

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Lesson 3
Diagnostic Data Collection and Analysis tools

Poonam Parhar
JVM Sustaining Engineer
Oracle

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Agenda

1. Java Heap Memory Issues

2. OutOfMemoryError due to Finalization

3. PermGen/Metaspace Memory Issues

4. CodeCache Issues

5. Native Memory Issues

3

Diagnostic Data, Data Collection and Analysis tools

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java Heap: Memory Leak

4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Confirm Memory Leak

• Monitor Java Heap usage over time

• If the Full GCs are not able to claim any space in the Old Gen of the heap
then it could be a configuration issue

• Heap might be sized too small

• Increase the heap size and test the application again

• If there is continuous memory growth and the failure persists at the
increased heap size too, there could be a memory leak

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Monitor using GC Logs
[GC (Allocation Failure) [PSYoungGen: 318596K->153251K(433152K)] 1184491K->1182018K(1556992K), 0.5548358 secs] [Times: user=1.78 sys=0.13,

real=0.56 secs]

[Full GC (Ergonomics) [PSYoungGen: 153251K->0K(433152K)] [ParOldGen: 1028766K->1054946K(1345024K)] 1182018K->1054946K(1778176K),
[Metaspace: 2722K->2722K(1056768K)], 4.5281743 secs] [Times: user=10.09 sys=0.00, real=4.52 secs]

[GC (Allocation Failure) [PSYoungGen: 209408K->209511K(448512K)] 1264354K->1264458K(1793536K), 0.1590964 secs] [Times: user=0.48 sys=0.06,
real=0.15 secs]

[GC (Allocation Failure) [PSYoungGen: 434279K->223744K(448512K)] 1489226K->1489490K(1793536K), 0.4988033 secs] [Times: user=1.62 sys=0.26,
real=0.49 secs]

[Full GC (Ergonomics) [PSYoungGen: 223744K->36309K(448512K)] [ParOldGen: 1265746K->1344646K(1345024K)] 1489490K->1380956K(1793536K),
[Metaspace: 2722K->2722K(1056768K)], 5.0727511 secs] [Times: user=12.65 sys=0.02, real=5.08 secs]

[Full GC (Ergonomics) [PSYoungGen: 197281K->197043K(448512K)] [ParOldGen: 1344646K->1344646K(1345024K)] 1541927K->1541690K(1793536K),
[Metaspace: 2722K->2722K(1056768K)], 3.0359889 secs] [Times:user=11.82 sys=0.00, real=3.03 secs]

[Full GC (Allocation Failure) [PSYoungGen: 197043K->197043K(448512K)] [ParOldGen: 1344646K->1344634K(1345024K)] 1541690K-
>1541677K(1793536K), [Metaspace: 2722K->2722K(1056768K)], 6.9535358 secs][Times: user=20.80 sys=0.01, real=6.95 secs]

java.lang.OutOfMemoryError: Java heap space

6

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 7

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Appropriate Heap Size

-Xmx

9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java Heap: Diagnostic Data

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java heap: Diagnostic Data
• GC Logs

– Heap usage details

– GC pauses

– Help in appropriate configuration of memory pools

• Heap Dumps

– Unexpected memory growth and memory leaks

• Heap Histograms

– Quick view of the heap to understand what is growing

• Java Flight Recordings

– Unexpected memory growth and memory leaks

– GC Events

11

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GC Logs

• Very helpful in determining the heap requirements

• Excessive GCs

• Long GC pauses

12

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GC Logging Options

• Java 9:

– G1: -Xlog:gc*,gc+phases=debug:file=gc.log

– Non-G1: -Xlog:gc*:file=gc.log

• Prior Java Versions

-XX:+PrintGCDetails

-XX:+PrintGCTimeStamps

-XX:+PrintGCDateStamps

-Xloggc:<gc log file>

13

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GC Logs: Heap Usage

2017-03-21T13:21:39.595+0000: 289634.716: [Full GC [PSYoungGen:
182784K->182660K(364544K)] [ParOldGen: 1091964K-
>1091964K(1092096K)] 1274748K->1274625K(1456640K) [PSPermGen:
493573K->493573K(494080K)], 1.2891230 secs] [Times: user=6.01
sys=0.00, real=1.29 secs]

14

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GC Logs: Excessive GCs
4.381: [Full GC (Ergonomics) [PSYoungGen: 6656K->6656K(7680K)] [ParOldGen: 16823K->16823K(17920K)] 23479K-

>23479K(25600K), [Metaspace: 2724K->2724K(1056768K)], 0.0720605 secs] [Times: user=0.23 sys=0.00, real=0.07 secs]

4.458: [Full GC (Ergonomics) [PSYoungGen: 6656K->6656K(7680K)] [ParOldGen: 16824K->16824K(17920K)] 23480K-
>23480K(25600K), [Metaspace: 2724K->2724K(1056768K)], 0.0518873 secs] [Times: user=0.16 sys=0.00, real=0.05 secs]

4.515: [Full GC (Ergonomics) [PSYoungGen: 6656K->6656K(7680K)] [ParOldGen: 16826K->16826K(17920K)] 23482K-
>23482K(25600K), [Metaspace: 2724K->2724K(1056768K)], 0.0530036 secs] [Times: user=0.19 sys=0.00, real=0.05 secs]

4.573: [Full GC (Ergonomics) [PSYoungGen: 6656K->6656K(7680K)] [ParOldGen: 16827K->16827K(17920K)] 23483K-
>23483K(25600K), [Metaspace: 2725K->2725K(1056768K)], 0.0523322 secs] [Times: user=0.19 sys=0.00, real=0.05 secs]

4.631: [Full GC (Ergonomics) [PSYoungGen: 6656K->6656K(7680K)] [ParOldGen: 16828K->16828K(17920K)] 23484K-
>23484K(25600K), [Metaspace: 2729K->2729K(1056768K)], 0.0522808 secs] [Times: user=0.17 sys=0.00, real=0.05 secs]

4.688: [Full GC (Ergonomics) [PSYoungGen: 6656K->6656K(7680K)] [ParOldGen: 16830K->16830K(17920K)] 23486K-
>23486K(25600K), [Metaspace: 2729K->2729K(1056768K)], 0.0522224 secs] [Times: user=0.19 sys=0.00, real=0.05 secs]

4.746: [Full GC (Ergonomics) [PSYoungGen: 6656K->6656K(7680K)] [ParOldGen: 16831K->16831K(17920K)] 23487K-
>23487K(25600K), [Metaspace: 2729K->2729K(1056768K)], 0.0528773 secs] [Times: user=0.19 sys=0.00, real=0.05 secs]

15

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GC Logs: Long GC Pauses

2017-04-11T14:49:31.875+0000: 322836.828: [Full GC (Allocation Failure)
31G->24G(31G), 50.8369614 secs] [Eden: 0.0B(1632.0M)->0.0B(2048.0M)
Survivors: 0.0B->0.0B Heap: 31.8G(31.9G)->24.5G(31.9G)], [Metaspace:
29930K->29564K(1077248K)] [Times: user=83.83 sys=0.00, real=50.84
secs]

16

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Heap Dumps

• Most important diagnostic data for troubleshooting memory issues

• Can be collected using:

• jcmd <pid/main class> GC.heap_dump heapdump.dmp

• jmap -dump:format=b,file=snapshot.jmap <pid>

• JConsole utility, using Mbean HotSpotDiagnostic

• Java Mission Control, using Mbean HotSpotDiagnostic

• -XX:+HeapDumpOnOutOfMemoryError

17

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 18

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 19

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

…<several Full GCs>…
[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33957K->33957K(34304K)] 46757K-

>46757K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.1026523 secs] [Times: user=0.25 sys=0.00,
real=0.09 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33958K->33946K(34304K)] 46758K-
>46746K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.1159181 secs] [Times: user=0.38 sys=0.00,
real=0.11 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33947K->33947K(34304K)] 46747K-
>46747K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.1143718 secs] [Times: user=0.36 sys=0.00,
real=0.11 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33949K->33949K(34304K)] 46749K-
>46749K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.0979753 secs] [Times: user=0.39 sys=0.00,
real=0.09 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33950K->33950K(34304K)] 46750K-
>46750K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.1008345 secs] [Times: user=0.36 sys=0.00,
real=0.10 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33951K->33951K(34304K)] 46751K-
>46751K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.0981526 secs] [Times: user=0.33 sys=0.00,
real=0.10 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33953K->33953K(34304K)] 46753K-
>46753K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.1001630 secs] [Times: user=0.39 sys=0

.00, real=0.09 secs][Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33954K-
>33954K(34304K)] 46754K->46754K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.0988169 secs] [Times:
user=0.39 sys=0.00, real=0.08 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33955K->33955K(34304K)] 46755K-
>46755K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.1002005 secs] [Times: user=0.31 sys=0.00,
real=0.10 secs]

[Full GC (Ergonomics) [PSYoungGen: 12799K->12799K(14848K)] [ParOldGen: 33957K->33957K(34304K)] 46757K-
>46757K(49152K), [Metaspace: 2723K->2723K(1056768K)], 0.0966616 secs] [Times: user=0.36 sys=0.00,
real=0.10 secs]

java.lang.OutOfMemoryError: GC overhead limit exceeded
Dumping heap to java_pid18904.hprof ...

• GC can continuously attempt to
free up room on the heap by
invoking frequent back-to-back Full
GCs

• Even when the gains of the efforts
are very little

• This impacts the performance of
the application and delays the re-
start of the process

• Delays the collection of heap dump

20

-XX:+HeapDumpOnOutOfMemoryError

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

-XX:GCTimeLimit and -XX:GCHeapFreeLimit

• GCTimeLimit sets an upper limit on the amount of time that GCs can spend in percent of
the total time

– Its default value is 98%

– Decreasing this value reduces the amount of time allowed that can be spent in the garbage collections

• GCHeapFreeLimit sets a lower limit on the amount of space that should be free after
the garbage collections, represented as percent of the maximum heap

– Its default value is 2%

– Increasing this value means that more heap space should get reclaimed by the GCs.

• An OutOfMemoryError is thrown after a Full GC if the previous 5 consecutive GCs (could
be minor or full) were not able to keep the GC cost below GCTimeLimit and were not
able to free up GCHeapFreeLimit space.

21

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Heap Histograms

• Quick glimpse of objects in Java heap

• Can be collected using:

• -XX:+PrintClassHistogram, and SIGQUIT on Posix platforms and SIGBREAK on
Windows

• jcmd <process id/main class> GC.class_histogram filename=Myheaphistogram

• jmap -histo pid

• jmap -histo <java> core_file

• jhsdb jmap (in JDK 9)

• Java Mission Control (Diagnostic Commands)

22

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 23

Histogram

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java Flight Recordings

• Flight Recordings with Heap Statistics enabled can be really helpful in
troubleshooting memory leaks

• Enable ‘Heap Statistics’

• by going to ‘Window->Flight Recording Template Manager’ in JMC

• Edit manually in the .jfc file:

 <event path="vm/gc/detailed/object_count">

 <setting name="enabled" control="heap-statistics-enabled">true</setting>

 <setting name="period">everyChunk</setting>

 </event>

24

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 25

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Create Java Flight Recordings

• JVM Flight Recorder options, e.g.
-XX:+UnlockCommercialFeatures -XX:+FlightRecorder -

XX:StartFlightRecording=delay=20s,duration=60s,name=MyRecording,filename=C:\TEMP\myrecording.
jfr,settings=profile

• Java Diagnostic Command: jcmd
jcmd 7060 JFR.start name=MyRecording settings=profile delay=20s duration=2m

filename=c:\TEMP\myrecording.jfr

• Java Mission Control
– Connect to the process and follow the wizard

• The Flight Recordings can take us as far as determining the type of objects
that are leaking but to find out what is causing those objects to leak, we
require heap dumps

 26

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java Heap: Analysis of Diagnostic Data

27

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GC Logs Analysis

28

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

GC Logs Analysis

• What do we want to look for:

– Are there too many Full GCs?

– Are there GCs with long pauses?

– Are there GCs happening too frequently?

• Manual inspection

• Automatic Analysis tools

– Examples: GCHisto, GCViewer, gceasy.io etc.

29

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 30

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 31

(to-space exhausted), 2.8504662 secs]
[Parallel Time: 2778.5 ms, GC Workers: 16]

[GC Worker Start (ms): Min: 122158804.8, Avg: 122158805.1, Max: 122158805.3, Diff:
0.5]

[Ext Root Scanning (ms): Min: 869.1, Avg: 896.0, Max: 952.5, Diff: 83.4, Sum:
14335.3]

[Update RS (ms): Min: 18.4, Avg: 27.0, Max: 34.6, Diff: 16.2, Sum: 431.5]
[Processed Buffers: Min: 18, Avg: 33.0, Max: 48, Diff: 30, Sum: 528]

[Scan RS (ms): Min: 0.0, Avg: 0.0, Max: 0.1, Diff: 0.1, Sum: 0.3]
[Code Root Scanning (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0]
[Object Copy (ms): Min: 1805.5, Avg: 1854.5, Max: 1878.0, Diff: 72.5, Sum: 29671.2]
[Termination (ms): Min: 0.0, Avg: 0.2, Max: 0.3, Diff: 0.3, Sum: 3.0]
[GC Worker Other (ms): Min: 0.0, Avg: 0.2, Max: 0.4, Diff: 0.3, Sum: 2.8]
[GC Worker Total (ms): Min: 2777.4, Avg: 2777.8, Max: 2778.0, Diff: 0.6, Sum:
44444.1]

[GC Worker End (ms): Min: 122161582.7, Avg: 122161582.8, Max: 122161583.0, Diff: 0.3]
[Code Root Fixup: 8.4 ms]
[Code Root Migration: 0.0 ms]
[Clear CT: 0.5 ms]
[Other: 63.0 ms]

[Choose CSet: 0.0 ms]
[Ref Proc: 1.1 ms]
[Ref Enq: 0.0 ms]
[Free CSet: 0.4 ms]

[Eden: 64.0M(792.0M)->0.0B(920.0M) Survivors: 128.0M->0.0B Heap: 18.1G(18.1G)->12.1G(18.1G)]
[Times: user=25.31 sys=1.01, real=2.85 secs]

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Explicit Full GCs

 164638.058: [Full GC (System) [PSYoungGen: 22789K->0K(992448K)] [PSOldGen:
1645508K->1666990K(2097152K)] 1668298K->1666990K(3089600K) [PSPermGen:
164914K->164914K(166720K)], 5.7499132 secs] [Times: user=5.69 sys=0.06, real=5.75
secs]

• -Dsun.rmi.dgc.server.gcInterval=n -Dsun.rmi.dgc.client.gcInterval=n

• Solution: -XX:+DisableExplicitGC

• kill -3 with -XX:+PrintClassHistogram

32

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Heap Dump Analysis

33

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Eclipse MAT - Memory Analyzer Tool

• Community developed tool for analyzing heap dumps

• Some of the amazing features that it offers are:

– Leak Suspects

– Histograms

– Unreachable objects

– Duplicate Classes

– Path to GC roots

– OQL

34

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JOverflow for Java Mission Control

• JOverflow is an experimental plugin

• Enables Java Mission Control to perform simple heap dump analysis and
reports where the memory might have been wasted

35

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java VisualVM

• All-in-one tool for monitoring, profiling and troubleshooting Java
applications

• Available as a JDK tool as well as can be downloaded from GitHub

• Capable of doing heap dump analysis

36

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

jhat

• Self-contained web application that is started at the command line (in our
<jdk>/bin folder.)

• Enables heap dump analysis by browsing objects in the heap dump using
any web browser

– By default the web server is started at port 7000.

• jhat supports a wide range of pre-designed queries and Object Query
Language(OQL) to explore the objects in the heap dumps

• Removed in JDK 9

37

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

YourKit

• Commercial Java profiler with a heap dump analyzer

• YourKit offers Reachability Scope

• Memory Inspections

– It offers a comprehensive set of built-in queries that can inspect the memory looking
for anti-patterns and provides causes and solutions for common memory problems

38

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 39

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 40

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 41

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java Flight Recording Analysis

42

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Java Mission Control

• Java Mission Control is available in the <jdk>/bin folder of the JDK.

• Flight Recordings collected with Heap Statistics enabled can greatly help in
troubleshooting memory leaks

• Object Statistics under Memory->Object Statistics.

– Shows the object histogram including the percentage of the heap that each object
type occupies

– Shows Top Growers in the heap. These usually have a direct correlation with the
leaking objects

43

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 44

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

OutOfMemoryError due to Finalization

45

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Finalization

• OutOfMemoryError can also be caused due to excessive use of finalizers

• Objects with a finalizer (i.e. a finalize() method) may delay the reclamation
of the space occupied by them

• Finalizer thread needs to invoke the finalize() method of the instances
before those instances can be reclaimed

• If the Finalizer thread does not keep up with the rate at which the objects
become eligible for finalization, JVM might fail with an OutOfMemoryError

• Deprecated in Java 9

46

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Finalization: Diagnostic Data and Tools

47

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Finalization: Diagnostic Data and Tools

• JConsole

• jmap -finalizerinfo

• Heap Dumps

48

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 49

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 50

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 51

Finalization Info from Heap Dump with VisualVM

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PermGen/MetaSpace: Memory leak

52

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Confirm Memory Leak

• Monitor PermGen/Metaspace usage over time

• If the Full GCs are not able to claim any space in the PermGen/Metaspace
then it could be a configuration issue

• PermGen/Metaspace might be sized too small

• Increase the PermGen/Metaspace size and test the application again

• If there is continuous memory growth and the failure persists at the
increased PermGen/Metaspace size too, there could be a memory leak

53

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 54

166687.013: [Full GC [PSYoungGen: 126501K->0K(922048K)] [PSOldGen: 2063794K-
>1598637K(2097152K)] 2190295K->1598637K(3019200K) [PSPermGen: 165840K-
>164249K(166016K)], 6.8204928 secs] [Times: user=6.80 sys=0.02, real=6.81
secs]

166699.015: [Full GC [PSYoungGen: 125518K->0K(922048K)] [PSOldGen: 1763798K-
>1583621K(2097152K)] 1889316K->1583621K(3019200K) [PSPermGen: 165868K-
>164849K(166016K)], 4.8204928 secs] [Times: user=4.80 sys=0.02, real=4.81
secs]

Monitor GC Logs

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 55

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Configure PermGen Size

–XX:PermSize=m –XX:MaxPermSize=n

56

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Configure Metaspace Size

-XX:MetaspaceSize=m -XX:MaxMetaspaceSize=n

57

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

OutOfMemoryError: Compressed class space

• If UseCompressedClassPointers is enabled, then two separate areas of native memory
are used for class metadata

– By default UseCompressedClassPointers is ON if UseCompressedOops is ON

• 64-bit class pointers are represented by 32-bit offsets

• 32-bit offsets can be used to reference class-metadata stored in the ‘compressed class
space’

• By default, 1GB of address space is reserved for the compressed class space. This can be
configured using CompressedClassSpaceSize.

• MaxMetaspaceSize sets an upper limit on the total committed size of both of these
regions

• committed size of compressed class space + committed size of Metaspace <= MaxMetaspaceSize

58

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 59

Metaspace used 2921K, capacity 4486K, committed 4864K, reserved 1056768K
class space used 288K, capacity 386K, committed 512K, reserved 1048576K

GC log with +UseCompressedClassPointers

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PermGen/MetaSpace: Diagnostic Data
collection and Analysis

60

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PermGen/MetaSpace: Diagnostic Data collection and
Analysis

• GC logs including options:
 –verbose:class

or

 -XX:+TraceClassLoading –XX:+TraceClassUnloading

• Data collected with:

• jmap –permstat (up to JDK 7)

• jmap –clstats (JDK 8 onwards)

• Heap Dumps

• JDK 8: class statistics information with ‘jcmd <pid> GC.class_stats’

• Java Flight Recordings

61

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Make sure that classes get unloaded

• Ensure –Xnoclassgc is not in use

• Ensure that –XX:+CMSClassUnloadingEnabled is used when using CMS on
Java 6 or 7

62

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 63

[Loading weblogic.i18n.logging.MessageDispatcher from
file:/opt/weblogic1213/wlserver/modules/features/weblogic.server.merged.jar]

[Loaded weblogic.i18n.logging.MessageDispatcher from
file:/opt/weblogic1213/wlserver/modules/features/weblogic.server.merged.jar]

[Loaded weblogic.i18n.logging.CoreEnginePrimordialLoggerWrapper from
file:/opt/weblogic1213/wlserver/modules/features/weblogic.server.merged.jar]

[Loading weblogic.logging.WLMessageLogger from
file:/opt/weblogic1213/wlserver/modules/features/weblogic.server.merged.jar]

…
[Loading sun.reflect.GeneratedMethodAccessor486 from __JVM_DefineClass__]
[Loaded sun.reflect.GeneratedMethodAccessor486 from __JVM_DefineClass__]
[Loading sun.reflect.GeneratedMethodAccessor487 from __JVM_DefineClass__]
[Loaded sun.reflect.GeneratedMethodAccessor487 from __JVM_DefineClass__]
[Loading sun.reflect.GeneratedMethodAccessor488 from __JVM_DefineClass__]
[Loaded sun.reflect.GeneratedMethodAccessor488 from __JVM_DefineClass__]
[Loading sun.reflect.GeneratedMethodAccessor489 from __JVM_DefineClass__]
[Loaded sun.reflect.GeneratedMethodAccessor489 from __JVM_DefineClass__]
…
[Unloading class sun.reflect.GeneratedMethodAccessor489 0x000000010128fc30]
[Unloading class sun.reflect.GeneratedMethodAccessor488 0x000000010128f830]
[Unloading class sun.reflect.GeneratedMethodAccessor487 0x000000010128f430]
[Unloading class sun.reflect.GeneratedMethodAccessor486 0x000000010128f030]
[Unloading class sun.reflect.GeneratedMethodAccessor482 0x000000010128e030]
[Unloading class sun.reflect.GeneratedMethodAccessor481 0x000000010128dc30]
[Unloading class sun.reflect.GeneratedSerializationConstructorAccessor297 0x0000000101274c30]
[Unloading class sun.reflect.GeneratedSerializationConstructorAccessor296 0x0000000101274830]

-verbose:class

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 64

74062.764: [Full GC (Last ditch collection) 74062.764: [CMS: 1444990K-
>1444951K(2599396K), 6.0356492 secs] 1444990K->1444951K(3046692K), [Metaspace:
4050878K->4050878K(6356992K)], 6.0366164 secs] [Times: user=6.04 sys=0.01, real=6.04
secs]

74068.804: [GC (CMS Initial Mark) [1 CMS-initial-mark: 1444951K(2599396K)]
1445248K(3046692K), 0.9821073 secs] [Times: user=1.23 sys=0.00, real=0.98 secs]

74069.787: [CMS-concurrent-mark-start]

74069.818: [Full GC (Metadata GC Threshold) 74069.818: [CMS74071.433: [CMS-concurrent-
mark: 1.642/1.647 secs] [Times: user=3.33 sys=0.00, real=1.65 secs] (concurrent mode
failure): 1444951K->1444879K(2599396K), 7.5785637 secs] 1445513K->1444879K(3046692K),
[Metaspace: 4050878K->4050878K(6356992K)], 7.5795618 secs] [Times: user=9.19 sys=0.00,
real=7.58 secs]

java.lang.OutOfMemoryError: Compressed class space

GC Logs

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 65

$ jmap -permstat 29620
Attaching to process ID 29620, please wait...
Debugger attached successfully. Client compiler detected.
JVM version is 24.85-b06
12674 intern Strings occupying 1082616 bytes. finding class loader instances ..
 done. computing per loader stat ..done. please wait.. computing liveness...done.
class_loader classes bytes parent_loader alive? type
<bootstrap> 1846 5321080 null live <internal>
0xd0bf3828 0 0 null live sun/misc/Launcher$ExtClassLoader@0xd8c98c78
0xd0d2f370 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0c99280 1 1440 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0b71d90 0 0 0xd0b5b9c0 live java/util/ResourceBundle$RBClassLoader@0xd8d042e8
0xd0d2f4c0 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0b5bf98 1 920 0xd0b5bf38 dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0c99248 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0d2f488 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0b5bf38 6 11832 0xd0b5b9c0 dead sun/reflect/misc/MethodUtil@0xd8e8e560
0xd0d2f338 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0d2f418 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0d2f3a8 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0b5b9c0 317 1397448 0xd0bf3828 live sun/misc/Launcher$AppClassLoader@0xd8cb83d8
0xd0d2f300 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0d2f3e0 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0ec3968 1 1440 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0e0a248 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0c99210 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0d2f450 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0d2f4f8 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50
0xd0e0a280 1 904 null dead sun/reflect/DelegatingClassLoader@0xd8c22f50

total = 22 2186 6746816 N/A alive=4, dead=18 N/A

jmap -permstat

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 66

jmap -clstats 26240
Attaching to process ID 26240, please wait...
Debugger attached successfully. Server compiler detected. JVM version is 25.66-b00
finding class loader instances ..done. computing per loader stat ..done. please wait..
computing liveness.liveness analysis may be inaccurate ...

class_loader classes bytes parent_loader alive? type
<bootstrap> 513 950353 null live <internal>
0x0000000084e066d0 8 24416 0x0000000084e06740 live
sun/misc/Launcher$AppClassLoader@0x0000000016bef6a0

0x0000000084e06740 0 0 null live
sun/misc/Launcher$ExtClassLoader@0x0000000016befa48

0x0000000084ea18f0 0 0 0x0000000084e066d0 dead
java/util/ResourceBundle$RBClassLoader@0x0000000016c33930

jmap -clstats

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Heap Dumps

• Heap Dumps help here too

• Look for classes that should have been unloaded

• Eclipse MAT offers a very nice feature called ‘Duplicate Classes’

– Displays classes that were loaded multiple times by different classloader instances

– If duplicate classes keep growing over time/redeployments, it’s a red flag

67

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 68

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

CodeCache is full. Compiler has been
disabled

69

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

CodeCache is full. Compiler has been disabled

• CodeCache is the memory pool to store the compiled code generated by
the JIT compilers

• There is no specific OutOfMemoryError thrown when CodeCache is full

• Managed by Sweeper

• An emergency CodeCache cleanup is done when it becomes full

– This may discard the compiled code that might be needed shortly after

– Compiler needs to work again to generate the compiled code for those methods

• Ensure CodeCache size is sufficient
– Increase CodeCache maximum size with ReservedCodeCacheSize

70

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

OutOfMemoryError: Native Memory

71

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

A fatal error has been detected by the Java
Runtime Environment:

java.lang.OutOfMemoryError : unable to create

new native Thread

A fatal error has been detected by the Java
Runtime Environment:

java.lang.OutOfMemoryError: requested 32756

bytes for ChunkPool::allocate. Out of swap
space?

Internal Error (allocation.cpp:166),

pid=2290, tid=27 # Error: ChunkPool::allocate

72

Native OutOfMemoryError

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Native OutOfMemoryError

• JVM is not able to allocate from native memory

– Not managed by the JVM

• This process or other processes on the system are eating up the native
memory

• Can make more room for native allocations by:

– Reducing the Java Heap, PermGen/Metaspace, number of threads and/or their stack
sizes etc.

– Reducing the number of processes running on the system

• If the above don’t help, we might be facing a native memory leak

– Example: JNI code allocating native buffers

73

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Native OutOfMemoryError: Common Issues

74

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Native Heap OutOfMemoryError with 64-bit JVM

• Running with 32-bit JVM puts a maximum limit of 4GB on the process size

– So you're more likely to run out of native memory with a 32-bit Java process

• Running with a 64-bit JVM gets us access to unlimited address space, so we
would expect never to run out of native memory

• However, we might see OutOfMemoryErrors occurring in a 64-bit JVM too

• CompressedOops feature implementation determines where the Java heap
should be placed in the address space

• The position of the Java heap can put a cap on the maximum size of the
native heap.

75

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Memory Map
0000000100000000 8K r-x-- /sw/.es-base/sparc/pkg/jdk-1.7.0_60/bin/sparcv9/java

0000000100100000 8K rwx-- /sw/.es-base/sparc/pkg/jdk-1.7.0_60/bin/sparcv9/java

0000000100102000 56K rwx-- [heap]

0000000100110000 2624K rwx-- [heap] <--- native Heap

00000001FB000000 24576K rw--- [anon] <--- Java Heap starts here

0000000200000000 1396736K rw--- [anon]

0000000600000000 700416K rw--- [anon]

76

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Solution for OutOfMemoryError with 64-bit JVM

• Can be resolved by using option -XX:HeapBaseMinAddress=n to specify the
address the Java heap should be based at

• Setting it to a higher address would leave more room for the native heap

77

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

JAXB Issues

• JAXB internally uses Inflater/Deflater to compress/uncompress files

– Inflater/Deflater use native memory to hold their data

– Depend on Finalization to deallocate the java objects and the associated native
memory data

– Delay in running Finalizer can exhaust native memory

• JAXBContext.newInstance() called for every new request

– Classes from the context get reloaded again

– Increases native memory usage

• Environment upgrade fails to upgrade all the JAXB jar files
– Classes linking errors leading to re-loading of classes

 78

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

OutOfMemoryError: Direct buffer memory

• ByteBuffer.allocateDirect(SIZE_OF_BUFFER)

• DirectByteBuffers are garbage collected by using a phantom reference and
a reference queue

• Maximum direct memory is unbounded by default, but can be limited by
using JVM option -XX:MaxDirectMemorySize=n

79

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

NIO ByteBuffers

• Java NIO APIs use ByteBuffers as the source and destination of I/O calls

• Java Heap ByteBuffers and Native Heap ByteBuffers

• Java Heap ByteBuffer for I/O use a temporary direct ByteBuffer per thread

• If large heap ByteBuffers from multiple threads are used for I/O calls

Native Heap Exhaustion

• -Djdk.nio.maxCachedBufferSize=m (JDK9)

80

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Native Memory: Diagnostic Data

81

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Native Memory: Diagnostic Data

• Native memory leaks in the JVM

• Native Memory Tracker output

• Native Memory Leaks outside JVM

• Process map output with tools like pmap

• Results from native memory leak tools such as libumem, valgrind etc.

• Core file

82

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Native Memory Tracker

• The Native Memory Tracker (NMT) can be used to track native memory
that is used internally by the JVM

• It cannot track memory allocated outside the JVM or by native libraries

83

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

NMT

• Start the process with NMT enabled using NativeMemoryTracking

• The output level can be set to a ‘summary’ or ‘detail’ level:

• -XX:NativeMemoryTracking=summary

• -XX:NativeMemoryTracking=detail

• Use jcmd to get the native memory usage details:
• jcmd <pid> VM.native_memory

84

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 85

jcmd 90172 VM.native_memory 90172:

Native Memory Tracking:
Total: reserved=3431296KB, committed=2132244KB
- Java Heap (reserved=2017280KB, committed=2017280KB)
 (mmap: reserved=2017280KB, committed=2017280KB)
- Class (reserved=1062088KB, committed=10184KB)
 (classes #411)
 (malloc=5320KB #190)
 (mmap: reserved=1056768KB, committed=4864KB)
- Thread (reserved=15423KB, committed=15423KB)
 (thread #16)
 (stack: reserved=15360KB, committed=15360KB)
 (malloc=45KB #81)
 (arena=18KB #30)
- Code (reserved=249658KB, committed=2594KB)
 (malloc=58KB #348)
 (mmap: reserved=249600KB, committed=2536KB)
- GC (reserved=79628KB, committed=79544KB)
 (malloc=5772KB #118)
 (mmap: reserved=73856KB, committed=73772KB)
- Compiler (reserved=138KB, committed=138KB)
 (malloc=8KB #41)
 (arena=131KB #3)
- Internal (reserved=5380KB, committed=5380KB)
 (malloc=5316KB #1357)
 (mmap: reserved=64KB, committed=64KB)
- Symbol (reserved=1367KB, committed=1367KB)
 (malloc=911KB #112)
 (arena=456KB #1)
- Native Memory Tracking (reserved=118KB, committed=118KB)
 (malloc=66KB #1040)
 (tracking overhead=52KB)
- Arena Chunk (reserved=217KB, committed=217KB)
 (malloc=217KB)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Native Memory Leaks Outside JVM

• For the native memory leaks stemming from outside the JVM, we need to
rely on the native memory leak tools for their detection and
troubleshooting

• Native Memory Leak Detection Tools

– dbx

– libumem

– valgrind

– purify

– and so on

86

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Summary

• Several kinds of OutOfMemoryError messages

• It is important to understand theses error messages clearly

• Tools
• HeapDumpOnOutOfMemoryError and PrintClassHistogram JVM Options

• Eclipse MAT

• VisualVM

• JConsole

• jhat

• YourKit

• jmap

• jcmd

• Java Flight Recorder and Java Mission Control

• GC Logs

• NMT

• Native Memory Leak Detection Tools such as dbx, libumem, valgrind, purify etc.

87

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

References

• Troubleshooting Guide:

– https://docs.oracle.com/javase/9/troubleshoot/toc.htm

– https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/index.html

88

