
 DEBORAH G. MAYO

 DID PEARSON REJECT THE NEYMAN-PEARSON
 PHILOSOPHY OF STATISTICS?*

 ABSTRACT. I document some of the main evidence showing that E. S. Pearson rejected
 the key features of the behavioral-decision philosophy that became associated with the
 Neyman-Pearson Theory of statistics (NPT). I argue that NPT principles arose not out
 of behavioral aims, where the concern is solely with behaving correctly sufficiently often
 in some long run, but out of the epistemological aim of learning about causes of experi
 mental results (e.g., distinguishing genuine from spurious effects). The view Pearson did
 hold gives a deeper understanding of NPT tests than their typical formulation as 'accept
 reject routines', against which criticisms of NPT are really directed. The 'Pearsonian'
 view that emerges suggests how NPT tests may avoid these criticisms while still retaining
 what is central to these methods: the control of error probabilities.

 1. INTRODUCTION

 The Neyman-Pearson Theory of statistics (NPT), often referred to as
 'standard' or 'orthodox' statistical theory, is the generally-received view
 in university departments of statistics, and it underlies common statis
 tical reports. Strictly speaking, NPT procedures of hypotheses testing
 and estimation are only a part of the full collection of methods referred
 to as 'sampling theory', which also includes methods of experimental
 design and data analysis. But it is this part on which philosophical
 critics of 'standard' or 'orthodox' statistical theory have generally con
 centrated. Egon S. Pearson (not to be confused with his father, Karl1),
 although one of the two founders of NPT, rejected the statistical philos
 ophy that ultimately became associated with NPT, or so I shall argue.
 Because specific citations are important for my case, I shall quote
 throughout at some length. Another reason for doing so is to put
 these remarks - largely overlooked in discussions of the philosophy of
 statistics - together in one place.
 Understanding Pearson's rejection of the NPT philosophy is of more

 than merely historical interest. It is also highly relevant to the alle
 gations of many philosophers of statistics - Fetzer (1981), Hacking
 (1965) (but compare Hacking (1980)), Howson and Urbach (1989),
 Kyburg (1971, 1974), Levi (1980), Rosenkrantz (1977), Seidenfeld
 (1979), Spielman (1973), and of several statisticians as well - that NPT,
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 234  DEBORAH G. MAYO

 despite its widespread use, is inappropriate for statistical inference in
 science. In statistical practice as well, there continues to be a lively
 debate over the use of NPT methods, with their seeming rigidities, in
 the face of the vicissitudes of actual experimental data (e.g., in clinical
 trials and risk assessments). Many of these contemporary criticisms
 mirror, I claim, Pearson's own reasons for rejecting the philosophy
 typically associated with NPT. Extricating the view Pearson did hold,
 I think, gives a much deeper understanding of NPT principles than that
 found in statistics texts, against which criticisms of NPT are really
 directed. Such an understanding suggests how NPT may avoid some of
 these criticisms while still retaining what is central to sampling theory
 methods: the fundamental importance of error probabilities. Finally,
 the 'Pearsonian' view of statistical inference that emerges seems to offer
 a promising avenue for using statistical reasoning to accomplish the
 task at which 'inductive logics' fell short: illuminating the nature and
 rationale of experimental learning in science.

 2. neyman-pearson theory of statistical tests
 (npt tests)

 2.1. Basic Notions

 I focus here on NPT tests. The mathematics of this testing theory
 defines functions on experiments modelled by statistical variables. The
 functions map possible values of these variables (i.e., possible experi

 mental outcomes) to various hypotheses about the population from
 which outcomes may have originated. Commonly, the hypotheses are
 assertions about some property of this population, a parameter, which
 governs the statistical distribution of the experimental variable. For
 example, the statistical variable in a coin-tossing experiment might be
 the proportion of heads in n tosses, and the hypotheses, assertions
 about the (binomial) parameter p, the probability of heads on each
 toss. The NPT test splits the possible parameter values into two: one
 representing the test hypothesis H, the other the set of alternative hy
 potheses J. H, for example, might assert that p = 0.5, while J, that
 p > 0.5. (H here is simple, while J is composite.) The test maps the
 possible outcomes - the sample space - into either H or J; those
 mapped into H (i.e., into 'accepting' H) form the acceptance region,
 while those mapped into alternative J, the rejection (ofH) region. This
 partition of the sample space is typically performed by specifying a
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 neyman-pearson philosophy of statistics 235

 cutoff point or critical boundary, beyond which an outcome enters the
 rejection region. An example would be to reject H whenever the sample
 proportion of heads is at least 0.8. Leaving these acceptances and
 rejections uninterpreted, the formalism of the NPT model simply de
 scribes the partitioning that results from the mapping rules as illustrated
 below:

 Possible Outcomes: Test Hypothesis and Alternative Hypothesis:
 SAMPLE SPACE PARAMETER SPACE

 Fig. 1. NPT Tests as Mapping Rules.

 The focus of the NPT test is on the probabilistic properties of these
 mapping rules, that is, on the probabilities that the rule would map to
 one or another hypothesis, under varying assumptions about the true
 parameter value. Two types of errors are considered: first, the test
 leads to reject H (accept J) even though H is true (the Type I error);
 and second, the test leads to accept H although H is false (the Type II
 error). The test is specified so that the probability of a Type I error,
 represented by a, may be fixed at some small number, such as 0.05, or
 0.01. In other words, the test is specified so as to ensure it is very
 improbable for a certain result to occur; namely, an outcome falls in
 the 'rejection (of H) region' although the hypothesis H is correct.
 Having fixed a, called the size of the test, NPT principles seek out the
 test which at the same time has a small probability, represented by ?,
 of committing a Type II error: accepting H, when J is actually the
 correct hypothesis. 1 - ? is the corresponding power of the test. (When
 alternative J contains more than a single value of the parameter, i.e.,
 when J is composite, the value of ? varies according to which alternative
 in J is true.) a and ? are the test's error probabilities', they are not
 probabilities of hypotheses, but the probabilities (in a frequentist sense)
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 236  DEBORAH G. MAYO

 with which certain results would occur in a long-run sequence of appli
 cations of such test rules.

 This leads to the cornerstone of NPT tests: their ability to ensure
 that a test's error probabilities will not exceed some suitably small
 values, fixed ahead of time by the user of the test, regardless of which
 hypothesis is correct. These key points can be summarized as follows:

 An NPT test (of hypothesis H against alternative J) is a rule
 that maps each of the possible values observed into either
 Reject H (Accept J) or Accept H in such a way that it is
 possible to guarantee, before the trial is made, that (regard
 less of the true hypothesis) the rule will erroneously reject
 H and erroneously accept H no more than a(100%) and
 j?(100%) of the time, respectively.

 The 'best' test of a given size a (if it exists) is the one that at the same
 time minimizes the value of ? (equivalently, maximizes the power) for
 all possible alternatives J.

 2.2. Behavioral Decision Philosophy of NPT: Tests as Accept-Reject
 Routines

 The proof by Neyman and Pearson of the existence of 'best' tests
 encouraged the view that tests (particularly 'best' tests) provide the
 scientist with a kind of automatic rule for testing hypotheses. Here tests
 are formulated as mechanical rules or 'recipes' for reaching one of two
 possible decisions: 'accept hypothesis H' or 'reject H (accept alternative
 J)'. The justification for using such a rule is its guarantee of specifiably
 low error rates in some long run.

 This interpretation of the function and the rationale of tests was well
 suited to Neyman's statistical philosophy. For Neyman, "[t]he problem
 of testing a statistical hypothesis occurs when circumstances force us to
 make a choice between two courses of action: either take step A or
 take step B," (Neyman 1950, p. 258). These are not decisions to accept
 or to believe that what is hypothesized is (or is not) true, Neyman
 stresses; rather, "to accept a hypothesis H means only to decide to take
 action A rather than action B" (ibid., p. 259; emphasis added). On
 Neyman's view, when evidence is inconclusive all talk of 'inferences'
 and 'reaching conclusions' should be abandoned. Instead, Neyman sees
 the task of a theory of statistics as providing rules to guide our behavior
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 NEYMAN-PEARSON PHILOSOPHY OF STATISTICS 237

 so that we shall avoid making erroneous decisions too often in the long
 run of experience. A clear statement of such a rule is the following:

 Here, for example, would be such a 'rule of behavior': to decide whether a hypothesis,
 H, of a given type be rejected or not, calculate a specified character, x, of the observed
 facts; if x > x0, reject H; if x ^ x0, accept H. Such a rule tells us nothing as to whether
 in a particular case H is true when x ^ x0 or false when x > x0. But it may often be
 proved that if we behave according to such a rule ... we shall reject H when it is true
 not more, say, than once in a hundred times, and in addition we may have evidence that
 we shall reject H sufficiently often when it is false. (Neyman and Pearson 1933, p. 142)

 Tests interpreted as such rules of inductive behavior yield the behav
 ioristic model of tests, typically associated with Neyman and Pearson.
 The question is this: Are tests that are 'good' according to the behav
 ioristic criteria (of low error-probabilities) also good for obtaining scien
 tific knowledge? That is, are they good for finding out what is the case,
 as opposed to how it is best to behave? Most philosophers of statistics
 say no.

 It is admitted that the orthodox test may be sensible, if one is in
 the sort of decision-theoretic context envisioned by the behavioristic
 approach. The paradigm example is acceptance sampling in industrial
 quality control. Here the choice is whether or not to reject a certain
 batch of products as containing too many defectives, say, for shipping.
 This is a paradigmatic case in which the primary interest is ensuring
 that the long-run risks of such business decisions are no more than can
 be 'afforded', and in such cases, NPT can provide the desired guaran
 tees. But testing claims in scientific contexts does not seem to be like
 this. As Henry Kyburg aptly put it:

 To talk about accepting or rejecting hypotheses ... is prima facie to talk epistemologi
 cally; and yet in statistical literature to accept the hypothesis that the parameter ll is less
 than ?a* is often merely a fancy and roundabout way of saying that Mr. Doe should offer
 no more than $36.52 for a certain bag of bolts .... (Kyburg 1971, pp. 82-83)

 This is true about the behavioral model of NPT, in which a test result
 is interpreted as taking an action, e.g., paying a certain price for bolts.
 But this is not, I claim, the only, nor even the intended, interpretation
 of NPT test results.
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 238  DEBORAH G. MAYO

 2.3. An Evidential Interpretation of NPT: Birnbaumes Confidence
 Concept

 Alan Birnbaum (1969, 1977) had argued that NPT admits of two types
 of interpretations: on one, Neyman's behavioral decision view, the test
 result is literally a decision to act in a certain way; on the other, which
 Birnbaum called an "evidential" view, the test result is interpreted as
 providing strong or weak evidential support for one or another hypo
 thesis. He called the concept underlying this evidential interpretation
 of NPT the confidence concept which he formulated as follows:

 (Conf): A concept of statistical evidence is not plausible unless it finds 'strong evidence
 for J as against H' with small probability (a) when H is true, and with much larger
 probability (1 - ?) when J is true.2 (Birnbaum 1977, p. 24)

 Birnbaum argued that scientific applications of NPT made intuitive use
 of something like the confidence concept and, although he felt that
 such concepts have not been incorporated explicitly in NPT (or any
 other statistical theory), he found clues of these non-behavioral in
 tuitions in the writings of Pearson. One interesting document Birnbaum
 (1977, p. 33) supplies is an unpublished note by Pearson, commenting
 in 1974 on an earlier draft of Birnbaum's own paper:

 I think you will pick up here and there in my own papers signs of evidentiality, and you
 can say now that we or I should have stated clearly the difference between the behavioral
 and evidential interpretations. Certainly we have suffered since in the way the people
 have concentrated (to an absurd extent often) on behavioral interpretations, (emphasis
 added)

 Birnbaum, I believe, was correct to identify in Pearson a tendency
 to view the behavioral model of NPT as a heuristic device, serving to
 communicate what the tests could be used for, but requiring reinterpre
 tation in scientific contexts. However, I do not think that Birnbaum's
 system, so far as he worked it out,3 in which NPT results are reinter
 preted in terms of strong or weak evidence for hypotheses, captures
 Pearson's divergence from the NPT philosophy.

 2.4. NPT Philosophy: the Function and Rationale of Tests

 As NPT formally developed in a decision-theoretic framework (along
 with the work of Wald), the NPT statistical philosophy has generally
 been taken as the behavioral decision one (Section 2.2). I want now to
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 NEYMAN-PEARSON PHILOSOPHY OF STATISTICS 239

 examine two closely-connected aspects of this decision philosophy: first,
 the justification of tests in terms of low (long-run) error rates and,
 second, the function of tests as routine decision rules. Both are at the
 heart of epistemological criticisms of NPT; they seem to lead to Ney
 man's view that a test "does not contribute anything about the falsehood
 or correctness of" hypotheses.4

 (i) Long-Run (Low Error-Probability) Justification: Since the criteria
 for goodness of a test are its low error probabilities in the frequentist
 sense, the justification for using tests is solely in terms of their ability
 to guarantee low long-run errors in some sequence of applications. This
 is not a final measure of probability of hypotheses. To reject H, for
 example, with a test having a low probability of erroneous rejections
 does not say the specific rejection has a low probability of being in
 error, but only that it arises from a testing procedure which has a low
 probability of leading to erroneous rejections. So, what is the rationale,
 it may be asked, for deeming a specific rejection of H as counter
 indicating hypothesis H?

 (ii) Tests as Decision 'Routines' with Pre-specified Error Properties: The
 NPT decision model does not give an interpretation customized to the
 specific result realized: a result either is or is not in the pre-specified
 rejection region. But, intuitively, if a given test rejects H with an
 outcome several standard deviations beyond the critical boundary (be
 tween rejection and acceptance of H), there is an indication of a greater
 discrepancy from H than if the same test rejects H with an outcome
 just at the critical boundary. Both, however, are identically reported
 as reject H (and accept some alternative J), and the probability of a
 Type I error (the test's pre-specified size) is identical for any such
 rejection.5 On this model, as Isaac Levi puts it, NPT tests are means
 "for using observation reports as inputs into programs designed to
 select acts" (Levi 1980, p. 406) as opposed to using them as evidence
 in deliberation.

 These features, taken as integral to a strict reading of the NPT model,
 underlie contemporary criticisms of NPT, as well as much of the original
 attack by R. A. Fisher. In his grand polemic style, Fisher declared that
 followers of the behavioristic approach are like

 Russians (who) are made familiar with the ideal that research in pure science can and
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 should be geared to technological performance, in the comprehensive organized effort
 of a five-year plan for the nation. (Fisher 1955, p. 70)

 A similar comparison is made with the United States:

 In the U.S. also the great importance of organized technology has I think made it easy
 to confuse the process appropriate for drawing correct conclusions, with those aimed rather
 at, let us say, speeding production, or saving money. (Ibid., p. 70)

 The allegation is essentially the one cited earlier (e.g., by Kyburg):
 NPT methods seem suitable for industrial acceptance sampling, but not
 for drawing inferences in science. (Much more needs to be said to
 explain and respond to contemporary criticisms of NPT, something
 attempted elsewhere, e.g. in Mayo (1982, 1983, 1985, 1988).) But
 contemporary critics seem to have overlooked Pearson's deliberate
 response to Fisher's attacks. Perhaps this is because it occurs in an
 obscure, very short (but fascinating) paper, 'Statistical Concepts in their
 Relation to Reality' (Pearson 1955), not found in The Selected Papers
 of E. S. Pearson.

 3. PEARSON REJECTS THE NEYMAN-PEARSON PHILOSOPHY

 3.1. Pearson's Heresy

 What one discovers in Pearson's (1955) response to Fisher (and else
 where in his work) is that for scientific contexts Pearson rejects both
 the low long-run error probability rationale, and the non-deliberational,
 routine use of tests. These two features are regarded as so integral to
 the NPT model that, along with Birnbaum and other philosophers of
 statistics, let us grant they are primary components of the strict Ney
 man-Pearson philosophy. But, then, I think it is fair to say that Pearson
 himself rejected the Neyman-Pearson philosophy (but not NPT meth
 ods). Pearson did not publish much on his own statistical philosophy
 per se, but evidence scattered throughout his statistical papers offers a
 fairly clear picture of the rationale underlying his rejection of these
 decision features of NPT.
 Let us begin with Pearson's (1955) response to Fisher's criticism. He

 insists that

 [t]here was no sudden descent upon British soil of Russian ideas regarding the function
 of science in relation to technology and to five-year plans. It was really much simpler -
 or worse. The original heresy, as we shall see, was a Pearson one! (Pearson 1955, p. 204)
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 Interestingly, Fisher directs his attacks at Neyman's behavioral ap
 proach, leaving Pearson out of it.6 Nevertheless, Pearson protests here
 that the "original heresy" was his (i.e., "was a Pearson one")! Pearson
 does not mean it was he who endorsed the behavioral-decision model

 that Fisher attacks. The "original heresy" refers to the break Pearson
 made (with Fisher) in insisting tests explicitly take into account alterna
 tive hypotheses, in contrast to Fisherian significance tests, which did
 not. With just the single hypothesis (the null hypothesis) of Fisherian
 tests, there were many ways to specify the test, rendering the choice
 too arbitrary. With the inclusion of a set of admissible alternatives to

 H, it was possible to consider Type II as well as Type I errors, and
 thereby to constrain the appropriate tests.

 So the central thing to see about Pearson's response to Fisher is that
 Pearson was not merely arguing that NPT methods can be interpreted
 in a manner other than a pragmatic behavioral-decision one, he was
 claiming that their original formulation (admittedly 'heretical' in the
 above sense) was not at all intended to capture decision-theoretic aims,
 aims which came later.

 Indeed, to dispel the picture of the Russian technological bogey, I might recall how
 certain early ideas came into my head as I sat on a gate overlooking an experimental
 blackcurrant plot. . .! (Ibid., p. 204)

 To this marvelous depiction of Pearson sitting on a gate, Pearson adds
 a description of his earnest intent:

 To the best of my ability I was searching for a way of expressing in mathematical terms
 what appeared to me to be the requirements of the scientist in applying statistical tests to
 his data. After contact was made with Neyman in 1926, the development of a joint
 mathematical theory proceeded much more surely; it was not till after the main lines of
 this theory had taken shape with its necessary formalization in terms of critical regions,
 the class of admissible hypotheses, the two sources of error, the power function, etc.,
 that the fact that there was a remarkable parallelism of ideas in the field of acceptance
 sampling became apparent. Abraham Wald's contributions to decision theory of ten to
 fifteen years later were perhaps strongly influenced by acceptance sampling problems, but
 that is another story. (Ibid., pp. 204-05; emphasis added)

 Pearson proceeds to 'Fisher's next objection': to the terms "acceptance"
 and "rejection" of hypotheses, and to the Type I and Type II errors.
 His admission is revealing of his philosophy:
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 It may be readily agreed that in the first Neyman and Pearson paper of 1928, more space
 might have been given to discussing how the scientific worker's attitude of mind could
 be related to the formal structure of the mathematical probability theory .... Nevertheless
 it should be clear from the first paragraph of this paper that we were not speaking of the
 final acceptance or rejection of a scientific hypothesis on the basis of statistical analysis ....
 Indeed, from the start we shared Professor Fisher's view that in scientific enquiry, a
 statistical test is 'a means of learning'.... (Ibid., p. 206; emphasis added)

 So for Pearson the NPT framework, with its consideration of alterna
 tive hypotheses, was an outgrowth of an attempt to provide the tests
 then in use with an epistemological rationale, one based on their func
 tion as learning tools. Pearson clearly distances the mathematical appar
 atus from the later behavioral-decision construal to which Fisher ob

 jected, declaring in the final line of this paper that

 Professor Fisher's final criticism concerns the use of the term 'inductive behavior'; this
 is Professor Neyman's field rather than mine. (Ibid., p. 207)

 3.2. Pearson Rejects the Long-run Rationale

 It seems clear that for Pearson, the value of NPT tests (in scientific or
 learning contexts) need not lie in the long-run error-rate rationale found
 in the decision model. Pearson raises the question as follows, with a
 mention of 'inference' already in contrast with Neyman:

 How far then, can one go in giving precision to a philosophy of statistical inference?
 . . . (Pearson 1947, p. 172)

 He considers the rationale that might be given to NPT tests in two
 types of cases, A and B:

 (A) At one extreme we have the case where repeated decisions must be made on results
 obtained from some routine procedure ....
 (B) At the other is the situation where statistical tools are applied to an isolated investi
 gation of considerable importance .... (Ibid., p. 170)

 In cases of type A, long-run results are clearly of interest, while in
 cases of type B, repetition is impossible or irrelevant. For Pearson's
 treatment of the latter case (type B) the following passage is telling:

 In other and, no doubt, more numerous cases there is no repetition of the same type of
 trial or experiment, but all the same we can and many of us do use the same test rules
 to guide our decision, following the analysis of an isolated set of numerical data. Why
 do we do this? What are the springs of decision? Is it because the formulation of the case
 in terms of hypothetical repetition helps to that clarity of view needed for sound judgment!
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 Or is it because we are content that the application of a rule, now in this investigation,
 now in that, should result in a long-run frequency of errors in judgment which we control
 at a low figure? (Ibid., p. 173; emphasis added)

 Regrettably, Pearson leaves this tantalizing question unanswered,
 claiming, "On this I should not care to dogmatize". Nonetheless, in
 studying how Pearson treats cases of type B, it becomes evident that
 in his view, "the formulation of the case in terms of hypothetical
 repetition helps to that clarity of view needed for sound judgment". In
 addressing this issue, Pearson intends to preempt the ('commonsense')
 criticism of long-run justifications of precisely the sort lodged by con
 temporary critics of NPT:

 Whereas when tackling problem A it is easy to convince the practical man of the value
 of a probability construct related to frequency of occurrence, in problem B the argument
 that 'if we were to repeatedly do so and so, such and such result would follow in the
 long run' is at once met by the commonsense answer that we never should carry out a
 precisely similar trial again.

 Nevertheless, it is clear that the scientist with a knowledge of statistical method behind
 him can make his contribution to a round-table discussion .... (Ibid., p. 171)

 In seeing how, we are at once led toward substantiating my second
 claim that Pearson rejects the routine use and interpretation of NPT
 tests found in the behavioral model. For the scientist's contribution
 requires using tests to learn about causes - something which cannot be
 reduced to routines.

 3.3. Pearson On Non-routine Uses of Tests: An Example of Type B

 The notion that a primary function of statistical tests is their ability to
 teach us about causes by answering a series of standard questions,
 found throughout Pearson's work, is summarized in the opening of a
 1933 paper, jointly written with Wilks:

 Statistical theory which is not purely descriptive is largely concerned with the development
 of tools which will assist in the determination from observed events of the probable
 nature of the underlying cause system that controls them .... We may trace the develop
 ment through a chain of questionings: Is it likely, (a) that this sample has been drawn
 from a specified population, P; (b) that these two samples have come from a common
 but unspecified population; (c) that these k samples have come from a common but
 unspecified population? (Pearson and Wilks 1933, p. 81)
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 Consider the following example Pearson gives of a case of type B,
 where no repetition is intended:7

 Example of type B. Two types of heavy armour-piercing naval shell of the same calibre
 are under consideration; they may be of different design or made by different firms ....
 Twelve shells of one kind and eight of the other have been fired; two of the former and
 five of the latter failed to perforate the plate .... (Pearson 1947, p. 171)

 The variable observed (i.e., the statistic) is the difference, D, between
 the proportions that perforate the plate from the two types of shell. Its
 observed value, Dobs, equals 11/24 (i.e., 10/12-3/8). Tests aid the
 scientist's "contribution to a round-table discussion", Pearson suggests,
 by informing of the result's cause, that is, by answering a question
 under (b), about the origin of the two samples of naval shells:

 Starting from the basis that individual shells will never be identical in armour-piercing
 qualities, however good the control of production, he has to consider how much of the
 difference between (i ) two failures out of twelve and (ii ) five failures out of eight is likely
 to be due to this inevitable variability. (Ibid., p. 171)

 Notably, Pearson does not simply report whether or not this observed
 difference falls in the rejection region (i.e., whether a test maps it to
 'reject H'), but calculates the probability "of getting as great or a
 greater positive difference" (ibid., p. 192) if hypothesis H were true -
 if there was no difference in piercing qualities. This is the significance
 level (Fisher's p-level) of the observed difference - a measure that
 clearly depends on the actual result observed.
 The causal function of tests that Pearson intends leads to what is

 perhaps the strongest evidence to substantiate my claim that Pearson
 rejects the core of the NPT decision model: in striking contrast to the
 decision model, Pearson suggests that little turns on which of the differ
 ent tests available one chooses to employ. Treating the (difference
 between two proportions) case in one way,8 Pearson obtains an ob
 served significance level of 0.052; treating it differently (along Barnard's
 lines), he gets 0.025 as the (upper) significance level. Pearson suggests
 that in important cases, the difference in error probabilities, depending
 on which of these tests is chosen, makes no real difference to substantive
 judgments in interpreting the results. It would make a difference, says
 Pearson, only in an automatic, routine use of tests:

 Were the action taken to be decided automatically by the side of the 5% level on which
 the observation point fell, it is clear that the method of analysis used would here be of
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 vital importance. But no responsible statistician, faced with an investigation of this charac
 ter, would follow an automatic probability rule. (Ibid., p. 192; emphasis added)

 This is important because it enables Pearson to avoid the often raised
 criticism that since different choices of a test's error probabilities may
 yield different - even opposite - hypothesis appraisals, and since select
 ing the error probabilities is somewhat arbitrary, there is a great deal
 of arbitrariness in the results. For on Pearson's view, this would yield
 no inconsistency, as long as one correctly understands the different
 meanings that should be attached to the results of different tests. Each
 is effectively asking a different question. With respect to the two ap
 proaches considered here, Pearson goes on to say that9

 [t]he result of either approach would raise considerable doubts as to whether the perfor
 mance of the first type of shell was as good as that of the second .... (Ibid., p. 192)

 Surprisingly, the same type of admonishment against an 'automatic'
 use of tests, along with other remarks redolent of Pearson's 'inferential'
 use of tests, occur not just in Pearson's own papers, but in one or two
 of the joint papers of Neyman and Pearson. In 1928, for example, 'they'
 wrote:

 If then a statistician thoughtlessly decides, whatever be the test, to reject an hypothesis
 when P ?s .01, say, and accept it when P > .01, it will make a considerable difference to
 his conclusions whether he uses [one test statistic or another]. But as the ultimate value
 of statistical judgment depends upon a clear understanding of the meaning of the statistical
 tests applied, the difference between the values of the two P's should present no difficulty.
 (Neyman and Pearson 1928, p. 18)

 (P here is equal to the significance level.) In other words, if the decision
 model of NPT is taken literally, one accepts or rejects H according to
 whether or not the observed outcome falls in the preselected rejection
 region. Just missing the cutoff for rejection, say, because the observed
 significance level is 0.06 while the fixed level for rejection is 0.05,
 automatically makes the difference between an acceptance and a rejec
 tion of H. The 'Pearsonian' view rejects such automation in scientific
 contexts because

 it is doubtful whether the knowledge that [the observed significance level] was really 0.03
 (or .06) rather than .05 . . . would in fact ever modify our judgment when balancing the
 probabilities regarding the origin of a single sample. (Ibid, p. 27)

 Most significant in this joint contribution is the declaration that
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 [i]f properly interpreted we should not describe one [test] as more accurate than another,
 but according to the problem in hand should recommend this one or that as providing
 information which is more relevant to the purpose. (Ibid., pp. 56-7)

 This introduces a criterion above and beyond low error rates, namely,
 the 'relevance' of the information. In addition, clues emerge for con
 necting tests (used nonroutinely) to what clearly sounds like inferences
 about causes:

 [T]he tests should only be regarded as tools which must be used with discretion and
 understanding.... we must not discard the original hypothesis until we have examined
 the alternative suggested, and have satisfied ourselves that it does involve a change in
 the real underlying factors in which we are interested . . . that the alternative hypothesis
 is not error in observation, error in record, variation due to some outside factor that it
 was believed had been controlled, or to any one of many causes .... (Ibid., p. 58)

 The very title of the joint paper in which these remarks are made -
 'On the Use and Interpretation of Certain Test Criteria for Purposes
 of Statistical Inference' - is itself clearly at odds with Neyman's decision
 philosophy. Puzzlement at this paper's distinct 'Pearsonian' flavor is
 removed if one spots a small and highly interesting note by Neyman at
 the end of this paper. It seems the 'joint' paper was largely a contribu
 tion by Pearson!

 I feel it necessary to make a brief comment on the authorship of this paper. Its origin
 was a matter of close co-operation, both personal and by letter.... Later I was much
 occupied with other work, and therefore unable to co-operate. The experimental work,
 the calculation of tables and the developments of the theory of Chapters III and IV are
 due solely to Dr. Egon S. Pearson. (Neyman and Pearson 1928, p. 66; signed by J.
 Neyman)

 4. PEARSONIAN PHILOSOPHY OF EXPERIMENTAL LEARNING

 4.1. Three Steps in the Original Construction of NPT Tests

 Pearson's discussion of the steps involved in the original construction of
 NPT tests brings out key differences between Pearson's and Neyman's
 philosophies and, at the same time, allows one to pinpoint the key
 difference between the NPT 'sampling' framework and non-sampling
 approaches. After setting up the test (or null) hypothesis, and the
 alternative hypotheses against which "we wish the test to have maxi
 mum discriminating power" (Pearson 1947, p. 173), Pearson defines
 three steps in test constructions:
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 Step 1. We must specify [the sample space,10] the set of results which could follow on
 repeated application of the random process used in the collection of the data ....

 Step 2. We then divide this set [of possible results] by a system of ordered bound
 aries . . . such that as we pass across one boundary and proceed to the next, we come to
 a class of results which makes us more and more inclined, the information available, to
 reject the hypothesis tested in favour of alternatives which differ from it by increasing
 amounts. (Ibid., p. 173)

 Results make us "more and more inclined" to reject H as they get
 further away from the results expected under H; that is, as the results
 become more probable under the assumption that some alternative J
 is true than under the assumption that H is true. The probability (or
 density) of a result e given H is called the likelihood of H given e.

 We are 'more inclined' toward J as against H to the extent that J is
 more likely than H given e.

 NPT requires a third step - to ascertain the error probability associ
 ated with each measure of disinclination (each 'contour level'):

 Step 3. We then, if possible, associate with each contour level the chance that, if [H] is
 true, a result will occur in random sampling lying beyond that level.11 (Ibid.)

 For example, Step 2 might give us the likelihood or the ratio of likeli
 hoods of hypotheses given evidence, i.e., the likelihood ratio. At Step
 3 the likelihood ratio is itself treated as a statistic, a function of the
 data with a probability distribution. This enables calculating, for in
 stance, the probability of getting a high likelihood ratio in favor of H,
 as against a specific alternative J', when in fact the alternative J' is
 true, i.e., an error probability. Learning that this probability is high
 counts against taking high likelihood for H as indicating the truth of H
 (as against J'). An analogy can be made with an examination score:
 Step 2 gives the score; Step 3 considers how frequently such a score
 would arise under various hypotheses, say, about what proportion of
 some material the person tested knows. Step 3 might tell us, for exam
 ple, that a score of 65% ('passing') would very frequently occur on the
 test in question even if the subject knew only 20% of the material. As
 with a statistical test, this counts against taking a passing score as a good
 indication that a subject knows most of the material. (This analogy, we
 shall see, also suggests the manner in which error probabilities at Step
 3 function in learning about causal origins.)

 Pearson explains that in the original test model Step 2 (using likeli
 hood ratios) did precede Step 3, and that only afterward did the NPT
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 model start with the fixed error value for Step 3 and then determine
 the associated contour (i.e., the critical bounds for the rejection region).
 Pearson warns that:

 although the mathematical procedure may put Step 3 before 2, we cannot put this into
 operation before we have decided, under Step 2, on the guiding principle to be used in
 choosing the contour system. That is why I have numbered the steps in this order. (Ibid.,
 p. 173)

 However, if the rationale is solely long-run error probabilities, one
 loses sight of Step 2. That is why it is invisible in the standard decision
 construal of NPT. On this construal, having set up the hypotheses and
 sample space (Step 1), there is a jump to Step 3, fixing the error
 probabilities, on the basis of which a good (or best) NPT test indicates
 which outcomes to map into 'reject H' (the rejection region). In a sense
 the result of Step 3 automatically accomplishes Step 2: it describes how
 the test, selected for its error probabilities, is dividing the possible
 outcomes. But this is different from having first deliberated at Step 2
 as to which outcomes are 'further from' or 'closer to' H in some sense,
 and thereby should incline us more or less to reject H. The resulting
 test, while having low error probabilities, may fail to ensure that the
 test has an increasing chance of rejecting H the more the actual situation
 deviates from the one H hypothesizes. Many counterintuitive NPT tests
 arise, e.g., certain mixed tests,12 I believe, because tests are couched
 in the decision framework in which the task Pearson intended for Step
 2 is absent.13

 4.2. Likelihood Principle vs. Error Probability Principles

 However, it might be asked, if Pearson is so concerned with Step 2,
 why go on to include Step 3 in the testing model at all? In other words,
 if Pearson is interested in how much a result 'inclines us' to reject H,
 why not just stop after providing a measure of such inclination at Step
 2, instead of going on to consider error probabilities at Step 3? Indeed,
 this is precisely what many critics of NPT have asked. This was essen
 tially Ian Hacking's (1965) point about NPT. Hacking argued that the
 likelihood ratio (of H against alternative J) provides an appropriate

 measure of support for H against J (a view he later came to doubt14).
 On such a likelihood view (he called it the Law of Likelihood) the tests
 should just report the measure of support or inclination (at Step 2)
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 given the data. This conveys the full impact of the data, so there is no
 need to go on to consider the probability distribution of the support
 measure itself (at Step 3). This last probability, being assigned over the
 sample space, is an example of a sampling distribution (in this case, of
 the likelihood ratio statistic), which is why NPT is called a 'sampling
 theory'.15

 This points out the crucial difference between NPT and non-sampling
 approaches, such as Bayesian or likelihood accounts: while in the for
 mer approach the (sampling) distribution is viewed as having crucial
 importance in interpreting results, e.g., in Step 3, in the latter, the
 relevant evidence contributed by the data is fully contained in the
 likelihood ratio actually obtained - a point formally expressed in the
 likelihood principle. According to the likelihood principle, which under
 lies Bayesian and likelihood accounts,16 as D. V. Lindley remarks:

 if we have 2 pieces of data . . . with the same likelihood function . . . the inferences about
 [fi] from the two data sets should be the same. This is not usually true in the orthodox
 [NPT] theory, and its falsity in that theory is an example of its incoherence .... As
 Jeffreys has said, what has what might have happened, but did not, got to do with
 inferences from the experiment? (Lindley 1976, p. 361)

 From the Bayesian point of view, the interest in what "might have"
 occurred renders NPT 'incoherent'; but, from the NPT point of view,
 Bayesian (and other non-sampling) methods are unpalatable just be
 cause they ignore what the data generation procedure might have pro
 duced. NPT error probabilities can only be derived from sampling
 distributions, the very distributions a committed Bayesian is, of course,
 happy to ignore as irrelevant for inference:17

 It is methods that are not based on the likelihood function that are suspect. In particular,
 unbiased estimates, minimum variance properties, sampling distributions, significance
 levels, power, all depend on something more - something that is irrelevant in Bayesian
 inference - namely the sample space. (Lindley 1971, p. 436; emphasis added)

 A number of contemporary criticisms of NPT concepts echo the same
 theme. Strictly speaking, such 'criticisms' are really expressions of the
 incompatibility of two aims: that of providing methods (for testing and
 estimation) with specifiable error probabilities, and that of providing a
 measure ('after the trial'), e.g., the likelihood ratio, posterior probabil
 ities to quantify support, belief, etcetera. Simply noting their inconsis
 tency leaves unanswered the question of whether one is more appro
 priate for a given task. The appropriateness of NPT for science turns
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 on showing why control of error probabilities is so important to experi
 mental learning. Here is where Pearson's rejection of the long-run
 rationale of error probabilities and his nonroutine use of tests (from
 Section 3) come together with the Pearsonian logic of test construction
 from Section 4.1.

 4.3. Likelihoods Alone {Step 2) are Insufficient for Pearsonian
 Reasoning

 Pearson's explanation of why he and Neyman deemed the error proba
 bility calculations of Step 3 so essential is not a pragmatic decision
 concern with low error rates (in the long run of business), but a concern
 with learning from experiments. Reflecting on this question (in 'Some
 Thoughts on Statistical Inference'), Pearson (1962, p. 277) tells of their
 "dissatisfaction with the logical basis - or lack of it - which seemed to
 underlie the choice and construction of statistical tests", explaining that
 he and Neyman "were seeking how to bring probability theory into
 gear with the way we think as rational human beings":

 But looking back I think it is clear why we regarded the integral of probability density
 within (or beyond) a contour as more meaningful than the likelihood ratio - more readily
 brought into gear with the particular process of reasoning we followed.

 The reason was this. We were regarding the ideal statistical procedure as one in which
 preliminary planning and subsequent interpretation were closely linked together - formed
 part of a single whole. It was in this connexion that integrals over regions of the sample
 space were required. Certainly, we were much less interested in dealing with situations
 where the data are thrown at the statistician and he is asked to draw a conclusion. I have

 the impression that there is here a point which is often overlooked.... (Ibid., pp. 277
 78; emphasis added)

 I have the impression that Pearson is correct. Perhaps because the
 philosophical problem for a theory of statistics is typically posed as how
 given data relate to hypotheses, (and because texts present statistical
 methods separately from those of experimental design), the main focus
 of philosophical discussions is on what rival approaches tell one to do
 once "data are thrown at the statistician and he is asked to draw a
 conclusion"; e.g., accept or reject for a NPT test or compute a posterior
 probability for a Bayesian.

 Why do error probabilities become relevant when the focus turns to
 the 'preliminary planning'?18 I suggest the reasons are these. For one,
 by considering ahead of time the chances a given experiment has of
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 detecting discrepancies of interest, one can avoid carrying out a study
 with little or no chance of teaching one what one wants to learn; for
 example, one can determine ahead of time how large a sample would
 need to be in a certain test to have a reasonably high chance (power)
 of rejecting H when in fact some alternative J is true. I take it that few
 would dispute this (before-trial) function of error probabilities. But
 error probabilities are also relevant for interpreting the particular re
 sults after the trial, and it is on this claim that I want to focus; for, as
 follows from the points of Section 4.2, it is this that is denied by non
 sampling theorists (e.g., those accepting the likelihood principle).19

 The (after-trial) uses of error probabilities are many, but they may
 all be traced to a single source: the fact that error probabilities are
 properties of the procedure that generated the experimental result.20 This
 permits error probability information to be used in getting the result
 to answer questions about the process that produced it, and so to
 answer questions about causes. For example, error probability consider
 ations are valuable Pearson explains

 because it helps us to assess the extent of purely chance fluctuations that are possible
 .... the result of applying the statistical test with its answer in terms of the chance of a

 mistaken conclusion if a certain rule of inference were followed, will help to determine
 the lines of further experimental work and the degree of confidence with which we
 proceed provisionally to adopt a new technique. (Pearson 1947, pp. 176-7; emphasis
 added)

 Let us reconsider Pearson's naval shell example. The (after-trial)
 question being asked was '[H]ow much of the difference between (i)
 two failures out of twelve and (ii) five failures out of eight is likely to
 be due to this inevitable variability' (Ibid., p. 171)? It is asked by testing
 hypothesis H:

 H: The observed difference is due to inevitable or 'chance'
 variability.

 (Alternative J would assert it is due to a systematic difference in the
 two shells, with respect to successfully piercing the plate (see Note 8).)
 The statistic D is the difference between the proportions of successful
 perforations of the plate from the two types of shell. The sampling
 distribution of D tells us that the observed difference Dobs is one
 improbably far from what would be expected were H correct. (The
 difference falls in the rejection region of a test of size approximately
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 0.05.) Even if no repetitions are planned, this informs us of the origin
 of this difference, and there are many ways to express this information
 in assessing H. One is that the observed difference (in piercing ability)
 is not easily accounted for by inevitable variability in the shells and
 measurement procedures, indicating that it is due to some systematic
 difference in the processes. A second, Pearson's, is that the result
 "would raise considerable doubts as to whether the performance of the
 first type of shell was as good as that of the second" (ibid., p. 192; see
 also Note 9). Further information may be obtained from the sampling
 distribution of D over alternatives to H, e.g., to find how large a
 systematic difference would be needed to generate differences as large
 as Dobs fairly frequently.

 I will say more about these causal interpretations later. Here I want
 to draw a contrast with approaches that do not make use of sampling
 distributions. From the work of Birnbaum, Armitage, and others, it is
 known that a likelihood evaluation can result in rejecting (or in some
 way disfavoring) a hypothesis H with high probability (in extreme cases
 with probability 1) even though H is true! So, one clearly cannot say
 that it is very improbable for H to be erroneously rejected in favor of
 J on a likelihood evaluation: it may often infer J, e.g., the observed
 difference is a systematic effect, when it is really due to inevitable
 fluctuations as hypothesized in H. That is, one cannot guarantee the
 low Type I error afforded by NPT tests. One can intuitively see how
 this may result from certain rules for (a) data generation, e.g., sampling
 until H is specifiably less likely than some alternative J,21 as well as (b)
 hypothesis selection, e.g., construct for the test hypothesis one that
 makes the observed result maximally likely.22 Since such procedures
 do not affect the likelihoods, they do not alter the input from the data,
 according to the likelihood principle, a fact known as 'irrelevance of
 the sampling plan'. Having described an extreme example in which
 "misleading interpretations will be suggested by the likelihood principle
 with probability unity", Birnbaum23 concludes:

 Thus it seems that the likelihood concept cannot be construed so as to allow useful
 appraisal, and thereby possible control, of probabilities of erroneous interpretations.
 (Birnbaum 1969, p. 128)

 Such error control is important for correctly identifying experimental
 effects. The naval shell example imagined no actual repetitions, but we
 are often interested in learning about repeatable effects, and here error
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 probabilities play a further role - that of helping to correct errors. For
 example, if H is rejected by a difference extremely improbable if H is
 true, then, if we are wrong, we would find we were rarely able to get
 the difference to recur, and in this way discover our original error.

 With baised procedures, in contrast, one can persist in rejecting H
 erroneously. A remark from the statistician Lucien LeCam capsulizes
 the contrast I am drawing in this section:

 One of the claims [of neo-Bayesians] is that the experiment matters little, what matters
 is the likelihood function after experimentation .... it tends to undo what classical statis
 ticians have been preaching for many years: think about your experiment, design it as
 best you can to answer specific questions, take all sorts of precautions against selection
 bias and your subconscious prejudices. It is only at the design stage that the statistician
 can help you. (Lecam 1977, p. 158)

 To be sure, Bayesians (and likelihoodists, if they consider prior
 likelihoods24) can respond that they may avoid such erroneous and ad
 hoc inferences through suitable assignments to the priors by which they
 will multiply the likelihoods; that is, although bias in the data generation
 and hypotheses selection may leave likelihoods unchanged (and there
 fore will not affect the contribution of the data), a Bayesian can com
 pensate in the prior probabilities of hypotheses. To this I imagine
 Pearson's reply to be: "Yes, you can avoid such errors, but it will
 depend on your having appropriate priors; while our aim is to ensure
 the avoidance of such errors regardless of prior beliefs".25 About (sub
 jective) Bayesian priors, Pearson has this to say:

 It seems to me that. . . [even with no additional knowledge] ... I might quote at intervals
 widely different Bayesian probabilities for the same set of states, simply because I should
 be attempting what would be for me impossible and resorting to guesswork. It is difficult
 to see how the matter could be put to experimental test.

 . . . can it really lead to my own clear thinking to put at the very foundation of the
 mathematical structure used in acquiring knowledge, functions about whose form I have
 often such imprecise ideas? (Pearson 1962, pp. 278-79)

 To summarize this section, NPT methods do, while non-sampling
 methods (based on the likelihood principle) do not, control error proba
 bilities of tests, and for a Pearsonian, an inability to control error
 probabilities matters (in a scientific context) not because of the desire
 to avoid too often making erroneous inferences in some long run, but
 because of the desire to distinguish genuine from spurious effects in a

This content downloaded from 
�������������198.82.230.35 on Wed, 21 Oct 2020 23:39:12 UTC������������� 

All use subject to https://about.jstor.org/terms



 254  DEBORAH G. MAYO

 given experiment. It is this aim - to correctly identify causes - that
 accords the importance to preliminary planning of which Pearson spoke.

 4.4. Pearsonian Logic for Learning about Causes

 To spell out the full Pearsonian 'logic' by which tests may be used to
 learn about causes goes beyond the present topic,26 but I think the
 points just made suggest the main outlines for a causal interpretation
 of the components of NPT tests. The hypotheses are assertions about
 the possible causal origins of experimental outcomes. The tests are
 used, not to reach decisions nor to assign hypotheses degrees of support
 or probability, but to learn how discrepant a hypothesized cause is (or
 is not) from the actual cause. The justification for using tests with
 specifiably low error probabilities is the corresponding intuition about
 what justifies inferences about causes: that an experimental result war
 rants inferring the cause hypothesized by H if it is practically impossible
 for it to have arisen from alternative sources. Conversely, such an
 inference is not warranted if it is easy (probable) for the result to have
 arisen from sources other than H. In this way tests with good error
 properties can be made to coincide with those appropriate for learning
 about causes. Of course a test's appropriateness will depend on what
 one wishes to learn - something no theory of statistics can decide. But,
 even if a test is inappropriate for a given inquiry, knowledge of the
 error probabilities (even if only approximate) will at least enable one
 to criticize the test and find out what has (not) been learned from
 the result. We have discussed the suggested causal interpretation of a
 rejection of H in the case of the naval shell example. Pearson also gives
 clues toward interpreting failures to reject, i.e., examples where the
 test 'accepts' hypothesis H. Here, too, error probabilities afford answers
 to causal questions in just the way we ordinarily make use of knowledge
 of the severity27 of a test to interpret what that test indicates about
 whatever it is being probed. The main points can be brought out in a
 simple example where the 'test' is an ultrasound probe.

 Imagine an ultrasound probe being used to learn the extent of disease
 or lack of disease in a patient's artery, as measured by some mean
 quantity imaged, p. Say /xN is the value of this mean in a normal artery,
 and the further from this value the more diseased. The hypotheses H
 and J corresponding to one type of causal question would be:
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 H: p = /xN (or p ^ pN): The result is due to a normal artery

 J: p > )llN: : The result is due to a diseased artery

 Let the observed result, xobs, lead to 'accept H'. That is, suppose xobs
 is not improbably far from what results from normal arteries (i.e.,
 where p = pN). The result, in other words, is a score that allows H to
 'pass' the test, so the report comes out that the patient is normal. The
 patient, let us suppose, wishes to know whether the result is really due
 to being normal. It seems obvious that knowledge of how probable an
 outcome such as hers would be under various assumptions about p is
 relevant. That is what error probabilities tell us. Were the patient to
 find out, for example, that such a passing score would often result even
 with abnormal values of the quantity, she has grounds to deny that her
 result is a good indication that her mean is normal. However, if it is
 practically impossible for such a passing result to occur if her artery
 were abnormal, then it is a good indication that she is in the normal
 range. Again, that is what error probabilities reveal. Passing a test T
 of hypothesis H with score x indicates H to the extent that such a
 passing score is improbable were H false and some alternative true.
 This calls for calculating, not just the usual power function but,

 Pr(such a passing score |J)

 for J ranging over the alternative parameter space (i.e., for abnormal
 values of p). This interpretation (of a passing result in this type of test)
 may be summarized in the following rule:

 RULE 1: A passing result xobs with a test T indicates the actual mean
 p is less than some p' just to the extent that a more extreme result (on
 the test statistic X) would, with high probability have occurred in test
 T if in fact p^ p'.

 That is,

 RULE 1: xobs with a test T indicates p< p' just to the extent that
 Pr(X^xobs|ju/)ishigh.
 The term "indicates" here means "indicates as the source or cause of
 the result". Rejections admit of analogous rules.

 This interpretation involves two calculations that differ from those in
 the NPT decision model. First, it is sensitive to the particular observed
 difference xobs. Second, it involves calculating the Pr(X ^ xobs|J) where
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 J ranges over alternative values of p. In contrast, the NPT power
 function is defined as Pr(X s? x* | J) where x* is the critical boundary
 beyond which the result is taken to reject H.28 Still, this seems to reflect
 Pearson's use of tests, as well as much day to day use of NPT methods.

 In any substantive causal inquiry, NPT methods would need to be
 used for a series of tests, aimed at rejecting each type of alternative to
 H. Rejecting a 'chance' hypothesis H, with its indication that some
 systematic factor is operating, is likely to be just a first step. Ruling
 out other substantive factors must be accomplished with subsequent
 statistical tests. As Pearson stressed, there is no need to justify any
 single test as best; several tests may be used to learn the answers to
 different questions, as well as to check each other's assumptions. It is
 only by spelling out how NPT affords this type of piecemeal approach
 that one can capture the use of these methods that I believe Pearson
 had in mind. Philosophers in search of a single global procedure for
 using data to update inferences have missed the power of a system
 which breaks down complex inquiries into manageable parts, and in
 which one question may be asked at a time.

 5. CONCLUSION

 I have argued that E. S. Pearson rejected the basic tenets of the decision
 philosophy that has come to be associated with NPT methods. It is to be
 hoped that criticisms of NPT which are really directed at that philosophy
 reconsider Pearsonian ideas of the use and rationale of tests. Ideally,
 the NPT methods, so widely used, will come to incorporate explicitly
 the piecemeal uses and causal interpretations implicitly used by many
 practitioners. Alterations in the key concepts may be required. For
 example, I suggest that it is useful to calculate (after-the-trial) the
 probability of a difference as significant as the one observed given
 various hypotheses. But we still retain what is central to sampling
 theory: the focus on a procedure's error probabilities. Such develop
 ments are entirely in keeping with Pearson's philosophy:

 There is perhaps in current literature a tendency to speak of the Neyman-Pearson
 contributions as some static system, rather than as part of the historical process of
 development of thought on statistical theory which is and will always go on. (Pearson
 1962, p. 276)
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 NOTES

 * A portion of this research was carried out during tenure of a National Endowment for
 the Humanities Summer Stipend Fellowship; I gratefully acknowledge that support. A
 version of this paper was presented at the 1987 meeting of the Society for Exact Philos
 ophy. This paper benefited from discussions and communications with George Barnard
 and Isaac Levi. I thank Harlan Miller for helpful comments on earlier drafts.
 1 Karl Pearson's subjectivist philosophy contrasts with that of his son Egon.
 2 For consistency with my notation, I substitute H and J for his Hi and H2, respectively.
 3 Birnbaum's system, incomplete at the time of his death, sought to make explicit the
 correspondence between an NPT result and a statement about strength of evidence (e.g.,
 conclusive, very strong, weak or worthless). For example, he interprets reject H against
 J with error probabilities a, ? equal to 0.01 and 0.2, respectively, as very strong statistical
 evidence for J as against H. The main shortcoming, as I see it, is that 'Pearsonian'
 reasoning seems to require a system in which tests with the same a, ? may yield results
 with very different amounts of evidential import. Birnbaum's rules do not seem to reflect
 such differences. Further criticism along these lines occurs in Pratt (1977). Attempts at
 'evidential' interpretations of NPT are discussed more generally in Mayo (1985).
 4 Neyman's sentiment has been differently understood. It might help to record his next
 sentence:

 In fact, no test can reveal any definite information about any statistical
 hypothesis if the values of the observable random variables which are
 possible under this hypothesis are also possible under some alternative one.
 (Neyman 1952, p. 66)

 5 The point here is that since the prespecified error probabilities are identical, they do
 not help in discriminating these two results, which is one of the sources of criticisms of
 NPT. Other uses of error probabilities can make this discrimination, in particular, those
 which I suggest are involved in a 'Pearsonian' model of tests. An analogous problem
 arises for NPT confidence intervals.

 6 George Barnard, in private communication, explains his part in Fisher's reception of
 NPT. While he brought to Fisher's attention how the testing framework favored by
 Neyman turned tests into pragmatic-decision tools, Barnard also distinguished this from
 Pearson's philosophy. Barnard (1985) provides an excellent discussion of historical devel
 opments in statistics, Barnard's past and most recent contributions, as well as comments
 from a number of statisticians.

 7 Pearson follows this naval shell example through a number of papers. Pearson was
 directly involved in the statistical assessment of army weapons in World War II, and
 after.

 8 The first treatment falls under what Pearson calls Problem I, (Barnard's "2x2 indepen
 dence trial" the question being restricted to just the twenty shells observed, the total
 number of failures being fixed at the observed one, seven. The test asks whether the
 observed difference is due to a random partition of the twenty individual shells, of which
 seven would fail to perforate in whichever group they are randomly included. The second
 way of treating this case views samples from the two processes as random samples from
 two populations, so the failure rates can vary from 0-12 and 0-8, respectively. The test
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 asks whether the probability of failure is the same in both. This falls under what Pearson
 calls Problem II (Barnard's "2 x 2 comparative trial"). For the naval shell example,
 Pearson deems the latter treatment, preferred by Barnard, more artificial than the former:
 it regards the experiment as though "it were made on twenty shells, to twelve of which
 has been randomly assigned the label 'Made by firm X' and to the other eight, 'Made
 by firm Y'" (Pearson 1947, p. 192). The question of which of a number of ways to treat
 the 2x2 case had been much debated by Barnard and Fisher at that time. Pearson's
 answer is that the appropriate sample space is given "by the nature of the random process
 actually used in the collection of the data". But armed with an understanding of tests,
 he does not think one must rigidly choose from among several plausible tests.
 9 Pearson's conclusion inadvertently switches the observation to 2 of 12 and 5 of 8
 successful perforations, where originally they had been failures. So, the conclusion,
 consistent with the original statement, should raise doubts as to whether the second type
 of shell is as good as the first, rather than conversely.
 10 Here Pearson calls it the 'experimental probability set'.
 11 Where this is not achievable (e.g., certain tests with discrete probability distributions)
 the test can associate with each contour an upper limit to this error probability.
 12 In a mixed test certain outcomes instruct one to apply a certain chance mechanism
 and accept or reject H according to the result. Because long-run error rates may be
 improved using some mixed tests, it is hard to see how a strict follower of NPT (where
 the lower the error probabilities the better the test) can inveigh against them. This is not
 the case for one who rejects the decision model of NPT as Pearson does. A Pearsonian
 could rule out the problematic mixed tests as being at odds with the aim of using the
 data to learn about the causal mechanism operating in a given experiment. Ronald Giere
 has presented this type of argument against mixed tests, appealing to propensity notions.
 See, for example, Giere (1976).
 13 A notable exception is the exposition of tests in Kempthorne and Folks (1971) in which
 test statistics are explicitly framed in terms of distance measures. Their interpretation of
 tests shares other key aspects with the approach I am recommending. See note 28.
 14 Interestingly, Hacking (1972) raises such doubts in reviewing Edwards (1972) on the
 basis of the type of problematic cases discussed in the rest of this section. Hacking (1980)
 questions other aspects of his 1965 likelihood approach, allowing that NPT does provide
 an account of inference.

 15 Fisherian methods would also fall under sampling theory, as would some eclectic
 approaches.
 16 The likelihood principle falls out directly from Bayes' Theorem. Birnbaum is responsi
 ble for showing, to the surprise of many, that it follows from two other principles,
 sufficiency and conditionality (together, or conditionality by itself). This result - while
 greeted with dismay by many non-Bayesians, who balked at the likelihood principle,
 but had thought sufficiency and conditionality intuitively plausible (including Birnbaum
 himself) - was welcomed with open arms by Bayesians, who saw in it a new corridor to
 a key Bayesian tenet. A third way would be to steer a path between the likelihood
 principle and advocating any and all principles that decrease error probabilities, thereby
 keeping certain aspects of sufficiency and conditionality when they are warranted.
 Birnbaum, I take it, sought to articulate some such third way. Elsewhere, I attempt to
 utilize the 'Pearsonian philosophy' discussed here to carry this broad strategy further.
 17 In practice, however, at least some Bayesians find error probability considerations
 useful, but, for consistency, they need to give Bayesian justifications for their use. I. J.
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 Good provides the most systematic framework for linking sampling theory measures to
 Bayesian ones in his 'Bayes/non-Bayes' compromise. In connection to the discussion of
 this section, see Good (1981).
 18 It is not that non-sampling methods lack theories of experimental design. The contrast
 is that in sampling theories, the plan of data and hypotheses generation is reflected
 directly in assessing the import of the data: different plans produce different error
 probabilities.
 19 It has often been suggested, e.g., Hacking (1965), that error probabilities, while
 acceptable for before-trial planning, should be replaced with other measures (e.g., likeli
 hoods) after the trial. Pearson takes up and rejects this same proposal, raised by Barnard
 in 1950, reasoning that

 if the planning ... is based on a study of the power function of a test and
 then, having obtained our results, we do not follow the first rule but another,
 based on likelihoods, what is the meaning of the planning? (Pearson 1963,
 p. 228).

 20 It may be objected that there are different ways to model the procedure. That is
 correct, and this enables different but interrelated questions to be asked to great advan
 tage. This relates to Pearson's rejection of routine uses of tests in Section 3.3.
 21 Armitage's (1961) example is of this sequential sort: the rule instructs one to stop
 when the likelihood of a (simple) hypothesis H reaches an arbitrarily small value a for
 the first time. The result is that H is guaranteed (i.e., with probability 1) an assignment
 of so small a likelihood, even if H is true. This type of case and why it vitiates Hacking's
 (1965) likelihood testing approach is discussed in Mayo (1981).
 22 For example, in considering a series of hypotheses about various characteristics Q,
 C2,. . . , Cn in some population, e.g., about the proportion that share characteristic Q,
 a rule might choose only to test a hypothesis for which the data accords maximal
 likelihood. In cases where the after-trial specification of hypotheses vitiates pre-specified
 error probabilities, the NPT test insists upon predesignation of hypotheses. A good
 discussion of how this type of after-trial construction leads to bias in Bayesian estimation
 occurs in Giere (1969).
 23 Birnbaum's example considers hypotheses about the mean jjl and standard deviation
 <j of a normal distribution. An observation x would accord maximum likelihood to the

 hypothesis H that ?jl = x and a = 0. Let the true hypothesis be J that ?jl = 0 and cr = 1.
 Then, with probability 1, a likelihood appraisal would erroneously favor H over J.
 Birnbaum attributes an analogous example to Neyman (1952).
 24 A. N. F. Edwards (1972) is perhaps the most thorough going likelihood approach
 incorporating prior likelihoods.
 25 Of course where the hypotheses are assertions to which a frequentist prior can be
 assigned, it is open to a sampling theorist to apply Bayes' theorem. Suppose we were
 doing an experiment involving a randomly-selected naval shell, where p% of such trials
 would yield a shell with a rate of successful perforations equal to r. In that circumstance
 a frequentist could sensibly assign a probability of p to a hypothesis "the rate of successful
 perforations of a naval shell equals r". This is not the typical circumstance, however,
 leading Neyman and Pearson to seek methods that do not require such priors.
 26 See Mayo (1985, 1988, 1991) for more detailed, but still incomplete, attempts.
 27 This notion, as I use it here, accords with Popper's general idea of a 'severe test'.
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 See, for example, Popper (1972, pp. 14, 353-54). I develop and apply a formal notion
 of severity in Mayo (1988 and 1991).
 28 Kempthorne and Folks (1971) erect a system based on this type of calculation. In
 verting significance tests, an observed result is used to give a family of confidence, or
 what they call 'consonance', intervals - one for each value of the confidence level
 (alternatively, the significance level). Features of their approach helped shape the one I
 recommend. The sets of parameter values 'indicated' according to Rule 1 are formally
 equivalent to their consonance intervals (for certain values of a). However, there are
 differences in interpretation, some of which are discussed in Mayo (1985) (e.g., Note
 13), as well as in the experimental uses to which I intend these calculations to be put.
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