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Diagnostic Classification of Cystoscopic 
Images Using Deep Convolutional Neural 
Networks

INTRODUCTION

Cystoscopic examination is one of the key 
semi-invasive diagnostic procedures for urologic 
and gynecologic diseases. Cystoscopic findings 
are diverse and range from normal results to 
urothelial carcinoma of the bladder. However, 
the recognition of cystoscopic findings remains 
challenging, and additional invasive proce-
dures, such as biopsy of suspect lesions, are 
often required. Currently, the outcome of these 
procedures depends on the examiner’s skills, 
differences of which lead to variation in the inter-
pretation of cystoscopic findings. In such cases, 
computer-aided diagnosis tools that use feature 
extraction and deep learning show promise as 
instruments to perform diagnostic classification 

and to achieve reproducible cystoscopic find-
ings, which thereby reduces the number of 
unnecessary biopsies performed. Importantly, 
computer-aided diagnosis tools comprise a non-
invasive and convenient approach for urologists 
that can be implemented using available infra-
structures and current technologies. Recent 
advances in deep-learning algorithms, imag-
ing techniques, and computational capabilities 
have facilitated robust pattern recognition and 
data-structure determination with different data 
sets.1-4 However, the applicability of deep learn-
ing in diagnostic imaging for cystoscopy has not 
yet been evaluated. To bridge this gap, this paper 
introduces models that apply a deep-learning 
approach to classify cystoscopic images along 
with strong evidence of their validity.

Purpose The recognition of cystoscopic findings remains challenging for young colleagues and 
depends on the examiner’s skills. Computer-aided diagnosis tools using feature extraction and 
deep learning show promise as instruments to perform diagnostic classification.

Materials and Methods Our study considered 479 patient cases that represented 44 urologic 
findings. Image color was linearly normalized and was equalized by applying contrast-limited 
adaptive histogram equalization. Because these findings can be viewed via cystoscopy from every 
possible angle and side, we ultimately generated images rotated in 10-degree grades and flipped 
them vertically or horizontally, which resulted in 18,681 images. After image preprocessing, we 
developed deep convolutional neural network (CNN) models (ResNet50, VGG-19, VGG-16, Incep-
tionV3, and Xception) and evaluated these models using F1 scores. Furthermore, we proposed 
two CNN concepts: 90%-previous-layer filter size and harmonic-series filter size. A training set 
(60%), a validation set (10%), and a test set (30%) were randomly generated from the study data 
set. All models were trained on the training set, validated on the validation set, and evaluated on 
the test set.

Results The Xception-based model achieved the highest F1 score (99.52%), followed by models 
that were based on ResNet50 (99.48%) and the harmonic-series concept (99.45%). All images 
with cancer lesions were correctly determined by these models. When the focus was on the images 
misclassified by the model with the best performance, 7.86% of images that showed bladder 
stones with indwelling catheter and 1.43% of images that showed bladder diverticulum were 
falsely classified.

Conclusion The results of this study show the potential of deep learning for the diagnostic classifi-
cation of cystoscopic images. Future work will focus on integration of artificial intelligence–aided 
cystoscopy into clinical routines and possibly expansion to other clinical endoscopy applications.
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MATERIALS AND METHODS

We used the digital atlas for cystoscopy, which 
covers 44 cystoscopic findings that can fre-
quently be seen during the clinical routine and 
consists of 479 images.5 The author of this image 
atlas permitted the use of the open image data 
in compliance with data privacy regulations.5 
This study followed German data regulations 
and the Declaration of Helsinki. Table 1 lists 
all the cystoscopic findings considered by this 
study. Because these results can be viewed from 
every possible angle and side by cystoscopy, we 
generated images rotated in 10-degree grades 
and flipped them vertically or horizontally, which 
resulted in 18,681 images.

For image processing, image color was equal-
ized by applying contrast-limited adaptive histo-
gram equalization (the clip limit was set to 12, 
and a tile grid size of 3 × 3 was defined). During 
the cystoscopic examination, these findings are 
usually captured in the middle of the image, 
which has a dark area that surrounds the cysto-
scopic findings; lighting disbalance; and blurring 
around the edges, because the plastic part of the 
camera adapter is attached to the edge of the 
cystoscopic objective, which causes a shadow 
effect. Therefore, we created a mask from each 
image that is applied to remove the blurred edge 
and the noise from the dark area of the normal-
ized image (Fig 1); for mask generation, the color 
gradient of the original image was reduced to  
64 colors using the posterization effect. After that,  
a binary mask was generated after the image was 
converted to grayscale and the threshold was set 
as 10. To remove the remaining noise from the 
binary mask, we applied erosion first and then 
dilation (opening procedure) to each mask; 
then, we repeated in reverse (ie, dilation followed 
by erosion; closing procedure). Finally, the nor-
malized image was clipped by the binary mask 
to get an image that included only the focused 
finding in the middle of the original image.

We used the neural network models ResNet50,6 
VGG-19,7 VGG-16,7 InceptionV3,8 and Xception9 
to classify the cystoscopic images and compared 
their classification performances. Also, we devel-
oped two deep convolutional neural networks 
(CNN) architectures: in the first architecture, 
the filter size of the next convolutional layer was 
defined as 90% the filter size of the previous 
layer; in the second, a deep CNN model, the 
harmonic series of the initial filter size n, (1/2)n, 

(1/3)n…, (1/k)n (where n is the original filter size 
and k is the serial number of the convolutional 
layer) was applied to define the filter size of each 
convolutional layer. Scaled exponential linear 
units were applied to the activation function in 
these two models.10

We trained these models for the diagnostic clas-
sification of all cystoscopic images. Additional 
information about the CNN architecture of each 
model can be obtained from the Data Supple-
ment. The dropout regularization technique was 
used to reduce the risk of overfitting by randomly 
selecting nodes to be dropped at a given prob-
ability for each weight update cycle.11 Regular-
ization mechanisms, such as Dropout and L1/
L2-weight regularization, were deactivated at 
testing time. The solver algorithm Stochastic 
Gradient Descent was used to compute adaptive 
learning rates for each parameter, which thereby 
optimized CNN. We repeated the training phase 
of each model using the optimization algorithm 
Adaptive Moment Estimation (ie, ADAM) instead 
of Stochastic Gradient Descent.12 The maximum 
number of training epochs was set to 40, and an 
early stopping algorithm was used to stop train-
ing after five consecutive epochs did not improve 
the mean squared error for the output error esti-
mation in each model. Batch size was defined as 
18 because of memory limitations. Furthermore, 
a training set (60%), validation set (10%), and 
test set (30%) were randomly generated from 
the study data set. All models were trained on 
the training set, validated on the validation set, 
and evaluated on the test set. Classification per-
formance of the final test set was evaluated once 
using classification accuracy, precision, recall, 
F-measure (F1 score) and a confusion matrix. 
We generated an activation map for each class 
to identify the structures associated with the acti-
vation of the function and the determination of 
the diagnostic class. Our analyses were based 
on Python 2.7 (Python Software Foundation, 
Wilmington, DE) and applied the Keras frame-
work and DIGITS (NVIDIA, Santa Clara, CA), 
which is built on the Caffe framework, to develop 
the models. All analyses were performed on a 
server with an Intel i7 processor with 8 GB RAM 
(Intel, Santa Clara, CA) and an NVIDIA GeForce 
GTX 1080 Ti GPU with 11 GB VRAM.
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Table 1. Cystoscopic Findings Considered for the Diagnostic Classification of Cystoscopic Images

Diagnoses No. of Occurrences No. of Images

Abnormal vessels: bleeding 17 663

Bilharzia 6 234

Bladder amyloidosis 4 156

Bladder diverticulum 12 468

Bladder neck sclerosis and barrier 7 273

Bladder septum or membrane 8 312

Bladder stones and indwelling catheter 12 468

Bladder stones: ureteral and urethral stones 35 1,365

Bladder tuberculosis 10 390

Bladder wall edema - decubitus - bleeding 11 429

Bricker conduit: coecocystoplasty 8 312

Catheter balloon encrustments 23 897

Cystitis cystica + glandularis 19 741

Diverticulum of urethra in man 6 234

Diverticulum of urethra in woman 3 117

False passage 7 273

Hemangioma B + microscopic examination 2 78

Interstitial (Hunner): cystitis 6 234

Intrusion from outside the bladder 7 273

Large bladder bezoar 6 234

Large prostate + third lobe 11 429

Moderate enlargement of the prostate 6 234

Nonspecific cystitis: inflammation 21 819

Normal bladder 34 1,326

Normal prostate 15 585

Normal urethra: female 8 312

Normal urethra: male 16 624

Primary adenocarcinoma 5 195

Prostatic cancer 9 351

Signet ring cell cancer 4 156

Slight enlargement of the prostate 4 156

Squamous carcinoma 5 195

Trabeculation 7 273

Urethral stricture: fistulation, diverticulum 10 390

Urethritis caused by indwelling catheter 8 312

Urothelial cancer grade 1 7 273

Urothelial cancer grade 2 31 1,209

Urothelial cancer grade 3 19 741

Urothelial cancer in bladder diverticulum 15 585

Urothelial dysplasia: carcinoma in situ 14 546

Vesico-intestinal fistula 10 390

Vesico-uterine fistula caused by sectio cesarea 2 78

Vesico-vaginal fistula 6 234

Züdlerprosthesis penetrating bladder wall 3 117

Total 479 18,681
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RESULTS

Table 2 lists the classification accuracies for  
the diagnostic classification of the cystoscopic 
images using the deep-learning models. We  
observed that the XCeption-based model achieved 
the highest F1 score (99.52%) followed by the 
ResNet-based model (99.48%) and the har-
monic-series–based model (99.45%). The deep 
CNN architecture is in the Data Supplement. 
The classification accuracy of each diagnostic 
class for XCeption also is in the Data Sup-
plement. When we focused on the images 
misclassified by the Xception-based model, 
7.86% of images that showed bladder stones 
with indwelling catheter and 1.43% of images 
that showed bladder diverticulum were falsely 
classified; when we evaluated these misclassi-
fied images, we found that they showed stones 
adhered to the indwelling catheter. One image 
that showed a large median lobe of the prostate 
was falsely classified as a healthy prostate, and 
1.43% of the images that showed bladder diver-
ticulum were classified as urothelial cancer in 
bladder diverticulum. We found that the intro-
duced models accurately identified malignant 

urologic findings (ie, bladder urothelial carcinoma). 
Also, these models could distinguish among 
interstitial cystitis, other types of cystitis, and 
carcinoma in situ.

Although the harmonic-series–based model has 
a simplified CNN architecture, its classification 
performance is comparable to those of ResNet 
and Xception. Figure 2 shows the activation 
maps from the harmonic-series–based model, 
which indicate the patterns associated with the 
corresponding findings.

DISCUSSION

This study shows that a deep CNN can be 
used for diagnostic classification of cystoscopic 
images. Currently, deep learning is state of the 
art for image recognition and segmentation 
because of its robust and accurate classification 
performance.1-4 The application of deep learning 
for image segmentation of computer or mag-
netic resonance imaging has been reported for 
prostate, bladder, lung, breast, colon, and eye 
diseases.13-20 However, the use of deep learning 
for the diagnostic classification of cystoscopic 
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Fig 1. The algorithm for 
the image processing and 
the diagnostic classification 
of cystoscopic images. Here, 
we provide the architecture 
of the deep convolutional 
neural network with the 
harmonic series of the initial 
filter size (the dimensions of 
each convolutional layer are 
given inside the rectangle). 
2D, two dimensional.
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images remains unclear. We found that models 
based on deep learning are capable of predicting 
cystoscopic findings from cystoscopic images 
with high accuracy. Moreover, these models can 
estimate the likelihood of different diagnoses 
from cystoscopic images and list the most likely 
results, which can be used to adjust diagnoses. 
We demonstrated that deep-learning models are 

capable of distinguishing carcinoma in situ from 
cystitis or interstitial cystitis using cystoscopic 
images; the diagnosis of carcinoma in situ is 
challenging and requires photodynamic diagno-
sis cystoscopy.21 However, future work is neces-
sary to compare the diagnostic performance of 
artificial intelligence (AI)–aided cystoscopy with 
photodynamic diagnosis cystoscopy.
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Table 2. Classification Accuracies of Different Models for the Diagnostic Classification of Cystoscopic Images

Model
Classification 
Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Difference* 
(%) 

XCeption 99.52 99.54 99.52 99.52 0

ResNet50 99.48 99.48 99.48 99.48 0.04

Harmonic series concept 99.45 99.45 99.45 99.45 0.07

90%-layer concept 99.11 99.11 99.11 99.11 0.41

InceptionV3 98.73 98.86 98.73 98.74 0.78

VGG-16 97.42 97.82 97.35 97.59 1.93

VGG-19 95.47 95.65 95.47 95.47 4.05

*Reference: XCeption.

Fig 2. Activation maps for 
different diagnostic classes 
as determined by the deep 
convolutional neural network 
model, in which filter size 
is defined by the harmonic 
series number.
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The high quality of the input data is essential to 
develop robust models for diagnostic classifica-
tion. Therefore, we included ideal cystoscopic 
images that showed different findings from 
resources for medical education and residency 
training.

Image preprocessing or image augmentation is  
necessary to develop robust models that are 
less affected by noise in the cystoscopic images. 
We could achieve a rotation/shear-independent 
classification by applying image augmentation 
that mimics the conditions of the cystoscopic 
examination, in which the cystoscope can take 
different rotation positions. The contrast of the 
cystoscopic images is affected by the imbalanced 
distribution of the cystoscopic light caused by 
strong lighting at the center of the examina-
tion view. We could overcome the problem of 
the imbalanced illumination of the cystoscopic 
images by using contrast-limited adaptive histo-
gram equalization.

We proposed a novel and simple CNN architec-
ture for diagnostic classification that was based 
on harmonic series numbers that achieved a 
classification performance comparable to those 
of well-known CNN models applied for image 
classification. The trained diagnostic classifica-
tion models can screen 64 images per second on 
average and thus can be fitted for video stream-
ing from the cystoscopic camera, which does 
not require the interruption of the cystoscopic 
examination to capture cystoscopic images. As 
a consequence, future work will be directed to 
the implementation of one of these models in 
clinical routines to evaluate the clinical impact 
of our model.

In summary, this work proves the usability of 
deep learning to predict and classify cystoscopic 
findings with high accuracy. We included images 
of cystoscopic findings seen in clinical routine. 
The deep-learning model can be integrated 
into the AI-aided cystoscopic imaging diagnos-
tic tool (AI cystoscopy) that supports urologists 
and gynecologists during the cystoscopic exam-
ination. AI cystoscopy will be helpful for training 
and medical education, during which resident 
physicians or medical students can learn to 
differentiate diagnoses using visual evaluation. 
Our introduced model may be used to differ-
entiate benign lesions from malignant lesions 
to reduce the number of unnecessary biopsies. 
The deep-learning approach also facilitates 

the weighing of features found in cystoscopic 
images, reduces the effects of noise and elim-
inates background noise (eg, the surrounding 
black frame, shadow effect).

This work has some limitations. First, we used 
still images and not cystoscopic videos, which 
may limit the diagnostic capabilities of the algo-
rithm and possibly introduce error. Also, this 
study is limited by image quality, because the 
images came from patients who underwent cys-
toscopic examination before 1985, and image 
quality has improved since then. Nevertheless, 
this work is a proof-of-concept study that shows 
the application of deep convolutional networks to 
determine pathologic findings from cystoscopic 
images. Moreover, we did not have any notable 
changes in cystoscopic diagnosis since 1985, 
because cystoscopic findings have already been 
defined for more than two centuries.22 Copyright 
concerns prevented us from using newer books 
and resources with cystoscopic images.

Another limitation is the low image quality cap-
tured by an analog camera; the quality of endo-
scopic equipment has dramatically improved 
since the images were captured because of 
the use of flexible fiberoptic endoscopes and 
high-definition digital cameras. However, image 
recognition could detect the findings in the cys-
toscopic images from 1985 with an F1 score of 
0.99, which suggests that our approach can be 
applied to high-quality images. We did not con-
sider the area under the receiver-operating char-
acteristic curve, because there is a criticism of 
the application of the curve for the evaluation of 
the classification performance of machine-learning 
models.23 

Although we have tried to consider all possible 
variations of the findings locations, we could 
not consider all possible angles for the cysto-
scopic findings. Our image collection includes 
all essential findings that can be seen during the 
clinical routine. However, this data set is limited 
by the sample size of certain subgroups, which 
may not represent a variety of findings. Another 
limitation is that our data sets from the cysto-
scopic atlas are more homogeneous than the 
data sets generated from consecutive patient 
cases. CNN models can identify cystoscopic 
findings more easily from rotated images than 
from new images. Therefore, the recognition 
results should be verified on additional data sets 
from real cases.
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This study has proven the potential of CNN 
for the diagnostic classification of cystoscopic 
images. Although some subsets were falsely rec-
ognized, the neural network architecture can be 
improved to increase the accuracy performance 
for these subgroups.

Prospectively, we aim to verify this model on 
real clinical cases and compare its classification 

performance with that of human visual assess-
ment. Future work also will focus on develop-
ment of a model that facilitates the evaluation 
of the cystoscopic images in real time and its 
implementation in clinical routine.
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