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Abstract 

Malware detection is always an important task in digital forensics. With the advancement of technology, malware have become 
more and more polymorphic. In the process of digital investigation, forensics always cannot get the entire file of the malware. 
For example, when conducting corporate cybersecurity forensics, because the limit length of network packages, packets capture 
tools established by different companies often fail to get the entire file. Otherwise, deleting files may also cause residues of 
malware segments. Because we even do not know which part the segment we get is, so, we cannot use much domain knowledge 
to do the detection. Therefore, this paper proposes to detect malwares according to very small sequence binary fragments of PE 
files by using a CNN-based model. Datasets especially test set are often one of the most difficult problems in zero-day malware 
detection, because it means that the virus has never appeared before. In this paper, we collect the data by taking advantage of the 
differences in anti-virus tools at different time points. And Experiments are performed on malwares of different lengths, positions, 
and combinations.  Through experiments, we found that only a short segment is needed to achieve a relatively good accuracy. In 
the end, for a random piece of continuous malicious code, we achieved an accuracy of up to 0.86 when the length of continuous 
fragments is 60,000 bytes. For non- contiguous and unordered random pieces of malicious code, we get an accuracy of up to 0.83 
using only 1024 bytes(1KB) length fragments. And when using 60,000 bytes length fragment as the baseline, we can finally 
receive a 0.91 accuracy. 
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1. Introduction 

In recent years, the development of computer and 
Internet technologies has led to an exponential 
increase in the number of malwares. The security 
situation of the network has also become more and 
more serious. Symantec's annual report shows that 
more than 200 million new malicious entities were 
discovered in 2018. In addition, the functions of 
malware are also gradually enriched. They can 
achieve malicious functions such as obtaining 
identity or other privacy information, extortion, 
currency stealing, and these even gradually forming 
an underground economy[1]. As technology 
advances and the demand for attacks diversifies, the 
technology used to make malware is becoming more 
complex as well. The requirement for malware 
detection is also increasingly appearing in digital 
forensics scenarios. Due to the special nature of 
digital forensics tasks, forensics often have to deal 

with fragmented files, which undoubtedly makes it 
difficult to do malware detection. 

On the other hand, according to statistics, 
Windows still accounts for nearly 80% of the market 
share of many personal computer operating systems 
[2]. Among the malware intercepted by Symantec in 
2018, malwares targeting Windows operating system 
accounted for 97.2% of the total, which was far 
higher than other operating systems[1]. Therefore, we 
have identified the malware studied in this article as 
portable executable files(PE files) for Windows 
systems. 

Most traditional anti-virus tool uses signature as 
their detection method. This technique is primarily 
based on the idea of pattern matching. The staff 
manually or automatically creates a unique label for 
each malware, which is called signature. These 
signatures can include a variety of different attributes, 
such as file hashes, content strings or bytes. And then, 
the staffs create a malware signature database. 

 
———— 
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When detecting, anti-virus tools will compare the 
signature of the unknown code with the contents of 
the database, if it matches, the code will be judged as 
malicious code. This method has the advantages of 
simple, convenient, fast detection speed and low false 
alarm rate, but the downside is that this method 
cannot do anything in the face of viruses that have 
not appeared before. 

In order to detect new viruses, scientists have 
proposed a number of AI based methods. They hope 
to find out the underlying rules in all malicious code 
through some machine learning methods, and so that 
unknown viruses can be detected. However, some 
malwares began to adopt more sophisticated 
techniques, such as splitting a complete file into 
several parts and achieving its malicious purpose by 
calling each other between programs. There are also a 
lot of malware that launches a self-destruction 
program after the attack is executed[3], and it’s 
nearly impossible to recover the whole file even 
though we use some recover techniques. In addition, 
companies generally use packet capture analysis to 
analyze the transmitted files which go through their 
systems, this sometimes results in only a partial 
segment of the file can be captured because of the 
limited length of the packets and the indefinite order 
of reception. This undoubtedly adds to the difficulty 
of digital forensics because it makes some static 
methods based on file header feature extraction or 
disassembly instruction analysis and all dynamic 
methods difficult to achieve its purpose. Therefore, 
this paper proposes a method for detecting small 
fragments of PE file, and it should also be able to 
handle fragments of various lengths. 

The mainstream methods of malicious code 
detection generally require some domain knowledge 
to extract features. This part has been introduced in 
detail in Section 2. However, if there is only one 
fragment of the program, and we cannot know where 
the fragment is in the whole file, it is very difficult to 
use those kinds of methods. Deep learning is a new 
field in machine learning research. It mimics the 
mechanism of the human brain to interpret data, and 
is widely used in images, sounds and texts, also 
information security. To the lack of experience with 
small malware fragments features, deep learning has 
become a good way to solve this problem. It can 
combine low-level features to form more abstract 
high-level representation attribute categories or 
features to discover distributed feature 
representations of data. And so that we can give the 
model raw input directly, in malware detection area, 
the raw input should be binary. 

2. Related works 

At present, malware detection methods based on 
machine learning are mainly divided into two 
categories, static analysis and dynamic analysis. 
Static analysis is to analyze whether the files are 
malicious by analyzing the static characteristics of 
some files without executing the program itself. And 
dynamic detection is performed by actually running 
the virus in the sandbox and observing the 
characteristics of its running state. 

2.1. Static Analysis 

There are three basic ideas in all methods of static 
detection. The first one is feature based, those 
features are mainly based on the value of flag bits in 
PE- Header. The researchers analyze some of the flag 
bits in the header of the file, and then combine other 
simple features outside PE-Header but easy to find, 
such as entropy values, strings to form a feature set. 
These features are then screened by some methods, 
and finally trained by using some machine learning 
methods. In 2009, Fauzan Mirza and his group 
trained their model by using totally 189 features and 
gained over 99% accuracy on their dataset[4]. 

The second method is to use assembly codes. 
Researchers can obtain the assembly instructions of 
PE file through some disassembly tools[5-6]. By 
sorting the assembly instructions such as encoding 
the opcode to make the synonym distance shorter or 
extracting the n-gram features, the detection effect 
can be effectively improved. In 2018, Zeliang Kan 
and his group obtained over 95% accuracy on their 
dataset by using grouped instructions[6].  

The third method is to directly throw the binary 
into the machine learning method for training. In past 
studies, scientists often used n-gram frequency 
statistics to get results. In recent years, with the wide 
use of deep learning methods based on neural 
networks in various fields, scientists devote to input 
binary directly into the network without any pre-
processing. However, compared to other fields, PE 
files have a very long sequence, which is usually a 
few million or even more bytes, this become the 
bottleneck of this kind of method. In 2017, Edward 
Raff used only binary in PE-Header and gained over 
90% accuracy in his dataset[7]. And in the same year, 
they also proposed a new network which used a very 
large kernel in Convolutional Neural Network (CNN) 
for detecting whole exe, finally they got over 98% 
accuracy[8]. 

The main advantage of the static analysis method 
is that malicious code does not need to be executed 
dynamically, it will not cause damage to the analysis 
system, so it is safer. In addition, this method is not 
subject to the specific process execution process, and 
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the code can be analyzed in detail. The problem is 
that it is difficult to deal with the increasingly 
complex malicious sample packing and confusing 
technology, and the expected effect cannot be 
obtained in the processing of obfuscated code. 
Therefore, with the continuous development of 
virtualization technology, researchers have begun to 
conduct malicious samples using dynamic analysis. 

2.2. Static Analysis 

Dynamic analysis Dynamic analysis uses virtual 
release and other mechanisms to deal with software 
packing and obfuscation techniques. It allows 
malicious samples to be fully released, and it uses the 
execution of core code to observe malicious behavior, 
which solves the problem of software packing and 
confusion to some extent. In 2009, C. Kolbitsch built 
fine-grained models that are designed to capture the 
behavior of malware based on system calls and 
reached 0.93 accuracy in total. [9]. 

However, with the confrontation between 
offensive and defensive techniques, this approach has 
gradually exposed its drawbacks. First, malware 
developers usually have a more thorough study of 
virtual environments and sandbox mechanisms. They 
always use a variety of detection and countermeasure 
technologies to make it difficult to perform malicious 
samples in virtualized and sandbox environments. 
Secondly, some of the malicious samples use the 
normal software digital signature and reuses the 
normal software code to disguise its behaviour, and 
they can even use the virtual machine technology to 
attack malware analysts. Finally, the dynamic 
analysis methods extract complex features, cost long 
detection time. They often consume a lot of resources, 
so the drawbacks of this approach are particularly 
prominent when applied to large-scale data. With the 
development of artificial intelligence and machine 
learning algorithms, the research environment of 
static analysis has gradually improved. Therefore, 
this article chose static methods for detecting. And 
since methods by extracting features and assembly 
instructions cannot satisfy the requirements of 
fragments of malware, so finally we used binary-
based methods to do the training. 

3. Model Architecture 

  In order to achieve higher accuracy, we hope that 
the model we design can better consider the 
characteristics of malware fragments: 1) Even the 
aim to detect is small fragments of malwares, it 
should have better universality and can detect 

fragments of any length.; 2) Since the binary of the 
malicious code fragment is a sparse timing sequence, 
the relationship of each byte should be effectively 
processed in our model. So, we designed a model 
with 12 layers (see Figure 2.).  

3.1. Dataset Obtain 

One of the most difficult parts of this project is the 
test set. This is because the malware dataset we need 
is zero-days, which means, they are new malwares 
that all the anti-virus tools cannot detect them 
successfully. To solve this problem, we first 
download some anti-virus tools in March, do 
snapshots for them, and never update them till now. 
At the same time, we collect data from VirusShare 
before March as the positive samples for training. 
After five months in August, we collect malwares 
between March and August from VirusShare, and put 
them into the snapshots of anti-virus tools which are 
made in March. If all of the anti-virus tool cannot 
detect the malware, it can be seen as a zero-day 
malware. And in these five months, some of the zero-
day malwares are released by some hacker 
organization, those malwares are also collected to 
distribute the testing set. 

 

 
Figure 1. Method to obtain Zero-day malware 

 
3.2. Model Selection  

In general, RNN series methods is a better way to 
solve problems involving timing sequences. However, 
in ordinary time-series texts, often a word represents 
a meaning, and RNN can infer the meaning of the 
sentence through the association between different 
words, thereby performing works like classification 
and prediction. Different from natural languages, the 
numerical distribution of the malicious code binary is 
relatively sparse, often several bytes represent a word, 
and several words can form a complete assembly 
instruction. But RNN itself does not such suitable to 
deal with too sparse input, this is the first reason for 
us to give up RNN. And this can also explain the 
reason we added the embedding layer at the 
beginning of the model. 
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Moreover, due to the structure of the method of 
RNN series, the longer sequence that needs to be 

processed, the greater time complexity and space  

 

 
Figure 2. Architecture of the whole model 

 
complexity are required for training. Malware binary 
sequences often have inputs of millions or tens of 
million bytes in length. Although the goal of this 
study is to detect small malware fragments, there are 
still cases where the acquired fragments with big 
amounts of bytes. In order to satisfy the versatility of 
the model and the characteristics of matching binary 
sparseness, we chose CNN-based method as the 
training model.  

In addition, if the detection of longer segments is 
considered, because it is closer to the complete pe file, 
the overall characteristics of the PE files are needed 
to be considered. In a PE file, many parts may be able 
to change positions without affecting their 
enforceability, PE-Header stores pointers to all other 
contents. At the same time, the PE-Header can be 
located anywhere, its position is determined by the 
pointer at the end of the unique fixed constant MS-
DOS Header. This spatial trait is not easily solved 
using current methods. However, the translation 
invariance of CNN is still a better way to solve this 
problem. Thus, Conv1D was chosen for training. 

 
3.3. Parameters’ Setting 

According to Karen Simonyan and Andrew 
Zisserman's paper which raised the famous VGG 
structure in 2015, for a given receptive field, the use 
of stacked small convolution kernels is superior to 
the use of large convolution kernels, because multiple 
nonlinear layers can increase network depth[10]. This 
guarantee to learn more complex patterns at a lower 

cost (less parameters). Therefore, we used smaller 
kernels and a relatively larger number of layers than 
the previous method of training the malware binary 
using the deep learning method. We set the kernel 
size to 3 at the very beginning because it is the 
smallest size that captures the left, right, and center 
concepts. In the course of the experiment, we found 
that the model is more inclined to overfitting, 
especially when the fragment we extracted is very 
short. Therefore, we modified the kernel size of the 
last layer to 5 by doing continuous comparison 
experiments and added dropout. In fact, in most 
experiments, dropout was added to the fully 
connected layer. However, through experiments we 
found that such addition has little effect on the results. 
SpatialDropout is a dropout method proposed by 
Tompson et al. in the field of images in 2015[11]. 
Ordinary dropout will randomly set some elements to 
zero, and SpatialDropout will randomly set zero part 
of the area. This dropout method has proven to be 
effective in the field of image recognition. We tried 
to use this method instead of the normal dropout and 
added it behind the convolution layer, which 
effectively improved the average accuracy and 
stability of the model. We select the sigmoid function 
instead of Softmax in the last layer, because we will 
use the feature of the sigmoid function, its value 
range is between 0 and 1, to solve the detection 
problem of non-contiguous disordered malware 
fragments. 
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4. Model selection 

4.1. Dataset 

Training data with deep learning methods often 
requires a large number of positive and negative 
samples. There is not a standard dataset, this is also 
the main reason that different anti-virus company or 
institutes cannot achieve uniformity in malware 
detection area. In order to ensure the versatility of the 
experiment, this paper uses the famous malicious 
sample database VirusShare[12] as a positive sample. 
And benign samples are downloaded from Microsoft 
online shop, we tried to cover more kinds of benign 
software including games, music, social media, 
education, etc. In order to ensure the balance of 
positive and negative samples, we screened positive 
and negative samples to make their size divisions 
consistent. In the end, we got 5214 malwares as 
positive samples and 5211 benign files as negative 
samples, the average size of all the samples are 
769.47KB. We then labelled all malwares as 1 and 
benign wares as 0. 

4.2. Experiment Process 

All experimental steps are shown in the following 
flow chart (See Figure 3).  

 
Figure 3. Flow gram of whole experiment process 

 
Firstly, the binary of all samples should be obtained. 
Next, we sample it in different ways, two different 
types of sampling methods are implemented for our 
research. The first one is to continuously sample and 
explore the relationship between detecting result and 
length or position of the continuous fragments. The 
other is to randomly sample the PE files to explore 
the effect of non-continuous sample length and 
sampling order on the detecting results. By analyzing 
the experimental results, we try to obtain some 
models for different lengths. The result and their 
analysis can be found in Section 5.  
4.3. Sampling Methods 

For continuous sampling. The aim of this part is to 
simulate the situation that we can only obtain a 
continuous part of a PE file, for example, only a part 
of the of the file is broken. For training, we need to 
randomly extract different part of a PE file for each 
length we want to compare (see Figure 4). Suppose 
the white rectangle represents the entire PE file, the 
black part is the part we need to sample. 

Since we want to have as many fragments as 
possible in our experiments, we hope that for some 
long files, we can sample for multiple times without 
putting them back. Also, in order to ensure the 
randomness of the sampling, when we need to sample 
multiple times in a file, we hope that the length of the 
unsampled portion of the file to be trained is much 
larger than our target length. Therefore, the number 
of times for sampling for each file should satisfy 
formula (1). Suppose 𝑓𝑖𝑙𝑒_𝑙𝑒𝑛 represents the length 
of the file, 𝑓𝑟𝑎𝑔_𝑙𝑒𝑛 represents the length of each 
fragment that we want for the training, and 
𝑠𝑙𝑖𝑐𝑒_𝑛𝑢𝑚 be the final number of fragments we 
obtain from a file. Then, 

 
slice_num = [file_num/frag_len/k]                  (1) 

 
where k is a constant. To make the sample random 
enough for our experiments, we set k a large value, 
which equals to 50. After sampling, we shuffled all 
the fragments to form our final dataset. 
In addition, we also try to explore the effect of the 
position of consecutive segments on the experimental 
results. So, we extract fragments from front and end, 
which is shown in Figure 5. 
 
For un-continuous sampling. There is also situation 
that we cannot get such a long continuous fragment, 
but several small fragments from one PE file (see 
Figure 6). Assuming that the white rectangle 
represents the entire PE file, the black parts represent 
a small number of randomly extracted small locations 
in the entire PE file. We have designed two scenarios, 
the first one is ordered and the second one is 
unordered. An ordered scenario means that after 
sampling each PE file, the resulting sample order is 
consistent with the relative order of the fragments in 
the original file. In converse, the disordered scene 
will disturb the order of the samples. The reason for 
this is that we want to simulate the situation that 
staffs get the file fragment by capturing the packet, 
the order may be unsure by them. 

Actually, we final chose the small fragment as 
1024 bytes for experiments. And we de- duplicate the 
data used in this part and the data used in continuous 
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part to avoid the test results of this part be affected. 
The reason for doing this and using 1024 bytes as a 

baseline will be shown in Section 5.  

 

 
Figure 4. Schematic diagram of continuous sampling 

 

 
Figure 5. Continuous sampling from different positions 

 
Figure 6. Schematic diagram of un-continuous sampling 

 
 
5. Results and Evaluation 

We first experimented with continuous fragments of 
different lengths in an attempt to find out the effect of 
fragment length on experimental results. 
Subsequently, we tested non-contiguous fragments. 
The tests were divided into two types, one with 
ordered fragments and the other with random 
sequences (there was a certain possibility that they 
are ordered). This experiment simulates the 
characteristics of the files we acquired during 
package capturing process that the packages obtained 
are not continuous and their order is unknown. Using 
the model above, the experimental results are as 
follows. The results shown in the table are averages 
of the results output by above model after testing for 
several times. 

5.1. Continuous Sampling 

In the experiment of continuous malicious code 
fragments, we compared the effect of the length of 
the extracted fragments on the experimental results. 
The results are shown in Table 1. 
 

Table 1. Average results using continuous fragments of different 
lengths 

Fragment 
length(bytes) 

Accuracy 
(%) 

Recall 
(%) 

Precision 
(%) 

f1-score 
(%) 

32 64.39 63.93 67.79 65.81 

128 67.85 66.28 67.13 66.70 

512 70.65 72.73 65.80 69.10 

1024 76.75 76.63 79.81 77.81 

4096 78.59 79.67 78.24 79.21 

10,000 80.78 81.89 79.55 80.71 

30,000 80.13 81.10 80.62 80.86 
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60,000 86.92 83.34 85.42 84.32 

100,000 82.79 83.38 82.62 83.00 

200,000 79.47 78.19 71.63 79.87 

>200,00 77.78 78.57 82.75 79.64 

 
By observing the experimental results in the table, 

the following conclusions can be drawn: 
1) Even when the sampling length is very short, 

only 32 bytes, the model is still available, the 
detection rate is close to 65%. This proves that 
there is indeed a certain pattern in a very short 
random segment that can distinguish malware, 
but it is very difficult to find by manually. 
Using deep learning can indeed summarize 
unexpected features. In addition, the reason 
for low detection rate when the fragments may 
because most of extracted fragment are both 
exists in many malwares and benign wares. 

2) With the increase of sampling length, each 
data is called an upward trend. So, we can 
conclude when the length of the fragment is 
under 60000 bytes, the longer the theoretical 
segment, the better the effect. 

3) The model receives breakthrough progress 
when the length of continuous fragment 
reaches 1024, 10000 and 60,000. The highest 
result 86% is reached at the 60,000-length 
point, followed by a slight decrease, and 
becomes even lower when the length is larger 
than 200,000 bytes. This explain that this 
model actually has the disadvantage that it is 
not suitable for too long input directly. 

In order to explore the relationship between 
segment position and the result, the results are shown 
in Table 2. 
 

Table 2. Average experimental results using continuous 
fragments of different lengths 

Fragment 
length(bytes) 

Extract from 
front (%) 

Extract from 
End (%) 

Extract 
randomly (%) 

32 67.82 62.96 64.39 

128 75.68 66.28 67.85 

512 80.02 71.36 70.65 

1024 82.84 72.09 76.75 

4096 83.63 73.31 78.59 

10,000 86.75 76.18 80.78 

30,000 87.99 80.71 80.13 

60,000 85.67 77.07 86.92 

100,000 85.98 81.33 82.79 

200,000 82.29 78.73 79.47 

>200,00 80.07 80.52 77.78 

 
It can be seen from Table 2 that the best detection 

is extracted from the front of a file. And extracting 
segments from the end has the worst detection effect. 
This indicates that the beginning of the file may 
contain more information useful for detection, and 
the PE file header is generally at the forefront of a PE 
file. Therefore, this result is in line with our 
understanding. This result reminds us that if we can 
get the full content of the file, we can also extract the 
beginning of it for fast detection. 

5.2. Non-continuous Sampling 

We next tested the effect of non-continuous 
fragments of different lengths. In detail, we 
randomly choose several fragments from one PE 
file and use these segments to do training and 
testing. Among them, we tested fragments with 
and without order. 

Selection of baseline. In this experiment, in 
order to make our model universal, we hope that 
the baseline of fragment we selected is small 
enough but can achieve a relatively high detection 
accuracy. In this case, if the fragment of the same 
file is long, we can still divide the longer segment 
into several smaller base length segments, judge 
them separately, and finally integrate the results. 
This also allows us to detect malware fragments of 
any length without excessive padding. Another 
reason is that as mentioned in Section 1, the 
enterprises always perform packet capturing to 
gain malwares, the packet length is limited, and the 
order of packages is uncertain. In the process of 
packet transmission, the Maximum Transmission 
Unit of the packet is generally set to 1,500 bytes. 
We want the baseline length we choose to be 
smaller than this value, so that even if there is only 
one package, we can detect whether it is malware. 
Finally, we selected 1KB (1024 bytes) as the 
baseline.  

Sig-vote method. In the beginning, two ideas 
for solving this problem were proposed. The first 
one is to directly train a given segment after 
splicing them to a long sequence, we call it method 
1. The second one is to separately detect each 
segment of one file by using the trained model in 
Section 5.1 and integrate the results, we call it 
method 2. As mentioned in Section 4, we need to 
de- duplicate the data used in this part and in 
Section 5.1 to avoid the test data have been trained 
before. For all the ordered fragments, we found the 
results of both methods is similar. For un-ordered 
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fragments, we found the method 2 performs better. 
The method we proposed for integrating is similar 
to vote, but has a little bit difference, so we call it 
sig-vote. As mentioned in Section 3, the last layer 

in our model is sigmoid function. This allows us to 
calculate the sum of all fragments' output. By 
comparing this sum with our present threshold, if it 
is greater than the threshold, then the file is judged  

 

Table 3. Average results using non-continuous fragments  

Fragment 
length(bytes) 

Order or not Accuracy (%) Recall (%) Precision (%) F1-socere(%) 

2*1024 Y 81.17 82.16 81.51 81.84 

2*1024 N 78.29 76.90 81.17 78.98 

3*1024 Y 83.12 82.71 82.00 82.35 

3*1024 N 79.48 78.47 81.25 79.84 

4*1024 Y 82.71 82.58 82.05 82.09 

4*1024 N 83.14 82.86 83.13 83.00 

5*1024 Y 82.68 83.88 84.23 84.03 

5*1024 N 81.66 81.39 81.57 81.48 

6*1024 Y 85.27 84.81 86.24 85.43 

6*1024 N 81.60 81.66 81.57 81.62 

7*1024 Y 82.88 84.77 81.44 83.07 

7*1024 N 83.59 83.11 84.01 83.56 

 
to be malware. By doing lots of experiments, the 
threshold was set by using following equation (2) 
to get higher accuracy, the parameter in it is a 
result based on times of experiments. Suppose 
𝑓𝑟𝑎𝑔_𝑛𝑢𝑚 represents the number of un-
continuous fragments, then 

 
𝑡h𝑟𝑒𝑠h𝑜𝑙𝑑 = 0.42 × 𝑓𝑟𝑎𝑔_𝑛𝑢𝑚          (2)               
 
However, this this is not necessarily the best 

threshold value for each case. In real life, the 
threshold can be adjusted according to the different 
requirements of recall and precision. 
Table 3 shows the results for different length of 
un-continuous fragments. In ‘fragment length’ 
field, 𝑛 ∗ 1024 means we will randomly extract n 
1024-byte fragments from the same file. In 
‘ordered or not’ field, Y means that input is 
ordered, this part of results is gained by using 
method 1 above, and N means that the input order 
is random (there is also a certain probability that 
the fragment is ordered), this part of results is 
gained by using method 2 above. 

 
1) If the input segment is ordered, the 

experimental results do not change 
significantly with the length of the 

fragments, and the results remain at around 
82%. 

2) If the input segment is unordered, the 
experimental result will increase slightly 
with the increase of the length, and then 
remain basically unchanged, maintaining 
at around 83%. 

3) By comparing with the experimental results 
in Section 5.1, it can be found that, if the 
sum of the lengths of the extracted 
fragments is shorter, the discontinuous 
fragment effect is significantly better than 
the continuous fragments. As the length 
increases, this advantage gradually 
diminishes. This may be because when the 
sum of the lengths of the extracted 
segments is short, extracting two segments 
at different positions increases the 
generality of the extracted fragments to the 
overall file. Specifically, the extracted 
continuous segments hold bigger possibility 
that they are meaningless to determine 
whether it is malware, such as there are a lot 
of zeros in it, but randomly extracting two 
non-contiguous fragments can reduce this 
probability. Because in PE file, the end of 
each section is filled with a large number of 
zeros, and the probability that both 
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fragments are at the end of each section is 
reduced. When the extracted continuous 
segments become longer, the probability of 
this is reduced because the selected 
segments are long enough, they nearly 
never filled with zeros, so the two sampling 
methods behave similarly. 

4) Although method 1 is better when the 
fragments is ordered, but it needs more cost 

because it always need to retrain the model 
when the fragments length change. Method 
2 has higher universality. 

5.3. Comparison Experiment 

For continuous fragments. To validate the 
advantages of our proposed model, we compared it  

 
Table 4. Average results for continuous fragment of different kinds of model 

 
Fragment length(bytes) Our model (%) LSTM (%) Normal CNN (%) DNN(%) HMM(%) 

32 64.39 60.47 57.89 59.28 60.32 

128 67.85 68.16 64.01 66.51 66.76 

512 70.65 69.87 68.29 68.09 65.01 

1024 76.75 71.62 70.34 69.34 68.27 

4096 78.59 73.59 73.01 70.26 69.56 

10,000 80.78 79.48 77.95 74.29 72.84 

30,000 80.13 75.61 75.37 72.54 71.92 

60,000 86.92 76.69 75.20 70.43 69.34 

100,000 82.79 72.77 73.94 72.21 73.69 

200,000 79.47 70.56 69.42 76.23 74.07 

>200,00 77.78 71.32 68.30 74.06 72.58 

 
with other commonly used deep learning models 

including Normal CNN, Long-Short Term 
Memory(LSTM), Deep Neural Network(DNN) and 
Hidden Markov Model (HMM). For the other models, 
we have also done many experiments to tuned them 
perform better. Table 4 shows the results. 

It can be seen that CNN's effect is significantly 
better than the other two methods, especially when 
the input sequence becomes longer. 
 

For un-continuous fragments. Although the 
method of detecting separately for each segment and 
finally integrating the results is not very good in a 
given discontinuous ordered fragment, for a 
disordered fragment, sig-vote performs much better 
than directly connecting the fragments. 
 

Table 5. Average results for un-continuous unorder 
fragments of different kinds of model 

Unordered 
fragment length 
(bytes) 

Sig-vote(%) LSTM 
(%) 

Text-
CNN(%) 

2*1024 78.29 78.69 78.84 

3*1024 79.48 78.17 78.80 

4*1024 83.14 80.61 82.71 

5*1024 81.66 75.57 80.04 

6*1024 81.60 74.47 74.68 

7*1024 83.59 71.24 71.08 

 
Table 5 proves that for non-contiguous segments, the 
results obtained by doing sig-vote for the chosen 
fragments are more ideal and stable. The more 
fragments are extracted, the more confusing the order 
is, and this will cause more serious impaction to 
results of the method which splicing the out-of-order 
segments together. In fact, the method sig-vote is 
very malleable as well. For example, in our 
experiments with continuous fragments, we found 
that the result of the continuous segment of 60,000 
bytes is the best. When a given file fragment is very 
large, much larger than 60,000 bytes, we can use a 
continuous model of 60,000 bytes as the baseline for 
detection. In fact, we tested with a number of 
continuous and non-continuous samples containing 
several 60,000 bytes, we finally get up to 91.04% 
accuracy when there is 4 times length of 60,000. So, 
this method can also be applied to the detection of the 
entire file. 
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However, a 60,000 bytes (about equal to 59 KB) 
fragment is not small enough for many PE files, so it 
may not suitable for some of the scenes. 

The training time is proportional to the length of 
the fragment. For our data set, the maximum training 
time when using GPU TITANx4 is no more than half 
an hour, which is very efficient. 

 

6. Conclusion 

In this paper, we have described the malware 
detection by using small fragments of them. CNN-
based method is used to effectively avoid the risk of 
extracting fragile features. We experimented with 
continuous and non-contiguous, ordered and out-of-
order malware fragments and came up with some 
conclusive experimental conclusions. We believe that 
we have contributed to this malware detection field, 
including: 

1) We proposed a method based on the detection 
of small malicious code fragments, and gave 
the usage scenarios of the method in real life. 

2) Through the observation of the data, we 
explained the reasons why the CNN model is 
selected when directly using binary to do the 
detection, the reasons include characters of 
binary like sparsity of the input, complexity of 
time and space, and the relationship between 
CNN’s translation invariance and structure of 
the PE file. 

3) We experimented with continuous and non-
contiguous, ordered and unordered malicious 
code fragments, comparing their final effects 
and explaining the effects. Finally proved that 
it is feasible to detect malwares using small 
fragments only.  

In the future, we will continually modify the model to 
improve the detection rate. We will also try to find 
out why deep learning can successfully detect 
malicious code using very short fragments and try to 
explore its interpretation in the next step. 
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