

Interrelationship between nervous and endocrine system

- Nervous system
 short term/ fast
- Endocrine system
 long term/slow

Differences between systems

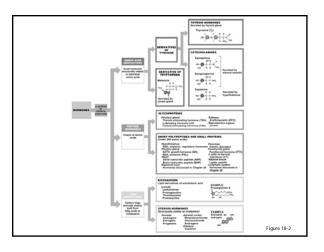
- Endocrine system good for gradual changes - Embryological changes
 - Puberty
 - Menstrual cycle
 - Water balance
- Nervous system good for split second decisions
 - Interpreting sight and sound
 - Muscles to move you out of danger
 - memory

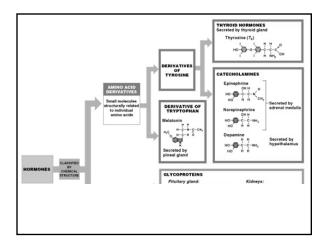
- Hormone
 - Chemical messenger made in one place, transported by blood, to have action in another place
- Target cell
 - Cell where hormone has effect must have receptor for the hormone
 - Only cells with appropriate receptor responds to hormone

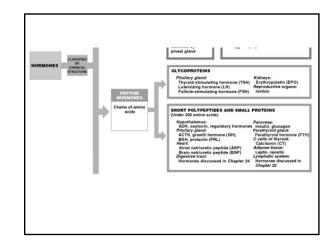
Hormone effects

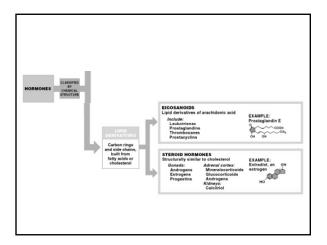
- 1. Stimulate synthesis of enzymes or structural proteins
- 2. Increase or decrease rate of synthesis
- 3. Turn existing enzyme or membrane channel "on" or "off"

Similarities

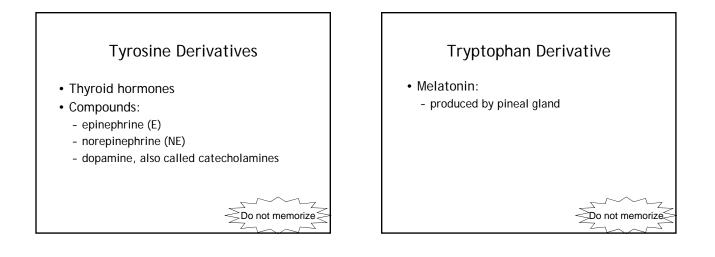

- Are similarly organized:
 - rely on release of chemicals
 - share many chemical messengers
 - are regulated primarily by negative feedback
 - share a common goal: to preserve homeostasis


Endocrine vs. Exocrine Cells


- Endocrine
 - Glandular secretory cells that release their secretions into extracellular fluid
 - ductless
- Exocrine
 - Secrete their products onto epithelial surfaces
 - ducted

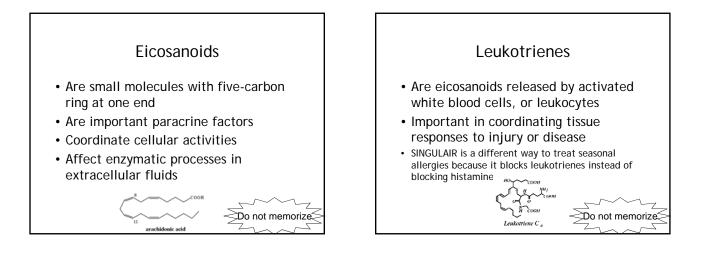


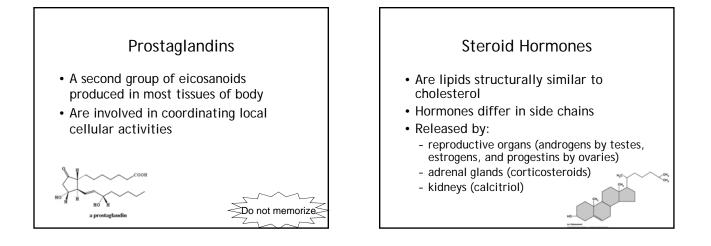
Hormones Can be divided into 3 groups: amino acid derivatives peptide hormones lipid derivatives (steroid hormones)



Amino Acid Derivatives

- Small molecules structurally related to amino acids
- Synthesized from the amino acids tyrosine and tryptophan


Peptide Hormones


- · Chains of amino acids
- Synthesized as prohormones:
 - inactive molecules converted to active hormones before or after secretion

2 Classes of Lipid Derivatives

- Eicosanoids:
 - derived from arachidonic acid
- Steroid hormones:
 - derived from cholesterol

Do not memorize

Steroid Hormones

- Remain in circulation longer than peptide hormones
- Are absorbed gradually by liver
- Are converted to soluble form
- Are excreted in bile or urine

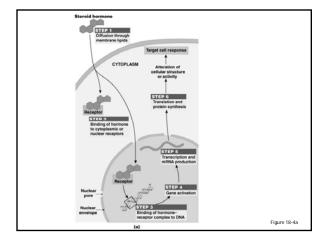
Secretion and Distribution of Hormones

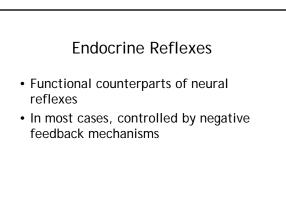
- Typically released into capillary bed for fast uptake and distribution
- Circulate freely or bound to transport proteins

Free Hormones

- Remain functional for less than 1 hour:
 diffuse out of bloodstream:
 - bind to receptors on target cells
 - are absorbed:
 - broken down by cells of liver or kidney
 - are broken down by enzymes:
 - in plasma or interstitial fluids

Thyroid and Steroid Hormones

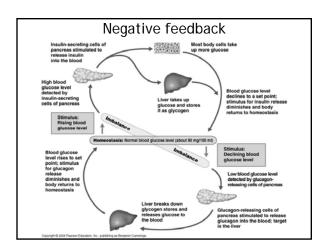

- Remain in circulation much longer
- Enter bloodstream:
 - more than 99% become attached to special transport proteins
- Free and bound hormone state
 - As free removed, bound is released
 Blood contains substantial reserve of
 - bound hormones


Mechanisms of Hormone Action

- Hormone Receptor
 - Is a protein molecule to which a particular molecule binds strongly
 - Each cell has receptors to respond to several different hormones
 - Different tissues have different combinations of receptors
 - Presence or absence of specific receptor determines hormonal sensitivity

Location of Receptor

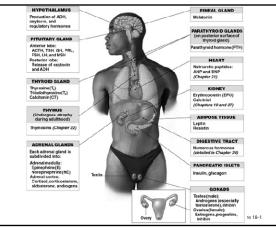
- Depends on type of hormone
- Cell membrane receptors
 Generally water soluble hormones
- Intracellular receptors
 - Generally lipid soluble hormones



Endocrine Reflex Triggers

- 1. Humoral stimuli:
 - changes in composition of extracellular fluid
- 2. Hormonal stimuli:
 - arrival or removal of specific hormone
- 3. Neural stimuli:
 - arrival of neurotransmitters at _ neuroglandular junctions

Simple Endocrine Reflex

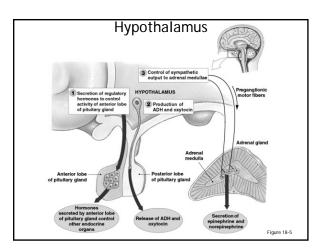

- Involves only 1 hormone
- Endocrine cells respond directly to changes in extracellular fluid •
- Secreted hormone adjusts activities of target cell to restore homeostasis
- For example:
 - heart
 - pancreas
 - parathyroid glanddigestive tract

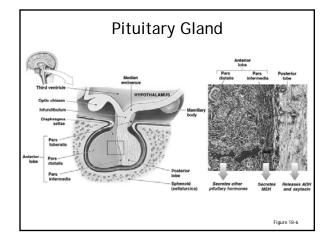
Complex Endocrine Reflex

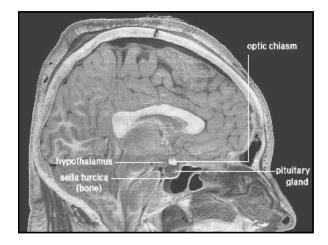
- Involves:
 - 1 or more intermediary steps
 - 2 or more hormones

Pulses • Hypothalamic and pituitary hormones released in sudden bursts • Frequency varies response of target cells

Hypothalamus and Pituitary Gland

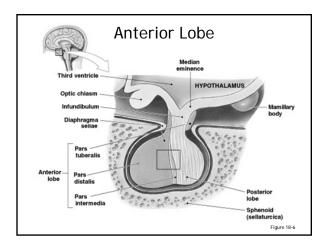

- Pituitary gland (or hypophysis) **was** thought to be "master gland"
- **Now** we know it is controlled by hypothalamus


Hypothalamus


- Integrates activities of nervous and endocrine systems in 3 ways:
- 1. Secretes regulatory hormones:
 - special hormones control endocrine cells in anterior pituitary gland
 - Hormones of anterior pituitary control endocrine cells in thyroid, adrenal cortex and reproductive organs

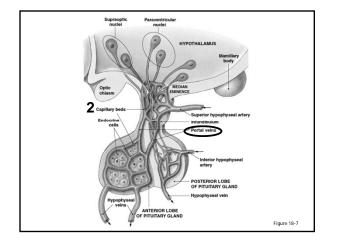
Hypothalamus

- 2. Acts as an endocrine organ
 - Hormones of posterior pituitary made by hypothalamus
- 3. Contains autonomic centers:
 - exert direct neural control over endocrine cells of adrenal medullae



Pituitary Gland

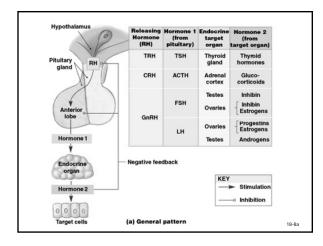
- Also called hypophysis
- · Lies within sella turcica
- Hangs inferior to hypothalamus:
 connected by infundibulum
- Divided into anterior and posterior lobe based on function and developmental anatomy


Pituitary Gland

- Releases 9 important peptide hormones
- Hormones bind to membrane receptors

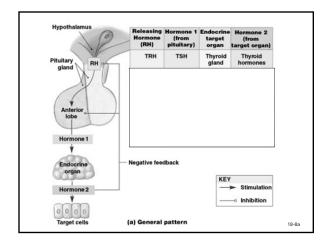
Anterior Lobe

- Also called adenohypophysis
- Hypophyseal portal system
 - Usual circulatory arrangement is heart, artery, capillary bed, vein and back to heart
 - Portal system has 2 capillary beds
 - heart, artery, capillary bed, <u>portal</u> <u>veins</u>, <u>2nd capillary bed</u>, vein and back to heart

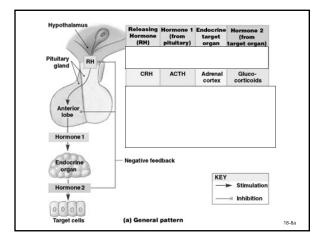

2 Classes of Hypothalamic Regulatory Hormones

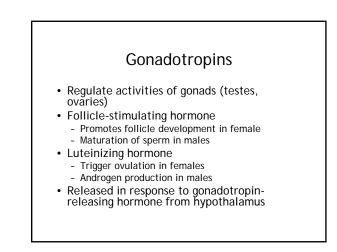
- 1. Releasing hormones
 - Stimulates synthesis and secretion of hormone from anterior lobe
- 2. Inhibiting hormones
 - Inhibits synthesis and secretion of hormone from anterior lobe

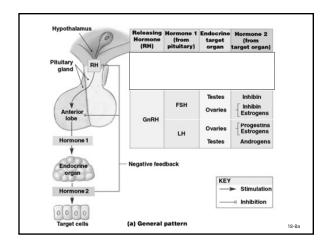
- Endocrine cell in anterior pituitary may be controlled by one or the other or both
- Releasing and inhibiting hormones transported directly to anterior pituitary by hypophyseal portal system
- Rate of secretion is controlled by negative feedback

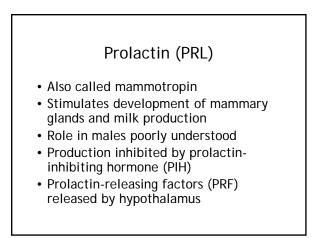

Hormones of the Anterior Lobe

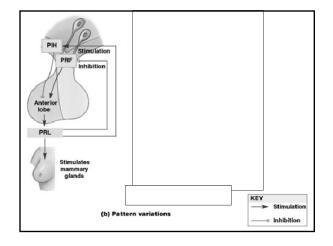
- 7 hormones
 - TSH - ACTH
 - FSH
 - LH
 - PRL
 - GH
 - MSH
- Aka tropic or trophic hormones because they turn on or support other endocrine glands

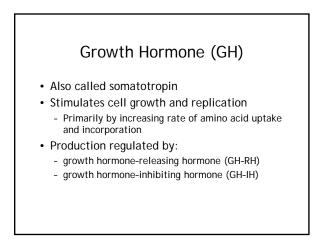

Thyroid-Stimulating Hormone (TSH)

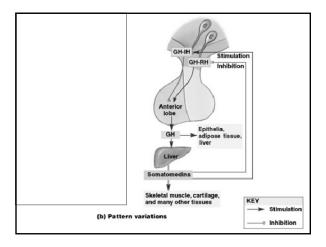

- Also called thyrotropin
- Triggers release of thyroid hormones
- Released in response to Thyrotropinreleasing hormone from hypothalamus
- Negative feedback
 - As thyroid hormone rises, TSH and TRH decline

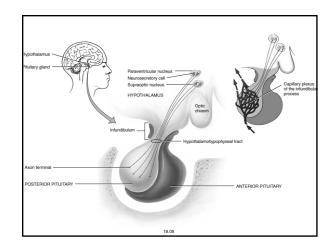



Adrenocorticotropic Hormone (ACTH)


- Also called corticotropin
- Stimulates release of steroid hormones by adrenal cortex
- Targets cells that produce glucocorticoidsaffect glucose metabolism
- Released in response to corticotropinreleasing hormone from hypothalamus
- Negative feedback
 - As glucocorticoid levels rise, CRH and ACTH release declines



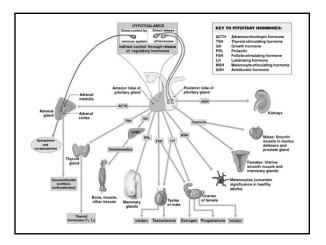



Melanocyte-Stimulating Hormone (MSH)

- Also called melanotropin
- Stimulates melanocytes to produce melanin
- Role in animal pigmentation but role in humans unknown

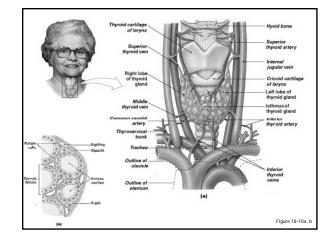
Posterior Lobe

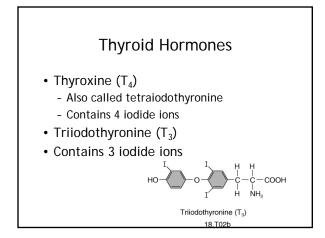
- Also called neurohypophysis
- Outgrowth of brain during fetal development
- Axons of hypothalamic neurons manufacture:
- antidiuretic hormone (ADH)
 oxytocin (OT)
- Posterior lobe does NOT make hormones, it releases hormones made by hypothalamus

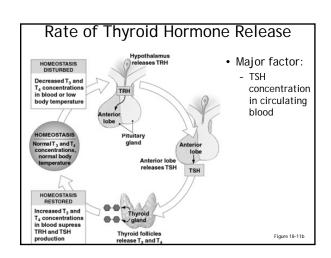


Antidiuretic Hormone

- Decreases amount of water lost at kidneys
- Elevates blood pressure
- Release inhibited by alcohol
 - Leads to increased urination
 - Hangover due to dehydration


Oxytocin


- Stimulates contractile cells in mammary glands
- Stimulates smooth muscles in uterus
- Secretion and milk ejection are part of neuroendocrine reflex
- In males, may be important in emission - Ejection of secretions before ejaculation

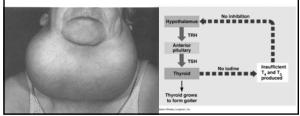


Region/Area	Hormone(s)	Target(s)	Hormonal Effect(s)	Hypothalamic Regulatory Hormone
ANTERIOR LOBE (AD	ENOHYPOPHYSIS)			
Pars distalis	Thyroid-stimulating hormone (TSH)	Thyroid gland	Secretion of thyroid hormones	Thyrotropin-releasing hormone [TRH]
	Adrenocorticotropic hormone (ACTH)	Adrenal cortex [zona fasciculata]	Secretion of glucocorticoids [cortisol, corticosterone]	Corticotropin-releasing hormone (CRH)
	Gonadotropins			
	Follicie-stimulating hormone (FSH)	Follicle cells of ovaries Sustentacular cells of testes	Secretion of estrogen, folicite development Stimulation of sperm maturation	Gonadotropin-seleasing hormone (GnRH) As above
	Luteinizing hormone (LH)	Follicle cells of ovaries	Ovulation, formation of corpus luteum, secretion of progesterone	As above
		Interstitial cells of testes	Secretion of testosterone	As above
	Prolactin (PRL)	Mammary glands	Production of milk	Prolactin-releasing factor (PRF) Prolactin-inhibiting hormone (PIH)
	Growth hormone (GH)	All cells	Growth, protein synthesis, lipid mobilization and catabolism	Growth hormone- releasing hormone (GH-RH)
				Growth hormone— inhibiting hormone (GH—IH)
Pars intermedia (not active in normal adults)	Melanocyte-stimulating hormone (MSH)	Melanocytes	Increased melanin synthesis in epidermis	Melanocyte-stimulating hormone-inhibiting hormone (MSH-IH)
POSTERIOR LOBE (N	EUROHYPOPHYSIS OR PARS NER	VOSA)		
	Antidiuretic hormone (ADH)	Kidnøys	Reebsorption of water, elevation of blood volume and pressure	None: Transported along axons from supraoptic nucleus to posterior lobe of the pituitary gland
	Oxytocin (OT)	Uterus, mammary glands (females) Ductus deferens and prostate gland (males)	Labor contractions, milk ejection Contractions of ductus deferens and prostate gland	None: Transported along axons from paraventricular nucleus to posterior lobe of the pituitary gland

Thyroid Gland Lies anterior to thyroid cartilage of larynx Consists of 2 lobes connected by narrow isthmus

Thyroid Hormones

- Affect most cells in body
- Calorigenic effect
 - Cell consumes more energy resulting in increased heat generation
- Is responsible for strong, immediate, and short-lived increase in rate of cellular metabolism

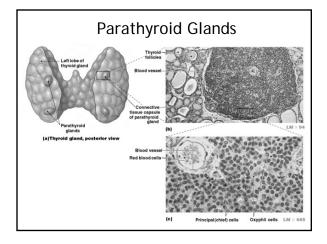

TABLE 18–3 Effects of Thyroid Hormones on Peripheral Tissues

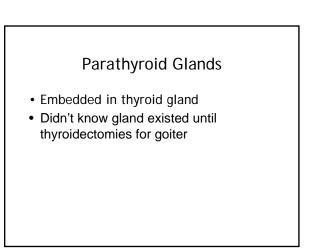
- 1. Elevated rates of oxygen consumption and energy consumption; in children, may cause a rise in body temperature
- Increased heart rate and force of contraction; generally results in a rise in blood pressure
- 3. Increased sensitivity to sympathetic stimulation
- Maintenance of normal sensitivity of respiratory centers to changes in oxygen and carbon dioxide concentrations
- Stimulation of red blood cell formation and thus enhanced oxygen delivery
- 6. Stimulation of activity in other endocrine tissues
- 7. Accelerated turnover of minerals in bone

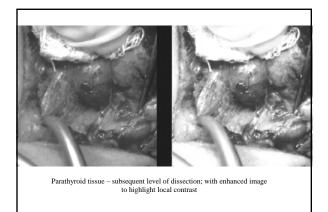
• Due to insufficient iodine in the diet

Goiters

- No lodine = no T3 or T4
- Body makes thyroid bigger to try to make more hormone

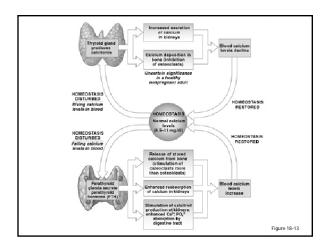



C (Clear) Cells


Table 18-3

- Produce calcitonin (CT)
- helps lower concentrations of Ca²⁺ in body fluids
- Direct endocrine regulation

 C cells respond directly to Ca²⁺ in blood



Parathyroid Hormone (PTH)

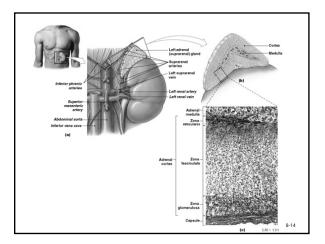

- Produced by chief cells
- In response to low concentrations of $\rm Ca^{2+}$

TABLE 10-4 Ho	rmones of the Thyroid Gland a	ind Parathyroid Gland	s	
Gland/Cells	Hormone(s)	Targets	Hormonal Effects	Regulatory Control
THYROID GLAND Follicular epithelium	Thyroxine (T ₄), triiodothyronine (T ₃)	Most cells	Increases energy utilization, oxygen consumption, growth, and development	Stimulated by TSH from anterior lobe of the pituitary gland (see Toble 18-3)
C cells	Calcitonin (CT)	Bone, kidneys	Decreases Ca ²⁺ concentrations in body fluids	Stimulated by elevated blood Ca ²⁺ levels; actions opposed by PTH
PARATHYROID GLAN Chief cells	Parathyroid hormone (PTH)	Bone, kidneys	Increases Ca ²⁺ concentrations in body fluids	Stimulated by low blood Ca ²⁺ levels; PTH effects enhanced by calcitriol and opposed by calcitonin

Adrenal Glands

- Lie along superior border of each kidney
- Subdivided into outer adrenal cortex and an inner adrenal medulla

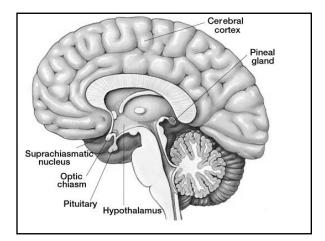
Adrenal Cortex

- Stores lipids, especially cholesterol and fatty acids
 - Gives it a yellow color
- Manufactures more than 2 dozen steroid hormones:
 - adrenocortical steroids (corticosteroids)

Eona giomerulosa				
	Mineralocorticoids (primarily aldosterone)	Kidneys	Increase renal reabsorption of Na ⁺ and water (especially in the presence of ADH) and accelerate uninary loss of K ⁺	Stimulated by antiotensin II, elevated plasma K ⁺ , or a fal in plasma Na ⁺ ; inhibited by [ANP and BNP]
Ione fasciculata (Diucocorticoids [cortisol [hydrocortisone], corticosterone]	Most cells	Release amino acids from skeletal muscles and lipids from adipose tissues; promote liver formation of glucose and glucoger; promote peripheral utilization of lipids; anti-inflammatory effects	Stimulated by ACTH from anterior lobe of pituitary glan
Zona reticularis 👘 🖉	Androgens		Not important in adult men.	Stimulated by ACTH
MEDULLA	Epinephrine, norepinephrine	Most cells	Increases cardiac activity, blood pressure, glycogen breakdown, blood glucose levels; releases lipids by adipose tissue	Stimulated during sympathetic activation by sympathetic preganglionic fibers

Adrenal Gland Hormones

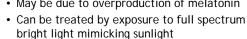
- Adrenal cortex
 - adrenocortical steroids (corticosteroids)
 - Mineralcorticoids- electrolytes in body fluid
 Glucocorticoids- increase glucose synthesis
 - and glycogen formation
 - corticotropin-releasing hormone (CRH) in hypothalamus
 - ACTH in anterior lobe
 - ACTH in anterior lobe
 Anti-inflammatory "steroid creams"
 - Androgens- important in adult women

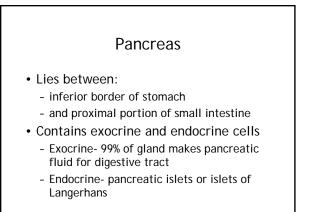

- Adrenal Medulla
 - Secretory activities controlled by sympathetic division of ANS
 - Produces epinephrine (adrenaline) and norepinephrine
 - Fight or flight reactions- mobilize glucose in muscles and liver, break down fat, increase rate and force of heart

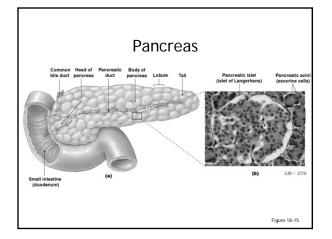
Pineal Gland

- produces hormone melatonin
- Nerves from visual pathways enter pineal and melatonin production highest at night and lowest during the day

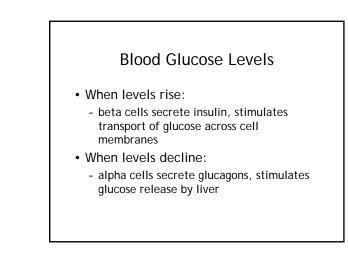
Functions of Melatonin

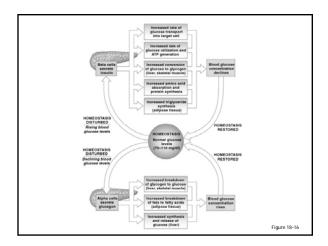

- Inhibiting reproductive functions
 - In other animals, longer nights=more melatonin= winter=not the time to reproduce
- Protecting against damage by free radicals
- Setting circadian rhythms - May be the cause of SAD

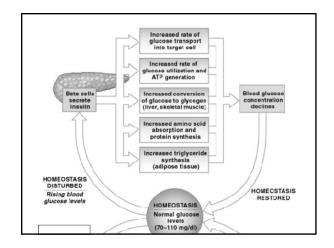


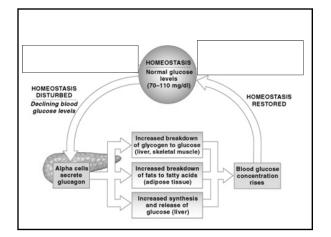

•Examples of the circadian rhythm in melatonin secretion in humans is depicted in the figure to the right (adapted from Vaughn, et al, J Clin Endo Metab 42:752, 1976). •The dark gray bars represent night, and serum melatonin levels are shown for two individuals (yellow versus light blue). Note that blood levels of melatonin are essentially undetectable during daytime, but rise sharply during the dark. Very similar patterns are seen in other species. •The duration of melatonin secretion each day is directly proportional to the length of the night. "T

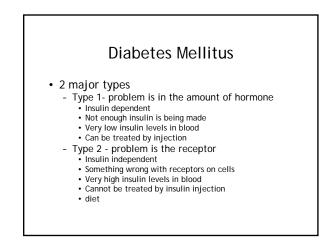
03-						
문 0.8 -		_				
5						
E 0.7 -				 		
Ę 0.6 −		_			<u> </u>	
N 0.5 -				-18		
E 0.4 -					<u> </u>	
- E						
윾 0.3 -				-18		
₩ 02-		_		미니니	<u> </u>	
		1	n n			
0.1 -	리비뷰티	-	비미머리	IIHIH		
0 -						
*		Time -	->			






2 Major Types of Cells in Pancreatic Islets


- 1. Alpha cells:
 - produce glucagon
 - Increases blood sugar levels _
- 2. Beta cells:
 - secrete insulin _
 - Lowers blood glucose levels


Structure/Cells		Balances Barrense	Hormonal Effects	Barrisson Control
PANCREATIC ISLETS	Hormone	Primary Targets	Hormonal Effects	Regulatory Control
PANCHEATIC ISLETS Alpha cells	Glucagon	Liver, adipose tissues	Mobilizes lipid reserves; promotes glucose synthesis and glycogen breakdown in liver; elevates blood glucose concentrations	Stimulated by low blood glucose concentrations; inhibited by GH—IH from delta cells
Beta celis	Insulin	Most cells	Facilitates uptake of glucose by target cells, stimulates formation and storage of lipids and glycogen	Stimulated by high blood glucose concentrations, parasympathetic stimulation, and high levels of some amino acids; inhibited by GH–IH from delta cells and by sympathetic activation

Testes

- Produce androgens in interstitial cells: - testosterone:
 - · is most important male hormone

Ovaries

- Produce estrogens: - principle estrogen is estradiol
- After ovulation, follicle cells:
 - reorganize into corpus luteum
 release estrogens and progestins, especially progesterone