Diaphragm seal with flange connection With flush diaphragm Model 990.27

Applications

- Aggressive, highly viscous, crystallising or hot media
- Process industry
- Machine building and automation

Special features

- Flange with flush welded diaphragm
- Common standards and nominal widths available
- Wide variety of different materials and material combinations

Description

Diaphragm seals are used to protect pressure measuring instruments in demanding applications under difficult conditions. These diaphragm seal systems, consisting of a process transmitter, pressure sensor, pressure gauge or pressure switch with diaphragm seal, can be combined individually for each customer application. For this, a wide range of different designs, process connections, mounting methods and wetted materials are available.

Diaphragm seal models with flange connections are available with flush or internal diaphragms, in tubular design or as in-line diaphragm seals. The diaphragm seals mentioned are also available in a cell-type design.

Diaphragm seal with flange connection, model 990.27

The model 990.27 diaphragm seal with flush flange connection is assembled from the upper body of a diaphragm seal and the wetted parts (sealing face and diaphragm). This diaphragm seal model is optimised for applications in the chemical, petrochemical and the oil and gas industries and is therefore available in a wide range of dimensions based on the standards common in these markets.

Through the high number of possible combinations and aided by the individual checking of the operating conditions, it is ensured that the ideal customer solution for a diaphragm seal system can be found with the model 990.27.

Installation example

Model 990.27 with directly mounted pressure gauge

Diaphragm seal system

Diaphragm seal systems are mounted to existing connections, which are welded to a pipeline, a process reactor or a tank. A diaphragm made of the appropriate material separates the medium from the measuring instrument. The internal space between the diaphragm and the measuring instrument is completely filled with a system fill fluid.

Measuring element

The pressure of the medium is transferred via the elastic diaphragm to the system fill fluid and then on to the measuring instrument. A diaphragm seal and its components are perfectly matched to each other to ensure a reliable measurement.

Mounting type

Mounting of the diaphragm seal to the measuring instruments may be made via a direct connection, for high temperatures via a cooling element or via a flexible capillary.
Direct mounting via axial
connection adapter

Heat sink (examples)

Technical information

Data sheet number	Title
IN 00.06	Diaphragm seals and diaphragm seal systems, application - functionality - design
IN 00.25	Diaphragm seal systems for vacuum processes
IN $\mathbf{0 0 . 2 1}$	General information about NACE standards for sour gas applications
IN $\mathbf{0 0 . 4 1}$	Specifications of oil- and grease-free instruments

\rightarrow See download on the WIKA website

Specifications

Version	Diaphragm seal with flange connection
Other versions	Per NACE ${ }^{\text {1) }}$ MR0175 / ISO 15156, use in $\mathrm{H}_{2} \mathrm{~S}$-containing environments in oil and gas production Per NACE ${ }^{1)}$ MR0103 / ISO 17945, metals resistant to hydrogen sulphide stress cracking With pre-volume deflagration flame arrester ${ }^{2)}$ for mounting to zone 0 (EPL Ga); model 910.21; see data sheet AC 91.02
Pressure range	The maximum pressure range depends on the selection of the process connection and instrument \rightarrow See PN nominal pressure/class in the tables from page 6
Connection to the instrument	- Axial connection adapter for welded connection - Suitable connection adapter to the instrument (e.g. G $1 / 2$, G $1 / 4,1 / 2$ NPT or $1 ⁄ 4$ NPT)
Mounting type ${ }^{\text {3) }}$	Direct mounting Capillary Heat sink
Vacuum service ${ }^{4}$)	- Basic service - Advanced service - Premium service

1) General information about NACE standards; see data sheet IN 00.21
2) Only for instruments with Ex approval
3) For possible mounting methods, see page 2
4) Diaphragm seal systems for vacuum processes; see data sheet IN 00.25

Process connection						
Standard	- In line with DIN EN 1092-1 - In line with ASME B16.5-2017 - In line with GOST 33259 - In line with API 6A - In line with JIS B2220					
Size						
In line with DIN EN 1092-1	$\begin{aligned} & \text { DN } 25 \\ & \text { DN } 80 \end{aligned}$	$\begin{aligned} & \text { DN } 40 \\ & \text { DN } 100 \end{aligned}$	-	DN 50 DN 125	-	DN 65
In line with ASME B16.5-2017	$\begin{array}{ll} ■ 1 " \\ ■ & 3^{\prime \prime} \end{array}$	$\begin{aligned} & \text { ■11/2" } \\ & 4^{4 \prime} \end{aligned}$	-	$\begin{aligned} & 2^{\prime \prime} \\ & 5 " \end{aligned}$	-	$21 / 2{ }^{1 /}$
In line with GOST 33259	$\begin{aligned} & \text { DN } 25 \\ & \text { DN } 80 \end{aligned}$	$\begin{aligned} & \text { DN } 40 \\ & \text { DN } 100 \end{aligned}$	-	DN 50 DN 125	-	DN 65
In line with API 6A	- $11 / 8{ }^{\prime \prime}$	- $11 / 16{ }^{\prime \prime}$		$113 / 16^{\prime \prime}$		2 1/16"
In line with JIS B2220	- DN 25A	- DN 40A	■	DN 50A		DN 80A

Process connection

Sealing face		
In line with DIN EN 1092-1	Form B1 Form A Form B2 Form C (tongue)	$\begin{aligned} & \text { Form D (groove) } \\ & \text { Form E (spigot) } \\ & \text { Form F (recess) } \end{aligned}$
In line with ASME B16.5-2017	RF $125 \ldots 250$ AA RFSF Flat face Small tongue Small male face Small groove	- Small female face - Large tongue - Large male face - Large groove - Large female face - RJF groove
In line with GOST 33259	Type B Type A (flat face) Type C (tongue)	Type D (groove) Type E (spigot, male face) Type F (recess, female face)
In line with API 6A	Ring-joint groove	
In line with JIS B2220	RF	
Wetted parts	Diaphragm and raised face \rightarrow See following tables for material selection	
Origin of wetted parts	International Exclusively from EU, CH, GB, US, CA	
Level of cleanliness of wetted parts	- Oil- and grease-free per WIKA specification ($<1,000 \mathrm{mg} / \mathrm{m}^{2}$) - Oil- and grease-free per ASTM G93-03 level D ($<220 \mathrm{mg} / \mathrm{m}^{2}$) Oil- and grease-free per ASTM G93-03 level C ($<66 \mathrm{mg} / \mathrm{m}^{2}$)	

1) Specifications of oil- and grease-free instruments; see data sheet IN 00.41

Other process connections on request

Material combination		Maximum permissible operating temperature ${ }^{1)}$ in ${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$
Upper body of diaphragm seal	Wetted parts	
Stainless steel 1.4404 (316L)	Stainless steel 1.4404 / 1.4435 (316L)	400 [752]
	Hastelloy C22 (2.4602) ${ }^{\text {2) }}$	260 [500]
	Hastelloy C276 (2.4819) ${ }^{\text {2 3) }}$	400 [752]
	Inconel 600 (2.4816) ${ }^{\text {2) }}$	400 [752]
	Inconel 625 (2.4856) ${ }^{\text {2) }}$	400 [752]
	Incoloy 825 (2.4858) ${ }^{2)}$	400 [752]
	Monel 400 (2.4360) ${ }^{2)}$	400 [752]
	Nickel 200 (2.4066) ${ }^{2)}$	260 [500]
	Nickel 201 (2.4068) ${ }^{2)}$	260 [500]
	Titanium grade $2(3.7035)^{2)}$	150 [302]
	Titanium grade $11(3.7225)^{2)}$	250 [482]
	Tantalum ${ }^{2 / 3)}$	300 [572]
Titan Grade 7 (3.7235)	Titan Grade 7 (3.7235)	250 [482]
	Titan Grade 11 (3.7225)	250 [482]

[^0]| Material | Maximum permissible operating temperature ${ }^{1)}$ in ${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$ |
| :---: | :---: |
| Upper body of diaphragm seal and wetted parts | |
| Stainless steel 1.4435 (316L) | 400 [752] |
| Stainless steel 1.4539 (904L) | 400 [752] |
| Stainless steel 1.4541 (321) | 400 [752] |
| Stainless steel 1.4571 (316Ti) | 400 [752] |
| Superduplex 2507 (1.4410) | 250 [482] |
| Hastelloy C22 (2.4602) | 400 [752] |
| Hastelloy C276 (2.4819) | 400 [752] |
| Inconel 600 (2.4816) | 400 [752] |
| Inconel 625 (2.4856) | 400 [752] |
| Incoloy 825 (2.4558) | 400 [752] |
| Monel 400 (2.4360) | 400 [752] |
| Nickel 200 (2.4066) | 300 [572] |
| Nickel 201 (2.4068) | 400 [752] |
| Titanium grade 2 (3.7035) | 300 [572] |

1) The maximum permissible operating temperature of the diaphragm seal system is limited by the joining method, by the system fill fluid and by the measuring instrument.

Material of coating ${ }^{1)}$	Maximum permissible
Wetted parts	operating temperature ${ }^{2}$) ${ }^{\text {in }}{ }^{\circ}{ }^{\text {C }}$ [${ }^{\circ}$ F]
ECTFE	$150[302]$
PFA (perfluoroalkoxy), FDA	$260[500]$
PFA (perfluoroalkoxy), anti-static	$260[500]$
Gold	$400[752]$
Wikaramic $^{\circledR}$	$400[752]$

1) The coated basic material is from stainless steel 1.4435 (316L)
2) The maximum permissible operating temperature of the diaphragm seal system is limited by the joining method, by the system fill fluid and by the measuring instrument.

Further materials for special process temperatures on request.

Approvals

Logo	Description	Country
-	CRN Safety (e.g. electr. safety, overpressure, ...)	Canada
Optional approvals	Country	
Logo	Description	Kazakhstan
-	MTSCHS Permission for commissioning	

Manufacturer's information and certificates (option)

Logo	Description
SIL	SIL
EXIDA report with SFF values from FMEDA analysis for functional safety assessment in accordance with IEC 61508	

Certificates (option)

Certificates

Certificates

- 2.2 test report per EN 10204 (e.g. state-of-the-art manufacturing, material proof, indication accuracy for diaphragm seal systems)
- 3.1 inspection certificate per EN 10204 (e.g. material proof for wetted metal parts, indication accuracy for diaphragm seal systems)
\rightarrow For approvals and certificates, see website

Dimensions in mm [in]

Flange connection in line with DIN EN 1092-1, form B

DN	PN in bar	Dimensions in mm [in]							x	Weight in kg [lbs]
		Mb	D	b	d_{2}	k	f	d_{4}		
25	10/40	32 [1.26]	115 [4.528]	18 [0.709]	14 [0.551]	85 [3.346]	2 [0.079]	68 [2.677]	4	1.5 [3.3]
	63/100	25 [0.984]	140 [0.984]	24 [0.945]	18 [0.709]	100 [3.937]	2 [0.079]	68 [2.677]	4	2.5 [5.5]
40	10/40	45 [1.772]	150 [5.905]	18 [0.709]	18 [0.709]	110 [4.331]	2 [0.079]	88 [3.465]	4	2.6 [5.7]
	63/100	45 [1.772]	170 [6.693]	26 [1.024]	22 [0.866]	125 [4.921]	2 [0.079]	88 [3.465]	4	4.0 [8.8]
	160	45 [1.772]	170 [6.693]	28 [1.102]	22 [0.866]	125 [4.921]	2 [0.079]	88 [3.465]	4	4.3 [9.5]
	250	45 [1.772]	185 [2.283]	34 [1.339]	26 [1.024]	135 [5.315]	2 [0.079]	88 [3.465]	4	6.3 [13.9]
50	10/40	59 [2.323]	165 [6.496]	20 [0.787]	18 [0.709]	125 [4.921]	2 [0.079]	102 [4.016]	4	3.3 [7.3]
	63	59 [2.323]	180 [7.087]	26 [1.024]	22 [0.866]	135 [5.315]	2 [0.079]	102 [4.016]	4	5.1 [11.2]
	100	59 [2.323]	195 [7.677]	28 [1.102]	26 [1.024]	145 [5.709]	2 [0.079]	102 [4.016]	4	6.5 [14.3]
	160	59 [2.323]	195 [7.677]	30 [1.181]	26 [1.024]	145 [5.709]	2 [0.079]	102 [4.016]	4	7.0 [15.4]
	250	59 [2.323]	200 [7.874]	38 [1.496]	26 [1.024]	150 [5.906]	2 [0.079]	102 [4.016]	8	9.3 [20.5]
80	10/16	89 [3.504]	200 [7.874]	20 [0.787]	18 [0.709]	160 [6.299]	2 [0.079]	138 [5.433]	8	4.9 [10.8]
	25/40	89 [3.504]	200 [7.874]	24 [0.945]	18 [0.709]	160 [6.299]	2 [0.079]	138 [5.433]	8	5.8 [12.8]
	63	89 [3.504]	215 [8.465]	28 [1.102]	22 [0.866]	170 [6.693]	2 [0.079]	138 [5.433]	8	7.9 [17.4]
	100	89 [3.504]	230 [9.055]	32 [1.26]	26 [1.024]	180 [7.087]	2 [0.079]	138 [5.433]	8	10.4 [22.9]
	160	89 [3.504]	230 [9.055]	36 [1.487]	26 [1.024]	180 [7.087]	2 [0.079]	138 [5.433]	8	11.7 [25.8]
	250	89 [3.504]	255 [10.039]	46 [1.811]	30 [1.181]	200 [7.874]	2 [0.079]	138 [5.433]	8	18.4 [40.6]
100	10/16	89 [3.504]	220 [8.661]	20 [0.787]	18 [0.709]	180 [7.087]	2 [0.079]	158 [6.22]	8	5.9 [13]
	25/40	89 [3.504]	235 [9.252]	24 [0.945]	22 [0.866]	190 [7.480]	2 [0.079]	162 [6.378]	8	8.1 [17.9]
	63	89 [3.504]	250 [9.842]	30 [1.181]	26 [1.024]	200 [7.874]	2 [0.079]	162 [6.378]	8	11.5 [25.3]
	100	89 [3.504]	265 [10.433]	36 [1.487]	30 [1.181]	210 [8.268]	2 [0.079]	162 [6.378]	8	15.5 [34.2]
	160	89 [3.504]	265 [10.433]	40 [1.575]	30 [1.181]	210 [8.268]	2 [0.079]	162 [6.378]	8	17.3 [38.1]
	250	89 [3.504]	300 [11.811]	54 [2.126]	33 [1.299]	235 [9.252]	2 [0.079]	162 [6.378]	8	29.9 [65.9]
125	10/16	124 [4.882]	250 [9.842]	22 [0.866]	18 [0.709]	210 [8.268]	2 [0.079]	188 [7.402]	8	8.4 [18.5]
	25/40	124 [4.882]	270 [10.63]	26 [1.024]	26 [1.024]	220 [8.661]	2 [0.079]	188 [7.402]	8	11.6 [25.6]
	63	124 [4.882]	295 [11.614]	34 [1.339]	30 [1.181]	240 [9.449]	2 [0.079]	188 [7.402]	8	16.5 [36.4]
	100	124 [4.882]	315 [12.412]	40 [1.575]	33 [1.299]	250 [9.842]	2 [0.079]	188 [7.402]	8	24.4 [53.8]
	160	124 [4.882]	315 [12.412]	44 [1.732]	33 [1.299]	250 [9.842]	2 [0.079]	188 [7.402]	8	26.9 [59.3]
	250	124 [4.882]	340 [13.386]	60 [2.342]	33 [1.299]	275 [10.827]	2 [0.079]	188 [7.402]	12	42.7 [94.1]

Further dimensions and higher nominal pressures on request

Dimensions in mm [in]

Flange connection in line with ASME B16.5-2017, RF

DN	Class	Dimensions in mm [in]							X	Weight in kg [lbs]
		Mb	D	b	d_{2}	k	f	d_{4}		
1"	150	32 [1.26]	110 [4.331]	14.7 [0.579]	16 [0.63]	79.4 [3.126]	2 [0.079]	51 [2.008]	4	1.4 [3.1]
	300	32 [1.26]	125 [4.921]	17.9 [0.705]	19 [0.748]	88.9 [3.5]	2 [0.079]	51 [2.008]	4	1.7 [3.7]
$1112 "$	150	45 [1.772]	125 [4.921]	17.9 [0.705]	16 [0.63]	98.4 [3.874]	2 [0.079]	73 [2.874]	4	1.6 [3.5]
	300	45 [1.772]	155 [6.102]	21.1 [0.831]	22 [0.866]	114.3 [4.5]	2 [0.079]	73 [2.874]	4	2.5 [5.5]
	600	45 [1.772]	155 [6.102]	29.3 [1.154]	22 [0.866]	114.3 [4.5]	7 [0.276]	73 [2.874]	4	3.3 [7.2]
	1,500	45 [1.772]	180 [7.087]	38.8 [1.528]	29 [1.142]	123.8 [4.874]	7 [0.276]	73 [2.874]	4	5.9 [13]
	2,500	45 [1.772]	205 [8.071]	51.5 [2.078]	32 [1.26]	146 [5.748]	7 [0.276]	73 [2.874]	4	10.4 [22.9]
2"	150	59 [2.323]	150 [5.905]	19.5 [0.768]	19 [0.748]	120.7 [4.752]	2 [0.079]	92 [3.622]	4	. 7 [6]
	300	59 [2.323]	165 [6.496]	22.7 [0.894]	19 [0.748]	127 [5]	2 [0.079]	92 [3.622]	8	3.7 [8.1]
	600	59 [2.323]	165 [6.496]	32.4 [1.276]	19 [0.748]	127 [5]	7 [0.276]	92 [3.622]	8	5.7 [12.6]
	1,500	59 [2.323]	215 [8.465]	45.1[1.776]	26 [1.024]	165.1 [6.5]	7 [0.276]	92 [3.622]	8	13.2 [29]
	2,500	59 [2.323]	235 [9.252]	57.9 [2.28]	29 [1.142]	171.4 [6.748]	7 [0.276]	92 [3.622]	8	19.8 [43.7]
3"	150	89 [3.504]	190 [7.482]	24.3 [0.957]	19 [0.748]	152.4 [6]	2 [0.079]	127 [5]	4	. 3 [11.7]
	300	89 [3.504]	210 [8.268]	29 [1.142]	22 [0.866]	168.3 [6.626]	2 [0.079]	127 [5]	8	7.8 [17.2]
	600	89 [3.504]	210 [8.268]	38.8 [1.528]	22 [0.866]	168.3 [6.626]	7 [0.276]	127 [5]	8	11 [24.3]
	900	89 [3.504]	240 [9.449]	45.1 [1.776]	26 [1.024]	190.5 [7.7]	7 [0.276]	127 [5]	8	16.7 [36.8]
	1,500	89 [3.504]	265 [10.433]	54.7 [1.799]	32 [1.26]	203.2 [8]	7 [0.276]	127 [5]	8	24.5 [54]
	2,500	89 [3.504]	305 [12.007]	73.7 [2.902]	35 [1.378]	228.6 [5.063]	7 [0.276]	127 [5]	8	42.7 [94.1]
4"	150	89 [3.504]	230 [9.055]	24.3 [0.957]	19 [0.748]	190.5 [7.5]	2 [0.079]	157.2 [6.189]	8	7.7 [17]
	300	89 [3.504]	255 [10.039]	32.2 [1.268]	22 [0.866]	200 [7.874]	2 [0.079]	157.2 [6.189]	8	12.7 [28]
	400	89 [3.504]	255 [10.039]	42 [1.654]	26 [1.024]	200 [7.874]	7 [0.276]	157.2 [6.189]	8	17.4 [38.4]
	600	89 [3.504]	275 [10,826]	45.1 [1.776]	26 [1.024]	215.9 [8.5]	7 [0.276]	157.2 [6.189]	8	21.5 [47.4]
	900	89 [3.504]	290 [11,417]	51.5 [2.028]	32 [1.26]	235 [9.252]	7 [0.276]	157.2 [6.189]	8	27.7 [61.1]
	1,500	89 [3.504]	310 [12.205]	61 [2.402]	35 [1.378]	241.3 [9.5]	7 [0.276]	157.2 [6.189]	8	37 [81.6]
	2,500	89 [3.504]	355 [13.976]	83.2 [3.276]	42 [1.654]	273 [10.748]	7 [0.276]	157.2 [6.189]	8	65.7 [144.8]
5"	150	124 [4.882]	255 [10.039]	24.3 [0.957]	22 [0.866]	215.9 [8.5]	2 [0.079]	185.7 [7.311]	8	9.2 [20.3]
	300	124 [4.882]	280 [11.024]	35.4 [1.394]	22 [0.866]	235 [9.25]	2 [0.079]	185.7 [7.311]	8	16.3 [35.9]
	400	124 [4.882]	280 [11.024]	45.1 [2.13]	26 [1.024]	235 [9.25]	7 [0.276]	185.7 [7.311]	8	19.3 [42.5]
	600	124 [4.882]	330 [13]	51.5 [2.028]	29 [1.142]	266.7 [10.5]	7 [0.276]	185.7 [7.311]	8	30.5 [67.2]
	900	124 [4.882]	350 [13.78]	57.8 [2.278]	35 [1.378]	279.4 [11]	7 [0.276]	185.7 [7.311]	8	38 [83.8]
	1,500	124 [4.882]	375 [14.764]	80.1 [3.154]	42 [1.654]	292.1 [11.5]	7 [0.276]	185.7 [7.311]	8	60.1 [132.5]
	2,500	124 [4.882]	420 [16.535]	99.1 [3.902]	48 [1.189]	323.8 [12.75]	7 [0.276]	185.7 [7.311]	8	93.6 [206.4]

Further dimensions and higher nominal pressures on request

Flange connection in line with GOST 33259, type B

DN	PN in bar	Dimensions in mm [in]							x	Weight in kg [lbs]
		Mb	D	b	d_{2}	k	f	d_{4}		
50	10/16	59 [2.323]	160 [6.3]	16 [0.63]	18 [0.709]	125 [4.921]	3 [0.118]	102 [4.016]	4	2.4 [5.3]
	25/40	59 [2.323]	160 [6.3]	20 [0.787]	18 [0.709]	125 [4.921]	3 [0.118]	102 [4.016]	4	3 [6.6]
	63	59 [2.323]	175 [6.89]	26 [1.024]	22 [0.866]	135 [5.315]	3 [0.118]	102 [4.016]	4	4.5 [9.9]
	100	59 [2.323]	195 [7.677]	28 [1.102]	26 [1.024]	145 [5.709]	3 [0.118]	102 [4.016]	4	5.6 [12.3]
	160	59 [2.323]	195 [7.677]	30 [1.181]	26 [1.024]	145 [5.709]	3 [0.118]	102 [4.016]	4	6.4 [14.1]
	200	59 [2.323]	210 [8.268]	40 [1.575]	26 [1.024]	160 [6.299]	3 [0.118]	102 [4.016]	8	9.4 [20.7]
80	10	89 [3.504]	195 [7.677]	18 [0.709]	18 [0.709]	160 [6.299]	3 [0.118]	133 [5.236]	4	4 [8.8]
	16	89 [3.504]	195 [7.677]	20 [0.787]	18 [0.709]	160 [6.299]	3 [0.118]	133 [5.236]	4	4.5 [9.9]
	25	89 [3.504]	195 [7.677]	22 [0.866]	18 [0.709]	160 [6.299]	3 [0.118]	133 [5.236]	8	4.8 [10.6]
	40	89 [3.504]	195 [7.677]	24 [0.945]	18 [0.709]	160 [6.299]	3 [0.118]	133 [5.236]	8	5.2 [11.5]
	63	89 [3.504]	210 [7.677]	30 [1.181]	22 [0.866]	170 [6.693]	3 [0.118]	133 [5.236]	8	7.4 [16.3]
	100	89 [3.504]	230 [9.055]	34 [1.339]	26 [1.024]	180 [7.087]	3 [0.118]	133 [5.236]	8	9.8 [21.6]
	160	89 [3.504]	230 [9.055]	36 [1.417]	26 [1.024]	180 [7.087]	3 [0.118]	133 [5.236]	8	10.4 [22.9]
	200	89 [3.504]	290 [11.417]	54 [2.126]	33 [1.299]	230 [9.055]	3 [0.118]	133 [5.236]	8	24.7 [54.5]
100	10/16	89 [3.504]	215 [8.465]	20 [0.787]	18 [0.709]	180 [7.087]	3 [0.118]	158 [6.22]	8	5.3 [11.7]
	25	89 [3.504]	230 [9.055]	24 [0.945]	22 [0.866]	190 [7.48]	3 [0.118]	158 [6.22]	8	7.1 [15.7]
	40	89 [3.504]	230 [9.055]	26 [1.024]	22 [0.866]	190 [7.48]	3 [0.118]	158 [6.22]	8	7.8 [17.2]
	63	89 [3.504]	250 [9.842]	32 [1.26]	26 [1.024]	200 [7.874]	3 [0.118]	158 [6.22]	8	11.1 [24.5]
	100	89 [3.504]	265 [10.433]	38 [1.496]	30 [1.181]	210 [8.268]	3 [0.118]	158 [6.22]	8	14.5 [32]
	160	89 [3.504]	265 [10.433]	40 [1.575]	30 [1.181]	210 [8.268]	3 [0.118]	158 [6.22]	8	15.3 [33.7]
	200	89 [3.504]	360 [14.173]	66 [2.598]	39 [1.535]	292 [11.496]	3 [0.118]	158 [6.22]	8	47.2 [104.1]
125	10/16	89 [3.504]	245 [9.646]	22 [0.866]	18 [0.709]	210 [8.268]	3 [0.118]	184 [7.244]	8	7.7 [17]
	25	89 [3.504]	270 [10.63]	26 [1.024]	26 [1.024]	220 [8.661]	3 [0.118]	184 [7.244]	8	10.6 [23.4]
	40	89 [3.504]	270 [10.63]	28 [1.102]	26 [1.024]	220 [8.661]	3 [0.118]	184 [7.244]	8	11.4 [25.1]
	63	89 [3.504]	295 [11.614]	36 [1.417]	30 [1.181]	240 [9.449]	3 [0.118]	184 [7.244]	8	17.4 [38.4]
	100	89 [3.504]	310 [12.205]	42 [1.654]	33 [1.299]	250 [9.842]	3 [0.118]	184 [7.244]	8	22.3 [49.2]
	160	89 [3.504]	310 [12.205]	44 [1.732]	33 [1.299]	250 [9.842]	3 [0.118]	184 [7.244]	8	23.4 [51.6]
	200	89 [3.504]	385 [15.157]	76 [2.992]	39 [1.535]	318 [12.52]	3 [0.118]	184 [7.244]	8	63.2 [139.3]

Further dimensions and higher nominal pressures on request

DN	PN in psi	Dimensions in mm [in]							x	Groove dimensions in mm [in]				
		Mb	D	d_{2}	d_{4}	f	b	k		P_{1}	P_{2}	E	F	
113/16"	10,000	$\begin{aligned} & 40 \\ & {[1.575]} \end{aligned}$	$\begin{aligned} & 185 \\ & {[7.283]} \end{aligned}$	$\begin{aligned} & 23 \\ & {[0.906]} \end{aligned}$	$\begin{aligned} & 105 \\ & {[4.134]} \end{aligned}$	$\begin{aligned} & \hline 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & \hline 42.1 \\ & {[1.657]} \end{aligned}$	$\begin{aligned} & \hline 146.1 \\ & {[5.752]} \end{aligned}$	8	-	$\begin{aligned} & 77.77 \\ & {[3.062]} \end{aligned}$	$\begin{aligned} & 5.56 \\ & {[21.89]} \end{aligned}$	$\begin{aligned} & 11.84 \\ & {[0.466]} \end{aligned}$	7.7 [17]
	15,000	$\begin{aligned} & 40 \\ & {[1.575]} \end{aligned}$	$\begin{aligned} & 210 \\ & {[8.268]} \end{aligned}$	$\begin{aligned} & 26 \\ & {[1.024]} \end{aligned}$	$\begin{aligned} & 106 \\ & {[4.173]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & 45.3 \\ & {[1.783]} \end{aligned}$	$\begin{aligned} & 160.3 \\ & {[6.311]} \end{aligned}$	8	-	$\begin{aligned} & 77.77 \\ & {[3.062]} \end{aligned}$	$\begin{aligned} & 5.56 \\ & {[21.89]} \end{aligned}$	$\begin{aligned} & 11.84 \\ & {[0.466]} \end{aligned}$	$\begin{aligned} & 10.5 \\ & {[23.1]} \end{aligned}$
	20,000	$\begin{aligned} & 40 \\ & {[1.575]} \end{aligned}$	$\begin{aligned} & 255 \\ & {[10.039]} \end{aligned}$	$\begin{aligned} & 29 \\ & {[1.142]} \end{aligned}$	$\begin{aligned} & 117 \\ & {[4.606]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & 63.5 \\ & {[2.5]} \end{aligned}$	$\begin{aligned} & 203.2 \\ & {[8]} \end{aligned}$	8	-	$\begin{aligned} & 77.77 \\ & {[3.062]} \end{aligned}$	$\begin{aligned} & 5.56 \\ & {[21.89]} \end{aligned}$	$\begin{aligned} & 11.84 \\ & {[0.466]} \end{aligned}$	$\begin{aligned} & 22.3 \\ & \text { [49.2] } \end{aligned}$
$21 / 16{ }^{\prime \prime}$	2,000	$\begin{aligned} & 52 \\ & {[2.047]} \end{aligned}$	$\begin{aligned} & 165 \\ & {[6.496]} \end{aligned}$	$\begin{aligned} & 20 \\ & {[0.787]} \end{aligned}$	$\begin{aligned} & 108 \\ & {[4.252]} \end{aligned}$	$\begin{aligned} & 8 \\ & {[0.315]} \end{aligned}$	$\begin{aligned} & 33.4 \\ & {[1.315]} \end{aligned}$	127 [5]	8	$\begin{aligned} & 82.55 \\ & {[3.25]} \end{aligned}$	-	$\begin{aligned} & 7.9 \\ & {[0.311]} \end{aligned}$	$\begin{aligned} & 11.91 \\ & {[0.469]} \end{aligned}$	4.6 [10.1]
	$\begin{aligned} & 3,000 / \\ & 5,000 \end{aligned}$	$\begin{aligned} & 52 \\ & {[2.047]} \end{aligned}$	$\begin{aligned} & 215 \\ & \text { [8.465] } \end{aligned}$	$\begin{aligned} & 26 \\ & {[1.024]} \end{aligned}$	$\begin{aligned} & 124 \\ & {[4.882]} \end{aligned}$	$\begin{aligned} & 8 \\ & {[0.315]} \end{aligned}$	$\begin{aligned} & 46.1 \\ & {[1.815]} \end{aligned}$	$\begin{aligned} & 165.1 \\ & {[6.5]} \end{aligned}$	8	$\begin{aligned} & 95.25 \\ & {[3.75]} \end{aligned}$	-	$\begin{aligned} & 7.9 \\ & {[0.311]} \end{aligned}$	$\begin{aligned} & 11.91 \\ & {[0.469]} \end{aligned}$	$\begin{aligned} & 10.7 \\ & {[23.6]} \end{aligned}$
	10,000	$\begin{aligned} & 52 \\ & {[2.047]} \end{aligned}$	$\begin{aligned} & 200 \\ & {[7.874]} \end{aligned}$	$\begin{aligned} & 23 \\ & {[0.906]} \end{aligned}$	$\begin{aligned} & 111 \\ & {[4.370]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & 44.1 \\ & {[1.736]} \end{aligned}$	$\begin{aligned} & 158.8 \\ & {[6.252]} \end{aligned}$	8	-	$\begin{aligned} & 86.23 \\ & {[3.395]} \end{aligned}$	$\begin{aligned} & 5.95 \\ & {[0.234]} \end{aligned}$	$\begin{aligned} & 12.65 \\ & {[0.498]} \end{aligned}$	9.5 [20.9]
	15,000	$\begin{aligned} & 52 \\ & {[2.047]} \end{aligned}$	$\begin{aligned} & 220 \\ & {[8.661]} \end{aligned}$	$\begin{aligned} & 26 \\ & {[1.024]} \end{aligned}$	$\begin{aligned} & 114 \\ & {[4.488]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	50.8 [2]	$\begin{aligned} & 174.6 \\ & {[6.874]} \end{aligned}$	8	-	$\begin{aligned} & 86.23 \\ & {[3.395]} \end{aligned}$	$\begin{aligned} & 5.95 \\ & {[0.234]} \end{aligned}$	$\begin{aligned} & 12.65 \\ & {[0.498]} \end{aligned}$	$\begin{aligned} & 13.2 \\ & {[29.1]} \end{aligned}$
	20,000	$\begin{aligned} & 52 \\ & {[2.047]} \end{aligned}$	$\begin{aligned} & 285 \\ & {[11.22]} \end{aligned}$	$\begin{aligned} & 32 \\ & {[1.26]} \end{aligned}$	$\begin{aligned} & 132 \\ & {[5.197]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & 71.5 \\ & {[2.815]} \end{aligned}$	$\begin{aligned} & 230.2 \\ & {[9.063]} \end{aligned}$	8	-	$\begin{aligned} & 86.23 \\ & {[3.395]} \end{aligned}$	$\begin{aligned} & 5.95 \\ & {[0.234]} \end{aligned}$	$\begin{aligned} & 12.65 \\ & {[0.498]} \end{aligned}$	$\begin{aligned} & 31.6 \\ & {[69.7]} \end{aligned}$
$29 / 16{ }^{\prime \prime}$	2,000	$\begin{aligned} & 59 \\ & {[2.323]} \end{aligned}$	$\begin{aligned} & 190 \\ & {[7.48]} \end{aligned}$	$\begin{aligned} & 23 \\ & {[0.906]} \end{aligned}$	127 [5]	$\begin{aligned} & 8 \\ & {[0.315]} \end{aligned}$	$\begin{aligned} & 36.6 \\ & {[1.441]} \end{aligned}$	$\begin{aligned} & 149.2 \\ & {[5.874]} \end{aligned}$	8	$\begin{aligned} & 101.6 \\ & {[4]} \end{aligned}$	-	$\begin{aligned} & 7.9 \\ & {[3.11]} \end{aligned}$	$\begin{aligned} & 11.91 \\ & {[0.469]} \end{aligned}$	6.7 [14.8]
	$\begin{aligned} & 3,000 / \\ & 5,000 \end{aligned}$	$\begin{aligned} & 59 \\ & {[2.323]} \end{aligned}$	$\begin{aligned} & 245 \\ & {[9.656]} \end{aligned}$	$\begin{aligned} & 29 \\ & {[1.142]} \end{aligned}$	$\begin{aligned} & 137 \\ & {[5.394]} \end{aligned}$	$\begin{aligned} & 8 \\ & {[0.315]} \end{aligned}$	$\begin{aligned} & 49.3 \\ & {[1.941]} \end{aligned}$	$\begin{aligned} & 190.5 \\ & {[7.5]} \end{aligned}$	8	$\begin{aligned} & 107.95 \\ & {[2.25]} \end{aligned}$	-	$\begin{aligned} & 7.9 \\ & {[3.11]} \end{aligned}$	$\begin{aligned} & 11.91 \\ & {[0.469]} \end{aligned}$	15 [33.1]
	10,000	$\begin{aligned} & 59 \\ & {[2.323]} \end{aligned}$	$\begin{aligned} & 230 \\ & {[9.055]} \end{aligned}$	$\begin{aligned} & 26 \\ & {[1.024]} \end{aligned}$	$\begin{aligned} & 132 \\ & {[5.197]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & 51.2 \\ & {[2.016]} \end{aligned}$	$\begin{aligned} & 184.2 \\ & {[7.252]} \end{aligned}$	8	-	$\begin{aligned} & 102.77 \\ & {[4.046]} \end{aligned}$	$\begin{aligned} & 6.75 \\ & {[0.266]} \end{aligned}$	$\begin{aligned} & 14.07 \\ & {[0.579]} \end{aligned}$	$\begin{aligned} & 14.7 \\ & {[32.4]} \end{aligned}$
	15,000	$\begin{aligned} & 59 \\ & {[2.323]} \end{aligned}$	$\begin{aligned} & 255 \\ & {[10.039]} \end{aligned}$	$\begin{aligned} & 29 \\ & {[1.142]} \end{aligned}$	$\begin{aligned} & 133 \\ & {[5.236]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & 57.2 \\ & {[2.055]} \end{aligned}$	$\begin{aligned} & 200 \\ & {[7.874]} \end{aligned}$	8	-	$\begin{aligned} & 102.77 \\ & {[4.046]} \end{aligned}$	$\begin{aligned} & 6.75 \\ & {[0.266]} \end{aligned}$	$\begin{aligned} & 14.07 \\ & {[0.579]} \end{aligned}$	$\begin{aligned} & 20.1 \\ & {[44.3]} \end{aligned}$
	20,000	$\begin{aligned} & 59 \\ & {[2.323]} \end{aligned}$	$\begin{aligned} & 325 \\ & {[12.795]} \end{aligned}$	$\begin{aligned} & 35 \\ & {[1.378]} \end{aligned}$	$\begin{aligned} & 151 \\ & {[5.945]} \end{aligned}$	$\begin{aligned} & 4 \\ & {[0.157]} \end{aligned}$	$\begin{aligned} & 79.4 \\ & {[3.126]} \end{aligned}$	$\begin{aligned} & 261.9 \\ & {[10.311]} \end{aligned}$	8	-	$\begin{aligned} & 102.77 \\ & {[4.046]} \end{aligned}$	$\begin{aligned} & 6.75 \\ & {[0.266]} \end{aligned}$	$\begin{aligned} & 14.07 \\ & {[0.579]} \end{aligned}$	$\begin{aligned} & 46.3 \\ & {[102]} \end{aligned}$
$31 / 8{ }^{\prime \prime}$	2,000	$\begin{aligned} & 89 \\ & {[3.504]} \end{aligned}$	$\begin{aligned} & 210 \\ & {[8.268]} \end{aligned}$	$\begin{aligned} & 23 \\ & {[0.906]} \end{aligned}$	$\begin{aligned} & 146 \\ & {[5.748]} \end{aligned}$	$\begin{aligned} & 7.9 \\ & {[0.311]} \end{aligned}$	$\begin{aligned} & 39.7 \\ & {[1.563]} \end{aligned}$	$\begin{aligned} & 168.3 \\ & {[6.626]} \end{aligned}$	8	$\begin{aligned} & 123.83 \\ & {[4.875]} \end{aligned}$	-	$\begin{aligned} & 7.9 \\ & {[0.311]} \end{aligned}$	$\begin{aligned} & 11.91 \\ & {[0.469]} \end{aligned}$	9.2 [20.3]
	3,000	$\begin{aligned} & 89 \\ & {[3.504]} \end{aligned}$	$\begin{aligned} & 240 \\ & {[9.449]} \end{aligned}$	$\begin{aligned} & 26 \\ & {[1.024]} \end{aligned}$	$\begin{aligned} & 156 \\ & {[6.142]} \end{aligned}$	$\begin{aligned} & 8 \\ & {[0.315]} \end{aligned}$	$\begin{aligned} & 46.1 \\ & {[1.815]} \end{aligned}$	$\begin{aligned} & 190.5 \\ & {[7.5]} \end{aligned}$	8	$\begin{aligned} & 123.83 \\ & {[4.875]} \end{aligned}$	-	$\begin{aligned} & 7.9 \\ & {[0.311]} \end{aligned}$	$\begin{aligned} & 11.91 \\ & {[0.469]} \end{aligned}$	$\begin{aligned} & 13.9 \\ & {[30.6]} \end{aligned}$
	5,000	$\begin{aligned} & 89 \\ & {[3.504]} \end{aligned}$	$\begin{aligned} & 265 \\ & {[10.433]} \end{aligned}$	$\begin{aligned} & 32 \\ & {[1.26]} \end{aligned}$	$\begin{aligned} & 168 \\ & {[6.614]} \end{aligned}$	$\begin{aligned} & 7.9 \\ & {[0.311]} \end{aligned}$	$\begin{aligned} & 55.6 \\ & {[2.189]} \end{aligned}$	$\begin{aligned} & 203.2 \\ & {[8]} \end{aligned}$	8	$\begin{aligned} & 136.53 \\ & {[5.375]} \end{aligned}$	-	$\begin{aligned} & 7.9 \\ & {[0.311]} \end{aligned}$	$\begin{aligned} & 11.91 \\ & {[0.469]} \end{aligned}$	$\begin{aligned} & 20.2 \\ & {[44.5]} \end{aligned}$

Further dimensions and higher nominal pressures on request

Flange connection in line with JIS B 2220, RF

DN	PN	Dimensions in mm [in]							x	Weight in kg [lbs]
		Mb	D	b	d_{2}	k	f	d_{4}		
25A	5K	32 [1.26]	95 [3.74]	10 [0.394]	12 [0.472]	75 [2.953]	1 [0.039]	59 [2.323]	4	0.7 [1.5]
	10K	32 [1.26]	125 [4.921]	14 [0.551]	19 [0.748]	90 [3.543]	1 [0.039]	67 [2.638]	4	1.4 [3.1]
	16K	32 [1.26]	125 [4.921]	14 [0.551]	19 [0.748]	90 [3.543]	1 [0.039]	67 [2.638]	4	1.4 [3.1]
	20K	32 [1.26]	125 [4.921]	16 [0.63]	19 [0.748]	90 [3.543]	1 [0.039]	67 [2.638]	4	1.6 [3.5]
	30K	32 [1.26]	130 [5.118]	20 [0.787]	19 [0.748]	95 [3.740]	1 [0.039]	70 [2.756]	4	2.1 [4.6]
	40K	25 [0.984]	130 [5.118]	22 [0.866]	19 [0.748]	95 [3.740]	1 [0.039]	70 [2.756]	4	2.3 [5.1]
	63K	25 [0.984]	140 [5.512]	27 [1.063]	23 [0.906]	100 [3.967]	1 [0.039]	70 [2.756]	4	3.1 [6.9]
50A	5K	59 [2.323]	130 [5.118]	14 [0.551]	15 [0.591]	105 [4.134]	2 [0.079]	85 [3.346]	4	1.5 [3.3]
	10K	59 [2.323]	155 [6.102]	16 [0.63]	19 [0.748]	120 [4.724]	2 [0.079]	96 [3.78]	4	2.3 [5.1]
	16K	59 [2.323]	155 [6.102]	16 [0.63]	19 [0.748]	120 [4.724]	2 [0.079]	96 [3.78]	8	2.2 [4.9]
	20K	59 [2.323]	155 [6.102]	18 [0.709]	19 [0.748]	120 [4.724]	2 [0.079]	96 [3.78]	8	2.4 [5.3]
	30K	59 [2.323]	165 [6.496]	22 [0.866]	19 [0.748]	130 [5.118]	2 [0.079]	105 [4.134]	8	3.4 [7.5]
	40K	59 [2.323]	165 [6.496]	26 [1.024]	19 [0.748]	130 [5.118]	2 [0.079]	105 [4.134]	8	4.0 [8.8]
	63K	59 [2.323]	185 [7.83]	34 [1.339]	23 [0.906]	145 [5.709]	2 [0.079]	105 [4.134]	8	6.4 [14.1]
80A	5K	89 [3.504]	180 [7.087]	14 [0.551]	19 [0.748]	145 [5.709]	2 [0.079]	121 [4.764]	4	2.7 [6]
	10K	89 [3.504]	185 [7.83]	18 [0.709]	19 [0.748]	150 [5.905]	2 [0.079]	126 [4.961]	8	3.5 [7.7]
	16K	89 [3.504]	200 [7.874]	20 [0.787]	23 [0.906]	160 [6.299]	2 [0.079]	132 [5.197]	8	4.5 [9.9]
	20K	89 [3.504]	200 [7.874]	22 [0.866]	23 [0.906]	160 [6.299]	2 [0.079]	132 [5.197]	8	4.9 [10.8]
	30K	89 [3.504]	210 [8.268]	28 [1.102]	23 [0.906]	170 [6.693]	2 [0.079]	140 [5.512]	8	7 [15.4]
	40K	89 [3.504]	210 [8.268]	32 [1.26]	23 [0.906]	170 [6.693]	2 [0.079]	140 [5.512]	8	8 [17.6]
	63K	89 [3.504]	230 [9.055]	40 [1.575]	25 [0.984]	185 [7.83]	2 [0.079]	140 [5.512]	8	11.9 [26.2]
100A	5K	89 [3.504]	200 [7.874]	16 [0.63]	19 [0.748]	165 [6.496]	2 [0.079]	141 [5.551]	8	3.7 [8.2]
	10K	89 [3.504]	210 [8.268]	18 [0.709]	19 [0.748]	175 [6.89]	2 [0.079]	151 [5.945]	8	4.6 [10.1]
	16K	89 [3.504]	225 [8.858]	22 [0.866]	23 [0.906]	185 [7.83]	2 [0.079]	160 [6.299]	8	6.4 [14.1]
	20K	89 [3.504]	225 [8.858]	24 [0.945]	23 [0.906]	185 [7.83]	2 [0.079]	160 [6.299]	8	6.9 [15.2]
	30K	89 [3.504]	240 [9.449]	32 [1.26]	25 [0.984]	195 [7.677]	2 [0.079]	160 [6.299]	8	10.4 [22.9]
	40K	89 [3.504]	250 [9.852]	36 [1.417]	25 [0.984]	205 [8.071]	2 [0.079]	165 [6.496]	8	12.8 [28.2]
	63K	89 [3.504]	270 [10.63]	44 [1.732]	27 [1.063]	220 [8.661]	2 [0.079]	165 [6.496]	8	18.2 [40.1]

Further dimensions and higher nominal pressures on request

Accessories and spare parts

Model		Description Flushing ring for flange-connection diaphragm seals \rightarrow See data sheet AC 09.05	Order number On request
(6)	910.27		
	IBF2, IBF3	Monoblock with flange connection \rightarrow See data sheet AC 09.25	On request
	910.16	Instrument mounting bracket form H per DIN 16281, 100 mm , aluminium, black	9091858
		Instrument mounting bracket form H per DIN 16281, 100 mm , stainless steel	9091882
		\rightarrow See data sheet AC 09.05	On request

Ordering information

Diaphragm seal:
Diaphragm seal model / Process connection (standard, flange size, nominal pressure, sealing face) / Material combination (upper body of diaphragm seal, wetted parts) / Level of cleanliness of wetted parts / Origin of wetted parts / Design per NACE / Connection to the measuring instrument / Certificates / Flushing ring

Diaphragm seal system:
Diaphragm seal model / Pressure measuring instrument model (per data sheet) / Mounting (direct mounting, cooling element, capillary) / Material combination (upper body of diaphragm seal, wetted parts) / Min. and max. process temperature / Min. and max. ambient temperature / Vacuum service / System fill fluid / Certificates / Height difference / Level of cleanliness of wetted parts / Origin of wetted parts / Design per NACE / Diaphragm seal for mounting to zone 0 / Instrument mounting bracket / Process connection (standard, flange size, nominal pressure, sealing face) / Flushing ring

[^1]WIKA Alexander Wiegand SE \& Co. KG Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany
Tel. \quad +49 9372 132-0
Fax +49 9372 132-406
info@wika.de

[^0]: 1) The maximum permissible operating temperature of the diaphragm seal system is limited by the joining method, by the system fill fluid and by the measuring instrument.
 2) Material combination only possible with form B2 and RFSF sealing faces
 3) Material combination additionally possible with the sealing faces form B1 and RF $125 \ldots 250$ AA for DN 50, DN 80 and also $2^{\prime \prime}$ and $3^{\prime \prime}$
[^1]: © 11/2002 WIKA Alexander Wiegand SE \& Co. KG, all rights reserved.
 The specifications given in this document represent the state of engineering at the time of publishing.
 We reserve the right to make modifications to the specifications and materials.

