Diagonalization Techniques for Sparse Matrices

Rowan W. Hale *
May 17, 2012

Abstract

We discuss several diagonalization techniques that fall into cate-
gories of exact or iterative and direct or stochastic. Our discussion of
these techniques has an emphasis on the runtime and memory usage
(and accuracy where applicable) of the MATLAB code that we used
to implement them, as well as the feasbility of these values. We also
discuss a technique for generating random instances of Constraint Sat-
isfaction Problems that we used to create interesting problems to work
with.

*rowanh@cs.washington.edu. Department of Computer Science, University of Wash-
ington.



1 Introduction

When working with matrices that model systems, it is often useful to find
the eigenvalues and eigenvectors of these matrices, because the eigenvalues
and eigenvectors can correpsond to important information about the system.
The process of finding these eigenvalues and eigenvectors, called diagonaliza-
tion, comes in several forms: diagonalization can be exact, where the answer
is found exactly, or it can be iterative, where the answer is approached as
the number of iterations goes to infinity. In addition, these diagonalization
calculations can be done either directly or stochastically, and in this paper
we examine diagonalization techniques that fall into several of these clas-
sifications.We also discuss a technique for generating random instances of
problems with which to work. All of the discussed algorithms are imple-
mented using MATLAB code.

2 Exact Diagonalization of Sparse Matrices

2.1 Limitations

In almost all of the systems we are interested in modeling, such as quantum
adiabatic optimization Hamiltonians and random walk transition matrices,
the most frequent calculation was finding the eigenvalues of large sparse
matrices. MATLAB has a built in exact diagonalization function for sparse
matrices, eigs(), that was able to do these calculations, but because these
problems are modelling systems of n qubits, the Hamiltonians grow like
O(2™), which introduces the problem of memory consumption; memory is
finite and even doubling or quadrupling the memory efficiency of an algo-
rithm will only allow the computations to work for slightly higher values of
n. Using eigs(), we were able to successfully model these problems for up
to 20 qubits before MATLAB ran out of physical memory with which to do
its exact diagonalization.

2.2 Runtime Analysis

When we ran out of memory, it was important for us to ask what our limiting
resource was; it would seem that the answer is memory, but if this process of
exact diagonalization is producing runtimes that are as poor as the memory
consumption is, then perhaps there is an underlying issue that needs to be
accounted for. For adiabatic Hamiltonians of the form

H:(lfs)Ho+SHf (1)

where



Hy=-— Z O’; (2)
and Hy is the problem Hamiltonian of choice, the following plot shows the

runtimes of the construction and exact diagonalization of numerous
Hamiltonians H for n € {1,2,...,19}.

16000 T T T T T T T T T

14000 A

12000 A

10000 A

B000 A

Tirne (seconds)

&000 A

4000 4

2000 A

0 2 4 B g 10 12 14 16 18 20
n {qubits)

Figure 1: Runtimes of the construction and exact diagonalization of numer-
ous Hamiltonians H, as defined in (1).



10 T T T T T T

10" | .
107 E 3

10 | .

Tirne (seconds)

107 3

10k .

1D 1 1 1 1
0 2 4 = 5 10 12 14 16 18 20

n {qubits)

Figure 2: Logarithmic plot of the runtimes from figure 2.

It is clear from figures 1 and 2 that the runtimes are scaling exponentially
in the number of qubits, and even for very small values of n, the times are
infeasible. Upon examination of the runtimes of just eig() on matrices of
increasing size, we can see that the runtime of eig() is scaling just as poorly.



240 T T T T T T T

200

150 A

Tirne (seconds)

100 | A

0 2 4 5 g 10 12 14 16
n {qubits)

Figure 3: Runtime of eigs() on matrices of size 2" x 2".

These results shows us that both the memory consumption and runtime of
exact diagonalization are scaling out of control when performed on matrices
of exponentially increasing size. As such, we must find a new method of
producing eigenvalues that is able to overcome either the runtime or memory
consumption scaling.

3 Conjugate Gradient

3.1 Explanation and Benefits

When we were generating eigenvalues using eigs(), in almost all cases we were
only interested in a few of the eigenvalues of the system, particularly the
highest or lowest. Thus, it was suggested that we try generating eigenvalues
using an algorithm called Conjugate Gradient, which has similar properties
to those of eigs(), to see if it provided better runtimes or lower memory
consumption. Conjugate Gradient is an iterative algorithm that offers a few
levels of freedom:

1. It produces only 1 highest or lowest eigenvalue and eigenvector of
the system, and successive runs with different initial guesses yield the
successive lowest or highest eigenvalue. This allows us to choose how
many eigenvalues we want to generate.



2. It is an iterative algorithm that approaches the exact solution, so we
are able to choose a desired accuracy with which we produce results.

While these probably won’t affect the memory consumption used in finding
eigenvalues, they could be tweaked in an attempt to control the runtime of
the algorithm.

3.2 Runtime Analysis

While the levels of freedom in using an iterative eigenvalue solver sound
like they could have produced speedups, the runtime of our implementation
turned out to be much worse than the runtime of eigs(). For small matrices,
the runtime of both eigs() and our conjugate gradient implementation were
fairly similar, but as n increased, our implementation took longer to produce
a single eigenvalue than MATLAB took to produce a vector of all of the
eigenvalues of the system in question. At this point it was obvious that we
were best off just using eigs(), since our Conjugate Gradient implementation
was providing such slow runtimes.

4 Quantum Monte Carlo Algorithms

4.1 Explanation and Benefits

The original difficulty with exact diagonalization discussed in section 2 was
that both the memory consumption and runtime were scaling out of control,
because the matrices on which exact diagonalization was being performed
grew in O(2"). This is where Quantum Monte Carlo algorithms (QMC)
become useful. While exact diagonalization finds eigenvalues by doing oper-
ations directly on matrices, QMC performs these operations stochastically
by manipulating bit strings. The benefit of using an algorithm such as the
one defined in [1] is that the algorithm is focused on manipulating bit strings,
which consume very little memory, and most importantly these bit strings
do not grow exponentially with n—in fact, they grow linearly. It should be
noted that the QMC algorithm we used produces only the lowest eigenvalue,
but for our purposes this was sufficient.

4.2 Accuracy and Runtime

While the memory cost of QMC is significantly better than exact diagonal-
ization, there is a tradeoff. Because QMC is not a direct eigenvalue solver,
the results that are obtained are based on factors that can be varied such as
number of QMC steps and length of the path of bit strings that are being
manipulated. As these factors are increased, so are both the runtime and
accuracy of results. Figure 4 shows a comparison of exact diagonalzation
and QMC when finding the lowest eigenvalue E of a Hamiltonian H



] T T T T T T T T T

% Ewxact Diagonalization
QAMC

10k

Figure 4: Comparison of exact diagonalization and QMC when finding the lowest
eigenvalue of H, as defined in

H:Ho-l-)\Hf (3)

where Hj is defined in and Hy is the problem Hamiltonian of choice.
From figure 4 we can see that QMC provides an accurate way of finding
the lowest eigenvalue of a system. The low memory consumption of QMC
has already been established with the fact that all calculations are done
on bitstrings, but the question still remains: how does the runtime scale?
Figure 5 shows the runtime of QMC for n € {2,3,...,16} with a fixed
number of QMC steps and bitstring length, and the results are clear: the
runtime of QMC isn’t dominated by n. In practice this does not mean that
the runtime for increasing n will stay the same, because for increasing n the
number of QMC steps will need to be increased in order for the stochastic
process to fully mix.

5 Generating Random Instances of CSPs

5.1 Naive Approach

While we have discussed many ways to find the eigenvalues of a system,
the obvious prerequisite for doing so is finding a system to work with. One
difficulty we were faced with was finding a random instance of a Constraint



16 T T T T T T

15581 A

15 A

145 » .

Tirne (seconds)

14 4

135} A

1 3 1 1

n {qubits)

Figure 5: Runtime of QMC for a fixed number of QMC steps and varying n.

Satisfaction Problem to work with that met a certain criterion, which I will
discuss shortly. The main CSPs that we worked with were 2-SAT, 3-SAT,
and Exact Cover-3, and it was necessary to generate random instances of
these problems as well as Hamiltonians that correspond to these problem in-
stances. The naive process isnt particularly difficult, and can be summarized
as follows:

1. Given input parameter n, generate some number of clauses (x4, Zp, . . . , Tf)
for the given problem, with a,b,..., k < n.

2. Convert the clauses to matrix form. This can be done by generating a
Hamiltonian for each of the clauses and summing them, or going down
the diagonal of an initially empty Hamiltonian and setting each entry
based on the generated clauses. This step can be skipped if only the
clauses are desired, rather than the resulting Hamiltonian.

While this process makes it easy to generate random instances of the prob-
lems we were looking at, it became more important to look at the inter-
esting cases of these problems—specifically the case in which the problem
has a unique satisfying assignment, or USA (i.e. the diagonal of the prob-
lem Hamiltonian has a single zero entry). This adds a third step to our
generation algorithm, assuming that only 1 clause was generated in step 1:



3. Count the number of solutions for the generated clauses, and if this
number is not 1, go to step 1.

As you can imagine, using this algorithm has a potentially huge overhead,
because each Hamiltonian with a number of solutions other than 1 is immedi-
ately discarded, and the number of solutions of each generated Hamiltonian
is random. This excess overhead resulted in the runtimes ramping up much
faster than we had hoped, and so it was necessary to look into another
method of generating Hamiltonians with a USA: planted solutions.

5.2 Planted Solutions

The naive approach to generating problem Hamiltonians is essentially to
generate a random set of clauses and check that they have a USA. Using
planted solutions reverses this process by first imposing the requirement of
having a USA, then generating clauses and checking that they correspond
to this USA. The new process for generating a problem Hamiltonian is the
following:

1. Given an input parameter n, choose an assignment of terms x1, o, ..., .

This is the USA.

2. Generate a clause (zq, Tp, . . . , 1) for the given problem, with a, b, ..., k <
n. If the assignment of terms in the USA causes this clause to be false,
discard the clause and begin step 2 again.

3. Add the new clause to the list of generated clauses and check the
number of satisfying assignments for these clauses. If this number is
0, remove the most recent clause and go back to step 2. If this number
is greater than 1, go back to step 2. Otherwise, we have a set of clauses
whose USA is the USA that we chose in step 1, so the algorithm is
complete.

We know that checking the number of satisfying assignments for a set of
clauses is an O(2") operation, so in no way is this algorithm “fast”. The
runtime of the algorithm is proportional to the number of times that this
operation is invoked, and that is where the speedup over the naive algorithm
comes into play. By using the planted solutions algorithm, we were able to
generate random instances of CSPs for up to n = 20 in the time it took
the naive algorithm for n = 16, showing that while the planted solutions
algorithm does not change the exponential scaling of the problem, it does
provide a significant speedup.



6 Conclusion

In this paper we have discussed several different diagonalization techniques,
and their associated runtimes and memory usages. With matrices growing
in O(2") and the time it takes to process such a matrix growing with the size,
we have shown that it is infeasbile to use exact diagonalization or Conjugate
Gradient, because they both use matrices and thus suffer from the O(2")
space and time complexity. This is the reason that the QMC algorithm
is favorable, because it does not have O(2") space or time complexity, but
rather scales linearly with the number of QMC steps that we specify, and
this makes QMC feasible to use for problems that grow exponentially with
n, like 2-SAT, 3-SAT, and Exact Cover-3. We have shown that the naive
algorithm is needlessly wasteful when generating random instances of CSPs,
and we have given a solution to this waste, in the form of planted solutions.

Acknowledgements

I would like to thank Isaac Crosson and Professor Aram Harrow of the
University of Washington for their enormous help in my time working with
them, be that in the form of explanations of algorithms or the discussion of
results and techniques.

References

[1] Edward Farhi, Jeffrey Goldstone, David Gosset, Harvey B. Meyer. A
Quantum Monte Carlo Method at Fixed Energy, 2009. http://arxiv.
org/abs/0912.4271

10


http://arxiv.org/abs/0912.4271
http://arxiv.org/abs/0912.4271

	Introduction
	Exact Diagonalization of Sparse Matrices
	Limitations
	Runtime Analysis

	Conjugate Gradient
	Explanation and Benefits
	Runtime Analysis

	Quantum Monte Carlo Algorithms
	Explanation and Benefits
	Accuracy and Runtime

	Generating Random Instances of CSPs
	Naive Approach
	Planted Solutions

	Conclusion

