracy[8].

The main advantage of the static analysis method
is that malicious code does not need to be executed
dynamically, it will not cause damage to the analysis
system, so it is safer. In addition, this method is not
subject to the specific process execution process, and

DFRWS APAC 2021 Author Preprint

the code can be analyzed in detail. The problem is
that it is difficult to deal with the increasingly
complex malicious sample packing and confusing
technology, and the expected effect cannot be
obtained in the processing of obfuscated code.
Therefore, with the continuous development of
virtualization technology, researchers have begun to
conduct malicious samples using dynamic analysis.

2.2. Static Analysis

Dynamic analysis Dynamic analysis uses virtual
release and other mechanisms to deal with software
packing and obfuscation techniques. It allows
malicious samples to be fully released, and it uses the
execution of core code to observe malicious behavior,
which solves the problem of software packing and
confusion to some extent. In 2009, C. Kolbitsch built
fine-grained models that are designed to capture the
behavior of malware based on system calls and
reached 0.93 accuracy in total. [9].

However, with the confrontation between
offensive and defensive techniques, this approach has
gradually exposed its drawbacks. First, malware
developers usually have a more thorough study of
virtual environments and sandbox mechanisms. They
always use a variety of detection and countermeasure
technologies to make it difficult to perform malicious
samples in virtualized and sandbox environments.
Secondly, some of the malicious samples use the
normal software digital signature and reuses the
normal software code to disguise its behaviour, and
they can even use the virtual machine technology to
attack malware analysts. Finally, the dynamic
analysis methods extract complex features, cost long
detection time. They often consume a lot of resources,
so the drawbacks of this approach are particularly
prominent when applied to large-scale data. With the
development of artificial intelligence and machine
learning algorithms, the research environment of
static analysis has gradually improved. Therefore,
this article chose static methods for detecting. And
since methods by extracting features and assembly
instructions cannot satisfy the requirements of
fragments of malware, so finally we used binary-
based methods to do the training.

3. Model Architecture

 In order to achieve higher accuracy, we hope that
the model we design can better consider the
characteristics of malware fragments: 1) Even the
aim to detect is small fragments of malwares, it
should have better universality and can detect

fragments of any length.; 2) Since the binary of the
malicious code fragment is a sparse timing sequence,
the relationship of each byte should be effectively
processed in our model. So, we designed a model
with 12 layers (see Figure 2.).

3.1. Dataset Obtain

One of the most difficult parts of this project is the
test set. This is because the malware dataset we need
is zero-days, which means, they are new malwares
that all the anti-virus tools cannot detect them
successfully. To solve this problem, we first
download some anti-virus tools in March, do
snapshots for them, and never update them till now.
At the same time, we collect data from VirusShare
before March as the positive samples for training.
After five months in August, we collect malwares
between March and August from VirusShare, and put
them into the snapshots of anti-virus tools which are
made in March. If all of the anti-virus tool cannot
detect the malware, it can be seen as a zero-day
malware. And in these five months, some of the zero-
day malwares are released by some hacker
organization, those malwares are also collected to
distribute the testing set.

Figure 1. Method to obtain Zero-day malware

3.2. Model Selection

In general, RNN series methods is a better way to
solve problems involving timing sequences. However,
in ordinary time-series texts, often a word represents
a meaning, and RNN can infer the meaning of the
sentence through the association between different
words, thereby performing works like classification
and prediction. Different from natural languages, the
numerical distribution of the malicious code binary is
relatively sparse, often several bytes represent a word,
and several words can form a complete assembly
instruction. But RNN itself does not such suitable to
deal with too sparse input, this is the first reason for
us to give up RNN. And this can also explain the
reason we added the embedding layer at the
beginning of the model.

DFRWS APAC 2021 Author Preprint

Moreover, due to the structure of the method of
RNN series, the longer sequence that needs to be

processed, the greater time complexity and space

Figure 2. Architecture of the whole model

complexity are required for training. Malware binary
sequences often have inputs of millions or tens of
million bytes in length. Although the goal of this
study is to detect small malware fragments, there are
still cases where the acquired fragments with big
amounts of bytes. In order to satisfy the versatility of
the model and the characteristics of matching binary
sparseness, we chose CNN-based method as the
training model.

In addition, if the detection of longer segments is
considered, because it is closer to the complete pe file,
the overall characteristics of the PE files are needed
to be considered. In a PE file, many parts may be able
to change positions without affecting their
enforceability, PE-Header stores pointers to all other
contents. At the same time, the PE-Header can be
located anywhere, its position is determined by the
pointer at the end of the unique fixed constant MS-
DOS Header. This spatial trait is not easily solved
using current methods. However, the translation
invariance of CNN is still a better way to solve this
problem. Thus, Conv1D was chosen for training.

3.3. Parameters’ Setting

According to Karen Simonyan and Andrew
Zisserman's paper which raised the famous VGG
structure in 2015, for a given receptive field, the use
of stacked small convolution kernels is superior to
the use of large convolution kernels, because multiple
nonlinear layers can increase network depth[10]. This
guarantee to learn more complex patterns at a lower

cost (less parameters). Therefore, we used smaller
kernels and a relatively larger number of layers than
the previous method of training the malware binary
using the deep learning method. We set the kernel
size to 3 at the very beginning because it is the
smallest size that captures the left, right, and center
concepts. In the course of the experiment, we found
that the model is more inclined to overfitting,
especially when the fragment we extracted is very
short. Therefore, we modified the kernel size of the
last layer to 5 by doing continuous comparison
experiments and added dropout. In fact, in most
experiments, dropout was added to the fully
connected layer. However, through experiments we
found that such addition has little effect on the results.
SpatialDropout is a dropout method proposed by
Tompson et al. in the field of images in 2015[11].
Ordinary dropout will randomly set some elements to
zero, and SpatialDropout will randomly set zero part
of the area. This dropout method has proven to be
effective in the field of image recognition. We tried
to use this method instead of the normal dropout and
added it behind the convolution layer, which
effectively improved the average accuracy and
stability of the model. We select the sigmoid function
instead of Softmax in the last layer, because we will
use the feature of the sigmoid function, its value
range is between 0 and 1, to solve the detection
problem of non-contiguous disordered malware
fragments.

DFRWS APAC 2021 Author Preprint

4. Model selection

4.1. Dataset

Training data with deep learning methods often
requires a large number of positive and negative
samples. There is not a standard dataset, this is also
the main reason that different anti-virus company or
institutes cannot achieve uniformity in malware
detection area. In order to ensure the versatility of the
experiment, this paper uses the famous malicious
sample database VirusShare[12] as a positive sample.
And benign samples are downloaded from Microsoft
online shop, we tried to cover more kinds of benign
software including games, music, social media,
education, etc. In order to ensure the balance of
positive and negative samples, we screened positive
and negative samples to make their size divisions
consistent. In the end, we got 5214 malwares as
positive samples and 5211 benign files as negative
samples, the average size of all the samples are
769.47KB. We then labelled all malwares as 1 and
benign wares as 0.

4.2. Experiment Process

All experimental steps are shown in the following
flow chart (See Figure 3).

Figure 3. Flow gram of whole experiment process

Firstly, the binary of all samples should be obtained.
Next, we sample it in different ways, two different
types of sampling methods are implemented for our
research. The first one is to continuously sample and
explore the relationship between detecting result and
length or position of the continuous fragments. The
other is to randomly sample the PE files to explore
the effect of non-continuous sample length and
sampling order on the detecting results. By analyzing
the experimental results, we try to obtain some
models for different lengths. The result and their
analysis can be found in Section 5.
4.3. Sampling Methods

For continuous sampling. The aim of this part is to
simulate the situation that we can only obtain a
continuous part of a PE file, for example, only a part
of the of the file is broken. For training, we need to
randomly extract different part of a PE file for each
length we want to compare (see Figure 4). Suppose
the white rectangle represents the entire PE file, the
black part is the part we need to sample.

Since we want to have as many fragments as
possible in our experiments, we hope that for some
long files, we can sample for multiple times without
putting them back. Also, in order to ensure the
randomness of the sampling, when we need to sample
multiple times in a file, we hope that the length of the
unsampled portion of the file to be trained is much
larger than our target length. Therefore, the number
of times for sampling for each file should satisfy
formula (1). Suppose 𝑓𝑖𝑙𝑒_𝑙𝑒𝑛 represents the length
of the file, 𝑓𝑟𝑎𝑔_𝑙𝑒𝑛 represents the length of each
fragment that we want for the training, and
𝑠𝑙𝑖𝑐𝑒_𝑛𝑢𝑚 be the final number of fragments we
obtain from a file. Then,

slice_num = [file_num/frag_len/k] (1)

where k is a constant. To make the sample random
enough for our experiments, we set k a large value,
which equals to 50. After sampling, we shuffled all
the fragments to form our final dataset.
In addition, we also try to explore the effect of the
position of consecutive segments on the experimental
results. So, we extract fragments from front and end,
which is shown in Figure 5.

For un-continuous sampling. There is also situation
that we cannot get such a long continuous fragment,
but several small fragments from one PE file (see
Figure 6). Assuming that the white rectangle
represents the entire PE file, the black parts represent
a small number of randomly extracted small locations
in the entire PE file. We have designed two scenarios,
the first one is ordered and the second one is
unordered. An ordered scenario means that after
sampling each PE file, the resulting sample order is
consistent with the relative order of the fragments in
the original file. In converse, the disordered scene
will disturb the order of the samples. The reason for
this is that we want to simulate the situation that
staffs get the file fragment by capturing the packet,
the order may be unsure by them.

Actually, we final chose the small fragment as
1024 bytes for experiments. And we de- duplicate the
data used in this part and the data used in continuous

DFRWS APAC 2021 Author Preprint

part to avoid the test results of this part be affected.
The reason for doing this and using 1024 bytes as a

baseline will be shown in Section 5.

Figure 4. Schematic diagram of continuous sampling

Figure 5. Continuous sampling from different positions

Figure 6. Schematic diagram of un-continuous sampling

5. Results and Evaluation

We first experimented with continuous fragments of
different lengths in an attempt to find out the effect of
fragment length on experimental results.
Subsequently, we tested non-contiguous fragments.
The tests were divided into two types, one with
ordered fragments and the other with random
sequences (there was a certain possibility that they
are ordered). This experiment simulates the
characteristics of the files we acquired during
package capturing process that the packages obtained
are not continuous and their order is unknown. Using
the model above, the experimental results are as
follows. The results shown in the table are averages
of the results output by above model after testing for
several times.

5.1. Continuous Sampling

In the experiment of continuous malicious code
fragments, we compared the effect of the length of
the extracted fragments on the experimental results.
The results are shown in Table 1.

Table 1. Average results using continuous fragments of different
lengths

Fragment
length(bytes)

Accuracy
(%)

Recall
(%)

Precision
(%)

f1-score
(%)

32 64.39 63.93 67.79 65.81

128 67.85 66.28 67.13 66.70

512 70.65 72.73 65.80 69.10

1024 76.75 76.63 79.81 77.81

4096 78.59 79.67 78.24 79.21

10,000 80.78 81.89 79.55 80.71

30,000 80.13 81.10 80.62 80.86

DFRWS APAC 2021 Author Preprint

60,000 86.92 83.34 85.42 84.32

100,000 82.79 83.38 82.62 83.00

200,000 79.47 78.19 71.63 79.87

>200,00 77.78 78.57 82.75 79.64

By observing the experimental results in the table,

the following conclusions can be drawn:
1) Even when the sampling length is very short,

only 32 bytes, the model is still available, the
detection rate is close to 65%. This proves that
there is indeed a certain pattern in a very short
random segment that can distinguish malware,
but it is very difficult to find by manually.
Using deep learning can indeed summarize
unexpected features. In addition, the reason
for low detection rate when the fragments may
because most of extracted fragment are both
exists in many malwares and benign wares.

2) With the increase of sampling length, each
data is called an upward trend. So, we can
conclude when the length of the fragment is
under 60000 bytes, the longer the theoretical
segment, the better the effect.

3) The model receives breakthrough progress
when the length of continuous fragment
reaches 1024, 10000 and 60,000. The highest
result 86% is reached at the 60,000-length
point, followed by a slight decrease, and
becomes even lower when the length is larger
than 200,000 bytes. This explain that this
model actually has the disadvantage that it is
not suitable for too long input directly.

In order to explore the relationship between
segment position and the result, the results are shown
in Table 2.

Table 2. Average experimental results using continuous
fragments of different lengths

Fragment
length(bytes)

Extract from
front (%)

Extract from
End (%)

Extract
randomly (%)

32 67.82 62.96 64.39

128 75.68 66.28 67.85

512 80.02 71.36 70.65

1024 82.84 72.09 76.75

4096 83.63 73.31 78.59

10,000 86.75 76.18 80.78

30,000 87.99 80.71 80.13

60,000 85.67 77.07 86.92

100,000 85.98 81.33 82.79

200,000 82.29 78.73 79.47

>200,00 80.07 80.52 77.78

It can be seen from Table 2 that the best detection

is extracted from the front of a file. And extracting
segments from the end has the worst detection effect.
This indicates that the beginning of the file may
contain more information useful for detection, and
the PE file header is generally at the forefront of a PE
file. Therefore, this result is in line with our
understanding. This result reminds us that if we can
get the full content of the file, we can also extract the
beginning of it for fast detection.

5.2. Non-continuous Sampling

We next tested the effect of non-continuous
fragments of different lengths. In detail, we
randomly choose several fragments from one PE
file and use these segments to do training and
testing. Among them, we tested fragments with
and without order.

Selection of baseline. In this experiment, in
order to make our model universal, we hope that
the baseline of fragment we selected is small
enough but can achieve a relatively high detection
accuracy. In this case, if the fragment of the same
file is long, we can still divide the longer segment
into several smaller base length segments, judge
them separately, and finally integrate the results.
This also allows us to detect malware fragments of
any length without excessive padding. Another
reason is that as mentioned in Section 1, the
enterprises always perform packet capturing to
gain malwares, the packet length is limited, and the
order of packages is uncertain. In the process of
packet transmission, the Maximum Transmission
Unit of the packet is generally set to 1,500 bytes.
We want the baseline length we choose to be
smaller than this value, so that even if there is only
one package, we can detect whether it is malware.
Finally, we selected 1KB (1024 bytes) as the
baseline.

Sig-vote method. In the beginning, two ideas
for solving this problem were proposed. The first
one is to directly train a given segment after
splicing them to a long sequence, we call it method
1. The second one is to separately detect each
segment of one file by using the trained model in
Section 5.1 and integrate the results, we call it
method 2. As mentioned in Section 4, we need to
de- duplicate the data used in this part and in
Section 5.1 to avoid the test data have been trained
before. For all the ordered fragments, we found the
results of both methods is similar. For un-ordered

DFRWS APAC 2021 Author Preprint

fragments, we found the method 2 performs better.
The method we proposed for integrating is similar
to vote, but has a little bit difference, so we call it
sig-vote. As mentioned in Section 3, the last layer

in our model is sigmoid function. This allows us to
calculate the sum of all fragments' output. By
comparing this sum with our present threshold, if it
is greater than the threshold, then the file is judged

Table 3. Average results using non-continuous fragments

Fragment
length(bytes)

Order or not Accuracy (%) Recall (%) Precision (%) F1-socere(%)

2*1024 Y 81.17 82.16 81.51 81.84

2*1024 N 78.29 76.90 81.17 78.98

3*1024 Y 83.12 82.71 82.00 82.35

3*1024 N 79.48 78.47 81.25 79.84

4*1024 Y 82.71 82.58 82.05 82.09

4*1024 N 83.14 82.86 83.13 83.00

5*1024 Y 82.68 83.88 84.23 84.03

5*1024 N 81.66 81.39 81.57 81.48

6*1024 Y 85.27 84.81 86.24 85.43

6*1024 N 81.60 81.66 81.57 81.62

7*1024 Y 82.88 84.77 81.44 83.07

7*1024 N 83.59 83.11 84.01 83.56

to be malware. By doing lots of experiments, the
threshold was set by using following equation (2)
to get higher accuracy, the parameter in it is a
result based on times of experiments. Suppose
𝑓𝑟𝑎𝑔_𝑛𝑢𝑚 represents the number of un-
continuous fragments, then

𝑡h𝑟𝑒𝑠h𝑜𝑙𝑑 = 0.42 × 𝑓𝑟𝑎𝑔_𝑛𝑢𝑚 (2)

However, this this is not necessarily the best

threshold value for each case. In real life, the
threshold can be adjusted according to the different
requirements of recall and precision.
Table 3 shows the results for different length of
un-continuous fragments. In ‘fragment length’
field, 𝑛 ∗ 1024 means we will randomly extract n
1024-byte fragments from the same file. In
‘ordered or not’ field, Y means that input is
ordered, this part of results is gained by using
method 1 above, and N means that the input order
is random (there is also a certain probability that
the fragment is ordered), this part of results is
gained by using method 2 above.

1) If the input segment is ordered, the

experimental results do not change
significantly with the length of the

fragments, and the results remain at around
82%.

2) If the input segment is unordered, the
experimental result will increase slightly
with the increase of the length, and then
remain basically unchanged, maintaining
at around 83%.

3) By comparing with the experimental results
in Section 5.1, it can be found that, if the
sum of the lengths of the extracted
fragments is shorter, the discontinuous
fragment effect is significantly better than
the continuous fragments. As the length
increases, this advantage gradually
diminishes. This may be because when the
sum of the lengths of the extracted
segments is short, extracting two segments
at different positions increases the
generality of the extracted fragments to the
overall file. Specifically, the extracted
continuous segments hold bigger possibility
that they are meaningless to determine
whether it is malware, such as there are a lot
of zeros in it, but randomly extracting two
non-contiguous fragments can reduce this
probability. Because in PE file, the end of
each section is filled with a large number of
zeros, and the probability that both

DFRWS APAC 2021 Author Preprint

fragments are at the end of each section is
reduced. When the extracted continuous
segments become longer, the probability of
this is reduced because the selected
segments are long enough, they nearly
never filled with zeros, so the two sampling
methods behave similarly.

4) Although method 1 is better when the
fragments is ordered, but it needs more cost

because it always need to retrain the model
when the fragments length change. Method
2 has higher universality.

5.3. Comparison Experiment

For continuous fragments. To validate the
advantages of our proposed model, we compared it

Table 4. Average results for continuous fragment of different kinds of model

Fragment length(bytes) Our model (%) LSTM (%) Normal CNN (%) DNN(%) HMM(%)

32 64.39 60.47 57.89 59.28 60.32

128 67.85 68.16 64.01 66.51 66.76

512 70.65 69.87 68.29 68.09 65.01

1024 76.75 71.62 70.34 69.34 68.27

4096 78.59 73.59 73.01 70.26 69.56

10,000 80.78 79.48 77.95 74.29 72.84

30,000 80.13 75.61 75.37 72.54 71.92

60,000 86.92 76.69 75.20 70.43 69.34

100,000 82.79 72.77 73.94 72.21 73.69

200,000 79.47 70.56 69.42 76.23 74.07

>200,00 77.78 71.32 68.30 74.06 72.58

with other commonly used deep learning models

including Normal CNN, Long-Short Term
Memory(LSTM), Deep Neural Network(DNN) and
Hidden Markov Model (HMM). For the other models,
we have also done many experiments to tuned them
perform better. Table 4 shows the results.

It can be seen that CNN's effect is significantly
better than the other two methods, especially when
the input sequence becomes longer.

For un-continuous fragments. Although the
method of detecting separately for each segment and
finally integrating the results is not very good in a
given discontinuous ordered fragment, for a
disordered fragment, sig-vote performs much better
than directly connecting the fragments.

Table 5. Average results for un-continuous unorder
fragments of different kinds of model

Unordered
fragment length
(bytes)

Sig-vote(%) LSTM
(%)

Text-
CNN(%)

2*1024 78.29 78.69 78.84

3*1024 79.48 78.17 78.80

4*1024 83.14 80.61 82.71

5*1024 81.66 75.57 80.04

6*1024 81.60 74.47 74.68

7*1024 83.59 71.24 71.08

Table 5 proves that for non-contiguous segments, the
results obtained by doing sig-vote for the chosen
fragments are more ideal and stable. The more
fragments are extracted, the more confusing the order
is, and this will cause more serious impaction to
results of the method which splicing the out-of-order
segments together. In fact, the method sig-vote is
very malleable as well. For example, in our
experiments with continuous fragments, we found
that the result of the continuous segment of 60,000
bytes is the best. When a given file fragment is very
large, much larger than 60,000 bytes, we can use a
continuous model of 60,000 bytes as the baseline for
detection. In fact, we tested with a number of
continuous and non-continuous samples containing
several 60,000 bytes, we finally get up to 91.04%
accuracy when there is 4 times length of 60,000. So,
this method can also be applied to the detection of the
entire file.

DFRWS APAC 2021 Author Preprint

However, a 60,000 bytes (about equal to 59 KB)
fragment is not small enough for many PE files, so it
may not suitable for some of the scenes.

The training time is proportional to the length of
the fragment. For our data set, the maximum training
time when using GPU TITANx4 is no more than half
an hour, which is very efficient.

6. Conclusion

In this paper, we have described the malware
detection by using small fragments of them. CNN-
based method is used to effectively avoid the risk of
extracting fragile features. We experimented with
continuous and non-contiguous, ordered and out-of-
order malware fragments and came up with some
conclusive experimental conclusions. We believe that
we have contributed to this malware detection field,
including:

1) We proposed a method based on the detection
of small malicious code fragments, and gave
the usage scenarios of the method in real life.

2) Through the observation of the data, we
explained the reasons why the CNN model is
selected when directly using binary to do the
detection, the reasons include characters of
binary like sparsity of the input, complexity of
time and space, and the relationship between
CNN’s translation invariance and structure of
the PE file.

3) We experimented with continuous and non-
contiguous, ordered and unordered malicious
code fragments, comparing their final effects
and explaining the effects. Finally proved that
it is feasible to detect malwares using small
fragments only.

In the future, we will continually modify the model to
improve the detection rate. We will also try to find
out why deep learning can successfully detect
malicious code using very short fragments and try to
explore its interpretation in the next step.

Acknowledgements

 These and the Reference headings are in bold
but have no numbers. Text below continues as

normal.

References

1. Symantec website,
https://www.symantec.com/content/dam/symantec/docs/reports/istr
-24- 2019-en.pdf, last accessed 2019/02/24

2. Statcounter GlobalStatus, https://gs.statcounter.com/, last
accessed 2019/9/17

3. Song, W., Peng, G., Fu, J., Zhang, H., Chen, S.: Research on
Malicious Code Evolution and Traceability Technology, Journal of
Software 30(8), 2229−2267(2019)

4. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: PE-Miner:
Mining Structural Information to Detect Malicious Executables in
Realtime. In: International Symposium On Recent Advances In
Intrusion Detection (RAID), In: Lecture Notes in Computer
Science, Springer, Berlin, (2009)

5. Zhang, D., Zhang, Z., Jiang, B., Tse, T.: The Impact of
Lightweight Disassembler on Malware Detection: An Empirical
Study. In: 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), pp. 620–629, IEEE, Tokyo,
Japan (2018)

6. Kan, Z., Wang, H., Xu, G., Guo, Y., Chen, X.: Towards
Light-Weight Deep Learning Based Malware Detection. In: 2018
IEEE 42nd Annual Computer Software and Applications

Conference (COMPSAC), pp. 600–609, IEEE, Tokyo, Japan
(2018)

7. Raff, E. , Barker, J., Sylvester, J., Brandon, R., Catanzaro, B.,
Nicholas, C.: Malware Detection by Eating a Whole EXE. arXiv
preprint arXiv:1710.09435 (2017)

8. Raff, E., Sylvester, J., Nicholas, C.: Learning the pe header,
malware detection with minimal domain knowledge. arXiv
preprint arXiv:1709.01471(2017)

9. Kolbitsch, C., Comparetti, P., Kruegel, C., Kirda, E., Zhou,
X., Wang, X.: Effective and efficient malware detection at the end
host. In: USENIX security symposium, pp. 351–366, Monteal,
Canada(2009)

10.Simonyan, K., Zisserman, A.: Very deep convolutional
networks forlarge-scale image recognition. arXiv:1409.1556 (2014)

11. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.:
Efficient object localization using convolutional networks. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 648–656 (2015)

12. VirusShare, https://Virusshare.com, last accessed 2019/09/1

DFRWS APAC 2021 Author Preprint

