

ALGEBRA Inequalities & Quadratic Equations

RAJ WIJESINGHE

Did you hear about the rose that grew from a crack in the concrete? Proving nature's law is wrong it learned to walk without having feet.

Funny it seems, but by keeping its dreams, it learned to breathe fresh air.

Long live the rose that grew from concrete when no one else ever cared.

38. Find	the partial fractions of $\frac{x+4}{(x+7)(2x-1)}$	

100. Show $\frac{5x+7}{(x+1)^2(x+2)}$ in the form of partial fractions.

117. The quadratic equations $ay^2 + by + c = 0$ and $a'y^2 + b'y + c' = 0$ have the same
roots. Show that $\frac{b}{a} = \frac{b'}{a'}$ and $\frac{c}{a} = \frac{c'}{a'}$
119. The quadratic equation $x^2 - x + 1 = 0$ has roots α , β . For positive integers n, let $A_n = \alpha^n + \beta^n$ Without solving the equation show that $A_n = 1$ $A_n = -1$ and $A_{n+n} = -1$

·		
126		
126.		
126.	(a)	
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.
126.	(a) (b)	Express f(x) in the form $A + \frac{B}{x-4} + \frac{C}{x-3}$, where A, B and C are constant.

185.	
	(4) If $p(y) = y^3 + 2y^2 = 5 - q(y) = -2y^3 + 2y^2 - y - 1 - r(y) = -2y^4 + y^3$
	(4) = 5x + 3x + 3x + 3, q(x) = 2x + 2x + 2x + 1, r(x) = 3x + x $+ 5x - 4;$
c)	

187. 1. x ² - x - 4 ÷ (x - 1)	2. $x^3 + x - 1 \div (x + 1)$
3. $x^3 - x^2 + x - 1 \div (x - 2)$	4. $2x^2 - x - 1 \div (x - 3)$
5. $x^4 + 2x^3 + x^2 \div x - 2 \div (x - 1)$	6. $2x^4 + 3x - 1 \div (2x - 1)$
7. $x^3 - 2x^2 - x + 5 \div (3x + 1)$	8. $2x^4 - 7x^3 + 12x^2 - 2x - 5 \div (2x + 1)$

f(a) - f(b)	(af(b) - bf(a))			
(a-b) X	(a – b)			
195. <mark>(1) Fine</mark>	m and n as the r	emainder is 5x	· 2 when the poly	nomial
f(x)	$\equiv x^4 - mx^2 + n$ is	divided by (x	$(+ 1)^2$.	
(2) If <u>(</u> 2	$(2^2 + 1)$ is a factor	of the polynon	nial $f(x) \equiv x^4 + px^4$	$x^3 + 3x + q$, find
and	q. For the values	obtained for p	and q, find real ro	oots of the equa
x ⁴ -	$- px^3 + x^2 + 3x +$	-q + 1 = 0.		

$(2) x^3 - 7x - 6$
209. Express the polynomial $x^3 - 3x^2 + 10x - 5$ in the form $Ax(x - 1)(x + 2) + Bx(x - 1)(x + 2)$
1) + $(x + 1)$. Here, A, B, C and D are constants that are needed to be found.
214. (1) The polynomial $x^8 + 2x^7 + ax^2 + bx + c$ is divided completely by $x^2 + x - 2$, and the remainder is -8 when the polynomial is divided by $(x + 1)$.
Find a, b and c.

231. If $x^3 + ax^2 + b$ and $ax^3 + bx^2 + x - a$ have a common factor, show that it is a
factor of (b - a^2) $x^2 + x - a(1 + b)$ too.
234 Equation $3x^4 + 2x^3 - 6x^2 - 6x + n = 0$ have two common roots. Find the value
of p.

247. (i) If the remainders are equal when the function $f(x) \equiv 2x^2 + px^2 - qx + r$ is
divided by x-1 and x – 2, show that $3p - q + 21 = 0$.
250
(ii) Divide the function P (x) = $2x^3 + 4x^2 + 3x + 3$ by x + 2.

252. $x^{\circ} + 2x' - 3x^{\circ} + px + q$	
	-
255 (i) Here a is a negliger of $f(y) = 2y^2 + 2y^2 + 2y + a$ Show that $y = 2y^2 + 2y^2 + 2y + a$, ic a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$	ı is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	ı is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	ı is a
255. (i) Here a is a non-zero integer and f(x) = 2x ³ + 3x ² - 3x + a. Show that x - a factor of f(x).	ı is a
255. (i) Here a is a non-zero integer and f(x) = 2x ³ + 3x ² - 3x + a. Show that x - a factor of f(x).	ı is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	ı is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	ı is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	ı is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	i is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	i is a
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$.	i is a
255. (i) Here a is a non-zero integer and f(x) = 2x ³ + 3x ² - 3x + a. Show that x - a factor of f(x).	
255. (i) Here a is a non-zero integer and $f(x) = 2x^3 + 3x^2 - 3x + a$. Show that $x - a$ factor of $f(x)$	

260.	
(ii)	Using $x + \frac{1}{x} = t$ or some other way, find all the factors of the equation $x^4 - 5x^3 + 8x^2 - 5x + 1 = 0$.

269. When the polynomial function $f(y)$ is divided by $z \neq 0$, $y^2 = z^2$, the re	mainda
Ax + B.	Indinue
Show that $A = \frac{1}{2} [f(a) - f(-a)], B = \frac{1}{2} [f(a) - f(-a)].$	
Deduce the remainder when $f(x)$ is divided by, $x^2 - 3^2$. If $f(x) = x^3 + x^3$	<mark>- 3 dedı</mark>
the remainder.	
	_

270. f(x) is a polynomial function of second degree. f(x) is divisible exactly by x+3.
When divided by (x-2) and (x+1), remainders are respectively 5 and -4. Find f(x). Here f(x) = (px + q -1) f (x). p and q are constants. If the remainder is 2x-2, when the function f(x) is divided by (x+1) (x+2), find p and q.

- 273. Given that $f(x) = 4x^3 + 3x^2 + 2x + 1$, $g(x) = ax^2 + bx^3 + d$ find the values that would satisfy the condition f(x) = g(x)
- 274. Given that $4x^3 + 2x^2 + 3x + 17 \equiv Ax^2(x-1) + B(x-1)^2(x-2) + C(x+1)$ find the values of A,B,C that satisfy the identity.

276. Given that $f(x) = 4x^4 + 2x^3 + x^2 - 3x + 1$ is the dividend and $x^2 + 2x + 3$ is the divisor, find the answer (quotient) and the remainder.

279. Divide the function $3x^3 + 2x^2 + 4x - 1$ by $3x + 1$

- 303. if x-3 is a common root of $f(x) = 2x^3 x^2 + 3px + 2q$ and $g(x) = 2qx^3 + 5qx^2 + 4x 3$ find the values of p, q and r
- 304. if n is odd positive integers, show that when $x^n + 1$ is divided by $x^2 1$, remainder is equal to x + 1. Find the solution function (quotient) when it is divided by $x^2 - 1$
- 305. Divide the polynomial $f(x) = 2x^5 px^2 + 3x$ by (x 1) (x 2) (x 3). If the remainder does not consist of x^2 find the value of p.
- 306. When the polynomial f(x) which has higher degree than 2 is $k \neq 0$, show that dividing by $x^2 k^2$ gives a remainder of $\frac{1}{2k} [f(k) f(-k)]x + \frac{1}{2} [f(k) + f(-k)]$

310. When $f(x)$ which is a polynomial, is divided by $(x - 1)(x+1)(x + 2)$ remainded
is equal to A(x+1) (x +2) +B (x-1)(x+2)+ C(x-1) (x+1) . Find the values of A,B
and C using f(-1), f(1) f(-2). If $f(x) = 2x^5 + 4x^4 + x^2 - 2x + 1$ deduce the
remainder
312.
313. $f(a, b, c) = a^3 (b - c) + b^3 (c - a) + c^3 (a - b)$ Find factors

325. Given that the remainder of $f(x) = 2x^3 + 4x^2 - 3x + 2$ and $\emptyset(x) = x^3 - 2x^2 + 2x + 5$ for a fixed by the block of the block
$3x^{2} + 2x + 5$ functions when divided by x – a is equal, show that $a^{3} + 7a^{2} - 5a - 3 = 0$ find the integer values that satisfy the equation

328. (i) Given that $3x^2 + 5xy - 2y^2 + 5x - 4y + k = (lx + my + n) (lx + my + n.)$
find the constants l., m., n., k
329. (i) $x^4 - 5x^3 + 4x^2 + 5x + 1 = 0$ solve the equation.

333. (a) $f(x) \equiv x^4 - bx^3 - 11x^2 + 4(b+1)x + a$. in this function, a and b are
constants. Show that
(i) $f(x)$ is a perfect square.
(ii) $x + 2$ is a factor of $f(x)$, find the a and b. Find the all factors of $f(x)$

(ii) $x^8 + 2x^7 + ax^2 + bx + c$ is perfectly divisible by $x^2 + x - 2$. When the same equation is divided by x+1, there is a remainder of 8. Find the a, b and c.

<mark>352.</mark>	f(x) is a polynomial in x of degree greater than 3. When $f(x)$ is divided by
	(x-1), $(x-2)$ and $(x-3)$, the remainders are a, b and c respectively. By
	repeated application of the Remainder Theorem, show that when $f(x)$ is
	divided by $(x - 1)(x - 2)(x - 3)$, the remainder can be expressed as
	$\lambda(x-1)(x-2) + \mu(x-1) + \nu$, where λ and μ are constants.
	Find λ , μ and ν in terms of a, b and c.
	<mark>(2007)</mark>

<mark>354.</mark>	Prove that if a polynomial $f(x)$ is divided by $(x - \alpha)$ then the remainder is $f(\alpha)$.
	When the polynomial $f(x)$ is divided by $(x - \alpha)(x - \beta)(x - \gamma)$, where α, β and γ
	are unequal real numbers the remainder takes the form $A(x - \beta)(x - \gamma) + \beta$
	$B(x-\alpha)(x-\gamma)+C(x-\alpha)(x-\beta).$
	Express the constants A,B and C in terms of $\alpha \beta, \gamma, f(\alpha), f(\beta)$ and $f(\gamma)$.
	Hence, find the value of the constant k for which the remainder when $x^5 - kx$ is divided
	by $(x + 1) (x - 1)(x - 2)$ contains no term in x.

_		

361.	Sket	ch the g	graphs o	of $y =$	<i>x</i>	+ 1 a	ind y	= 2	<i>x</i> - 1	in the	sam	ie diagram
	Hen	ce or oth	nerwise,	find all	l real	l value	s of x s	satisfy	ing the	e inequa	ality	x + 1 >
	2 2	x - 1										
												(2016)
	Let	p(x) =	$x^{3} + 2x^{2}$	$x^{2} + 3x - x^{2}$	- 1	and q((x) = x	x ² + 3	<i>x</i> + 6.	Using	the	remainder
<mark>364</mark>	Let c	$r(\pm 0)$ a	nd d he	<mark>- real n</mark>	umh	ers an	d let	f(x) =	$= r^3 +$	$4x^2 + a$	rr + r	d
501						cro, an						

ALGEBRA 2

Maths Simplified!

mathscriber .com 0772461477

B.Sc (Math Sp.) M.Sc