

Summary

- Introduction
- Ulceration
- Deformity (Charcot)
 - Cause
 - Assessment
 - Orthopaedic Surgical Treatment
- Amputation

Introduction: (USA Stats 2005)

- 17 million (6.2%) with Diabetes
- 5.9 million Undiagnosed
- 20 % of population over 65 have Diabetes
- 20% Diabetic admissions with foot ulcers
- 5-15% Diabetic require LL amputation
- 25% Adult diabetics with plantar insensitivity
- 0.5-1% Diabetics may develop charcot
- Up to 30% Charcot have vascular insufficiency

Epidemiology

- 60% of non traumatic amputations are a consequence of diabetes
- Mortality in these patients is between 50 -80% at 5 years. (especially ischaemic ulcers)
- 50% patients will have an amputation of the contralateral limb within 5 years.
- Cost US\$ 11 Billion/year.

Co-morbidities:

- Cardio-respiratory
- Renal
- Vascular
- Neuropathic
- Eyes
- ? Smoking
- Obesity

Eitiology: Pressure vs Healing

Pressure

- Peripheral Neuropathy
 - Sensory
 - Autonomic (scaly/cracked skin)
 - Motor (Claw toes/MTP Dislocation)
- Contractures
- Deformity/Charcot
- Poor foot care

Healing

- Aging process
- Vascular supply
- Nutritional state
- Poor foot care

The Team Members

- Endocrinologist/Diabetic Nurse Educator
- Podiatrist/Orthotist/Plaster Technician
- Wound care specialist
- Vascular Lab / Surgeon
- Orthopaedic specialist

Factors in ulcer treatment

- Inpatient vs Outpatient
 - Chronicity
 - Size/depth
 - Infection
 - Compliance/Support
 - Vascular
 - Facilities
 - Co-morbidities

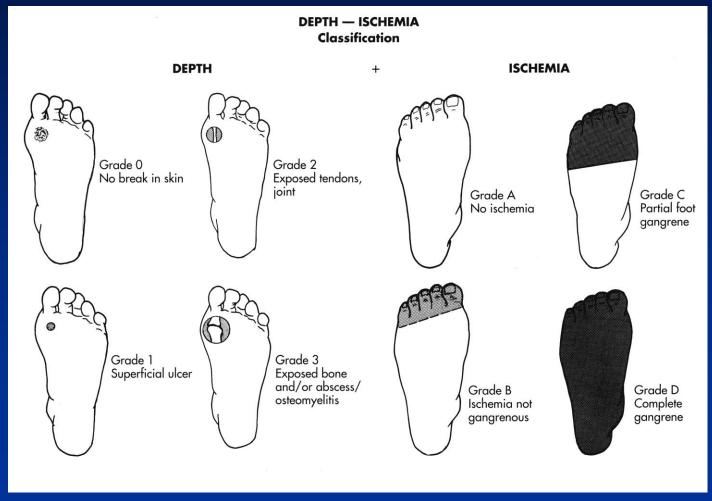
- Debridement
- Off loading
- Footwear
- Education
- Diabetes control
- Nutrition
- Revascularization
- Orthopaedic Surgery
- Amputation

Take Home Messages

- No skin break, infection very unlikely
- Probe goes to bone over 85% deep OM
- More than grade 1 ulcer, not suitable for TCC
- Deep infection and unstable joints need frame or amputation

Assessment of the Diabetic Foot Ulcer

- Ulcer Classification
 - Probe ulcer if you touch bone = osteomyelitis
 - F Grayson, JAMA, 1995
- Foot Biomechanics
 - Bony deformity, Instability
 - Joint contracture / stiffness
- Sensory Examination
 - (5.07 Semmes-Weinstein)
- Vascular Evaluation
 - Pedal Pulses
 - Note that Charcot feet are often highly vascular
- Look at both feet


Investigation of the Diabetic Foot Ulcer

- Weight bearing AP, Lateral,
 Oblique foot radiographs
- CRP, Se albumin, HBalc
- +/- Vascular studies
- +/- MRI

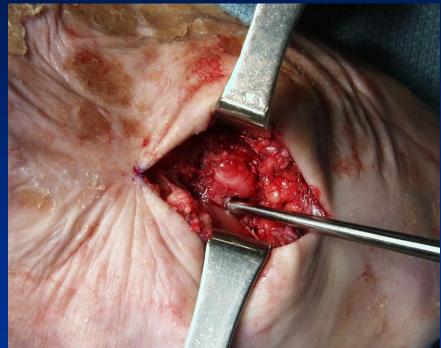
Diabetic Ulcer Classification Brodsky: Depth-Ischaemia

Management of a grade 0A Lesion (Foot at risk)

Management of a grade 1A Ulcer (Superficial ulcer)

2A Ulcer

3A Ulcer



Surgical Management Ulcers: Options

- Debridement / VAC/ TCC
- Debridement + Ostectomy
- Amputation
- Debridement + Reconstruction (acute /delayed)

Ostectomy

Charcot Foot; Definition

- Chronic & progressive disease of joints and bones... ... painful or painless bone and joint destruction in limbs that have lost sensory innervation
- Joints exhibit synovitis, instability, subluxation & destruction

Peripheral Neuropathy

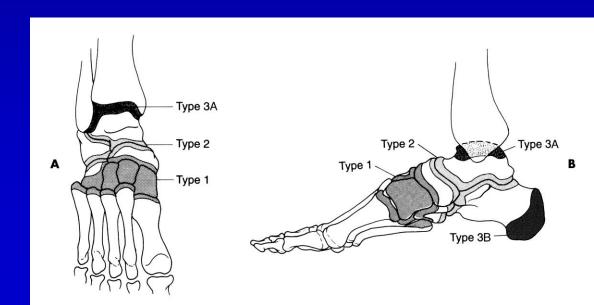
- Causes (DINTMINI)
 - Diabetes
 - Alcoholism
 - Congenital insensitivity to pain
 - Renal disease
 - Leprosy
 - Syphilis

- Diabetic feet
 - Up to 5% of all diabetic patients
 - Up to 29% of patientswith PN
 - Average duration of DM 15 years
 - Bilateral in 6 39%

Charcot Foot & Ankle; Pathogenesis

Peripheral Neuropathy

- Loss of protective sensation
- Motor neuropathy
 Equinus
 contracture/ Claw Toes
- Autonomic neuropathy
 - Decreased sympathetic tone
 - Arterial vasodilatation
 - Hypervascularity
 - Osteopenia
 - Loss of trophic factors


- Renal disease
- Steroids
- Renal Transplantation
- Ligamentous failure
 - Altered collagen cross linking
- Trauma
 - Cumulative stress
 - Acute traumatic event

Charcot Foot & Ankle: Classification

Eichenholtz; Temporal
 Stage of Development
 Stage of Coalescence
 Stage of Reconstruction.

- Brodsky; Anatomic
 - Type 1 60%
 - Type 2 30%
 - Type 3 10%

Type 2

Type 3A (Ankle) Charcot Arthropathy

- Require immobilisation for 1-2 years
- Malleolar ulceration
- Deep sepsis
- Amputation

Charcot Foot; Treatment Goals

- Recognition 'not an episode of cellulitis'
 - No fever/ normal BSL/CRP/ elevation test
- Heal ulcers
- Stable, braceable, plantargrade, (painfree) foot that can fit a shoe / brace without a tendency to recurrent ulceration
- Maintain patient as normally ambulatory as possible
- Prevent contralateral problems
- All predicated on Adequate Perfusion

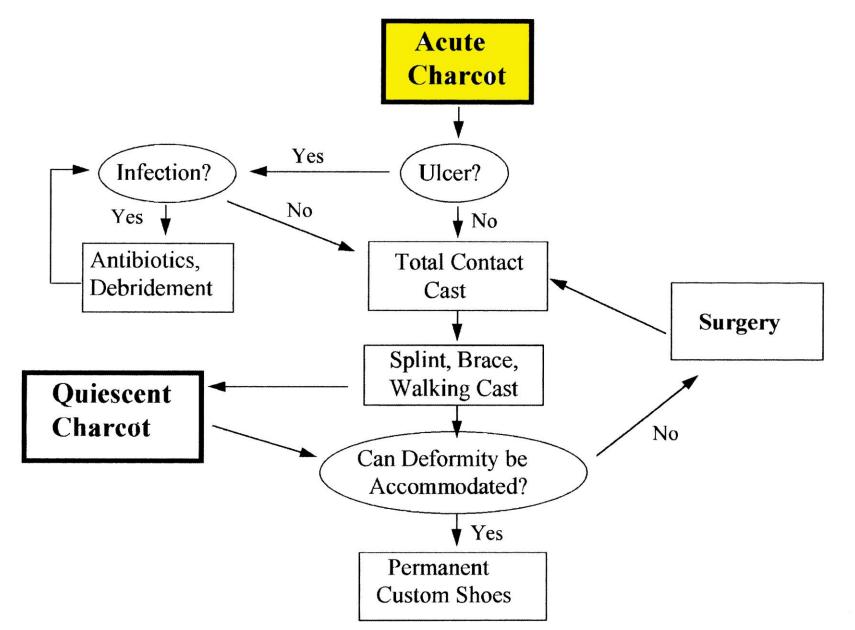
NON - Operative treatment

- TCC total contact cast
- CROW Charcot restraint orthotic walker
- BAFO Bivalved Ankle foot orthosis
- CFLO custom full length orthosis
- ? Medical Management

Operative

- Re-vascularisation
- Ulcer treatment
- Ostectomy
- Reconstruction
 - Fuse short, Instrument long
 - Two forms of fixation
- Amputation

Type 2



Summary Treatment

Algorithm

Issues With Surgery

- Technically challenging
- Multi disciplinary team approach
- Risks of failure of internal fixation
- Wound healing problems
- Deep infections
- Amputation
- Loss of Mobility/Independence

Arthrodesis

Arthrodesis

Complications

- Infection
- Poor wound healing
- Psued-arthrosis
- Mal-union

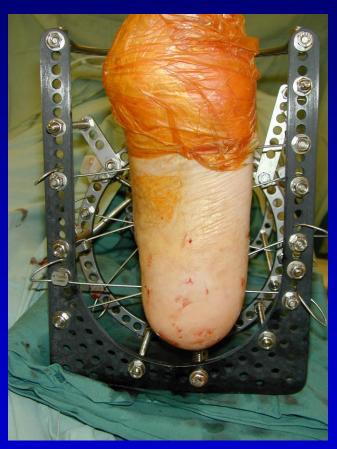
Infected Type 2 (Hind foot)

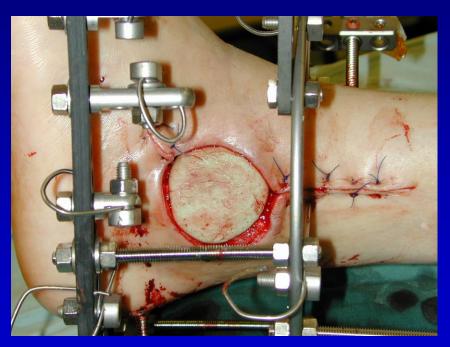
- Stage 1
 - Initial Debridement(± repeated)
 - IV Antibiotics

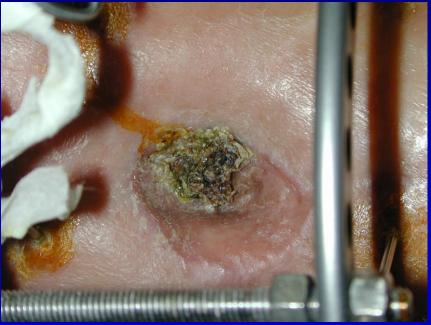
Infected Type 2 (Hind foot)

Wedge excision and Ace Fisher frame

Infected Type 3A

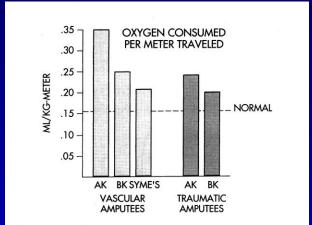



Infected Type 3A



Infected Type 3A

Role of Amputation


- Potentially good option especially with deep infection
- More rapid rehab (elderly population)
- ? More reliable healing
- ? Mid / Hind foot versus BKA
- ? Contralateral side

Amputation

- Partial Foot
 - Chopart
 - Symes/Boyd

BKA

Fig. 21-12. Greater limb preservation results in enhanced function with lower oxygen consumption. (Modified from Waters RL, et al: *J Bone Joint Surg* 56A:44, 1976.)

Below Knee Amputation

Conclusion: Ulcers

- Common Problem
- Surgical and Orthotic Management is Becoming More Sophisticated
- Off-loading pressure is the Key
- Multi-disciplinary Approach Required
- Ulcers Need Appropriate Investigation and Staging

Conclusion: Charcot

- Hot swollen foot think Charcot as well as infection (Do an x-ray)
- Early treatment is usually non-operative (midfoot)
- Early surgery for Ulcers / Deformity (ankle)
- Surgery: Recurrent ulceration (Midfoot)

 Uncontrolled deformity (hindfoot)
- Don't forget Amputation as an option

