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Discrete Fourier Transform (DFT):

If the signal is only defined forn=01,..., N —1:
Fourier transform becomes:

F'(f) = Nzl f (n)exp(=j2an), f e(0.1)

Sampling F'(f)at f =k/N, k =01,...,N-1,and rescaling yields:
Forward transform (DFT) :

F(k)=F( %):%sz f (n)exp(—jZﬂ%n), k=01,...,N -1

Inverse transform (IDFT):

f(n) = TZ F(k)exp(jZﬂ—n) n=01..,N-1
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Property of DFT (1)

+ Periodicity F(K)=F(((K))y), k<0 or k>N.
where ((k)), represents modulo N.
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Note: Highest frequency is at k=[N/2]. k=0,1, N-1 represent low frequency.
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Property of DFT (2)

 Translation

t(((n—n)))y) < F(k)exp{-)2z(kn,/N)}
t(n)expy)2k,n/N} < F(((k=Kp))y).

— Special case
* N is even, k, = N/2.

f(nexp{jzn}=f(M(-D" < F(((k —%))N ):

Shifting the frequency up by N/2
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Property of DFT (3)

« Conjugate symmetry for real sequences
= (k) =F " (=k)=F (N -k)
F(k)|=| F(N=Kk)| or

F(%H() o F(%—k) , when N is even.

ALl

012345867 01234567 8
N=8 N=9
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2D Discrete Fourier Transform

* Definition
—Assuming f(lm, n), m=0,1, ..., M-1,n =0, 1,
..., N-1, is a finite length 2D sequence

1 ~jor (M,
F(k,l):mZZf(m,n)e MONT k=01..,M-11=01.. N-1L
m=0 n=0
1 v j2r (N
f(m,n)=m F(k,De M N " m=01..M-1,n=01..N-1.
k=0 1=0

F(U,V) _ Z Z f(m, n)e—jzﬂ(mu+nv)’ U :%’

1/2 p1/2 :
f (m,n) = j F (u,v)e!" ™™ dudy
-1/2 J-1/2

VR
N
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Property of 2D DFT (1)

* Periodicity
F(k,1)=F(((k)y. (1)), k<Oork>M,I<0orl>N.

A

Low
Frequency

High
Frequency

Displayed

area using
fftshift
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Property of 2D DFT (2)

 Translation
fM=m))yu.((n=ny))y) < F(k)exp{—j2z(kmy/M +Iny/N)},

f(m,nexp{j2z(k,m/M +1,n/N)} = F(((k=kp)y, (1 =1,))y).
— Special Case: M,N=even, k,=M/2, 1,=N/2

f(mn)exp{jz(m+n)}=f(mn)(-)"" < F((k —%))M ,(( —%))N ).

f(m,n)(-1)(m+n)

g
F(k-M/2,I-N/2)
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Property of 2D DFT (3)

« Conjugate symmetry for real sequences

F(k,1)= F"(—k,~1)= F"(M —k,N —I),
|F(k,1)=| F(M —k,N 1],

| F(M+k,ﬁ+|)|:| F(M—k,E—I)L for M, N =even
2 2 2 2

3021 0|1 41321
6|7 9 [33(32]31 5|6 |7 9 |40|39|38|37
10111112113114|30|29| 28 10|11|12|13|14|36|35|34 |33
15116117118 19|27|26 |25 15|16|17|18|19|32|31|30|29
20|21|22(23]24 (23|22 21 2021|2223 24+28 2712625
1525|2627 |19|18|17 |16 20|25|26|27(28(24(23|22 |21
10|28|29|30(14]13|12] 11 15(29(30(31(32|19(18(17|16
5(31/32(33|9|8|7 |6 10|33|34|35|36|14 13| 12| 11
5|37|38(39(40|9 |8 |7 |6

M=N=8=even, real | x Conjugate pairs M=N=9=0dd
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Property of 2D DFT (5)

« Separabability

— 2D DFT can be accomplished by N-point 1D DFT of
each row, followed by M-point 1D DFT of each
column

 How many 1D DFT’s?
— M rows: M N-pt DFT's
— N columns: N M-pt DFT's
— M=N: 2N N-pt DFT’s
— Each N-pt DFT requires N2 operations, total requiring
2N3 operations

 Direct calculation
— Requiring M2N? (N4 if M=N) operations

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Property of 2D DFT (6)

« 2D DFT of Separable Images
f(m,n) = f (m)f,(n) < F(k,I)=F,K)F,(I)

In matrix form:

f=ff, ©F=EF

- (0,0) f(0) -~ f(ON-1) |
f (1,0) fay - f(1,N-1)

f(M-10) f(M-11) - f(M-1N-1)]
fx:[fx(o) 1:x(l) fx(M _]-)]T< Mol >Fx
£ =[f,0) f@) - f (N[ NRILOT R

Real images are seldom separable. But many 2D filters are separable.
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Computer Implementation of 2D DFT

« Complex array structure

* Implement complex multiplication and
addition

« Pre-compute the constants: e12m™mM for g||
k.m=0, 1, ..., M-1, and e72mnN for all |,n=0,
1, ..., N-1.

» Use separable processing to speed up

* For real square image, only need to
calculate half of the points

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Display of the Magnitude of 2D DFT

 Shifting the low frequency components

Into the center

g(mn)=f(mn)(-)"" < G(k,|)=F(((k—%))M,((l—%))N)-

F(k,I)

N

Frequency ‘

Matlab command: fftshift

Yao Wang, NYU-Poly

EL5123: DFT and unitary transform
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Display of the Magnitude of 2D DFT

* Amplitude rescaling G(k,l) =log(1+ F (k,I))

abs(F) (normalized, F=ft2({lenna)) abs(ftshift(F))

Ir::ug1E| (absiF Iogmtabstﬁtshiftilzjj+”lj

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Sample Fourier pairs

Which Fourier transform in the second row is for each image in the first row?

<N

——————

(a) (b) (c)

(e) (f) (9) (h)

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 16



Fast Fourier Transform (FFT)

 Direct computation of N-point DFT takes N2
operations

 FFT is a fast algorithm for computing DFT,
reducing the computation from N2 to N log,(N)

— Complex conjugate symmetry of g~ 12#N

pi2AK(N-N)/N _ qj2mkn/N _ o=j2mk(-n)/N _ (e—jZﬂkn/N )*

— Periodicity in n and k of e 12#"N
o~ 1280/N _ o= j27K(+N)IN _ o= j2z(k+N)n/N

« Matlab function for N-point DFT: fft(A,N),
fft2(A,M,N)

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Computation of 2D DFT

« 2D (MxN) point DFT can be computed in a
separable manner:

— First compute N-point FFT for each row (M N

log, (N) )
— Then compute M-point FFT for each column (N M

log, (M) )
— Total computation if M=N: 2NZlog, (N)

FIGURE 4.35
Computation of
the 2-D Fourier
transform as a
series of 1-D
transforms.

1-D 1-D
row column
transforms transforms
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Convolution Theorem (1D)

* Circular convolution (N-pt)
f(n)®h(n) = NZ’j f(((n—k))y)h(k)

f(((n-k))n)
f(n) * h(n) ® ®
LU e D
01234 n 01234 n 0 N n+2 n+4 K

n-1 n+1 n+3

* Convolution theorem
f(n)®h(n) < F(k)H(Kk)

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 19



Linear Convolution vs. Circular
Convolution

f(n): N1 pt, h(n): N2 pt, assume N1>=N2
f(n)*n(n): N=N1+N2-1 pt

Equivalent to circular convolution of M-pt, if
M>=N

If we do N1 pt circular convolution, which parts
of the resulting output is equal to that of linear
convolution (assume N2 is much smaller than

N1)?
— |llustrate on board

— If f(n) is from 0 to N1-1, h(n) is from 0 to N2-1
— Circular conv. = linear conv. Over N2-1 to N1-1

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Calculate Linear Convolution Using DFT

* 1D case
—f(n) is length N, h(n) is length N,
—g(n) = f(n)*h(h) is length N = N,+N,-1.
— To use DFT, need to extend f(n) and h(n) to
length N by zero padding.

Convolution
f(n) * h(n) = g(n)

N-point DFT ] [ DFT] [ DFT] [

Multiplication
F(k) X H(k) —> G(k)

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 21



Calculate Linear Convolution Using DFT

0L ol
01 1 ol
f(n)*h(n) = f,(n)®h,(n) . F.(K) H(K)

g, il




Comparison of Complexity

* Direct calculation
— Each point, N, multiplications
— Overall, N, * N = O(N?)
* ViaFFT
— N-point FFT for f(n) and h(n)
— N multiplications in the DFT domain
— N-point inverse FFT for F(k)*H(k)
— QOverall, 3NlogN + N = O(NlogN)

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Circular Convolution (2D)

* Circular Convolution

M-1IN-1

f(mn)®@h(m,n)=2 > f(((m=-k))y, ((n-1)))hek,1)

k=0 I=0

e Convolution Theorem
f(m,n)®h(m,n) < F(k,HH(,I)



Circular vs. Linear Convolution

— If f(m,n) is N1xM1 pt, h(m,n) is N2xm2 pt
—f(m,n)*h(m,n) is N'’xM’ pt, N'’=N1+N2-
1!M,=M1+M2'1

— Equivalent to NxM pt circular convolution if
N>=N",M>-M’

— Can be implemented by using NxM pt 2D
DFT!

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Separable filter

* If the filter is separable,
—h(m,n)=hx(m) hy(n)
— Row-by-row circular convolution with hy(n),

then column-by-column circulua convolution
with hx(m)

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Filtering in DFT Domain

Frequency domain filtering operation

Filter Inverse

Fourier o [
transform - function e Fourier
c Hu, v) transform

Flu, v) Hu, v)F(u,v)
Post-
processing

Pre-
processing

fx.¥) g(x.y)
[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Relation between spatial and frequency domain operation:

g(x,y)=h(x,y)® f(x,y) < G(u,v)=H(u,v)F(u,v)
h(x,y)=IDFT(H(u,v)), H(u,v)=DFT(h(x,Y)).

Typically DFT size=image size. This corresponds to circular convolution.

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 27



Low-Pass Filter Using DFT Window

Filtering in DFT domain:

— G(k,D=H(k,I) F(k,I)

|deal Low-Pass Filter

— H(k,)= 1 in low frequency range (the four corners!)
= 0 in high frequency range

— Can think of H(k,l) as a mask in the DFT domain

« The (k,)th coefficient is unchanged if H(k,1)=1, and is set to zero if
H(k,I)=0.

More generally, H(k,l) can take on higher values in low-

frequency range, and lower values in high frequency
range

Note that equivalent spatial filter is truncated sinc. With
Circular convolution, it leads to ringing artifacts.

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Low-Pass Filter in DFT Domain

The window size where
H(k,I)=1is
(2 W1+1)x(2 W2+1)

Before
shifting: note
low frequency

The window can be implemented in matlab via
» R1=zeros(M,1);
» R1(1:W1+1,M-W1+1:M)=1;

are at four
» R2(1:W2+1 N-W2+1:N)=1;
» H=R1*R2’;

Given G(k,)=F(k,DH(k,l), matlab may make small numerical errors in
the inverse transform leading to complex valued images. g(m,n) is
best reconstructed via:

» g=real(ifft2(F.*H));

Yao Wang, NYU-Poly EL5123: DFT and unitary transform

29



Example

Yao Wang, NYU-Poly

EL5123: DFT and unitary transform

Courtesy of Onur Guleyuz
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Spatial Filter Corresponding
to ldeal L PE

10 20 30 40 50 60 RS
a1

0osd.

Ideal LPF with D
W1=W2=10 "

0.08 L.
a0

0o

To suppress the ringing artifacts, the window function should be smoothed
by an appropriately designed smoothing function.

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 31



High Pass Filtering

* The high-pass filtered image can be
thought of as the original image minus the
low pass filtered image.

— High-pass filtering by DFT windows:

* If w(k,l) (W1 W2)is a low-pass DFT window,
simply define a high-pass window h(k, ) by h(k, 1)
=1 —-wi(k, ).

— High-pass filtering in spatial domain:

* If L is a low-pass filter of size W, simply define a

high pass filter H via H(m,n) = d(m,n) - L(m,n).

Courtesy of Onur Guleyuz

Yao Wang, NYU-Poly EL5123: DFT and unitary transform

32



High Pass Filtering in DFT Domain

W,I:Wz:ﬂro (nrml) W1:W2:30 (nrmil) W1 :WEZQD inrml}

h (normalized) h (normalized) h (normalized)

Yao Wang, NYU-Poly EL5123: DFT and unitary transform



DFT as Unitary Transform

We have so far explained DFT as sampled
version of DTFT for finite duration discrete time
signals

Finite duration discrete time signal = vector (1D)
or image (2D)

Transform = decomposition of vector or image
into a weighted sum of some basis vectors or
Images.

Unitary transform : basis functions are
orthonormal to each other

DFT uses a special type of basis functions

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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One Dimensional Linear Transform

« Let CN represent the N dimensional
complex space.

* Let hy, hy, ..., hy 4 represent N linearly
independent vectors in CN.

« For any vector f € CN,
f= Nth(|<)11k - Bt,

O ] = =BT = Af

t(1
where B=[h,,h,,...h ] t= (,)
: fand t form a transform pair

_t(N.—l)_

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 35



Inner Product

Definition of inner product

<f, £, >=f"f, = Nj f, (n) f,(n)

Orthogonal

<f,f,>=0

Norm of a vector

[ =<t.6 5= "¢ = 3| £ ()

Normalized: unit norm | =1
Orthonomal = orthogonal + normalized

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Orthonormal Basis Vectors (OBV)

* {h,, k=0,...N-1} are OBV if

1 k=l

<h.,h >=6,, ={0 |

N-1 N-1
<h,,f>=<h;, ) t(kh, >=> t(k) <h, h, >=t(l)=h,"f
k=0 k=0

f=B"f=Af

B'=B" orB"B=BB" =1. B is unitary

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 37



Definition of Unitary Transform

Basis vectors are orthonormal

t(k) =<h,,f >= Nz_lhk (n)" f(n),

f=B"f = Af

()= Y tkoh, ()

N-1
f=>tkh,=h, h, - h Jt=Bt=Axt
k=0

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Example of 1D Unitary Transform

1/2] 1/2 ] - 1/2 ] 1/2 ]
1/2 1/2 ~-1/2 ~-1/2
h, = h, = h, = h, =
1/2 ~-1/2 ~-1/2 1/2
1/2 —-1/2] 1/2 | —-1/2]
L (t,=5
2 t, =-2
f = e
3 t,=0
4 t,=-1

Yao Wang, NYU-Poly EL5123: DFT and unitary transform



Property of Unitary Transform

* Energy preservation: ||f||=][t|].
Proof: [f|=f"f=t"AA"t=t"t=|¢t|
* Mean vector relation:
B =Ap,, p,=A"p, where
p, =E{f} and p, = E{t}

 Covariance relation:
C,=AC, A", C, =A"C,A, where

C,=E{(f-p;)f-n,)"} C =E{t-p)(t—pn)"}
Proof:

t-p, =A(f-p;) = C=E{Af-p)f-p,)"A"}=ACA".

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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1D DFT as a Unitary Transform

Yao Wang, NYU-Poly

1 N-1 —j27r@
Fl)=—7=2 f(me ¥, k=0,1..,N-1
n=0
1 N-1 127rm
f(n):—N F(kle N, n=0,1..,N-1
k=0
1 2t
hk(n)=fe N oor
_ 1 _
1 ejZﬂ%
h, =— , ' k=01...,N-1.
\/W jzﬂ(.N—l)k
e N

EL5123: DFT and unitary transform
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Example: 1D DFT

N = 2 case : there are only two basis vectors:

-
1 eXP(JZﬂEO)_ ) =iHh:iF}
k \/E k . 0 \/51’1 \/E—l

exp( 127 —1
i p(] > )_

2
iff:{ , determinet,,t,
2

Usingt, =<h,,f >, we obtain

B L ST

Verify :t;h +th—31 L)1 —1—f
OO T ol 20 -1 (2|

Yao Wang, NYU-Poly EL5123: DFT and unitary transform



Another Example: 1D DFT

exp(j27zE
4 1]
_ exp(j27zkl) _ 111
N =4case: usingh, = Iff yields: h,=—
exp(jZnZZ) 211
1
exp(j27z53)
L 4 "
o
1(2+4+5+3): 1
4 2 2
=l = 1 1
S ==(2-415-3)=0; t,==
3 2 2

Verify: th, +th, +t,h, +t;h, = "

Yao Wang, NYU-Poly

O)_

 14-(3+])-(B-1]) |
1114-CB+)J+B-1))]

14+ 3+ j)+(83—])

(14+3+ 1)1 -B=-1) 1]

EL5123: DFT and unitary transform
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16
20
12

(2-4j-5+3])= —%(3+j);

(2+4j-5-3])=——(3- i)




Two Dimensional Decomposition

* Decompose an MxN 2D matrix F=[F(m,n)]
into a linear combination of some basic
images, H, =[H, ,(m,n)], so that:

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Graphical Interpretation

Inverse transform: Represent a vector (e.g. a block of image samples) as the
superposition of some basis vectors (block patterns)
Forward transform: Determine the coefficients associated with each basis vector

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 45



Two Dimensional Inner Product

* |nner Product

M-1N-1

<F,F,>=» % F (m,n)F,(m,n)

m=0 n=0

* Norm of a Matrix
M-1N-1

B =<F,F>= Y >|F(m,n)

m=0 n=0

* A set of basis images {H, , k=0,1,..

1=0,1,...,N-1} is orthonormal if
if k=i,1=j

1
<Hy,, H; >=0,;0,; :{ 0, otherwise

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Two Dimensional Unitary Transform

* {H\ } Is an orthonormal set of basis images
* Forward transform

M-1N-1

T(k,1)=<H,,,F>=> > H,, (mn)F(m,n)

m=0 n=0

* |nverse transform
M-1N-1

F(m,n) = ZZT(k H,,(m,n), or
F = N 1T (k,)H,,

k=0 1=0

Z

Il
o

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Example of 2D Unitary Transform

1/2 1/2 1/2 1/2 1/2 -1/2 1/2 -1/2
Hy, = , Hoy = ,Hyy = , Hy, = ,
1/2 1/2 -1/2 -1/2 1/2 -1/2 -1/2 1/2

(T(0,0)=5
{1 2} T(01) = -2
= = <
3 4 T(L0)=-1
| T@LD)=0

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 48



2D DFT as a Unitary Transform

M-1IN-1 : (

Ly . | -.
d .... ..l | BN g
| 1kl ll
ALY "'li'l.
lI I IIIIIIII I Il |
10 20 30 40 50 60 70

Basis Images for 8x8 DFT (Real Part)

Notice how the frequency content of the basis images change !
Yao Wang, NYU-Poly EL5123: DFT and unitary transform 49
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Separable Unitary Transform

Let h,, k=0, 1, ..., M-1 represent
orthonormal basis vectors in CM,

Let g,, [=0, 1, ..., N-1 represent
orthonormal basis vectors in CN,

He =hg,', or Hy ,(m,n)=h,(m)g,(n).
Then H, , will form an orthonormal basis
set in CMXN,

Yao Wang, NYU-Poly EL5123: DFT and unitary transform

50



Example of Separable Unitary Transform

* Example 1
N EYRF N R
oyt =142
B o_phT 1/2 1/2 HopnT 1/2 -1/2
0T 2 172 T 2 —1/2
Ho o nnT 1/2  1/2 Wbt 1/2 —1/2
00 172 —1/2 Lo 172 1/2
+ 2D DFT -
1 j27r—m—n
H,,(mn)= e M NJ
k,I( ) \/m
1 jer 1 e
h(m)=——e M, n=——e "
«(m) i g,(n) N

Yao Wang, NYU-Poly EL5123: DFT and unitary transform
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Example: 4x4 DFT

Recall the1D DFT basis are:

using H,, =h,(h,) yields:
1111
111 1 1 1
Ho,o__ 1
41 1 1 1
1111
1 1 1 1
3 b 7 ]
Hl,o__
4-1 -1 -1 -1
e
1 1 1 1
11-1 -1 -1 -1
HZ,O__ I}
41 1 1 1 1
-1 -1 -1 -1
1 1 1 1
-7 -7 -7 -]
H3,O__ ]
4/-1 -1 -1 -1
N R

Yao Wang, NYU-Poly

1 1 1
Bo = ;hlzé —11 ;hf% 11;h3:% —i
—] -1 J
1 j -1 —j 1 -11 -1 1 —j -1 ]
A 111 -1 1 -1 111 —j -1
Moa=gly 0 g M2 11 I
j j j j
1 -1 -] Llll 1 —j -1 ]
1§ -1 —j 1 -1 1 -1 1 —j -1 |
P I e et BN PPN I A B (et | T 116 B T B
41 - 1 | “o4-1 1 -1 1 T4 -1 1 -
- 1 j -1 =t B e B -j -1 j 1
1§ -1 —j 1 -1 1 -1 1 —j -1 j
11-1 —j 1 j 11-1 1 -1 1 11-1 j 1 —j
227201 ) -1 —j a1 -1 1 -1 P a1 - -1
11 11 -1 1 N
1§ -1 —j 1 -1 1 -1 1 —j -1 |
S o S B | RPN Lo B B S N EE B B B
411 -3 1 J “41-1 1 -1 1 T4 -1 1 -]
-1 -j 1 | I | b1 i 1
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Example: 4x4 DFT

1 2 2
013 1
ForF = , compute T, ,
012 1 ‘
12 2 -1
Using T, =<H, |,F > yields,e.g,
1111|122 0
/{1 1110 1 3 1 1 18
Too=<Hg, F>=~— , == (1+2+2+0+0+1+3+1+0+1+2+1+1+2+2-1)=—
’ ’ 41111 1|0 1 2 1 4 4
1111|122 -1

T,;=<H,,,F >=7 =%(1+2j—2—j+3+j+j—2—j—1—2j+2—j):%(1—j)

N PPN
N N W DN
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Property of Separable Transform

* When the transform is separable, we can
perform the 2D transform separately.

— First, do 1D transform for each row using
basis vectors g,

— Second, do 1D transform for each column of
the intermediate image using basis vectors h,.

— Proof:

M-1IN-1

T(k)= >3 Hy, (mmF(m,n) = Zh:(m)z g’ (N)F (m,n) = Zh:(m)u (m, )
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Computational Savings of

Separable Transform

« A MxN transform takes about MxN
calculations for each transform value,
and the total number of calculation is

M2N2 (N4 if M=N)
If the transform is separable

1. Calculate M N-point 1D transform, each
requiring N2 calculations

2. Calculate N M-point 1D transform, each
requiring M? calculations

3. Overall: MN2+NM?2 (2N3, if M=N)
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Other Transforms

Discrete cosine transform (DCT)
— Basis functions are real
— Can be thought of as “real version” of DFT

— We will discuss DCT and its application in image compression
(JPEG) later

Discrete sine transform (DST)
Hadamard transform

Walsh transform

Haar transform

Slant transform

Wavelet transform
— Multi-resolution transform

— We will discuss wavelet transform and its application in image
compression (JPEG2000) later
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Homework

Find the NxN point DFT of the following 2D image f(m, n), 0 <m, n < N:
a)fim,n)=1,n=0;f(m,n)=0;n#0.

b) f(m, n)=1, m=0; f(m, n) =0, m# 0.

c) f(m, n) =1, m =n; f(m, n) = 0, otherwise.

d) f(m,n)=1, m=N-1-n; f(m, n) =0, otherwise.

From the result, what can you say about the relation between the directionality of an
image with that of its DFT?

One can use the DFT algorithms to compute the linear convolution of an image F(m,
n) with a filter H(m, n). Let the convolved image be denoted by Y(m, n).

1) Suppose the image size is 256x256 and the filter size is 11x11: What is the
required size of the DFT to obtain the convolution of these two? Explain the exact
steps to obtain the convolution result.

iil) Suppose we use a 256x256 point DFT algorithm for F(m, n) and H(m, n), and
obtain Z(m, n) as follows: Z = IDFT (DFT(X).*DFT(H)). The DFT and IDFT in the
above equation are both 256x256 points. For what values of (m, n) does Z(m, n)
equal Y(m, n) ?
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Homework (cnt’'d)

Show that the following vectors form an orthonormal basis set for any value of 6:
cosé —-sing
h,=| . hy =
Lln 6’} { cosd }
Determine the corresponding matrix A and B for the forward and inverse transform described by
Forward transform: t = Af; Inverse transform: f = Bt.

Consider a zero mean random vector u with covariance matrix

1
e,
p 1

From the class of unitary transforms given in Prob. 3, determine the value of 8 for which the
components of transformed vector v will be uncorrelated (i.e., the covariance matrix of the
transformed vector is a diagonal matrix).

The basis images of the 2D-DCT are:

H_111_H_11 1_H_11—1_H_11—1_
ol 1 " 201 —1f 201 o~ M 2]-1 1)

Calculate the transform of the image: {1 2}
2 3

Find the reconstructed image Fobtained with the 2 largest coefficients (in magnitude). Calculate
the error between the original and reconstructed images defined by  E=)_ [F(mn)-F(mn)J You
should see that E=2 .\ ..ol LK DI Where t(k, I) represents the transform coefficient
associated with the basis image H,,.
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Computer Assignment

Perform 2D DFT (using the fft2 function in Matlab) on several test images of your choice
(sample images are available at the Matlab image toolbox directory). Display the magnitude of
the DFT image with and without shifting (using fftshift) and with and without logarithmic
mapping, to see the effect of shifting and logarithmic mapping. Include the printouts in your
submission. Also, examine in which frequency range the DFT coefficients have large
magnitudes and explain why. Note that you may want to work on a small portion of your image
(say 256x256 or less), to save computation time.

Note that if your image is an RGB image, you should convert it to a grayscale image using
"rgb2gray" function and apply the above operations on the grayscale image only. If the original
image is an index image, you should not apply DFT to the index image directly, rather you
should derive the grayscale image from it, using the "ind2gray" function.

Write a program (in Matlab or C) which filters an image by zeroing out certain DFT coefficients.
The program consists of 3 steps:

1) performing 2D DFT (you can use the “fft2" function in Matlab);
2) zeroing out the coefficients at certain frequencies (see below);

3) performing inverse DFT to get back a filtered image. Truncate or scale the image properly
such that its range is between 0 and 255.

For part 2, try the following two types of filters:

(@)letF(k,1)=0for TN <{k, I} <(1-T )N, T = 1/4, 1/8 (i.e., low-pass filtering);

(b) let F(k, I) = 0 for the following regions i) 0 < {k and I}= TN;ii) 0<=k <=TN, and (1 - T)N <|
SN-1ii)(1-T)IN<ksN-1and 0 <{l}< TN; iv)(1-T)N<kand I =N -1;T=1/4, 1/8
ﬁtompare the original and processed images. Comment on the function of the two types of
ilters.
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Reading

* R. Gonzalez, "Digital Image Processing,”
Chap.4, except Sec. 4.5.

* A. Jain, "Fundamentals of Digital Image
Processing,” Chapter 5.
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