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1 �: manifolds with boundary
The notion of space with which one deals in di�erential geometry is the following.

De�nition 1.1. Let : ∈ N0 ∪ {∞, l}. Let - be a topological space.
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1. A chart on - is a homeomorphism q : * → ˜* from an open subset * ⊂ - to

either an open subset
˜* ⊂ M with the model space M denoting either R< or

[0,∞) × R<−1
.

2. A �: atlas on - is a set A =
{
qU : *U → *̃U : U ∈ �

}
of charts on - such that:

(a) The set {*U : U ∈ �} is an open cover of " :

(1.2) - =
⋃
U∈�

*U .

(b) For every U, V ∈ � the transition map gU
V

: qU (*U ∩ *V) → qV (*U ∩ *V)
de�ned by

(1.3) gU
V
≔ qV ◦ q−1

U

is �: (as a map from an open subset of MU to MV ).

3. A �: structure on - is a �: atlas A on - which is maximal in the following

sense: if B is a �: atlas on - with B ⊃ A, then B = A.

4. A �: manifold with boundary is a pair (-,A) consisting of a topological space

- which is Hausdor� and paracompact, and a �: structure A on - . •

Figure 1.1: An illustration of a transition map.

Notation 1.4. 1. The words smooth and analytic mean �∞ and �l respectively. If

�: is not speci�ed, then �∞ is assumed.
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2. It is customary to suppress the �: structure A and talk about the �: manifold

with boundary - . If it becomes necessary to recover A, then this will be done by

referring to it as the�: structure of- . An admissible chart on- is an element of

A. These are abuses of notation. (Like many abuses of notation, this is theoretically

problematic, but turns out to be harmless in practice.) ◦

Remark 1.5. For : = 0 condition (2b) is vacuous. Therefore, a topological space -

admits at most one �0
structure. If it does and is Hausdor� and paracompact, then it is

said to be a topological manifold with boundary. The theory developed subsequently

requires : > 1. ♣
Remark 1.6. There are topological spaces which admit�l atlases but fail to be Hausdor�,

paracompact, or both; see Example 1.55, Example 1.59, and Example 1.74. ♣

Example 1.7. Let : ∈ N0 ∪ {∞, l}. The empty set ∅ with A = ∅ is a �: manifold. ♠

Example 1.8. Let : ∈ N0∪{∞, l} and let M be a model space. Let* ⊂ M. The standard
�: structure on* is the set of those charts q on* for which both q and q−1

are�: . ♠

The maximality condition makes it rather impractical to explicitly write down a �:

structure. Fortunately, to specify a �: structure, it su�ces to exhibit a �: atlas.

Proposition 1.9. Let : ∈ N0 ∪ {∞, l}. Let - be a topological space. If A is a �: atlas,
then there is a unique �: structure ¯A: on - with A ⊂ ¯A: .

Proof. Denote by
¯A:

the set of chartsk : + → ˜+ on " such that A ∪ {k } is a �: atlas.

By de�nition
¯A:

contains every �: atlas containing A. Therefore, if
¯A:

is a �: atlas,

then it is the unique maximal �: atlas containing A.

¯A:
satis�es (2a) in De�nition 1.1. To see that it also satis�es (2b) in De�nition 1.1,

it su�ces to prove that if k : + → ˜+ and j : , → ˜, are two charts in
¯A:

, then

the transition map g ≔ j ◦ k−1
: k (+ ∩, ) → j (+ ∩, ) is �: . By de�nition of

¯A:
, for every U ∈ � the transition maps qU ◦ k−1

: k (+ ∩ *U ) → qU (+ ∩ *U ) and

j ◦q−1

U : qU (+ ∩*U ) → j (+ ∩*U ) are�: . The restriction of g tok (+ ∩, ∩*U ) agrees

with the composition (j ◦ q−1

U ) ◦ (qU ◦k−1); hence: it is �: . Since A satis�es (2a) in

De�nition 1.1, {k (+ ∩, ∩*U ) : U ∈ �} is an open cover ofk (+ ∩, ). Therefore, g is

�: . �

De�nition 1.10. Let : ∈ N0 ∪ {∞, l}. Let - be a topological space. Let A be a �:

atlas on - . The �: structure on - induced by A is the unique maximal �: atlas
¯A:

containing A. •

Remark 1.11. Let :, ℓ ∈ N0∪{∞, l} with ℓ 6 : . If- is a�: manifold with boundary, then

its �: structure is contained in a unique �ℓ structure. Therefore, in accordance with

Notation 1.4(2), - might also refer to the corresponding�ℓ manifold with boundary. ♣
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C

Here are some examples of �: manifolds with boundary.

Example 1.12. Let = ∈ N0. The =–dimensional sphere is the subspace

(1.13) (= ≔
{
G ∈ R=+1 : |G | = 1

}
.

(= is Hausdor� and paracompact because it is a subspace of R=+1.

The hemi-spheres

(1.14) �8,± ≔ {(G1, . . . , G=+1) ∈ (= : ±G8 > 0}

are open, the maps q8,± : �8,± → �1(0) ⊂ R= de�ned by

(1.15) q8,±(G1, . . . , G=+1) ≔ (G1, . . . , Ĝ8, . . . , G=+1)

are homeomorphisms, and every G ∈ (= is contained in one of the subsets �8,±.

For 8 > 9 the transition map g
8,Y

9,X
≔ q 9,X ◦ q−1

8,Y satis�es

(1.16) g
8,Y

9,X
(G1, . . . , G=) =

(
G1, . . . , Ĝ 9 , . . . , G8−1, Y

√
1 − |G |2, G8, . . . , G=

)
.

For 8 < 9 there is a similar formula and for 8 = 9 the situation is trivial. Therefore,

(1.17) A ≔
{
q8,Y : 8 ∈ {0, . . . , =}, Y ∈ {±}

}
is a �l atlas. The smooth structure

¯A∞ is the standard smooth structure on (= . ♠

Example 1.18. Let = ∈ N0. Here is another approach to de�ning an atlas on (= . Set

(1.19) *± ≔ (=\(0, . . . , 0,±1).

The stereographic projection from (0, . . . , 0,∓1) is the map f± : *± → R= de�ned by

(1.20) f±(G) ≔
(G1, . . . , G=)

1 ∓ G=+1
.

(A moment’s thought shows that the straight line through (0, . . . , 0,∓1) and G ∈ *±
intersects the hyperplane de�ned by G=+1 = 0 in (f±(G), 0).)

These maps are homoeomorphisms. To see this, observe the following. If ~ = f±(G),
then

(1.21) |~ |2 =
1 − G2

=+1
(1 ∓ G=+1)2

=
1 ± G=+1
1 ∓ G=+1

=
2

1 ∓ G=+1
− 1.

5



Figure 1.2: The stereographic projections from (0,±1) ∈ (1
.

Therefore,

(1.22) 1 ∓ G=+1 =
2

|~2 | + 1

and G=+1 = ±
|~ |2 − 1

|~2 | + 1

.

This implies that f± is bijective and its inverse satis�es

(1.23) f−1

± (~) =
(

2~

|~ |2 + 1

,± |~ |
2 − 1

|~ |2 + 1

)
.

The transition map f∓ ◦ f−1

± ≔ : R=\{0} → R=\{0} is the inversion map

(1.24) f∓ ◦ f−1

± (~) =
~

|~ |2 .

This can be seen by direct computation or inferred from (1.21); alternatively, it can be

deduced from Figure 1.2. Therefore,

(1.25) B ≔ {f+, f−}

is a �l atlas on (= . ♠

Exercise 1.26. Prove (1.24) without computation using only elementary geometry.

Remark 1.27. The atlas A de�ned in Example 1.12 and the atlas B de�ned in Example 1.18

are not identical. Nevertheless, A and B induce the same �l structure. ♣

Example 1.28. Denote by ∼ the equivalence relation on [−1, 1] × R de�ned by

(1.29) (G,~) ∼ (I,F) if and only if = ≔ F − ~ ∈ Z and I = (−1)=G .
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The Möbius strip is the quotient

(1.30) Möb ≔ ( [−1, 1] × R)/∼ .

Möb is Hausdor� and paracompact.

For Y ∈ {±1} and [ ∈ {0, 1/2} set

(1.31) *Y,[ ≔ {[(G,~)] ∈ Möb : G ≠ Y and ~ − [ ∈ (0, 1)}.

These are open and cover Möb. For Y ∈ {±1} and [ ∈ {0, 1/2} de�ne qY,[ : *Y,[ →
[0, 2) × (0, 1) by

(1.32) qY,[ ( [G,~]) ≔ (YG + 1, ~ − [).

These are maps are homeomorphisms. Let Y, X ∈ {±1} and [, Z ∈ {0, 1/2}. If Y ≠ X and

[ = Z , then

(1.33) qY,[ (*Y,[ ∩*X,[) = qY,[ (*Y,[ ∩*X,[) = (0, 2) × (0, 1)

and the transition maps g
Y,[

X,Z
≔ qX,Z ◦ q−1

Y,[ satisfy

(1.34) g
Y,[

X,Z
(G,~) = (YX (G − 1) + 1, ~).

If Y ≠ X and [ ≠ Z , then

(1.35) qY,[ (*Y,[ ∩*X,[) = qY,[ (*Y,[ ∩*X,[) = (0, 2) × (0, 1/2) ∪ (0, 2) × (1/2, 1)

and transition maps g
Y,[

X,Z
≔ qX,Z ◦ q−1

Y,[ satisfy

(1.36) g
Y,[

X,Z
(G,~) =

{
(YX (G − 1) + 1, ~ + 1/2) if ~ < 1/2,
(YX (G − 1) + 1, ~ − 1/2) if ~ > 1/2.

In the case Y = X and [ ≠ Z , the domain and codomain of the transition map are

[0, 2) × (0, 1/2) ∪ [0, 2) × (1/2, 1) instead but the formula for transition map remains

the same. Therefore,

(1.37) A ≔
{
qY,[ : Y ∈ {±}, [ ∈ {0, 1/2}

}
is a �l atlas. ♠

Exercise 1.38. Build a (model of a) Möbius band as in Figure 1.3.
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Figure 1.3: A Möbius strip.

Example 1.39. Let = ∈ N0 and K ∈ {R,C,H}. De�ne the equivalence relation ∼ on

K=+1\{0} by

(1.40) G ∼ ~ if and only if G = _~ for some _ ∈ K×.

The =–dimensional real, complex, and quaternionic projective space is the quotient

(1.41) K%= ≔ (K=+1\{0})/∼

for K = R, C, and H respectively. (K%= is the “moduli space” of 1–dimensional K–linear

subspaces of K=+1.) It is customary to write

(1.42) [G1 : . . . : G=+1]

for the equivalence class of (G1, . . . , G=+1) in K%= .

K%= is Hausdor� and paracompact. (Exercise!)

The subsets

(1.43) *8 ≔ {[G1 : . . . : G=+1] ∈ K%= : G8 ≠ 0}

are open, the maps q8 : *8 → K= de�ned by

(1.44) q8 ( [G1 : . . . : G=+1]) ≔ G−1

8 (G1, . . . , Ĝ8, . . . , G=+1)

is a homeomorphism, and every [G] ∈ K%= is contained in one of the subsets*8 .

For 8 > 9 the transition function g89 satis�es

(1.45) g89 (G1, . . . , G=) = G−1

9

(
G1, . . . , Ĝ 9 , . . . , G8−1, 1, G8+1, . . . , G=

)
.
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For 8 < 9 there is a similar formula and for 8 = 9 the situation is trivial. Therefore,

(1.46) A ≔ {q8 : 8 = 1, . . . , = + 1}

is a�l atlas. (Identify K= = R= dimR K
.)

¯A is the standard smooth structure on K%= . ♠

Question 1.47. Can you de�ne the octonionic projective space O%=?

Example 1.48. Let K ∈ {R,C,H}. Let :, = ∈ N. The real, complex, and quaternionic
Grassmannian of :–planes in K= is the quotient

(1.49) Gr: (K=) ≔ {) ∈ Hom(K: ,K=) : ) is injective}/GL: (K)

for K = R, C, and K respectively. Here GL: (K) acts on Hom(K: ,K=) by composition

on the right. Gr: (K=) is the “moduli space” of :–dimensional K–linear subspaces of K= .

To see this, observe the following. Let + ⊂ K= be a :–dimensional linear subspace. A

choice of basis determines an isomorphism K: � + . The composition K: � + ↩→ K=

is a injective linear map ) ∈ Hom(K: ,K=) with im) = + . A di�erent choice of basis

produces an injective linear map) ′ ∈ Hom(K: ,K=) which di�ers from) by composition

on the right with an element of GL: (K=).
The Grassmannian Gr: (K=) is Hausdor� and paracompact. (Exercise!) It can be

given an analytic structure as follows. Set

(1.50) I ≔ {� = (81, . . . , 8:) ∈ N: : 1 6 81 < . . . < 8: 6 =}.

For 8 ∈ I denote by g8 ∈ Hom(K=,K=) the linear map de�ned by

(1.51) (g8)8 9 ≔
{

1 if 8 = 8 9

0 otherwise,

and denote by c8 ∈ Hom(K=,K:) the composition of g8 with the projection onto K: . For

8 ∈ I set

(1.52)
˜*8 ≔ {) ∈ Hom(K: ,K=) : c8 ◦) is invertible} and *8 ≔ ˜*8/GL(K:).

The condition on ) is that the rows indicated by 8 form an invertible : × : matrix. The

subsets*8 are open and every [) ] ∈ Gr: (K=) is contained in one of the*8 .

If ) ∈ ˜*8 , then

(1.53) (g8 ◦) ) ◦ (c8 ◦) )−1 =

(
1
�

)
with � ∈ Hom(K: ,K=−:).
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This de�nes a GL: (K)–equivariant analytic map
˜q8 :

˜*8 → End(K:). It descends to a

homeomorphism q8 : *8 → End(K:). The transition maps q 9 ◦q−1

8 are analytic because

˜q 9 is analytic and has
˜q8 has a GL: (K)–equivariant analytic right-inverse. Therefore,

(1.54) A ≔ {q8 : *8 → End(K:) : 8 ∈ I}

is a�l atlas. (Identify Hom(K: ,K=−:) = R: (=−:) dimR K
.) The smooth structure

¯A∞ is the

standard smooth structure on Gr: (K=). ♠

C

Here are some examples of topological spaces - which admit �l atlases but fail to

be Hausdor� or paracompact.

Example 1.55. De�ne the equivalence relation ∼ on R × {+1,−1} by

(1.56) (G, 8) ∼ (~, 9) if and only if G = ~ and (8 = 9 or G < 0).

The branching line is the quotient space

(1.57) Λ ≔ (R × {+1,−1})/∼ .

Figure 1.4 is an attempt to illustrate Λ and some of its open subsets. The branching line

is not Hausdor� because [0, +1] and [0,−1] cannot be separated by disjoint open sets,

it is second-countable, and the subsets Λ± ≔ (R × {±1})/∼ are open, homeomorphic

to R, and Λ = Λ+ ∪ Λ−. ♠

(a) An open neighborhood of [0, +1]. (b) An open neighborhood of [0,−1].

Figure 1.4: The branching line.

Remark 1.58. The points [0, +1], [0,−1] ∈ Λ, although distinct, are indistinguishable

in the following sense. If 5 ∈ � (Λ,R) is a continuous function on the branched line,

then 5 ( [0, +1]) = 5 ( [0,−1]). The failure of Hausdor�ness of Λ can be repaired by

identifying [0, +1] and [0,−1]. The resulting space Λ̃ is Hausdor�, second-countable,

but [0, +1] = [0,−1] does not have any neighborhood homeomorphic to an open subset

of R. ♣
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(a) An open neighborhood of [0, +1]. (b) An open neighborhood of [0,−1].

Figure 1.5: The line with two origins.

Example 1.59. Denote by ∼ the equivalence relation on R × {+1,−1} obtained by re-

placing G < 0 with G ≠ 0 in (1.56). The line with two origins is the quotient space

(1.60) L ≔ (R × {+1,−1})/∼ .

Figure 1.5 is an attempt to illustrate L and some of its open subsets. The line with two

origins is not Hausdor�, it is second-countable, and every G ∈ L has a neighborhood

homeomorphic an open subset of R. ♠

The following example requires a bit of (set-theoretic) preparation.

De�nition 1.61 (von Neumann [vNeu23]). A set ( is an ordinal if the following hold:

1. If G ≠ ~ ∈ ( , then either G ⊂ ~ or ~ ⊂ G ; that is: ⊂ de�nes a total order on ( .

2. If G ∈ ( , then ∈ ( .

3. The order ⊂ on ( is a well-order; that is: every non-empty subset of ( contains a

least element with respect to the order ∈. •

Remark 1.62. The empty set ∅ is an ordinal. If ( is an ordinal, then so is

(1.63) ( + 1 ≔ ( ∪ {(} = P(().

Here P(() denotes the power set of ( ; that is: the set of all subsets of ( . The process

(1.64) 0 ≔ ∅, 1 ≔ 0 + 1 = {∅}, 2 ≔ (0 + 1) + 1 = {∅, {∅}}, . . .

inductively constructs N0 together with the order <. These are precisely the �nite

ordinal numbers. A moment’s thought shows that N0 ≔ {0, 1, 2, . . .} is an ordinal.

In fact, if {(U : U ∈ �} is a set of ordinal numbers, then

(1.65)

⋃
U∈�

(U

is an ordinal. ♣

De�nition 1.66. Let ( be a set. A relation 4 on ( is a total order if for every G,~, I ∈ ( :

1. if G 4 ~ and ~ 4 G , then G = ~,
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2. if G 4 ~ and ~ 4 I, then G 4 I, and

3. G 4 ~ or ~ 4 G .

A total order 4 is a well-order if for every ∅ ≠ ) ⊂ ( has a least element min)

satisfying min) 4 G for every G ∈ ) .

A ordered set is a pair ((, 4) consisting of a set ( and a total order 4 on ( . A

well-ordered set is a pair ((, 4) consisting of a set ( and a well-order 4 on ( . •

Remark 1.67. If ((, 4) is a well-ordered set and G ∈ ( , then either G is the greatest

element or there is a unique least element greater than G . In the later case, set

(1.68) G + 1 ≔ min{~ ∈ ( : G ≺ ~}.

Here G ≺ ~ if and only if G 4 ~ and G ≠ ~. ♣

De�nition 1.69. Let ((1, 41) and ((2, 42) be ordered sets. The lexicographic order 4
on (1 × (2 induces by 41 and 42 is the total order de�ned by

•(1.70) (G1, G2) 4 (~1, ~2) if and only if G1 41 ~1 and (G1 ≠ ~1 or ~1 42 ~2).

De�nition 1.71. If ((, 4) is an ordered set, then the order topology O4 is the coarsest

topology on ( with respect to which for every 0, 1 ∈ ( the subset

(1.72) (0,∞) ≔ {G ∈ ( : 0 ≺ G} and (−∞, 1) ≔ {G ∈ ( : G ≺ 1}

are open. •

Example 1.73. The order topology on (R, 6) agrees with the topology induces by the

metric 3 (G,~) ≔ |G − ~ |. ♠

Example 1.74. Let (l1, 4) be an uncountable well-ordered set. It is a fact of set theory

that these exist. In fact, the axiom of choice is equivalent to the well-ordering theorem

which asserts that every set admits a well-order. If you are familiar with the theory of

ordinals, then you can take l1 be the �rst uncountable ordinal.

The long line is

(1.75) L ≔ l1 × (0, 1]

equipped with the order topology induced by the lexicographic order. Figure 1.6 is an

attempt to illustrate L and one of its open subsets. The long line is Hausdor�, it is not

second-countable because it contains a subspace homeomorphic to l1, and the subsets

(1.76) �U ≔ {U} × (0, 1] ∪ {U + 1} × (0, 1).

are open (intervals), homeomorphic to (−1, 1), and L =
⋃
U∈l1

�U . ♠
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· · ·

l1

Figure 1.6: The long line.

The spaces Λ, L, L, and their ilk are considered to be too pathological to be manifolds.

Part of the theory developed hereafter is still carries over to these spaces, but other

important parts break (in interesting ways).

C

Theorem 1.77 (Brouwer [TODO: add original reference). ; invariance of dimension] Let
<,= ∈ N0. Let * ⊂ [0,∞) × R<−1 and + ⊂ [0,∞) × R=−1 be non-empty open subsets. If
* and + are homeomorphic, then< = =. �

Exercise 1.78. If you know a bit of algebraic topology, try to prove Theorem 1.77;

otherwise, look up a proof or have someone explain the proof to you.

Corollary 1.79. Let : ∈ N0 ∪ {∞, l}. For every �: manifold (-,A) there is a unique
locally constant function dim·- : - → N0 such that dimG - =<U whenever G ∈ *U . �

De�nition 1.80. In the situation of Corollary 1.79, the dimension of - at G is dimG - is.

If - ≠ ∅ and dim·- is constant, then - is equi-dimensional and of dimension dim-

with the latter denoting the constant value that dim·- assumes. •

C

Theorem 1.81 (Invariance of the boundary). Let< ∈ #0. Let * ,+ ⊂ [0,∞) × R<−1 be
open subset. If q : * → + is a homeomorphism, then

�(1.82) q (* ∩ ({0} × R<−1)) = + ∩ ({0} × R<−1) .

Exercise 1.83. If you know a bit of algebraic topology, try to prove Theorem 1.81;

otherwise, look up a proof or have someone explain the proof to you.

Exercise 1.84. 1. Construct a homeomorphism q : [0,∞)2 → [0,∞) × R.

2. Prove that q cannot be chosen so that q and q−1
are �1

.

Remark 1.85. These above exercise explains why one does not de�ne the notion of a

topological manifold with corners, but one could de�ne the notion of a �: manifold

with corners (: > 1); see, e.g., Joyce [Joy16]. ♣
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De�nition 1.86. Let : ∈ N0 ∪ {∞, l}. Let - be a �: manifold. Let G ∈ - . If there an

U ∈ � with MU = [0,∞) × R<U−1
and qU (G) ⊂ {0} × R<U−1

, then G is boundary point
of - ; otherwise, it is an interior point of - . •

Proposition 1.87. Let : ∈ N0 ∪ {∞, l}. Let (-,A) be a �: manifold with boundary.

1. Denote by Set

(1.88) �m ≔ {U ∈ � : MU = [0,∞) × R<U−1 and ˜*U ∩ {0} × R<U−1 ≠ ∅}.

For every U ∈ �m set

(1.89)
˜+U ≔ {G ∈ R<U−1

: (0, G) ∈ ˜*U }, +U ≔ q−1

U ({0} × ˜+U ),

and de�ne kU : +U → ˜+U by kU ≔ pr
2
◦ qU . The set Am ≔ {kU : U ∈ �m} is a �:

atlas on

(1.90) m- ≔
⋃
U∈�

+U .

2. Set �◦ ≔ �\�m. The set A◦ ≔ {qU : U ∈ �◦} is a �: atlas on

(1.91) - ◦ ≔
⋃
U∈�

*U .

3. - is the disjoint union of m- and - ◦.

Proof. (1) and (2) are obvious. (3) is a consequence of Theorem 1.81. �

De�nition 1.92. In the situation of Proposition 1.87, (m-, ¯A:
m) is the boundary of (-,A)

and (- ◦, ¯A:
◦) is the interior of (-,A). A �: manifold (without boundary) is a �:

manifold with boundary with m- = ∅. •

2 �: maps

De�nition 2.1. Let : ∈ N0 ∪ {∞, l}. Let (-,A) and (.,B) be �: manifolds with

boundary. A continuous map 5 : - → . is �: if for every U ∈ � and V ∈ � the map

˜5 U
V

: q (*U ∩ 5 −1(+V)) → ˜+V de�ned by

(2.2)
˜5 U
V
≔ kV ◦ 5 ◦ q−1

U

is �: (as a map from an open subset of MU to MV ). The set of �: maps from " to # is

denoted by

•(2.3) �: (-,. ).
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Notation 2.4. In the situation of De�nition 2.1, for . = R one abbreviates

◦(2.5) �: (- ) ≔ �: (-,R).

Remark 2.6. For : = 0 the condition on (2.2) in De�nition 2.1 is vacuous; that is: a �0

map is nothing but a continuous map. ♣
The following makes it feasible to verify whether a given map is �: or not.

Proposition 2.7. Let : ∈ N0 ∪ {∞, l}. Let (-,A) and (.,B) be �: manifolds with
boundary. Let �′ ⊂ � and �′ ⊂ �. Let 5 : " → # be a continuous map. If

(2.8) {*U ∩ 5 −1(+U ) : U ∈ �′, V ∈ �′}

is an open cover of - and for every U ∈ �′ and V ∈ �′ the map 5 U
V
de�ned in (2.2) is �: ,

then 5 is �: .

Proof. It needs to be proved that if q : * → *̃ is a chart in A and k : + → +̃ is

a chart in B, then k ◦ 5 ◦ q−1
: q (* ∩ 5 −1(+ )) → +̃ is �: . For every U ∈ �′ and

V ∈ �′ the transition maps gU ≔ qU ◦ q−1
: q (* ∩ *U ) → qU (* ∩ *U ) and fV ≔

k ◦k−1

V
: kV (+ ∩ +V) → k (+ ∩ +V), and the map 5 U

V
: q (*U ∩ 5 −1(+V)) → ˜+V are �: .

The restriction ofk ◦ 5 ◦ q−1
to q (* ∩*U ∩ 5 −1(+ ∩+V)) agrees with the composition

fV ◦ 5 U
V
◦ gU ; hence: it is �: . By hypothesis, {q (* ∩*U ∩ 5 −1(+ ∩+V)) : U ∈ �, V ∈ �}

is an open cover of q (* ∩ 5 −1(+ )). Therefore,k ◦ 5 ◦ q−1
is �: . �

Example 2.9. Let = ∈ N0. Let * ⊂ R=+1 be an open subset containing (= . Denote by

] : (= ↩→ * the inclusion. The composition ] ◦ q8,± of ] with the chart q8,± de�ned in

(1.15) satis�es

(2.10) ] ◦ q−1

8,± (G1, . . . , G=) =
(
G1, . . . . . . , G8−1,±

√
1 − |G |2, G8, . . . , G=

)
.

Therefore, ] is analytic. ♠

Example 2.11. Let = ∈ N0 and K ∈ {R,C,H}. Denote by c : K=+1\{0} � K%= the

canonical projection. The composition q8 ◦ c of c with the chart q8 de�ned in (1.44)

satis�es

(2.12) q8 ◦ c (G1, . . . , G=+1) = G−1

8 (G1, . . . , Ĝ8, . . . , G=+1).

Therefore, c is analytic. ♠

Exercise 2.13. Let = ∈ N. Prove that the map Π : R%= → End(R=+1) de�ned by

(2.14) Π( [G])E ≔ 〈E, G〉G|G |2

is analytic.
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Exercise 2.15. Prove that the Segre embedding f : R%2 → R%5
de�ned by

(2.16) f ( [G0 : G1 : G2]) ≔ [G2

0
: G2

1
: G2

2
: G0G1 : G0G2 : G1G2]

is analytic.

C

Proposition 2.17. Let : ∈ N0 ∪ {∞, l}. Let (-,A), (.,B), and (/,C) be �: manifolds
with boundary. If 5 : - → . and 6 : . → / are �: , then 6 ◦ 5 is �: .

Proof. Label the charts in A, B and C so that A = {qU : *U → ˜*U : U ∈ �}, B =

{kV : +V → +̃V : V ∈ �}, and C = {jW : ,W → ,̃W : W ∈ Γ}. It needs to be proved that

for every U ∈ � and W ∈ Γ the coordinate representation (6 ◦ 5 )UW ≔ jW ◦ (6 ◦ 5 ) ◦
q−1

U : q (*U ∩ (6 ◦ 5 )−1(,W )) → ˜,W is�: . By hypothesis, the coordinate representations

5 U
V
≔ kV◦5 ◦q−1

U : q (*U∩5 −1(+V)) → ˜+V and6
V
W ≔ jW◦6◦k−1

V
: kV (+V∩6−1(,W )) → ˜,W

are �: . The restriction of (6 ◦ 5 )UW to qU (*U ∩ 5 −1(+V ∩ 6−1(,W ))) agrees with the

composition 6
V
W ◦ 5 UV ; hence: it is�: . By (2a) in (1), {qU (*U ∩ 5 −1(+V ∩6−1(,W ))) : V ∈ �}

is an open cover of q (*U ∩ (6 ◦ 5 )−1(,W )). Therefore, (6 ◦ 5 )UW is �: . �

Example 2.18. Let K ∈ {R,C,H}. Set 3 ≔ dimR K. Identify R23 = K3 and consider

(23−1 ⊂ K3 . The real, complex, and quaternionic Hopf map [ = [K : (23−1 → K%1

de�ned by

(2.19) [ (G,~) ≔ [G : ~]

for K = R, C, and H respectively. The Hopf map is the composition of the inclusion

] : (23−1 ↩→ K3\{0} and the projection c : K3\{0} → K%=. Since ] and c are analytic,

so is [. ♠

Example 2.20. Let K ∈ {R,C,H}. Let :, = ∈ N0. Identify Λ:K= = K(=:) and set

P(Λ:K=) ≔ K% (=:)−1
. Identify Gr: (K=) with the set of :–dimensional K–linear sub-

spaces of K= . The Plücker embedding ] : Gr: (K=) → P(Λ:K=) is de�ned by

(2.21) ] (〈E1, . . . , E:〉) ≔ K× · (E1 ∧ . . . ∧ E:).

Here E1, . . . , E: are linearly-independent vectors in K= and 〈E1, . . . , E:〉 denotes their

span. The Plücker embedding is analytic. (Exercise!) ♠

C

De�nition 2.22. Let : ∈ N0 ∪ {∞, l}.
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1. The category of�: manifolds with boundary, denoted by Man:m , is the category

whose objects are�: manifolds with boundary and whose morphisms as�: maps.

2. The category of �: manifolds, denoted by Man: , is the category whose objects

are �: manifolds with boundary and whose morphisms as �: maps. •

Remark 2.23. With the above in mind, Remark 1.11 can be rephrased as there being a

forgetful functor* : Man:m → Manℓm. ♣

C

Proposition 2.24. Let : ∈ N0 ∪ {∞, l} and let - be a�: manifold with boundary - . The
subset �: (- ) ⊂ Map(-,R) is an R–subalgebra; that is: if 5 , 6 ∈ �: (- ) and _ ∈ R, then
5 6 ∈ �: (- ) and 5 + _6 ∈ �: (- ).

Exercise 2.25. Prove Proposition 2.24

C

De�nition 2.26. Let : ∈ N∪ {∞, l}. Let - and . be�: manifolds. A map 5 : - → . is

a�: di�eomorphism if it is�: , bijective, and 5 −1
is�: . - and . are�: di�eomorphic

if there is a �: di�eomorphism 5 : - → . . •

Example 2.27. The map k : R → R de�ned by q (G) ≔ G3
is a chart. Therefore,

B ≔ {q} de�nes a smooth structure on R. Since q−1
is not smooth, B is distinct from

the smooth structure on R de�ned in Example 1.8. Nevertheless, (R,A) and (R,B) are

di�eomorphic; indeed, the map q−1
de�nes a di�eomorphism. ♠

Example 2.28. Let K ∈ {R,C,H}. Denote by ·̄ the conjugation of K. (This map is the

identity for R.) Set 3 ≔ dimR K. Identify R3+1 = K ⊕ R and consider (3 ⊂ K ⊕ R. By

(1.24), the transition map f− ◦ f+ : K\{0} → K\{0} of the stereographic projections

f± : *± → K de�ned in (1.20) satis�es

(2.29) f− ◦ f+(@) = @̄−1.

Therefore, there is a continuous map 5 : (3 → K%1
satisfying

(2.30) 5 (@, G) =
{
[f+(@, G) : 1] if G ≠ +1
[1 : f−(@, G)] if G ≠ −1.

This map is bijective: its inverse satis�es

(2.31) 5 −1( [@ : 1]) = f−1

+ (@) and 5 −1( [1 : @]) = f−1

− (@̄).

Both 5 and 5 −1
are analytic; therefore, 5 is an analytic di�eomorphism. ♠
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C

Theorem 2.32 (Classi�cation of 1–manifolds). Let : ∈ N0 ∪ {∞}. Every connected
1–dimensional �: manifold with boundary is �: di�eomorphic to either (1, [0, 1], [0, 1),
or R.

Remark 2.33. 1. In dimension two, there also is a classi�cation theorem.

2. In dimension three, Thurston’s geometrization conjecture provides a kind of

classi�cation. This conjecture has been proved by Perelman [Per02; Per03b;

Per03a]; see also Kleiner and Lott [KL08] and Morgan and Tian [MT14].

3. In dimension four and higher, a classi�cation is impossible. Every �nitely pre-

sented group is the fundamental group of a 4–manifold. However, the isomor-

phism problem for �nitely presented groups is undecidable. ♣
Remark 2.34. 1. Theorem 2.32 implies that if - is topological 1–manifold, then it

admits a �: structure and any two �: structure on " are �: di�eomorphic. The

same is true in dimension two (again, by classi�cation) and three (by work of

Moise [Moi77]).

2. Kervaire [Ker60] produced the �rst example of a non-smoothable topological

manifold that is: a topological manifold which does not admit a smooth structure.

Kervaire’s example is 10–dimensional, but this phenomenon starts to appear

in dimension four. Indeed, the �8–manifold (discovered by Freedman [Fre82,

Theorem 1.7]) is a non-smoothable topological 4–manifold. This can be proved

using Rokhlin’s theorem [Rok52] or using Donaldson theory [Don83].

3. Milnor [Mil56] proved that (7
admits 27 exotic smooth structures; that is: smooth

structures not di�eomorphic to the standard one; cf. Example 6.49. This phe-

nomenon too starts appearing in dimension four. Taubes [Tau87] proved that R4

admits uncountably exotic smooth structures.

4. Whitney [Whi36, Theorem 1] proved that if - admits a�1
structure A, then there

is a smooth structure contained in A and any two such smooth structures are

di�eomorphic. In fact, Grauert [Gra58] and Morrey [Mor58] proved that the same

holds with smooth replaced by analytic. ♣

C

Proof of Theorem 2.32. Let- be a connected 1–dimensional�: manifold with boundary.

Since the following is going to be quite a slog, let us assume that m- = ∅. This saves us

some additional case distinctions.
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Denote the �: structure of - by A. Choose a countable atlas A = {qU : �U →
(−3, 3) : U ∈ �} ⊂ A which is minimal in the sense that for every V ∈ � the union⋃
U≠V �U is a proper subset of - . This is possible because - is second-countable.

The strategy is to analyze and modify A until the assertion of the theorem becomes

almost self-evident. The following result is the key tool for analyzing A.

Proposition 2.35. Let U, V ∈ � with U ≠ V . If � ⊂ �U ∩ �V is a connected component, then
gU
V

: qU (� ) → qV (� ) is either

1. increasing and either

(a) qU (� ) = (0, 3) and qV (� ) = (−3, 1) or
(b) qU (� ) = (−3, 0) and qV (� ) = (1, 3);

or

2. decreasing and either

(a) qU (� ) = (0, 3) and qV (� ) = (1, 3) or
(b) qU (� ) = (−3, 0) and qV (� ) = (−3, 1).

Proof. Since qU (� ) and qV (� ) are connected open subset of (−3, 3), they are of the

form qU (� ) = (0, 1) and qV (� ) = (2, 3). The transition map gU
V

: (0, 1) → (2, 3) is a

homeomorphism and, therefore, either increasing or decreasing. Furthermore, since

�U and �V are not contained in each other, (0, 1) ≠ (−3, 3) and (2, 3) ≠ (−3, 3). After

possibly replacing qU with −qU and qV with −qV , we can assume that gU
V

is increasing

and 0 ≠ −3.

Since - is Hausdor�, 1 = 3 and 2 = −3. Indeed, assume that 2 ≠ 3. Set G ≔ q−1

U (0)
and ~ ≔ q−1

V
(2). By construction, G ∈ m� ∩ �U and ~ ∈ m� ∩ �V . Since � is a connected

component of �U ∩ �V , its boundary does not intersect �U ∩ �V . Therefore, G ≠ ~. Since -

is Hausdor�, there are neighborhoods* and + of G and ~ respectively with* ∩+ = ∅.

Since qU and qV are homeomorphisms, there exists an 0 < Y < min{0, 2, 1 − 0, 3 − 2}
such that q−1

U (0 − Y, 0 + Y) ⊂ * and q−1

V
(2 − Y, 2 + Y) ⊂ + . Since gU

V
is an increasing

homeomorphism, there exists a 0 < X < Y such that qV (q−1

U (0 + X)) = gU
V
(0 + X) ∈

(2, 2 + Y)—a contradiction to * ∩ + = ∅. Therefore, 2 = −3. This forces 3 ≠ 3. A

variation of the above argument shows that 1 = 3. �

Proposition 2.36. For every pair U, V ∈ � the intersection �U∩�V has at most two connected
components. If �U ∩ �V has two connected components, then � = {U, V}.

Proof. Every connected component of qU (�U ∩ �V) ⊂ (−3, 3) is of the form (−3, 0) or

(1, 3). There cannot be three disjoint subsets of this form. Therefore, �U ∩ �V has at most

two connected components.
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If �U ∩ �V has two connected components, then qU (�U ∩ �V) = (−3, 0) q (1, 3) and

qV (�U ∩ �V) = (−3, 2) q (3, 3). Therefore, if 0 < Y < min{0 + 3, 2 + 3, 3 − 1, 3 − 3}, then

�U ∪ �V = qU ( [−3 + Y, 3 − Y]) ∪ qV ( [−3 + Y, 3 − Y)]. Hence, �U ∪ �V is compact. Since - is

Hausdor�, �U ∪ �V is a closed subset of - . Since - is connected, �U ∪ �V = - . �

For the sake of a more uniform discusion, we prefer to avoid the situation in

Proposition 2.36. If it does occur, then one can split qU : �U → (−1, 1) as follows. Set

�−U ≔ q−1

U (−3, 1) and �+U ≔ q−1

U (0, 3) and de�ne q±U : �±U → (−1, 1) by composing qU with

suitable a�ne maps. The atlasA′ ≔ {q+U , q−U , qV} avoids the situation in Proposition 2.36

but otherwise has the same properties as A. Therefore, we can (and will) assume that

�U ∩ �V has at most one connected component.

Proposition 2.37. For every U ∈ � there are at most two V ∈ �\{U} with �U ∩ �V ≠ ∅.

Proof. For every V ∈ �\{U} either qU (�U ∩ �V) is empty or it is of the form (−3, 0) or

(1, 3). There cannot be three disjoint subsets of this form. Therefore, it remains to

prove that if U, V,W ∈ � are distinct, then �U ∩ �V ∩ �W = ∅.

After possibly replacing qU with −qU and qV with −qV , the restriction of gU
V

to

qU (�U ∩ �V) is increasing, qU (�U ∩ �V) = (0, 3), and qV (�U ∩ �V) = (−3, 1).
The interval qU (�WU ) is either of the form of the form (2, 3) or (−3, 3). In the latter

case, since �U ∩ �V and �WU intersect, 3 < 0; therefore, �U ⊂ �V ∪ �W—contradicting to the

construction of A. After possibly swapping V and W , 0 < 2 .

After possibly replacing qW with −qW , the restriction of g
V
W to qV (�V ∩ �W ) is increasing.

The interval qV (�V ∩ �W ) is either of the form (4, 3) or (−3, 5 ). The latter case, however,

leads to a contradiction with 0 < 2 . Since �U ∩ �V and �V ∩ �W intersect, 4 < 3 . Therefore,

�V ⊂ �U ∪ �W—contradicting the construction of A. �

Denote by Γ the graph with vertices � and with an edge {U, V} if and only if

�U ∩ �V ≠ ∅ and U ≠ V . By Proposition 2.37, Γ is bivalent; moreover, it is non-empty,

countable, and connected. A moment’s thought shows that such a graph must be

isomorphic to one of the following:

1. Let ℓ ∈ N with ℓ > 3. The cycle �ℓ of length ℓ is the graph with vertices Z/ℓZ
and edges {{=, = + 1} : = ∈ Z/ℓZ}.

2. Let ℓ ∈ N∪{∞}. The ray 'ℓ of length ℓ is the graph with vertices {= ∈ N : = 6 ℓ}
and edges {{=, = + 1} : = ∈ N, = 6 ℓ − 1}.

3. The line ! is the graph with vertices Z and edges {{=, = + 1} : = ∈ Z}.

These graphs are canonically oriented. Every vertex = (except ℓ in 'ℓ ) has a unique

successor = + 1. Choose an identi�cation Γ with one of the models.

The following result allows us to replace A with a particularly simple atlas.

20



Proposition 2.38. For every U ∈ � there is a �: di�eomorphism dU : (−3, 3) → (−3, 3)
such that the atlas

(2.39)
˜A ≔ { ˜qU ≔ dU ◦ qU : �U → (−3, 3)}

satis�es the following. If V ∈ � and W ∈ � is its successor, then

(2.40) (2, 3) ⊂ ˜qV (�V ∩ �W ), ˜qW ◦ ˜q−1

V
(2, 3) ⊂ (−3,−2),

and the transition map g̃VW ≔ ˜qW ◦ ˜q−1

V
: (2, 3) → (−2,−1) satis�es

(2.41) g̃
V
W (G) = G − 4.

Proof. For every −3 < 0 < 1 < 3 there is a �: di�eomorphism d : (−3, 3) → (−3, 3)
such that d (−3, 0) = (−3, 1) and d (1, 3) = (2, 3). After composing with such di�eomor-

phism and possibly �ipping signs, we can assume that the following holds. If U, V,W ∈ �,

V is the successor of U , and W is the successor of V , then qV (�V ∩ �U ) = (−3, 1) and

qV (�V ∩ �W ) = (1, 3).
Suppose V ∈ � and W ∈ � is its successor. The transition map g

V
W : (1, 3) →

(−3, 1) is an increasing �: di�eomorphism. Choose an increasing �: di�eomorphism

dV : (−3, 3) → (−3, 3) which agrees with the identity map on (−3, 0) and satis�es

(2.42) dV (G) = gVW (G) + 4 for every G ∈ (gVW )−1(−1, 2).

It is easy to construct an increasing homeomorphism d̃V : (−3, 3) → (−3, 3) which

agrees with the identify map on (−3, 1] and with g
V
W + 4 on (1, 3). This map can be

smoothed into the desired dV by modifying it in an arbitrarily small neighborhood of

1. �

With the help of Proposition 2.38 it is easy to write down explicit an �: di�eomor-

phism from - to either (1
or R. �

3 Tangent spaces and derivatives

Proposition 3.1. Let : ∈ N ∪ {∞, l}. Let - be a �: manifold with boundary. Let G ∈ -
and set< ≔ dimG - . Denote by AG the set of charts q : * → ˜* on - with G ∈ * . The
following hold:

1. The relation ∼ onAG × R< de�ned by

(3.2) (q, Ẽ) ∼ (k, F̃) if and only if F̃ = dq (G) (k ◦ q−1)Ẽ .

is an equivalence relation.
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2. The quotient

(3.3) )G- ≔ (AG × R<)/∼

has a unique vector space structure such that the following holds: for every q ∈ AG

the map sq : R< → )G- de�ned by

(3.4) sq (Ẽ) ≔ [q, Ẽ] .

is an isomorphism; in particular:

(3.5) [q, Ẽ] + _[k, F̃] = [j, dq (G) (j ◦ q−1)Ẽ + _dk (G) (j ◦k−1)F̃] .

De�nition 3.6. In the situation of Proposition 3.1, )G- is called the tangent space of -
at G ; its elements are called tangent vectors to - at G . •

Proof of Proposition 3.1. The relation ∼ is re�exive because dq (G)id*̃ = 1. It is symmetric

because

(3.7)

(
dq (G) (k ◦ q−1)

)−1

= dk (G) (q ◦k−1).

It is transitive because

(3.8) dq (G) (j ◦ q−1) = dk (G) (j ◦k−1) ◦ dq (G) (k ◦ q−1) .

This proves (1).

For every q ∈ AG the map sq : R= → )G- de�ned by (3.4) is a bijection. Its inverse

satis�es

(3.9) s−1

q
[k, Ẽ] = dk (G) (q ◦k−1)Ẽ .

(This is well-de�ned because of (3.8).)

De�ne + : )G- ×)G- → R and · : R ×)G- → )G- by

(3.10) E +F ≔ sq (s−1

q
(E) +s−1

q
(F)) and _ · E ≔ sq (_ · s−1

q
(E)) .

This equips)G- with the structure of a vector space. This structure does not depend on

the choice of q because s−1

k
◦sq = dq (G) (k ◦ q−1) is an isomorphism. It satis�es (3.5)

by construction. This proves (2). �

Notation 3.11. For an open subset * ⊂ R= with its standard �: structure there is a

preferred chart: q = id* . This induces a preferred isomorphism sq : R= � )G* . It is

customary to identify

(3.12) R= = )G*
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via s ≔ sid*
and set

(3.13)

m

mG8
= mG8 ≔ s(48) .

If the coordinates of R= have been labeled in some other way (as it is sometimes

convenient), then this notation is adjusted correspondingly. For example, it is customary

to write
m
mC

or mC for the image of 1 ∈ R under s. ◦

Proposition 3.14. Let - and . be �1 manifolds. Let 5 : - → . be a �1 map. Let G ∈ - .
Let AG be as in Proposition 3.1 and de�ne B5 (G) analogously. There exists a unique linear
map )G 5 : )G- → )5 (G). such that for every q ∈ AG andk ∈ B5 (G)

(3.15) )G 5 ( [q, Ẽ]) = [k, dq (G) (k ◦ 5 ◦ q−1)Ẽ] .

Proof. Choose q ∈ AG andk ∈ B5 (G) . By Proposition 3.1, the map )G 5 : )G- → )5 (G).
de�ned by

(3.16) )G 5 ≔ sk ◦ dq (G) (k ◦ 5 ◦ q−1) ◦s−1

q

is linear. By the chain rule, it does not depend on the choice of q andk . �

De�nition 3.17. In the situation of Proposition 3.14, the map

(3.18) )G 5 : )G- → )5 (G).

is called the derivative of 5 at G . •

Notation 3.19. In the situation of Proposition 3.14 with . = R it is customary to write

(3.20) dG 5 ∈ Hom()G-,R)

instead of )G 5 and de�ne the derivative of 5 in the direction of E ∈ )G- by

(3.21) E 5 = E (5 ) ≔ dG 5 (E).

This notation meshes well with (23.8). ◦

Exercise 3.22. Let = ∈ N. Denote by ] : (= → R=+1 the inclusion. Prove that with

respect to the identi�cation )GR=+1 = R=+1 for every G ∈ (=

(3.23) im)G] =
{
E ∈ R=+1 : 〈G, E〉 = 0

}
.

Proposition 3.24. Let - , . , and / be �1 manifolds. Let G ∈ - . If 5 : - → . and
6 : . → / are �1 maps, then

(3.25) )5 (G)6 ◦)G 5 = )G (6 ◦ 5 )
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Proof. This is a consequence of the chain rule. �

Corollary 3.26. Let - and . be�1 manifolds. If 5 : - → . is a�1 di�eomorphism, then
for every G ∈ - the derivative )G 5 of 5 is invertible. �

C

Proposition 3.27. Let : ∈ N ∪ {∞, l}. Let - be a �: manifold with boundary. If
5 , 6 ∈ �: (- ), E,F ∈ )G- , and _ ∈ R, then

(E + _F) 5 = E (5 ) + _F (5 ),(3.28)

E (5 + _6), = E (5 ) + _E (6), and(3.29)

E (5 6) = E (5 )6(G) + 5 (G)E (6).(3.30)

Exercise 3.31. Prove Proposition 3.27.

Exercise 3.32. Find a map ( : �∞(- ) → R which fails to be linear but satis�es

(3.33) ( (5 6) = ( (5 )6(G) + 5 (G)( (6).

Proposition 3.27 opens up a di�erent—purely algebraic—perspective on tangent

vectors for : = ∞.

De�nition 3.34. Let � be an R–algebra and let - be an �–bimodule. A derivation of
� into - is a linear map X : �→ - such that

(3.35) X (01) = X (0)1 + 0X (1).

The vector space of derivations of � with values in - is denoted by Der(�,- ). •

Example 3.36. Let - be a smooth manifold with boundary. �∞(- ) is a commutative

R–algebra. For every G ∈ - the real numbers R becomes a �∞(- )–module with

(3.37) 5 · _ ≔ 5 (G)_.

Denote this �∞(- )–module by RG . By Proposition 3.27, every E ∈ )G- de�nes an

element of Der(�∞(- ),RG ). ♠

Proposition 3.38. Let : ∈ N ∪ {∞}. Let - be a smooth manifold with boundary. The
map Υ = ΥG : )G- → Der(�∞(- ),RG ) de�ned by

(3.39) Υ(E) (5 ) ≔ E (5 )

is an isomorphism.
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Proof. Let us begin by proving this for - = R= and G = 0. In this case

(3.40) Υ(E) (5 ) =
=∑
8=1

E8 · m5
mG8
(0) .

In particular, Υ(E) (G8) = E8 . Therefore, Υ is injective. To prove that Υ is surjective, let

X ∈ Der(�∞(R=),R
0
). Since X (1) = X (12) = 2X (1), X vanishes on constant functions.

Every 5 ∈ �∞(R=) satis�es

(3.41) 5 (G) = 5 (0) +
=∑
8=1

A8 (G) · G8 with A8 (G) ≔
ˆ

1

0

m5

mG8
(CG) dC .

Evidently,

(3.42) A8 (0) =
m5

mG8
(0).

Therefore and since X is a derivation,

(3.43) X (5 ) =
=∑
8=1

m5

mG8
(0) · X (G8).

Hence, for E ∈ R< with E8 ≔ X (G8)

(3.44) Υ(E) = X.

To transfer the result from R= to - , observe the following. If X ∈ Der(�∞(- ),RG )
and 5 ∈ �∞(- ) vanishes in a neighborhood of G , then X (5 ) = 0. Indeed, if j ∈ �∞(- )
is supported away from G and equal to one on the support of 5 , then

(3.45) X (5 ) = X (j 5 ) = X (j) 5 (0) + j (0)X (5 ) = 0.

Let q : * → ˜* be a chart with G ∈ * and q (G) = 0. Let
˜+ be an open neighborhood

of 0 with
˜+ ⊂ ˜* . Choose j ∈ �∞(- ) supported in * and equal to one on + . Set

j̃ ≔ j ◦ q−1 ∈ �∞(R=). De�ne f : �∞(R=) → �∞(- ) and g : �∞(- ) → �∞(R=) by

(3.46) f (5 ) = j · (5 ◦ q) and g (5 ) = j̃ · (5 ◦ q−1).

The map g∗ : Der(�∞(R=),R
0
) → Der(�∞(- ),RG ) induced by g �ts into the commu-

tative diagram

(3.47)

R= Der(�∞(R=),R
0
)

)G- Der(�∞(- ),RG ).

Υ

sq g∗

Υ
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Therefore, it remains to prove that g∗ is an isomorphism; indeed, f∗ is its inverse. To

see this, observe that

(3.48) f ◦ g (5 ) = j25 and g ◦ f (5 ) = j̃25 .

Since j25 and 5 agree on + , for every X ∈ Der(�∞(- ),RG )

(3.49) (g∗f∗X) (5 ) = X (f ◦ g (5 )) = X (5 ).

Therefore, g∗f∗X = X . Similarly, f∗g∗X = X . �

Proposition 3.50. Let - be a smooth manifold and G ∈ - . Denote by

(3.51) mG ≔ ker(evG : �∞(- ) → RG )

the ideal of smooth functions on - vanishing at G . The inclusion mG ↩→ �∞(- ) induces
an isomorphism

(3.52) Der(�∞(- ),RG ) � (mG/m2

G )∗.

Proof. The composition

(3.53) Der(�∞(- ),RG ) ↩→ �∞(- )∗ → m∗G

is injective since every X ∈ Der(�∞(- ),RG ) vanishes on constants. Since every X ∈
Der(�∞(- ),RG ) vanishes on m2

G , the above composition descends to an injective map

Der(�∞(- ),RG ) ↩→ (mG/m2

G )∗. To see that this map is surjective, lift _ ∈ (mG/m2

G )∗ to

X ∈ �∞(- )∗ de�ned by

(3.54) X (5 ) ≔ _(5 − 5 (G) +m2

G ).

Since

(3.55) 5 6 − 5 (G)6(G) = (5 − 5 (G))6(G) + 5 (G) (6 − 6(G)) + (5 − 5 (G)) (6 − 6(G)),

the linear map X satis�es

(3.56) X (5 6) = X (5 )6(G) + 5 (G)X (6).

Therefore, X ∈ Der(�∞(- ),RG ). �

The preceding discussion fails for : ∈ N instead of∞ (provided dimG - > 1). The

map Υ : )G- → Der(�: (- ),RG ) de�ned by (3.39) is injective, but not surjective. The

proof of Proposition 3.38 fails because the integral in (3.41) is �:−1
but might not be �: .

Indeed, Υ has no chance of being surjective.

26



Theorem 3.57 (Newns and Walker [NW56]). In the above situation, Der(�: (- ),RG ) is
in�nite-dimensional.

Proof. The following elementary argument is due to Taylor [Tay73].

The proof of Proposition 3.50 shows that Der(�: (- ),RG ) � (mG/m2

G )∗ for mG ≔

ker evG ⊂ �: (- ). It su�ces to prove that m0/m2

0
is in�nite-dimensional for - = R.

For every 5 ∈ m0 its vanishing order ord(5 ) ∈ [0,∞] is de�ned by

(3.58) ord(5 ) ≔ sup

{
B ∈ [0,∞) : lim

G→0

|G |−B 5 (G) = 0

}
.

The proof relies on the following observation which itself follows from Taylor expansion

with remainder.

Lemma 3.59. If 5 ∈ m2

0
, then ord(5 ) > : + 1 or ord(5 ) ∈ N. �

The uncountable set

(3.60)

{
|G |B +m2

0
: B ∈ (:, : + 1)

}
⊂ m0/m2

0

is linearly independent. Indeed, otherwise there would be a linear combination

(3.61)

=∑
8=1

08 |G |B8 = 5 ∈ m2

0

with 01, . . . , 0= non-zero and B1 < . . . < B= . Therefore, ord(5 ) = B8 ∈ (:, : + 1);
contradicting the lemma. �

Remark 3.62. The situation can be improved by restricting to continuous derivations

of �: (- ) into RG ; however: this subspace of Der(�: (- ),RG ) cannot be characterized

purely algebraically. ♣

C

Proposition 3.63. Let : ∈ N ∪ {∞}. Let - be a �: manifold with boundary. Let G ∈ - .
Set

(3.64) ΓG ≔ {W ∈ �: (R, - ) : W (0) = G}.

and de�ne ^ = ^G : ΓG → )G- by

(3.65) ^ (W) ≔ )0W (mC ).

The following hold:

1. The map ^ is surjective.
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2. If W, X ∈ ΓG , then ^ (W) = ^ (X) if and only if for every 5 ∈ �: (- )

(3.66)

d

dC

����
C=0

5 ◦ W (C) = d

dC

����
C=0

5 ◦ X (C).

Proof. Let E = [q, Ẽ]. Choose W̃ ∈ �: (R, ˜* ) such that mCW̃ (0) = Ẽ . By construction,

W ≔ q−1 ◦ W̃ ∈ �: (R, - ) satis�es ^ (W) = E . This proves (1).

Let W, X ∈ ΓG . Choose q ∈ AG with q (G) = 0. Set W̃ ≔ q ◦ W and
˜X ≔ q ◦ X . By

de�nition, ^ (W) = ^ (X) if and only if

(3.67) mCW̃ (0) =
=∑
8=1

d

dC

����
C=0

G8 ◦ W (C) · mG8 =
=∑
8=1

d

dC

����
C=0

G8 ◦ X (C) · mG8 = mC ˜X (0).

This implies (2). �

De�ne an equivalence relation ∼ on ΓG be declaring that W ∼ X if and only if (3.66)

holds for every 5 ∈ �: (- ). The map ^ induces a bijection ΓG/∼ → )G- . Therefore,

tangent vector to - at G can be understood kinematically as equivalence classes of

paths W passing through G at C = 0. The cone structure on )G- can easily be seen to

arise from the rescaling action on ΓG . However, the vector space structure on)G- is not

obvious from this description.

4 Product manifolds
Proposition 4.1. Let : ∈ N0 ∪ {∞, l}. Let � ∈ N. Let -1, . . . , -� be �: manifolds with
boundary with at most one -8 having non-empty boundary. For 8 ∈ {1, . . . , � } denote by

(4.2) pr8 : -1 × · · · × -� � -8

the canonical projection maps. There exists a unique �: structure A× on -1 × · · · × -�
satisfying the following universal property:

1. For every 8 ∈ {1, . . . , � } the map pr8 is �
: .

2. If . is a �: manifold with boundary and 5 : . → -1 × · · · × -� is a continuous
map, then 5 is �: with respect to A× if and only if for every 8 ∈ {1, . . . , � } the map
pr8 ◦ 5 : . → -8 is �: .

De�nition 4.3. In the situation of Proposition 4.1, the �: manifold with boundary

-1 × · · · × -� is called the product of -1, . . . , -� . •
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Remark 4.4. The situation of Proposition 4.1 is illustrated by the diagram

(4.5)

.

-1 × · · · × -� -8 .

5

pr8

The map [ : �: (.,-1 × · · · × -� ) � �: (.,-1) × · · · ×�: (.,-� ) de�ned by

(4.6) [ (5 ) ≔ (pr
1
5 , . . . , pr� 5 )

is a bijection. ♣

Proof of Proposition 4.1. Denote by A8 = {q8U : * 8
U → ˜* 8

U : U ∈ �8} the �: structure on

-8 . Set �× ≔ �1 × · · · ×�� and for every U = (U1, . . . , U� ) ∈ �× set

(4.7) qU ≔ q1

U1

× · · · × q �U� : *U ≔ * 1

U1

× · · · ×* �
U�
→ ˜*U ≔ ˜* 1

U1

× · · · × ˜* �
U�
.

Without loss of generality, MU8 = R<U8 for every U8 ∈ �8 with 8 > 2. Therefore,
˜*U ⊂ MU

is an open subset with MU denoting either R<U
or [0,∞) × R<U−1

with<U ≔
∑8
8=1
<8
U8

.

Set

(4.8) A◦× ≔ {qU : U ∈ �×}.

Since

(4.9) qU ◦ q−1

V
= q1

U1

◦ (q1

V1

)−1 × · · · × q �U� ◦ (q
�
V�
)−1.

A◦× is a �: atlas. Set A× ≔ A◦×. Since

(4.10) q8U8 ◦ pr8 ◦ q−1

U (G1, . . . , G� ) = pr8 (G1, . . . , G� ) = G8

the maps pr8 are �: with respect to the �: structure A×.

Let . be a �: manifold with boundary with �: structure B = {kV : +V → ˜+V : V ∈
�}. Let 5 : . → -1 × · · · × -� be a continuous map. If 5 is �: with respect to A×, then

so is pr8 ◦ 5 for every 8 ∈ {1, . . . , � }. Conversely, if pr8 ◦ 5 is �: for every 8 ∈ {1, . . . , � },
then 5 is �: with respect to A× because for every U ∈ �× and V ∈ �

(4.11) qU ◦ 5 ◦k−1

V
= (qU1

◦ pr
1
◦ 5 ◦k−1

V
, . . . , qU� ◦ pr� ◦ 5 ◦k−1

V
).

Therefore, A× satis�es the universal property.

Let B = {kV : +V → ˜+V : V ∈ �} be a �: structure on -1 × · · · × -� satisfying the

universal property. To prove that B = A× it su�ces to show that identity map

(4.12) X ≔ id-1×···×-� : (-1 × · · · × -� ,A×) → (-1 × · · · × -� ,B)
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is a �: di�eomorphism. By (2) for B, X map is �: if and only if

(4.13) pr8 ◦ X = pr8 : (-1 × · · · × -� ,A×) → (-8,A8)

is �: . By (1) for A×, this is the case. The same reasoning with the roles of A× and B

reversed shows that X−1
is �: as well. �

Remark 4.14. Proposition 4.1 fails if more than one -8 has non-empty boundary. This

can be recti�ed by working with �: manifolds with corners. ♣

Corollary 4.15. Assume the situation of Proposition 4.1. The following hold:

1. If . is a �: manifold and 58 : . → -8 are �: , then the map (51, . . . , 5� ) : . →
-1 × · · · × -� is �: .

2. If .8 (8 = 1, . . . , � ) are �: manifolds and 58 : .8 → -8 (8 = 1, . . . , � ) are �: , then the
map 51 × · · · × 5� : .1 × · · · × .� → -1 × · · · × -� is �: .

�

Corollary 4.16. Let : ∈ N0 ∪ {∞, l}. Let - be a �: manifold. The diagonal map
Δ : - → - × - is �: . �

Proof of Proposition 2.24. Let 5 , 6 ∈ �: (- ) and _ ∈ R Both 5 6 and 5 + _6 are composi-

tions of the form

(4.17) -
Δ−→ - × -

5 ×6
−−−→ R × R→ R

with the �nal map denoting either the map (G,~) ↦→ G~ or the map (G,~) ↦→ G +_~. �

Proposition 4.18. In the situation of Proposition 4.1 for every G = (G1, . . . , G� ) ∈ -1× · · · ×
-� the following hold:

1. The map e : )G (-1 × · · · × -� ) → )G1
-1 ⊕ · · · ⊕ )G�-� de�ned by

(4.19) e (E) ≔
(
)Gpr

1
(E), . . . ,)Gpr� (E)

)
is an isomorphism.

2. If 58 : .8 → -8 (8 = 1, . . . , � ) are �: , then

(4.20) e ◦)G (51 × · · · × 5� ) = ()G1
51 ⊕ · · · ⊕ )G� 5� ) ◦ e .

Notation 4.21. In the situation of Proposition 4.18, it is customary to identify

)G (-1 × · · · × -� ) = )G1
-1 ⊕ · · · ⊕ )G�-� and

)G (51 × · · · × 5� ) = )G1
51 ⊕ · · · ⊕ )G� 5� . ◦

30



Proof of Proposition 4.18. De�ne ]8 : -8 → -1 × · · · × -� by

(4.22) ]8 (·) ≔ (G1, . . . , G8−1, · , G8+1, . . . , G� ).

Since pr8 ◦ ]8 = id-8 , the map )G1
-1 ⊕ · · · ⊕ )G�-� → )G (-1 × · · · × -� ) given by

(4.23) (E1, . . . , E� ) ↦→
�∑
8=1

dG]8 (E8)

is an inverse of e . This proves (1).

Proposition 3.24 implies (2). �

Proof of Proposition 3.27. (3.28) is trivial.

Denote by 0_ : R × R → R the map de�ned by 0_ (G,~) ≔ G + _~. Denote by

< : R × R→ R the map de�ned by<(G,~) ≔ G~. Trivially and by the Leibniz rule,

)(G,~)0_ (Ĝ, ~̂) = Ĝ + _~̂ and )(G,~)<(Ĝ, ~̂) = G~̂ + ~Ĝ .

Therefore, by Proposition 3.24,

E (5 + _6) = )G (0_ ◦ (5 , 6) ◦ Δ) (E)
= )(5 (G),6(G))0_ ◦ ()G 5 ⊕ )G6) ◦)GΔ(E)
= )G 5 (E) + _)G6(E)
= E (5 ) + _E (6) .

(4.24)

This proves (3.29) Similarly,

E (5 6) = )G (< ◦ (5 , 6) ◦ Δ) (E)
= )(5 (G),6(G))< ◦ ()G 5 ⊕ )G6) ◦)GΔ(E)
= )G 5 (E)6(G) + 5 (G))G6(E)
= E (5 )6(G) + 5 (G)E (6).

(4.25)

This proves (3.30) �

5 The inverse function theorem
Theorem 5.1 (Inverse Function Theorem). Let : ∈ N ∪ {∞, l}. Let - and . be �:

manifolds without boundary and let 5 : - → . be�: . Let G ∈ - . If)G 5 : )G" → )5 (G)#
is invertible, then there is an open neighborhood* of G ∈ - such that + ≔ 5 (* ) is open
and 5 |* : * → + is a �: di�eomorphism.
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Remark 5.2. This result is false if - permitted to have a boundary and G ∈ m- . To see

this, consider the inclusion ] : [0,∞) × R<−1 ↩→ R< and G = 0. ♣
This follows from the following result.

Lemma 5.3 (Quantitative Inverse Function Theorem). Let : ∈ N ∪ {∞, l} and = ∈ N.
Let A, Y > 0 with Y < 1. Let Λ ∈ GL(R=). Let a :

¯�A (0) → R= be �: with a (0) = 0 and

(5.4) |a (G) − a (~) | 6 Y |G − ~ |.

Set

(5.5) 5 ≔ Λ ◦ (1 + a) : �A (0) → R= and + ≔ 5 (�A (0)) .

The set + is open and 5 : �A (0) → + is a �: di�eomorphism; moreover: Λ�(1−Y)A (0) ⊂
+ ⊂ Λ�(1+Y)A (0),

Proof of Theorem 5.1. It su�ces to prove the result for - = . = R= , G = 0, and 5 (G) = 0.

By Taylor expansion,

(5.6) 5 = d05 + '

with the remainder term satisfying '(0) = 0 and

(5.7) lim

A→0

sup

G≠~∈�A (0)

|'(G) − '(~) |
|G − ~ | = 0.

Therefore, Lemma 5.3 with Λ = d05 applies provided A � 1. �

Remark 5.8. If (5.7) can be made e�ective (e.g.: if 5 is �2
), then the size of* and + are

controlled by Lemma 5.3. ♣

Proof of Lemma 5.3. It su�ces to consider the case Λ = 1.

Step 1. The map 5 is injective and 5 −1 is Lipschitz continuous.

For every G,~ ∈ �A (0)

(5.9) |G − ~ | 6 |5 (G) − 5 (~) | + |a (G) − a (~) | 6 |5 (G) − 5 (~) | + Y |G − ~ |;

hence: |G − ~ | 6 (1 − Y)−1 |5 (G) − 5 (~) |.
Step 2. For every G0 ∈ �A (0)

(5.10) �(1−Y)B (5 (G0)) ⊂ 5 (�B (G0)) with B ≔ A − |G0 |.

In particular, + is open.
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For I ∈ ¯�(1−Y)B (5 (G0)) de�ne ΦI :
¯�A (G) → R= by

(5.11) ΦI (G) ≔ I − a (G).

This map has the following properties:

1. ΦI (G) = G if and only if 5 (G) = I.

2. ΦI is a contraction of
¯�B (G0); indeed: for every G,~ ∈ ¯�B (G0)

(5.12) |ΦI (G) − ΦI (~) | 6 Y |G − ~ |;

moreover, from

(5.13)

ΦI (G)−G0 = I−a (G)−G0 = I−(G0+a (G0))+a (G0)−a (G) = I− 5 (G0)+a (G0)−a (G)

it follows that

(5.14) |ΦI (G) − G0 | 6 (1 − Y)B + Y |G − G0 | 6 B .

Therefore, by Banach’s �xed-point theorem, for every I ∈ ¯�B (0) there is a unique

G ∈ �̄A (0) satisfying 5 (G) = I.

Step 3. The map 5 −1
: + → �A (0) is �: .

For every G ∈ �A (G), dG 5 = 1 + dGa is invertible since |dGa | 6 Y. Let I,F ∈ + . Set

G ≔ 5 −1(I), ~ ≔ 5 −1(F). Since��5 −1(I) − 5 −1(F) − (dG 5 )−1(I −F)
��

|I −F | =
|G − ~ − (dG 5 )−1(5 (G) − 5 (~)) |

|I −F |

.
|dG 5 (G − ~) − (5 (G) − 5 (~)) |

|G − ~ | ,

(5.15)

the map 5 −1
is di�erentiable; moreover:

(5.16) dI 5
−1 = (d5 −1 (I) 5 )−1.

The right-hand side is continuous; hence, 5 −1
is�1

. In fact, if : > 2, then the right-hand

side is �1
; hence: 5 −1

is �2
, and so on.

If : = l , then it can be seen that 5 −1
is�l by using the following: a smooth function

5 : * ⊂ R< → R= is analytic if and only if for every compact  ⊂ � there is a constant

2 = 2 ( ) > 0 such that for every U ∈ N<
0

�(5.17) sup

G∈ 
|mU 5 (G) | 6 2 |U |+1U!.
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Exercise 5.18. Prove Lemma 5.3 for : = l .

C

De�nition 5.19. Let : ∈ N0 ∪ {∞, l}. Let -,. be �: manifolds with boundary. A �:

map 5 : - → . is a local di�eomorphism if every G ∈ - has an open neighborhood*

such that 5 |* : * → 5 (* ) is a �: di�eomorphism. •

Corollary 5.20. Let : ∈ N0 ∪ {∞, l}. Let -,. be �: manifolds without boundary. A �:

map 5 : - → . is a local di�eomorphism if and only if for every G ∈ - the map )G 5 is
invertible. �

De�nition 5.21. Let - and . be topological space. A map ? : - → . is a covering map
if for every ~ ∈ . there is an open neighborhood* of - and a discrete space � and a

homeomorphism

(5.22) q : ?−1(* ) → * × �

satisfying

•(5.23) pr
1
◦ q = ?.

Proposition 5.24. Let : ∈ N0∪ {∞, l}. Let -,. be�: manifolds with boundary. Suppose
that . is connected. Let 5 : - → . be a local di�eomorphism. If 5 is proper, then 5 is a
covering map.

The proof requires the following preparation.

Proposition 5.25. Let - and . be topological spaces. Suppose that . is locally compact
and Hausdor�. If 5 : - → . is a proper continuous map, then it is closed.

Proof of Proposition 5.25. Let � ⊂ - be a closed set. Let G ∈ 5 (�). Since . is locally

compact, G has a compact neighborhood  . Since 5 is proper, 5 −1( ) is a compact.

Therefore, � ∩ 5 −1( ) is compact. Since 5 is continuous, 5 (� ∩ 5 −1( )) = 5 (�) ∩  
is compact; indeed: since . is Hausdor�, it is closed. Therefore, G ∈ 5 (�) ∩  =

5 (�) ∩  ⊂ 5 (�). Since G ∈ 5 (�) is arbitrary, 5 (�) is closed. �

Proof of Proposition 5.24. Let ~ ∈ . . Set

(5.26) � ≔ 5 −1(~).

Since 5 is a local di�eomorphism, every G ∈ � has a neighborhood*G such that

(5.27) 5 |*G : *G → ˜*G ≔ 5 (*G )

34



is a di�eomorphism. In particular, � is discrete. Since 5 is proper, � is compact; hence:

�nite.

After possibly shrinking the*G , it can be assumed that for every G ≠ ~ ∈ �

(5.28) *G ∩*~ = ∅.

The set

(5.29) � ≔ -\
⋃
G∈�

*G

is closed and disjoint from � . Therefore, by Proposition 5.25,

(5.30)
˜+ ≔

⋂
G∈-

˜*G\5 (�)

is an open neighborhood of ~ ∈ . . For every G ∈ � set

(5.31) +G ≔ 5 −1( ˜+ ) ∩*G .

By construction, for every G ∈ -

(5.32) 5 |+G : +G → ˜+

is a di�eomorphism and

(5.33) 5 −1(+ ) =
⋃
G∈-

+G .

The map q : 5 −1(+ ) → + × � de�ned by

(5.34) q |+G (I) ≔ (5 (I), G)

is the required homoemorphism. �

Example 5.35. Let = ∈ N. The map c : (= → R%= de�ned by

(5.36) c (G) ≔ [G]

is a covering map. ♠

Example 5.37 (Milnor [Mil97, p.8]). The fundamental theorem of algebra asserts that

every non-constant polynomial ? ∈ C[I] has a zero. This can be proved as follows. Let

? (I) =
3∑
:=0

0:I
: ∈ C[I]
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be a polynomial of degree 3 > 1. De�ne 5 : C%1 → C%1
by

5 ( [I : F]) ≔
[
3∑
:=0

0:I
:F3−:

: F3

]
.

A moment’s thought shows that, [1 : 0] is a critical point of 5 , and [I : 1] is a critical

point of 5 if and only if ?′(I) = ∑3−1

:=0
:0:−1I

: = 0. Therefore,

(5.38) Δ ≔ 5 (crit 5 ) ⊂ C%1.

the set of critical values of 5 , is �nite. Trivially, im 5 ⊃ Δ.

By Proposition 5.24, the map 5 : 5 −1(C%1\Δ) → C%1\Δ is a covering map. Since

C%1\Δ is connected,

(5.39) # ≔ #5 −1(~) ∈ N0

is independent of ~ ∈ C%1\Δ. Evidently, # ≠ 0. Therefore, im 5 ⊃ C%1\Δ.

This proves that 5 is surjective; in particular: [0 : 1] ∈ im 5 ; hence: 5 has a zero. ♠

C

Theorem 5.40 (Normal forms of smooth maps). Let : ∈ N ∪ {∞, l}. Let - and . be
�: manifolds without boundary. Let 5 : - → . be �: . Let G ∈ - and set A ≔ rk)G 5 ,
< ≔ dimG - , and = ≔ dim� (G) . . There are an admissible chart q : * → ˜* of - with
G ∈ * and q (G) = 0 and and admissible chart k : + → ˜+ of . with 5 (* ) ⊂ + and
k (5 (G)) = 0 such that ˜5 ≔ k ◦ 5 ◦ q−1

:
˜* → ˜+ is of the form

(5.41)
˜5 (~, I) = (~,6(~, I))

with 6 :
˜* → R=−A satisfying

(5.42) 6(q (G)) = 0 and dq (G)6 = 0;

moreover:

1. if )G 5 is injective, then ˜5 (~) = (~, 0);

2. if )G 5 is surjective, then ˜5 (~, I) = ~; and

3. if ~ ↦→ rk)~ 5 is constant in neighborhood of G , then ˜5 (~, I) = (~, 0).
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Proof. Without loss of generality, - = R< , . = R< , G = 5 (G) = 0 and

(5.43) d05 =

(
1 0

0 0

)
.

Suppose that d05 is injective. The �: map � : R= = R< ⊕ R=−< → R= de�ned by

(5.44) � (~, I) ≔ 5 (~) + (0, I)

satis�es d0� = 1. By Theorem 5.1, there is an open neighborhood + of 0 ∈ R= such that

� |+ : + → ˜+ ≔ � (+ ) is a �: di�eomorphism. Set k ≔ (� |+ )−1
and * ≔ 5 −1(+ ). for

every ~ ∈ *

(5.45) k ◦ 5 (~) = (~, 0).

This proves (1).

Suppose that d05 is surjective. The�: map � : R< = R= ⊕ R=−< → R< = R= ⊕ R=−<
de�ned by

(5.46) � (~, I) ≔ (5 (~, I), I)

satis�es d0� = 1. By Theorem 5.1, there is an open neighborhood* of 0 ∈ R= such that

� |* : * → *̃ ≔ � (* ) is a �: di�eomorphism. Set q ≔ � |* . For every (~, I) ∈ *̃

(5.47) 5 ◦ q−1(~, I) = ~.

This proves (2).

Decompose 5 = (51, 52) with 51 : R< → RA and 52 : R< → R=−A . By construction,

d051 is surjective. De�ne q as above with 51 instead of 5 . For every (~, I) ∈ ˜*

(5.48) 5 ◦q−1(~, I) = (51 ◦q−1(~, I), 52 ◦q−1(~, I)) = (~, 6̃(~, I)) with 6̃ ≔ 52 ◦q−1.

From

(5.49) d(~,I) (5 ◦ q−1) =
(

1 0

m6̃

m~
(~, I) m6̃

mI
(~, I)

)
it follows that

(5.50) rk d(~,I) 5 = A + rk

m6̃

mI
(~, I).

Therefore and since rk d05 = A ,

(5.51)

m6̃

mI
(0, 0).
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Set + ≔ {(~, I) ≔ (~, 0) ∈ ˜* }. The mapk :
˜* → R= de�ned by

(5.52) k (~, I) ≔ (~, I − 6̃(~, 0))

satis�es d0k = 1. Therefore, after possibly shrinking + , the mapk : + → ˜+ ≔ k (+ ) is

a �: di�eomorphism. De�ne 6 :
˜* → R=−A by

(5.53) (~,6(~, I)) ≔ k ◦ 5 ◦ q−1(~, I).

By construction,

(5.54) d06 =

(
− m6̃
m~
(0, 0) 1

) (
1 0

m6̃

m~
(0, 0) 0

)
= 0.

It remains to prove (3). If (~, I) ↦→ rk d(~,I) 5 is constant, then
6̃

mI
(~, ·) vanishes;

hence, after possibly shrinking
˜* , 6̃ is independent of I. Therefore, by construction of

k ,

�(5.55) 6(~, I) = 6̃(~, I) − 6̃(~, 0) = 0.

Remark 5.56. There is a variant of this if - and . have boundary, but the q andk are

not quite charts. ♣

C

De�nition 5.57. Let : ∈ N∪ {∞, l}. Let - be a�: manifold with boundary. Let� be a

group.

1. A �–action on - is a homomorphism d : � → Di� (- ).

2. A point G ∈ - is a �xed-point of d if for every 6 ∈ �

(5.58) d6 (G) = G .

The set of �xed-points is denoted by -� . •

Proposition 5.59 (Linearization of �nite group actions). Let : ∈ N ∪ {∞, l}. Let - be
a �: manifold without boundary. Let � be a �nite group. Let d : � → Di� (- ) be a
�–action. For every �xed-point G ∈ -� there are open neighborhoods * of G ∈ - and ˜*

of 0 ∈ )G- , and a�: di�eomorphism q : * → ˜* ⊂ )G- such that q (G) = 0 and for every
6 ∈ �

(5.60) d6 (* ) = * , )Gd6 ( ˜* ) = ˜* , and q ◦ d6 ◦ q−1 = )Gd6 .
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Proof. Letk : + → ˜+ ⊂ )G- be a �: di�eomorphism with

(5.61) k (G) = 0 and )Gk = 1.

Set

(5.62) * ≔
⋂
6∈�

d6 (+ ).

By construction, G ∈ * ⊂ + and for every 6 ∈ �

(5.63) d6 (* ) = * .

De�ne q : * → )G- by

(5.64) q =
1

|� |
∑
6∈�

)Gd6 ◦k ◦ d−1

6 .

Since

(5.65) )Gq =
1

|� |
∑
6∈�

)Gd6 ◦ 1 ◦)Gd−1

6 = 1,

after possibly (�–invariantly) shrinking* , q : * → ˜* ≔ q (* ) is a�: di�eomorphism.

To see that q is �–equivariant, observe that for every ℎ ∈ �

q ◦ dℎ =
1

|� |
∑
6∈�

)Gd6 ◦k ◦ d−1

ℎ−16

=
1

|� |
∑

ℎ−16∈�
)Gdℎ ◦)Gdℎ−16 ◦ ◦kd−1

ℎ−16

= )Gdℎ ◦ q.

(5.66)

This �nishes the proof. �

Remark 5.67. A version of this holds for �: manifolds with boundary and G ∈ m- .

This requires replacing )G- with the inward pointing half-space �G- (which I have not

de�ned, yet). ♣

6 Submanifolds
De�nition 6.1. Let : ∈ N0 ∪ {∞, l}. Let - be a �: manifold with boundary. A

subset . ⊂ - is a �: submanifold if for every G ∈ . there is an admissible chart

q : * → ˜* ⊂ M of - with G ∈ * and = ∈ {0, . . . ,< ≔ dimG - } such that

(6.2) q (. ∩* ) = S ∩ ˜*

with S ⊂ M denoting either R= × {0} or [0,∞) × R=−1 × {0}. •
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Proposition 6.3. Let : ∈ N0 ∪ {∞, l}. Let - be a �: manifold without boundary. Let
. ⊂ - be a �: submanifold. There is a unique �: structure A⊂ on . satisfying the
following universal property:

1. The inclusion map ] : . ↩→ - is �: .

2. If / is a�: manifold and 5 : / → . is a continuous map, then 5 is�: with respect
toA⊂ if and only if ] ◦ 5 : / → - is �: .

Exercise 6.4. Prove this.

De�nition 6.5. Let : ∈ N0 ∪ {∞, l}. Let - be a�: manifold with boundary. Let . ⊂ -
be a �: submanifold.

1. . is neat if m. = . ∩ m- .

2. The codimension of . is the map codim· : . → N0 de�ned by

•(6.6) codimG . ≔ dimG - − dimG . .

Example 6.7. Let : ∈ N0 ∪ {∞, l}. Let - be a �: manifold with boundary. If* ⊂ - is

open, then it is a submanifold of codimension zero ♠

Example 6.8. Let : ∈ N0 ∪ {∞, l}. Let - be a�: manifold with boundary. m- ⊂ - is a

submanifold of codimension one. ♠

C

De�nition 6.9. Let : ∈ N ∪ {∞}. Let - and . be �: manifolds. Let 5 : - → . be a �:

map.

1. An G ∈ - is a regular point of 5 if )G 5 is surjective; otherwise, it is a critical
point of 5 . The set of critical points of 5 is denoted by

(6.10) crit 5 ≔ {G ∈ - : )G 5 is not surjective}.

2. A ~ ∈ . is a critical value of 5 if is contained in 5 (crit 5 ); otherwise, it is a

regular value of 5 . •

Remark 6.11. In the situation of De�nition 6.9, every ~ ∉ im 5 is a regular value of 5 . In

fact, if dim- < dim. , then ~ ∈ . is a regular value of 5 if and only if ~ ∉ im 5 . ♣

Theorem 6.12 (Regular Value Theorem). Let : ∈ N ∪ {∞}. Let - and . be�: manifolds
with boundary. Let 5 : - → . be�: . If ~ ∈ . is a regular value of 5 and m5 ≔ 5 |m- , then
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1. / ≔ 5 −1(~) is a �: neat submanifold of - .

2. Denote by ] : / → - the inclusion. The sequence

(6.13) 0→ )G/
)G ]−−→ )G-

)G 5−−→ )5 (G). → 0

is exact; that is: )G] de�nes an isomorphism

(6.14) )G/ � ker)G 5 .

Proof of Theorem 6.12. Let G ∈ 5 −1(~). If G ∉ m- , then, by Theorem 5.40 (2), there is an

admissible chart q : * → *̃ of - with G ∈ * and q (G) = 0 and and admissible chart

k : + → ˜+ of . with 5 (* ) ⊂ + andk (~) = 0 such that
˜5 ≔ k ◦ 5 ◦ q−1

satis�es

(6.15)
˜5 (G1, . . . , G<) = (G1, . . . , G=)

with< ≔ dimG - and = ≔ dim~ . . Therefore,

(6.16) q (5 −1(~) ∩* ) = (R= × {0}) ∩ ˜* .

This proves the assertion if m- = ∅.

If G ∈ m- , then there is a neighborhood * of G ∈ - which is embedded into a �:

manifold, without boundary and a �: map 1 ∈ �: (, ) such that 0 is regular value of

1 and * = 1−1( [0,∞)). Furthermore, there is a �: map 6 : , → . with 6 |* = 5 and

such that ~ is a regular value of 6. By the above, 6−1(~) is a submanifold of, . 0 is a

regular value of 1 |5 −1 (~) . Indeed, for every I ∈ 5 −1(~) ∩ 1−1(0)

(6.17) )I 5 (ker)I1) = )5 (I). ;

in particular: ker)G 5 ⊄ ker)G1. The result thus follows from the following proposition.

�

Proposition 6.18. Let : ∈ N ∪ {∞}. Let - be �: manifold without boundary. Let
5 ∈ �: (- ). If 0 ∈ R is a regular value of 5 , then . ≔ 5 −1( [0,∞)) is a submanifold with
boundary 5 −1(0).

Proof. If G ∈ 5 −1(0,∞), then there is an open neighborhood * of G ∈ - such that

* ⊂ 5 −1(0,∞). Therefore, it remains to consider G ∈ 5 −1(0) By Theorem 5.40 (2), there

is an admissible chart q : * → ˜* of - with G ∈ * and q (G) = 0 and and admissible

chartk : + → ˜+ of R with 5 (* ) ⊂ + andk (0) = 0 such that
˜5 ≔ k ◦ 5 ◦ q−1

satis�es

(6.19)
˜5 (G1, . . . , G<) = G .

Without loss of generality,k is monotone increasing. Therefore, 5 (~) > 0 if and only if

~1 > 0 for (~1, . . . , ~<) ≔ q (~). Consequently,

�(6.20) q (. ∩* ) = ( [0,∞) × R<−1) ∩ ˜* .
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Remark 6.21. If - itself has a boundary, then 5 −1( [0,∞] might have corners. ♣
Theorem 6.12 is incredibly useful for constructing �: manifolds.

Example 6.22. Let = ∈ N0. De�ne 5 : R=+1 → R by

(6.23) 5 (G1, . . . , G=+1) ≔ |G |2 =
=+1∑
8=1

G2

8 .

Since

(6.24) dG 5 (Ĝ) = 〈G, Ĝ〉 = 2

=+1∑
8=1

G8Ĝ8,

every ~ ∈ R\{0} is a regular value of 5 . The level set 5 −1(1) is (=; indeed, for every

~ > 0, 5 −1(~) is di�eomorphic to (= . For ~ < 0, 5 −1(~) = ∅. ♠

Example 6.25. Let = ∈ N. The orthogonal group in dimension = is the subgroup of

GL(R=) de�ned by

(6.26) O(=) ≔ {� ∈ End(R=) : �C� = 1}.

O(=) is a submanifold of End(R=) of dimension

(6.27) dim O(=) = =(= − 1)
2

.

To see this, de�ne 5 : End(R=) → Sym(R=) by

(6.28) 5 (�) ≔ ��C

and observe that 1 is a regular value of 5 . Indeed,

(6.29) d� 5 ( ˆ�) = ˆ�C� +�C ˆ�;

therefore, for every � ∈ Sym(R=)

♠(6.30) d� 5 ( 1
2
��) = �.

Example 6.31. Let= ∈ N. The special orthogonal group in dimension= is the subgroup

of GL(R=) de�ned by

(6.32) SO(=) ≔ {� ∈ End(R=) : �C� = 1, det� = 1}.

For every � ∈ O(=)

(6.33) 1 = det(�C�) = det(�)2;

hence: det(�) ∈ {1,−1}. Therefore, SO(=) ⊂ O(=) is open and closed. Indeed, SO(=) is

the connected component of O(=) which contains 1. ♠
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Example 6.34. Let= ∈ N. The unitary group in dimension= is the subgroup of GL(C=)
de�ned by

(6.35) U(=) ≔ {� ∈ EndC(C=) : �∗� = 1}.

U(=) is a submanifold of EndC(C=) of dimension

(6.36) dim U(=) = =2.

Indeed, 1 is a regular value of the map 5 : EndC(C=) → Herm(C=) by

(6.37) 5 (�) ≔ �∗�

and

♠(6.38) dim EndC(C=) − dim Herm(C=) = 2=2 −
(
2

=(= − 1)
2

+ =
)
= =2.

Example 6.39. Let = ∈ N. The special unitary group in dimension = is the subgroup

of GL(C=) de�ned by

(6.40) SU(=) ≔ {� ∈ EndC(C=) : �∗� = 1, det� = 1}.

U(=) is a submanifold of SU(=) of dimension

(6.41) dim SU(=) = =2 − 1.

For every � ∈ U(=), det� ∈ (1 = {I ∈ C : |I | = 1}. 1 is a regular value of

(6.42) det : U(=) → (1

Indeed, for every � ∈ SU(=)

(6.43) )�U(=) = � · { ˆ� ∈ EndC(C=) : �∗ +� = 0}, )1(
1 = 8R,

and

(6.44) d� det(� ˆ�) = tr( ˆ�).

In particular, d� det(8�) = =8 . ♠

C

Exercise 6.45 (Constant rank theorem). Let : ∈ N ∪ {∞}. Let - and . be�: manifolds

with boundary. Let 5 : - → . be �: . Suppose that the map G ↦→ rk)G 5 is locally

constant. Prove that for every ~ ∈ . the level set 5 −1(~) is a �: submanifold without

boundary.
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C

Example 6.46. Let ?1, . . . , ?A be A homogeneous polynomials in = + 1 complex variables

I0, . . . , I= . The zero locus

/ := / (?1, . . . , ?A ) := {[I0 : . . . : I=] ∈ C%= : ?8 (I0, . . . , I=) = 0}

is a (complex) submanifold of C%= if for all (I0, . . . , I=) ∈ C=+1 with [I0 : . . . : I=] ∈ / ,

the map (d?1, . . . , d?A ) : C=+1 → CA is surjective. (Exercise!) Such a / is called a

complete intersection. ♠

Example 6.47. The quadric

& = {[I0 : I1 : I2 : I3] ∈ C%3
: I0I3 − I1I2 = 0}

is a complex submanifold of C%3
. If fact, it can be shown that & is di�eomorphic (in

fact: biholomorphic) to C%1 × C%1
. ♠

Example 6.48. The Fermat quartic

& = {[I0 : I1 : I2 : I3] ∈ C%3
: I4

0
+ I4

1
+ I4

2
+ I4

3
= 0}

is a complex submanifold of C%3
. This is a  3 surface, part of a particularly interesting

class of complex manifolds. ♠

Example 6.49. Let 01, . . . , 0= ∈ {2, 3, . . .} The Brieskorn manifold

(6.50) Σ(01, . . . , 0=) ≔
{
I = (I1, . . . , I=) ∈ C= : I

01

1
+ · · · + I0== = 0 and |I | = 1

}
is a submanifold of dimension 2= − 3. To see this, de�ne 5 : C= → C ⊕ R by

(6.51) 5 (I) ≔
(
I
01

1
+ · · · + I0== , |I |2

)
and observe that (0, 1) is a value of 5 . Indeed, if I ∈ Σ(01, . . . , 0=), then at least two of

its components are non-zero. From this easy to see that dI 5 is surjective.

The hypersurface {(I1, . . . , I=) ∈ C= : I
01

1
+ · · · + I0== = 0} has a singularity at

0. However, it might still be a topological manifold. This is the case if and only if

Σ(01, . . . , 0=) is homeomorphic to (2=−3
. Building on work of Pha.m [Pha.65], Brieskorn

[Bri66, Satz 1] proved a criterion for Σ(01, . . . , 0=) to be homeomorphic to (2=−3
. In this

case Brieskorn [Bri66, Satz 2 and 3] also determined the di�eomorphism type. The

Brieskorn manifolds Σ(2, 2, 2, 3, 6: − 1) with : = 1, . . . , 28 are homeomorphic to (7
but

not di�eomorphic to each other [Bri66]. These are all di�eomorphism types of (7
; cf.

Milnor [Mil56]. ♠

C
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Proposition 6.52. In the situation of Proposition 5.59, the �xed-point locus -� is a �:

submanifold.

Proof. By Proposition 5.59, it su�ces to prove this for - = R< and d : � → GL(R<).
In this case,

(6.53) -� =
⋂
6∈�

ker d6

is a linear subspace. �

C

De�nition 6.54. Let : ∈ N0 ∪ {∞, l}. Let -,. be �: manifolds with boundary.

1. A �: map ] : - → . is an immersion if for every G ∈ - the map )G] : )G- →
)] (G). is injective.

2. It is an embedding if it is an injective immersion and the map - → ] (- ) is a

homeomorphism. •

Notation 6.55. If ] : - → . is an immersion, then this can be indicated by denoting

it as ] : - # . . If it is an embedding, then this can be indicated by denoting it as

] : - ↩→ . . ◦

Proposition 6.56. Let : ∈ N0 ∪ {∞, l}. Let - be a �: manifold with boundary.

1. If . ⊂ - is a �: submanifold, then the inclusion ] : . ↩→ - is an �: embedding.

2. If . is a �: manifold without boundary and ] : . ↩→ - is an �: embedding, then
] (. ) is a �: submanifold.

Proof. This is a consequence of Theorem 5.40(1). �

Remark 6.57. Every connected �: manifold - admits an embedding into R< for some

< =<(- ) ∈ N0; see Theorem 10.1. ♣

Example 6.58. The map ] : R/2cZ→ R2
de�ned by

(6.59) ] (C) ≔ (sin C, sin 2C)

is an immersion, but not injective; hence: not an embedding. The image of ] is precisely

(6.60) 5 −1(0) with 5 (G,~) ≔ 4G2(G2 − 1) + ~2.

This is illustrated in Figure 6.1. 0 is not a regular value of 5 ; indeed, d05 = 0. ♠
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Figure 6.1: The lemniscate 4G2(G2 − 1) + ~2 = 0.

Example 6.61. The restriction of the map ] de�ned by (6.59) to (−c, c) is an injective

immersion, but not an embedding; indeed, there is no open subset * ⊂ R2
such that

im ] ∩* = ] (−c/2, c/2). ♠

Example 6.62. For ` ∈ R de�ne ]` (C) : R→ ) 2
by

(6.63) ]` (C) ≔ [(C, `C)] .

This map is an immersion.

1. If ` = 0/1 ∈ Q with 0 and 1 coprime, then ]` (C) descends to an embedding

(6.64) R/1Z ↩→ ) 2.

2. If ` ∉ Q, then ]` is injective, but not an embedding; im ]` is dense in ) 2
. ♠

Proposition 5.25 implies the following.

Corollary 6.65. Let - and . be�: manifold. If ] : - # . is a proper injective immersion,
then it is a proper embedding. �

Example 6.66. The map 5 : (2 → R4
de�ned by

(6.67) 5 (G,~, I) ≔ (G~,~I, IG, G2 − ~2)

is an immersion. The is unique map 6 : R%2 → R4
such that

(6.68) 5 = 6 ◦ c

with c : (2 → R%2
denoting the projection map. The map 6 is an injective immersion;

hence: an embedding. ♠
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Example 6.69. The map ] : (0,∞) → R2
de�ned by

] (A ) ≔ A (cos(1/A ), sin(1/A ))

is an embedding because ]−1(G,~) =
√
G2 + ~2

is continuous, but it is not proper; indeed:

]−1(�̄1(0)) = (0, 1] is not compact. The image of ] is the decelerating spiral depicted in

Figure 6.2 ♠

Figure 6.2: Decelerating spiral.

C

De�nition 6.70. Let : ∈ N0 ∪ {∞, l}. Let -,. be �: manifolds with boundary. Let

] : . # - be an immersion. The normal space of ] at G ∈ . is

#G] ≔ )] (G)-/)G] ()G. ) .

The codimension of ] is the map codim ] : . → N0 de�ned by

•(6.71) codimG ] = dim#G].

C

De�nition 6.72. Let : ∈ N ∪ {∞, l}. Let - be a�: manifold with boundary. A�: map

A : - → - is a �: retraction if

•(6.73) A ◦ A = A .

Proposition 6.74. Let : ∈ N ∪ {∞, l}. Let - be a �: manifold without boundary. If
A : - → - is a �: retraction, then im A ⊂ - is a submanifold.
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Proof. The functions d : - → N0 and f : - → N0 de�ned by

(6.75) d (G) ≔ rk)GA and f (G) ≔ rk(1 −)GA )

are lower semi-continuous. If G ∈ im A , then

(6.76) A (G) = G and )GA ◦)GA = )GA ;

therefore, im)GA = ker(1 −)GA ) and d (G) + f (G) = dimG - . Consequently, d is locally

constant on im A .

Choose a neighborhood * of G ∈ - such that d |* > d (G) and equality holds on

im A ∩* . Since

rk)~A = rk)~ (A ◦ A ) = rk()A (~)A ◦)~A ) 6 rk)A (~)A = d (G),

d |* is constant.

The assertion thus follows from Theorem 5.40 (3). �

C

Proposition 6.77. Let -,. be �nite-dimensional real vector spaces. For A ∈ N0 the subset

(6.78) HA ≔ {! ∈ Hom(-,. ) : rk! = A }

is a submanifold of codimension

(6.79) codimHA = (dim- − A ) (dim. − A ).

Proof. Let ! ∈HA . Choose direct sum decompositions

(6.80) - = -1 ⊕ -2 and . = .1 ⊕ .2 with -2 ≔ ker! and .1 ≔ im!.

Every Λ ∈ Hom(-,. ) decomposes accordingly as

(6.81) Λ =

(
Λ11 Λ12

Λ21 Λ22

)
.

By construction, !11 is invertible. Choose an open neighborhood * of ! in Hom(-,. )
such that Λ11 is invertible for every Λ ∈ * .

The the map 5 : * → Hom(-2, .2) de�ned by

(6.82) 5 (Λ) ≔ Λ22 − Λ21Λ
−1

11
Λ12

has the property that for every Λ ∈ *

(6.83)

(
Λ−1

11
0

−Λ21Λ
−1

11
1

)
◦ Λ ◦

(
1 −Λ−1

11
Λ12

0 1

)
=

(
1 0

0 5 (Λ)

)
.
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Therefore,

(6.84) HA ∩* = 5 −1(0).

Since

(6.85) d! 5 (Λ̂) = Λ̂22,

after possibly shrinking* , 0 is a regular value of 5 . This proves the assertion since

�(6.86) dim Hom(-2, .2) = (dim- − A ) (dim. − A ).

Example 6.87. Let + be a �nite dimensional vector space. The Stiefel manifold St
∗
:
(+ )

de�ned by

(6.88) St
∗
:
(+ ) ≔

{
(E1, . . . , E:) ∈ + : : E1, . . . , E: are linearly independent

}
is a submanifold of + : . ♠

Example 6.89. Let+ be a �nite dimensional Euclidean vector space. The (orthonormal)
Stiefel manifold St: (+ ) de�ned by

(6.90) St: (+ ) ≔
{
(E1, . . . , E:) ∈ + : : 〈E8, E 9 〉 = X8 9

}
.

St: (+ ) is a submanifold of + : = Hom(R: ,+ ); indeed: 1 is a regular value of the map

5 : Hom(R: ,+ ) → Sym(R:) de�ned by

♠(6.91) 5 (�) ≔ �∗�.

Example 6.92. The Gram–Schmidt process de�nes an analytic map Ψ : St
∗
:
(+ ) →

GL(R:) such that

(6.93) �Ψ(�)∗ ∈ St: (+ )

and Ψ(�) is upper triangular. ♠

Example 6.94. Let+ be a �nite dimensional Euclidean vector space. TheGrassmannian
of :–planes in + is de�ned by

(6.95) Gr: (+ ) ≔
{
c ∈ Sym(+ ) : c2 = c and trc = :

}
.

Gr: (+ ) is bijective to the set of :–dimensional linear subspaces in + ; indeed: c is the

orthogonal projection onto imc . Gr: (+ ) is a submanifold of Sym(+ ). ♠
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Example 6.96. Let = ∈ N. Denote by Δ ⊂ R=×= the subspace of diagonal matrices.

De�ne 5 : O(=) × R= → Sym(R=) by

(6.97) 5 (Φ,Λ) ≔ ΦΛΦC .

The map 5 is surjective. � ∈ Sym(R=) is a regular value of 5 if and only if � has =

distinct eigenvalues. Indeed, dΦ,Λ5 is surjective if and only if it is injective. By a direct

computation,

(6.98) )ΦO(=) = {Φq ∈ R=×= : q∗ + q = 0}.

and

(6.99) dΦ,Λ5 (Φq, _) = Φ( [q,Λ] + _)Φ∗.

The terms [q,Λ] and _ are perpendicular. Obviously, the map _ ↦→ _ is injective.e A

moment’s thought shows that the map q ↦→ [q,Λ] is injective if and only if Λ has =

distinct eigenvalues. ♠

7 Sard’s Theorem
De�nition 7.1. Let - be a metric space. Let B ∈ [0,∞). Set

(7.2) 2B� ≔
cB/2

Γ(B/2 + 1)

Let � ⊂ - . The B–dimensional Hausdor� measure of � is de�ned by

(7.3) HB (�) ≔ sup

X>0

HB
X
(�)

with

•(7.4) HB
X
(�) ≔ 2B� inf

{ ∞∑
8=1

A B8 : � ⊂
∞⋃
8=1

�A8 (G8) and A8 6 X

}
∈ [0,∞] .

If HB (�) = 0, then � is said to have HB–measure zero.

Proposition 7.5. Let B ∈ [0,∞). Let - be a metric space. For every countable set {�= ⊂
- : = ∈ N} of subsets of -

(7.6) HB

( ∞⋃
==1

�=

)
6
∞∑
==1

HB (�=).
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Proposition 7.7. Let B ∈ [0,∞). Let -,. be metric spaces. Let 5 : - → . be Lipschitz. If
� ⊂ - hasHB–measure zero, then 5 (�) ⊂ . hasHB–measure zero.

Corollary 7.8. Let <,= ∈ N0 and B ∈ [0,∞). Let * ⊂ R< be an open subset. Let
5 : * → R= be �1. If � ⊂ - has HB–measure zero, then 5 (�) ⊂ . has HB–measure
zero. �

De�nition 7.9. Let : ∈ N ∪ {∞, l}. Let - be a �: manifold with boundary.

1. A subset � ⊂ - is of measure zero for every G ∈ � there is a chart q : * → *̃ ⊂
R< on - with G ∈ * and< ≔ dimG - such that q (� ∩* ) has H<

–measure zero.

2. Let (♣) be a property of points G ∈ - . (♣) holds for almost every G ∈ - if

{G ∈ - : (♣) does not hold for G} has measure zero. •

Proposition 7.10. Let = ∈ N and A ∈ {1, . . . , = − 1}. Let � ⊂ R= = RA × R=−A . If for every
~ ∈ R= the slice

(7.11) �~ ≔ {I ∈ R=−A : (I,~) ∈ �}

hasH=−A–measure zero, then � hasH=–measure zero. �

C

Theorem 7.12 (Sard [Sar42]). Let : ∈ N ∪ {∞}. Let - and . be connected �: manifolds
with boundary and let 5 : - → . be�: . If : > dim- − dim. + 1, then the set of critical
values of 5 in . has measure zero.

Example 7.13. De�ne 5 : C2 → C

(7.14) 5 (G,~) ≔ G~.

The set of critical values of 5 is {0}. ♠

C

De�nition 7.15. Let - be a topological space. A subset � ⊂ - is meager if it is a

countable union of nowhere dense subsets. •

Proposition 7.16. In the situation of Theorem 7.12, the set of critical values of 5 is meager.

De�nition 7.17. Let - be a topological space. A exhaustion by compact sets of - is a

sequence of compact subsets ( =)=∈N such that

•(7.18)  = ⊂  ◦=+1 for every = ∈ N and - =
⋃
=∈N

 = .
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Proposition 7.19. If - is a topological space which is locally compact, paracompact, and
path-connected, then it admits an exhaustion by compact subsets.

Proof. Since - is locally compact, it has an open cover U such that every * ∈ U is

contained in a compact subset; indeed: * is compact because - is Hausdor�. Since - is

paracompact, after passing to a re�nement, U can be assumed to be locally �nite.

Fix*1 ∈ U. For every* ∈ U there are*1,*2, . . . ,*= = * ∈ U such that

(7.20) *8 ∩*8−1 ≠ ∅ for every 8 ∈ {2, . . . , =}.

To see this, observe the following. Since - is path-connected, there is a continuous

map W : [0, 1] → - with W (0) ∈ *1 and W (1) ∈ * . The subset W ( [0, 1]) is compact

and, therefore, covered by*1,* , and �nitely many further elements of U. The desired

*1,*2, . . . ,*= can be extracted out of these.

De�ne ℓ : U → N by declaring ℓ (* ) to be the minimal = for which there are

*1,*2, . . . ,*= = * as above. For every = ∈ N the subset ℓ−1(=) is �nite and, therefore,

(7.21)  = ≔
⋃

* ∈ℓ−1 (=)
*

is compact. This is proved by induction. For = = 1 it is trivial. Suppose ℓ−1(=) is �nite.

Since  = is compact and U is locally �nite, only �nitely many * ∈ U intersect  = .

Therefore, ℓ−1(= + 1) is �nite.

It follows from the above that

�(7.22)  = ⊂
⋃

* ∈ℓ−1 (=+1)
* ⊂  ◦=+1 for every = ∈ N and - =

⋃
=∈N

 = .

Proof of Proposition 7.16 assuming Theorem 7.12. Denote by crit(5 ) ⊂ - the set of crit-

ical points of 5 . Since - is connected, by Proposition 7.19, it admits a exhaustion by

compact subsets ( =)=∈N. For every = ∈ N the subset 5 ( =∩crit(5 )) is compact. Since.

is Hausdor�, 5 ( = ∩ crit(5 )) is closed. Its interior must be empty because a non-empty

open subset of . cannot have measure zero. Therefore, 5 (crit(5 )) is meager. �

C

Proof of Theorem 7.12 for dim- < dim. . This is an immediate consequence of Corol-

lary 7.8 because {0} × R< ⊂ R= has H=
–measure zero provided< < =. �

C

The proof of Theorem 7.12 for dim- > dim. reduces to the following result.
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Lemma 7.23. Let<,= ∈ N0 with< > = and : ∈ N ∪ {∞, l}. Let * ⊂ R< be an open
subset. Let 5 : * → R= be �: . Set

(7.24) /
5

1
≔ {G ∈ * : dG 5 = 0}

If : > <
=
, then 5 (/ 5

1
) hasH=–measure zero.

Proof of Theorem 7.12 for dim- > dim. assuming Lemma 7.23. Denote by crit(5 ) the

set of critical points of 5 . Set< ≔ dim- and = ≔ dim. . For A ∈ {0, . . . , = − 1} set

critA (5 ) ≔ {G ∈ - : rk)G 5 = A }.

The set crit(5 ) decomposes as crit0(5 ) ∪ · · · ∪ crit=−1(5 ). Therefore, it su�ces to show

that the subsets 5 (critA (5 )) have measure zero. By Lemma 7.23, 5 (crit0(5 )) = 5 (/ 5
1
)

has measure zero.

Let A ∈ {1, . . . , = − 1} and let G ∈ critA (5 ). By Theorem 5.40, there are a chart

q : * → ˜* on - with G ∈ * and a chartk : + → ˜+ with 5 (G) ∈ + on . such that map

˜5 ≔ k ◦ 5 ◦ q−1
: *̃ → +̃ is of the form

(7.25)
˜5 (G1, . . . , G<) = (G1, . . . , GA , 6(G1, . . . , G<))

for a �: map 6 : *̃ → R̃=−A . By construction,

(7.26) 5 (critA (5 ) ∩* ) = k−1( ˜5 (critA ( ˜5 ))) .

Since . is second-countable, 5 (critA (5 )) can be covered by countably many sets of the

above form. Therefore, it remains to prove that
˜5 (critA ( ˜5 )) has measure zero.

For every ~ ∈ RA de�ne 6~ :
˜*~ → R=−A by

(7.27) 6~ (I) ≔ 6(~, I).

This map is �: with

(7.28) : > < − = + 1 >
< − A
= − A .

By Lemma 7.23, 6~ (/
6~

1
) has H=−A

–measure zero for every ~ ∈ RA . It is immediate from

(7.25) that (~, I) ∈ critA ( ˜5 ) if and only if dI6~ = 0; hence: for every ~ ∈ RA

(7.29) ( ˜5 (critA ( ˜5 )))~ = 6~ (/
6~

1
).

Therefore, by Proposition 7.10,
˜5 (critA ( ˜5 )) has H=

–measure zero. �
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Proposition 7.30. Let<,= ∈ N0 and : ∈ N ∪ {∞, l}. Let* ⊂ R< be an open subset. Let
5 : * → R= be �: . Set

(7.31) /
5

:
≔

{
G ∈ * : mU 5 (G) = 0 for every U ∈ N<

0
with |U | 6 :

}
If : + 1 > <

=
, then 5 (/ 5

:
) hasH=–measure zero.

Proof. / 5
:

can be covered by countably compact cubes contained in* and of the form

& = [0, ℓ]< + G0 with G0 ∈ R<. Therefore, it su�ces to prove that 5 (/ 5
:
∩ &) has

H=
–measure zero.

By Taylor’s Theorem and since & is compact, there is a constant 2 5 > 0 such that

for every G ∈ / 5
:
∩& and ~ ∈ &

(7.32) |5 (G) − 5 (~) | 6 2 5 |G − ~ |:+1.

For every # ∈ N0 the cube & can be subdivided into #<
into compact cubes &∗ of side-

length ℓ/# . If &∗ intersects /
5

:
, then 5 (&∗) is contained in a ball of radius 2 5 (ℓ/# ):+1.

Therefore,

(7.33) H= (5 (/ 5
:
∩&)) 6 2B�#

<2=
5
(ℓ/# )=(:+1) = 2B�2

=
5
ℓ=(:+1)#<−=(:+1) .

The exponent of # is negative and # can be chosen arbitrarily large. Therefore,

5 (/ 5
:
∩&) has H=

–measure zero. �

Proof of Lemma 7.23. This is proved by induction on <. For < = = it follows from

Proposition 7.30.

For B ∈ {1, . . . , :} set

(7.34) /
5
B ≔ {G ∈ * : mU 5 (G) = 0 for every U ∈ N<

0
with |U | 6 B}.

By Proposition 7.30, 5 (/ 5
:
) has H=

–measure zero. Therefore, it su�ces to show that

5 (/ 5B \/
5

B+1) has H=
–measure zero for every B ∈ {1, . . . , : − 1}.

Let G ∈ / 5B \/
5

B+1. After possibly relabeling the coordinates, there is an U ∈ N<
0

with

|U | = B such that mU 51 vanishes at G but m1m
U 51(G) ≠ 0. De�ne q : * → R= by

(7.35) q (G1, . . . , G<) ≔ (mU 51(G1, . . . , G<), G2, . . . , G<).

There is an open neighborhood + of G ∈ * such that q : + → ˜+ ≔ q (+ ) is a �A−B

di�eomorphism. By construction,

(7.36) q (/ 5B ∩+ ) ⊂ {0} × R<−1.
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There obviously is a �A−B map 6 :
˜+ → R= such that for every ~ ∈ q (/ 5B ∩+ )

(7.37) 6(~) = 5 ◦ q−1(~) and d~6 = 0.

Set
˜+0 ≔ {I ∈ R<−1

: (0, I) ∈ ˜+ } and, given 6 de�ne 60 :
˜+0 → R= by 60(I) ≔ 6(0, I).

By construction of 6,

(7.38) 5 (/ 5B ∩+ ) ⊂ 60(/60

1
).

If 6 could be chosen �A (in a non-obvious fashion), then it would follow by induction

that the latter set has H=
–measure zero. Theorem 7.39 precisely says that this can

be achieved. Without this result, the proof still goes through for : = ∞ (or, in fact, a

stricter lower bound for : than
<
=

). �

Theorem 7.39 (Kneser [Kne51, Hilfssatz 1] and Glaeser [Gla58]; Rough Composition

Theorem). Let * ⊂ R< and + ⊂ R= be open subsets. Let � ⊂ * be closed and let
�∗ ⊂ + . Let 5 : + → R< be�: and satisfying mU 5 = 0 on �. Let q : + → * be�A−B with
q (�∗) ⊂ �. There is a �A map 6 : + → R< satisfying:

1. 6(G) = 5 ◦ q (G) for G ∈ �∗, and

2. mU6(G) = 0 for |U | 6 B for G ∈ �∗.

Proof. See the references given or [AR67, Section 14]. �

C

TBD: In the lecture we have discussed Hirsch’s/Milnor’s proof of the Brouwer

�xed-point theorem [Mil97, p. 8]. I might add this later.

8 Transversality

De�nition 8.1. Let : ∈ N ∪ {∞, l}. Let -,. be �: manifolds with boundary. Let

5 : - → . be a�: and let / ⊂ . be a�: submanifold. The map 5 is transverse to / if

for every G ∈ -

•(8.2) im)G 5 +)5 (G)/ = )5 (G). .

Notation 8.3. In the situation of De�nition 8.1, if 5 is transverse to/ then this is denoted

by

◦(8.4) 5 t / .
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Remark 8.5. The condition (8.2) is equivalent to the composition

(8.6) )G-
)G 5−−→ )G. � # 5 (G)/

being surjective. ♣

Example 8.7. The map 5 : R→ R2
de�ned by

(8.8) 5 (C) ≔ (C, cos(C))

is transverse to R × {B} if and only if B ∉ {1,−1}. ♠

TBD: pictures

De�nition 8.9. Let : ∈ N ∪ {∞, l}. Let -,. be a �: manifolds without boundary. A

�: map 5 : - → . is a submersion if for every G ∈ - the map )G 5 : )G- → )5 (G). is

surjective. •

Example 8.10. The Hopf map [ : (3 → (2
is a submersion. ♠

Proposition 8.11. A submersion 5 : - → . is transverse to every submanifold / ⊂ . .

Theorem 8.12. Let : ∈ N ∪ {∞, l}. Let -,. be �: manifolds with boundary. Let
5 : - → . be �: and let / ⊂ . be a �: submanifold without boundary. If 5 and
m5 ≔ 5 |m- are transverse to / , then

(8.13) 5 −1(/ ) ⊂ -

is a neat �: submanifold with

(8.14) codimG 5
−1(/ ) = codim5 (G) / .

Proof. Let G ∈ 5 −1(/ ) and ~ ≔ 5 (G). Set< ≔ dim~ . and = ≔ dim~ / . Since / ⊂ . is

a submanifold, there is an admissible chart q : * → ˜* with ~ ∈ * and
˜* ⊂ R< open

such that

(8.15) q (/ ∩* ) = (R= × {0}) ∩ ˜* .

Denote by pr
2

: R< = R= × R<−= → R<−= the canonical projection. Set + ≔ 5 −1(* ).
By construction,

(8.16) 5 −1(/ ) ∩+ = 6−1(0) with 6 ≔ pr
2
◦ q ◦ 5 |+ : + → R<−= .

Therefore and by Theorem 6.12, it su�ces to prove that 0 is a regular value of 6 and

m6 ≔ 6 |+∩m- .
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For every G ∈ 6−1(0)

(8.17) )G6 = )5 (G) (pr
2
◦ q) ◦)G 5 and )5 (G)/ = ker)5 (G) (pr

2
◦ q).

Since 5 is transverse to / ,

(8.18) im)G6 = )5 (G) (pr
2
◦ q) (im)G 5 +)5 (G)/ ) = )5 (G) (pr

2
◦ q) ()5 (G). ).

Since )5 (G) (pr
2
◦ q) is surjective, )G6 is surjective. Therefore, 0 is a regular value of 6.

Similarly, 0 is a regular value of m6. �

Example 8.19. If W ⊂ (2
is a submanifold, then [−1(W) ⊂ (3

is a submanifold. These are

all di�eomorphic to ) 2
. ♠

Remark 8.20. If dim- < codim/ , then 5 is transverse to / if and only if im 5 ∩ / =

∅. ♣

Theorem 8.21. Let : ∈ N ∪ {∞, l}. LetP, -,. be �: manifolds without boundary. Let
/ ⊂ . be a �: submanifold. Let � : P × - → . be a �: map. If is transverse to / , then
for almost every ? ∈ P the map 5? ≔ � (?, ·) : - → . is transverse to / .

Lemma 8.22. If

(8.23)

�′

� � = �′ �

�′

8 ′
5 ′

8

5

9

9 ′

is a commutative diagram with 9 and 5 surjective, im 8 ⊂ ker 9 and ker 9 ′ ⊂ im 8′, then 5 ′

is surjective.

Proof. Let 2 ∈ � . Since 9 is surjective, there is a 1 ∈ � with 9 (1) = 2 . Since 5 ′ is

surjective, there is an 0 ∈ � with 6(0) = 9 ′(1). Since im 8 ⊂ ker 9 , 1′ ≔ 1 − 8 (0)
satis�es 9 (1′) = 2 and 9 ′(1) = 0. Since ker 9 ′ ⊂ im 8′, there is an 0′ ∈ � with 8′(0′) = 1′.
Therefore, 5 (0′) = 9 (8′(0′)) = 9 (1′) = 2 . �

Exercise 8.24. Prove Lemma 8.22 using the Snake Lemma.

Proof of Theorem 8.21. By Theorem 8.12, �−1(/ ) is a submanifold. Denote by

(8.25) c : �−1(/ ) → P and ] : �−1(/ ) → P × -
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the restriction of the canonical projection onto and the inclusion map respectively.

Lemma 8.22 applied to

(8.26)

)G-

)(?,G)�
−1(/ ) )?P ⊕ )G- )~./)~/

)?P

)G 5?

)(?,G) ]

)(?,G)c

)(?,G)�

with ~ ≔ � (?, G) implies that ? is a regular value of c if and only of 5? intersects /

transversely. By Theorem 7.12, almost every ? ∈ P is a regular value of c . �

C

Here is a typical application of Theorem 8.21.

Proposition 8.27. Let : ∈ (2 + N0) ∪ {∞, l}. Let<,= ∈ N0. Let * ⊂ R< be an open
subset. Let 5 : * → R= be �: .

1. If 2< 6 = + 1, then for almost every � ∈ Hom(R<,R=) the map 5 +� : * → R= is
an injective immersion.

2. If 2< 6 =, then for almost every � ∈ Hom(R<,R=) the map 5 +� : * → R= is an
immersion.

Proof. The map 5 + � is an immersion if and only 0 is not contained in the image of

the map �� : * × (<−1 → R= de�ned by

(8.28) �� (G, E) ≔ dG 5 (E) +�E.

If 2< − 1 < =, then the latter is equivalent to 0 being a regular value of ��. The map

� : Hom(R<,R=) ×* × (<−1 → R< de�ned by

(8.29) � (�;G, E) ≔ �� (G, E)

is a submersion. Therefore, the second assertion follows from Theorem 8.21.

The map 5 +� is an injective if and only 0 is not contained in the image of the map

�� : (* ×* )\Δ→ R< de�ned by

(8.30) �� (G,~) ≔ 5 (G) +�G − (5 (~) −�~).

If 2< < =, then the latter is equivalent to 0 being a regular value of ��. The map

� : Hom(R<,R=) × (* ×* )\Δ→ R< de�ned by

(8.31) � (�;G, E) ≔ �� (G, E)

is a submersion. Therefore, the �rst assertion follows from Theorem 8.21. �
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Locally, this shows that any map can be wiggled into an (injective) immersion

provided the dimension allow for it. This is also true globally, but requires an additional

tool (partitions of unity) that we do not have yet.

C

Theorem 8.32. Let : ∈ N ∪ {∞, l}. Let -,. be �: manifolds without boundary. Let
5 : - → . be a �: map. If - is compact, then there is an = ∈ N and a �: map
� : �=

1
(0) × - → . which is a submersion and satis�es � (0, ·) = 5 . In particular, � is

transverse to every submanifold / ⊂ . .

Proof sketch. The basic idea is that if . = R=, then then map � (~, G) ≔ 5 (G) + ~ has

the desired property. Using cut-o� functions one can develop a full proof based on this

idea, but it is best to postpone the full proof for a few weeks until we have some more

technology. �

Theorem 8.21 and Theorem 8.32 combined imply that 5 : - → . can be made

transverse to / by slightly wiggling it.

Theorem 8.33. Let : ∈ N∪ {∞, l}. Let -,. be�: manifolds without boundary. Suppose
that - is compact. Let / ⊂ . be a submanifold. Let � : �1(0) × - → . be a �: map. If
5 = � (0, ·) is transverse to / , then there is an Y > 0 such that for every C ∈ �Y (0) the map
� (C, ·) is transverse to / .

Proof. Let G ∈ - and set ~ ≔ � (0, G). Choose an admissible chart k : + → �1(0) of

. with k (~) = 0 such that k (/ ∩ + ) = (R< × {0}) ∩ ˜+ . Choose an admissible chart

k : * → �1(0) of - with q (G) = 0 and A ∈ (0, 1] such � (�A (0) ×* ) ⊂ + . Decompose

(8.34)
˜� = ( ˜�1, ˜�2).

Since � (0, ·) is transverse to/ , for everyG ∈ * the map d0,G
˜�2 is surjective. By continuity,

there are Y, d > 0 such that dC,G
˜�2 is surjective for every C ∈ �Y (0) and G ∈ �d (0). By

compactness this �nishes the proof. �

Theorem 8.33 says that transversality to / cannot be spoiled by slightly wiggling 5 .

Remark 8.35. It might irk you that - needs to be assumed to be compact. (I certainly

�nd it terribly annoying.) This hypothesis cannot be removed, but there is a better

way to do this using the Whitney’s strong �: topology; see Golubitsky and Guillemin

[GG80]. ♣
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De�nition 8.36. Let : ∈ N ∪ {∞, l}. Let - be a �: manifolds with boundary. Let

., / ⊂ - be a �: submanifolds without boundary. . and / intersect transversely if

for every G ∈ . ∩ /

•(8.37) )G. +)G/ = )G- .

Notation 8.38. In the situation of De�nition 8.36 if . and / intersect transversely, then

this is denoted by

◦(8.39) . t /

Proposition 8.40. Assume the situation of De�nition 8.36. Suppose that m- = m. = m/ =

∅. If . and / intersect transversely, then . ∩ / ⊂ - is a submanifold without boundary
and

(8.41) codim(. ∩ / ) = codim. + codim/ .

Proof. The inclusion ] : . → - is tranverse to / . Therefore, . ∩ / = ]−1(/ ) is a

submanifold without boundary of . ; hence, a submanifold without boundary of - . �

Example 8.42. For every C ∈ R the cylinder

(8.43) �C ≔ {(G1, G2, G3) ∈ R3
: (G1 − C)2 + G2

2
= 1/2}

is a submanifold of R3
. �C and (2

intersect transversely provided C ∉ {−1/2, 1/2};
moreover:

1. If C ∈ (−1/2, 1/2), then �C ∩ (2
is di�eomorphic to (1 q (1

.

2. If C ∈ (−∞,−1/2) ∪ (1/2,∞), then �C ∩ (2
is di�eomorphic to (1

.

3. If C ∈ {−1/2, 1/2}, then �C ∩ (2
is not a submanifold; but there is an immersion

] : R→ R3
with im ] = �C ∩ (2

. ♠

Exercise 8.44. Let : ∈ N∪ {∞, l}. Let -,. be�: manifolds. Let 5 : - → . be�: . The

graph of 5 is the subset

(8.45) graph 5 ≔ {(G, 5 (G)) : G ∈ - }.

Let / ⊂ . be a submanifold. Prove that 5 is transverse to / if and only if graph 5 is

transverse to - × / .
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De�nition 8.46. Let : ∈ N0 ∪ {∞, l}. Let -,., / be �: manifolds with boundary. Let

5 : - → / and 6 : . → / be �: . The �bred product of - and . over / with respect
to 5 and 6 is the subset

•(8.47) - ×/ . ≔ {(G,~) ∈ - × . : 5 (G) = 6(~)}.

De�nition 8.48. Assume the situation of De�nition 8.46. The maps 5 and 6 are trans-
verse if for every (G,~) ∈ - ×/ .

•(8.49) im)G 5 + im)~6 = )I/ with I ≔ 5 (G) = 6(~).

Notation 8.50. In the situation of De�nition 8.48, if 5 and 6 are transverse, then this is

denoted by

◦(8.51) 5 t 6

Proposition 8.52. Assume the situation of De�nition 8.46. Suppose that m- = m. = m/ =

∅. If 5 and 6 are transverse, then - ×/ . is a submanifold.

Proof. Denote the diagonal in / × / by Δ. Since

(8.53) - ×/ . = (5 × 6)−1(Δ),

it su�ces to prove that 5 × 6 is transverse to Δ; that is: for every (G,~) ∈ - ×/ .

(8.54) im)G 5 ⊕ im)G6 +)IΔ = )I/ ⊕ )I/ with I ≔ 5 (G) = 6(~).

Since 5 and 6 are transverse, everyF8 ∈ )G/ can be written as

(8.55) F8 = )G 5 (D8) +)~6(E8)

(8 = 1, 2). Therefore,

F1 = )G 5 (D1 − D2) +)G 5 (D2) +)~6(E1) and

F2 = )~6(E2 − E1) +)G 5 (D2) +)~6(E1) .
(8.56)

This proves that 5 × 6 is transverse to Δ. �

Remark 8.57. In the above situation, - ×/ . satis�es a universal property analogous to

the one of - × . and illustrated in the following diagram:

♣(8.58)

,

- ×/ . .

- / .

?

@

ℎ

pr-

pr.

6

5
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Here is a short digression:

De�nition 8.59. Let : ∈ N ∪ {∞, l}. Let -,. be a �: manifolds without boundary. A

property (♣) of a �: maps 5 : - → . is stable if for every �: map � : �1(0) × - → .

with � (0, ·) satisfying (♣) there is an Y > 0 such that for every C ∈ (−Y, Y) the map

� (Y, ·) satis�es (♣) as well. •

Informally speaking: (♣) is stable if it cannot be spoiled by slightly wiggling. (Again

it would be better to introduce the strong �: topology and prove that these properties

are open in that topology.)

Theorem 8.60. Let : ∈ N ∪ {∞, l}. Let -,. be �: manifolds with boundary. Let / ⊂ .
be a�: submanifold. If- is compact, then the following properties for�: maps 5 : - → .

are stable:

1. rk)G 5 > A for every G ∈ - ,

2. being an immersion,

3. being a submersion, and

4. being a (local) di�eomorphism.

Proof. It su�ces to prove (1). To prove (1) it su�ces to prove it for - = ¯�1(0) and

. = + ⊂ R= open. Let � : �1(0) × ¯�1(0) → + be �: . The map
m�
mG

: �1(0) × ¯�1(0) →
Hom(R<,R=) is continuous. The set of matrices � ∈ Hom(R<,R=) with rank at least A

is open. This implies (1).

(1) implies that that being an immersion/submersion/local di�eomorphism are

stable. �

Remark 8.61. Being an injective immersion is also stable if - is compact. So is being a

surjective submersion if - is compact and m- = ∅. ♣

9 Partitions of Unity

De�nition 9.1. Let : ∈ N0 ∪ {∞}. Let - be a �: manifold with boundary. Let V =

{+8 : 8 ∈ � } be an open cover of - . A partition of unity subordinate to V is a set of

non-negative �: functions {d8 : 8 ∈ � } such that:

1. For every 8 ∈ � , supp d8 ⊂ +8 .

2. For every G ∈ - there is an open neighborhood * with * ∩ supp d8 ≠ ∅ for at

most �nitely many 8 ∈ � .
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3. For every G ∈ -

•(9.2)

∑
8∈�

d8 (G) = 1.

Theorem 9.3. Let : ∈ N0 ∪ {∞}. Let - be a �: manifold with boundary. For every open
cover V = {+8 : 8 ∈ � } there is a �: partition of unity subordinate toV.

Remark 9.4. Theorem 9.3 is false for : = l . ♣
The proof of Theorem 9.3 relies on the following.

Lemma 9.5. Let : ∈ N0 ∪ {∞}. Let - be a �: manifold with boundary. For every open
coverV of - there is an atlasAV = {qU : *U → MU ∩ �2(0) : U ∈ �V} ⊂ A such that
{*U : U ∈ �V} is a locally �nite re�nement ofV and {q−1

U (MU ∩ �1(0)) : U ∈ �V} is an
open cover of - .

Proof of Theorem 9.3 assuming Lemma 9.5. LetAV be as in Lemma 9.5. Choose a smooth

function V : [0, 2] → [0, 1] with

(9.6) V |[0,1] = 1 and supp V ⊂ [0, 2).

Choose a map 9 : �V → � such that for every U ∈ �V

(9.7) *U ⊂ +9 (U) .

For every 8 ∈ � de�ne d̃8 ∈ �: (- ) by

(9.8) d̃8 (G) ≔
∑

U∈ 9−1 (8)
V ◦ |qU | (G)

for G ∈ +8 and d̃8 (G) ≔ 0 otherwise; furthermore set

(9.9) d8 ≔
d̃8∑
8∈� d̃8

.

By construction, {d8 : 8 ∈ � } is the desired partition of unity. �

The proof of Lemma 9.5 is straight-forward if - is compact. The general case

requires Proposition 7.19.

Proof of Lemma 9.5. Without loss of generality, - is connected. Since - is locally

path-connected, it is path-connected. Moreover, - is locally compact. Therefore,

Proposition 7.19 applies.
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Let ( =)=∈N be an exhaustion by compact sets of - . Set  0 =  −1 ≔ ∅. Observe

that

(9.10) - =
⋃
=∈N

 = =
⋃
=∈N

 =\ ◦=−1
,

For every = ∈ N denote by �= ⊂ � the subset of those U ∈ � with
˜*U = �2(0) and

such that there is a* ∈ U with

(9.11) *U ⊂ * ∩ ( =+1\ ◦=−2
).

A moment’s thought shows that

(9.12)  =\ ◦=−1
⊂

⋃
U∈�=

q−1

U (�1(0)) .

Since  =\ ◦=−1
is compact, the same holds for a �nite subset �′= ⊂ �= . Set

(9.13) �V ≔
⋃
=∈N

�′= and AV ≔ {qU : U ∈ �V}.

Every G ∈ - is contained in an open subset of the form  ◦=+1\ =−2 for some = ∈ N.

There are only �nitely many U ∈ �V with*U ∩ ( ◦=+1\ =−2) ≠ ∅. Therefore, AV ⊂ A

is the desired atlas. �

Corollary 9.14. Let : ∈ N0 ∪ {∞}. Let - be a �: manifold. If* ,+ ⊂ - be open subsets
with * ⊂ + , then there is a �: function j : - → [0, 1] which is equal to one on * and
supported in + . �

Lemma 9.15. Let : ∈ N0 ∪ {∞}. If - is a f–compact �: manifold, then there is a proper
�: function A : - → [0,∞).

Proof. Let ( =)=∈N be an exhaustion by compact subsets of - . Choose a partition of

unity {d= : = ∈ N} subordinate to { ◦= : = ∈ N}. De�ne A : - → [0,∞) by

(9.16) A ≔
∑
=∈N

= · d= .

To see that A is proper, observe the following. If G ∉  ◦< , then

(9.17) A (G) >
∞∑
==<

= · d= (G) > < ·
∞∑
==<

d= (G) =<.

Therefore,

(9.18) A−1( [0, 1]) ⊂  d1e ;

hence: A−1( [0, 1]) is a closed subset of a compact subset and thus itself compact. �
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The following demonstrates the �exibility of smooth functions.

Proposition 9.19. Let : ∈ N0 ∪ {∞}. Let - be a �: manifold. For every closed subset
� ⊂ - there is a �: function 5 : - → R with 5 −1(0) = �.

Proof. Let * ⊂ R< be an open subset and let � ⊂ * be closed. There is a sequence

(�A= (G=))=∈N such that

(9.20) * \� =
⋃
=∈N

�A= (G=).

For every = ∈ N choose a smooth function 5= : * → [0,∞) which vanishes outside of

�AG (G) and is positive on �AG (G). Set

(9.21) 2= ≔ ‖ 5=‖�: = sup

G∈*
sup

|U |6=
|mU 5= (G) |.

De�ne 5 : * → [0,∞) by

(9.22) 5 (G) ≔
∑
=∈N

1

2
=2=

5= (G).

A moment’s thought shows that 5 is smooth. By construction, 5 −1(0) = �.

Choose an open cover U = {*U : U ∈ �} of - consisting of the domains of

admissible charts. By the above, for every U ∈ � there is a�: function 5U : *U → [0,∞)
with 5 −1

U (0) = *U ∩� . Choose a partition of unity {dU : U ∈ �} subordinate to U. The

function 5 : - → [0,∞) de�ned by

(9.23) 5 ≔
∑
U∈�

dU · 5U

is �: and satis�es 5 −1(0) = �. �

Proposition 9.24. Let : ∈ N0 ∪ {∞}. Let - be a �: manifold with boundary. Let / ⊂ -
be a submanifold which is closed as a subset. For every 5 ∈ �: (/ ) there is a � ∈ �: (- )
satisfying

(9.25) � |/ = 5 .

Proof. Choose a cover U = {*0} ∪ {*8 : 8 ∈ � } of - with *0 ≔ -\/ and such that for

every 8 ∈ there is an admissible chart q8 : *8 → ˜*8 of - as in De�nition 6.1. For every

8 ∈ � the �: function �8 : *8 → R de�ned by

(9.26) �8 ≔ 5 ◦ q ◦ pr
1
◦ q−1
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with pr
1

: R< = R= × R<−= → R= denoting the canonical projection satis�es

(9.27) �8 |/ = 5 .

Choose a �: partition of unity {d8 : 8 ∈ {0} ∪ � } subordinate to U. Since*0 = -\/ ,

(9.28)

∑
8∈�

d8 |/ = 1.

Therefore, the �: function � : - → R de�ned by

(9.29) � ≔
∑
8∈�

d8 · �8

satis�es

�(9.30) � |/ ≔
∑
8∈�

d8 · �8 |/ =
∑
8∈�

d8 · 5 = 5 .

10 The Whitney embedding theorem
Theorem 10.1 (Whitney [Whi36, Theorems 1 and 3]; weak Whitney Embedding/Immersion

Theorem). Let : ∈ N ∪ {∞} and < ∈ N. For every f–compact �: manifold - of di-
mension< there are a proper �: embedding ] : - ↩→ R2<+1 and a proper �: immersion
z : - # R2< .

Remark 10.2. The following is due to Arnold [Arn98]:

An “abstract” smooth manifold is a smooth submanifold of a Euclidean space
considered up to a di�eomorphism. There are no “more abstract” �nite-
dimensional smooth manifolds in the world (Whitney’s theorem). Why do we
keep on tormenting students with the abstract de�nition?

There a numerous responses to Arnold’s question; some of which are discussed at https:
//math.stackexchange.com/questions/26551/why-abstract-manifolds. ♣
Remark 10.3. Whitney’s embedding theorem says that there are proper 51, . . . , 52<+1 ∈
�: (- ) which separate the points of - as well as its tangent vectors; more precisely:

1. For every G ≠ ~ ∈ - there is an 8 ∈ {1, . . . , 2< + 1} such that

(10.4) 58 (G) ≠ 58 (~).

2. For every 0 ≠ E ∈ )G- there is an 8 ∈ {1, . . . , 2< + 1} such that

♣(10.5) dG 58 (E) ≠ 0.
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Proposition 10.6. Let : ∈ N ∪ {∞}. Let - be a �: manifold. If - admits a �nite atlas,
then there is a" ∈ N and an injective immersion ] : - # R" .

Proof. Denote by {qU : *U → *̃U : U ∈ �} a �nite atlas of - . Choose a �: partition of

unity {dU : U ∈ �} subordinate to {*U : U ∈ �}. De�ne ] : - →∏
U∈� R<U × R by

(10.7) ] (G) ≔
(
dU · qU (G), dU (G)

)
U∈� .

The map ] is injective. Indeed, if G,~ ∈ - satisfy ] (G) = ] (~), then exists an U ∈ �
such that dU (G) = dU (~) ≠ 0. Therefore, G,~ ∈ *U . Since qU (G) = qU (~), G = ~.

The map ] is an immersion. Indeed,

(10.8) )G] = (dGdU · qU (G) + dU (G) ·)GqU (E), dGdU )U∈�

is injective. �
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Proposition 10.9. Let : ∈ N ∪ {∞} and<," ∈ N. De�ne Π· : R%"−1 → End(R" ) by

(10.10) Π [E] (G) ≔ G − 〈E, G〉E|E |2 .

Let - be a f–compact �: manifold of dimension <. Let ] : - ↩→ R" be an injective
immersion. The following hold:

1. If" > 2< + 1, then for almost every [E] ∈ R%"−1 the map

(10.11) Π [E] ◦ ] : - → 〈E〉⊥

is injective.

2. If" > 2<, then for almost every [E] ∈ R%"−1 the map

(10.12) Π [E] ◦ ] : - → 〈E〉⊥

is an immersion.

Proof. Since - can be covered by countably many charts, it su�ces to prove this result

for - an open subset* ⊂ R< .

If the composition Π [E] ◦ ] fails to be injective, then there are G ≠ ~ ∈ * with

] (G) − ] (~) ∈ 〈E〉. The latter is equivalent to [E] being contained in the image of the

map ! : (* ×* )\Δ→ R%" de�ned by

(10.13) !(G,~) ≔ R · (] (G) − ] (~)) .

By Theorem 7.12, im! has measure zero provided

(10.14) dim(* ×* )\Δ = 2< < " − 1 = dimR%"−1, .

This proves (1).

If Π [E] ◦ ] fails to be an immersion, then there are an G ∈ * and a [F] ∈ R%<−1
such

that

(10.15) [dG] (F)] = [E] .

The latter is equivalent to [E] being contained in the image of the map Λ : * ×R%<−1 →
R%"−1

de�ned by

(10.16) Λ(G, [F]) ≔ [dG] (F)]

By Theorem 7.12, imΛ has measure zero provided

(10.17) dim* × R%<−1 = 2< − 1 < " − 1 = dimR%"−1.

This proves (2). �
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Proposition 10.18. Let : ∈ N ⊂ {∞} and< ∈ N. Let - be a f–compact �: manifold of
dimension<.

1. If ] : - # R2<+1 is an injective immersion, then there is a proper embedding
z : - ↩→ R2<+1.

2. If ] : - # R2< is an immersion, then there is a proper immersion z : - ↩→ R2< .

Proof. Let ] : - # R2<+1
be an injective immersion. After composing ] with a smooth

di�emorphism R2<+1 → �1(0), it can be assumed that im ] ⊂ �1(0). By Lemma 9.15,

there is a proper �: function A : - → [0,∞). The �: map ]̂ : - → �1(0) × R ⊂ R2<+2

de�ned by

(10.19) ]̂ (G) ≔ (] (G), A (G))

is an injective immersion. By Proposition 10.9, there is a [E] ∈ R2<+1
not equal to

[(0, . . . , 0, 1)] such that

(10.20) z ≔ Π [E] ◦ ]̂

is an injective immersion.

By Corollary 6.65, it remains to prove that z is proper. Choose a representative

E = (E1, . . . , E2<+2) ∈ (2<+1
of [E] ∈ R%2<+1

. By a direct computation, the (2< + 2)–nd

component of z satis�es

(10.21) z2<+2(G) = (1 − E2

2<+2) · A (G) − 〈] (G), (E1, . . . , E2<+1)〉 · E2<+2;

hence:

(10.22) |A (G) | 6 2 ( | z2<+2(G) | + 1) with 2 ≔
1

1 − E2

2<+2
.

This implies that z is proper. Indeed, if  ⊂ 〈E〉⊥ is compact, then there is an ' > 0

such that  ⊂ �̄' (0). Therefore,

(10.23) z−1( ) ⊂ A−1( ¯�2'+1(0)) .

Since A is proper, A−1( ¯�2'+1(0)) is compact. Hence, the closed subset z−1( ) is compact.

This proves (1).

The proof of (2) is similar. �

Proof of Theorem 10.1. By Lemma 9.15, there is a proper �: function A : - → [0,∞).
For every = ∈ N choose an open subset*= satisfying

(10.24) A−1 [= − 1, =] ⊂ *= ⊂ A−1(= − 3

2
, = + 1

2
)
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and covered by �nitely many charts. By construction,

(10.25) *=1
∩*=2

= ∅ unless |=1 − =2 | 6 1.

By Proposition 10.6 and Proposition 10.9, for every = ∈ N there is an injective

immersion ]= : *= ↩→ R2<+1
. For every = ∈ N choose a �: function j= : - → [0, 1]

which is equal to one on A−1 [=−1, =%] and supported in*= . De�ne ] : - → R2<+1×R2<+1

by

] (G) ≔
( ∑
=∈2N−1

j= (G) · ]= (G),
∑
=∈2N

j= (G) · ]= (G)
)
.

Each of the sums has precisely one non-zero term because of (10.25).

The map ] is injective. Indeed, if G,~ ∈ - with ] (G) = ] (~), then there exists an

= ∈ # such that G,~ ∈ A−1 [= − 1, =] ⊂ *=. Since ]= is injective, G = ~. The map ] is

an immersion. Indeed, if G ∈ A−1 [= − 1, =], then one of the components of )G] is )G]= ,

which is injective by construction.

The proof is �nished by appealing to Proposition 10.9 and Proposition 10.18. �

Remark 10.26. What is the smallest 4 (<) ∈ N such that every f–compact manifold embeds
into R4 (<)? This is an open question, but a lot is known about it.

1. Theorem 10.1 asserts that 4 (<) 6 2< + 1. Whitney [Whi44, Theorem 3] proved

that, in fact, 4 (<) 6 2<. The idea of the proof is as follows. The injective immer-

sion z : - # R2<
can be perturbed slightly to have transverse self-intersections.

The number of self-intersections can be assumed to be even because its is possible

to introduce an additional transverse self-intersection point. The self-intersections

can then be paired up and canceled. This is called the Whitney trick. It is easy

to visualize for < = 1 and explained in Wikipedia. Wall [Wal16, Section 6.3]

discusses the Whitney trick in detail.

2. R%2
=

cannot be embedded into R2
=+1−1

. Therefore, Whitney’s bound is sharp for

< = 2
=
. If< is not of this form, then 4 (<) 6 2< − 1.

3. The answer to the question with embedding replaced by immersion is know.

For < ∈ N and denote by a (<) the number of ones appearing in the binary

expansion of<; that is: if< = 2
11 + · · · + 2

1=
, then a (<) = =. It is known that

R%2
1

1 × · · · ×R%2
1=

cannot be immersed into R2<−a (=)−1
. (This requires the theory

of characteristic classes; cf. Milnor and Stashe� [MS74].) However, the following

holds.

Theorem 10.27 (Cohen [Coh85]; The Immersion Conjecture). Let< ∈ N. If - is a
compact manifold of dimension<, then there is an immersion z : - # R2=−a (=) .

Therefore, the analogue of 4 (<) for immersions is 2< − a (<). ♣
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11 Tubular neighborhoods
Proposition 11.1. For every submanifold - ⊂ R# without boundary

(11.2) #- ≔ {(G, E) ∈ - × R# : E ⊥ )G- }

is a submanifold of R# × R# .

Proof. Let q : * → ˜* be and admissible chart of R# such that

(11.3) q (/ ∩* ) = (R< × {0}) ∩ ˜* .

By construction, for every G ∈ *

(11.4) )G- = (dGq)−1(R< × {0}).

Therefore, E ∈ )G-⊥ of and only if for everyF ∈ R< × {0} ⊂ R# .

(11.5) 0 = 〈E, (dGq)−148〉 = 〈48,
(
(dGq)−1

)∗
E〉

Set + ≔ * × R# ,
˜+ ≔ ˜* × R# , and de�ne Φ : + → R# × R# by

(11.6) Φ(G, E) ≔
(
q (G),

(
(dGq)−1

)∗
E
)
.

Evidently, Φ is a di�eomorphism. Moreover, by the preceding discussion,

�(11.7) Φ(#- ∩+ ) =
(
(R< × {0}) × ({0} × R#−<)

)
∩ ˜+ .

De�nition 11.8. Let- ⊂ R# be submanifold without boundary. De�ne exp : #- → R#

by

(11.9) exp(G, E) ≔ G + E .

An open subset * ⊂ R# is a tubular neighborhood of - if there is a continuous

function Y : - → (0,∞) such that the restriction of exp to

(11.10) + ≔ {(G, E) ∈ #- : |E | < Y (G)}.

is a di�eomorphism from + to* . •

Proposition 11.11. Every submanifold - ⊂ R# without boundary admits a tubular neigh-
borhood.
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Proof. For every G ∈ - ,

(11.12) )G,0 exp = 1.

Therefore, there is an open subset + of #- with (-, 0) ⊂ + such that, for every

(G, E) ∈ + , )G,E exp is invertible. For every G ∈ - choose X = X (G) > 0 such that the

restriction of exp to #- ∩ (�X (G) × �X (0)) is a di�eomorphism onto its image. The

function X : - → (0,∞) can be chosen continuously.

Set

(11.13) + ≔
{
(G, E) ∈ #- : |E | < 1

2
X (G)

}
.

The map exp : + → * ≔ exp(+ ) is a local di�eomorphism. It remains to prove that it

is injective. Suppose that (G, E), (I,F) ∈ + satisfy

(11.14) exp(G, E) = exp(I,F).

Without loss of generality, X (I) 6 X (G) By the triangle inequality,

|G − I | = |E −F | < X (G) .

By construction of X , (G, E) = (I,F). �

Lemma 11.15. Let - ⊂ R< be a submanifold without boundary. There is a �: submersion
A : * → - with A |- = id- .

Proof. Let* be a tubular neighborhood of - and de�ne A : * → - by

�(11.16) A ≔ pr
1
◦ exp

−1 .

Proposition 11.17. Let - and . be smooth manifolds. Suppose that - is compact. Let
5 : - → . be a smooth map. If dim- 6 2 dim. + 1, then there exists an # ∈ N0, an
open subset P ⊂ R# , and a smooth map � : P × - → . such that for almost every
? ∈ �#

1
(0) the map 5? ≔ � (?, ·) : - → . is an injective immersion.

Proof. By Theorem 10.1, without loss of generality, - and . are submanifolds of R= .

Choose a neighborhood* of . ⊂ R= and a submersion A : * → . with A |. = id. .

de�ne
˜� : R= × End(R=) × - → R= by

(11.18) � (E, �;G) ≔ 5 (G) + E +�G.

Here & ∈ Hom((2R=,R=) is considered as a quadratic map R= → R= . Choose a non-

empty open subset P ⊂ R= × End(R=) such that

(11.19)
˜� (P × - ) ⊂ * .
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Set

(11.20) � ≔ ˜� |P×- and � ≔ A ◦�.

The map Ψ : P × ((- × - )\Δ- ) → R= × R= de�ned by

(11.21) Ψ(E, �;G,~) → (� (E, �;G),� (E, �;~))

is a submersion. To see this, observe that

(11.22) (Ê, ˆ�) ↦→ dE,�;G,EΨ(Ê, ˆ�; 0, 0) = (Ê + ˆ�G, Ê + ˆ�~)

is surjective provided G ≠ ~. Therefore, the map Φ : P × ((- × - )\Δ- ) → . × .
de�ned by

(11.23) Φ(E, �;G,~) → (� (E, �;G), � (E, �;~))

is surjective. Consequently, for almost every ? ∈ P the map Φ? ≔ Φ(?, ·) is transverse

to Δ. . Since 2 dim- + dimΔ. < 2 dim- , this is equivalent to 5? ≔ � (?, ·) being

injective.

It remains to prove that for almost every ? ∈ P the map 5? is an immersion. To this

end, it su�ces to assume that - is an open subset * ⊂ R3 with 3 ≔ dim- . The map

 : P × - × (3−1 → R= × R= de�ned by

(11.24)  (?;G, b) ≔ (6? (G), dG6? (b))

with 6? ≔ � (?, ·) is a submersion. To see this, observe that

(11.25) (Ê, ˆ�, 0) ↦→ d(?;G,b) (Ê, ˆ�; 0, 0) = (Ê + ˆ�G, ˆ�b)

is surjective. Observe that, ). ≔ {(G, b) : - × R= : E ∈ )G~} is a submanifold of

dimension 2 dim. . Therefore, Λ : P × - × (3−1 → ). de�ned by

(11.26) Λ(?;G, b) ≔ (5? (G), dG 5? (b))

is transverse to the zero section . × {0} ⊂ ). . Consequently, for almost every ? ∈ P
the map Λ? ≔ Λ(?, ·) is transverse to . × {0}. Since 2 dim- + dimΔ. 6 2 dim. , this

is equivalent to 5? ≔ � (?, ·) being an immersion. �

12 Cobordism
De�nition 12.1. Let - be a smooth manifold with boundary. A collar for - is an

embedding ^ : [0,∞) × m- ↩→ - satisfying

•(12.2) ^ (0, ·) = idm- .
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Theorem 12.3 (Collaring Theorem). Every smooth manifold with boundary admits a
collar.

Proof. Omitted since it is best to prove this using the theory of �ows developed in

Section 17. �

Remark 12.4. A variant of Theorem 12.3 for topological manifolds holds. This result is

due to Brown [Bro62, §IV Theorem 2]; see also Connelly [Con71]. ♣

Proposition 12.5. Let -1 and -2 be smooth manifolds with boundary. Let q : m-1 → m-2

be a di�eomorphism.

1. The topological space

(12.6) - ≔ -1 ∪q -2

is Hausdor� and paracompact.

2. Let ^8 be a collar of -8 . De�ne ^ : R × m-1 → - by

(12.7) ^ (C, G) ≔
{
^1(−C, G) if C 6 0,

^2(C, q (G)) if C > 0.

Denote by ]8 : - ◦8 → - the canonical inclusions. There is a unique smooth structure
on - with respect to which ]8 and ^ are embeddings.

3. Up to di�eomorphism, the smooth structure in (2) depends only on (the isotopy class
of) q .

Proof. (1) is straight-forward.

Denote by A◦8 = {qU : U ∈ �◦8 } the smooth structure of - ◦8 and by Am = {qU : U ∈
�m} the smooth structure of R × m-1. For U ∈ �◦8 and V ∈ �m set

(12.8) kU ≔ qU ◦ ]−1

8 and kV ≔ qV ◦ ^−1,

and observe that

(12.9) kU ◦k−1

V
=

{
qU ◦ ]−1

1
◦ ^1 ◦ (−id(−1,0) × idm-1

) ◦ qV if U ∈ �◦
1
,

qU ◦ ]−1

2
◦ ^2 ◦ (id(0,1) × q) ◦ qV if U ∈ �◦

2

is a di�eomorphism. Therefore,

(12.10) A ≔ {kU : U ∈ � ≔ �◦
1
∪�◦

2
∪�m}

is a smooth atlas on - . By construction, ]8 and ^ are embeddings with respect to
¯A.

Evidently, every smooth structure with respect to which ]8 and ^ are embeddings must

contain A. This proves (2).

The proof of (3) is omitted. �
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Figure 12.1: Gluing along the boundary.

De�nition 12.11. In the situation of Proposition 12.5, - is said to be obtained by gluing
-1 and -2 along the boundary via q . (This is an abuse of notation.) •

C

Let -8 be smooth manifolds of dimension<. Set

(12.12) � = �< ≔ ¯�<
1
(0).

Let 48 : � ↩→ -8 be embeddings. -8\48 (�◦) is a manifold with boundary di�eomorphic

to (<−1
. Gluing these along the boundary gives the connected sum

(12.13) -1#-2.

If -1 and -2 are oriented, then -1#-2 does depend on the choice of 48 . In this case one

demands 48 to be orientation preserving.

Exercise 12.14. Prove that -#(< � - .

Figure 12.2: Connected sum ) 2
#) 2

.

Theorem 12.15 (Classi�cation of closed 2–manifolds). Every closed smooth manifold of
dimension two is either a connected sum tori or a connected sum of R%2s.
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Example 12.16. The Klein bottle is R%2
#R%2

#R%2
or, equivalently, R%2

#) 2
. (However:

R%2
#R%2 ≠ ) 2

). ♠

C

De�nition 12.17. Let< ∈ N0 Let -0, -1 be two closed smooth manifolds of dimension

<. -0 and -1 are cobordant if there is a compact manifold, of dimension< + 1 with

boundary satisfying

(12.18) m, � -0 q -1.

Here � signi�es being di�eomorphic. , is said to be a cobordism between -0 and

-1. •

Figure 12.3: Pair of pants cobordism.

Proposition 12.19.

1. Being cobordant de�nes an equivalence relation on the set of di�eomorphism classes
closed smooth manifolds.

2. Let< ∈ N0. Denote by ΩO

< the set of cobordism classes of closed smooth manifolds
of dimension<. Disjoint union

(12.20) [-1] + [-2] ≔ [-1 q -2]

de�nes the structure of an abelian group on ΩO

< with

(12.21) 0 = [∅] .

3. Set

(12.22) Ω• ≔
⊕
<∈N0

ΩO

< .

Taking products

(12.23) [-1] · [-2] ≔ [-1 × -2]

de�nes the structure of an N0–graded unital commutative ring on ΩO

• with

(12.24) 1 = [{∗}] .
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Proof. Omitted/Exercise. �

Remark 12.25. There is no set containing every closed smooth manifold of dimension

<. However, by Theorem 10.1, di�eomorphism classes closed smooth manifolds of

dimension< do form a set. ♣

De�nition 12.26. ΩO

• is the unoriented cobordism ring. •

Remark 12.27. There is also an oriented cobordism ring: ΩSO

• . ♣

Exercise 12.28. Prove that

(12.29) ΩO

0
� Z/2Z and ΩO

1
= 0.

Exercise 12.30. Prove that ΩO

• is 2–torsion; that is: for every G ∈ Ω•

(12.31) G + G = 0.

Theorem 12.32 (Thom [Tho54]). ΩO

• is a polynomial algebra overZ/2Zwith one generator
[-<] ∈ ΩO

< for every< not of the form 2
: − 1. If< is even, then -< can be taken to be

R%< .

Remark 12.33. ΩSO

• is also understood. In particular, ΩSO

0
= Z[{∗}], ΩSO

1
= ΩSO

2
= ΩSO

3
=

0, ΩSO

4
= Z[C%2]. ♣

Proposition 12.34. Let - and . be smooth manifolds without boundary. Suppose that
. is connected Let 58 : - → . be a proper smooth map and ~8 ∈ . a regular value of 58
(8 = 0, 1). If 50 is properly homotopic to 51, then

(12.35) [5 −1

0
(~0)] = [5 −1

1
(~1)] ∈ ΩO

• .

Proof. The proper homotopy � can be chosen smooth and transverse to a smooth path

W = (~C )C∈[0,1] joining ~0 and ~1. The desired cobordism is �−1(W). �

This de�nes a map [-,. ] → Ω•. If - and . are of the same dimension, then this

map is the mod 2 degree deg
2

: [-,. ] → Ω0 = Z/2Z.

Evidently,

(12.36) deg
2

id- = 1 and deg
2

const. = 0.

Therefore, id- cannot be properly homotopic to a constant map. Since [0, 1] × (<−1 →
�< ≔ ¯�<

1
(0), (A, G) ↦→ A · G is smooth, it follows that there cannot be smooth map

5 : �< → (<−1
with 5 |(<−1 = id(<−1 . This then implies Brouwer’s �xed-point theorem

by the usual construction.

Remark 12.37. A classic reference for cobordism theory is Stong [Sto68]. There is also a

survey by Milnor1962. I believe that this is also discussed in [MS74]. ♣
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13 Surgery and handle decomposition
De�nition 13.1. Let <,: ∈ N0 Let - be a smooth manifold of dimension < with

boundary. Let [ : (: × �<−: → - ◦ be an embedding. Set q ≔ [ |(:×(<−:−1 and

(13.2) - ′ ≔ (-\ im[◦) ∪q (�:+1 × (<−:−1).

A smooth manifold with boundary is said to be obtained from - by surgery along [ if

it is di�eomorphic to - ′. •

Figure 13.1

Figure 13.2

Figure 13.3

Proposition 13.3. In the situation of De�nition 13.1, - is obtained from - ′ by surgery
along the canonical inclusion [′ : (<−:−1 × �:+1 ↩→ - ′.

Proof. This is evident from the de�nition. �

C
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Figure 13.4: Smoothing [0,∞)2.

Let us discuss how to smooth the corners of products of smooth manifolds with

boundary.

Proposition 13.4. Let -1 and -2 be smooth manifolds with boundary.

1. Let^8 be a collar of-8 . Denote by ]1 : - ◦
1
×-2 → -1×-2 and ]2 : -1×- ◦2 → -1×-2

the canonical inclusions. De�ne ^ : [0,∞) × R × m-1 × m-2 → -1 × -2 by

(13.5) ^ (B, C, G,~) ≔ (^1(D, G), ^2(E,~))

with

(13.6) (D, E) = f (B, C) and f (A48\ ) ≔ A48 (\/2+c/4) .

There is a unique smooth structure on -1 × -2 with respect to which ]8 and ^ are
embeddings.

2. Up to di�eomorphism, the smooth structure in (1) is independent of ^8 .

3. The boundary of -1 × -2 is

(13.7) m(-1 × -2) = m-1 × -2 q -1 × m-2;

moreover, the inclusion maps

(13.8) z1 : m-1 × -2 → -1 × -2 and z2 : -1 × m-2 → -1 × -2

are embeddings.

Proof. The proof of (1) is analogous to the proof of Proposition 12.5 (2).

The proof of (2) is omitted.

The assertion about m(-1 × -2) is obvious. The maps z8 are homeomorphisms onto

their image. Therefore, it su�ces to prove that they are smooth. They key observation

is that

(13.9) z1(G, ^2(C, ~)) = ^ (C, 0, G,~).

for C > 0. �
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Remark 13.10. Another way of thinking about this is that we smooth the corners of

the manifolds with corners -1 × -2. This smoothing procedure is canonical only up to

di�eomorphism. ♣
C

De�nition 13.11. De�ne f1 : [0,∞)2 → [0,∞) × R by

(13.12) f1(A48\ ) ≔ A48 (−2\+c/2)

and f2 : [0,∞) × (−∞, 0] → [0,∞) × R by

•(13.13) f2(A48\ ) ≔ A48 (2\+c/2) .

These maps are homeomorphisms. Their restrictions to the interiors are di�eomor-

phisms. Moreover:

(13.14) f1(D, 0) = (0, D) = f2(D, 0).
[TBD: picture of how this allows one to glue to copies of [0,∞)×R along {0}×[0,∞).]

Proposition 13.15. Let -1 and -2 be smooth manifolds with boundary. Let .8 ⊂ m-8 be a
submanifold of codimension zero with boundary. Let q : .1 → .2 be a di�eomorphism.

1. The topological space

(13.16) - ≔ -1 ∪q -2

is Hausdor� and paracompact.

2. Let ^8 be a collar of -8 . Let g8 : R × m.8 → m-8 be an embedding whose restriction to
[0, 1) × m.8 de�nes a collar of .8 and such that

(13.17) g2(C, q (G)) = q ◦ g1(C, G)
for every C > 0 and G ∈ m.1. De�ne ^ : R ×. ◦

1
→ - and _ : [0,∞) × R × m.1 → -

by

^ (C, G) ≔
{
^1(−C, G) if C 6 0,

^2(C, q (G)) if C > 0,
(13.18)

and

_(D, E, G) ≔
{
_1(f1(D, E), G) if E 6 0,

_2(f2(D, E), q (G)) if E > 0

(13.19)

with

_8 (B, C, G) ≔ ^8 (B, g8 (C, G)) .(13.20)

Denote by ]8 : -8\.8 → - the canonical inclusion. There is a unique smooth structure
on - such that ]8 , ^, _ are embeddings.
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3. Up to di�eomorphism, the smooth structure in (2) depends only on (the isotopy class
of) q .

4. The boundary m- is di�eomorphic to the smooth manifold obtained by gluing
m-1\. ◦1 and m-2\. ◦2 along the boundary via q |m.1

.

Proof. The proof is similar to that of Proposition 12.5. �

De�nition 13.21. In the situation of Proposition 13.15, - is said to be obtained by gluing
-1 and -2 along .1 and .2 via q . (This is an abuse of notation.) •

Figure 13.5: Gluing along part of the boundary.

C

Let -8 be smooth manifolds of dimension < with boundary. Let 48 : � ↩→ -8 be

embeddings. Applying Proposition 13.15 with.8 = 48 (�) yields the boundary connected
sum

(13.22) -1#1 -2.

By Proposition 13.15(4), the boundary of the boundary connected sum is the connected

sum of the boundaries.

14 Vector bundles
De�nition 14.1. Let : ∈ N0 ∪ {∞, l}. Let K ∈ {R,C,H}. Let - be a �: manifold. A �:

K–vector bundle over - consists of:

1. a �: manifold �, the total space,

2. a smooth map c : � → - , and

3. for every G ∈ - the structure of a �nite-dimensional K–vector space on

(14.2) �G ≔ c−1(G),

the �ber of �
c−→ - over G ,
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such that for every G ∈ - there are an open neighborhood* and a local trivialization of
�

c−→ - over* ; that is: a �nite-dimensional K–vector space+ , and a�: di�eomorphism

(14.3) q : � |* ≔ c−1(* ) → * ×+

such that:

4. pr
1
◦ q = c , and

5. for every~ ∈ * the map q~ ≔ pr+ ◦q |�~ : �~ → + is an isomorphism of K–vector

spaces. •

Notation 14.4. 1. If K is not speci�ed, then K = R is assumed.

2. A �: K–vector bundle over - is denoted by �
c−→ - ; that is: the K–vector space

structures are suppressed. Often, �
c−→ - is further abbreviated to �. ◦

Remark 14.5. K can be replaced by any �nite-dimensional R–algebra. ♣

De�nition 14.6. Assume the situation of De�nition 14.1. The rank of � is the map

rk· � : - → N0 de�ned by rkG � ≔ dimK �G . •

Proposition 14.7. Assume the situation of De�nition 14.1. The map rk� : - → N0 is
locally constant. �

Example 14.8. Let : ∈ N0 ∪ {∞, l}. Let - be a �: manifold and let + be a �nite-

dimensional vector space. The trivial bundle over - with �ber + is

(14.9) pr
1

: - ×+ → - .

This vector bundle is often denoted by + . ♠

Example 14.10. Consider (1
as R/2cZ. The subset

(14.11) " ≔
{
( [\ ], I) ∈ (1 × C : Im(48\/2I) = 0

}
is a submanifold. Denote the restriction of the canonical projection by c : " → (1

.

Evidently, for every [\ ] ∈ (1
, c−1( [\ ]) inherits the structure of a real vector space

from C. Set *+ ≔ {[\ ] : \ ∈ (−c, c)} and *− ≔ {[\ ] : \ ∈ (0, 2c)}. The maps

q± : c−1(*±) → *± × R de�ned by by

(14.12) q±( [\ ], I) ≔ ( [\ ], 48\/2_).

are local trivializations. Therefore,"
c−→ (1

is a vector bundle. This is called the Möbius
bundle. ♠
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Example 14.13. Let K ∈ {R,C,H}. Let :, = ∈ N. The Grassmannian of :–planes in

K= is the quotient St: (K=)/GL: (K) and has been equipped with the structure of a �l

manifold in Example 1.48. The subset

(14.14) W: (K=) ≔ {([) ], E) ∈ Gr: (K=) × K= : E ∈ im) }

is a �l submanifold. The map c : W: → Gr: (K=) induced by pr
1

is smooth. The

tautological bundle over Gr: (K=) is the �l vector bundle W:
c−→ Gr: (K=). ♠

Exercise 14.15. Find local trivializations for W: (K=).

Example 14.16. Let = ∈ N and : ∈ Z. De�ne the equivalence relation ∼ on

(
C=+1\{0}

)
×

C by

(14.17) (G, I) ∼ (~,F) if and only if G = _~ and I = _:F for some _ ∈ C×.

Set

(14.18) OC%= (:) ≔ ((C=+1\{0}) × C)/∼ .

Denote by c : OC%= (:) → C%= the map induced by pr
1

: (C=+1\{0}) × C→ C=+1\{0}.
For every G ∈ C=+1\{0} the map qG : C→ c−1 [G] de�ned

(14.19) qG (I) ≔ [G, I]

is bijective. Since q−1

_G
◦ qG (I) = _:I, there is a unique structure of a C–vector space

on c−1 [G] such that the maps qG are isomorphisms. OC%= (:)
c−→ C%= is a C–vector

bundle. ♠

Remark 14.20. The preceding example can be de�ned with R or H instead of C as

well. ♣

Example 14.21. Section 15 introduces the tangent bundle )- : a vector bundle over -

with �bers )G- . ♠

C

De�nition 14.22. Let : ∈ N0 ∪ {∞, l}. Let K ∈ {R,C,H}. Let - be a �: manifold with

boundary. Let �
c−→ - be a �: K–vector bundle over - . A �: section of � is a �: map

B : - → � satisfying

(14.23) c ◦ B = id- .

The set of �: sections is denoted by �:Γ(-, �) (or �:Γ(�)). •
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Notation 14.24. For : = ∞ the �: is omitted. ◦

Proposition 14.25. Assume the situation of De�nition 14.22. �:Γ(-, �) admits a unique
structure of a K–vector space such that for every B, C ∈ �:Γ(-, �) and _ ∈ K

(14.26) (B + _C) (G) = B (G) + _C (G).

Example 14.27. Assume the situation of De�nition 14.22. The zero section is the map

G ↦→ 0 ∈ �G . ♠

Example 14.28. A section of the trivial bundle+ is nothing but a�: map 5 : - → + . ♠

Example 14.29. Let = ∈ N and : ∈ N0. Let OC%= (:)
c−→ C%= be as in Example 14.16.

Let ? ∈ C[I0, . . . , I=] be a homogeneous polynomial of degree : . The map p : C%= →
OC%= (:) de�ned by

(14.30) p( [I0 : · · · : I=]) = [I0 : · · · : I=;? (I0 : · · · : I=)]

is a section of OC%= (:). ♠

C

De�nition 14.31. Let : ∈ N0 ∪ {∞, l}. Let K ∈ {R,C,H}. Let - and . be �: manifold.

Let �
c−→ - and �

d
−→ . be �: K–vector bundles.

1. A morphism of �: K–vector bundles from � to � is a pair (Λ, _) consisting of a

�: map Λ : � → � and a �: map _ : - → . such that:

(a) the diagram

(14.32)

� �

- .

c

Λ

d

_

commutes, and

(b) for every G ∈ - the map

(14.33) ΛG : �G → �_(G)

induced by Λ is K–linear.

2. Suppose that - = . . A morphism of�: K–vector bundles over - from � to � is

a�: map Λ : � → � such that (Λ, id- ) is a morphism of�: K–vector bundles. •

84



Example 14.34. De�ne Λ̃ : OC%= (−1) → C=+1\{0} by

(14.35) 2 [(G1, . . . , G=+1; I)] ≔ I · (G1, . . . , G=+1) .

Evidently, C%= = Gr1(C=+1). The map Λ̃ induces a (iso)morphism

(14.36)

OC%= (−1) W1(C=+1)

C%= Gr1(C=+1).

c

Λ

d

♠

De�nition 14.37. Let : ∈ N0 ∪ {∞, l}. Let K ∈ {R,C,H}. Let �
c−→ - be a �: K–vector

bundle. A �: submanifold � ⊂ � is a �: subbundle if, for every G ∈ - , � ∩ �G is a

K–linear subspace of �G . •

C

Proposition 14.38. Let : ∈ N0 ∪ {∞, l}. Let K ∈ {R,C,H}. Let -,. be �: manifolds
with boundary. Let �

c−→ . be a �: K–vector bundle. Let 5 : - → . be a �: map.

1. The �ber product

(14.39) 5 ∗� ≔ . ×5 �.

is a �: submanifold.

2. Denote the canonical projection by d : 5 ∗� → - . For every G ∈ - , d−1(G) =
{G}×� 5 (G) and thus inherits the structure of a K–vector space. This makes 5 ∗�

d
−→ -

into a �: K–vector bundle satisfying

(14.40) rkG 5
∗� = rk5 (G) �.

3. De�ne ] : 5 ∗� → � by

(14.41) ] (G, E) ≔ E .

The pair (5 ∗�, ]) has the following universal property. If � and (Λ, 5 ) is a morphism,
then there is a unique morphism Λ̃ : � → 5 ∗� over - such that

(14.42) Λ = ] ◦ Λ̃.

85



Proof. The maps c : � → - and mc : m� → m- are submersions. Therefore, by

Proposition 8.52, 5 ∗� is a �: submanifold of . × �. This proves (2).

If q : � |* → * × + is a local trivialization if �, then the map k : (5 ∗�) |5 −1 (* ) →
5 −1(* ) ×+ de�ned by

(14.43) k (G, E) ≔ (G, q 5 (G) (E))

is a local trivialization of 5 ∗�. This proves (2).

The proof of (3) is an exercise. �

De�nition 14.44. Assume the situation of Proposition 14.38. The pullback of � by 5 is

the �: K–vector vector bundle 5 ∗�
d
−→ - . •

Theorem 14.45. Let : ∈ N0 ∪ {∞, l}. Let K ∈ {R,C,H}. Let - be a connected �:

manifold with boundary.

1. For every �: K–vector bundle �
c−→ - of rank A there are an # ∈ N and a �: map

5 : - → GrA (K# ) and an isomorphism

(14.46) � � 5 ∗WA (K# ).

2. Let 5 , 6 : - → GrA (K# ) be �: maps. The pullbacks 5 ∗WA (K# ) and 6∗WA (K# ) are
isomorphic if and only of 5 and 6 are �: homotopic.

15 The tangent bundle
It will be convenient for the next couple of sections to make the following observation.

Lemma 15.1. Let : ∈ N0 ∪ {∞, l}. Let - be a set. Let A = {qU : *U → ˜*U : U ∈ �}
be a set of bijective maps such that with ˜*U ⊂ MU open and MU denoting either R<U or
[0,∞) × R<U−1. Suppose that:

1. - =
⋃
U∈�*U .

2. For every for every U, V ∈ �, qU (*U ∩*V) ⊂ MU and qV (*U ∩*V) ⊂ MV are open,
and the map gU

V
: qU (*U ∩*V) → qV (*U ∩*V) de�ned by

(15.2) gU
V
≔ qV ◦ q−1

U

is �: .

3. For every G ≠ ~ ∈ * there is an U ∈ � with G,~ ∈ *U or there are U ≠ V ∈ � with
G ∈ *U , ~ ∈ *V , and*U ∩*V = ∅.
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4. Denote by ∼ the equivalence relation on � generated imposing that U ∼ V whenever
*U ∩*V = 0. Partition � into its equivalence classes � =

∐
8∈� �8 . For every 8 ∈ �

there is a countable subset �#

8 ⊂ �8 such that

(15.3)

⋃
U∈�#

8

*U =
⋃
U∈�8

*U .

In this case there is a unique Hausdor�, paracompact topology on - such thatA is a �:

atlas.

Proof. The set B ≔ {q−1

U ( ˜+ ) : U ∈ �, ˜+ ⊂ ˜*U open} is a basis of a topology. To see this,

observe the following. By (1) every G ∈ - is contained in a subset of the form q−1

U ( ˜+ ).
Moreover, by (2),

q−1

U ( ˜+ ) ∩ q−1

V
( ˜, ) = q−1

V

(
gU
V
( ˜+ ) ∩ ˜,

)
∈ B.

Denote by O the topology associated with B; that is: declare a subset of - to be open

if it is an union of elements of B. This is the unique topology with respect to which

the maps qU are homeomorphisms.

By (2), A is a �: atlas on - . By (3) and (4), - is Hausdor� and paracompact. �

C

Proposition 15.4. Let : ∈ N ∪ {∞, l}. Let - be a �: manifold with boundary. Set

(15.5) )- ≔
∐
G∈-

)G- .

1. There is a unique structure of a �:−1 manifold with boundary on )- such that if
q : * → ˜* is an admissible chart of - , then the map Φ : )* → ˜* × R<U de�ned
by

(15.6) Φ(G, [k, Ẽ]) ≔ (q (G), dk (G) (q ◦k−1)Ẽ).

is an admissible chart of )- .

2. The canonical projection by c : )- → - is �:−1 with respect to this �:−1 structure,
and )-

c−→ - is �:−1 R–vector bundle.

3. Let . be a�: manifold with boundary. Let 5 : - → . be�: . The map) 5 : )- →
). de�ned by

(15.7) ) 5 (E) = )G 5 for E ∈ )G- .

Moreover, () 5 , 5 ) : )- → ). is a morphism of �:−1 vector bundles.
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De�nition 15.8. In the situation of Proposition 15.4,)- is called the tangent bundle of

- , and ) 5 is called the derivative of 5 . •

Proof of Proposition 15.4. Denote by A ≔ {qU : *U → ˜*U : U ∈ �} the �: structure of

- . For every U ∈ � de�ne ΦU as above. The maps ΦV ◦ Φ−1

U satisfy

(15.9) ΦV ◦ Φ−1

U (G, E) = (qV ◦ q−1

U (G), dG (qV ◦ q−1

U )E);

hence, they are �:−1
di�eomorphisms. Therefore, Lemma 15.1 implies (1).

The map c is �:−1
because

(15.10) qU ◦ c ◦ Φ−1

U (G, E) = G .

The maps )*U → *U × R<U
given by

(15.11) (G, [k, Ẽ]) = (G, dk (G) (q ◦k−1)Ẽ)

are local trivializations of )- . This proves (2).

The (straight-forward) proof of (3) is an exercise. �

16 Vector �elds
De�nition 16.1. Let : ∈ N0 ∪ {∞, l}. Let - be a �:+1 manifold with boundary A �:

vector �eld on - is a �: section E : - → )- The set of all �: vector �eld on " is

denoted by �:Vect(- ). •

Notation 16.2. For : = ∞ the �: is omitted. ◦

Proposition 16.3. Let : ∈ N0 ∪ {∞, l} Let - be a �:+1 manifold. If E ∈ Vect(- ) and
5 ∈ �: (- ), then the map E 5 : " → R de�ned by

(16.4) (E 5 ) (G) = E (5 ) (G) ≔ E (G) 5 = dG 5 (E (G))

is �: .

Proof. Let q : * → *̃ be an admissble chart on - . Denote by Φ the corresponding

admissible chart of )- . Set
˜5 ≔ 5 ◦ q−1

: * → R and de�ne Ẽ :
˜* → R< by

(16.5) Φ ◦ E ◦ q−1(G) = (G, Ẽ (G)) .

By de�nition,

(16.6) (E 5 ) ◦ q−1(G)dG ˜5 (Ẽ (G))

is �: . �
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Proposition 16.7. Let : ∈ N ∪ {∞, l}. Let - be a �:+1 manifold with boundary. If
E,F ∈ �:Vect("), then there exists a unique [E,F] ∈ �:−1

Vect(") such that for every
5 ∈ �: (")

(16.8) [E,F] (5 ) = E (F (5 )) −F (E (5 )) .

De�nition 16.9. In the situation of Proposition 16.7, [E,F] is called the Lie bracket of
E andF . •

Proof of Proposition 16.7. It su�ces to prove this for - = * ⊂ M open. For

(16.10) E =

<∑
8=1

E8m8 and F =

<∑
8=1

F8m8

a direct computation shows that

�(16.11)

E (F (5 )) −F (E (5 )) = [E,F] 5 with [E,F] ≔
<∑
9=1

(
<∑
8=1

E8m8F 9 −F8m8E 9

)
m 9 .

Proposition 16.12. Let : ∈ N ∪ {∞, l}. Let - be a �:+1 manifold with boundary. The
Lie bracket [·, ·] : �:Vect(") ×�:Vect(") → �:−1

Vect(") is bilinear, it is alternating:
that is:

(16.13) [E, E] = 0,

and for : > 2 it satis�es the Jacobi identity

(16.14) [D, [E,F]] + [E, [F,D]] + [F, [D, E]] = 0.

Proof. This is straight-forward. �

C

Proposition 16.15. Let - be a smooth manifold with boundary. The map Υ : Vect(- ) →
Der(�∞(- )) de�ned by

(16.16) Υ(E) (5 ) ≔ E 5

is an isomorphism of �∞(- )–modules.
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Proof. The following diagram commutes

(16.17)

Vect(- ) Der(�∞(- ))

Der(�∞(- ),Map(-,R))

∏
G∈- )G-

∏
G∈- Der(�∞(- ),RG ).

Υ

ev

�∏
G ∈- ΥG
�

This implies that Υ is injective.

To prove that it is surjective, let X ∈ Der(�∞(- )). For every G ∈ - there is a

EG ∈ )G- such that X (5 ) (G) = EG (5 ). It remains to prove that the corresponding map

E ∈ Map(-,)- ) is smooth. This is a consequence of the fact that for every 5 ∈ �∞(- )
the map X (5 ) is smooth. To see this, let q : * → ˜* be a chart of - and denote by Φ the

corresponding chart of )- . There exists a unique map Ẽ :
˜* → R= such that

(16.18) Φ ◦ E ◦ q−1(G) = (G, Ẽ (G)) .

For every 5 ∈ �∞(- ) the map

(16.19) X (5 ) ◦ q−1 =

=∑
8=1

Ẽ8 · m(5 ◦ q
−1)

mG8

is smooth. For every ~ ∈ ˜* there is an 5 ∈ �∞(- ) such that 5 ◦ q−1
equals G8 in an

neighborhood of ~ shows that Ẽ8 is smooth in a neighborhood of ~. Therefore, Ẽ is

smooth; hence: E is smooth. �

Remark 16.20. Let � be an R–algebra. A brief computation shows that if X, Y ∈ Der(�)
then [X, Y] ≔ XY − YX ∈ Der(�). ♣

C

De�nition 16.21. Let : ∈ N∪ {∞, l}. Let - and . be�:+1 manifolds. Let 5 : - → . be

�:+1. Two vector �elds E ∈ �:Vect(- ) and F ∈ �:+42C (. ) are 5 –related if for every

G ∈ -

•(16.22) )G 5 (E (G)) = F (5 (G))

Proposition 16.23. Let : ∈ N ∪ {∞, l}. Let - and . be �:+1 manifolds. Let 5 : - → .

be a �:+1 map. Let E,F ∈ �:Vect(- ) and Ẽ, F̃ ∈ �:Vect(. ).

1. The vector �eld E and Ẽ are 5 –related if and only if for every 6 ∈ �: (. )

(16.24) (Ẽ6) ◦ 5 = E (6 ◦ 5 ).
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2. If E and Ẽ are 5 –related, and F and F̃ are 5 -related, then [E,F] and [Ẽ, F̃] are
5 -related.

Proof. This is immediate from the de�nitions. �

Proposition 16.25. Let : ∈ N ∪ {∞, l}. Let - and . be �:+1–manifolds. For every �:+1

di�eomorphism 5 : - → . and every E ∈ �:Vect(- ) there is a unique 5∗E ∈ �:Vect(. )
which is 5 –related to E .

De�nition 16.26. In the situation of Proposition 16.25, 5∗E is called the pushforward of
E via 5 . •

Proof of Proposition 16.25. This is self-evident. �

17 The �ow of a vector �eld
De�nition 17.1. Let : ∈ N0 ∪ {∞, l}. Let - be a �:+1 manifold with boundary. Let

E ∈ �:Vect(- ).

1. An integral curve of E is map W : � → - from an interval � ⊂ R satisfying

(17.2) ¤W = E ◦ W with ¤W (C) ≔ )CW (mC ).

2. An integral curve W : � → - of E is maximal if for every integral curve X : � → -

of E the following holds: if there is a C ∈ � ∩ � with X (C) = W (C), then � ⊂ � .

3. The vector �eld E is complete if every maximal integral curve of E is de�ned on

R. •

Theorem 17.3. Let : ∈ N ∪ {∞, l}. Let - be a �:+1 manifold without boundary. Let
E ∈ �:Vect(- ). The following hold:

1. For every G ∈ - there is a unique maximal integral curve WEG : � EG → - with
WEG (0) = G .

2. The subsetIE ≔ {(C, G) ∈ R × - : C ∈ � EG } is open.

3. The map �owE : IE → - de�ned by

(17.4) �owE (C, G) = �ow
C
E (G) ≔ WEG (C)

is �: ; moreover, mC�owE is �: .

4. If (C, G) ∈ IE and (B, �ow
C
E (G)) ∈ IE , then (B + C, G) ∈ IE and

(17.5) �ow
B+C
E (G) = �ow

B
E ◦ �ow

C
E (G).
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5. If _ ∈ R and (_C, G) ∈ IE , then (C, G) ∈ I_E and

(17.6) �ow
_C
E (G) = �ow

C
_E
(G).

6. Let . be a�:+1 manifold without boundary. Let 5 : - → . be a�:+1 map. If E and
F ∈ �:Vect(. ) are 5 –related, then (idR × 5 ) (IE ) ⊂ IF and for every (C, G) ∈ IE .

(17.7) �ow
C
F ◦ 5 (G) = 5 ◦ �ow

C
E (G).

7. If

(17.8) supp(E) ≔ {G ∈ - : E (G) ≠ 0}

is compact, then E is complete; that is: IE = R × - .

De�nition 17.9. In the situation of Theorem 17.3, �owE is called the �ow of E . •

Proof of Theorem 17.3. The Picard–Lindelöf Theorem proves (1), (2), and (3) for- = * ⊂
R= open.

By the Picard–Lindelöf Theorem, for every G ∈ - there is an integral curve W : � →
- of E with W (0) = G . Let W8 : �8 → - (8 = 1, 2) be two integral curves of E with W8 (0) = G .

Set

(17.10) � ≔ {C ∈ �1 ∩ �2 : W1(C) = W2(C)}.

Evidently, 0 ∈ � . Since - is Hausdor�, Δ- ⊂ - × - is closed. Therefore,

(17.11) � = (W1, W2)−1(Δ- )

is closed. For every C ∈ � , by Picard–Lindelöf Theorem, there is an Y > 0 such that W1

and W2 agree on (C − Y, C + Y). Therefore, � is open. Since �1 ∩ �2 is connected, � = �1 ∩ �2.

This implies (1).

(2) and (3) follow from the assertion for - = * ⊂ M open.

Let W : � → - be an integral curve of E . For every B ∈ � the map X : � − B → -

de�ned by

(17.12) X (C) ≔ W (B + C)

is a integral curve of E with with X (0) = W (B). This proves (4). Similarly, for every _ ∈ R
the map X : _−1� → - de�ned by

(17.13) X (C) ≔ W (_C)

is an integral curve of E . This proves (5).
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To prove (6), observe that for every C ∈ � EG .

(17.14) )C (5 ◦ WEG ) (mC ) = )W EG (C) 5 ◦)CW
E
G (mC ) = )W EG (C) 5 (E (W

E
G (C))) = F (5 ◦ WEG (C)) .

It remains to prove (7). If G ∉ supp(E), then � EG = R and WEG is constant. Therefore, if

G ∈ supp(E) and C ∈ � EG , then WG (C) ∈ supp(E). If supp(E) is compact, then there is an

Y > 0 such that

(17.15) [−Y, Y] × supp(E) ⊂ IE .

Therefore, if G ∈ supp(E), C ∈ � EG , then C + [Y, Y] ⊂ � EG . Consequently, � EG = R. �

Remark 17.16. Theorem 17.3 holds with some modi�cations if - has boundary. The

key issue that the integral curve W of mC on [0,∞) is de�ned only for C ∈ [0,∞). This

a�ects (2) and (7). The proper formulation of Theorem 17.3 for manifolds with boundary

replaces IE with an open subset of a manifold with corners. ♣

Exercise 17.17. Compute the �ow of ~mG − Gm~ on R2
.

Exercise 17.18. Compute the �ow of G2mG on R.

Proposition 17.19. Let : ∈ N ∪ {∞, l}. Let - be a �:+1 manifold. Let E ∈ �:Vect(- ) be
a complete. For every C ∈ R, the map �ow

C
E : - → - is a �: di�eomorphism of - .

Proof. By Theorem 17.3, the map �ow
−C
E is the inverse of �ow

C
E . �

Proposition 17.19 is useful for constructing di�eomorphism.

Proposition 17.20. Let - be a connected smooth manifold with dim- > 2. Let G1, . . . , G:
be distinct points of - . Let ~1, . . . , ~: be distinct points of - . There is a di�eomorphism
5 ∈ Di� (- ) with 5 (G8) = ~8 for every 8 ∈ {1, . . . , :}.

Proposition 17.21. Let : ∈ N0 ∪ {∞}. Let - be a �: manifold with boundary. Let
c : � → - be a�: vector bundle. Let / ⊂ - be a submanifold which is closed as a subset.
For every B ∈ �:Γ(� |/ ) there is a B̃ ∈ �:Γ(�) satisfying

(17.22) B̃ |/ = B .

Proof. The proof is analogous to that of Proposition 9.24. Choose a cover U = {*0} ∪
{*8 : 8 ∈ � } of - with*0 ≔ -\/ and such that for every 8 ∈ there is an admissible chart

q8 : *8 → *̃8 of - as in De�nition 6.1 and a local trivializationk8 : �*8 → *8 ×+8 of �.

For every 8 ∈ � de�ne 58 ∈ �: (*8,+8) by

(17.23) 58 ≔ pr+8
◦k8 ◦ B8
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and de�ne B̃8 ∈ �:Γ(� |*8 ) by

(17.24) B̃8 (G) ≔ k−1

8 (58 ◦ q ◦ pr
1
◦ q−1(G), G)

with pr
1

: R< = R= × R<−= → R= denoting the canonical projection satis�es. By

construction,

(17.25) B̃8 |/ = B .

Choose a �: partition of unity {d8 : 8 ∈ {0} ∪ � } subordinate to U. Since*0 = -\/ ,

(17.26)

∑
8∈�

d8 |/ = 1.

Therefore, the �: section B̃ ∈ Γ(� |*8 ) de�ned by

(17.27) B̃ ≔
∑
8∈�

d8 · B̃8

satis�es

�(17.28) B̃ |/ ≔
∑
8∈�

d8 · B̃8 |/ =
∑
8∈�

d8 · B = B .

Proof of Proposition 17.20. Since- is connected, for every 8 ∈ {1, . . . , :} is an embedding

W8 : [0, 1] ↩→ - with

(17.29) W8 (0) = G8 and W8 (1) = ~8,

Since dim- > 2, these embeddings can be arranged to have pairwise disjoint images.

By Proposition 16.25 and Proposition 17.21, there is a vector �eld E on which is W8–related

to mC for every 8 ∈ {1, . . . , :}. By Theorem 17.3 (6), �ow
1

E (G8) = ~8 . �

C

Lemma 17.30. Let : ∈ (2 + N0) ∪ {∞, l}. Let - be a �:+1 manifold without boundary.
Let E,F ∈ �:Vect(- ).

1. For every G ∈ -

(17.31) [E,F] (G) = d

dC

����
C=0

)
�ow

C
E (G)�ow

−C
E (F (�ow

C
E (G))) .

2. If [E,F] = 0, then

(17.32) �ow
B
E ◦ �ow

C
F (G) = �ow

C
F ◦ �ow

C
E (G).
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Remark 17.33. If E is complete, then

♣(17.34) (�ow
C
E )∗F (G) = )�ow

C
E (G)�ow

−C
E (F (�ow

C
E (G))).

Proof of Lemma 17.30. It su�ces to prove (1) for - = * ⊂ R< open. If

(17.35) E =

<∑
8=1

E8m8 and F =

<∑
8=1

F8m8,

then

(17.36) �ow
C
E (G) = G + CE (G) +$ (C2) and dG�ow

−C
E = 1 − CdGE +$ (C2).

Therefore,

d

dC

����
C=0

)
�ow

C
E (G)�ow

−C
E (F (�ow

C
E (G))) =

d

dC

����
C=0

(1 − CdGE)F (G + CE (G))

= −dGE ·F (G) + dGF · E (G) = [E,F] (G).
(17.37)

For every (−B, G) ∈ IE set

(17.38) FB (G) ≔
(
(�ow

B
E )∗F

)
(G).

By (1),

(17.39) mBFB (G) =
d

dC

����
C=0

(�ow
B+C
E )∗F (G) = (�ow

B
E )∗

(
d

dC

����
C=0

((�ow
C
E )∗F) (G)

)
= 0.

Therefore, (�ow
B
E )∗F = F . By Theorem 17.3 (6),

�(17.40) �ow
C
F ◦ �ow

B
E (G) = �ow

B
E ◦ �ow

C
F (G).

18 The Ehresmann �bration theorem
De�nition 18.1. Let - be a manifold. A �ber bundle over - is a manifold � together

with a smooth map c : � → - such that for every G ∈ - there is an neighborhood*

of G and a di�eomorphism

(18.2) q : � |* ≔ c−1(* ) → * × �G with �G ≔ c−1(G)

satisfying

•(18.3) c = pr
1
◦ q.
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[ pictures ]

Theorem 18.4 (Ehresmann �bration theorem). Let � and - be smooth manifolds. If
c : � → - is a proper submersion, then �

c−→ - is a �ber bundle.

The proof requires the following two observations.

Proposition 18.5. Let : ∈ N∪ {∞, l}. Let - and . be a�:+1 manifold without boundary.
Let 5 : - → . be a proper �:+1 map. Let E ∈ �:Vect(- ) and F ∈ �:Vect(. ). If E is
5 –related toF , then

(18.6) (idR × 5 )−1IF ⊂ IE .

Proof. Let ~ ∈ . . If � ⊂ �F~ is a compact interval, then 5 −1(W (� )) is compact. Therefore,

there is an Y > 0 such that, for every G ∈ 5 −1(WF~ (� )), [−Y, Y] ⊂ � EG .

Let G ∈ c−1(~). For every C ∈ �FG , 5 ◦ WEG (C) = WF~ (C). In particular, if � ⊂ �F~ is

compact, then � ⊂ � EG ; hence: �F~ ⊂ � EG . �

Proposition 18.7. Let - and . be smooth manifolds. Let 5 : - → . be a submersion. For
every G ∈ - there is an open neighborhood* such that:

1. + ≔ c (* ) ⊂ . is open.

2. For every E ∈ Vect(+ ) there is a Ẽ ∈ Vect(* ) which is 5 –related to E .

Proof. This is obvious for pr
1

: R:×R=−: → R: . By Theorem 5.40, 5 is locally equivalent

to pr
1
. �

Proof of Theorem 18.4. Without loss of generality, - = (−1, 1)< ⊂ R< . Choose a cover

U = {* 9 : 9 ∈ � } of � with* 9 in Proposition 18.7. For 8 ∈ {1, . . . ,<} and 9 ∈ � choose

E8, 9 ∈ Vect(*8) c–related to m8 . Choose a partition of unity {d 9 : 9 ∈ � } subordinate to

U. The vector �elds E8 ∈ Vect(� ) de�ned by

(18.8) E8 ≔
∑
9∈�

d 9 · E8, 9

are c–related to m8 . De�nek : (−1, 1)< × �0 → � by

(18.9) k (C1, . . . , C<, G) ≔ �ow
C1
E1

◦ . . . ◦ �ow
C<
E<
(G).

By Proposition 18.5, this is well-de�ned. By Theorem 17.3 (3) and Theorem 17.3 (4),k is

a �: di�eomorphism. By Theorem 17.3 (6),

(18.10) c ◦k (C1, . . . , C<) = �ow
C1
m1

◦ . . . ◦ �ow
C<
m<
(0, . . . , 0) = (C1, . . . , C<).

Therefore, q = k−1
is as required by De�nition 18.1. �

Remark 18.11. p.21 has an apparently di�erent proof of the Ehresmann �bration theorem.

Closer inspection shows that these proofs are essentially the same.

Another exposition of this proof can be found in . ♣
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19 Frobenius’ Theorem
De�nition 19.1. Let - be a smooth manifold.

1. A distribution on - is a subbundle � of the tangent bundle.

Let � be a distribution on - .

2. � is involutive for every E,F ∈ Γ(�),

(19.2) [E,F] ∈ Γ(�).

3. A integral submanifold of � is a connected submanifold . ⊂ - such that for

every G ∈ .

(19.3) )G. = �G .

4. � is integrable if for every G ∈ - there is an integral submanifold of� containing

G .

5. � is completely integrable if every G ∈ - there is an admissible chart q : * → ˜*

with G ∈ * and q (G) = 0 such that

(19.4) q∗� = 〈m1, . . . , mA 〉

with A ≔ rkG � . •

Example 19.5. Let - be a smooth manifold. Let E ∈ Vect(- ) be a nowhere vanishing

vector �eld. � ≔ 〈E〉 is a distribution of - . By Theorem 17.3, � is integrable. ♠

Example 19.6. De�ne the distribution � on R3
by

(19.7) � = 〈E1, E2〉 with E1 ≔ m1 and E2 ≔ m2 + G1m3.

� does not have any integral submanifolds because

(19.8) [E1, E2] ≕ E3m3

is nowhere vanishing. Indeed, if . where an integral submanifold of � , then

(19.9) [E1 |� , E2 |�] = [E1, E2] |� ;

however, −m3 ∉ � . ♠
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Remark 19.10. Identifying R3
with the Heisenberg group

(19.11) � ≔

©«
1 G1 G2

0 1 G3

0 0 1

ª®¬ : G1, G2, G3 ∈ R


the vector �elds E1, E2, E3 can be see to be left-invariant. ♣

Exercise 19.12. Equip R3
with the above distribution. Let G ∈ R3

. Prove that there is a

smooth path W : [0, 1] → R3
with W (0) = 0, W (1) = G , and such that for every C ∈ [0, 1]

(19.13) ¤W (C) ∈ �W (C) .

Writing W (C) = (G1(C), G2(C), G3(C)) and

(19.14) ¤W = _1E1 + _2E2.

we have

There is more general principle behind this. An application of this can be used to an-

alyze the car parking problem; see https://www.math.wisc.edu/~robbin/parking_
a_car.pdf for a careful discussion.

C

[ This needs to be move to later. It is not important before one talks about principal

bundles and connections anyway. ]

Proposition 19.15. Let - be a smooth manifold. Let � be a distribution on - . There is a
unique tensor �eld � ∈ Hom(Λ2�,)-/�) such that for every E,F ∈ � and G ∈ -

(19.16) � (E (G),F (G)) = −[E,F] (G) mod �G .

Exercise 19.17. Proof this!

De�nition 19.18. The tensor �eld � is the curvature of � . •

C

Theorem 19.19 (Frobenius’ Theorem). Let- be a smooth manifold. Let� be a distribution
on - . The following are equivalent:

1. � is involutive.

2. � is integrable.

3. � is completely integrable.
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Proof. If � is completely integrable and q is as in De�nition 19.1 (5), then

(19.20) q−1( ˜* ∩ (RA × {0}))

is an integral submanifold of � containing G . Therefore, (3) implies (2).

If � is completely integrable, E,F ∈ Γ(�), G ∈ - , and . is an integral submanifold

of � containing G , then

(19.21) [E,F] (G) ∈ )G. = �G .

Therefore, (2) implies (1).

It remains to prove that (1) implies (3). Let G ∈ - . Choose an admissible chart

q : * → ˜* with G ∈ * and q (G) = 0 such that

(19.22) q∗� = 〈E1, . . . , EA 〉 with E8 (G) = m8 +
<∑
9=1

0
9

8
(G)m 9

and 0
9

8
(0) = 0. After shrinking* , for every G ∈ ˜*

1 +�(G) with � ≔ (0 9
8
(G))A8, 9=1

is invertible. Therefore, after rede�ning E8 ,

(19.23) E8 (G) = m8 +
<∑

9=A+1
0
9

8
(G)m 9 .

A brief computation shows that

(19.24) [E8, E 9 ] =
=∑

:=A+1
(m80:9 − m 90:8 )m: +

=∑
:,ℓ=A+1

(0ℓ8 mℓ0:9 − 0ℓ9 mℓ0:8 )m: .

The salient point is that the expression on the right-hand side has vanishing components

along m1, . . . , mA . Since [E8, E 9 ] ∈ Γ(�),

(19.25) [E8, E 9 ] = 0.

Therefore, by Lemma 17.30

(19.26) �ow
C8
E8
◦ �ow

C 9
E 9 = �ow

C 9
E 9 ◦ �ow

C8
E8
.

Set

(19.27) k (C1, . . . , C<) ≔ �ow
C1
E1

◦ · · · ◦ �ow
CA
EA
(0, . . . , 0, CA+1, . . . , C<).
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Evidently,

(19.28) k (0) = 0.

A brief computation shows that

m8k (C) =
d

dY

����
Y=0

�ow
C8+Y
8
◦ �ow

C1
E1

◦ �
�ow

C8
E8 · · · ◦ �ow

CA
EA
(0, . . . , 0, CA+1, . . . , C<)

= E8 ◦ �ow
C8
8
◦ �ow

C1
E1

◦ �
�ow

C8
E8 · · · ◦ �ow

CA
EA
(0, . . . , 0, CA+1, . . . , C<)

= E8 ◦k (C).

(19.29)

Therefore, d0k = 1, and m8 and E8 arek–related. Hence, the admissible chartk−1 ◦ q is

as required by (5). �

Here is a consequence which is sometimes important.

Proposition 19.30. If )- = � ⊕ � and both � and � are involutive, then each G ∈ " has
a neighbourhood* and coordinates G8 such that

� = 〈m1, . . . , mA 〉 and � = 〈mA+1, . . . , m<〉.

Proof. By Theorem 19.19 there are charts q� : * → R= and q� : * → R= such that

(19.31) (q�)∗� = 〈m1, . . . , mA 〉 and (q�)∗� = 〈mA+1, . . . , m<〉.

If we denote by c1 and c2 the projection onto the �rst and second factors of R< =

RA ⊕ R<−A , then q : * → R< de�ned by

q ≔ (c1 ◦ q�, c2 ◦ q�)

satis�es

q∗� = 〈m1, . . . , mA 〉 and q∗� = 〈mA+1, . . . , m<〉.
If* is su�ciently small, then q is a di�eomorphism onto its image. �

[ POSSIBLE TODO: discussion of foliations ]

20 Review of multi-linear algebra
Here we brie�y review the multi-linear algebra underlying di�erential forms.1

1For us, every vector space is a vector space over the real numbers R.
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20.1 The tensor product

De�nition 20.1. Let +1, . . . ,+: and, be vector spaces. A map " : +1 × · · · ×+: →,

is called multi-linear if for each 8 = 1, . . . , : and each (E1, . . . , . . . , E:) ∈ +1 × · · · ×+:
the map +8 →, de�ned by

E ↦→ " (E1, . . . , E8−1, E, E8+1, . . . , E:)

is linear.

Denote by Mult(+1×· · ·×+: ,, ) the vector space of multi-linear maps+1×· · ·×+: →
, •

Proposition 20.2 (Universal property of the tensor product). Let +1, . . . ,+: be vector
spaces. There exists a vector space+1 ⊗ · · · ⊗+: and a multi-linear map ` : +1× · · ·×+: →
+1 ⊗ · · · ⊗ +: such that the following holds: If " : +1 × · · · ×+: →, is a multi-linear
map, then there exists a unique linear map ˜" : +1 ⊗ · · · ⊗ +: →, such that

" = ˜" ◦ `.

Moreover,

(20.3) dim+1 ⊗ · · · ⊗ +: = dim+1 · · · dim+: .

Remark 20.4. Proposition 20.2 is often expressed by the following diagram:

+1 × · · · ×+: ,

+1 ⊗ · · · ⊗ +:

"

`
∃!

˜"

or by saying that the map

Hom(+1 ⊗ · · · ⊗ +: ,, ) → Mult(+1 × · · · ×+: ,, )

de�ned by

˜" ↦→ ˜" ◦ `
is bijective. ♣

De�nition 20.5. The vector space+1 ⊗ · · · ⊗+: together with the multi-linear ` is called

the tensor product of +1, . . . ,+: . We write

E1 ⊗ · · · ⊗ E: ≔ ` (E1, · · · , E:).

•
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Remark 20.6. Everything about the tensor product can be proved using Proposition 20.2!

For most purposes this is the best way to proceed.

♣
Remark 20.7. Since ` is multi-linear,

E1 ⊗ · · · ⊗ E8−1 ⊗ (E′8 + _E′′8 ) ⊗ E8+1 ⊗ · · · ⊗ E:
= E1 ⊗ · · · ⊗ E8−1 ⊗ E′8 ⊗ E8+1 ⊗ · · · ⊗ E:
+ _ · E1 ⊗ · · · ⊗ E8−1 ⊗ E′′8 ⊗ E8+1 ⊗ · · · ⊗ E: .

This is the key relation one needs to know for computations. ♣
Proposition 20.8. Let +1, . . . ,+: ,,1, . . . ,,: be vector spaces and �8 : +8 →,8 be linear
maps. There exists a unique linear map �1 ⊗ · · · ⊗ �: : +1 ⊗ · · · ⊗ +: →,1 ⊗ · · · ⊗,:

such that
(�1 ⊗ · · · ⊗ �:) (E1 ⊗ . . . ⊗ E:) = �1E1 ⊗ . . . ⊗ �:E:

Proof.

+1 × · · · ×+: ,1 × · · · ×,:

+1 ⊗ · · · ⊗ +: ,1 ⊗ · · · ⊗,:

`

�1×···×�:

`

∃!

�

Proposition 20.9. There exists a unique linear map

< : (+1 ⊗ · · · ⊗ +:) ⊗ (+:+1 ⊗ · · · ⊗ +:+ℓ) → +1 ⊗ · · · ⊗ +:+ℓ .
such that

<((E1 ⊗ · · · ⊗ E:) ⊗ (E:+1 ⊗ · · · ⊗ E:+ℓ)) = E1 ⊗ · · · ⊗ E: ⊗ E:+1 ⊗ · · · ⊗ E:+ℓ .
Proof. The domain of< is generated by vector of the form (E1 ⊗ · · · ⊗ E:) ⊗ (E:+1 ⊗ · · · ⊗
E:+ℓ), so one can verify this proposition de�ning< by the above formula on a basis

and checking the everything is well-de�ned. One can proceed like this, but one should

not. (Choosing a basis of an abstract vector space is barbaric and checking something

is well-de�ned is not fun.)

So let’s practice some abstract non-sense instead. By Proposition 20.2, a map< is

equivalent to a bilinear map

" : (+1 ⊗ · · · ⊗ +:) × (+:+1 ⊗ · · · ⊗ +:+ℓ) → +1 ⊗ · · · ⊗ +:+ℓ ;
but a bilinear such a bilinear map is equivalent to a multi-linear map

(+1 × · · · ×+:) × (+:+1 × · · · ×+:+ℓ) = +1 × · · · ×+:+ℓ → +1 ⊗ · · · ⊗ +:+ℓ .
Of course, ` : +1 × · · · × +:+ℓ → +1 ⊗ · · · ⊗ +:+ℓ is the map we were looking for. In

principle, this completes the proof, but it is instructive draw a diagram and explicitly

chase down the identi�cations underlying the above argument.
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Diagrammatic representation. This construction is visualized in the following dia-

gram:

(+1 × · · · ×+:+ℓ) +1 ⊗ · · · ⊗ +:+ℓ

(+1 × · · · ×+:) × (+:+1 × · · · ×+:+ℓ)

(+1 ⊗ · · · ⊗ +:) × (+:+1 ⊗ · · · ⊗ +:+ℓ)

(+1 ⊗ · · · ⊗ +:) ⊗ (+:+1 ⊗ · · · ⊗ +:+ℓ)

=

`

`×`

The dashed arrow represents the bilinear map obtained by applying Proposition 20.2

with the multi-linear maps

+1 × · · · ×+: → +1 ⊗ · · · ⊗ +:+ℓ , (E1, . . . , E:) ↦→ ` (E1, . . . , E: , E:+1, . . . , E:+ℓ)

for �xed E:+1, . . . , E:+ℓ and

+:+1 × · · · ×+:+ℓ → +1 ⊗ · · · ⊗ +:+ℓ , (E:+1, . . . , E:+ℓ) ↦→ ` (E1, . . . , E: , E:+1, . . . , E:+ℓ)

for �xed (E1, . . . , E:).

Chasing identi�cations. Here is a more formal way of stating the argument. We

observe that the map

Bil((+1 ⊗ · · · ⊗ +:) × (+:+1 ⊗ · · · ⊗ +:+ℓ),+1 ⊗ · · · ⊗ +:+ℓ)
→ Mult((+1 × · · · ×+:) × (+:+1 × · · · ×+:+ℓ),+1 ⊗ · · · ⊗ +:+ℓ)

de�ned by

�̃ ↦→ �̃ ◦ (` × `)
is bijective. The multiplication map is then the map in

< ∈ Hom((+1 ⊗ · · · ⊗ +:) ⊗ (+:+1 ⊗ · · · ⊗ +:+ℓ),+1 ⊗ · · · ⊗ +:+ℓ)

which corresponds to

` ∈ Mult(+1 × · · · ×+:+ℓ ,+1 ⊗ · · · ⊗ +:+ℓ)

under the chain of bijections

Mult(+1 × · · · ×+:+ℓ ,+1 ⊗ · · · ⊗ +:+ℓ)
= Mult((+1 × · · · ×+:) × (+:+1 × · · · ×+:+ℓ),+1 ⊗ · · · ⊗ +:+ℓ)
� Bil((+1 ⊗ · · · ⊗ +:) × (+:+1 ⊗ · · · ⊗ +:+ℓ),+1 ⊗ · · · ⊗ +:+ℓ)
� Hom((+1 ⊗ · · · ⊗ +:) ⊗ (+:+1 ⊗ · · · ⊗ +:+ℓ),+1 ⊗ · · · ⊗ +:+ℓ). �
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De�nition 20.10. The tensor algebra on + is the vector space

)+ ≔

∞⊕
:=0

+ ⊗: .

equipped with the multiplication operation de�ned above. •

Remark 20.11. )+ is an associative algebra; that is, the multiplication is associative. )+

also has a grading given by the summands + ⊗: . Multiplication respects this grading:

+ ⊗: ·+ ⊗ℓ ⊂ + ⊗(:+ℓ) .

♣

Corollary 20.12. De�ne a multi-linear map (+ ∗): → Mult(+ : ,R) by

(E∗
1
, . . . , E∗

:
) ↦→ ((E1, . . . , E:) ↦→

:∏
8=1

E∗8 (E8)) .

There is a unique linear map (+ ∗)⊗: → Mult(+ : ,R) such that the diagram

(+ ∗): Mult(+ : ,R)

(+ ∗)⊗:
∃!

This map is injective. If + is �nite-dimensional, this map is an isomorphism. �

Remark 20.13. If+ is �nite-dimensional, we can treat elements of (+ ∗)⊗: as multi-linear

maps + : → R. ♣
Remark 20.14. If + is �nite-dimensional, you could identify + ⊗: with Mult((+ ∗): ,R)
(in principle). But it is actually rather more awkward to de�ne even such simple things

the tensor algebra, and your algebraist friends will be mad at you. ♣

20.2 Alternating tensor product

De�nition 20.15. A multi-linear map " : + : →, is called alternating if

" (E1, . . . , E:) = 0

whenever there is an 8 = 1, . . . , : − 1 such that E8 = E8+1. We write Alt
: (+ ) for the space

of alternating multi-linear maps + : →, . •

104



Remark 20.16. Over the R, alternating is the same as

" (E1, . . . , E8, E8+1, . . . , E:) = −" (E1, . . . , E8+1, E8, . . . , E:).

Number theorist and algebraists will mad at you if you de�ne alternating like this in

general. ♣

Proposition 20.17 (Universal property of the alternating tensor product). Let + be a
vector space and : ∈ N. There exists a vector space Λ:+ and an alternating multi-linear
map ` : + : → Λ:+ such that the following holds: If" : + : →, is an alternating map,
then there exists a unique linear map ˜" : Λ:+ →, such that

" = ˜" ◦ `.

Moreover,

(20.18) dimΛ:+ =

(
dim+

:

)
.

Remark 20.19. Proposition 20.17 is often expressed by the following diagram:

+ : ,

Λ:+

"

`

∃!"̃

or by saying that the map

Hom(Λ:+ ,, ) → Alt
: (+ ,, )

de�ned by

˜" ↦→ ˜" ◦ `
is bijective. ♣

De�nition 20.20. The vector space Λ:+ together with the multi-linear ` is called the

:-th exterior power of + . We write

E1 ∧ · · · ∧ E: ≔ ` (E1, · · · , E:).

•

Remark 20.21. If f ∈ (: is a permutation of {1, . . . , :}, then

Ef (1) ∧ · · · ∧ Ef (:) = sign(f)E1 ∧ · · · ∧ E: .

Moreover, one has the same relations as in the tensor product. ♣
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Proposition 20.22. Let + ,, be vector spaces and � : + → , be a linear map. There
exists a unique linear map Λ:� : Λ:+ → Λ:, such that

(Λ:�) (E1 ∧ . . . ∧ E:) = �E1 ∧ . . . ∧�E:

The following is the key reason why we care about the alternating tensor product.

Proposition 20.23. Let : ∈ N0 and � ∈ End(R:), Λ:� agrees with multiplication by
det(�).

Proof. Λ:R: is one-dimensional. It is spanned by

41 ∧ · · · ∧ 4:

Therefore, Λ:� must be multiplication with some real number. To determine which, it

su�ces to compute

Λ:�(41 ∧ · · · ∧ 4:)
If

�48 =

:∑
9=1

0
9

8
4 9 ,

then

Λ:�(41 ∧ · · · ∧ 4:) =
(
:∑
91=1

0
91
1
4 91

)
∧ · · · ∧

(
:∑
9:=1

0
9:
:
4 9:

)
=

:∑
91=1

· · ·
:∑
9:=1

0
91
1
· · ·0 9:

:
4 91 ∧ · · · ∧ 4 9: .

The term in the sum on the right-hand side is non-zero if and only there is a permutation

f ∈ (: with 98 = f (8). Therefore,

Λ:�(41 ∧ · · · ∧ 4:) =
∑
f∈(:

:∏
8=1

0
f (8)
1
4f (1) ∧ · · · ∧ 4f (:)

=
∑
f∈(:

(
signf

:∏
8=1

0
f (8)
1

)
· 41 ∧ · · · ∧ 4: .

This is precisely Leibniz’ formula for the determinant. �
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Proposition 20.24. Denote by c : + ⊗: → Λ:+ the unique linear map such that the
diagram

+ : + ⊗:

Λ:+

`

`
c

commutes; see Proposition 20.2.

1. The map is surjective and its kernel ' = kerc is generated by vectors of the form

E1 ⊗ · · · ⊗ E:

with E8 = E8+1 for some 8 = 1, . . . , : − 1.

2. There is a unique linear map 8 : Λ:+ → + ⊗: such that

c ◦ 8 = idΛ:+

and
8 (E1 ∧ · · · ∧ E:) =

1

:!

∑
f∈(:

sign(f)E1 ⊗ · · · ⊗ E: .

In particular, Λ:+ = + ⊗:/' and 8 : Λ:+ → + ⊗: is an injection.

Proposition 20.25. There exists a unique linear map

< : Λ:+ ⊗ Λℓ+ → Λ:+;+

such that

<((E1 ∧ · · · ∧ E:) ⊗ (E:+1 ∧ · · · ∧ E:+ℓ)) = E1 ∧ · · · ∧ E: ∧ E:+1 ∧ · · · ∧ E:+ℓ .

Remark 20.26. If U ∈ Λ:+ and V ∈ Λℓ+ , then

U ∧ V = c (8 (U) ⊗ 8 (V)) .

♣

De�nition 20.27. This operation is called the wedge product. It is denoted by ∧. •

De�nition 20.28. The exterior algebra on + is the vector space

Λ•+ = Λ+ ≔

∞⊕
:=0

Λ:+

equipped with the multiplication operation de�ned above. •
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Remark 20.29. Λ+ is an associative algebra; that is, the multiplication is associative. Λ+
also has a grading given by the summands Λ:+ . Multiplication respects this grading:

Λ:+ · Λℓ+ ⊂ Λ:+ℓ+ .

The multiplication is also graded commutative, that is if U ∈ Λ:+ and V ∈ Λℓ+ , then

U ∧ V = (−1):ℓV ∧ U

♣

Corollary 20.30. De�ne an alternating map (+ ∗): → Alt
: (+ ,R) by

(E∗
1
, . . . , E∗

:
) ↦→

(
(E1, . . . , E:) ↦→ det

(
(E∗8 (E 9 )):8, 9=1

) )
.

There is a unique linear map Λ:+ ∗ → Alt
: (+ ,R) such that the diagram

(+ ∗): Alt
: (+ ,R)

Λ:+ ∗
∃!

This map is injective. If + is �nite-dimensional, this map is an isomorphism. �

Remark 20.31. The map Λ:+ ∗ → Alt
: (+ ,R) also make the following diagram commute:

Λ:+ ∗ Alt
: (+ ,R)

(+ ∗): Mult(+ : ,R)

8 ⊂

This is how we did it in class. ♣

Proposition 20.32. There exists a unique linear map + ⊗ Λ:+ ∗ → Λ:−1+ ∗

E ⊗ U ↦→ 8 (E)U

such that

E ⊗ (E∗
1
∧ · · · ∧ E∗

:
) ↦→ 8 (E)

:∑
8=1

(−1)8+1E∗8 (E) · E∗1 ∧ · · · E∗8−1
∧ E∗8+1 · · · ∧ E∗:

Thinking of U and 8 (E)U as elements of Alt
: (+ ,R) and Alt

:−1(+ ,R) respectively, we
have

(8 (E)U) (E1, . . . , E:−1) = U (E, E1, . . . , E:−1).

De�nition 20.33. This operation is called contraction. •
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21 Vector bundles (continued)
Proposition 21.1. Let : ∈ N0∪{∞, l}. Let ?, @ ∈ N0. LetF : Vect?K×

(
Vectop

K
)@ → VectK

be a functor such that the maps
(21.2)

F :

?∏
8=1

HomK(+8,,8)×
@∏

9=?+1
HomK(,9 ,+9 ) → HomK(F(+1, . . . ,+?+@),F(,1, . . . ,,?+@))

are �: . For every �: manifold - the following hold:

1. Let
(
�8

c8−→ -
)?+@
8=1

be a (? + @)–tuple of �: vector bundles over - . Set

(21.3) F(�1, . . . , �?+@) ≔
∐
G∈-

F((�1)G , . . . , (�?+@)G )

and denote by d : F(�1, . . . , �?+@) → - the canonical projection. There is a unique

topology and �: structure onF(�1, . . . , �?+@) such thatF(�1, . . . , �?+@)
d
−→ - is a

�: vector bundle and the following holds: if
(
q8 : * ×+8 → c−1

8 (* )
)?+@
8=1

is a (? +@)–
tuple of local trivializations, then the map k : * × F(+1, . . . ,+?+@) → d−1(* )
de�ned by

(21.4) k (G, ·) = F
(
(q1)G , . . . , (q?)G , (q?+1)−1

G , . . . , (q?+@)−1

G

)
is a local trivialization.

2. Let
(
�8

d8−→ -
)?+@
8=1

be a (? + @)–tuple of �: vector bundles over - . Let (58 : �8 →
�8)?8=1

and (5?+ 9 : �?+ 9 → �?+ 9 )@9=1
be a ?–tuple and a @–tuple of �: vector bundle

morphisms respectively. There is a unique �: vector bundle morphism

(21.5) F(51, . . . , 5?+@) : F(�1, . . . , �?+@) → F(�1, . . . , �?+@)

such that

(21.6) F(51, . . . , 5?+@)G = F
(
(51)G , . . . , (5?+@)G

)
for every G ∈ - .

3. The above constructions de�ne a functor

(21.7) F : �:VectBun?K,- × (�
:VectBunop

K,- )
@ → �:VectBunK,- .
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Proof. Denote by {((q8,U : *U ×+U,8 → c−1(*U ))?+@8=1
: U ∈ �} the set of (? + @)–tuples

of local trivializations. For every U ∈ � de�nekU : *U ×F(+U,1, . . . ,+U,?+@) → d−1(*U )
by (21.4). These are bijections and

k−1

V
◦kU (G, E) =

(
G,F

(
(qV,1)−1

G ◦ (qU,1)G , . . . , (qV,?)−1

G ◦ (qU,?)G ,
(qV,?+1)G ◦ (qU,?+1)−1

G , . . . , (qV,?+@)G ◦ (qU,?+@)−1

G

)
(E)

)
.

(21.8)

By hypothesis, these maps are �: . The assertion thus follows from Lemma 15.1.

(2) is evident.

(3) is a consequence of F being a functor. �

22 Tensor bundles and Lie derivatives
De�nition 22.1. Let : ∈ N0 ∪ {∞, l}. Let - be a �:+1 manifold.

1. A tensor bundle is a vector bundle obtain from)- via Proposition 21.1. A tensor
�eld is a section of a tensor bundle.

2. The cotangent bundle of - is the vector bundle

(22.2) ) ∗- ≔ ()- )∗.

3. Let ?, @ ∈ N0. The bundle of (?, @) tensors is

•(22.3) )- ⊗? ⊗ ) ∗- ⊗@ .

Most geometric objects and structures on manifolds come to us in the form of tensor

�elds.

Example 22.4. Every vector �eld is a tensor �eld. ♠

Example 22.5. Every poly-vector �eld is a section of Λ:)- . ♠

Example 22.6. A Riemannian metric on - is a section 6 ∈ Γ(Hom((2)-,R)) with

6(E, E) > 0 and 6(E, E) = 0 if and only if E = 0. ♠

Example 22.7. An almost complex structure on - is a section � ∈ Γ(End()- )) satis-

fying

♠(22.8) � 2 = −1 ∈ End()- ).

Example 22.9. An di�erential :–form on - is a section U ∈ Γ(Λ:) ∗- )). ♠
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Proposition 22.10. If S ∈ Hom(Vect(- )⊗?, �) satis�es

(22.11) S(5 ) ) = 5 S() )

for every 5 ∈ �∞(- ), then there is a tensor �eld ( ∈ Hom()- ⊗?,)- ⊗? with

(22.12) S() ) = ( () ).

De�nition 22.13. Let F be as in Proposition 21.1. Set � ≔F()-, . . . ,)- ).

(22.14) (LE() (G) ≔
d

dC

����
C=0

pullG,C( (�ow
C
E (G)) .

with pullG,C : �
�ow

C
E (G) → �G de�ned by

•(22.15) FG,C ≔ ()�ow
C
E (G)�ow

−C
E , . . . ,)�ow

C
E (G)�ow

−C
E ,)G�ow

C
E , . . . ,)G�ow

C
E ).

Proposition 22.16. 1.

(22.17) LE 5

2.

(22.18) LEF = [E,F]

3.

(22.19) LE (( ⊗ ) ) = (LE() ⊗ ) + ( ⊗ (LE) ).

4.

(22.20) LEV (F) = (LEV) (F) + V (LEF).

Proof. This is an easy exercise. �

23 Di�erential forms
De�nition 23.1. Let - be a smooth manifold with boundary.

1. A di�erential form of degree : (:–form) on - is a section U ∈ Γ(Λ:) ∗- ).

2. The vector space of di�erential forms of degree : on - is denoted by

(23.2) Ω: (- ) ≔ Γ(Λ:) ∗- ).
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3. The graded vector space of di�erential forms on - is denoted by

•(23.3) Ω•(- ) ≔
∞⊕
:=0

Ω: (- ).

Notation 23.4. For U ∈ Ω: (- ) set

◦(23.5) deg(U) ≔ :.

Notation 23.6. For an open subset* ⊂ R= with its standard smooth structure there is a

preferred chart: q = id* . This induces a preferred isomorphism (s−1

q
)∗ : (R=)∗ � ) ∗G* .

It is customary to identify

(23.7) (R=)∗ = ) ∗G*

via (s−1)∗ = (s−1

q
)∗ and set

(23.8) dG8 ≔ s(4∗8 ).

If the coordinates of R= have been labeled in some other way (as it is sometimes

convenient), then this notation is adjusted correspondingly. For example, it is customary

to write dC for the image of 1 ∈ R under (s−1)∗. ◦

De�nition 23.9. The wedge product is the map · ∧ · : Ω•(- ) ⊗ Ω•(- ) → Ω•(- )
induced by the wedge product on Λ•) ∗- . •

The wedge product on Λ•) ∗- makes Ω•(- ) into a graded commutative algebra;

that is:

(23.10) U ∧ V = (−1)deg(U) deg(V)V ∧ U.

Exercise 23.11. Prove that

(23.12) 5 ∗(U ∧ V) = 5 ∗U ∧ 5 ∗V.

With this in mind, in a chart q every :–form U can be expressed as

Ũ ≔ (q−1)∗U =
∑
81,...,8:

U81,...,8:dG81 ∧ . . . ∧ dG8: .

C

De�nition 23.13. Let - be a smooth manifold with boundary. Let E ∈ Vect(- ). The

contraction with E is the linear map 8E : Ω•(- ) → Ω•−1(- ) de�ned by

•(23.14) 8EU ≔ U (E ∧ ·) .
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Exercise 23.15. 1. Prove that 82E = 0.

2. Prove that 8E8F + 8E8F = 0.

3. Prove that

(23.16) 8E (U ∧ V) = (8EU) ∧ V + (−1)degUU ∧ 8EV.

C

Proposition 23.17. There is a unique linear map of degree one d : Ω•(- ) → Ω•+1(- )
satisfying the following:

1. For every 5 ∈ Ω0(- ), d5 agrees with the derivative of 5 .

2. d ◦ d = 0.

3. d(U ∧ V) = (dU) ∧ V + (−1)deg(U)U ∧ dV .

This map satis�es

(23.18) d ◦ 5 ∗ = 5 ∗ ◦ 3.

Moreover,

(23.19) dU81,...,8:dG81 ∧ . . . ∧ dG8: =

<∑
9=1

m 9U81,...,8:dG 9 ∧ dG81 ∧ . . . ∧ dG8: .

De�nition 23.20. The map 3 : Ω•(- ) → Ω•+1(- ) is the exterior derivative. •

Remark 23.21. This makes Ω•(") in to a di�erential graded commutative algebra

(DGA). ♣

Proof of Proposition 23.17. The proof has three steps.

Step 1. Proof for - = * ⊂ R= .

Every U ∈ Ω: (* ) can be uniquely writen as

(23.22) U =
∑

0681<···<8:6:
U81 ...8: dG81 ∧ . . . ∧ dG8: .

Set

(23.23) dU ≔

<∑
9=1

∑
1681<···<8:6:

m 9U81 ...8: dG 9 ∧ dG81 ∧ . . . ∧ dG8:
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and observe that this de�nition is forced by the hypothesis.

Evidently, (1) and (3) hold. To establish (2), compute

d ◦ d5 =

<∑
8, 9=1

m 9 m8 5 dG8 ∧ dG 9

=
∑
8< 9

(m 9 m8 5 − m8m 9 5 ) dG8 ∧ dG 9 = 0.

(23.24)

This proves that d ◦ d = 0 on Ω0(- ). This implies (2) in general in light of (3).

Step 2. If* ⊂ R< and + ⊂ R= are open, and 5 : * → + is smooth, then

d5 ∗U = 5 ∗dU

For 6 ∈ �∞(+ )
d(5 ∗6) = d(6 ◦ 5 ) = d6 ◦ d5 = 5 ∗d6.

This proves the assertion on Ω0(+ ). Since pullback commutes with the wedge product,

the assertion holds.

Step 3. The global case.

Let U be a di�erential form on - . If q : * → ˜* and k : + → ˜+ is are admissible

charts on - , then on* ∩+

k ∗(d(k−1)∗U) = k ∗(d[(k ◦ q−1)−1]∗(q−1)∗U)
= k ∗(k−1)∗q∗(d(q−1)∗U) = q∗(d(q−1)∗U).

(23.25)

This implies that there is a unique dU such that

(23.26) (dU) |* = q∗(d(q−1)∗U).

for every admissible chart q .

The desired properties hold and uniqueness follows from uniqueness for * ⊂
R< . �

Corollary 23.27. For every E ∈ Vect(- )

(23.28) LEd = dLE .

�

C
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Proposition 23.29 (Cartan’s magic formula). Let - be a smooth manifold with boundary.
For every E ∈ Vect(- ) and U ∈ Ω•(- )

(23.30) LEU = d8EU + 8EdU.

Proof. De�ne
˜LE : Ω•(- ) → Ω•(- ) by

(23.31)
˜LE ≔ d8E + 8Ed.

The map
˜LE satis�es the following:

1.
˜LE 5 = d5 (E) = LE 5 ,

2. d
˜LE = ˜LEd, and

3.
˜LE (U ∧ V) = ˜LEU ∧ V + U ∧ ˜LEV.

This �rst two are obvious and the last follows from a short computation:

˜LE (U ∧ V) = d(8EU ∧ V + (−1)degUU ∧ 8EV)
+ 8E (dU ∧ V + (−1)degUU ∧ dV)

= ( ˜LEU) ∧ V + U ∧ ˜LEV

− (−1)degU8EU ∧ dV + (−1)degU
dU ∧ 8EV)

− (−1)degU
dU ∧ 8EV) + (−1)degU8EU ∧ dV

= ˜LEU ∧ V + U ∧ ˜LEV.

From these observation the proof follows shortly. Indeed, the statement is local;

hence, it su�ces to prove it for open subset* ⊂ R< and U = 5 dG81 ∧ . . . ∧ dG8: :

˜LEU = ( ˜LE 5 )d( ˜LEG81) ∧ . . . ∧ d( ˜LEG81)
= (LE 5 )d(LEG1) ∧ . . . ∧ d(LEG:)
= LEU. �

C

The following observation is useful for computation where a choice of coordinate

is not at hand or would be unnatural.

Proposition 23.32 (Invariant formula for the exterior derivative). For U ∈ Ω: (- ) and
E1, . . . , E:+1 ∈ Vect(- )

(dU) (E1, . . . , E:+1) =
:+1∑
8=1

(−1)8+1LE8 (U (E1, . . . , Ê8, . . . , E:+1))

+
:+1∑
8< 9=1

(−1)8+ 9U ( [E8, E 9 ], E1, . . . , Ê8, . . . , Ê 9 , . . . , E:+1) .
(23.33)
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Proof. Exercise. �

Exercise 23.34. Let - be a =–dimensional manifold and let � ⊂ )" be a distribution

of rank : . De�ne Ann(�) ⊂ Λ•) ∗- by

Ann(�) ≔ {U ∈ Λ•) ∗" : U |� = 0}.

Find a characterisation of the involutivity of � in terms of Ann(�).

24 Integrating di�erential forms
Theorem 24.1. Let< ∈ N0. Let * ,+ ⊂ R< be open. Let q : * → + be a �1 di�eomor-
phism. Let 5 ∈ Map(+ ,R). The function 5 is integrable if and only if 5 ◦ q · |det(dq) | is;
moreover:

(24.2)

ˆ
+

5 dG1 · · · dG< =

ˆ
*

5 ◦ q · |det(dq) | dG1 · · · dG<

Let - be a smooth manifold of dimension <. Suppose that Ω= (- ) has compact

support. If q is an admissible chart, then

q∗U = 5 · dG1 ∧ . . . ∧ dG= .

Therefore, it is tempting to integrate U . Ifk is further admissible chart and g = q ◦k−1
,

then

k∗U = 5 ◦ g · det(dg) · dG1 ∧ . . . ∧ dG= .

This is almost (24.2): det(dg) vs. |det(dg) |. Therefore, one can almost integrate di�eren-

tial forms. To get out of this sign quagmire, one introduced the following concept.

De�nition 24.3. Let: ∈ N∪{∞, l}. Let- be a�: manifold with boundary of dimension

<.

1. A volume form on - is a nowhere-vanishing<–form.

2. An orientation on - is a equivalence class of volume forms on - with respect to

the relation a ∼ ` if and only if there is a positive �: function 5 with a = 5 `.

3. The standard orientation on R< is the orientation [dG1 ∧ · · · ∧ dG<].

4. An oriented�: manifold with boundary is a�: manifold with boundary together

with an orientation [`].

5. A chart q on an oriented �: manifold is orientation preserving if [q∗`] is the

standard orientation on R< . It is orientation reversing if [−q∗`] is the standard

orientation on R< .
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6. A basis (41, . . . , 4<) is positive if for any ` in the class determining the orientation

` (41, . . . , 4=) > 0. •

Remark 24.4. If dim- = 0, then an orientation is nothing but a choice of sign Y (G) = ±1

for every G ∈ - . ♣

Proposition 24.5. Let- be an oriented�: manifold with boundary of dimension<. There
is a unique linear map

(24.6)

ˆ
-

: Ω<2 (- ) → R

with the following property: if q : * → ˜* is a preserving/reversing chart and 5 ∈ �∞2 ( ˜* ),
then

(24.7)

ˆ
-

q∗(5 · dG1 ∧ · · · ∧ dG<) = ±
ˆ

˜*

5 dG1 · · · dG< .

Proof. For open subsets* ⊂ R< de�ne

(24.8)

ˆ
*

5 · dG1 ∧ · · · ∧ dG< ≔

ˆ
*

5 dG1 · · · dG< .

This evidently has the desired properties.

Choose an atlas {qU : *U → ˜*U } consisting of charts which are either orientation

preserving or orientation reversing; set YU ≔ ±1 accordingly. Let {dU : U ∈ �} be a

partition of unity subordinate to {*U : U ∈ �}. For U ∈ Ω<2 (- ) set

(24.9)

ˆ
-

U ≔
∑
U∈�

YU ·
ˆ
*̃U

(qU )∗(dU · U).

(This is a �nite sum since suppU is compact.) This de�nition is forced upon us by

linearity. �

Remark 24.10. If dim- = 0, then

(24.11)

ˆ
-

5 =
∑
G∈-

Y (G) 5 (G).

♣

Exercise 24.12. Prove that the existence of an orientation is equivalent to the existence

of a volume form, that is, a nowhere vanishing<–form.

Exercise 24.13. Show that complex manifolds have canonical orientations.
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Exercise 24.14. Show that R%2
is not orientable.

Notation 24.15. Let -,. be �: manifolds with boundary. Suppose that dim. =<. If

U ∈ Ω<2 (- ) and ] : . ↩→ - is an immersion, then

(24.16)

ˆ
#

U ≔

ˆ
#

]∗U.

◦

Example 24.17. On C consider the C–valued 1–form

(24.18) dI ≔ dG + 8d~.

For 5 : C→ C and W ⊂ C a closed curve

(24.19)

ˆ
W

5 dI

is the line integral which you are familiar with from complex analysis. ♠

25 Stokes’ Theorem
De�nition 25.1. Let - be an oriented �: manifold with boundary. The induced ori-
entation on - is the unique orientation such that if q : * → ˜* is a chart with

˜* ⊂ [0,∞) × R<−1
, then the chart k ∩ * ∩ m- → * ∩ {0} × R<−1

is orientation

reversing/preserving if and only if q is orientation preserving/reversing. •

Theorem 25.2 (Stokes’ Theorem). Let - be an oriented �: manifold with boundary of
dimension<. For every U ∈ Ω<−1

2 (- )

(25.3)

ˆ
-

dU =

ˆ
m-

U.

Proof. Choose an atlas of - consisting of orientation preserving/reversing charts

{qV : *V → ˜*V : V ∈ �} with
˜*V either (0, 1)< or [0, 1) × (0, 1)<−1

. Choose a par-

tition of unity {dV : V ∈ �} subordinate to {*V : V ∈ �}. Since

(25.4)

ˆ
-

dU =
∑
V∈�

YV

ˆ
-

d(dVU) and

ˆ
m-

V =
∑
V∈�

YV

ˆ
m-

dVU,

it su�ces to prove the assertion for - = (0, 1)< and - = [0, 1) × (0, 1)<−1
.
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In either case, every U ∈ Ω<−1

2 (- ) decomposes as

(25.5) U =

<∑
8=1

58 · dG1 ∧ · · · ∧ d̂G8 ∧ · · · ∧ dG< .

Therefore,

(25.6) dU =

<∑
8=1

(−1)8+1m8 58 · dG1 ∧ · · · ∧ dG< .

By de�nition,

(25.7)

ˆ
-

m8 58 · dG1 ∧ · · · ∧ dG< =

ˆ
1

0

· · ·
ˆ

1

0

(m8 58) (G1, . . . , G<) · dG1 · · · dG< .

Using Fubini’s theorem and the fundamental theorem of calculus, the latter can be

evaluated to be

(25.8)ˆ
1

0

· · ·
ˆ

1

0

(58 (G1, . . . , G8 = 1, . . . , G<) − 58 (G1, . . . , G8 = 0, . . . , G<)) · dG1 · · · d̂G8 · · · dG< .

These expressions vanish unless 8 = 1 and - = [0, 1) × (0, 1)<−1
; in which case it

simpli�es to

�(25.9) −
ˆ

1

0

· · ·
ˆ

1

0

51(0, G2, . . . , G<) · dG2 · · · dG< =

ˆ
m-

U.

26 Riemannian volume, divergence, Hodge ∗–operator
De�nition 26.1. A Riemannian manifold is a smooth manifold - together with a

Riemannian metric 6. •

De�nition 26.2. Let (-,6) be an oriented Riemannian manifold. The Riemannian
volume form is the unique volume form vol6 ∈ Ω= (- ) with the property that

|vol6 (41, . . . , 4=) | = 1

whenever (41, . . . , 4=) is a positive orthonormal basis of )G- . •

If (-,6) an oriented Riemannian manifold and 5 ∈ �∞("), we write

ˆ
-

5 ≔

ˆ
-

5 vol6 .
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Exercise 26.3. Suppose (G1, . . . , G=) is a positive local coordinate system and the metric

is given by 68 9 ≔ 6(mG8 , mG 9 ). Show that the volume form is given by

vol6 ≔

√
det(68 9 ) · dG1 ∧ . . . ∧ dG=

De�nition 26.4. Suppose E ∈ Vect(- ). The divergence of E is the function div(E) =
div6 (E) ∈ �∞(") de�ned by

(26.5) LEvol6 = div6 (E) · vol6 .

•

Exercise 26.6. In the situation of Exercise 26.3 if

(26.7) E =

=∑
8=1

E8mG8 ,

then

(26.8) div(E) = 1√
det(68 9 )

<∑
:=1

mG:

(√
det(68 9 ) · E:

)
.

Exercise 26.9. Let (-,6) be a oriented Riemannian manifold with boundary. For ℎ, : ∈
�∞(") and E ∈ Vect("), prove the integration by parts formula

(26.10)

ˆ
"

(
(LE:) · ℎ + : · (LEℎ) + : · ℎ · div(E)

)
vol6 =

ˆ
m"

: · ℎ 8 (E)vol6 .

C

De�nition 26.11. Let (-,6) be an Riemannian manifold with boundary. Given 5 ∈
�∞(- ), the gradient of 5 is the vector �eld ∇5 = ∇6 5 ∈ Vect(- ) de�ned by

(26.12) d5 (E) = 6(∇5 , E)

and the Laplacian of 5 is the function Δ5 ∈ �∞(- ) de�ned by

(26.13) Δ5 ≔ − div(∇5 ).

The outward pointing unit normal is the vector �eld = ∈ Γ()- |m- ) characterised by

the following conditions: (a) |= |6 = 1, (b) =(G) ⊥ )G m- , (c) if (42, . . . , 4<) is a positive

basis of )G m- , then (−=, 42, . . . , 4<) is a positive basis of )G- . •
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Exercise 26.14. 1. Prove Green’s identities

(26.15)

ˆ
-

ℎΔ: vol-,6 =

ˆ
-

〈∇ℎ,∇:〉 vol-,6 −
ˆ
m-

ℎL=: volm-,6

and

(26.16)

ˆ
-

(ℎΔ: − :Δℎ) vol-,6G =

ˆ
m-

(:L=ℎ − ℎL=:) volm-,6

with = denoting the outward-pointing unit normal.

2. Show that if m- = ∅, then Δℎ = 0 implies that ℎ is constant.

3. Show that if m- ≠ ∅, then Δℎ = Δ: = 0 and ℎ |m- = : |m- implies that ℎ = : .

C

De�nition 26.17. Let (+ ,6) be an<–dimensional Euclidean vector space. The Hodge
∗–operator is the linear map ∗ : Λ:+ ∗ → Λ=−:+ ∗ de�ned by

•(26.18) U ∧ ∗V ≔ 〈U, V〉6vol6

Remark 26.19. Note that

♣(26.20) ∗ 5 = 5 vol6 .

This operator naturally carries over to an operator on the space of di�erential forms

on a Riemannian manifold.

Exercise 26.21. Show that in dimension< for U a :–form

(26.22) ∗ ∗U =

{
U < odd

(−1): < even

and thus ∗−1
: Λ:+ ∗ → Λ=−:+ ∗ satis�es

(26.23) ∗−1 = (−1): (=−:) ∗ .

Remark 26.24. In dimension 2 and on 1–forms, ∗∗ = −1. Therefore, ∗ is (equivalent to)

a complex structure. ♣
Remark 26.25. In dimension 4: and on 2:–forms, ∗∗ = 1. Therefore, ∗ : Ω2: (- ) →
Ω2: (- ) has eigenvalues ±1. ♣
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Exercise 26.26. Let * ⊂ R< be an open and with smooth boundary. Denote by = the

outward-pointing unit normal along m* . For E =
∑<
8=1
E8m8 a vector �eld de�ne the

1–form E♭ by

(26.27) E♭ ≔

<∑
8=1

E8dG
8 .

Conversely, for U =
∑<
8=1
08dG

8
a 1–form de�ne the vector �eld U ♯ by

(26.28) E♯ ≔

<∑
8=1

08m88 .

1. Prove that:

(a) d ∗ E♭ = ∗ div E ,

(b) (∗E♭) |m* = 〈E, =〉 volm* , and

(c)

´
*

div E vol* =
´
m*
〈E, =〉 volm* .

2. Suppose that< = 3. Recall that, curl E = ∇ × E . Prove that

(a) (curl E)♭ = ∗dE♭,
(b) curl div = 0.

Let ( be a surface with boundary in R3
oriented by a unit normal =. Denote by C

the unit tangent vector �eld along m( such that, =, C , and the outward pointing

unit normal along m( are positive. Prove that

(c)

´
(
〈curl(E), =〉vol( =

´
m(
〈E, C〉volm( .

27 Covariant derivatives
De�nition 27.1. Let - be a smooth manifold with boundary. Let � be a vector bundle

over - . For : ∈ N0 set

•(27.2) Ω: (-, �) ≔ Γ(Λ:) ∗- ⊗ �).

De�nition 27.3. Let - be a smooth manifold with boundary. Let � be a vector bundle

over - . A covariant derivative on � is a linear map ∇ : Γ(�) → Ω1(-, �) such that

for every 5 ∈ �∞(- ) and B ∈ Γ(�)

•(27.4) ∇(5 · B) = d5 ⊗ B + 5 · ∇B .
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Proposition 27.5. Let - be a smooth manifold with boundary. Let � be a vector bundle
over - . The following hold:

1. There is a covariant derivative ∇ on �.

2. If ∇0 is a covariant derivatives on � and 0 ∈ Ω1(-, End(�)), then

(27.6) ∇1 ≔ ∇0 + 0.

is a covariant derivative.

3. If ∇0, ∇1 are covariant derivatives on �, then there is an 0 ∈ Ω1(-, End(�)) with

(27.7) ∇1 = ∇0 + 0.

In other words, the space of covariant derivatives on � is an a�ne space modelled on
Ω1(-, End(�)).

Proof. Evidently, the product vector bundle + = - × + has a covariant derivative.

Choose an open cover U = {*U : U ∈ �} of - such that � |*U is trivial. Choose any

connection ∇U on � |*U . Choose a partition of unity {dU : U ∈ �} subordinate to U.

De�ne ∇ by

(27.8) ∇B ≔
∑
U∈�

dU∇UB .

This is a covariant derivative. This proves (1).

(2) and (3) are straight-forward. �

De�nition 27.9. Let - be a smooth manifold with boundary.

1. Let � be a vector bundle over - equipped with a metric 6. A covariant derivative

∇ on � is orthogonal if

(27.10) d6(B, C) = 6(∇B, C) + 6(B,∇C).

2. An a�ne connection is a covariant derivative on )- .

3. Let ∇ be an a�ne connection. The torsion of ∇ is the 2–form ) ∈ Ω2(-,)- )
de�ned by

(27.11) )∇(E,F) ≔ ∇EF − ∇FE − [E,F] .

4. An a�ne connection ∇ is torsion free if )∇ = 0. •
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Theorem 27.12. Let (-,6) be a Riemannian manifold. There is a unique orthogonal and
torsion-free a�ne connection ∇LC

6 on - .

Proof. If the Levi-Civita connection exists, then it satis�es

26(∇DE,F) = LD6(E,F) − 6(∇DF, E) + 6(∇DE,F)
= LD6(E,F) − 6( [D,F], E) + 6( [D, E],F) − 6(∇FD, E) + 6(∇ED,F)
= LD6(E,F) +LE6(D,F) −LF6(D, E)
− 6( [D,F], E) + 6( [D, E],F) + 6(D,∇FE) − 6(D,∇EF)

= LD6(E,F) +LE6(F,D) −LF6(D, E)
+ 6( [D, E],F) − 6( [E,F], D) + 6( [F,D], E);

hence,

6(∇DE,F) =
1

2

(
LD6(E,F) +LE6(F,D) −LF6(D, E)

+ 6( [D, E],F) − 6( [E,F], D) + 6( [F,D], E)
)(27.13)

This is called the Koszul formula.

On the one hand, (27.13) shows that ∇ is determined uniquely; on the other hand,

it can be checked that this formula de�nes a covariant derivative which is metric and

torsion-free. �

De�nition 27.14. ∇LC

6 is the Levi-Civita connection. •

Example 27.15. For R< with the standard Riemannian metric 60 ≔
∑<
8=1

dG8 ⊗ d
8

the

Levi-Civita connection satis�es

♠(27.16) ∇60 = d.

Example 27.17. Let - be a submanifold of R< . Equip - with the Riemannian metric

induced by the standard metric on R< . The Levi-Civita connection satis�es

(27.18) ∇6EF = (∇60

E F)C

Here ·C denotes the orthogonal projection )GR< � )G- .

De�ne ĨI : Vect(- ) × Vect(- ) → Γ(#- ) by

(27.19) ĨI(E,F) ≔ −(∇60

E F)⊥.

with ·⊥ denoting the orthogonal projection )GR< � #G- ≔ )G-
⊥

.

Evidently ĨI is tensorial in its �rst argument. If = is a normal vector �eld to - , then

(27.20) 〈∇60

E F,=〉 − 〈∇
60

F E, =〉 = 〈[E,F], =〉 = 0.
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Therefore, ĨI is symmetric. Therefore, ĨI is tensorial. The second fundamental form of
- is the tensor II ∈ Γ(Hom((2)-, #- )) associated with ĨI.

By construction,

♠(27.21) ∇6EF = ∇60

E F + II(E,F).

Remark 27.22. Let (-,6) be a Riemannian manifold. Let G0, G1 ∈ - . Set

(27.23) P = PG0,G1
≔ {W ∈ �∞( [0, 1], - ) : W (0) = G0, W (1) = G1}.

The critical points of the functional ! : P→ [0,∞) de�ned by

(27.24) � (W) ≔ 1

2

ˆ
1

0

| ¤W (C) |2 dC

play a crucial role. Since

(27.25) dW� (X) =
ˆ

1

0

〈 ¤W (C), ¤X (C)〉 dC,

the Euler–Lagrange equation for � is

(27.26) ∇C ¤W = 0.

Solutions of this equation are called geodesics. ♣

Proposition 27.27. Let- be a smooth manifold with boundary. Let �, � be a vector bundles
over - . Let ∇� be a connection on � and let ∇� be a connection � .

1. There is a unique connection ∇�⊗� on � ⊗ � such that

(27.28) ∇�⊗� (B ⊗ C) = (∇�B) ⊗ C + B ⊗ (∇� C) .

2. There is a unique connection ∇�∗ on �∗ such that

(27.29) d(B∗(B)) = (∇�∗B∗) (B) + B (∇�B).

3. There is a unique connection ∇Hom(�,� ) on Hom(�, � ) such that

(27.30) ∇� (ΛB) = (∇Hom(�,� )Λ) (B) + Λ(∇�B).

Proof. It su�ces to prove this for � = - ×+ and � = - ×+ . After writing ∇� = d + 0
and ∇� = d + 1, the covariant derivatives are

1. ∇�⊗�B ⊗ C = d(B ⊗ C) + 0B ⊗ C + B ⊗ 1C
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2. ∇�∗B∗ = dB∗ − 0∗B∗ = dB∗ − B∗0.

3. ∇Hom(�,� )Λ = dΛ − Λ ◦ 0∗ + 1 ◦ Λ. �

Proposition 27.31. Let - be a smooth manifold with boundary. Let � be a vector bundle
over- . Let∇ be a covariant derivative on �. There is a unique linear map d∇ : Ω•(-, �) →
Ω•+1(-, �) such that

1. For every B ∈ Γ(�)

(27.32) d∇B = ∇B

2. For every U ∈ Ω•(- ) and f ∈ Ω•(-, �)

(27.33) d∇(U ∧ f) = (dU) ∧ f + (−1)degUU ∧ (d∇f).

Moreover:

3. There is a unique �∇ ∈ Ω2(-, End(�)) such that for every U ∈ Ω•(-, �)

(27.34) d∇d∇U = �∇ ∧ U.

4. �∇ ∈ Ω2(-, End(�)) satis�es

(27.35) �∇(E,F)B = (∇E∇F − ∇F∇E − ∇[E,F])B .

Proof. It su�ces to prove this for � = - ×+ . In this case ∇ can be written as d + 0 with

0 ∈ Ω1(-, End(�)). De�ne d∇ ≔ d + 0 ∧ ·. This satis�es (1) and (2); and (1) and (2) force

d∇ to be de�ned in this way.

A computation shows that

(d + 0 ∧ ·)(d + 0 ∧ ·)f = (d0 + 0 ∧ 0) ∧ f.

This proves (3) with �∇ = d0 + 0 ∧ 0. �

De�nition 27.36. The 2–form �∇ is the curvature of ∇. •

Proposition 27.37 (Bianchi identity). Let - be a smooth manifold with boundary. Let �
be a vector bundle over - . Let ∇ be a covariant derivative on �. The curvature �∇ satis�es

(27.38) d∇
End
�∇ = 0.

Proof. This is trivial:

�(27.39) (d∇
End
�∇)B = d∇(�∇B) − �∇d∇B = d∇d∇d∇B − d∇d∇d∇B . = 0
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De�nition 27.40. The curvature of the Levi-Civita connection is the Riemannian cur-
vature tensor of 6 and denoted by '6 ∈ Ω2(-, End()- )). •

Proposition 27.41. '6 takes values in so()- ): the skew-adjoint endomorphisms of )- .

Proof. We compute

6('6 (E,F)B, C) = 6(∇E∇FB, C) − 6(∇F∇EB, C) − 6(∇[E,F]B, C)
= LELF6(B, C) + 6(B,∇F∇EC) −LFLE6(B, C) − 6(B,∇E∇FC)
−L[E,F]6(B, C) + 6(∇[E,F]B, C)

= −6(B, '6 (E,F)C). �

Example 27.42. Let - be a submanifold of R< with the Riemannian metric 6 induced

by the standard Riemannian metric 60. Denote the second fundamental form by II. We

have

'6 (E,F)B = ∇E∇FB − ∇F∇EB − ∇[E,F]B
= ∇E (∇0

FB + II(F, B) − ∇F (∇0

EB + II(E, B) − (∇0

[E,F] + II( [E,F], B)
= ∇0

E∇0

FB + ∇0

E (II(F, B)) + II(E,∇0

FB + II(F, B))
−

(
∇0

F∇0

EB + ∇0

F (II(E, B)) + II(F,∇0

EB + II(E, B))
)

− (∇0

[E,F] + II( [E,F], B)
= '60

(E,F) + (∇0

E II) (F, B) − (∇0

F II) (E, B) .

This is the Codazzi–Mainardi equation. The same line of reasoning also proves the

Gauß equation

(27.43) 〈'6 (E,F)B, C〉 = 〈'60
(E,F)B, C〉 + 〈II(E, B), II(F, C)〉 − 〈II(F, B), II(E, C)〉.

Since '60
= 0, these allow to determine '6 from II algebraically! ♠

Example 27.44. Consider (= ⊂ R=+1. The second fundamental form IIG at G ∈ (= is

(27.45) IIG (E,F) = −〈∇EF, G〉 · G = 〈E,F〉 · G

Therefore,

♠(27.46) '6 (E,F)B = 〈F, B〉E − 〈E, B〉F.

De�nition 27.47. Let (Σ, 6) be a Riemannian manifold of dimension two.

1. The Gauß curvature of 6 is the unique function  ∈ �∞(Σ) satisfying

(27.48) ^6 (G) = 6('6 (41, 42)42, 41)

for every orthonormal basis 41, 42 of )GΣ.
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2. The geodesic curvature of mΣ is the unique function :6 ∈ �∞(mΣ) satisfying the

following: if W : � → mΣ is a positively oriented curve with | ¤W | = 1, then

(27.49) :6 (W (C)) = 6(∇W (C), =(W (C))).

•

Theorem 27.50 (Gauß–Bonnet). If (Σ, 6) be an oriented closed Riemannian manifold of
dimension two, then

(27.51)

ˆ
Σ
 +
ˆ
mΣ
:6 = 2c j (Σ).

Here j (Σ) denotes the Euler characteristic of Σ.

28 The degree
De�nition 28.1. Let < ∈ N0. Let - and . be oriented, smooth manifold without

boundary and of dimension<. Let 5 : - → . be a proper, smooth map. Let ~ ∈ . be a

regular value of 5 . Set

(28.2) deg(5 ;~) ≔
∑

G∈5 −1 (~)
sign()G 5 ) ∈ Z.

Here sign)G 5 ∈ {+1,−1} depending on whether )G 5 is orientation preserving or orien-

tation reversing. •

Example 28.3 ( PICTURES ). ♠

Theorem 28.4. Assume the situation of De�nition 28.1 and that . is connected.

1. The integer

(28.5) deg(5 ) ≔ deg(5 ;~)

is independent of ~ ∈ . .

2. If 5 , 6 are homotopic, then

(28.6) deg(5 ) = deg(6).

The proof requires the following preparation.

Proposition 28.7. Assume the situation of Theorem 28.4. If- is the boundary of a oriented,
compact manifold, and 5 extends to a smooth map � : , → . , then deg(5 ;~) = 0.
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Proof. Let ~ ∈ . be a regular value of 5 . By Proposition 5.24, there is an open neighbor-

hood * of ~ ∈ . such that 5 : 5 −1(* ) → * is a covering map. A moment’s thought

shows that deg(5 ; I) = deg(5 ;~) for every I ∈ * .

By Theorem 7.12, it can be assumed that ~ is a regular value for both 5 and � . By

Theorem 6.12,

(28.8) � ≔ �−1(~).

is a compact 1–manifold with boundary. By Theorem 2.32, � is a �nite disjoint union of

embeddings W : [0, 1] →, . It remains to prove that

(28.9) sign()W (0) 5 ) + sign()W (1) 5 ) = 0.

The orientations of, and . determine an orientation of � as follows. For I ∈ � and

a positive basis (E1, . . . , E<+1) of)I, with E1 ∈ )I� . Declare E1 to be positive if and only

if )I� (E2), . . . ,)I� (E<+1) is a positive basis of )~ 5 .

Without loss of generality, - is oriented as m, . Choose a positive vector �eld E1

along imW pointing inward at W (0) and outward at W (1). By construction

(28.10) sign()W (0) 5 ) + sign()W (1) 5 ) = 0.

[ PICTURE ] �

Proof of Theorem 28.4. If 5 , 6 are homotopic, then there exists a smooth map� : [0, 1] ×
- → . with � (0, ·) = 5 and � (1, ·) = 6. The boundary of [0, 1] × - are two copies of

- oriented in opposite ways. Therefore, if ~ is a regular value of 5 and 6, then

(28.11) deg(5 ;~) − deg(6;~) = 0.

To see that deg(5 ;~) is independent of ~, let I be a further regular value of 5 . Let q

be a di�eomorphism of . with q (~) = I and homotopic to id. . Evidently,

(28.12) deg(q ◦ 5 ; I) = deg(q ◦ 5 ;q (~)) = deg(5 , ~).

By the preceding paragraph

(28.13) deg(q ◦ 5 ; I) = deg(5 ; I).

This �nishes the proof. �

Proposition 28.14. Let< ∈ 2N0. The anti-podal map 0 : (< → (< is not homotopic to
the identity.

Proof. A computation shows that deg(0) = −1. �
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Theorem 28.15. (< admits a nowhere-vanishing vector �eld if and only if< is odd.

Proof. Identify E ∈ Vect((<) with a smooth map E : (< → R<+1 satisfying

(28.16) 〈E (G), G〉 = 0

for every G ∈ (< . If E is nowhere-vanishing, then we might as well assume that |E | = 1.

De�ne � : (< × [0, c] × (< by

(28.17) � (G, \ ) = cos(\ )G + sin(\ )E (G) .

(Check that |� (G, \ ) | = 1.) Evidently,

(28.18) � (G, 0) = G and � (G, c) = −G .

Therefore,< must be odd.

Indeed if< = 2= is odd, then E (G1, . . . , G2=) = (−G2, G1, . . . , G2=,−G2=−1) is a nowhere-

vanishing vector �eld. �

29 The Poincaré–Hopf index theorem
De�nition 29.1. Let - be a smooth manifold without boundary. Let E ∈ Vect(- ).

1. A zero of E is a G ∈ - with E (G) = 0.

2. A zero G of E is isolated, if there is an open neighborhood* of G ∈ - such that,

for every ~ ∈ * , E (~) = 0 if and only of ~ = G .

3. If - = R< and 0 is an isolated zero of E , then the index of E at 0 is

(29.2) index0 E ≔ deg(5 )

with 5 : (<−1 → (<−1
de�ned by

(29.3) 5Y (G) ≔
E (YG)
|E (YG) |

for Y � 1. •

The extension of the concept of index to manifolds requires the following.

Proposition 29.4. Let * ,+ ⊂ R< be open neighborhoods of 0. Let g : * → + be a
di�eomorphism with g (0) = 0. Let E ∈ Vect(* ) and F ∈ Vect(+ ) be vector �elds an
isolated zero at E (0) = 0. If E ,F are g–related and g is orientation preserving, then

(29.5) index0 E = index0F.

130



Proof. Suppose that ) : [0, 1] ×* → R< is a homotopy with:

1. )C a di�eomorphism onto its image for every C ∈ [0, 1], and

2. )0 = id and )1 = g .

For C ∈ [0, 1] set EC ≔ ()C )∗E . By construction EC has an isolated zero at 0 for every

C ∈ [0, 1], E0 = E , and E1 = F . Therefore, maps 50, 51 : (<−1 → (<−1
are homotopic;

hence: deg(50) = deg(51).
It remains to produce) . After shrinking* , the map) : [0, 1] ×* → R< de�ned by

(29.6) ) (C, G) ≔
{

d0g (G) C = 0

C−1g (CG) C ∈ (0, 1]

is a homotopy of the desired kind but with )0 = d0g . Since GL
+(R<) is connected, d0g

is homotopic to id through orientation-preserving isomorphisms. �

De�nition 29.7. Let - be a oriented, smooth manifold with boundary. Let E ∈ Vect(- ).

1. If G is isolated zero of E , then the index of E at G is

(29.8) indexG E ≔ index0 Ẽ

with Ẽ ≔ q∗E for some orientation-preserving, admissible chart q with q (G) = 0.

2. If E has only isolated zeros, then the index of E

•(29.9) index E ≔
∑

G∈E−1 (0)
indexG E .

Proposition 29.10. Let - be a smooth manifold with boundary. Let E ∈ Vect(- ). Let
G ∈ E−1(0).

1. There is a unique linear map ! = !E ∈ )G- such that for every chart q with q (G) = 0

(29.11) dGq ◦ !E = dG Ẽ

with Ẽ (~) = d~q (E (~)).

2. If ! is invertible, then G is an isolated zero and indexG E = sign det!.

Proof. Omitted/Exercise. �

Theorem 29.12 (Poincaré–Hopf index theorem). Let - be a compact, smooth manifold
without boundary. Let E ∈ Vect(- ). If E has only isolated zeros, then

(29.13) index E = j (- ).
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The right-hand side here is the Euler characteristic of - . The proof consists of two

parts. The �rst proves the index E depends only on - . The second computes index E in

a suitable case to prove its equality with j (- ). The proof presented in the following

taken from [Mil97, §6].

Proposition 29.14. Let - be a submanifold with boundary of R< of codimension zero.
Denote by = ∈ �∞(m-, (<−1) the outward-pointing unit normal. Let E ∈ Vect(- ). If E has
only isolated zeros and is outward-pointing along m- , then

(29.15) index E = deg=.

Proof. Let Y � 1. Set

(29.16) . ≔ -\
⋃
{�Y (G) : G ∈ E−1(0)}.

De�ne Ẽ : . → (<−1
by

(29.17) Ẽ (G) ≔ E (G)
|E (G) | .

By Proposition 28.7,

(29.18) 0 = deg Ẽ = deg Ẽ |m- −
∑

G∈E−1 (0)
indexG E .

The sign arises because m�Y has the opposite orientation in m. . A moment’s thought

shows that Ẽ |m- and = are homotopic; hence, deg Ẽ |m- = deg=. �

Proposition 29.19. In the situation of Theorem 29.12, index E depends only on - .

Proof. To begin with one observes that it su�ces to consider E is non-degenerate

singularities. This is a local problem. Let E ∈ �∞(�<
2
(0),R<) be a vector �eld with

an isolated singularity at 0. Let j ∈ �∞(�<
2
(0)) be a cut-o� function with compact

support and j |�<
1
(0) = 1. If F is a su�ciently small regular value of E , then Ẽ (G) ≔

E (G) + j (G)F has only non-degenerate zero all of which are contained in �<
1
(0). Finally,

it is consequence of Proposition 28.7 that index Ẽ = deg( E|E | : m�2 → (<−1) = index E . [

DRAW PICTURE FOR THIS ]

To simplify By Theorem 10.1, without loss of generality - is a submanifold of R< .

Therefore, E ∈ �∞(-,R<).
Choose a tubular neighborhood * of R< . Denote the corresponding retraction map

by A : * → - .

De�ne Ẽ ∈ �∞(* ,R<) by

(29.20) Ẽ = E ◦ A + ∇5 with 5 (G) ≔ 1

2

|G − A (G) |2.
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For Y � 1 set

(29.21) *Y ≔ 5 −1((−∞, Y]) .

Since Y � 1, the following hold:

1. *Y is a submanifold with boundary and of codimension zero.

2. Ẽ is outward-pointing along m*Y .

3. For every G ∈ - , ∇5 (G) ⊥ E (G); therefore: Ẽ (G) = 0 if and only if E (G) = 0.

4. For every G ∈ E−1(G),

(29.22) indexG E = indexG Ẽ .

This implies that

(29.23) index E = deg=

with = denoting the outward-pointing unit normal of m*Y . The latter depends only on

- (and a choice of Y � 1). �

30 A sketch of Morse theory
Algebraic topology assigns to every manifold - and every : ∈ N an �nite dimensional

vector space

(30.1) H
: (-,R)

called the cohomology of- of degree : with coe�cients in R. If- is compact, then these

spaces are �nite-dimensional and H
: (-,R) = 0 for : � 1. The Euler characteristic of

- is de�ned as

(30.2) j (- ) ≔
∞∑
:=0

(−1): dim H
: (-,R).

There are many ways to construct H
: (-,R), for example, using di�erential forms. For

our purposes the following facts are important:

1. If - = * ∪ + is a decomposition into open subsets, then there is a long exact

sequence

(30.3) · · · → H
: (- ) → H

: (* ) ∩ H
: (+ ) → H

: (* ∩+ ) → H
:+1(- ) → · · · .

This is the Mayer–Vietoris sequence. As a consequence,

(30.4) j (- ) = j (* ) + j (+ ) − j (* ∩+ ).
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2. If - and . are homotopy-equivalent, then H
: (- ) � H

: (. ); in particular, j (- ) =
j (. ).

3. If - is a single point, then H
0(- ) � R and H

: (- ) = 0 for : > 1.

4. H
0((0) � R2

and, for< > 1, H
0((<) � R � H

< ((<) with all other cohomology

groups vanishing. (This can be proved using Mayer–Vietoris.) In particular,

j ((<) = 2 if< is even and j ((<) = 0 if< is odd.

5. If - is a compact odd-dimensional manifold, then j (- ) = 0. (This is a conse-

quence of Poincaré duality.)

The link between the the index of a vector �eld E ∈ Vect(- ) and j (- ) can be made

using Morse theory.

Proposition 30.5. Let - be a smooth manifold. Let 5 ∈ �∞(- ). If dG 5 = 0, then there is
a unique symmetric bilinear map Hess 5 ∈ Hom((2)G-,R) such that

(30.6) HessG (E,F) = LFLE 5 (G).

Proof. De�ne & : Vect(- ) × Vect(- ) → R by

(30.7) & (E,F) ≔ LFLE 5 (G) .

Evidently, & is tensorial in the �rst variable. Since

(30.8) & (E,F) −& (F, E) = L[E,F] 5 (G) = 0,

& is symmetric. Therefore, it is tensorial and de�nes HessG 5 (E,F). �

Let + be a vector space. Let & ∈ Hom((2+ ,R) be a symmetric bilinear form. There

is a basis of + with respect to which & takes the form

(30.9) & ∼ ©«
−1?

1@
0A

ª®¬ .
& is non-degenerate if A = 0. Its index is

(30.10) index& ≔ @.

De�nition 30.11. Let - be a smooth manifold. Let 5 ∈ �∞(- ).

1. A critical point G ∈ crit 5 is non-degenerate if HessG 5 is non-degenerate.
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2. The index of 5 at G ∈ 2A8C 5 is

(30.12) indexG 5 ≔ index HessG 5 .

3. The function 5 is a Morse function if its critical points are non-degenerate.

4. A Morse function 5 is self-indexing if for every G ∈ crit(5 )

(30.13) indexG 5 = 5 (G).

•

A moment’s thought shows that if 6 is a Riemannian metric on - and ∇5 denotes

the gradient of 5 , then

(30.14) indexG ∇5 = (−1)indexG 5 .

Theorem 30.15. Every closed smooth manifold - admits a Morse function.

Lemma 30.16 (Morse Lemma). Let - be a smooth manifold. Let 5 ∈ �∞(- ). If G ∈ crit 5

is non-degenerate, then there is an admissible chart q with q (G) = 0 and

(30.17) 5 ◦ q (G1, . . . , G<) = 5 (G) −
?∑
8=1

G2

8 +
<∑

9=?+1
G2

9 with ? ≔ indexG 5 .

Proof. Without loss of generality - = * ⊂ R< , G = 0, and 5 (G) = 0. By Taylor

expansion

(30.18) 5 (G1, . . . , G<) =
ˆ

1

0

d

dC
5 (CG1, . . . , CG<) dC =

<∑
8=1

G868 (G)

with

(30.19) 68 (G) ≔
ˆ

1

0

m8 5 (CG1, . . . , CG<) dC .

Since 0 is a critical point of 5 , 68 (0) = 0 for 8 = 1, . . . ,<. Applying the same construction

again,

(30.20) 5 (G1, . . . , G<) =
<∑
8 . 9=1

G8G 9ℎ8 9 (G).

Without loss of generality, ℎ8 9 = ℎ 98 . Therefore, ℎ8 9 (0) are the coe�cients of Hess0 5 . In

particular, after shrinking* , for every G ∈ * , det(ℎ8 9 (G)) ≠ 0.
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By induction it can be assumed that

(30.21) 5 (G1, . . . , G<) =
A−1∑
8=1

Y8G
2

8 +
<∑
8 . 9=A

G8G 9ℎ8 9 (G)

and ℎAA ≠ 0. De�ne

G̃A ≔
√
|ℎAA (G) |

(
GA +

∑
8>A

G8ℎ8A (G)/ℎAA (G)
)
.

Replacing GA with G̃A rewrite 5 as above but with A + 1 instead of A . �

Proposition 30.22. Let - be a closed smooth manifold. Let 5 ∈ �∞(- ) be a Morse
function. Let _ < ` ∈ R. If [_, `] does not contain any critical value of 5 , then

(30.23) -_ ≔ 5 −1(−∞, _] and -` ≔ 5 −1(−∞, `]

are di�eomorphic.

Proof. By the Ehresmann �bration theorem, 5 −1 [_, `] is di�eomorphic to [_, `]× 5 −1(_).
[ PICTURE ] This implies the assertion. �

To understand the relation between -_ and -` if [_, `] contains a critical point,

consider the following:

Figure 30.1: Attaching a 1–handle passing around the critical point of 5 (G,~) = G2 −~2
.

De�nition 30.24. Let< ∈ N0 and : ∈ {0, . . . ,<}.

1. The :–handle is the manifold �<−: × �: obtained from Proposition 13.4.

2. Let - and . be smooth manifolds of dimension< with boundary. Let [ : (:−1 ×
�<−: → m- be an embedding. . is obtained by attaching a :–handle to -
along [ if it is di�eomorphic to the smooth manifold obtained by gluing - and

�: × �<−: via [.
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3. Let - be a closed smooth manifold of dimension < with boundary. A handle
decomposition of - is a sequence

(30.25) ∅ ≕ -−1 ⊂ -0 ⊂ · · · ⊂ -< = -

of submanifolds such that, for every : ∈ {0, . . . ,<}, -: is obtained by attaching

:–handles to -:−1. •

Remark 30.26. Attaching a 0–handle is taking the disjoint union with �< . ♣

(a) -0 = �
2 = a 0–handle attached to ∅. (b) -1 = a 1–handle attached to -0.

(c) -1 (d) - ′
1
= a 1–handle attached to - ′

1
.

(e) - ′
1

(f) ) 2 = a 2–handle attached to - ′
1
.

Figure 30.2: Handle decomposition of ) 2
.

Proposition 30.27. Let - be a closed smooth manifold. Let 5 ∈ �∞(- ) be a Morse
function. Let _ < ` ∈ R. If 5 −1( [_, `]) contains precisely one critical points of index : ,
then -` is obtained from -_ by attaching a :–handle.

Proof. A detailed proof is contained in Milnor [Mil63, §3]. �

Proposition 30.28. If - is obtained from . by attaching = :–handles, then

(30.29) j (- ) = j (. ) + = · (−1): .

Proof. This follows from the properties of j mention at the top. �
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Corollary 30.30. Let - be a closed manifold. If 5 is a Morse function, then

(30.31) j (- ) =
∑

G∈crit 5

indexG 5 = index∇5 .

�
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