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hunger ratings. This finding is supported by 
an investigation that showed that adding 24 g 
of a fermentable fiber supplement (inulin) to a 
test meal significantly increases GLP-1 levels 
in the postprandial period [47]. Furthermore, a 
recent study attempted to examine the effects 
of a polyfructan supplement (oligofructose) in 
overweight and obese adults [48]. Volunteers 
were given 21 g/day of the fiber supplement or 
a placebo for 12 weeks. The fiber supplement 
group experienced significant body weight loss 
compared with the control group, which was 
associated with reduced self-reported energy 
intake during the treatment period. Enhanced 
PYY may have contributed to the reduced energy 
intake and weight loss. However, not all studies 
have demonstrated that high fiber meals/diets 
stimulate gut peptide secretion. An investigation 
reported that adding different cereal fibers to 
test meals had no effect on postprandial GLP-1 
responses [49]. In addition, a recent investigation 
reported that it took 9–12 months for a high 
wheat fiber diet (24 g/day) to raise plasma GLP-1 
concentrations [50]. Nevertheless, the failure to 
observe an effect on gut peptide secretion in these 
studies may be due to the poor f ermentability of 
the fiber supplement.  

Fermentable fiber, adipose tissue 
metabolism & insulin sensitivity
The SCFA produced through colonic fermenta-
tion are also absorbed into the circulation where 
they have been shown to influence adipose tis-
sue metabolism and insulin sensitivity. FFAR2 
and FFAR3 have been shown to be expressed 
on adipocytes [51,52], and evidence suggests that 
circulating SCFA reduce nonesterified fatty 
acid (NEFA) levels in plasma via inhibition of 
lipolysis in adipose tissue [52] and suppression of 
fatty acid production in the liver [53]. In vitro, 
both acetate and propionate have been shown to 
inhibit adipocyte lipolysis in a dose-dependent 
manner [52]. In mice, the infusion of sodium 
acetate to wild-type mice resulted in a reduced 
plasma NEFA level that coincided with a rise in 
plasma acetate concentration [52]. This effect was 
abolished in FFAR2 knock-out mice, suggest-
ing that this effect was mediated by activation of 
FFAR2 by acetate. Studies have also shown that 
circulating SCFA also influence adipose tissue 
adipogenesis. Adipocyte size is strongly corre-
lated with whole-body insulin sensitivity [54], and 
obesity is characterized by large adipocytes with 
impaired differentiation and a greater secretion 

of proinflammatory adipokines [55]. Evidence 
suggests that FFAR2 is involved in adipocyte 
development and differentiation [51], resulting in 
smaller adipocytes and lower secretion of proin-
flammatory adipokines. In view of the estab-
lished role of circulating NEFA and inflamma-
tion on insulin sensitivity, recent investigations 
would suggest that elevating circulating SCFA 
by increasing the quantity of fermentable fiber 
in the diet could influence fat metabolism and 
lead to improved insulin s ensitivity. 

Data from animal studies supports the sug-
gestion that fermentable fiber in the diet can 
have a major role in adipocyte metabolism and 
insulin sensitivity. In an investigation of rats 
fed a high resistant starch diet for 5 weeks, 
total body weight was found to be the same 
as that of the control group, but with smaller 
epididymal fat pads and adipocyte size [56]. 
Studies in mice have confirmed these observa-
tions and have demonstrated that increasing 
the fermentable fiber content of the diet leads 
to decreased hepatic cellular lipid content along 
with an increase in adipose tissue insulin-stim-
ulated glucose uptake [57]. Investigations have 
also reported that increasing the amount of 
fermentable fiber in the diet improves insulin 
sensitivity in humans. Healthy volunteers fed 
30 g/day of resistant starch for 4 weeks had 
improved insulin sensitivity compared with 
the control group, which was associated with a 
reduced NEFA flux from abdominal adipocytes 
and elevated concentrations of plasma acetate 
and propionate [58]. Intake of the resistant starch 
supplement also led to a small but significant 
increase in lean body mass. A recent investiga-
tion also revealed that providing a 40 g/day 
resistant starch supplement for 12 weeks to 
individuals at increased risk of T2DM improved 
insulin sensitivity [59]. The improvements in 
insulin sensitivity were significantly correlated 
with reductions in waist circumference and fat 
storage in the tibialis muscle.    

Conclusion & future perspective
Diets rich in starch and fiber have been pro-
posed to reduce adiposity and have a positive 
effect on weight loss. Specif ically, the fer-
mentable content of starch and fiber appears 
to play an important part in the control of food 
intake, body composition and insulin sensitiv-
ity. Recent investigations have provided a link 
between the products of colonic fermenta-
tion, FFAR2 and FFAR3 activation, anorectic 
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hormone release, and adipose tissue metabo-
lism. Further investigations are warranted, 
particularly in high-risk populations, to deter-
mine if long-term dietary interventions with 
fermentable fibers can protect against obesity 
and the progression of T2DM.
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