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Lecture Outline

• 1D discrete Fourier transform (DFT)
2D discrete Fo rier transform (DFT)• 2D discrete Fourier transform (DFT)

• Fast Fourier transform (FFT)
• DFT domain filtering
• 1D unitary transform1D unitary transform
• 2D unitary transform
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Discrete Fourier Transform (DFT): 
DTFT for Finite Duration SignalsDTFT for Finite Duration Signals
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Property of DFT (1)
• Periodicity
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low lowhigh
Note: Highest frequency is at k=[N/2]. k=0,1, N-1 represent low frequency.



Property of DFT (2)

• Translation
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– Special casep
• N is even, k0 = N/2.
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Property of DFT (3)

• Conjugate symmetry for real sequences
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2D Discrete Fourier Transform

• Definition
Assuming f(m n) m = 0 1 M 1 n = 0 1– Assuming f(m, n), m = 0, 1, …, M-1, n = 0, 1, 
…, N-1, is a finite length 2D sequence
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Property of 2D DFT (1)

• Periodicity
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Property of 2D DFT (2)
• Translation
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Property of 2D DFT (3)

• Conjugate symmetry for real sequences
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M=N=8=even, x xreal Conjugate pairs M=N=9=odd



Property of 2D DFT (5)
• Separabability

– 2D DFT can be accomplished by N-point 1D DFT of2D DFT can be accomplished by N point 1D DFT of 
each row, followed by M-point 1D DFT of each 
column

• How many 1D DFT’s?
– M rows: M N-pt DFT’s

N l N M t DFT’– N columns: N M-pt DFT’s
– M=N: 2N N-pt DFT’s
– Each N-pt DFT requires N2 operations total requiring– Each N-pt DFT requires N operations, total requiring 

2N3 operations
• Direct calculation
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– Requiring M2N2 (N4 if M=N) operations



Property of 2D DFT (6)

• 2D DFT of Separable Images
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Real images are seldom separable. But many 2D filters are separable.  



Computer Implementation of 2D DFT

• Complex array structure
Implement comple m ltiplication and• Implement complex multiplication and 
addition

j2 k /M• Pre-compute the constants: e-j2πkm/M for all 
k,m=0, 1, …, M-1, and e-j2πln/N for all l,n=0, 
1, …, N-1.

• Use separable processing to speed up
• For real square image, only need to 

calculate half of the points
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calculate half of the points



Display of the Magnitude of 2D DFT

• Shifting the low frequency components 
into the centerinto the center
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Frequency Frequency

Matlab command: fftshift



Display of the Magnitude of 2D DFT

• Amplitude rescaling )),(1log(),( lkFlkG 
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Sample Fourier pairs
Which Fourier transform in the second row is for each image in the first row?

(a) (b) (c) (d)

(e) (f) (g) (h)(e) (f) (g) (h)
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Fast Fourier Transform (FFT)
• Direct computation of N-point DFT takes N2

operationsoperations
• FFT is a fast algorithm for computing DFT, 

reducing the computation from N2 to N log2(N)g p g2( )
– Complex conjugate symmetry of Nknje /2

 */2/)(2/2/)(2 NknjNnkjNknjNnNkj eeee   

– Periodicity in n and k of Nknje /2

 eeee 

NNkNNkNk /)(2/)(2/2

• Matlab function for N-point DFT: fft(A,N), 
fft2(A M N)

NnNkjNNnkjNknj eee /)(2/)(2/2   
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fft2(A,M,N)



Computation of 2D DFT

• 2D (MxN) point DFT can be computed in a 
separable manner:separable manner: 
– First compute  N-point FFT for each row (M N 

log (N) )log2 (N) )
– Then compute M-point FFT for each column (N M 

log2 (M) )log2 (M) )
– Total computation if M=N:   2N2log2 (N)
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Convolution Theorem (1D)

• Circular convolution


1N

• Circular convolution• Circular convolution (N-pt)
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Linear Convolution vs. Circular 
ConvolutionConvolution

• f(n): N1 pt, h(n): N2 pt, assume N1>=N2
• f(n)*h(n): N=N1+N2-1 pt
• Equivalent to circular convolution of M-pt, if 

M>=N

• If we do N1 pt circular convolution, which parts 
of the resulting output is equal to that of linear 
convolution (assume N2 is much smaller than 
N1)?
– Illustrate on boardIllustrate on board
– If f(n) is from 0 to N1-1, h(n) is from 0 to N2-1
– Circular conv. = linear conv. Over N2-1 to N1-1

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 20



Calculate Linear Convolution Using DFT

• 1D case
f(n) is length N h(n) is length N– f(n) is length N1, h(n) is length N2

– g(n) = f(n)*h(h) is length N = N1+N2-1.
T DFT d t t d f( ) d h( ) t– To use DFT, need to extend f(n) and h(n) to 
length N by zero padding.

f(n) h(n) g(n)*
Convolution

F(k) H(k) G(k)x

N-point DFT DFT DFT

Multiplication

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 21



Calculate Linear Convolution Using DFT

f(n), N1=5 fe(n), N=8 Fe(k)

n n k

h(n), N2=4 he(n), N=8 He(k)

n n k
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Comparison of Complexity

• Direct calculation
Each point N multiplications– Each point, N2 multiplications

– Overall, N2 * N ≈ O(N2)
Vi FFT• Via FFT
– N-point FFT for f(n) and h(n)
– N multiplications in the DFT domain
– N-point inverse FFT for F(k)*H(k)
– Overall, 3NlogN + N ≈ O(NlogN)
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Circular Convolution (2D)

• Circular Convolution


 1 1M N
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Circular vs. Linear Convolution
– If f(m,n) is N1xM1 pt, h(m,n) is N2xm2 pt
– f(m n)*h(m n) is N’xM’ pt N’=N1+N2-– f(m,n) h(m,n) is N xM  pt, N =N1+N2-

1,M’=M1+M2-1
– Equivalent to NxM pt circular convolution ifEquivalent to NxM pt circular convolution if 

N>=N’,M>-M‘
– Can be implemented by using NxM pt 2DCan be implemented by using NxM pt 2D 

DFT!
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Separable filter

• If the filter is separable, 
h(m n)=hx(m) hy(n)– h(m,n)=hx(m) hy(n)

– Row-by-row circular convolution with hy(n), 
then column by column circulua convolutionthen column-by-column circulua convolution 
with hx(m)
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Filtering in DFT Domain

Relation between spatial and frequency domain operation: 

))(()())(()(
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)).,((),()),,((),( yxhDFTvuHvuHIDFTyxh 
Typically DFT size=image size.  This corresponds to circular convolution.



Low-Pass Filter Using DFT Window
• Filtering in DFT domain:

– G(k,l)=H(k,l) F(k,l)
• Ideal Low-Pass Filter

– H(k,l)= 1 in low frequency range  (the four corners!) 
= 0  in high frequency range 

– Can think of H(k,l) as a mask in the DFT domain
• The (k,l)th coefficient is unchanged if H(k,l)=1, and is set to zero if 

H(k,l)=0.

• More generally, H(k,l) can take on higher values in low-
frequency range, and lower values in high frequency 
range

• Note that equivalent spatial filter is truncated sinc. With 
Circular convolution, it leads to ringing artifacts.
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Low-Pass Filter in DFT Domain

The window size where 
H(k l)=1 is

• The window can be implemented in matlab via

H(k,l)=1 is 
(2 W1+1)x(2 W2+1)

Before The window can be implemented in matlab via
» R1=zeros(M,1);
» R1(1:W1+1,M-W1+1:M)=1;
» R2=zeros(N,1);

shifting: note 
low frequency 
are at four 
corners!( , );

» R2(1:W2+1,N-W2+1:N)=1;
» H=R1*R2’;

• Given G(k,l)=F(k,l)H(k,l), matlab may make small numerical errors in 

corners!

the inverse transform leading to complex valued images. g(m,n) is 
best reconstructed via:

» g=real(ifft2(F.*H));
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Example
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Spatial Filter Corresponding 
to Ideal LPFto Ideal LPF 
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To suppress the ringing artifacts, the window function should be smoothed 
by an appropriately designed smoothing function.



High Pass Filtering

• The high-pass filtered image can be 
thought of as the original image minus thethought of as the original image minus the 
low pass filtered image.

High pass filtering by DFT windows:– High-pass filtering by DFT windows:
• If w(k,l) (W1 W2) is a low-pass DFT window, 

simply define a high-pass window h(k, l) by h(k, l) p y g p ( , ) y ( , )
= 1 – w(k, l).

– High-pass filtering in spatial domain:
• If L is a low-pass filter of size W, simply define a 

high pass filter H via H(m,n) = δ(m,n) - L(m,n).
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High Pass Filtering in DFT Domain
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DFT as Unitary Transform
• We have so far explained DFT as sampled 

version of DTFT for finite duration discrete time 
signals

• Finite duration discrete time signal = vector (1D) 
or image (2D)or image (2D)

• Transform = decomposition of vector or image 
into a weighted sum of some basis vectors orinto a weighted sum of some basis vectors or 
images.

• Unitary transform : basis functions are 
orthonormal to each other

• DFT uses a special type of basis functions
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One Dimensional Linear Transform

• Let CN represent the N dimensional 
complex spacecomplex space.

• Let h0, h1, …, hN-1 represent N linearly 
independent vectors in CNindependent vectors in CN.

• For any vector f є CN, 
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Inner Product

• Definition of inner product
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Orthonormal Basis Vectors (OBV)

• {hk, k=0,…N-1} are OBV if
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Definition of Unitary Transform

• Basis vectors are orthonormal
For ard transformfh
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Inverse transform
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Example of 1D Unitary Transform 
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Property of Unitary Transform

• Energy preservation: ||f||=||t||.
Proof: ttttAAtfff  HHHHProof: 

• Mean vector relation:
ttttAAtfff 
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1D DFT as a Unitary Transform
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Example: 1D DFT 
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Another Example: 1D DFT 













































1
11

1
1

1
11

1
1)1

4
2exp(

)0
4

2exp(

1 jj
kj

kj





hhhhh







































































12

1;

1
1
1

2
1;

12
1;

1
1
1

2
1:yields 

)3
4

2exp(

)2
4

2exp(
4

2
1 using  :case 4 3210

j

j

j

j

kj

kj
N k





   
f












);3(
2
13542

2
1;73542

2
1

4
2

4

10 jjjtt

     
f











 

















8)3()3(14

.3
2
13542

2
1;03542

2
1

222

3
5

32

jj

jjjtt

fhhhh 



























 





12
20
16

4
1

)3()3(14
)3()3(14
)3()3(14

4
1  :Verify 33221100

jjjj
jj

jjjj
tttt

Yao Wang, NYU-Poly EL5123: DFT and unitary transform 43



Two Dimensional Decomposition

• Decompose an MxN 2D matrix F=[F(m,n)] 
into a linear combination of some basicinto a linear combination of some basic 
images, Hk,l=[Hk,l(m,n)], so that:
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Graphical Interpretation

+
t1 t2 t3 t4
t1 t2 t3 t4

Inverse transform: Represent a vector (e.g. a block of image samples) as the 
superposition of some basis vectors (block patterns)
Forward transform: Determine the coefficients associated with each basis vector
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Two Dimensional Inner Product

• Inner Product
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• A set of basis images {Hk,l, k=0,1,…,M-1, 
l=0 1 N-1} is orthonormal if
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Two Dimensional Unitary Transform

• {Hk,l} is an orthonormal set of basis images
For ard transform• Forward transform
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• Inverse transform
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Example of 2D Unitary Transform
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2D DFT as a Unitary Transform
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Basis Images for 8x8 DFT (Real Part) Basis Images for 8x8 DFT (Imaginary Part)
Notice how the frequency content of the basis images change !



Separable Unitary Transform

• Let hk, k=0, 1, …, M-1 represent 
orthonormal basis vectors in CMorthonormal basis vectors in C ,

• Let gl, l=0, 1, …, N-1 represent 
orthonormal basis vectors in CNorthonormal basis vectors in CN,

• Hk,l=hkgl
T, or Hk,l(m,n)=hk(m)gl(n).

• Then Hk,l will form an orthonormal basis 
set in CMxN.
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Example of Separable Unitary Transform

• Example 1
 2/12/1
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Example: 4x4 DFT
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Example: 4x4 DFT
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Property of Separable Transform

• When the transform is separable, we can 
perform the 2D transform separatelyperform the 2D transform separately.
– First, do 1D transform for each row using 

basis vectors gbasis vectors gl,
– Second, do 1D transform for each column of 

the intermediate image using basis vectors hkthe intermediate image using basis vectors hk.
– Proof:

   11 11 1 MM NM N
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Computational Savings of 
Separable TransformSeparable Transform

• A MxN transform takes about MxN 
calculations for each transform value,calculations for each transform value, 
and the total number of calculation is 
M2N2 (N4 if M=N)( )

• If the transform is separable
1. Calculate M N-point 1D transform, each p ,

requiring N2 calculations
2. Calculate N M-point 1D transform, each 

i i M2 l l tirequiring M2 calculations
3. Overall: MN2+NM2 (2N3, if M=N)
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Other Transforms
• Discrete cosine transform (DCT)

– Basis functions are real
– Can be thought of as “real version” of DFT– Can be thought of as real version  of DFT
– We will discuss DCT and its application in image compression 

(JPEG) later
• Discrete sine transform (DST)sc ete s e t a s o ( S )
• Hadamard transform
• Walsh transform
• Haar transform• Haar transform
• Slant transform
• Wavelet transform

– Multi-resolution transform
– We will discuss wavelet transform and its application in image 

compression (JPEG2000) later
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Homework
1. Find the NxN point DFT of the following 2D image f(m, n), 0 ≤ m, n ≤ N: 

a) f(m, n) = 1, n = 0; f(m, n) = 0; n ≠ 0. 

b) f( ) 1 0 f( ) 0 ≠ 0b) f(m, n) = 1, m = 0; f(m, n) = 0, m ≠ 0.

c) f(m, n) = 1, m = n; f(m, n) = 0, otherwise. 

d) f(m, n) = 1, m = N – 1- n; f(m, n) = 0,  otherwise.

From the result, what can you say about the relation between the directionality of an 
image with that of its DFT? 

2. One can use the DFT algorithms to compute the linear convolution of an image F(m, 
n) with a filter H(m n) Let the convolved image be denoted by Y(m n)n) with a filter H(m, n). Let the convolved image be denoted by Y(m, n). 

i) Suppose the image size is 256x256 and the filter size is 11x11: What is the 
required size of the DFT to obtain the convolution of these two? Explain the exact 
steps to obtain the convolution result. 

ii) Suppose we use a 256x256 point DFT algorithm for F(m, n) and H(m, n), and 
obtain Z(m, n) as follows: Z = IDFT (DFT(X).*DFT(H)). The DFT and IDFT in the 
above equation are both 256x256 points. For what values of (m, n) does Z(m, n) 
equal Y(m, n) ? 
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Homework (cnt’d)
3. Show that the following vectors form an orthonormal basis set for any value of 
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Determine the corresponding matrix A and B for the forward and inverse transform described by 

4. Consider a zero mean random vector u with covariance matrix                     
1 

.  : transformInverse  ;  : transformForward BtfAft 

From the class of unitary transforms given in Prob. 3, determine the value of θ for which the 
components of transformed vector v will be uncorrelated (i.e., the covariance matrix of the 
transformed vector is a diagonal matrix). 
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5. The basis images of the 2D-DCT are:
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Calculate the transform of the image:

Find the reconstructed image    obtained with the 2 largest coefficients (in magnitude). Calculate 
the error between the original and reconstructed images defined by You
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the error between the original and reconstructed images defined by You 
should see that                                       where t(k, l) represents the transform coefficient 
associated with the basis image Hkl.

 nm,
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2|),(|



Computer Assignment
1. Perform 2D DFT (using the fft2 function in Matlab) on several test images of your choice 

(sample images are available at the Matlab image toolbox directory). Display the magnitude of 
the DFT image with and without  shifting (using fftshift) and with and without logarithmic 
mapping, to see the effect of shifting and logarithmic mapping. Include the printouts in your 
submission Also examine in which frequency range the DFT coefficients have largesubmission. Also, examine in which frequency range the DFT coefficients have large 
magnitudes and explain why. Note that you may want to work on a small portion of your image 
(say 256x256 or less), to save computation time. 
Note that if your image is an RGB image, you should convert it to a grayscale image using 
"rgb2gray" function and apply the above operations on the grayscale image only. If the original 
image is an index image, you should not apply DFT to the index image directly, rather you 
should derive the grayscale image from it, using the "ind2gray" function. 

2. Write a program (in Matlab or C) which filters an image by zeroing out certain DFT coefficients. 
The program consists of 3 steps: 
1) performing 2D DFT (you can use the “fft2" function in Matlab); 
2) zeroing out the coefficients at certain frequencies (see below); ) g ( )
3) performing inverse DFT to get back a filtered image. Truncate or scale the image properly 
such that its range is between 0 and 255. 
For part 2, try the following two types of filters: 

(a) let F(k, l) = 0 for TN < {k, l} < (1 - T )N, T = 1/4, 1/8 (i.e., low-pass filtering); 
(b) let F(k, l) = 0 for the following regions i) 0 ≤ {k and l}≤ TN;ii) 0<= k <=TN, and (1 - T)N ≤l(b) let F(k, l)  0 for the following regions i) 0  {k and l}  TN;ii) 0  k TN, and (1 T)N l 

≤ N -1;iii) (1 - T)N ≤k≤ N -1 and 0 ≤ {l}≤ TN; iv)(1 - T)N ≤k and l ≤ N -1;T=1/4, 1/8
Compare the original and processed images. Comment on the function of the two types of 
filters. 
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Reading

• R. Gonzalez, “Digital Image Processing,” 
Chap 4 except Sec 4 5Chap.4, except Sec. 4.5.

• A. Jain, “Fundamentals of Digital Image 
Processing ” Chapter 5Processing,” Chapter 5.
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