Dibaryon searches from lattice QCD

Kenji Sasaki (CCS, University of Tsukuba)

for HAL QCD collaboration

HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration

S. Aoki	T. Doi	F. Etminan	T. Hatsuda	Y. Ikeda
(<i>YITP</i>)	(<i>RIKEN</i>)	(<i>Birjand U</i> .)	(<i>RIKEN</i>)	(<i>RIKEN</i>)
T. Inoue	N. Ishii	K. Murano	H. Nemura	T. Miyamoto (<i>YITP</i>)
(<i>Nihon Univ</i> .)	(<i>RCNP</i>)	(<i>RCNP</i>)	(Univ. of Tsukuba)	
T. Iritani (<i>Stony Brook U</i> .)	S. Gongyo (<i>YITP</i>)	D. Kawai (<i>YITP</i>)		

Introduction

Strategy of HAL QCD

Role of our work

Study of BB interaction and search for dibaryon state

Experiment

 Advantageous for less strange quarks
Collision experiment getting more difficult as increasing the number of strange quarks due to short lifetime of flavored quarks

Lattice QCD simulation

 Advantageous for more strange quarks
Signals getting worse as increasing the number of light quarks due to suffering statistical noise.
Complementary role to experiment.

It is best to collaborate to yield a high quality BB potential

Dibaryon candidates

Some dibaryon candidates are predicted by model calculations

- **R.L.Jaffe PRL38(1977)**
- •N-Ω system
 - F.Wang et al. PRC51(1995)
 - Q.B.Li, P.N.Shen, EPJA8(2000)
- • $\Delta\Delta$ and $\Omega\Omega$ system
 - F.J.Dyson,N-H.Xuong, PRL13(1964)
 - M.Oka, K.Yazaki, PLB 90(1980)

Predicted B.E. and structures are highly depend on the model parameters.
Some of them are still not found in experiments.

Lattice QCD study of hadron interactions is awaited.

S=-2 BB interaction

--- focus on the H-dibaryon ---

SU(3) feature of BB interaction

Short range repulsion in BB interaction could be a result of Pauli principle and color-magnetic interaction for the quarks.

- Strengths of repulsive core in YN and YY interaction are largely depend on their flavor structures.
- For the s-wave BB system, no repulsive core is predicted in flavor singlet state which is known as H-dibaryon channel.

	Flavor symmetric states			Flavor anti-symmetric states		
	27	8	1	<u>10</u>	10	8
Pauli	mixed	forbidden	allowed	mixed	forbidden	mixed
СМІ	repulsive	repulsive	attractive	repulsive	repulsive	repulsive
					Oka, Shimizu a	and Yazaki NPA464

$\Lambda\Lambda$, N Ξ , $\Sigma\Sigma$ (I=0) ¹S₀ channel near the physical point

•All diagonal element have a repulsive core $\Sigma\Sigma - \Sigma\Sigma$ potential is strongly repulsive.

•Diagonal NE potential is more attractive than the $\Lambda\Lambda$ potential.

We need more statistics to discuss physical observables through this potential.

H-dibaryon channel (2-ch calculation)

$\Lambda\Lambda$, N Ξ (I=0) ¹S_o potential (2ch calc.)

 Potential calculated by only using ΛΛ and NΞ channels
Deviation from potential in 3ch calc. can be seen mainly in r<1fm.

The same scattering phase shift would be expected in low energy region.

Preliminary!

$\Lambda\Lambda$ and NE phase shift and inelasticity

N_f = 2+1 full QCD with L = 8fm, $m\pi = 145 \text{ MeV}$

t=10

Preliminary!

 AA and NE phase shift is calculated by using 2ch effective potential.
A sharp resonance below the NE threshold
Inelasticity is small.
Breit-Wigner mass and width

> $E_R = 37.977 \pm 0.092 \ [MeV]$ $\Gamma = 0.0054 \pm 0.0576 \ [MeV]$

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

Invariant mass spectrum of $\Lambda\Lambda$ channel

Interactions of decuplet baryons

SU(3) aspects of BB interaction

Alternative source of generalized baryon-baryon interactions

$N\Omega$ interaction

$N\Omega$ system from quark model

Chiral quark model

Q.B.Li, P.N.Shen, EPJA8(2000)

Strong attraction yielded by scalar exchange

 $N\Omega J^{p}(I) = 2^{+}(1/2)$ is considered

Easy to tackle it by lattice QCD simulation

Lowest state in J=2 coupled channel

NΩ-ΛΞ*-ΣΞ*-ΞΣ*

Multi-strangeness reduces a statistical noise

Wick contraction is very simple

Strongly attractive S-wave effective potential in J^p(I) = 2⁺(1/2)
Good baseline to explore S=-3 baryonic system

Decuplet-Decuplet interactions

Decuplet-Decuplet interaction

Flavor symmetry aspect

Decuplet-Decuplet interaction can be classified as

• Δ - Δ (J=3) : Bound (resonance) state was found in experiment. • Δ - Δ (J=0) [and Ω - Ω (J=0)] : Mirror of Δ - Δ (J=3) state

Decuplet-Decuplet interaction in SU(3) limit

$\Omega \Omega J^{p}(I) = 0^{+}(0)$ state in unphysical region

N_f = 2+1 full QCD with L = 3fm, $m\pi = 700 \text{ MeV}$

Short range repulsion and attractive pocket are found.
Potential is nearly independent on "t" within statistical error.
The system may appear close to the unitary limit.

$\Omega \Omega J^{p}(I) = 0^{+}(0)$ state near the physical point

Summary and outlook

We have studied exotic candidate states

- H-dibaryon channel
 - Sharp resonance just below the NE threshold was found.
 - Breit-Wigner mass and width are

 $E_R = 37.977 \pm 0.092 \ [MeV]$ $\Gamma = 0.0054 \pm 0.0576 \ [MeV]$

Preliminary!!

NΩ state with J^p=2⁺

It is strongly attractive without short range repulsion.

It forms a bound state with about 20MeV B.E..

• $\Omega N - \Xi * \Sigma - \Xi * \Lambda - \Sigma * \Xi$ coupled channel calculation is necessary.

- $\Delta\Delta$ and $\Omega\Omega$ states
 - $\Delta\Delta$ (I=0) have strongly attractive potential.
 - $\Delta\Delta$ (I=3) and $\Omega\Omega$ potential have repulsive core and attractive pocket.
 - Both channels form (quasi-)bound state???

BB-BD-DD coupling channel treatment

Dibaryon search at the physical point