Diagnosis And Management of Upper Extremity DVT

Strandness Symposium March 3-7, 2019 Maui, Hawaii

Michael T Caps MD MPH Hawaii Permanente Medical Group Honolulu, Hawaii

DISCLOSURE

Michael Caps, MD, MPH

No Relevant Financial Relationship Reported

STRANDNESS.ORG

Diagnosis And Management of Upper Extremity DVT Agenda

- Normal upper ext venous anatomy/physiology
- Problems
 - Acute DVT of the upper extremity
 - Others: SVT, PTS
- Elements
 - Etiology
 - Diagnosis
 - Prognosis/natural history
 - Treatment

Upper Extremity Venous Anatomy

- Superficial veins
 - Superficial to the deep fascia (except uppermost cephalic/basilic)
 - More variable than the deep veins
 - Digital, metacarpal, median, cephalic, basilic
- Deep veins
 - Deep to deep fascia
 - Accompany arteries
 - Usually paired (below axilla)
 - Radial, ulnar, brachial, axillary, subclavian, innominate, SVC

Variation In Superficial Veins

FIG. 597.-The most frequent variations in the veins of the forearm (schematic).

Upper Extremity Venous Physiology

- Flow in the upper extremity veins is:
 - 180 degrees out of phase with respiration compared with flow in the lower extremity veins
 - More pulsatile than in the lower extremity veins
- Upper extremity veins are less susceptible to the effects of gravity than lower extremity veins
 - Fewer valves
 - Post-thrombotic syndrome less likely
 - PTS more likely to be caused by obstruction than reflux

Acute DVT of the Upper Extremity Etiology

- Approx 10% of all DVTs
- Incidence 4-10 per 100,000
- Rising due to increasing use of central (PICC) lines, pacemakers, defibrillators

Primary (10%-20%)			
"Effort Thrombosis"/Paget Schroetter/Venous TOS	Venous compression at costoclavicular space, common in young, healthy athletes, 2/3 antecedent history of exertion		
Idiopathic	No evidence for venous TOS or any other cause. Thrombophilia may be present		
Secondary (80%-90%)			
Catheter associated	PICC lines, pacer/defibrillator wires, more common on left		
Cancer	Particularly ovarian, lung, metastatic, chemo infusions, TPN		
Other	Trauma, shoulder surgery, pregnancy, OCP use		

Acute DVT of the Upper Extremity

- Symptoms
 - Swelling, pain, paresthesias
 - Asymptomatic
- Signs
 - Edema, discoloration, visible collaterals
- Pre-test clinical prediction score

Variable	Score		Total Score	UE DVT Prevalence
Central catheter/pacemaker	+1		-1 or 0	13%
Arm pain	+1	Prospective	1	38%
Arm edema	+1	Validation	<u>></u> 2	69%
Likely alternative Dx	-1			

Constans, et al., Thromb Haemost, 2008

Upper Extremity Venous Duplex Scanning

- Diagnostic test of choice for most patients
- Sensitivity/specificity 90%-100%

Duplex Criteria For Upper Extremity DVT			
	NORMAL	ABNORMAL	
Spectral Doppler	Spontaneous	Absent	
	Phasic	Continuous	
	Pulsatile	Decreased pulsatility	
	Augmentation	Diminished augmentation	
Color Doppler	Complete color filling	Incomplete color filling	
B-mode	Complete compression	Incomplete compression	
		Intraluminal echoes	

Other Diagnostic Modalities

- D-dimer
 - Of limited usefulness
- CTV and MRV
 - Sparse data on accuracy
- VENOGRAPHY
 - Esp when considering thrombolysis/PTA
 - Provocative arm positions helpful

Acute DVT of the Upper Extremity Prognosis/Natural History

Outcome	Upper Ext DVT	Lower Ext DVT
Pulmonary Embolus	5%-10%	15%-30%
Recurrence at 12 months	2%-5%	10%
Postthrombotic syndrome	5%	30%-50%
Mortality at 3 months*	11%	8%

* Very few deaths due to PE after upper extremity DVT

Kucher et al., NEJM, 2011

Anticoagulant Treatment of Acute VTE Phases of Treatment

Anticoagulation and Thrombolysis

Net Clinical Benefit = VTE events averted – Bleeding events incurred

Acute DVT of the Upper Extremity Treatment

ACCP Guidelines 9th Ed, Kearon, et al., CHEST, 2012

- UE DVT = axillosubclavian vein thrombosis
- Very little high quality evidence
- Recs are mostly extrapolation from LE DVT data
- Much needs updating after several DOAC RCTs

	"We Recommend"	"We Suggest"
Strength of Recommendation	Strong (1)	Weak (2)
Quality of Evidence		
-High (A)	1A	2A
-Moderate (B)	1B	2B
-Low (C)	1C	2C

Anticoagulant Treatment Of UE DVT Primary Phase

- Acute VTE, no cancer
 - 2012: Suggest VKA over LMWH (2C)
 - 2016: Suggest DOACs over VKA (2B)
- Acute VTE, active cancer (2012 and 2016)
 - Suggest LMWH over DOACs or VKA (2C)
 - Likely to change
- Parenteral Phase
 - *Recommend* initial parenteral treatment (1B)
 - Until INR <u>></u>2, at least 5 days
 - Suggest LMWH or fondaparinux over IV UFH (2B)
 - Not required for rivaroxaban and epixaban

Management of Catheters in UE DVT

- *Suggest* the catheter not be removed if it is needed and functional (2C)
- Recommend anticoagulation be continued as long as the catheter is in place in cancer patients (1C). Suggest (2C) in non-cancer patients.
- If the catheter is removed, *recommend* 3 months of anticoagulation (1B)

Thrombosis Confined to the Brachial or Proximal Basilic/Cephalic Veins

- Need for anticoagulation uncertain
- Therapeutic options:
 - Serial ultrasound surveillance
 - Full dose anticoagulation
 - Prophylactic dose anticoagulation
- Consider anticoagulation in presence of:
 - Severe symptoms
 - Cancer
 - Catheter
- High risk of bleeding argues against anticoagulation

Superficial Venous Thrombophlebitis

- With some possible exceptions, SVT of the upper extremity should NOT be treated with anticoagulation
- Possible exceptions include:
 - Proximal cephalic/basilic SVT, esp associated with catheter/active cancer
 - Extensive severely symptomatic SVT associated with cancer
- CHEST guidelines for LE SVT:
 - Suggest the use of a prophylactic dose of fondaparinux or LMWH for 45 days over no anticoagulation (2B)

When To Consider Extended Therapy (Longer Than 3 Months)

- Extended therapy generally not recommended after 1st unprovoked or idiopathic DVT
- Extended therapy recommended if there is a catheter
- Consider if: low-moderate risk major bleeding on anticoagulation and:
 - Active cancer
 - Recurrent UE DVT
- Aspirin vs therapeutic vs prophylactic dose anticoagulation?
 - Choice depends on perceived thrombosis/bleeding risks

ASA For Secondary Prevention

	Event rate	e/year (%)			
Subaroup	Placebo (n=608)	Aspirin (n=616)	Hazard ratio (95% CI)		P
	(// 000)	(17 010)			
Venous thromboembolism	112 (7.5)	81 (5.1)		.65 (0.49–0.86)	0.003
Major vascular events	129 (8.7)	91 (5.7)		.63 (0.48–0.83)	<0.001
Net clinical benefit	144 (9.8)	103 (6.5)		.64 (0.50–0.83)	<0.001
		. ,		. ,	
Pulmonary embolism	42 (2.6)	27 (1.7)		.63 (0.39–1.02)	0.06
Deep-vein thrombosis	85 (5.5)	59 (3.6)	- - 0.	.63 (0.45–0.88)	0.006
All-cause mortality	23 (1.4)	20 (1.2)	— 0.	.82 (0.45–1.52)	0.53
Major bleeding	7 (0.4)	9 (0.5)		.31 (0.48–3.53)	0.60
		0.1	1 2 5		
			favors aspirin favors placebo	D	

Simes et al, Circulation, 2014

Catheter-Directed Thrombolytic Rx

- Suggest anticoagulant therapy alone over thrombolysis (2C)
- Consider in the following circumstances:
 - Severe symptoms
 - <14 days duration</p>
 - Good functional status
 - Favorable life expectancy
 - Low risk of bleeding
- Pharmacomechanical techniques decrease time and amount of lytic drug needed
 - Consider depending on local expertise

Thoracic Outlet Decompression Venous TOS

- Subclavian vein most often compressed in the costoclavicular space
- Decompression typically includes:
 - Resection of the first rib
 - Division of the ant/mid scalene muscle attachments

Controversies Surrounding Thoracic Outlet Decompression

Controversy	Questions?
Indication	Which patients require TOD?
Thrombolysis	Does it help?
Timing	How long to wait before TOD?
Approach	Transaxillary? Supraclavicular? Infraclavicular? Endoscopic? Posterior?
Residual vein stenosis	Venoplasty? Open reconstruction?
Anticoagulation	How long?
Chronic venous occlusion	Does TOD help?

Superior Vena Cava Filters

- In a review that included 209 patients:
 - Risk of severe complications = 3.8%
 - Cardiac tamponade
 - Aortic perforation

Owens et al, J Vasc Int Radiol, 2010

Postthrombotic Syndrome of the Upper Extremity

- Substantially lower incidence in the upper ext
- Usually associated with central obstruction, not reflux
- Less common after catheter-associated UE DVT
- Treatment is supportive
 - Elevation and compression
- CHEST Guidelines:
 - We *suggest* a trial of compression bandages or sleeves to reduce symptoms (2C).

Primary Prevention of UE DVT

- Consider in patients with central venous catheters and active cancer
- Meta-analysis of 10 RCTs in 2564 adults:
 - Heparin vs no heparin
 - RR symptomatic DVT 0.48 (0.27, 0.86)
 - VKA vs no VKA
 - RR asymptomatic DVT 0.43 (0.30, 0.62)
- Results did not show or exclude a beneficial or detrimental effect in any other variable:
 - Mortality, bleeding, infection, QOL, etc
 - i.e., low-quality evidence