ヘLGEBR^ Inequalities \& Ouadratic Equations

RAJ WIJESINGHE

Did you hear about the rose that grew from a crack in the concrete?
Proving nature's law is wrong it learned to walk without having feet.

Funny it seems, but by keeping its dreams, it learned to breathe fresh air.

Long live the rose that grew from concrete when no one else ever cared.

PARTIAL FRACTIONS

PARTIAL FRACTIONS

PARTIAL FRACTIONS

PARTIAL FRACTIONS

PARTIAL FRACTIONS

PARTIAL FRACTIONS

PARTIAL FRACTIONS

(b) Express $\mathrm{f}(\mathrm{x})$ in the form $A+\frac{\mathrm{B}}{\mathrm{x}-4}+\frac{\mathrm{C}}{\mathrm{x}-3}$, where A, B and C are constant.

REMAINDER THEOREM \& FACTOR THEOREM

11 | Page

REMAINDER THEOREM \& FACTOR THEOREM

REMAINDER THEOREM \& FACTOR THEOREM

$13 \mid P a g e$

148. (a) $f(x)=x^{4}-b x^{3}-11 x^{2}+4(b+1) x+a$.

\square
\square

REMAINDER THEOREM \& FACTOR THEOREM

REMAINDER THEOREM \& FACTOR THEOREM

16 \| Page

REMAINDER THEOREM \& FACTOR THEOREM

185.

(4) If $p(x)=x^{3}+3 x^{2}-5, q(x)=2 x^{3}+2 x^{2}-x-1, r(x)=3 x^{4}+x^{3}-2 x^{2}$ $+5 \mathrm{x}-4 ;$

c)

(2) If $p(x)=3 x^{4}+2 x^{3}-5, q(x)=2 x^{3}+x^{2}-x-1$; find $p(x) q(x)$.

187. 1. $x^{2}-x-4 \div(x-1)$	2. $x^{3}+x-1 \div(x+1)$
3. $x^{3}-x^{2}+x-1 \div(x-2)$	4. $2 x^{2}-x-1 \div(x-3)$
5. $x^{4}+2 x^{3}+x^{2} \div x-2 \div(x-1)$	6. $2 x^{4}+3 x-1 \div(2 x-1)$
7. $x^{3}-2 x^{2}-x+5 \div(3 x+1)$	8. $2 x^{4}-7 x^{3}+12 x^{2}-2 x-5 \div(2 x+1)$

\square

REMAINDER THEOREM \& FACTOR THEOREM

\square 195. (1) Find m and n as the remainder is $5 x-2$ when the polynomial $\mathrm{f}(\mathrm{x}) \equiv \mathrm{x}^{4}-\mathrm{mx}^{2}+\mathrm{n}$ is divided by $(\mathrm{x}+1)^{2}$

(2) If $\left(x^{2}+1\right)$ is a factor of the polynomial $f(x) \equiv \mathrm{x}^{4}+\mathrm{px}{ }^{3}+3 \mathrm{x}+\mathrm{q}$, find p

 and q. For the values obtained for p and q , find real roots of the equation $x^{4}+p x^{3}+x^{2}+3 x+q+1=0$

REMAINDER THEOREM \& FACTOR THEOREM

REMAINDER THEOREM \& FACTOR THEOREM

[^0] $1)+(x+1)$. Here, A, B, C and D are constants that are needed to be found.

214. (1) The polynomial $x^{8}+2 x^{7}+a x^{2}+b x+c$ is divided completely by $x^{2}+x$, and the remainder is -8 when the polynomial is divided by $(x+1)$. Find a, b and c

REMAINDER THEOREM \& FACTOR THEOREM

REMAINDER THEOREM \& FACTOR THEOREM

231. If $x^{3}+a x^{2}+b$ and $a x^{3}+b x^{2}+x-a$ have a common factor, show that it is a factor of $\left(b-a^{2}\right) x^{2}+x-a(1+b)$ too.

REMAINDER THEOREM \& FACTOR THEOREM

REMAINDER THEOREM \& FACTOR THEOREM

247. (i) If the remainders are equal when the function $f(x) \equiv 2 x^{2}+p x^{2}-q x+r$ is divided by $x-1$ and $x-2$, show that $3 p-q+21=0$.

250.
(ii) Divide the function $P(x)=2 x^{3}+4 x^{2}+3 x+3$ by $x+2$.

REMAINDER THEOREM \& FACTOR THEOREM

(ii) Using $x+\frac{1}{x}=t$ or some other way, find all the factors of the equation

268. When the polynomial function $f(x)$ is divided by $a \neq 0, x^{2}-a^{2}$, the remainder is $A x+B$.

Show that $A=\frac{1}{2 a}[f(a)-f(-a)], B=\frac{1}{2}[f(a)-f(-a)]$.
Deduce the remainder when $f(x)$ is divided by, $x^{2}-3^{2}$. If $f(x)=x^{3}+x-3$ deduce the remainder.

270. $f(x)$ is a polynomial function of second degree. $f(x)$ is divisible exactly by $x+3$. When divided by $(x-2)$ and $(x+1)$, remainders are respectively 5 and -4 . Find $f(x)$. Here $f(x)=(p x+q-1) f(x) . p$ and q are constants. If the remainder is $2 x-2$, when the function $f(x)$ is divided by $(x+1)(x+2)$, find p and q.

273. Given that $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{3}+3 \mathrm{x}^{2}+2 \mathrm{x}+1, \mathrm{~g}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}^{3}+\mathrm{d}$ find the values that would satisfy the condition $f(x)=g(x)$
274. Given that $4 x^{3}+2 x^{2}+3 x+17 \equiv A x^{2}(x-1)+B(x-1)^{2}(x-2)+C(x+1)$ find the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ that satisfy the identity.

276. Given that $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{4}+2 \mathrm{x}^{3}+\mathrm{x}^{2}-3 \mathrm{x}+1$ is the dividend and $\mathrm{x}^{2}+2 \mathrm{x}+3$ is the divisor, find the answer (quotient) and the remainder.
\square
279. Divide the function $3 x^{3}+2 x^{2}+4 x-1$ by $3 x+1$

\square
\square

295. $f(x)$ is a polynomial of squared or higher degree of x. Given $a \neq b$, show that when $f(x)$ is divided by $(x-a)(x-b)$ remainder is $f(a) \frac{(x-b)}{1-b} x+f(b) \frac{(x-a)}{b-a}$
296. If, $f(x)=x^{10}+2 x^{9}+a x^{2}+b x+c$ divide by $x+1$, remainder is -9 and if same function is divided by $x^{2}+x-2$,remainder is $4 x-1$ find the values of constants a, b and c .

300. show that $(x-a)$ is a factor of the polynomial $f(x)=x^{3}+a x^{2}-a^{2} x-a^{3}$ and find the other factors.
301. when polynomial $f(x)=x^{11}+2 x^{10}+p x^{2}+2 q+r$ is divided by $x-1$

302. Find the remainder when $f(x)=2 x^{6}+4 x^{5}+3 x^{2}-2 x+3$ is divided by $(x-1)$ $(x+1)(x+2)$. Find the quotient when the first function is divided by $(x-1)(x+1)(x+2)$
303. if $x-3$ is a common root of $f(x)=2 x^{3}-x^{2}+3 p x+2 q$ and $g(x)=2 q x^{3}+$ $5 q x^{2}+4 x-3$ find the values of p, q and r
304. if n is odd positive integers, show that when $x^{n}+1$ is divided by $x^{2}-1$, remainder is equal to $x+1$. Find the solution function (quotient) when it is divided by $x^{2}-1$
305. Divide the polynomial $f(x)=2 x^{5}-p x^{2}+3 x$ by $(x-1)(x-2)(x-3)$. If the remainder does not consist of x^{2} find the value of p.
306. When the polynomial $f(x)$ which has higher degree than 2 is $k \neq 0$, show that dividing by $\mathrm{x}^{2}-\mathrm{k}^{2}$ gives a remainder of $\frac{1}{2 k}[\mathrm{f}(\mathrm{k})-\mathrm{f}(-\mathrm{k})] \mathrm{x}+\frac{1}{2}[\mathrm{f}(\mathrm{k})+\mathrm{f}(-\mathrm{k})]$

310. When $f(x)$ which is a polynomial, is divided by $(x-1)(x+1)(x+2)$ remainder is equal to $A(x+1)(x+2)+B(x-1)(x+2)+C(x-1)(x+1)$. Find the values of A, B and C using $f(-1), f(1) f(-2)$. If $f(x)=2 x^{5}+4 x^{4}+x^{2}-2 x+1$ deduce the remainder

325. Given that the remainder of $f(x)=2 x^{3}+4 x^{2}-3 x+2$ and $\varnothing(x)=x^{3}-$ $3 x^{2}+2 x+5$ functions when divided by $x-a$ is equal, show that $a^{3}+7 a^{2}-5 a-3=0$ find the integer values that satisfy the equation.

REMAINDER THEOREM \& FACTOR THEOREM

328. (i) Given that $3 x^{2}+5 x y-2 y^{2}+5 x-4 y+k=(l x+m y+n)(l x+m y+n$. $)$ find the constants $\mathrm{l} ., \mathrm{m} ., \mathrm{n}$., k
329. (i) $x^{4}-5 x^{3}+4 x^{2}+5 x+1=0$ solve the equation.

REMAINDER THEOREM \& FACTOR THEOREM

(b) $\mathrm{f}(\mathrm{x})$ is a polynomia

$\mathrm{f}(\mathrm{x}) \equiv \mathrm{x}^{5}+3 \mathrm{x}^{4}-2 \mathrm{x}^{3}+2 \mathrm{x}^{2}-3 \mathrm{x}+1$
(i) Show that $\mathrm{x}-1$ or $\mathrm{x}+1$ are not factors of $\mathrm{f}(\mathrm{x}$)
(ii) Find the remainder when $\mathrm{f}(\mathrm{x})$ is divided by $\mathrm{x}^{2}-1$
339. (i) $x\left(y^{4}-z^{4}\right)+y\left(z^{4}-x^{4}\right)+z\left(x^{4}-y^{4}\right)$ factorize
(ii) assume that $f(x)=x^{2}-2 x+2$ and $g(x)=6 x^{2}-16 x+19$. Find the value of λ when $f(x)+\lambda g(x)$ function is converted to the form of $a(x+b)^{2}$ where a and b are real constants. Based on that providing values for A, B and C express $f(x)$ in the form of $A(x-3)^{2}+B(x+c)^{3}$. Also show $g(x)=$ $10 A(x-3)^{2}+5 B(x+c)^{2}$ find the smallest and largest values of $\frac{f(x)}{g(x)}$

REMAINDER THEOREM \& FACTOR THEOREM

\qquad
352. $f(x)$ is a polynomial in x of degree greater than 3 . When $f(x)$ is divided by $(x-1),(x-2)$ and $(x-3)$, the remainders are a, b and c respectively. By repeated application of the Remainder Theorem, show that when $f(x)$ is divided by $(x-1)(x-2)(x-3)$, the remainder can be expressed as $\lambda(x-1)(x-2)+\mu(x-1)+v$, where λ and μ are constants.

Find λ, μ and v in terms of a, b and c.

354. Prove that if a polynomial $f(x)$ is divided by $(x-\alpha)$ then the remainder is $f(\alpha)$. When the polynomial $f(x)$ is divided by $(x-\alpha)(x-\beta)(x-\gamma)$, where α, β and γ are unequal real numbers the remainder takes the form $A(x-\beta)(x-\gamma)+$ $B(x-\alpha)(x-\gamma)+C(x-\alpha)(x-\beta)$.
Express the constants A, B and C in terms of $\alpha \beta, \gamma, f(\alpha), f(\beta)$ and $f(\gamma)$.
Hence, find the value of the constant k for which the remainder when $x^{5}-k x$ is divided by $(x+1)(x-1)(x-2)$ contains no term in x.

\square
\square
1661 Eiecth the graphs of $y=|x|+1$ and $y=2|x-1|$ in the same dagram Hence or otherwise find all real values of x satistying the inequativy $|x|+1\rangle$ 21x-1

(2016)

Let $p(x)=x^{3}+2 x^{2}+3 x-1$ and $q(x)=x^{2}+3 x+6$. Using the remainder

364. Let $\mathrm{c}(\neq 0)$ and d be real numbers, and let $f(x)=x^{3}+4 x^{2}+c x+d$.

What's

Next?

ALGEBRA 2

^LGEBR^
 Inequalifies \& Pundaricic funtions

Maths Simpliyied!

mathscriber .com 0772461477

[^0]: 209. Express the polynomial $x^{3}-3 x^{2}+10 x-5$ in the form $A x(x-1)(x+2)+B x(x-$
