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Introduction

0.1 Notes about this book
Note: A section for the instructor.

0.1.1 History of the source work
This book originated from my class notes for Math 286 at University of Illinois at Urbana-
Champaign (https://www.math.uiuc.edu) in Fall 2008 and Spring 2009. It is a first course
on differential equations for engineers. Using this book, I also taught Math 285 at UIUC,
Math 20D at University of California, San Diego (https://www.math.ucsd.edu/), and
Math 4233 at Oklahoma State University (https://math.okstate.edu). Normally these
courses are taught with Edwards and Penney, Differential Equations and Boundary Value
Problems: Computing and Modeling [EP], or Boyce and DiPrima’s Elementary Differential
Equations and Boundary Value Problems [BD], and this book aims to be more or less a drop-in
replacement. Other books I used as sources of information and inspiration are E.L. Ince’s
classic (and inexpensive) Ordinary Differential Equations [I], Stanley Farlow’s Differential
Equations and Their Applications [F], now available from Dover, Berg and McGregor’s
Elementary Partial Differential Equations [BM], and William Trench’s free book Elementary
Differential Equations with Boundary Value Problems [T]. See the Further Reading chapter at
the end of the book.

The source work’s website https://www.jirka.org/diffyqs/ contains additional
resources.The LATEX source of source work is also available for possible modification and
customization at github (https://github.com/jirilebl/diffyqs).

0.1.2 Acknowledgments by author of source work
Firstly, I would like to acknowledge Rick Laugesen. I used his handwritten class notes
the first time I taught Math 286. My organization of this book through chapter 5, and
the choice of material covered, is heavily influenced by his notes. Many examples and
computations are taken from his notes. I am also heavily indebted to Rick for all the
advice he has given me, not just on teaching Math 286. For spotting errors and other
suggestions, I would also like to acknowledge (in no particular order): John P. D’Angelo,
Sean Raleigh, Jessica Robinson, Michael Angelini, Leonardo Gomes, Jeff Winegar, Ian
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Simon, Thomas Wicklund, Eliot Brenner, Sean Robinson, Jannett Susberry, Dana Al-Quadi,
Cesar Alvarez, Cem Bagdatlioglu, Nathan Wong, Alison Shive, Shawn White, Wing Yip
Ho, Joanne Shin, Gladys Cruz, Jonathan Gomez, Janelle Louie, Navid Froutan, Grace
Victorine, Paul Pearson, Jared Teague, Ziad Adwan, Martin Weilandt, Sönmez Şahutoğlu,
Pete Peterson, Thomas Gresham, Prentiss Hyde, Jai Welch, Simon Tse, Andrew Browning,
James Choi, Dusty Grundmeier, John Marriott, Jim Kruidenier, Barry Conrad, Wesley
Snider, Colton Koop, Sarah Morse, Erik Boczko, Asif Shakeel, Chris Peterson, Nicholas
Hu, Paul Seeburger, Jonathan McCormick, David Leep, William Meisel, Shishir Agrawal,
Tom Wan, and probably others I have forgotten. Finally, I would like to acknowledge NSF
grants DMS-0900885 and DMS-1362337.

0.1.3 Acknowledgments by authors of the derivative work
The authors thank Asela Abeya for assistance in preparing the additional exercises, and
Joseph Hundley for managing the Amazon KDP edition. (4)(5)(4.7)(5.2)(4.10)

0.1.4 Contents of this derivative work
This book contains the Introduction and Chapters 1 (except 1.9 on PDE), 2, 3, 6 (except 6.5
on PDE), 7, and 8 of the source work. Chapter 4 and 5 of the source work (Fourier series
and PDEs, More on eigenvalue problems), and its Appendix on Linear Algebra, are not
included.

Additions are some some extra exercises (inserted starting at numbers 51 and 151)
and examples, and brief instructions on using Python for some graphical, numerical,
and symbolic tasks. There is an associated Python module resources306.py available at
https://raw.githubusercontent.com/UBmath/306/master/resources306.py.

The organization of this book to some degree requires chapters be done in order. The
dependence of the material covered is roughly:

Introduction

Chapter 1

Chapter 2

Chapter 3 Chapter 6

Chapter 8

Chapter 7
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0.2 Introduction to differential equations
Note: more than 1 lecture, §1.1 in [EP], chapter 1 in [BD]

0.2.1 Differential equations
The laws of physics are generally written down as differential equations. Therefore, all
of science and engineering use differential equations to some degree. Understanding
differential equations is essential to understanding almost anything you will study in your
science and engineering classes. You can think of mathematics as the language of science,
and differential equations are one of the most important parts of this language as far as
science and engineering are concerned. As an analogy, suppose all your classes from now
on were given in Swahili. It would be important to first learn Swahili, or you would have a
very tough time getting a good grade in your classes.

You saw many differential equations already without perhaps knowing about it. And
you even solved simple differential equations when you took calculus. Let us see an
example you may not have seen:

dx
dt

+ x � 2 cos t . (1)

Here x is the dependent variable and t is the independent variable. Equation (1) is a basic
example of a differential equation. It is an example of a first order differential equation, since
it involves only the first derivative of the dependent variable. This equation arises from
Newton’s law of cooling where the ambient temperature oscillates with time.

0.2.2 Solutions of differential equations
Solving the differential equation means finding x in terms of t. That is, we want to find a
function of t, which we call x, such that when we plug x, t, and dx

dt into (1), the equation
holds; that is, the left hand side equals the right hand side. It is the same idea as it would
be for a normal (algebraic) equation of just x and t. We claim that

x � x(t) � cos t + sin t

is a solution. How do we check? We simply plug x into equation (1)! First we need to
compute dx

dt . We find that dx
dt � − sin t + cos t. Now let us compute the left-hand side of (1).

dx
dt

+ x � (− sin t + cos t)︸             ︷︷             ︸
dx
dt

+ (cos t + sin t)︸          ︷︷          ︸
x

� 2 cos t .

Yay! We got precisely the right-hand side. But there is more! We claim x � cos t+sin t+ e−t

is also a solution. Let us try,
dx
dt

� − sin t + cos t − e−t .
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We plug into the left-hand side of (1)

dx
dt

+ x � (− sin t + cos t − e−t)︸                     ︷︷                     ︸
dx
dt

+ (cos t + sin t + e−t)︸                  ︷︷                  ︸
x

� 2 cos t .

And it works yet again!
So there can be many different solutions. For this equation all solutions can be written

in the form
x � cos t + sin t + Ce−t ,

for some constant C. Different constants C will give different solutions, so there are really
infinitely many possible solutions. See Figure 1 for the graph of a few of these solutions.
We will see how we find these solutions a few lectures from now.

0 1 2 3 4 5

0 1 2 3 4 5

-1

0

1

2

3

-1

0

1

2

3

Figure 1: Few solutions of dx
dt + x � 2 cos t.

Solving differential equations can be
quite hard. There is no general method
that solves every differential equation. We
will generally focus on how to get exact for-
mulas for solutions of certain differential
equations, but we will also spend a little
bit of time on getting approximate solu-
tions. And we will spend some time on
understanding the equations without solv-
ing them.

Most of this book is dedicated to ordinary
differential equations or ODEs, that is, equa-
tions with only one independent variable,
where derivatives are only with respect to
this one variable. If there are several independent variables, we get partial differential
equations or PDEs.

Even for ODEs, which are very well understood, it is not a simple question of turning
a crank to get answers. When you can find exact solutions, they are usually preferable
to approximate solutions. It is important to understand how such solutions are found.
Although in real applications you will leave much of the actual calculations to computers,
you need to understand what they are doing. It is often necessary to simplify or transform
your equations into something that a computer can understand and solve. You may even
need to make certain assumptions and changes in your model to achieve this.

To be a successful engineer or scientist, you will be required to solve problems in your
job that you never saw before. It is important to learn problem solving techniques, so that
you may apply those techniques to new problems. A common mistake is to expect to learn
some prescription for solving all the problems you will encounter in your later career. This
course is no exception.
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0.2.3 Differential equations in practice

Mathematical

Real-world problem

interpret

Mathematical
solution

abstract

model

solve

So how do we use differential equations in
science and engineering? First, we have some
real-world problemwe wish to understand. We
make some simplifying assumptions and cre-
ate a mathematical model. That is, we translate
the real-world situation into a set of differential
equations. Then we apply mathematics to get
some sort of a mathematical solution. There is still something left to do. We have to interpret
the results. We have to figure out what the mathematical solution says about the real-world
problem we started with.

Learning how to formulate the mathematical model and how to interpret the results is
what your physics and engineering classes do. In this course, we will focus mostly on the
mathematical analysis. Sometimes we will work with simple real-world examples so that
we have some intuition and motivation about what we are doing.

Let us look at an example of this process. One of the most basic differential equations is
the standard exponential growth model. Let P denote the population of some bacteria on
a Petri dish. We assume that there is enough food and enough space. Then the rate of
growth of bacteria is proportional to the population—a large population grows quicker.
Let t denote time (say in seconds) and P the population. Our model is

dP
dt

� kP,

for some positive constant k > 0.
Example 0.2.1: Suppose there are 100 bacteria at time 0 and 200 bacteria 10 seconds later.
How many bacteria will there be 1 minute from time 0 (in 60 seconds)?

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000

Figure 2: Bacteria growth in the first 60 seconds.

First we need to solve the equation. We
claim that a solution is given by

P(t) � Cekt ,

where C is a constant. Let us try:
dP
dt

� Ckekt
� kP.

And it really is a solution.
OK, now what? We do not know C, and

we do not know k. But we know something.
We know P(0) � 100, and we know P(10) �
200. Let us plug these conditions in and see
what happens.

100 � P(0) � Cek0
� C,

200 � P(10) � 100 ek10.
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Therefore, 2 � e10k or ln 2
10 � k ≈ 0.069. So

P(t) � 100 e(ln 2)t/10 ≈ 100 e0.069t .

At one minute, t � 60, the population is P(60) � 6400. See Figure 2 on the previous page.
Let us talk about the interpretation of the results. Does our solution mean that there

must be exactly 6400 bacteria on the plate at 60s? No! We made assumptions that might
not be true exactly, just approximately. If our assumptions are reasonable, then there
will be approximately 6400 bacteria. Also, in real life P is a discrete quantity, not a real
number. However, our model has no problem saying that for example at 61 seconds,
P(61) ≈ 6859.35.

Normally, the k in P′ � kP is known, and we want to solve the equation for different
initial conditions. What does that mean? Take k � 1 for simplicity. Suppose we want to
solve the equation dP

dt � P subject to P(0) � 1000 (the initial condition). Then the solution
turns out to be (exercise)

P(t) � 1000 e t .

We call P(t) � Ce t the general solution, as every solution of the equation can be written
in this form for some constant C. We need an initial condition to find out what C is, in
order to find the particular solution we are looking for. Generally, when we say “particular
solution,” we just mean some solution.

0.2.4 Four fundamental equations
A few equations appear often and it is useful to just memorize what their solutions are. Let
us call them the four fundamental equations. Their solutions are reasonably easy to guess
by recalling properties of exponentials, sines, and cosines. They are also simple to check,
which is something that you should always do. No need to wonder if you remembered the
solution correctly.

First such equation is
dy
dx

� k y ,

for some constant k > 0. Here y is the dependent and x the independent variable. The
general solution for this equation is

y(x) � Cekx .

We saw above that this function is a solution, although we used different variable names.

Next,
dy
dx

� −k y ,

for some constant k > 0. The general solution for this equation is

y(x) � Ce−kx .
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Exercise 0.2.1: Check that the y given is really a solution to the equation.
Next, take the second order differential equation

d2 y

dx2 � −k2 y ,

for some constant k > 0. The general solution for this equation is

y(x) � C1 cos(kx) + C2 sin(kx).
Since the equation is a second order differential equation, we have two constants in our
general solution.
Exercise 0.2.2: Check that the y given is really a solution to the equation.

Finally, consider the second order differential equation

d2 y

dx2 � k2 y ,

for some constant k > 0. The general solution for this equation is

y(x) � C1ekx
+ C2e−kx ,

or
y(x) � D1 cosh(kx) + D2 sinh(kx).

For those that do not know, cosh and sinh are defined by

cosh x �
ex + e−x

2 , sinh x �
ex − e−x

2 .

They are called the hyperbolic cosine and hyperbolic sine. These functions are sometimes
easier to work with than exponentials. They have some nice familiar properties such as
cosh 0 � 1, sinh 0 � 0, and d

dx cosh x � sinh x (no that is not a typo) and d
dx sinh x � cosh x.

Exercise 0.2.3: Check that both forms of the y given are really solutions to the equation.
Example 0.2.2: In equations of higher order, you get more constants you must solve for
to get a particular solution. The equation d2 y

dx2 � 0 has the general solution y � C1x + C2;
simply integrate twice and don’t forget about the constant of integration. Consider the
initial conditions y(0) � 2 and y′(0) � 3. We plug in our general solution and solve for the
constants:

2 � y(0) � C1 · 0 + C2 � C2, 3 � y′(0) � C1.

In other words, y � 3x + 2 is the particular solution we seek.
An interesting note about cosh: The graph of cosh is the exact shape of a hanging chain.

This shape is called a catenary. Contrary to popular belief this is not a parabola. If you
invert the graph of cosh, it is also the ideal arch for supporting its weight. For example, the
gateway arch in Saint Louis is an inverted graph of cosh—if it were just a parabola it might
fall. The formula used in the design is inscribed inside the arch:

y � −127.7 ft · cosh(x/127.7 ft) + 757.7 ft.
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0.2.5 Checking and plotting solution formulas with Python
We can check that formulas really are solutions of a differential equations using the
symbolic computation capabilities of sympy. This is especially useful in complicated cases
where we may not totally trust our own hand-computations. In the screenshot on the next
page, we recheck the results of 0.2.2. See § 0.1 for how to obtain the "resources306" module.

Solution plots like the one on the next page can also be created using numpy instead of
sympy, as shown below. The idea is to generate a sequence of points along the graph and
join them with straight line segments. We use several hundred points so that the curve
looks smooth. In the example (a), we plot the curve y � e−2t for t between -1 and 2. In
example (b), we plot a family of curves indexed by the parameter c which runs over the
values {4, 5, 6, ..., 15}. There are many options for modifying and decorating such plots: to
find out how, ask Google "matplotlib how to add title to plot", etc.
(a)

# the following line imports sympy as sp, numpy as np, matplotlib.pyplot as plt

from resources306 import *

t = np.linspace(-1,2,200)

plt.plot( t, np.exp(-2*t) );

plt.grid()

(b)

t = np.linspace(0,0.02,100)

for c in np.linspace(4,15,12):

plt.plot( t, 13/(1-(1-13/c)*np.exp(91*t)) )

plt.xlim(0,.02)

plt.ylim(0,20)

(a) (b)
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0.2.6 Exercises
Note: Exercises with numbers 101 and higher have solutions in the back of the book.

Exercise 0.2.4: Show that x � e4t is a solution to x′′′ − 12x′′ + 48x′ − 64x � 0.

Exercise 0.2.5: Show that x � e t is not a solution to x′′′ − 12x′′ + 48x′ − 64x � 0.

Exercise 0.2.6: Is y � sin t a solution to
(

dy
dt

)2
� 1 − y2? Justify.

Exercise 0.2.7: Let y′′+2y′−8y � 0. Now try a solution of the form y � e rx for some (unknown)
constant r. Is this a solution for some r? If so, find all such r.

Exercise 0.2.8: Verify that x � Ce−2t is a solution to x′ � −2x. Find C to solve for the initial
condition x(0) � 100.

Exercise 0.2.9: Verify that x � C1e−t + C2e2t is a solution to x′′ − x′ − 2x � 0. Find C1 and C2
to solve for the initial conditions x(0) � 10 and x′(0) � 0.

Exercise 0.2.10: Find a solution to (x′)2 + x2 � 4 using your knowledge of derivatives of functions
that you know from basic calculus.

Exercise 0.2.11: Solve:
dA
dt

� −10A, A(0) � 5a) dH
dx

� 3H, H(0) � 1b)

d2 y
dx2 � 4y , y(0) � 0, y′(0) � 1c) d2x

dy2 � −9x , x(0) � 1, x′(0) � 0d)

Exercise 0.2.12: Is there a solution to y′ � y, such that y(0) � y(1)?

Exercise 0.2.13: The population of city X was 100 thousand 20 years ago, and the population of
city X was 120 thousand 10 years ago. Assuming constant growth, you can use the exponential
population model (like for the bacteria). What do you estimate the population is now?

Exercise 0.2.14: Suppose that a football coach gets a salary of one million dollars now, and a raise
of 10% every year (so exponential model, like population of bacteria). Let s be the salary in millions
of dollars, and t is time in years.

What is s(0) and s(1).a) Approximately how many years will it take
for the salary to be 10 million.

b)

Approximately how many years will it take
for the salary to be 20 million.

c) Approximately how many years will it take
for the salary to be 30 million.

d)

Exercise 0.2.51: Verify that the function(s) solve the following differential equations (DEs):

a) y′ � −5y ; y � 3e−5x
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b) y′ � cos(3x) ; y �
1
3 sin(3x) + 7

c) y′ � 2y ; y � ce2x ,where c is any real number.

d) y′′ + y′ − 6y � 0 ; y1 � e2x , y2 � e−3x

e) y′′ + 16y � 0 ; y1 � cos(4x), y2 � sin(4x)

Exercise 0.2.101: Show that x � e−2t is a solution to x′′ + 4x′ + 4x � 0.

Exercise 0.2.102: Is y � x2 a solution to x2 y′′ − 2y � 0? Justify.

Exercise 0.2.103: Let x y′′ − y′ � 0. Try a solution of the form y � xr . Is this a solution for some
r? If so, find all such r.

Exercise 0.2.104: Verify that x � C1e t + C2 is a solution to x′′ − x′ � 0. Find C1 and C2 so that
x satisfies x(0) � 10 and x′(0) � 100.

Exercise 0.2.105: Solve dϕ
ds � 8ϕ and ϕ(0) � −9.

Exercise 0.2.106: Solve:
dx
dt

� −4x , x(0) � 9a) d2x
dt2 � −4x , x(0) � 1, x′(0) � 2b)

dp
dq

� 3p , p(0) � 4c) d2T
dx2 � 4T, T(0) � 0, T′(0) � 6d)

Exercise 0.2.151: Substitute y � e rx into the following DEs, solve for r, then write the general
linear combination of the solution(s) of the form e rx:

a) 7y′ + 5y � 0

b) 2y′′ + 7y′ − 4y � 0

c) y′′ − 3y′ − 10y � 0

d) 3y′′ − 7y′ − 6y � 0

e) 4y′′ + 3y′ − y � 0

Exercise 0.2.152: Verify that y � y(x) solves the DE. Then find the constant C which satisfies the
given initial condition.

a) 3y′ � 2y , y(0) � 5 ; y � Ce
2
3 x

b) y′ � (3x2 + 1)y , y(1) � 1 ; y � Cex3+x

c) y′ � 8x3(y2 + 1), y(0) � 1 ; y � tan(2x4 + C)

d) y′ + 2y � 6, y(0) � −5 ; y � 3 + Ce−2x
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0.3 Classification of differential equations
Note: less than 1 lecture or left as reading, §1.3 in [BD]

There are many types of differential equations, and we classify them into different
categories based on their properties. Let us quickly go over the most basic classification.
We already saw the distinction between ordinary and partial differential equations:

• Ordinary differential equations or (ODE) are equations where the derivatives are taken
with respect to only one variable. That is, there is only one independent variable.

• Partial differential equations or (PDE) are equations that depend on partial derivatives
of several variables. That is, there are several independent variables.

Let us see some examples of ordinary differential equations:

dy
dt

� k y , (Exponential growth)

dy
dt

� k(A − y), (Newton’s law of cooling)

m
d2x
dt2 + c

dx
dt

+ kx � f (t). (Mechanical vibrations)

And of partial differential equations:

∂y
∂t

+ c
∂y
∂x

� 0, (Transport equation)

∂u
∂t

�
∂2u
∂x2 , (Heat equation)

∂2u
∂t2 �

∂2u
∂x2 +

∂2u
∂y2 . (Wave equation in 2 dimensions)

If there are several equations working together, we have a so-called system of differential
equations. For example,

y′ � x , x′ � y

is a simple system of ordinary differential equations. Maxwell’s equations for electromag-
netics,

∇ · ®D � ρ, ∇ · ®B � 0,

∇ × ®E � −∂
®B
∂t
, ∇ × ®H � ®J + ∂ ®D

∂t
,

are a system of partial differential equations. The divergence operator ∇· and the curl
operator ∇× can be written out in partial derivatives of the functions involved in the x, y,
and z variables.
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The next bit of information is the order of the equation (or system). The order is simply
the order of the largest derivative that appears. If the highest derivative that appears is
the first derivative, the equation is of first order. If the highest derivative that appears is
the second derivative, then the equation is of second order. For example, Newton’s law
of cooling above is a first order equation, while the mechanical vibrations equation is a
second order equation. The equation governing transversal vibrations in a beam,

a4 ∂
4 y
∂x4 +

∂2 y
∂t2 � 0,

is a fourth order partial differential equation. It is fourth order as at least one derivative is
the fourth derivative. It does not matter that the derivative in t is only of second order.

In the first chapter, we will start attacking first order ordinary differential equations,
that is, equations of the form dy

dx � f (x , y). In general, lower order equations are easier to
work with and have simpler behavior, which is why we start with them.

We also distinguish how the dependent variables appear in the equation (or system).
In particular, we say an equation is linear if the dependent variable (or variables) and their
derivatives appear linearly, that is only as first powers, they are not multiplied together,
and no other functions of the dependent variables appear. In other words, the equation is
a sum of terms, where each term is some function of the independent variables or some
function of the independent variables multiplied by a dependent variable or its derivative.
Otherwise, the equation is called nonlinear. For example, an ordinary differential equation
is linear if it can be put into the form

an(x)
dn y
dxn + an−1(x)

dn−1 y
dxn−1 + · · · + a1(x)

dy
dx

+ a0(x)y � b(x). (2)

The functions a0, a1, . . . , an are called the coefficients. The equation is allowed to depend
arbitrarily on the independent variable. So

ex d2 y
dx2 + sin(x)

dy
dx

+ x2 y �
1
x

(3)

is still a linear equation as y and its derivatives only appear linearly.
All the equations and systems above as examples are linear. It may not be immediately

obvious for Maxwell’s equations unless you write out the divergence and curl in terms of
partial derivatives. Let us see some nonlinear equations. For example Burger’s equation,

∂y
∂t

+ y
∂y
∂x

� ν
∂2 y
∂x2 ,

is a nonlinear second order partial differential equation. It is nonlinear because y and ∂y
∂x

are multiplied together. The equation

dx
dt

� x2 (4)
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is a nonlinear first order differential equation as there is a second power of the dependent
variable x.

A linear equationmay further be called homogeneous if all termsdependon the dependent
variable. That is, if no term is a function of the independent variables alone. Otherwise,
the equation is called nonhomogeneous or inhomogeneous. For example, the exponential
growth equation, the wave equation, or the transport equation above are homogeneous.
The mechanical vibrations equation above is nonhomogeneous as long as f (t) is not the
zero function. Similarly, if the ambient temperature A is nonzero, Newton’s law of cooling
is nonhomogeneous. A homogeneous linear ODE can be put into the form

an(x)
dn y
dxn + an−1(x)

dn−1 y
dxn−1 + · · · + a1(x)

dy
dx

+ a0(x)y � 0.

Compare to (2) and notice there is no function b(x).
If the coefficients of a linear equation are actually constant functions, then the equation

is said to have constant coefficients. The coefficients are the functions multiplying the
dependent variable(s) or one of its derivatives, not the function b(x) standing alone. A
constant coefficient nonhomogeneous ODE is an equation of the form

an
dn y
dxn + an−1

dn−1 y
dxn−1 + · · · + a1

dy
dx

+ a0 y � b(x),

where a0, a1, . . . , an are all constants, but b may depend on the independent variable x. The
mechanical vibrations equation above is a constant coefficient nonhomogeneous second
order ODE. The same nomenclature applies to PDEs, so the transport equation, heat
equation and wave equation are all examples of constant coefficient linear PDEs.

Finally, an equation (or system) is called autonomous if the equation does not depend on
the independent variable. For autonomous ordinary differential equations, the independent
variable is then thought of as time. Autonomous equation means an equation that does
not change with time. For example, Newton’s law of cooling is autonomous, so is equation
(4). On the other hand, mechanical vibrations or (3) are not autonomous.

0.3.1 Exercises
Exercise 0.3.1: Classify the following equations. Are they ODE or PDE? Is it an equation or a
system? What is the order? Is it linear or nonlinear, and if it is linear, is it homogeneous, constant
coefficient? If it is an ODE, is it autonomous?

sin(t)d
2x

dt2 + cos(t)x � t2a) ∂u
∂x

+ 3∂u
∂y

� x yb)

y′′ + 3y + 5x � 0, x′′ + x − y � 0c) ∂2u
∂t2 + u

∂2u
∂s2 � 0d)

x′′ + tx2
� te) d4x

dt4 � 0f)
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Exercise 0.3.2: If ®u � (u1, u2, u3) is a vector, we have the divergence ∇ · ®u �
∂u1
∂x +

∂u2
∂y +

∂u3
∂z and

curl ∇ × ®u �

(
∂u3
∂y −

∂u2
∂z ,

∂u1
∂z −

∂u3
∂x ,

∂u2
∂x −

∂u1
∂y

)
. Notice that curl of a vector is still a vector. Write

out Maxwell’s equations in terms of partial derivatives and classify the system.

Exercise 0.3.3: Suppose F is a linear function, that is, F(x , y) � ax + b y for constants a and b.
What is the classification of equations of the form F(y′, y) � 0.

Exercise 0.3.4: Write down an explicit example of a third order, linear, nonconstant coefficient,
nonautonomous, nonhomogeneous system of two ODE such that every derivative that could appear,
does appear.

Exercise 0.3.101: Classify the following equations. Are they ODE or PDE? Is it an equation or a
system? What is the order? Is it linear or nonlinear, and if it is linear, is it homogeneous, constant
coefficient? If it is an ODE, is it autonomous?

∂2v
∂x2 + 3∂

2v
∂y2 � sin(x)a) dx

dt
+ cos(t)x � t2

+ t + 1b)

d7F
dx7 � 3F(x)c) y′′ + 8y′ � 1d)

x′′ + t yx′ � 0, y′′ + tx y � 0e) ∂u
∂t

�
∂2u
∂s2 + u2f)

Exercise 0.3.102: Write down the general zeroth order linear ordinary differential equation. Write
down the general solution.

Exercise 0.3.103: For which k is dx
dt + xk � tk+2 linear. Hint: there are two answers.
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Chapter 1

First order equations

1.1 Integrals as solutions
Note: 1 lecture (or less), §1.2 in [EP], covered in §1.2 and §2.1 in [BD]

A first order ODE is an equation of the form

dy
dx

� f (x , y),

or just
y′ � f (x , y).

In general, there is no simple formula or procedure one can follow to find solutions. In the
next few lectures we will look at special cases where solutions are not difficult to obtain. In
this section, let us assume that f is a function of x alone, that is, the equation is

y′ � f (x). (1.1)

We could just integrate (antidifferentiate) both sides with respect to x.∫
y′(x) dx �

∫
f (x) dx + C,

that is
y(x) �

∫
f (x) dx + C.

This y(x) is actually the general solution. So to solve (1.1), we find some antiderivative of
f (x) and then we add an arbitrary constant to get the general solution.

Now is a good time to discuss a point about calculus notation and terminology.
Calculus textbooks muddy the waters by talking about the integral as primarily the
so-called indefinite integral. The indefinite integral is really the antiderivative (in fact the
whole one-parameter family of antiderivatives). There really exists only one integral and
that is the definite integral. The only reason for the indefinite integral notation is that we
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can always write an antiderivative as a (definite) integral. That is, by the fundamental
theorem of calculus we can always write

∫
f (x) dx + C as∫ x

x0

f (t) dt + C.

Hence the terminology to integratewhen we may really mean to antidifferentiate. Integration
is just one way to compute the antiderivative (and it is a way that always works, see the
following examples). Integration is defined as the area under the graph, it only happens to
also compute antiderivatives. For sake of consistency, we will keep using the indefinite
integral notation when we want an antiderivative, and you should always think of the
definite integral as a way to write it.

Example 1.1.1: Find the general solution of y′ � 3x2.
Elementary calculus tells us that the general solution must be y � x3 + C. Let us check

by differentiating: y′ � 3x2. We got precisely our equation back.

Normally, we also have an initial condition such as y(x0) � y0 for some two numbers
x0 and y0 (x0 is usually 0, but not always). We can then write the solution as a definite
integral in a nice way. Suppose our problem is y′ � f (x), y(x0) � y0. Then the solution is

y(x) �
∫ x

x0

f (s) ds + y0. (1.2)

Let us check! We compute y′ � f (x), via the fundamental theorem of calculus, and
by Jupiter, y is a solution. Is it the one satisfying the initial condition? Well, y(x0) �∫ x0

x0
f (x) dx + y0 � y0. It is!
Do note that the definite integral and the indefinite integral (antidifferentiation) are

completely different beasts. The definite integral always evaluates to a number. Therefore,
(1.2) is a formula we can plug into the calculator or a computer, and it will be happy to
calculate specific values for us. We will easily be able to plot the solution and work with it
just like with any other function. It is not so crucial to always find a closed form for the
antiderivative.

Example 1.1.2: Solve
y′ � e−x2

, y(0) � 1.

By the preceding discussion, the solution must be

y(x) �
∫ x

0
e−s2

ds + 1.

Here is a good way to make fun of your friends taking second semester calculus. Tell them
to find the closed form solution. Ha ha ha (bad math joke). It is not possible (in closed
form). There is absolutely nothing wrong with writing the solution as a definite integral.
This particular integral is in fact very important in statistics.
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Using this method, we can also solve equations of the form

y′ � f (y).

Let us write the equation in Leibniz notation.

dy
dx

� f (y).

Now we use the inverse function theorem from calculus to switch the roles of x and y to
obtain

dx
dy

�
1

f (y) .

What we are doing seems like algebra with dx and dy. It is tempting to just do algebra
with dx and dy as if they were numbers. And in this case it does work. Be careful, however,
as this sort of hand-waving calculation can lead to trouble, especially when more than one
independent variable is involved. At this point, we can simply integrate,

x(y) �
∫

1
f (y) dy + C.

Finally, we try to solve for y.

Example 1.1.3: Previously, we guessed y′ � k y (for some k > 0) has the solution y � Cekx .
We can now find the solution without guessing. First we note that y � 0 is a solution.
Henceforth, we assume y , 0. We write

dx
dy

�
1

k y
.

We integrate to obtain

x(y) � x �
1
k

ln |y | + D ,

where D is an arbitrary constant. Now we solve for y (actually for |y |).

|y | � ekx−kD
� e−kDekx .

If we replace e−kD with an arbitrary constant C, we can get rid of the absolute value bars
(which we can do as D was arbitrary). In this way, we also incorporate the solution y � 0.
We get the same general solution as we guessed before, y � Cekx .

Example 1.1.4: Find the general solution of y′ � y2.
First we note that y � 0 is a solution. We can now assume that y , 0. Write

dx
dy

�
1
y2 .
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We integrate to get

x �
−1
y

+ C.

We solve for y �
1

C−x . So the general solution is

y �
1

C − x
or y � 0.

Note the singularities of the solution. If for example C � 1, then the solution “blows up”
as we approach x � 1. See Figure 1.1. Generally, it is hard to tell from just looking at the
equation itself how the solution is going to behave. The equation y′ � y2 is very nice and
defined everywhere, but the solution is only defined on some interval (−∞, C) or (C,∞).
Usually when this happens we only consider one of these the solution. For example if
we impose a condition y(0) � 1, then the solution is y �

1
1−x , and we would consider this

solution only for x on the interval (−∞, 1). In the figure, it is the left side of the graph.
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Figure 1.1: Plot of y �
1

1−x .

Classical problems leading to differential equations solvable by integration are problems
dealing with velocity, acceleration and distance. You have surely seen these problems
before in your calculus class.

Example 1.1.5: Suppose a car drives at a speed e t/2 meters per second, where t is time in
seconds. How far did the car get in 2 seconds (starting at t � 0)? How far in 10 seconds?

Let x denote the distance the car traveled. The equation is

x′ � e t/2.

We just integrate this equation to get that

x(t) � 2e t/2
+ C.
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We still need to figure out C. We know that when t � 0, then x � 0. That is, x(0) � 0. So

0 � x(0) � 2e0/2
+ C � 2 + C.

Thus C � −2 and
x(t) � 2e t/2 − 2.

Now we just plug in to get where the car is at 2 and at 10 seconds. We obtain

x(2) � 2e2/2 − 2 ≈ 3.44 meters, x(10) � 2e10/2 − 2 ≈ 294 meters.

Example 1.1.6: Suppose that the car accelerates at a rate of t2 m/s2. At time t � 0 the car is
at the 1 meter mark and is traveling at 10m/s. Where is the car at time t � 10.

Well this is actually a second order problem. If x is the distance traveled, then x′ is the
velocity, and x′′ is the acceleration. The equation with initial conditions is

x′′ � t2, x(0) � 1, x′(0) � 10.

What if we say x′ � v. Then we have the problem

v′ � t2, v(0) � 10.

Once we solve for v, we can integrate and find x.

Exercise 1.1.1: Solve for v, and then solve for x. Find x(10) to answer the question.

1.1.1 Exercises

Exercise 1.1.2: Solve dy
dx � x2 + x for y(1) � 3.

Exercise 1.1.3: Solve dy
dx � sin(5x) for y(0) � 2.

Exercise 1.1.4: Solve dy
dx �

1
x2−1 for y(0) � 0.

Exercise 1.1.5: Solve y′ � y3 for y(0) � 1.

Exercise 1.1.6 (little harder): Solve y′ � (y − 1)(y + 1) for y(0) � 3.

Exercise 1.1.7: Solve dy
dx �

1
y+1 for y(0) � 0.

Exercise 1.1.8 (harder): Solve y′′ � sin x for y(0) � 0, y′(0) � 2.

Exercise 1.1.9: A spaceship is traveling at the speed 2t2 +1 km/s (t is time in seconds). It is pointing
directly away from earth and at time t � 0 it is 1000 kilometers from earth. How far from earth is it
at one minute from time t � 0?

Exercise 1.1.10: Solve dx
dt � sin(t2) + t, x(0) � 20. It is OK to leave your answer as a definite

integral.
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Exercise 1.1.11: A dropped ball accelerates downwards at a constant rate 9.8 meters per second
squared. Set up the differential equation for the height above ground h in meters. Then supposing
h(0) � 100 meters, how long does it take for the ball to hit the ground.

Exercise 1.1.12: Find the general solution of y′ � ex , and then y′ � e y .

Exercise 1.1.51: Find the general solution of y′ � 1
x2−2x−8

Exercise 1.1.52: Find the general solution of y′ � 1
x4+4x2

Exercise 1.1.101: Solve dy
dx � ex + x and y(0) � 10.

Exercise 1.1.102: Solve x′ � 1
x2 , x(1) � 1.

Exercise 1.1.103: Solve x′ � 1
cos(x) , x(0) � π

2 .

Exercise 1.1.104: Sid is in a car traveling at speed 10t + 70 miles per hour away from Las Vegas,
where t is in hours. At t � 0, Sid is 10 miles away from Vegas. How far from Vegas is Sid 2 hours
later?

Exercise 1.1.105: Solve y′ � yn , y(0) � 1, where n is a positive integer. Hint: You have to
consider different cases.

Exercise 1.1.106: The rate of change of the volume of a snowball that is melting is proportional to
the surface area of the snowball. Suppose the snowball is perfectly spherical. Then the volume (in
centimeters cubed) of a ball of radius r centimeters is 4/3 πr3. The surface area is 4πr2. Set up the
differential equation for how r is changing. Then, suppose that at time t � 0 minutes, the radius is
10 centimeters. After 5 minutes, the radius is 8 centimeters. At what time t will the snowball be
completely melted.

Exercise 1.1.107: Find the general solution to y′′′′ � 0. How many distinct constants do you need?

Exercise 1.1.151: Find the general solution to the following differential equations (DEs) by
integration:

a) d2 y
dx2 � 4x3 + e2x

b) d3 y
dx3 � 6x2 + 1

c) d3 y
dx3 � cos(2x)

Exercise 1.1.152: Find the particular solution to the following initial value problems (IVPs):

a) y′′ � 6x + 2; y(1) � −1, y′(1) � 7

b) y′′ � e
1
3 x ; y(0) � −2, y′(0) � 4

c) y′′ � 1√
x+9

; y(0) � 10, y′(0) � 1
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1.2 Slope fields

Note: 1 lecture, §1.3 in [EP], §1.1 in [BD]

As we said, the general first order equation we are studying looks like

y′ � f (x , y).

A lot of the time, we cannot simply solve these kinds of equations explicitly. It would
be nice if we could at least figure out the shape and behavior of the solutions, or find
approximate solutions.

1.2.1 Slope fields
The equation y′ � f (x , y) gives you a slope at each point in the (x , y)-plane. And this is
the slope a solution y(x)would have at x if its value was y. In other words, f (x , y) is the
slope of a solution whose graph runs through the point (x , y). At a point (x , y), we plot
a short line with the slope f (x , y). For example, if f (x , y) � x y, then at point (2, 1.5) we
draw a short line of slope x y � 2 × 1.5 � 3. So, if y(x) is a solution and y(2) � 1.5, then the
equation mandates that y′(2) � 3. See Figure 1.2.
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Figure 1.2: The slope y′ � x y at (2, 1.5).

To get an idea of how solutions behave, we draw such lines at lots of points in the plane,
not just the point (2, 1.5). We would ideally want to see the slope at every point, but that is
just not possible. Usually we pick a grid of points fine enough so that it shows the behavior,
but not too fine so that we can still recognize the individual lines. We call this picture the
slope field of the equation. See Figure 1.3 on the following page for the slope field of the
equation y′ � x y. Usually in practice, one does not do this by hand, but has a computer do
the drawing.
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Suppose we are given a specific initial condition y(x0) � y0. A solution, that is, the
graph of the solution, would be a curve that follows the slopes we drew. For a few sample
solutions, see Figure 1.4. It is easy to roughly sketch (or at least imagine) possible solutions
in the slope field, just from looking at the slope field itself. You simply sketch a line that
roughly fits the little line segments and goes through your initial condition.
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Figure 1.3: Slope field of y′ � x y.
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Figure 1.4: Slope field of y′ � x y with a graph
of solutions satisfying y(0) � 0.2, y(0) � 0, and
y(0) � −0.2.

By looking at the slope field we get a lot of information about the behavior of solutions
without having to solve the equation. For example, in Figure 1.4 we see what the solutions
do when the initial conditions are y(0) > 0, y(0) � 0 and y(0) < 0. A small change in the
initial condition causes quite different behavior. We see this behavior just from the slope
field and imagining what solutions ought to do.

We see a different behavior for the equation y′ � −y. The slope field and a few solutions
is in see Figure 1.5 on the next page. If we think of moving from left to right (perhaps x is
time and time is usually increasing), then we see that no matter what y(0) is, all solutions
tend to zero as x tends to infinity. Again that behavior is clear from simply looking at the
slope field itself.

1.2.2 Existence and uniqueness
We wish to ask two fundamental questions about the problem

y′ � f (x , y), y(x0) � y0.

(i) Does a solution exist?

(ii) Is the solution unique (if it exists)?



1.2. SLOPE FIELDS 29

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

Figure 1.5: Slope field of y′ � −y with a graph of a few solutions.

What do you think is the answer? The answer seems to be yes to both does it not? Well,
pretty much. But there are cases when the answer to either question can be no.

Since generally the equations we encounter in applications come from real life situations,
it seems logical that a solution always exists. It also has to be unique if we believe our
universe is deterministic. If the solution does not exist, or if it is not unique, we have
probably not devised the correct model. Hence, it is good to know when things go wrong
and why.

Example 1.2.1: Attempt to solve:

y′ �
1
x
, y(0) � 0.

Integrate to find the general solution y � ln |x | + C. The solution does not exist at x � 0.
See Figure 1.6 on the following page. The equation may have been written as the seemingly
harmless x y′ � 1.

Example 1.2.2: Solve:
y′ � 2

√
|y |, y(0) � 0.

See Figure 1.7 on the next page. Note that y � 0 is a solution. But another solution is
the function

y(x) �
{

x2 if x ≥ 0,
−x2 if x < 0.

It is hard to tell by staring at the slope field that the solution is not unique. Is there any
hope? Of course there is. We have the following theorem, known as Picard’s theorem∗.

∗Named after the French mathematician Charles Émile Picard (1856–1941)

https://en.wikipedia.org/wiki/Charles_%C3%89mile_Picard
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Figure 1.6: Slope field of y′ � 1/x.
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Figure 1.7: Slope field of y′ � 2
√
|y | with two

solutions satisfying y(0) � 0.

Theorem 1.2.1 (Picard’s theorem on existence and uniqueness). If f (x , y) is continuous (as
a function of two variables) and ∂ f

∂y exists and is continuous near some (x0, y0), then a solution to

y′ � f (x , y), y(x0) � y0,

exists (at least for some small interval of x’s) and is unique.

Note that the problems y′ � 1/x, y(0) � 0 and y′ � 2
√
|y |, y(0) � 0 do not satisfy the

hypothesis of the theorem. Even if we can use the theorem, we ought to be careful about
this existence business. It is quite possible that the solution only exists for a short while.

Example 1.2.3: For some constant A, solve:

y′ � y2, y(0) � A.

We know how to solve this equation. First assume that A , 0, so y is not equal to zero
at least for some x near 0. So x′ � 1/y2, so x � −1/y + C, so y �

1
C−x . If y(0) � A, then C � 1/A

so
y �

1
1/A − x

.

If A � 0, then y � 0 is a solution.
For example, when A � 1 the solution “blows up” at x � 1. Hence, the solution does

not exist for all x even if the equation is nice everywhere. The equation y′ � y2 certainly
looks nice.

Formost of this coursewewill be interested in equationswhere existence anduniqueness
holds, and in fact holds “globally” unlike for the equation y′ � y2.
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1.2.3 Slope fields with Python
The resources306 module provides a function slopefieldplot. You supply slopefieldplot with a
function (called f in the example below) that returns the right hand side of your differential
equation, the desired minimum and maximum values on the horizontal and vertical axes
respectively, and the desired spacing between line segments on the horizontal axis. Any of
the graphical options for matplotlib.pyplot.plot(), such as line color, line width, etc., can also
be supplied to slopefieldplot. Here we create a slope field plot for the differential equation
dy
dx � x2 − y:

from resources306 import *

def f(x,y): return x**2 - y

slopefieldplot( f, -2,2, -1,2, .2 ,lw=2)

plt.xlabel('x')

plt.ylabel('y');

If using a Python environment that does not automatically display graphics, add the line
"plt.show()".
This generates the slope field part of the picture below.

The resources306module also provides a function expressionplot as a simple way to plot a
sympy expression. You supply expressionplotwith the expression you want to plot, the (one
and only) variable in the expression, the minimum and maximum values of that variable
to be shown in the plot, and any graphical options you like. Below, we create two solutions
of the differential equation dy

dx � x2 − y as sympy expressions:

x = sp.symbols('x')

y1 = x**2-2*x+2

y2 = ((x**2-2*x+2)*sp.exp(x)-3)*sp.exp(-x)

y1,y2
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x2 − 2x + 2,

( (
x2 − 2x + 2

)
ex − 3

)
e−x )

and then with the code below add their graphs to the slope field plot.
slopefieldplot( f, -2,2, -1,2, .2 ,lw=2)

expressionplot(y1,x,-2,2,color='r',alpha=.4,lw=3)

expressionplot(y2,x,-1,2,color='b',alpha=.4,lw=3)

plt.xlabel('x')

plt.ylabel('y')

1.2.4 Exercises
Exercise 1.2.1: Sketch slope field for y′ � ex−y . How do the solutions behave as x grows? Can you
guess a particular solution by looking at the slope field?
Exercise 1.2.2: Sketch slope field for y′ � x2.
Exercise 1.2.3: Sketch slope field for y′ � y2.
Exercise 1.2.4: Is it possible to solve the equation y′ � x y

cos x for y(0) � 1? Justify.

Exercise 1.2.5: Is it possible to solve the equation y′ � y
√
|x | for y(0) � 0? Is the solution unique?

Justify.
Exercise 1.2.6: Match equations y′ � 1 − x, y′ � x − 2y, y′ � x(1 − y) to slope fields. Justify.

a) b) c)

Exercise 1.2.7 (challenging): Take y′ � f (x , y), y(0) � 0, where f (x , y) > 1 for all x and y.
If the solution exists for all x, can you say what happens to y(x) as x goes to positive infinity?
Explain.
Exercise 1.2.8 (challenging): Take (y − x)y′ � 0, y(0) � 0.

Find two distinct solutions.a)
Explain why this does not violate Picard’s theorem.b)

Exercise 1.2.9: Suppose y′ � f (x , y). What will the slope field look like, explain and sketch an
example, if you know the following about f (x , y):

f does not depend on y.a) f does not depend on x.b)
f (t , t) � 0 for any number t.c) f (x , 0) � 0 and f (x , 1) � 1 for all x.d)

Exercise 1.2.10: Find a solution to y′ � |y |, y(0) � 0. Does Picard’s theorem apply?
Exercise 1.2.11: Take an equation y′ � (y − 2x)g(x , y) + 2 for some function g(x , y). Can you
solve the problem for the initial condition y(0) � 0, and if so what is the solution?
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Exercise 1.2.12 (challenging): Suppose y′ � f (x , y) is such that f (x , 1) � 0 for every x, f is
continuous and ∂ f

∂y exists and is continuous for every x and y.

Guess a solution given the initial condition y(0) � 1.a)

Can graphs of two solutions of the equation for different initial conditions ever intersect?b)

Given y(0) � 0, what can you say about the solution. In particular, can y(x) > 1 for any x?
Can y(x) � 1 for any x? Why or why not?

c)

Exercise 1.2.51: Sketch the region of continuity for f (x , y) on a set of axes and sketch the region of
continuity for ∂ f

∂y (x , y) on a separate set of axes. Apply Picard’s Theorem to determine whether the
solution exists and whether it is unique.

a) y′ � 2x2 y + 3x y2 , y(1) � 2

b) y′ � 1
x+y , y(−1) � 3

c) y′ �
√

2x − 3y , y(3) � 2

d) y′ � 3
√

2y + 6x , y(1) � −3

e) y′ � x ln(y) , y(2) � 3

f) y′ � x2e y , y(−1) � 4

g) y′ �
√

5y + 10x , y(1) � 0

h) y′ �
√

5y + 10x , y(1) � −2

i) y′ � 2y
1
3 , y(0) � 0

j) y′ � 2y
1
3 , y(−1) � −2

Exercise 1.2.52: Sketch, on one single set of axes, the region where both f (x , y) and ∂ f
∂y (x , y) are

continuous. Determine the conditions on (x0, y0) for which Picard’s Theorem guarantees that a
unique solution exists.

a) y′ �
√

2x − y

b) y′ � ln(y − x2)

c) y′ �
√

y ln(x)

d) y′ � 3
√

x2 − y

e) y′ � 3x+2y
x2−y2
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Exercise 1.2.53: Use the following method to determine y(4) approximately if y(0) � 0 and
dy
dt � cos y + y sin t for all t. Use Python to draw the slope field of the differential equation on the
region where t runs from 0 to 5 and y runs from -1 to 5. Save the graphic you’ve created as a PNG
image, and then open it in a program that allows you to draw on it, like Inkscape, GIMP, etc. On
your slope field, sketch the curve y(t) that has the following properties: (i) y(0) � 0, i.e., it starts at
t � 0, y � 0, (ii) its slope agrees with the slope field at every point along it. Then from your picture,
estimate y(4) as accurately as you can.

Exercise 1.2.101: Sketch the slope field of y′ � y3. Can you visually find the solution that satisfies
y(0) � 0?

Exercise 1.2.102: Is it possible to solve y′ � x y for y(0) � 0? Is the solution unique?

Exercise 1.2.103: Is it possible to solve y′ � x
x2−1 for y(1) � 0?

Exercise 1.2.104: Match equations y′ � sin x, y′ � cos y, y′ � y cos(x) to slope fields. Justify.

a) b) c)

Exercise 1.2.105 (tricky): Suppose

f (y) �
{

0 if y > 0,
1 if y ≤ 0.

Does y′ � f (y), y(0) � 0 have a continuously differentiable solution? Does Picard apply? Why, or
why not?

Exercise 1.2.106: Consider an equation of the form y′ � f (x) for some continuous function f , and
an initial condition y(x0) � y0. Does a solution exist for all x? Why or why not?
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1.3 Separable equations
Note: 1 lecture, §1.4 in [EP], §2.2 in [BD]

When a differential equation is of the form y′ � f (x), we can just integrate: y �∫
f (x) dx + C. Unfortunately this method no longer works for the general form of the

equation y′ � f (x , y). Integrating both sides yields

y �

∫
f (x , y) dx + C.

Notice the dependence on y in the integral.

1.3.1 Separable equations
We say a differential equation is separable if we can write it as

y′ � f (x)g(y),

for some functions f (x) and g(y). Let us write the equation in the Leibniz notation

dy
dx

� f (x)g(y).

Then we rewrite the equation as

dy
g(y) � f (x) dx.

Both sides look like something we can integrate. We obtain∫
dy

g(y) �
∫

f (x) dx + C.

If we can find closed form expressions for these two integrals, we can, perhaps, solve for y.

Example 1.3.1: Take the equation
y′ � x y.

Note that y � 0 is a solution. We will remember that fact and assume y , 0 from now on,
so that we can divide by y. Write the equation as dy

dx � x y. Then∫
dy
y

�

∫
x dx + C.

We compute the antiderivatives to get

ln |y | � x2

2 + C,
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or
|y | � e

x2
2 +C

� e
x2
2 eC

� De
x2
2 ,

where D > 0 is some constant. Because y � 0 is also a solution and because of the absolute
value we can write:

y � De
x2
2 ,

for any number D (including zero or negative).
We check:

y′ � Dxe
x2
2 � x

(
De

x2
2

)
� x y.

Yay!

We should be a little bit more careful with this method. You may be worried that we
integrated in two different variables. We seemingly did a different operation to each side.
Let us work through this method more rigorously. Take

dy
dx

� f (x)g(y).

We rewrite the equation as follows. Note that y � y(x) is a function of x and so is dy
dx !

1
g(y)

dy
dx

� f (x).

We integrate both sides with respect to x:∫
1

g(y)
dy
dx

dx �

∫
f (x) dx + C.

We use the change of variables formula (substitution) on the left hand side:∫
1

g(y) dy �

∫
f (x) dx + C.

And we are done.

1.3.2 Implicit solutions
We sometimes get stuck even if we can do the integration. Consider the separable equation

y′ �
x y

y2 + 1
.

We separate variables,
y2 + 1

y
dy �

(
y +

1
y

)
dy � x dx.
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We integrate to get
y2

2 + ln |y | � x2

2 + C,

or perhaps the easier looking expression (where D � 2C)

y2
+ 2 ln |y | � x2

+ D.

It is not easy to find the solution explicitly as it is hard to solve for y. We, therefore, leave
the solution in this form and call it an implicit solution. It is still easy to check that an implicit
solution satisfies the differential equation. In this case, we differentiate with respect to x,
and remember that y is a function of x, to get

y′
(
2y +

2
y

)
� 2x.

Multiply both sides by y and divide by 2(y2 + 1) and you will get exactly the differential
equation. We leave this computation to the reader.

If you have an implicit solution, and you want to compute values for y, you might
have to be tricky. You might get multiple solutions y for each x, so you have to pick one.
Sometimes you can graph x as a function of y, and then flip your paper. Sometimes you
have to do more.

Computers are also good at some of these tricks. More advancedmathematical software
usually has some way of plotting solutions to implicit equations. For example, for C � 0 if
you plot all the points (x , y) that are solutions to y2 + 2 ln |y | � x2, you find the two curves
in Figure 1.8 on the following page. This is not quite a graph of a function. For each x there
are two choices of y. To find a function you would have to pick one of these two curves.
You pick the one that satisfies your initial condition if you have one. For example, the top
curve satisfies the condition y(1) � 1. So for each C we really got two solutions. As you can
see, computing values from an implicit solution can be somewhat tricky. But sometimes,
an implicit solution is the best we can do.

The equation above also has the solution y � 0. So the general solution is

y2
+ 2 ln |y | � x2

+ C, and y � 0.

These outlying solutions such as y � 0 are sometimes called singular solutions.

1.3.3 Examples of separable equations

Example 1.3.2: Solve x2 y′ � 1 − x2 + y2 − x2 y2, y(1) � 0.
Factor the right-hand side

x2 y′ � (1 − x2)(1 + y2).
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Figure 1.8: The implicit solution y2 + 2 ln |y | � x2 to y′ � x y
y2+1 .

Separate variables, integrate, and solve for y:

y′

1 + y2 �
1 − x2

x2 ,

y′

1 + y2 �
1
x2 − 1,

arctan(y) � −1
x
− x + C,

y � tan
(
−1
x
− x + C

)
.

Solve for the initial condition, 0 � tan(−2 + C) to get C � 2 (or C � 2 + π, or C � 2 + 2π,
etc.). The particular solution we seek is, therefore,

y � tan
(
−1
x
− x + 2

)
.

Example 1.3.3: Bob made a cup of coffee, and Bob likes to drink coffee only once reaches
60 degrees Celsius and will not burn him. Initially at time t � 0 minutes, Bob measured the
temperature and the coffee was 89 degrees Celsius. One minute later, Bob measured the
coffee again and it had 85 degrees. The temperature of the room (the ambient temperature)
is 22 degrees. When should Bob start drinking?

Let T be the temperature of the coffee in degrees Celsius, and let A be the ambient
(room) temperature, also in degrees Celsius. Newton’s law of cooling states that the rate at
which the temperature of the coffee is changing is proportional to the difference between
the ambient temperature and the temperature of the coffee. That is,

dT
dt

� k(A − T),
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for some constant k. For our setup A � 22, T(0) � 89, T(1) � 85. We separate variables and
integrate (let C and D denote arbitrary constants):

1
T − A

dT
dt

� −k ,

ln(T − A) � −kt + C, (note that T − A > 0)
T − A � D e−kt ,

T � A + D e−kt .

That is, T � 22 + D e−kt . We plug in the first condition: 89 � T(0) � 22 + D, and hence
D � 67. So T � 22 + 67 e−kt . The second condition says 85 � T(1) � 22 + 67 e−k . Solving for
k we get k � − ln 85−22

67 ≈ 0.0616. Now we solve for the time t that gives us a temperature of
60 degrees. Namely, we solve

60 � 22 + 67e−0.0616t

to get t � − ln 60−22
67

0.0616 ≈ 9.21 minutes. So Bob can begin to drink the coffee at just over 9
minutes from the time Bob made it. That is probably about the amount of time it took us
to calculate how long it would take. See Figure 1.9.
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Figure 1.9: Graphs of the coffee temperature function T(t). On the left, horizontal lines are drawn at
temperatures 60, 85, and 89. Vertical lines are drawn at t � 1 and t � 9.21. Notice that the temperature
of the coffee hits 85 at t � 1, and 60 at t ≈ 9.21. On the right, the graph is over a longer period of time,
with a horizontal line at the ambient temperature 22.

Example 1.3.4: Find the general solution to y′ � −x y2

3 (including singular solutions).
First note that y � 0 is a solution (a singular solution). Now assume that y , 0.

−3
y2 y′ � x ,

3
y
�

x2

2 + C,
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y �
3

x2/2 + C
�

6
x2 + 2C

.

So the general solution is,

y �
6

x2 + 2C
, and y � 0.

Example 1.3.5: Exponential growth x′ � kx , k > 0

A culture initially contains 20,000 bacteria. After 5 hours there are 400,000 bacteria.
Determine the function P(t) expressing population as a function of time t (in hours). What
is the rate of growth when the population is 1 million bacteria? Round to the nearest 1000
bacteria/hour.

The population is given by the separable DE:

P′ � kP

with the IC:
P(0) � 20,000.

Solving,

dP
P

� kdt

ln P � kt + C

P(t) � P0ekt where P0 � P(0) � 20,000.

To find the growth constant k:

P(5) � 400,000 � 20,000ek(5)

k �
ln 20

5 (hr)−1

Then P(t) � 20,000ekt

At the time t when P(t) � 106 bacteria, the growth rate of the population is:

P′ � kP �
ln 20

5 (106) ≈ 599,000 bacteria/hour

Example 1.3.6: Exponential decay x′ � −λx , λ > 0.

A sandal made of a cedar was found in an archaeological excavation at Uruk in
Mesopotamia. A radiochemical analysis showed that the sandal contained 54% of the
radioactive isotope 14C present in a living cedar tree. How old is the sandal? Round to the
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nearest century.

Let S(t) � amount of 14C present at t years after the sandal was made, and suppose
λ � 0.00012 (yr)−1 is the decay constant for 14C. Then

S(t) � S0e−0.00012t

S(t) � 0.54S0 � S0e−0.00012t ,

t �
ln 0.54
−0.00012 ≈ 5100 years.

1.3.4 Exercises
Exercise 1.3.1: Solve y′ � x/y.

Exercise 1.3.2: Solve y′ � x2 y.

Exercise 1.3.3: Solve dx
dt

� (x2 − 1) t, for x(0) � 0.

Exercise 1.3.4: Solve dx
dt

� x sin(t), for x(0) � 1.

Exercise 1.3.5: Solve
dy
dx

� x y + x + y + 1. Hint: Factor the right-hand side.

Exercise 1.3.6: Solve x y′ � y + 2x2 y, where y(1) � 1.

Exercise 1.3.7: Solve
dy
dx

�
y2 + 1
x2 + 1

, for y(0) � 1.

Exercise 1.3.8: Find an implicit solution for
dy
dx

�
x2 + 1
y2 + 1

, for y(0) � 1.

Exercise 1.3.9: Find an explicit solution for y′ � xe−y , y(0) � 1.

Exercise 1.3.10: Find an explicit solution for x y′ � e−y , for y(1) � 1.

Exercise 1.3.11: Find an explicit solution for y′ � ye−x2 , y(0) � 1. It is alright to leave a definite
integral in your answer.

Exercise 1.3.12: Suppose a cup of coffee is at 100 degrees Celsius at time t � 0, it is at 70 degrees
at t � 10 minutes, and it is at 50 degrees at t � 20 minutes. Compute the ambient temperature.

Exercise 1.3.51: Sixteen grams of a radioactive substance decays to twelve grams in 500 years. Let
S(t) be the number of grams remaining at time t years.
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a) Find the decay constant of this substance. Determine the exact value and an approximation.

b) What is the half-life of the radioactive substance?

c) How much will remain after 1000 years? What is the rate of disintegration at this time?

Exercise 1.3.52: Let P(t) be the population of a certain species of insect at time t , where t is
measured in days. Suppose a population of 30,000 insects grows to 150,000 in 3 days.

a) Find the growth constant for this population.

b) Write the corresponding initial value problem (DE and IC) and its solution.

c) How long will it take for the population to triple?

Exercise 1.3.53: Suppose that $10,000 is invested at 5.5% interest. Let A(t) be the amount in this
account at time t years.

a) Write the DE, IC and solution for this problem.

b) How much is in the account after 5 years? What is the rate of growth at this time?

c) When there is $20,000 in the account, what is the rate of growth?

d) When will the original amount triple?

Exercise 1.3.54: Assume that the motion of a car is subject to a combined resistive force due to
friction and wind resistance. Newton’s Second Law gives m v′ � r v or v′ � −k v.

a) The car is moving with a constant speed on a straight road at 70 mph when the engine
suddenly stops. At 1 minute after the engine has stopped, the speed of the car is 56 mph. Solve
the IVP for v(t).

b) Determine the position function x(t).

c) After the engine stops, how far does the car go before it stops moving?

Exercise 1.3.101: Solve y′ � 2x y.

Exercise 1.3.102: Solve x′ � 3xt2 − 3t2, x(0) � 2.

Exercise 1.3.103: Find an implicit solution for x′ � 1
3x2+1 , x(0) � 1.

Exercise 1.3.104: Find an explicit solution to x y′ � y2, y(1) � 1.

Exercise 1.3.105: Find an implicit solution to y′ � sin(x)
cos(y) .

Exercise 1.3.106: Take Example 1.3.3 with the same numbers: 89 degrees at t � 0, 85 degrees at
t � 1, and ambient temperature of 22 degrees. Suppose these temperatures were measured with
precision of ±0.5 degrees. Given this imprecision, the time it takes the coffee to cool to (exactly) 60
degrees is also only known in a certain range. Find this range. Hint: Think about what kind of
error makes the cooling time longer and what shorter.



1.3. SEPARABLE EQUATIONS 43

Exercise 1.3.107: A population x of rabbits on an island is modeled by x′ � x −
(
1/1000

)
x2, where

the independent variable is time in months. At time t � 0, there are 40 rabbits on the island.

Find the solution to the equation with the initial condition.a)

How many rabbits are on the island in 1 month, 5 months, 10 months, 15 months (round to
the nearest integer).

b)

Exercise 1.3.151: In 1982, a local sponge diver discovered a shipwreck off the coast of Uluburun in
south-western Turkey. Dendrochronology dated the ship in the late Bronze Age, about 1305 B.C.E.
If a radiochemical assay had been performed in 2010 on a wooden writing tablet recovered from
the shipwreck, what percentage of 14C would have been found in the tablet? Round to the nearest
percent. Use the value λ � 0.00012 (yr)−1 for the decay constant of 14C.

Exercise 1.3.152: A long-term investment account guarantees 3% annual interest.

a) How long would it take for the initial amount to double?

b) What should be invested initially, if one wishes to have $250,000 in 25 years?

Exercise 1.3.153: A radioactive substance decays to 4/5 of its original mass in 7 years. What is the
half-life of this substance?

Exercise 1.3.154: The population of a city was 0.9 million in 1995 and 1.2 million in 2000.
Assuming an exponential model,

a) Find the growth constant k.

b) Letting P(t) be the population with t in years since 1995, write the IVP and the solution.

c) What was the population in 2015?

d) What will the population be in 2025?

Exercise 1.3.155: A long-term certificate of deposit (CD) with continuous compounding is opened
at a bank. The terms of the CD specify no additional deposits and no withdrawals.

a. What is the interest rate r if the amount of the deposit grows by a factor of 4
3 in 10 years?

b. What was the initial deposit if the amount in the account is $40,000 after 8 years?

Exercise 1.3.156: Determine the decay constant λ for a radioactive substance if the mass of this
substance is m1 at time t1 and m2 at time t2, 0 < t1 < t2 years.

Exercise 1.3.157: A site close to a nuclear power plant was found to be contaminated by Strontium-
90 (90Sr), which has a half-life of 28.8 years. If the site has 40 times the maximum level considered
safe for human habitation, how long should this site remain uninhabited?

Find an explicit solution to each of the followings IVPs:
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Exercise 1.3.158: y′ − 2x y � 3x2 y , y(1) � 1.

Exercise 1.3.159: (x2 − 1)y′ � 2y , y(2) � 3.

Exercise 1.3.160: y y′ � x
x2+1 , y(0) � −2.

Exercise 1.3.161: cot(x)y′ � y , y(0) � 2.

Exercise 1.3.162: e−x y′ � x
y , y(0) � −5.
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1.4 Linear equations and the integrating factor
Note: 1 lecture, §1.5 in [EP], §2.1 in [BD]

One of themost important types of equations wewill learn how to solve are the so-called
linear equations. In fact, the majority of the course is about linear equations. In this section
we focus on the first order linear equation. A first order equation is linear if we can put it into
the form:

y′ + p(x)y � f (x). (1.3)

The word “linear” means linear in y and y′; no higher powers nor functions of y or y′

appear. The dependence on x can be more complicated.
Solutions of linear equations have nice properties. For example, the solution exists

wherever p(x) and f (x) are defined, and has the same regularity (read: it is just as nice).
But most importantly for us right now, there is a method for solving linear first order
equations.

The trick is to rewrite the left-hand side of (1.3) as a derivative of a product of y with
another function. To this end we find a function r(x) such that

r(x)y′ + r(x)p(x)y �
d

dx

[
r(x)y

]
.

This is the left-hand side of (1.3) multiplied by r(x). So if we multiply (1.3) by r(x), we
obtain

d
dx

[
r(x)y

]
� r(x) f (x).

Now we integrate both sides. The right-hand side does not depend on y and the left-hand
side is written as a derivative of a function. Afterwards, we solve for y. The function r(x)
is called the integrating factor and the method is called the integrating factor method.

We are looking for a function r(x), such that if we differentiate it, we get the same
function back multiplied by p(x). That seems like a job for the exponential function! Let

r(x) � e
∫

p(x) dx .

We compute:

y′ + p(x)y � f (x),
e
∫

p(x) dx y′ + e
∫

p(x) dxp(x)y � e
∫

p(x) dx f (x),
d

dx

[
e
∫

p(x) dx y
]
� e

∫
p(x) dx f (x),

e
∫

p(x) dx y �

∫
e
∫

p(x) dx f (x) dx + C,

y � e−
∫

p(x) dx
(∫

e
∫

p(x) dx f (x) dx + C
)
.
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Of course, to get a closed form formula for y, we need to be able to find a closed form
formula for the integrals appearing above.

Example 1.4.1: Solve
y′ + 2x y � ex−x2

, y(0) � −1.

First note that p(x) � 2x and f (x) � ex−x2 . The integrating factor is r(x) � e
∫

p(x) dx
� ex2 .

We multiply both sides of the equation by r(x) to get

ex2
y′ + 2xex2

y � ex−x2
ex2
,

d
dx

[
ex2

y
]
� ex .

We integrate

ex2
y � ex

+ C,

y � ex−x2
+ Ce−x2

.

Next, we solve for the initial condition −1 � y(0) � 1 + C, so C � −2. The solution is

y � ex−x2 − 2e−x2
.

Note that we do not care which antiderivative we take when computing e
∫

p(x)dx . You
can always add a constant of integration, but those constants will not matter in the end.

Exercise 1.4.1: Try it! Add a constant of integration to the integral in the integrating factor and
show that the solution you get in the end is the same as what we got above.

Advice: Do not try to remember the formula itself, that is way too hard. It is easier to
remember the process and repeat it.

Since we cannot always evaluate the integrals in closed form, it is useful to know how
to write the solution in definite integral form. A definite integral is something that you can
plug into a computer or a calculator. Suppose we are given

y′ + p(x)y � f (x), y(x0) � y0.

Look at the solution and write the integrals as definite integrals.

y(x) � e−
∫ x

x0
p(s) ds

(∫ x

x0

e
∫ t

x0
p(s) ds f (t) dt + y0

)
. (1.4)

You should be careful to properly use dummy variables here. If you now plug such a
formula into a computer or a calculator, it will be happy to give you numerical answers.

Exercise 1.4.2: Check that y(x0) � y0 in formula (1.4).
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Exercise 1.4.3: Write the solution of the following problem as a definite integral, but try to simplify
as far as you can. You will not be able to find the solution in closed form.

y′ + y � ex2−x , y(0) � 10.

Remark 1.4.1: Before we move on, we should note some interesting properties of linear
equations. First, for the linear initial value problem y′ + p(x)y � f (x), y(x0) � y0, there is
always an explicit formula (1.4) for the solution. Second, it follows from the formula (1.4)
that if p(x) and f (x) are continuous on some interval (a , b), then the solution y(x) exists
and is differentiable on (a , b). Compare with the simple nonlinear example we have seen
previously, y′ � y2, and compare to Theorem 1.2.1.

Example 1.4.2: Let us discuss a common simple application of linear equations. This type
of problem is used often in real life. For example, linear equations are used in figuring out
the concentration of chemicals in bodies of water (rivers and lakes).

5 L/min, 0.1 kg/L

3 L/min

60 L
10 kg salt

A 100 liter tank contains 10 kilograms of salt dissolved in 60
liters of water. Solution of water and salt (brine) with concentration
of 0.1 kilograms per liter is flowing in at the rate of 5 liters a minute.
The solution in the tank is well stirred and flows out at a rate of 3
liters a minute. How much salt is in the tank when the tank is full?

Let us come up with the equation. Let x denote the kilograms
of salt in the tank, let t denote the time in minutes. For a small
change ∆t in time, the change in x (denoted ∆x) is approximately

∆x ≈ (rate in × concentration in)∆t − (rate out × concentration out)∆t .

Dividing through by ∆t and taking the limit ∆t → 0 we see that

dx
dt

� (rate in × concentration in) − (rate out × concentration out).

In our example, we have

rate in � 5,
concentration in � 0.1,

rate out � 3,

concentration out � x
volume �

x
60 + (5 − 3)t .

Our equation is, therefore,

dx
dt

� (5 × 0.1) −
(
3 x

60 + 2t

)
.

Or in the form (1.3)
dx
dt

+
3

60 + 2t
x � 0.5.
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Let us solve. The integrating factor is

r(t) � exp
(∫

3
60 + 2t

dt
)
� exp

(
3
2 ln(60 + 2t)

)
� (60 + 2t)3/2.

We multiply both sides of the equation to get

(60 + 2t)3/2 dx
dt

+ (60 + 2t)3/2 3
60 + 2t

x � 0.5(60 + 2t)3/2,
d
dt

[
(60 + 2t)3/2x

]
� 0.5(60 + 2t)3/2,

(60 + 2t)3/2x �

∫
0.5(60 + 2t)3/2dt + C,

x � (60 + 2t)−3/2
∫
(60 + 2t)3/2

2 dt + C(60 + 2t)−3/2,

x � (60 + 2t)−3/2 1
10(60 + 2t)5/2 + C(60 + 2t)−3/2,

x �
60 + 2t

10 + C(60 + 2t)−3/2.

0 5 10 15 20

0 5 10 15 20

10.0

10.5

11.0

11.5

10.0

10.5

11.0

11.5

Figure 1.10: Graph of the solution x kilograms of
salt in the tank at time t.

We need to find C. We know that at
t � 0, x � 10. So

10 � x(0) � 60
10 + C(60)−3/2

� 6 + C(60)−3/2,

or
C � 4(603/2) ≈ 1859.03.

We are interested in x when the tank is
full. The tank is full when 60 + 2t � 100, or
when t � 20. So

x(20) � 60 + 40
10 + C(60 + 40)−3/2

≈ 10 + 1859.03(100)−3/2 ≈ 11.86.

See Figure 1.10 for the graph of x over t.
The concentration when the tank is full is approximately 0.1186 kg/liter, and we started

with 1/6 or 0.167 kg/liter.

Example 1.4.2: (cf. example 1.3.3), T′ � k(A − T):

An iron object at 400o F is dropped into a large vat of water at A � 60o F. After 5
seconds, the temperature of the object is 300o F.

a) Write and solve the IVP.
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b) Find the constant k.

c) When will the temperature of the object be 150o F? Round to the nearest second.

a) The IVP consists of the DE T′ � k(A − T) together with the IC T(0) � 400. Writing
the DE in the standard form for a linear, first order equation, one obtains T′ + kT � 60k.
Applying the method of integrating factors gives:

r(t) � e
∫

p(t) dt
� ekt

T′ekt
+ kektT � 60kekt

(ektT)′ � 60kekt

So, ektT � 60ekt
+ C

or T(t) � 60 + Ce−kt .

Imposing the IC allows one to solve for C:

T(0) � 60 + C � 400, C � 340
T(t) � 60 + 340e−kt .

b) The value of the constant k is determined by the temperature of the object at t � 5
seconds:

T(5) � 60 + 340e−k(5)
� 300

k �
ln 12

17
−5 �

1
5ln 17

12 (sec)
−1

c) If the temperature of the object is 150oF at some time t, then T(t) � 150:

60 + 340e−kt
� 150

t �
ln 9

34
−k

�
ln 34

9
k
≈

ln 34
9

0.070 ≈ 19 seconds.

1.4.1 Exercises
In the exercises, feel free to leave answer as a definite integral if a closed form solution
cannot be found. If you can find a closed form solution, you should give that.

Exercise 1.4.4: Solve y′ + x y � x.

Exercise 1.4.5: Solve y′ + 6y � ex .

Exercise 1.4.6: Solve y′ + 3x2 y � sin(x) e−x3 , with y(0) � 1.
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Exercise 1.4.7: Solve y′ + cos(x)y � cos(x).

Exercise 1.4.8: Solve 1
x2+1 y′ + x y � 3, with y(0) � 0.

Exercise 1.4.9: Suppose there are two lakes located on a stream. Clean water flows into the first
lake, then the water from the first lake flows into the second lake, and then water from the second
lake flows further downstream. The in and out flow from each lake is 500 liters per hour. The first
lake contains 100 thousand liters of water and the second lake contains 200 thousand liters of water.
A truck with 500 kg of toxic substance crashes into the first lake. Assume that the water is being
continually mixed perfectly by the stream.

Find the concentration of toxic substance as a function of time in both lakes.a)

When will the concentration in the first lake be below 0.001 kg per liter?b)

When will the concentration in the second lake be maximal?c)

Exercise 1.4.10: Newton’s law of cooling states that dx
dt � −k(x − A) where x is the temperature, t

is time, A is the ambient temperature, and k > 0 is a constant. Suppose that A � A0 cos(ωt) for
some constants A0 and ω. That is, the ambient temperature oscillates (for example night and day
temperatures).

Find the general solution.a)

In the long term, will the initial conditions make much of a difference? Why or why not?b)

Exercise 1.4.11: Initially 5 grams of salt are dissolved in 20 liters of water. Brine with concentration
of salt 2 grams of salt per liter is added at a rate of 3 liters a minute. The tank is mixed well and is
drained at 3 liters a minute. How long does the process have to continue until there are 20 grams of
salt in the tank?

Exercise 1.4.12: Initially a tank contains 10 liters of pure water. Brine of unknown (but constant)
concentration of salt is flowing in at 1 liter per minute. The water is mixed well and drained at 1
liter per minute. In 20 minutes there are 15 grams of salt in the tank. What is the concentration of
salt in the incoming brine?

Exercise 1.4.51: (cf. example 1.3.3), T′ � k(A − T): The acceleration v′(t) of a sports car is
proportional to the difference between 180 miles/hr and the velocity v(t) of the car. If this car can
accelerate from rest to 60mph in 5 seconds:

a) Apply the method of integrating factors (IFs) to determine the particular solution to the IVP.

b) How fast was the car going at 3 seconds?

c) What is lim
t→∞

v(t)?

d) When will the velocity be 5/9 of the limiting velocity?
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Exercise 1.4.101: Solve y′ + 3x2 y � x2.

Exercise 1.4.102: Solve y′ + 2 sin(2x)y � 2 sin(2x), y(π/2) � 3.

Exercise 1.4.103: Suppose a water tank is being pumped out at 3 L/min. The water tank starts at
10 L of clean water. Water with toxic substance is flowing into the tank at 2 L/min, with concentration
20t g/L at time t. When the tank is half empty, how many grams of toxic substance are in the tank
(assuming perfect mixing)?

Exercise 1.4.104: Suppose we have bacteria on a plate and suppose that we are slowly adding a toxic
substance such that the rate of growth is slowing down. That is, suppose that dP

dt � (2 − 0.1 t)P. If
P(0) � 1000, find the population at t � 5.

Exercise 1.4.105: A cylindrical water tank has water flowing in at I cubic meters per second. Let
A be the area of the cross section of the tank in meters. Suppose water is flowing from the bottom of
the tank at a rate proportional to the height of the water level. Set up the differential equation for h,
the height of the water, introducing and naming constants that you need. You should also give the
units for your constants.

Apply the method of IFs to solve the following problems.

Exercise 1.4.151: Before opening the parachute a skydiver jumping out of an airplane falls at an
increasing rate. However, air resistance creates an upward force which balances the downward force
of gravity, resulting in a constant terminal velocity T. If v(t) the downward velocity of the skydiver
at t seconds, then v′ � k(T − v).
If the initial velocity is 10 feet/second, the velocity after 3 seconds is 40 feet/second and the terminal
velocity is 70 ft/sec,

a) Apply the method of IFs to determine the particular solution to the IVP, before the parachute
opens.

b) When will the velocity of the skydiver be 60 ft/sec?

Exercise 1.4.152: Suppose the spread of information by mass media is proportional to the difference
between 100% and x(t), the percentage of the population knowing the information after t hours.
Suppose that 10% of the population knows the information initially and that 30% knows the
information after 4 hours.

a) Solve the IVP.

b) What percentage of the population will know this information after 7 hours?

c) What is the rate of dissemination of this information (in % of the population/hour) at 7 hours?

Exercise 1.4.153: A boat has mass 200 slugs (approximate weight 6,435 pounds). The boat motor
provides a constant thrust of 5,000 pounds force. Assume the total resistive force due to water and
air resistance is proportional to velocity and the coefficient of resistance is 100 pounds force per ft/sec
of velocity. Applying Newton’s Second Law gives, 200v′ � 5, 000 − 100v for velocity v(t) ft/sec.
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a) If the boat starts from rest, determine v(t).

b) When will the velocity of the boat be 80% of its maximum velocity?

c) How far has the boat gone at the time specified in part b)?

Exercise 1.4.154: An individual retires with a retirement account which yields 4% interest per
year, compounded continuously. Online banking allows continuous withdrawals for living expenses
at a rate of $30,000 per year.

a) If the account balance is $300,000 when this person retires, solve the IVP for the amount A(t)
in the retirement account at time t years.

b) How long will it take for this account to close due to a zero balance.

c) What initial amount A0 must be in the account so that the rate of growth due to interest
equals the rate of withdrawals?

Exercise 1.4.155: A constant horizontal force of 8N is applied to a 2kg mass. The total resistive
force of the level surface is proportional to velocity, with a coefficient of 1

5
N−s

m .

a) If the initial velocity is 1 m/s, solve the IVP for v(t).

b) What was the initial velocity if the object is moving 20 m/s at 5 seconds?

Exercise 1.4.156: The concentration C(t) of solute inside a cell changes with time due to the passage
of solute across the cell membrane. The rate of change is given by C′ � k(M − C), where C(t) is the
concentration of solute inside the cell, M is the concentration of solute outside the cell, assumed
constant, k > 0 is a constant and t is the time measured in seconds.

a) Suppose that the initial concentration inside the cell isC(0) � 20 µg/mL, that M � 100 µg/mL,
and that after 3 seconds the concentration inside the cell is C(3) � 35 µg/mL. Solve the IVP
for C(t) and determine the value of k.

b) How long will it take for the concentration C(t) to increase from 35 µg/mL to 45 µg/mL?

Exercise 1.4.157: A piece of iron heated to 450oF is placed outside in order to create this problem.
The outside temperature is a constant 75oF. At 2 PM the temperature of the iron is 400oF, and 2
minutes later temperature is 375oF.

a) When was this piece of iron placed outside?

b) When will its temperature be 300oF ?

Solve the following differential equations(DEs) by the method of integrating factors. If an initial
condition(IC) is given, find the particular solution to the IVP.



1.4. LINEAR EQUATIONS AND THE INTEGRATING FACTOR 53

Exercise 1.4.158: 3y′ − 6y � 12, y(0) � 4.

Exercise 1.4.159: y′ + 2x y � 2x.

Exercise 1.4.160: y′ − 6x2 y � 0, y(1) � e.

Exercise 1.4.161: x2 y′ � 3x y + 4x6.

Exercise 1.4.162: x y′ + 2y � 5
√

x.

Exercise 1.4.163: y′ + (cos x)y � 2 cos x , y(π) � 5.

Exercise 1.4.164: (x + 2)y′ − y �
3

x+2 .

Exercise 1.4.165: x2 y′ + x y � 1 (x > 0), y(1) � 3.

Exercise 1.4.166: y′ + 3(sin 3x)y � ecos 3x , y(0) � e2.

Exercise 1.4.167: (x2 + 1)y′ + 2x y �
1

x2+1 .

Exercise 1.4.168: y′ � x − 2y.
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1.5 Substitution
Note: 1 lecture, can safely be skipped, §1.6 in [EP], not in [BD]

Just as when solving integrals, one method to try is to change variables to end up with
a simpler equation to solve.

1.5.1 Substitution
The equation

y′ � (x − y + 1)2

is neither separable nor linear. What can we do? How about trying to change variables, so
that in the new variables the equation is simpler. We use another variable v, which we
treat as a function of x. Let us try

v � x − y + 1.

We need to figure out y′ in terms of v′, v and x. We differentiate (in x) to obtain v′ � 1− y′.
So y′ � 1 − v′. We plug this into the equation to get

1 − v′ � v2.

In other words, v′ � 1− v2. Such an equation we know how to solve by separating variables:

1
1 − v2 dv � dx.

So
1
2 ln

����v + 1
v − 1

���� � x + C, or
����v + 1
v − 1

���� � e2x+2C , or v + 1
v − 1 � De2x ,

for some constant D. Note that v � 1 and v � −1 are also solutions.
Now we need to “unsubstitute” to obtain

x − y + 2
x − y

� De2x ,

and also the two solutions x − y + 1 � 1 or y � x, and x − y + 1 � −1 or y � x + 2. We solve
the first equation for y.

x − y + 2 � (x − y)De2x ,

x − y + 2 � Dxe2x − yDe2x ,

−y + yDe2x
� Dxe2x − x − 2,

y (−1 + De2x) � Dxe2x − x − 2,

y �
Dxe2x − x − 2

De2x − 1
.
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Note that D � 0 gives y � x + 2, but no value of D gives the solution y � x.

Substitution in differential equations is applied in much the same way that it is applied
in calculus. You guess. Several different substitutions might work. There are some general
patterns to look for. We summarize a few of these in a table.

When you see Try substituting

y y′ v � y2

y2 y′ v � y3

(cos y)y′ v � sin y
(sin y)y′ v � cos y
y′e y v � e y

Usually you try to substitute in the “most complicated” part of the equation with the
hopes of simplifying it. The table above is just a rule of thumb. You might have to modify
your guesses. If a substitution does not work (it does not make the equation any simpler),
try a different one.

1.5.2 Bernoulli equations
There are some forms of equations where there is a general rule for substitution that always
works. One such example is the so-called Bernoulli equation∗:

y′ + p(x)y � q(x)yn .

This equation looks a lot like a linear equation except for the yn . If n � 0 or n � 1, then the
equation is linear and we can solve it. Otherwise, the substitution v � y1−n transforms the
Bernoulli equation into a linear equation. Note that n need not be an integer.

Example 1.5.1: Solve

x y′ + y(x + 1) + x y5
� 0, y(1) � 1.

First, the equation is Bernoulli (p(x) � (x + 1)/x and q(x) � −1). We substitute

v � y1−5
� y−4, v′ � −4y−5 y′.

In other words, (−1/4) y5v′ � y′. So

x y′ + y(x + 1) + x y5
� 0,

−x y5

4 v′ + y(x + 1) + x y5
� 0,

∗There are several things called Bernoulli equations, this is just one of them. The Bernoullis were a
prominent Swiss family of mathematicians. These particular equations are named for Jacob Bernoulli
(1654–1705).

https://en.wikipedia.org/wiki/Jacob_Bernoulli
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−x
4 v′ + y−4(x + 1) + x � 0,
−x
4 v′ + v(x + 1) + x � 0,

and finally

v′ − 4(x + 1)
x

v � 4.

The equation is now linear. We can use the integrating factor method. In particular, we use
formula (1.4). Let us assume that x > 0 so |x | � x. This assumption is OK, as our initial
condition is x � 1. Let us compute the integrating factor. Here p(s) from formula (1.4) is
−4(s+1)

s .

e
∫ x

1 p(s) ds
� exp

(∫ x

1

−4(s + 1)
s

ds
)
� e−4x−4 ln(x)+4

� e−4x+4x−4
�

e−4x+4

x4 ,

e−
∫ x

1 p(s) ds
� e4x+4 ln(x)−4

� e4x−4x4.

We now plug in to (1.4)

v(x) � e−
∫ x

1 p(s) ds
(∫ x

1
e
∫ t

1 p(s) ds4 dt + 1
)

� e4x−4x4
(∫ x

1
4 e−4t+4

t4 dt + 1
)
.

The integral in this expression is not possible to find in closed form. As we said before, it is
perfectly fine to have a definite integral in our solution. Now “unsubstitute”

y−4
� e4x−4x4

(
4
∫ x

1

e−4t+4

t4 dt + 1
)
,

y �
e−x+1

x
(
4
∫ x

1
e−4t+4

t4 dt + 1
)1/4 .

1.5.3 Homogeneous equations
Another type of equations we can solve by substitution are the so-called homogeneous
equations. Suppose that we can write the differential equation as

y′ � F
( y

x

)
.

Here we try the substitutions

v �
y
x

and therefore y′ � v + xv′.
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We note that the equation is transformed into

v + xv′ � F(v) or xv′ � F(v) − v or v′

F(v) − v
�

1
x
.

Hence an implicit solution is ∫
1

F(v) − v
dv � ln |x | + C.

Example 1.5.2: Solve
x2 y′ � y2

+ x y , y(1) � 1.

We put the equation into the form y′ � (y/x)2 + y/x. We substitute v � y/x to get the
separable equation

xv′ � v2
+ v − v � v2,

which has a solution ∫
1
v2 dv � ln |x | + C,

−1
v

� ln |x | + C,

v �
−1

ln |x | + C
.

We unsubstitute

y
x
�

−1
ln |x | + C

,

y �
−x

ln |x | + C
.

We want y(1) � 1, so

1 � y(1) � −1
ln |1| + C

�
−1
C
.

Thus C � −1 and the solution we are looking for is

y �
−x

ln |x | − 1
.

1.5.4 Exercises
Hint: Answers need not always be in closed form.

Exercise 1.5.1: Solve y′ + y(x2 − 1) + x y6 � 0, with y(1) � 1.

Exercise 1.5.2: Solve 2y y′ + 1 � y2 + x, with y(0) � 1.
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Exercise 1.5.3: Solve y′ + x y � y4, with y(0) � 1.

Exercise 1.5.4: Solve y y′ + x �
√

x2 + y2.

Exercise 1.5.5: Solve y′ � (x + y − 1)2.

Exercise 1.5.6: Solve y′ � x2−y2

x y , with y(1) � 2.

Exercise 1.5.101: Solve x y′ + y + y2 � 0, y(1) � 2.

Exercise 1.5.102: Solve x y′ + y + x � 0, y(1) � 1.

Exercise 1.5.103: Solve y2 y′ � y3 − 3x, y(0) � 2.

Exercise 1.5.104: Solve 2y y′ � e y2−x2
+ 2x.

Find a closed-form solution to the following problems. If possible, solve explicitly for y(x).

Exercise 1.5.151: x2 y′ � y2 + 3x y.

Exercise 1.5.152: y′ �
√

x + y − 5.

Exercise 1.5.153: x3 y y′ + x2 y2 � y5.

Exercise 1.5.154: y′ � (x + y + 7)2, y(0) � −6.

Exercise 1.5.155: x y′ � 2x + 3y , y(−1) � 3.

Exercise 1.5.156: (cos y)y′ � e2x + 1, y(0) � 0.

Exercise 1.5.157: (x2 − y2)y′ � x y.

Exercise 1.5.158: y4 y′ � −3x2 y5 + x2.

Exercise 1.5.159: e2y y′ � 1 − e2y

Exercise 1.5.160: x y2 y′ � x3 + 2y3.

Exercise 1.5.161: x2 y′ − x3e−1/x y2/3 � 3y.
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1.6 Autonomous equations
Note: 1 lecture, §2.2 in [EP], §2.5 in [BD]

Consider problems of the form
dx
dt

� f (x),

where the derivative of solutions depends only on x (the dependent variable). Such
equations are called autonomous equations. If we think of t as time, the naming comes from
the fact that the equation is independent of time.

We return to the cooling coffee problem (Example 1.3.3). Newton’s law of cooling says

dx
dt

� k(A − x),

where x is the temperature, t is time, k is some positive constant, and A is the ambient
temperature. See Figure 1.11 for an example with k � 0.3 and A � 5.

Note the solution x � A (in the figure x � 5). We call these constant solutions the
equilibrium solutions. The points on the x-axis where f (x) � 0 are called critical points. The
point x � A is a critical point. In fact, each critical point corresponds to an equilibrium
solution. Note also, by looking at the graph, that the solution x � A is “stable” in that
small perturbations in x do not lead to substantially different solutions as t increases. In
fact in this simple example if we change the initial condition a little bit, then as t →∞ we
get x(t) → A. If a critical point is not stable, we say it is unstable.
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Figure 1.11: The slope field and some solutions of
x′ � 0.3 (5 − x).
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Figure 1.12: The slope field and some solutions of
x′ � 0.1 x (5 − x).

Consider now the logistic equation

dx
dt

� kx(M − x),
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for some positive k and M. This equation is commonly used to model population if we
know the limiting population M, that is the maximum sustainable population. The logistic
equation leads to less catastrophic predictions on world population than x′ � kx. In the
real world there is no such thing as negative population, but we will still consider negative
x for the purposes of the math.

See Figure 1.12 on the preceding page for an example, x′ � 0.1x(5 − x). There are two
critical points, x � 0 and x � 5. The critical point at x � 5 is stable, while the critical point
at x � 0 is unstable.

It is not necessary to find the exact solutions to talk about the long term behavior of the
solutions. From the slope field above of x′ � 0.1x(5 − x), we see that

lim
t→∞

x(t) �


5 if x(0) > 0,
0 if x(0) � 0,
DNE or −∞ if x(0) < 0.

Here DNE means “does not exist.” From just looking at the slope field we cannot quite
decide what happens if x(0) < 0. It could be that the solution does not exist for t all the
way to∞. Think of the equation x′ � x2; we have seen that solutions only exist for some
finite period of time. Same can happen here. In our example equation above it turns out
that the solution does not exist for all time, but to see that we would have to solve the
equation. In any case, the solution does go to −∞, but it may get there rather quickly.

If we are interested only in the long term behavior of the solution, we would be doing
unnecessary work if we solved the equation exactly. We could draw the slope field, but it
is easier to just look at the phase diagram or phase portrait, which is a simple way to visualize
the behavior of autonomous equations. In this case there is one dependent variable x.
We draw the x-axis, we mark all the critical points, and then we draw arrows in between.
Since x is the dependent variable we draw the axis vertically, as it appears in the slope
field diagrams above. If f (x) > 0, we draw an up arrow. If f (x) < 0, we draw a down
arrow. To figure this out, we could just plug in some x between the critical points, f (x)
will have the same sign at all x between two critical points as long f (x) is continuous. For
example, f (6) � −0.6 < 0, so f (x) < 0 for x > 5, and the arrow above x � 5 is a down arrow.
Next, f (1) � 0.4 > 0, so f (x) > 0 whenever 0 < x < 5, and the arrow points up. Finally,
f (−1) � −0.6 < 0 so f (x) < 0 when x < 0, and the arrow points down.

x � 5

x � 0
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Armed with the phase diagram, it is easy to sketch the solutions approximately: As
time t moves from left to right, the graph of a solution goes up if the arrow is up, and it
goes down if the arrow is down.

Exercise 1.6.1: Try sketching a few solutions simply from looking at the phase diagram. Check
with the preceding graphs if you are getting the type of curves.

Once we draw the phase diagram, we classify critical points as stable or unstable∗.

unstable stable

Since any mathematical model we cook up will only be an approximation to the real
world, unstable points are generally bad news.

Let us think about the logistic equation with harvesting. Suppose an alien race really
likes to eat humans. They keep a planet with humans on it and harvest the humans at a
rate of h million humans per year. Suppose x is the number of humans in millions on the
planet and t is time in years. Let M be the limiting population when no harvesting is done.
The number k > 0 is a constant depending on how fast humans multiply. Our equation
becomes

dx
dt

� kx(M − x) − h.

We expand the right-hand side and set it to zero.

kx(M − x) − h � −kx2
+ kMx − h � 0.

Solving for the critical points, let us call them A and B, we get

A �

kM +

√
(kM)2 − 4hk

2k
, B �

kM −
√
(kM)2 − 4hk

2k
.

Exercise 1.6.2: Sketch a phase diagram for different possibilities. Note that these possibilities are
A > B, or A � B, or A and B both complex (i.e. no real solutions). Hint: Fix some simple k and M
and then vary h.

For example, let M � 8 and k � 0.1. When h � 1, then A and B are distinct and positive.
The slope field we get is in Figure 1.13 on the next page. As long as the population starts
above B, which is approximately 1.55 million, then the population will not die out. It will
in fact tend towards A ≈ 6.45 million. If ever some catastrophe happens and the population
drops below B, humans will die out, and the fast food restaurant serving them will go out
of business.

∗Unstable points with one of the arrows pointing towards the critical point are sometimes called semistable.
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Figure 1.13: The slope field and some solutions of
x′ � 0.1 x (8 − x) − 1.
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Figure 1.14: The slope field and some solutions of
x′ � 0.1 x (8 − x) − 1.6.

When h � 1.6, then A � B � 4. There is only one critical point and it is unstable. When
the population starts above 4 million it will tend towards 4 million. If it ever drops below 4
million, humans will die out on the planet. This scenario is not one that we (as the human
fast food proprietor) want to be in. A small perturbation of the equilibrium state and we
are out of business. There is no room for error. See Figure 1.14.

Finally if we are harvesting at 2 million humans per year, there are no critical points.
The population will always plummet towards zero, no matter how well stocked the planet
starts. See Figure 1.15.
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Figure 1.15: The slope field and some solutions of x′ � 0.1 x (8 − x) − 2.
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1.6.1 Sketching qualitatively-different solutions to autonomous DEs
We are considering problems of the form:

x′ � f (x)

where f (x) and d f
dx (x) are continuous. The basic idea is that the sign of the function

f (x) tells us if the solution is increasing or decreasing. This allows one to sketch rough
approximate solutions with the correct qualitative properties.

Example 1.6.1:
x′ � f (x) � x2 − 4x + 3 (1.5)

Step 1) Draw 3 sets of axes:

(i) xx′-plane, for the graph of x′ � f (x),
(ii) a vertical x axis, for the phase line,
(iii) tx-plane, for the solution curves.

It is helpful to draw (i) “sideways” as in Figure 1.16 so that the x-axes of all 3 plots
are aligned.

Figure 1.16

Step 2) Sketch x′ � f (x) in the xx′-plane. Note that each value x � c such that f (c) � 0
corresponds to a constant solution x(t) ≡ c for all x. The values x � c are also called
critical points or equilibria of the DE.

Step 3) Mark the critical points x � c as dots on the x-axis of the phase line. These divide the
phase line into subintervals.
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Step 4) Draw an arrow on each subinterval, pointing up if f > 0 on the subinterval and
down if f < 0.

Step 5) Sketch the constant solutions x(t) ≡ c in the tx-plane. These lines divide the tx-plane
into subregions corresponding to the subintervals of the phase line.

Step 6) Select one IC (t0, x0) for each different subregion and sketch the corresponding
solution. Base the sketch on whether x(t) is increasing or decreasing as shown by
the arrows on the phase line. Each solution curve must lie entirely in one of the
subregions. It can be shown by using the Picard existence/uniqueness theorem for
first order ODEs (Theorem 1.2.1) that different solution curves cannot intersect (y
and x of the Theorem correspond to x and t here, respectively). It follows that each
non-constant solution x(t) cannot cross or even touch any of the lines x � c because
these lines represent constant solutions x(t) ≡ c.

In the example shown in Figure 1.16 on the previous page, each of the three non-constant
solution curves represents a class of solutions having the same qualitative behavior:

1) Any IC (t0, x0) with x0 < 1 leads to a solution which is strictly increasing and
asymptotic as t → ∞ to x ≡ 1. For t < t0, the solution takes on arbitrarily large
negative values.

2) Any IC (t0, x0)with 1 < x0 < 3 leads to a solution which is strictly decreasing for all t
and asymptotic as t →∞ to x ≡ 1. As t → −∞ the solution is asymptotic to x ≡ 3.

3) Any IC (t0, x0) with x0 > 3 leads to a solution which is strictly increasing. For t > t0,
the solution takes on arbitrarily large positive values. As t → −∞, the solution is
asymptotic to x ≡ 3.

1.6.2 Exercises

Exercise 1.6.3: Consider x′ � x2.

Draw the phase diagram, find the critical points, and mark them stable or unstable.a)

Sketch typical solutions of the equation.b)

Find lim
t→∞

x(t) for the solution with the initial condition x(0) � −1.c)

Exercise 1.6.4: Consider x′ � sin x.

Draw the phase diagram for −4π ≤ x ≤ 4π. On this interval mark the critical points stable
or unstable.

a)

Sketch typical solutions of the equation.b)

Find lim
t→∞

x(t) for the solution with the initial condition x(0) � 1.c)
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Exercise 1.6.5: Suppose f (x) is positive for 0 < x < 1, it is zero when x � 0 and x � 1, and it is
negative for all other x.

Draw the phase diagram for x′ � f (x), find the critical points, and mark them stable or
unstable.

a)

Sketch typical solutions of the equation.b)

Find lim
t→∞

x(t) for the solution with the initial condition x(0) � 0.5.c)

Exercise 1.6.6: Start with the logistic equation dx
dt � kx(M−x). Suppose we modify our harvesting.

That is we will only harvest an amount proportional to current population. In other words, we
harvest hx per unit of time for some h > 0 (Similar to earlier example with h replaced with hx).

Construct the differential equation.a)

Show that if kM > h, then the equation is still logistic.b)

What happens when kM < h?c)

Exercise 1.6.7: A disease is spreading through the country. Let x be the number of people infected.
Let the constant S be the number of people susceptible to infection. The infection rate dx

dt is
proportional to the product of already infected people, x, and the number of susceptible but uninfected
people, S − x.

Write down the differential equation.a)

Supposing x(0) > 0, that is, some people are infected at time t � 0, what is lim
t→∞

x(t).b)

Does the solution to part b) agree with your intuition? Why or why not?c)

Follow the steps in Example 1.6.1 to sketch the qualitative-different solution curves for the
following autonomous DEs. Be sure to show all key features of the three graphs, zeros of f (x),
arrows of increase / decrease, ..., as in Figure 1.16 on page 63.

Exercise 1.6.51: x′ � x2 − 6x + 5.

Exercise 1.6.52: x′ � −x2 + x + 2.

Exercise 1.6.53: x′ � x + 3.

Exercise 1.6.54: x′ � (x + 2)2.

Exercise 1.6.55: x′ � −x2 + 6x − 9.

Exercise 1.6.56: x′ � −2x + 2.

Exercise 1.6.57: x′ � x2 − 4x + 4.
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Exercise 1.6.58: x′ � −x2 + 5x − 4.

Exercise 1.6.59: x′ � x2 − 4.

Exercise 1.6.60: x′ � −x2 + x + 6.

Exercise 1.6.61: x′ � (3 − x)3.

Exercise 1.6.101: Let x′ � (x − 1)(x − 2)x2.

Sketch the phase diagram and find critical points.a)

Classify the critical points.b)

If x(0) � 0.5, then find lim
t→∞

x(t).c)

Exercise 1.6.102: Let x′ � e−x .

Find and classify all critical points.a) Find lim
t→∞

x(t) given any initial condition.b)

Exercise 1.6.103: Assume that a population of fish in a lake satisfies dx
dt � kx(M − x). Now

suppose that fish are continually added at A fish per unit of time.

Find the differential equation for x.a) What is the new limiting population?b)

Exercise 1.6.104: Suppose dx
dt � (x − α)(x − β) for two numbers α < β.

Find the critical points, and classify them.a)

For b), c), d), find lim
t→∞

x(t) based on the phase diagram.

x(0) < α,b) α < x(0) < β,c) β < x(0).d)



1.7. NUMERICAL METHODS: EULER’S METHOD 67

1.7 Numerical methods: Euler’s method
Note: 1 lecture, can safely be skipped, §2.4 in [EP], §8.1 in [BD]

Unless f (x , y) is of a special form, it is generally very hard if not impossible to get a
nice formula for the solution of the problem

y′ � f (x , y), y(x0) � y0.

If the equation can be solved in closed form, we should do that. But what if we have
an equation that cannot be solved in closed form? What if we want to find the value
of the solution at some particular x? Or perhaps we want to produce a graph of the
solution to inspect the behavior. In this section we will learn about the basics of numerical
approximation of solutions.

The simplest method for approximating a solution is Euler’s method∗. It works as follows:
Take x0 and compute the slope k � f (x0, y0). The slope is the change in y per unit change
in x. Follow the line for an interval of length h on the x-axis. Hence if y � y0 at x0, then
we say that y1 (the approximate value of y at x1 � x0 + h) is y1 � y0 + hk. Rinse, repeat!
Let k � f (x1, y1), and then compute x2 � x1 + h, and y2 � y1 + hk. Now compute x3 and
y3 using x2 and y2, etc. Consider the equation y′ � y2/3, y(0) � 1, and h � 1. Then x0 � 0
and y0 � 1. We compute

x1 � x0 + h � 0 + 1 � 1, y1 � y0 + h f (x0, y0) � 1 + 1 · 1/3 � 4/3 ≈ 1.333,

x2 � x1 + h � 1 + 1 � 2, y2 � y1 + h f (x1, y1) � 4/3 + 1 · (
4/3)2
3 � 52/27 ≈ 1.926.

We then draw an approximate graph of the solution by connecting the points (x0, y0),
(x1, y1), (x2, y2),. . . . For the first two steps of the method see Figure 1.17 on the next page.

More abstractly, for any i � 0, 1, 2, 3, . . ., we compute

xi+1 � xi + h , yi+1 � yi + h f (xi , yi).

The line segments we get are an approximate graph of the solution. Generally it is not
exactly the solution. See Figure 1.18 on the following page for the plot of the real solution
and the approximation.

We continue with the equation y′ � y2/3, y(0) � 1. Let us try to approximate y(2) using
Euler’s method. In Figures 1.17 and 1.18 we have graphically approximated y(2) with step
size 1. With step size 1, we have y(2) ≈ 1.926. The real answer is 3. We are approximately
1.074 off. Let us halve the step size. Computing y4 with h � 0.5, we find that y(2) ≈ 2.209,
so an error of about 0.791. Table 1.1 on page 69 gives the values computed for various
parameters.

Exercise 1.7.1: Solve this equation exactly and show that y(2) � 3.
∗Named after the Swiss mathematician Leonhard Paul Euler (1707–1783). The correct pronunciation of

the name sounds more like “oiler.”

https://en.wikipedia.org/wiki/Euler


68 CHAPTER 1. FIRST ORDER EQUATIONS

-1 0 1 2 3

-1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-1 0 1 2 3

-1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1.17: First two steps of Euler’s method with h � 1 for the equation y′ � y2

3 with initial conditions
y(0) � 1.
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Figure 1.18: Two steps of Euler’s method (step size 1) and the exact solution for the equation y′ � y2

3
with initial conditions y(0) � 1.

The difference between the actual solution and the approximate solution is called the
error. We usually talk about just the size of the error and we do not care much about its
sign. The point is, we usually do not know the real solution, so we only have a vague
understanding of the error. If we knew the error exactly . . . what is the point of doing the
approximation?

Notice that except for the first few times, every time we halved the interval the error
approximately halved. This halving of the error is a general feature of Euler’s method as it
is a first order method. There exists an improved Euler method, see the exercises, which is
a second order method. A second order method reduces the error to approximately one
quarter every time we halve the interval. The meaning of “second” order is the squaring in
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h Approximate y(2) Error Error
Previous error

1 1.92593 1.07407
0.5 2.20861 0.79139 0.73681

0.25 2.47250 0.52751 0.66656
0.125 2.68034 0.31966 0.60599

0.0625 2.82040 0.17960 0.56184
0.03125 2.90412 0.09588 0.53385
0.015625 2.95035 0.04965 0.51779

0.0078125 2.97472 0.02528 0.50913

Table 1.1: Euler’s method approximation of y(2) where of y′ � y2/3, y(0) � 1.

1/4 � 1/2 × 1/2 � (1/2)2.
To get the error to be within 0.1 of the answer we had to already do 64 steps. To get

it to within 0.01 we would have to halve another three or four times, meaning doing 512
to 1024 steps. That is quite a bit to do by hand. The improved Euler method from the
exercises should quarter the error every time we halve the interval, so we would have to
approximately do half as many “halvings” to get the same error. This reduction can be a
big deal. With 10 halvings (starting at h � 1) we have 1024 steps, whereas with 5 halvings
we only have to do 32 steps, assuming that the error was comparable to start with. A
computer may not care about this difference for a problem this simple, but suppose each
step would take a second to compute (the function may be substantially more difficult to
compute than y2/3). Then the difference is 32 seconds versus about 17 minutes. We are not
being altogether fair, a second order method would probably double the time to do each
step. Even so, it is 1 minute versus 17 minutes. Next, suppose that we have to repeat such
a calculation for different parameters a thousand times. You get the idea.

Note that in practice we do not know how large the error is! How do we know what is
the right step size? Well, essentially we keep halving the interval, and if we are lucky, we
can estimate the error from a few of these calculations and the assumption that the error
goes down by a factor of one half each time (if we are using standard Euler).

Exercise 1.7.2: In the table above, suppose you do not know the error. Take the approximate values
of the function in the last two lines, assume that the error goes down by a factor of 2. Can you
estimate the error in the last time from this? Does it (approximately) agree with the table? Now do
it for the first two rows. Does this agree with the table?

Let us talk a little bit more about the example y′ � y2/3, y(0) � 1. Suppose that instead
of the value y(2)we wish to find y(3). The results of this effort are listed in Table 1.2 on the
following page for successive halvings of h. What is going on here? Well, you should solve
the equation exactly and you will notice that the solution does not exist at x � 3. In fact,
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the solution goes to infinity when you approach x � 3.

h Approximate y(3)
1 3.16232

0.5 4.54329
0.25 6.86079

0.125 10.80321
0.0625 17.59893

0.03125 29.46004
0.015625 50.40121
0.0078125 87.75769

Table 1.2: Attempts to use Euler’s to approximate y(3) where of y′ � y2/3, y(0) � 1.

Another case where things go bad is if the solution oscillates wildly near some point.
The solution may exist at all points, but even a much better numerical method than
Euler would need an insanely small step size to approximate the solution with reasonable
precision. And computers might not be able to easily handle such a small step size.

In real applications we would not use a simple method such as Euler’s. The simplest
method that would probably be used in a real application is the standard Runge–Kutta
method (see exercises). That is a fourth order method, meaning that if we halve the interval,
the error generally goes down by a factor of 16 (it is fourth order as 1/16 � 1/2× 1/2× 1/2× 1/2).

Choosing the right method to use and the right step size can be very tricky. There are
several competing factors to consider.

• Computational time: Each step takes computer time. Even if the function f is simple
to compute, we do it many times over. Large step size means faster computation, but
perhaps not the right precision.

• Roundoff errors: Computers only compute with a certain number of significant
digits. Errors introduced by rounding numbers off during our computations become
noticeable when the step size becomes too small relative to the quantities we are
working with. So reducing step size may in fact make errors worse. There is a certain
optimum step size such that the precision increases as we approach it, but then starts
getting worse as we make our step size smaller still. Trouble is: this optimummay be
hard to find.

• Stability: Certain equations may be numerically unstable. What may happen is that
the numbers never seem to stabilize no matter how many times we halve the interval.
We may need a ridiculously small interval size, which may not be practical due to
roundoff errors or computational time considerations. Such problems are sometimes
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called stiff . In the worst case, the numerical computations might be giving us bogus
numbers that look like a correct answer. Just because the numbers seem to have
stabilized after successive halving, does not mean that we must have the right answer.

We have seen just the beginnings of the challenges that appear in real applications.
Numerical approximation of solutions to differential equations is an active research area
for engineers and mathematicians. For example, the general purpose method used for the
ODE solver in Matlab and Octave (as of this writing) is a method that appeared in the
literature only in the 1980s.

1.7.1 Euler’s method with Python
Below we show an implementation of Euler’s method applied to the initial value problem
y′ � x2 − y, y(0) � 2. We plot the resulting Euler approximation on top of the slope field.

from resources306 import *

def f(x,y):

return x**2 - y

plt.figure(figsize=(8,8))

slopefieldplot( f, 0,2.5, 0.5,3.5, .1 ,lw=2)

y = 2.0 # This is the initial value of y.

x = 0.0 # This is the initial time.

xfinal = 2.5 # This is the value of x we want to get to.

n = 8 # Here we say how many steps we want to take.

h =(xfinal-x)/n # This is our step-size.

xlist = [x] # Initialize lists to store the data in

ylist = [y] # for later plotting.

for i in range(n): # Take n steps

slope = f(x,y) # Compute the slope at the current location with DE

y = y + h*slope # Take the Euler step to the new value of y.

x = x + h # Advance x by one step.

xlist.append(x) # Tack the new values at the ends of the lists.

ylist.append(y)

for x,y in zip(xlist,ylist):

print(f'{x:8.4f} {y:12.8f}')

plt.plot( xlist, ylist, 'mo-', lw=3, alpha=0.6, label='Euler approximation' )

plt.xlabel('x')

plt.ylabel('y')
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plt.grid()

plt.legend(loc='center')

0.0000 2.00000000
0.3125 1.37500000
0.6250 0.97583008
0.9375 0.79295349
1.2500 0.81981373
1.5625 1.05190319
1.8750 1.48612290
2.1875 2.12034230
2.5000 2.95309666

1.7.2 Exercises

Exercise 1.7.3: Consider dx
dt

� (2t − x)2, x(0) � 2. Use Euler’s method with step size h � 0.5 to
approximate x(1).

Exercise 1.7.4: Consider dx
dt

� t − x, x(0) � 1.

Use Euler’s method with step sizes h � 1, 1/2, 1/4, 1/8 to approximate x(1).a)

Solve the equation exactly.b)
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Describe what happens to the errors for each h you used. That is, find the factor by which the
error changed each time you halved the interval.

c)

Exercise 1.7.5: Approximate the value of e by looking at the initial value problem y′ � y with
y(0) � 1 and approximating y(1) using Euler’s method with a step size of 0.2.

Exercise 1.7.6: Example of numerical instability: Take y′ � −5y, y(0) � 1. We know that the
solution should decay to zero as x grows. Using Euler’s method, start with h � 1 and compute
y1, y2, y3, y4 to try to approximate y(4). What happened? Now halve the interval. Keep halving
the interval and approximating y(4) until the numbers you are getting start to stabilize (that is,
until they start going towards zero). Note: You might want to use a calculator.

The simplest method used in practice is the Runge–Kutta method. Consider dy
dx � f (x , y),

y(x0) � y0, and a step size h. Everything is the same as in Euler’s method, except the
computation of yi+1 and xi+1.

k1 � f (xi , yi),
k2 � f

(
xi + h/2, yi + k1(h/2)

)
, xi+1 � xi + h ,

k3 � f
(
xi + h/2, yi + k2(h/2)

)
, yi+1 � yi +

k1 + 2k2 + 2k3 + k4
6 h ,

k4 � f (xi + h , yi + k3h).

Exercise 1.7.7: Consider
dy
dx

� yx2, y(0) � 1.

Use Runge–Kutta (see above) with step sizes h � 1 and h � 1/2 to approximate y(1).a)

Use Euler’s method with h � 1 and h � 1/2.b)

Solve exactly, find the exact value of y(1), and compare.c)

Exercise 1.7.101: Let x′ � sin(xt), and x(0) � 1. Approximate x(1) using Euler’s method with
step sizes 1, 0.5, 0.25. Use a calculator and compute up to 4 decimal digits.

Exercise 1.7.102: Let x′ � 2t, and x(0) � 0.

Approximate x(4) using Euler’s method with step sizes 4, 2, and 1.a)

Solve exactly, and compute the errors.b)

Compute the factor by which the errors changed.c)

Exercise 1.7.103: Let x′ � xext+1, and x(0) � 0.

Approximate x(4) using Euler’s method with step sizes 4, 2, and 1.a)

Guess an exact solution based on part a) and compute the errors.b)

There is a simple way to improve Euler’s method to make it a second order method
by doing just one extra step. Consider dy

dx � f (x , y), y(x0) � y0, and a step size h. What
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we do is to pretend we compute the next step as in Euler, that is, we start with (xi , yi),
we compute a slope k1 � f (xi , yi), and then look at the point (xi + h , yi + k1h). Instead of
letting our new point be (xi + h , yi + k1h), we compute the slope at that point, call it k2,
and then take the average of k1 and k2, hoping that the average is going to be closer to the
actual slope on the interval from xi to xi + h. And we are correct, if we halve the step, the
error should go down by a factor of 22 � 4. To summarize, the setup is the same as for
regular Euler, except the computation of yi+1 and xi+1.

k1 � f (xi , yi), xi+1 � xi + h ,

k2 � f (xi + h , yi + k1h), yi+1 � yi +
k1 + k2

2 h.

Exercise 1.7.104: Consider
dy
dx

� x + y, y(0) � 1.

Use the improved Euler’s method (see above) with step sizes h � 1/4 and h � 1/8 to approximate
y(1).

a)

Use Euler’s method with h � 1/4 and h � 1/8.b)

Solve exactly, find the exact value of y(1).c)

Compute the errors, and the factors by which the errors changed.d)
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1.8 Exact equations
Note: 1–2 lectures, can safely be skipped, §1.6 in [EP], §2.6 in [BD]

Another type of equation that comes up quite often in physics and engineering is an exact
equation. Suppose F(x , y) is a function of two variables, which we call the potential function.
The naming should suggest potential energy, or electric potential. Exact equations and
potential functions appear when there is a conservation law at play, such as conservation
of energy. Let us make up a simple example. Let

F(x , y) � x2
+ y2.
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Figure 1.19: Solutions to F(x , y) � x2 + y2 � C
for various C.

We are interested in the lines of constant
energy, that is lines where the energy is
conserved; we want curves where F(x , y) �
C, for some constant C. In our example,
the curves x2 + y2 � C are circles. See
Figure 1.19.

We take the total derivative of F:

dF �
∂F
∂x

dx +
∂F
∂y

dy.

For convenience, we will make use of the
notation of Fx �

∂F
∂x and Fy �

∂F
∂y . In our

example,

dF � 2x dx + 2y dy.

We apply the total derivative to F(x , y) � C,
to find the differential equation dF � 0. The differential equation we obtain in such a way
has the form

M dx + N dy � 0, or M + N
dy
dx

� 0.

An equation of this form is called exact if it was obtained as dF � 0 for some potential
function F. In our simple example, we obtain the equation

2x dx + 2y dy � 0, or 2x + 2y
dy
dx

� 0.

Since we obtained this equation by differentiating x2 + y2 � C, the equation is exact. We
often wish to solve for y in terms of x. In our example,

y � ±
√

C2 − x2.

An interpretation of the setup is that at each point ®v � (M,N) is a vector in the plane,
that is, a direction and a magnitude. As M and N are functions of (x , y), we have a
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vector field. The particular vector field ®v that comes from an exact equation is a so-called
conservative vector field, that is, a vector field that comes with a potential function F(x , y),
such that

®v �

(
∂F
∂x
,
∂F
∂y

)
.

Let γ be a path in the plane starting at (x1, y1) and ending at (x2, y2). If we think of ®v as
force, then the work required to move along γ is∫

γ
®v(®r) · d®r �

∫
γ

M dx + N dy � F(x2, y2) − F(x1, y1).

That is, the work done only depends on endpoints, that is where we start and where we
end. For example, suppose F is gravitational potential. The derivative of F given by ®v
is the gravitational force. What we are saying is that the work required to move a heavy
box from the ground floor to the roof, only depends on the change in potential energy.
That is, the work done is the same no matter what path we took; if we took the stairs or
the elevator. Although if we took the elevator, the elevator is doing the work for us. The
curves F(x , y) � C are those where no work need be done, such as the heavy box sliding
along without accelerating or breaking on a perfectly flat roof, on a cart with incredibly
well oiled wheels.

An exact equation is a conservative vector field, and the implicit solution of this equation
is the potential function.

1.8.1 Solving exact equations
Now you, the reader, should ask: Where did we solve a differential equation? Well, in
applications we generally know M and N, but we do not know F. That is, we may have
just started with 2x + 2y dy

dx � 0, or perhaps even

x + y
dy
dx

� 0.

It is up to us to find some potential F that works. Many different F will work; adding
a constant to F does not change the equation. Once we have a potential function F, the
equation F

(
x , y(x)

)
� C gives an implicit solution of the ODE.

Example 1.8.1: Let us find the general solution to 2x + 2y dy
dx � 0. Forget we knew what F

was.
If we know that this is an exact equation, we start looking for a potential function F.

We have M � 2x and N � 2y. If F exists, it must be such that Fx(x , y) � 2x. Integrate in
the x variable to find

F(x , y) � x2
+ A(y), (1.6)

for some function A(y). The function A is the “constant of integration”, though it is only
constant as far as x is concerned, and may still depend on y. Now differentiate (1.6) in y
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and set it equal to N , which is what Fy is supposed to be:

2y � Fy(x , y) � A′(y).

Integrating, we find A(y) � y2. We could add a constant of integration if we wanted to,
but there is no need. We found F(x , y) � x2 + y2. Next for a constant C, we solve

F
(
x , y(x)

)
� C.

for y in terms of x. In this case, we obtain y � ±
√

C2 − x2 as we did before.

Exercise 1.8.1: Why did we not need to add a constant of integration when integrating A′(y) � 2y?
Add a constant of integration, say 3, and see what F you get. What is the difference from what we
got above, and why does it not matter?

The procedure, once we know that the equation is exact, is:

(i) Integrate Fx � M in x resulting in F(x , y) � something + A(y).

(ii) Differentiate this F in y, and set that equal to N, so that we may find A(y) by
integration.

The procedure can also be done by first integrating in y and then differentiating in x. Pretty
easy huh? Let’s try this again.

Example 1.8.2: Consider now 2x + y + x y dy
dx � 0.

OK, so M � 2x + y and N � x y. We try to proceed as before. Suppose F exists. Then
Fx(x , y) � 2x + y. We integrate:

F(x , y) � x2
+ x y + A(y)

for some function A(y). Differentiate in y and set equal to N :

N � x y � Fy(x , y) � x + A′(y).

But there is no way to satisfy this requirement! The function x y cannot be written as x
plus a function of y. The equation is not exact; no potential function F exists.

Is there an easier way to check for the existence of F, other than failing in trying to find
it? Turns out there is. Suppose M � Fx and N � Fy . Then as long as the second derivatives
are continuous,

∂M
∂y

�
∂2F
∂y∂x

�
∂2F
∂x∂y

�
∂N
∂x

.

Let us state it as a theorem. Usually this is called the Poincaré Lemma∗.

Theorem 1.8.1 (Poincaré). If M and N are continuously differentiable functions of (x , y), and
∂M
∂y �

∂N
∂x , then near any point there is a function F(x , y) such that M �

∂F
∂x and N �

∂F
∂y .

∗Named for the French polymath Jules Henri Poincaré (1854–1912).

https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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The theorem doesn’t give us a global F defined everywhere. In general, we can only
find the potential locally, near some initial point. By this time, we have come to expect this
from differential equations.

Let us return to the example above where M � 2x + y and N � x y. Notice My � 1 and
Nx � y, which are clearly not equal. The equation is not exact.

Example 1.8.3: Solve
dy
dx

�
−2x − y

x − 1 , y(0) � 1.

We write the equation as

(2x + y) + (x − 1)
dy
dx

� 0,

so M � 2x + y and N � x − 1. Then

My � 1 � Nx .

The equation is exact. Integrating M in x, we find

F(x , y) � x2
+ x y + A(y).

Differentiating in y and setting to N , we find

x − 1 � x + A′(y).

So A′(y) � −1, and A(y) � −y will work. Take F(x , y) � x2 + x y − y. We wish to solve
x2+x y− y � C. First let us find C. As y(0) � 1 then F(0, 1) � C. Therefore 02+0×1−1 � C,
so C � −1. Now we solve x2 + x y − y � −1 for y to get

y �
−x2 − 1

x − 1 .

Example 1.8.4: Solve

−
y

x2 + y2 dx +
x

x2 + y2 dy � 0, y(1) � 2.

We leave to the reader to check that My � Nx .
This vector field (M,N) is not conservative if considered as a vector field of the entire

plane minus the origin. The problem is that if the curve γ is a circle around the origin, say
starting at (1, 0) and ending at (1, 0) going counterclockwise, then if F existed we would
expect

0 � F(1, 0) − F(1, 0) �
∫
γ

Fx dx + Fy dy �

∫
γ

−y
x2 + y2 dx +

x
x2 + y2 dy � 2π.

That is nonsense! We leave the computation of the path integral to the interested reader, or
you can consult your multivariable calculus textbook. So there is no potential function F
defined everywhere outside the origin (0, 0).
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If we think back to the theorem, it does not guarantee such a function anyway. It only
guarantees a potential function locally, that is only in some region near the initial point. As
y(1) � 2 we start at the point (1, 2). Considering x > 0 and integrating M in x or N in y,
we find

F(x , y) � arctan
(

y/x
)
.

The implicit solution is arctan
(

y/x
)
� C. Solving, y � tan(C)x. That is, the solution is

a straight line. Solving y(1) � 2 gives us that tan(C) � 2, and so y � 2x is the desired
solution. See Figure 1.20, and note that the solution only exists for x > 0.
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Figure 1.20: Solution to − y
x2+y2 dx +

x
x2+y2 dy � 0, y(1) � 2, with initial point marked.

Example 1.8.5: Solve

x2
+ y2

+ 2y(x + 1)
dy
dx

� 0.

The reader should check that this equation is exact. Let M � x2 + y2 and N � 2y(x + 1).
We follow the procedure for exact equations

F(x , y) � 1
3 x3

+ x y2
+ A(y),

and
2y(x + 1) � 2x y + A′(y).

Therefore A′(y) � 2y or A(y) � y2 and F(x , y) � 1
3 x3+ x y2+ y2. We try to solve F(x , y) � C.

We easily solve for y2 and then just take the square root:

y2
�

C − (1/3)x3

x + 1 , so y � ±
√

C − (1/3)x3

x + 1 .

When x � −1, the term in front of dy
dx vanishes. You can also see that our solution is not

valid in that case. However, one could in that case try to solve for x in terms of y starting
from the implicit solution 1

3 x3 + x y2 + y2 � C. The solution is somewhat messy and we
leave it as implicit.
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1.8.2 Integrating factors
Sometimes an equation M dx+N dy � 0 is not exact, but it can bemade exact bymultiplying
with a function u(x , y). That is, perhaps for some nonzero function u(x , y),

u(x , y)M(x , y) dx + u(x , y)N(x , y) dy � 0

is exact. Any solution to this new equation is also a solution to M dx + N dy � 0.
In fact, a linear equation

dy
dx

+ p(x)y � f (x), or
(
p(x)y − f (x)

)
dx + dy � 0

is always such an equation. Let r(x) � e
∫

p(x) dx be the integrating factor for a linear
equation. Multiply the equation by r(x) and write it in the form of M + N dy

dx � 0.

r(x)p(x)y − r(x) f (x) + r(x)
dy
dx

� 0.

Then M � r(x)p(x)y−r(x) f (x), so My � r(x)p(x), while N � r(x), so Nx � r′(x) � r(x)p(x).
In other words, we have an exact equation. Integrating factors for linear functions are just
a special case of integrating factors for exact equations.

But how do we find the integrating factor u? Well, given an equation

M dx + N dy � 0,

u should be a function such that

∂
∂y

[
uM

]
� uy M + uMy �

∂
∂x

[
uN

]
� uxN + uNx .

Therefore,
(My − Nx)u � ux N − uy M.

At first it may seem we replaced one differential equation by another. True, but all hope is
not lost.

A strategy that often works is to look for a u that is a function of x alone, or a function
of y alone. If u is a function of x alone, that is u(x), then we write u′(x) instead of ux , and
uy is just zero. Then

My − Nx

N
u � u′.

In particular, My−Nx
N ought to be a function of x alone (not depend on y). If so, then we

have a linear equation

u′ −
My − Nx

N
u � 0.
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Letting P(x) � My−Nx
N , we solve using the standard integrating factor method, to find

u(x) � Ce
∫

P(x) dx . The constant in the solution is not relevant, we need any nonzero
solution, so we take C � 1. Then u(x) � e

∫
P(x) dx is the integrating factor.

Similarly we could try a function of the form u(y). Then

My − Nx

M
u � −u′.

In particular, My−Nx
M ought to be a function of y alone. If so, then we have a linear equation

u′ +
My − Nx

M
u � 0.

Letting Q(y) � My−Nx
M , we find u(y) � Ce−

∫
Q(y) dy . We take C � 1. So u(y) � e−

∫
Q(y) dy is

the integrating factor.

Example 1.8.6: Solve
x2 + y2

x + 1 + 2y
dy
dx

� 0.

Let M �
x2+y2

x+1 and N � 2y. Compute

My − Nx �
2y

x + 1 − 0 �
2y

x + 1 .

As this is not zero, the equation is not exact. We notice

P(x) �
My − Nx

N
�

2y
x + 1

1
2y

�
1

x + 1

is a function of x alone. We compute the integrating factor

e
∫

P(x) dx
� e ln(x+1)

� x + 1.

We multiply our given equation by (x + 1) to obtain

x2
+ y2

+ 2y(x + 1)
dy
dx

� 0,

which is an exact equation that we solved in Example 1.8.5. The solution was

y � ±
√

C − (1/3)x3

x + 1 .

Example 1.8.7: Solve

y2
+ (x y + 1)

dy
dx

� 0.
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First compute
My − Nx � 2y − y � y.

As this is not zero, the equation is not exact. We observe

Q(y) �
My − Nx

M
�

y
y2 �

1
y

is a function of y alone. We compute the integrating factor

e−
∫

Q(y) dy
� e− ln y

�
1
y
.

Therefore we look at the exact equation

y +
x y + 1

y
dy
dx

� 0.

The reader should double check that this equation is exact. We follow the procedure for
exact equations

F(x , y) � x y + A(y),
and

x y + 1
y

� x +
1
y
� x + A′(y). (1.7)

Consequently A′(y) � 1
y or A(y) � ln y. Thus F(x , y) � x y + ln y. It is not possible to solve

F(x , y) � C for y in terms of elementary functions, so let us be content with the implicit
solution:

x y + ln y � C.

We are looking for the general solution and we divided by y above. We should check what
happens when y � 0, as the equation itself makes perfect sense in that case. We plug in
y � 0 to find the equation is satisfied. So y � 0 is also a solution.

1.8.3 Exercises
Exercise 1.8.2: Solve the following exact equations, implicit general solutions will suffice:

(2x y + x2) dx + (x2 + y2 + 1) dy � 0a) x5 + y5 dy
dx � 0b)

ex + y3 + 3x y2 dy
dx � 0c) (x + y) cos(x) + sin(x) + sin(x)y′ � 0d)

Exercise 1.8.3: Find the integrating factor for the following equations making them into exact
equations:

ex y dx +
y
x ex y dy � 0a) ex+y3

y2 dx + 3x dy � 0b)

4(y2 + x) dx +
2x+2y2

y dy � 0c) 2 sin(y) dx + x cos(y) dy � 0d)



1.8. EXACT EQUATIONS 83

Exercise 1.8.4: Suppose you have an equation of the form: f (x) + g(y) dy
dx � 0.

Show it is exact.a)

Find the form of the potential function in terms of f and g.b)

Exercise 1.8.5: Suppose that we have the equation f (x) dx − dy � 0.

Is this equation exact?a)

Find the general solution using a definite integral.b)

Exercise 1.8.6: Find the potential function F(x , y) of the exact equation 1+x y
x dx+

(
1/y+ x

)
dy � 0

in two different ways.

Integrate M in terms of x and then differentiate in y and set to N .a)

Integrate N in terms of y and then differentiate in x and set to M.b)

Exercise 1.8.7: A function u(x , y) is said to be a harmonic function if uxx + uy y � 0.

Show that −uy dx + ux dy � 0 is an exact equation. Therefore there exists (at least locally)
the so-called harmonic conjugate function v(x , y) such that vx � −uy and vy � ux .

a)

Verify that the following u are harmonic and find the corresponding harmonic conjugates v:

u � 2x yb) u � ex cos yc) u � x3 − 3x y2d)

Exercise 1.8.101: Solve the following exact equations, implicit general solutions will suffice:

cos(x) + yex y + xex y y′ � 0a) (2x + y) dx + (x − 4y) dy � 0b)

ex + e y dy
dx � 0c) (3x2 + 3y) dx + (3y2 + 3x) dy � 0d)

Exercise 1.8.102: Find the integrating factor for the following equations making them into exact
equations:

1
y dx + 3y dy � 0a) dx − e−x−y dy � 0b)( cos(x)

y2 +
1
y

)
dx +

x
y2 dy � 0c)

(
2y +

y2

x

)
dx + (2y + x) dy � 0d)

Exercise 1.8.103:

Show that every separable equation y′ � f (x)g(y) can be written as an exact equation, and
verify that it is indeed exact.

a)

Using this rewrite y′ � x y as an exact equation, solve it and verify that the solution is the
same as it was in Example 1.3.1.

b)
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Chapter 2

Higher order linear ODEs

2.1 Second order linear ODEs

Note: 1 lecture, reduction of order optional, first part of §3.1 in [EP], parts of §3.1 and §3.2 in [BD]

Let us consider the general second order linear differential equation

A(x)y′′ + B(x)y′ + C(x)y � F(x).

We usually divide through by A(x) to get

y′′ + p(x)y′ + q(x)y � f (x), (2.1)

where p(x) � B(x)/A(x), q(x) � C(x)/A(x), and f (x) � F(x)/A(x). The word linear means, for
example, that the equation contains no quadratic or higher powers of y, y′, and y′′.

In the special case when f (x) � 0, we have a so-called homogeneous equation

y′′ + p(x)y′ + q(x)y � 0. (2.2)

We have already seen some second order linear homogeneous equations.

y′′ + k2 y � 0 Two solutions are: y1 � cos(kx), y2 � sin(kx).
y′′ − k2 y � 0 Two solutions are: y1 � ekx , y2 � e−kx .

If we know two solutions of a linear homogeneous equation, we know many more of
them.

Theorem 2.1.1 (Superposition). Suppose y1 and y2 are two solutions of the homogeneous equation
(2.2). Then

y(x) � C1 y1(x) + C2 y2(x),

also solves (2.2) for arbitrary constants C1 and C2.
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That is, we can add solutions together and multiply them by constants to obtain new
and different solutions. We call the expression C1 y1 + C2 y2 a linear combination of y1 and
y2. Let us prove this theorem; the proof is very enlightening and illustrates how linear
equations work.

Proof: Let y � C1 y1 + C2 y2. Then

y′′ + p y′ + q y � (C1 y1 + C2 y2)′′ + p(C1 y1 + C2 y2)′ + q(C1 y1 + C2 y2)
� C1 y′′1 + C2 y′′2 + C1p y′1 + C2p y′2 + C1q y1 + C2q y2

� C1(y′′1 + p y′1 + q y1) + C2(y′′2 + p y′2 + q y2)
� C1 · 0 + C2 · 0 � 0. �

The proof becomes even simpler to state if we use the operator notation. An operator is
an object that eats functions and spits out functions (kind of like what a function is, but a
function eats numbers and spits out numbers). Define the operator L by

Ly � y′′ + p y′ + q y.

The differential equation now becomes Ly � 0. The operator (and the equation) L being
linearmeans that L(C1 y1 + C2 y2) � C1Ly1 + C2Ly2. The proof above becomes

Ly � L(C1 y1 + C2 y2) � C1Ly1 + C2Ly2 � C1 · 0 + C2 · 0 � 0.

Two different solutions to the second equation y′′ − k2 y � 0 are y1 � cosh(kx) and
y2 � sinh(kx). Let us remind ourselves of the definition, cosh x �

ex+e−x

2 and sinh x �
ex−e−x

2 .
Therefore, these are solutions by superposition as they are linear combinations of the two
exponential solutions.

The functions sinh and cosh are sometimes more convenient to use than the exponential.
Let us review some of their properties:

cosh 0 � 1, sinh 0 � 0,
d

dx

[
cosh x

]
� sinh x ,

d
dx

[
sinh x

]
� cosh x ,

cosh2 x − sinh2 x � 1.

Exercise 2.1.1: Derive these properties using the definitions of sinh and cosh in terms of exponen-
tials.

Linear equations have nice and simple answers to the existence and uniqueness question.
Theorem 2.1.2 (Existence and uniqueness). Suppose p , q , f are continuous functions on some
interval I, a is a number in I, and a , b0, b1 are constants. The equation

y′′ + p(x)y′ + q(x)y � f (x),

has exactly one solution y(x) defined on the same interval I satisfying the initial conditions

y(a) � b0, y′(a) � b1.
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For example, the equation y′′ + k2 y � 0 with y(0) � b0 and y′(0) � b1 has the solution

y(x) � b0 cos(kx) + b1
k

sin(kx).

The equation y′′ − k2 y � 0 with y(0) � b0 and y′(0) � b1 has the solution

y(x) � b0 cosh(kx) + b1
k

sinh(kx).

Using cosh and sinh in this solution allows us to solve for the initial conditions in a cleaner
way than if we have used the exponentials.

The initial conditions for a second order ODE consist of two equations. Common sense
tells us that if we have two arbitrary constants and two equations, then we should be able
to solve for the constants and find a solution to the differential equation satisfying the
initial conditions.

Question: Suppose we find two different solutions y1 and y2 to the homogeneous
equation (2.2). Can every solution be written (using superposition) in the form y �

C1 y1 + C2 y2?
Answer is affirmative! Provided that y1 and y2 are different enough in the following

sense. We say y1 and y2 are linearly independent if one is not a constant multiple of the other.

Theorem 2.1.3. Let p , q be continuous functions. Let y1 and y2 be two linearly independent
solutions to the homogeneous equation (2.2). Then every other solution is of the form

y � C1 y1 + C2 y2.

That is, y � C1 y1 + C2 y2 is the general solution.

For example, we found the solutions y1 � sin x and y2 � cos x for the equation
y′′+ y � 0. It is not hard to see that sine and cosine are not constant multiples of each other.
If sin x � A cos x for some constant A, we let x � 0 and this would imply A � 0. But then
sin x � 0 for all x, which is preposterous. So y1 and y2 are linearly independent. Hence,

y � C1 cos x + C2 sin x

is the general solution to y′′ + y � 0.
For two functions, checking linear independence is rather simple. Let us see another

example. Consider y′′ − 2x−2 y � 0. Then y1 � x2 and y2 � 1/x are solutions. To see that
they are linearly indepedent, suppose one is a multple of the other: y1 � Ay2, we just
have to find out that A cannot be a constant. In this case we have A � y1/y2 � x3, this most
decidedly not a constant. So y � C1x2 + C21/x is the general solution.

If you have one solution to a second order linear homogeneous equation, then you
can find another one. This is the reduction of order method. The idea is that if we somehow
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found y1 as a solution of y′′ + p(x)y′ + q(x)y � 0 we try a second solution of the form
y2(x) � y1(x)v(x). We just need to find v. We plug y2 into the equation:

0 � y′′2 + p(x)y′2 + q(x)y2 � y′′1 v + 2y′1v′ + y1v′′ + p(x)(y′1v + y1v′) + q(z)y1v

� y1v′′ + (2y′1 + p(x)y1)v′ +
���

���
���

���
�:0(

y′′1 + p(x)y′1 + q(x)y1
)
v.

In other words, y1v′′ + (2y′1 + p(x)y1)v′ � 0. Using w � v′ we have the first order linear
equation y1w′ + (2y′1 + p(x)y1)w � 0. After solving this equation for w (integrating factor),
we find v by antidifferentiating w. We then form y2 by computing y1v. For example,
suppose we somehow know y1 � x is a solution to y′′ + x−1 y′ − x−2 y � 0. The equation
for w is then xw′ + 3w � 0. We find a solution, w � Cx−3, and we find an antiderivative
v �

−C
2x2 . Hence y2 � y1v �

−C
2x . Any C works and so C � −2 makes y2 � 1/x. Thus, the

general solution is y � C1x + C21/x.
Since we have a formula for the solution to the first order linear equation, we can write

a formula for y2:

y2(x) � y1(x)
∫

e−
∫

p(x) dx(
y1(x)

)2 dx

Although it is much easier to remember that we just need to try y2(x) � y1(x)v(x) and find
v(x) as we did above. Also, the technique works for higher order equations too: you get to
reduce the order for each solution you find. So it is better to remember how to do it rather
than a specific formula.

We will study the solution of nonhomogeneous equations in § 2.5. We will first focus
on finding general solutions to homogeneous equations.

2.1.1 Exercises

Exercise 2.1.2: Show that y � ex and y � e2x are linearly independent.

Exercise 2.1.3: Take y′′ + 5y � 10x + 5. Find (guess!) a solution.

Exercise 2.1.4: Prove the superposition principle for nonhomogeneous equations. Suppose that y1
is a solution to Ly1 � f (x) and y2 is a solution to Ly2 � g(x) (same linear operator L). Show that
y � y1 + y2 solves Ly � f (x) + g(x).

Exercise 2.1.5: For the equation x2 y′′ − x y′ � 0, find two solutions, show that they are linearly
independent and find the general solution. Hint: Try y � xr .

Equations of the form ax2 y′′ + bx y′ + c y � 0 are called Euler’s equations or Cauchy–Euler
equations. They are solved by trying y � xr and solving for r (assume that x ≥ 0 for
simplicity).
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Exercise 2.1.6: Suppose that (b − a)2 − 4ac > 0.

Find a formula for the general solution of ax2 y′′ + bx y′ + c y � 0. Hint: Try y � xr and
find a formula for r.

a)

What happens when (b − a)2 − 4ac � 0 or (b − a)2 − 4ac < 0?b)

We will revisit the case when (b − a)2 − 4ac < 0 later.

Exercise 2.1.7: Same equation as in Exercise 2.1.6. Suppose (b − a)2 − 4ac � 0. Find a formula
for the general solution of ax2 y′′ + bx y′ + c y � 0. Hint: Try y � xr ln x for the second solution.

Exercise 2.1.8 (reduction of order): Suppose y1 is a solution to y′′ + p(x)y′ + q(x)y � 0. By
directly plugging into the equation, show that

y2(x) � y1(x)
∫

e−
∫

p(x) dx(
y1(x)

)2 dx

is also a solution.

Exercise 2.1.9 (Chebyshev’s equation of order 1): Take (1 − x2)y′′ − x y′ + y � 0.

Show that y � x is a solution.a)

Use reduction of order to find a second linearly independent solution.b)

Write down the general solution.c)

Exercise 2.1.10 (Hermite’s equation of order 2): Take y′′ − 2x y′ + 4y � 0.

Show that y � 1 − 2x2 is a solution.a)

Use reduction of order to find a second linearly independent solution.b)

Write down the general solution.c)

Exercise 2.1.101: Are sin(x) and ex linearly independent? Justify.

Exercise 2.1.102: Are ex and ex+2 linearly independent? Justify.

Exercise 2.1.103: Guess a solution to y′′ + y′ + y � 5.

Exercise 2.1.104: Find the general solution to x y′′ + y′ � 0. Hint: It is a first order ODE in y′.

Exercise 2.1.105: Write down an equation (guess) for which we have the solutions ex and e2x .
Hint: Try an equation of the form y′′ + Ay′ + By � 0 for constants A and B, plug in both ex and
e2x and solve for A and B.
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In the following exercises, show that the given functions y1 and y2 are solutions to the
DE. Then show that y1 and y2 are linearly independent. Applying Theorem 2.1.3, write
the general solution. Impose the given ICs to find the particular solution to the IVP.

Exercise 2.1.151: y′′ + 25y � 0; y1 � cos 5x , y2 � sin 5x; y(0) � −2, y′(0) � 3.

Exercise 2.1.152: y′′ + y′ − 6y � 0; y1 � e2x , y2 � e−3x; y(0) � 4, y′(0) � −2.

Exercise 2.1.153: y′′ + 8y′ + 16y � 0; y1 � e−4x , y2 � xe−4x; y(0) � −1, y′(0) � −4.

Exercise 2.1.154: y′′ + 6y′ + 8y � 0; y1 � e−2x , y2 � e−4x; y(0) � 3, y′(0) � −5.

Exercise 2.1.155: y′′ + 6y′ + 9y � 0; y1 � e−3x , y2 � xe−3x; y(0) � 2, y′(0) � 5.



2.2. CONSTANT COEFFICIENT SECOND ORDER LINEAR ODES 91

2.2 Constant coefficient second order linear ODEs
Note: more than 1 lecture, second part of §3.1 in [EP], §3.1 in [BD]

2.2.1 Solving constant coefficient equations
Consider the problem

y′′ − 6y′ + 8y � 0, y(0) � −2, y′(0) � 6.

This is a second order linear homogeneous equation with constant coefficients. Constant
coefficients means that the functions in front of y′′, y′, and y are constants, they do not
depend on x.

To guess a solution, think of a function that stays essentially the same when we
differentiate it, so that we can take the function and its derivatives, add some multiples of
these together, and end up with zero. Yes, we are talking about the exponential.

Let us try∗ a solution of the form y � e rx . Then y′ � re rx and y′′ � r2e rx . Plug in to get

y′′ − 6y′ + 8y � 0,
r2e rx︸︷︷︸

y′′

−6 re rx︸︷︷︸
y′

+8 e rx︸︷︷︸
y

� 0,

r2 − 6r + 8 � 0 (divide through by e rx),
(r − 2)(r − 4) � 0.

Hence, if r � 2 or r � 4, then e rx is a solution. So let y1 � e2x and y2 � e4x .

Exercise 2.2.1: Check that y1 and y2 are solutions.

The functions e2x and e4x are linearly independent. If theywere not linearly independent,
we could write e4x � Ce2x for some constant C, implying that e2x � C for all x, which is
clearly not possible. Hence, we can write the general solution as

y � C1e2x
+ C2e4x .

We need to solve for C1 and C2. To apply the initial conditions, we first find y′ �
2C1e2x + 4C2e4x . We plug x � 0 into y and y′ and solve.

−2 � y(0) � C1 + C2,

6 � y′(0) � 2C1 + 4C2.

∗Making an educated guess with some parameters to solve for is such a central technique in differential
equations, that people sometimes use a fancy name for such a guess: ansatz, German for “initial placement of
a tool at a work piece.” Yes, the Germans have a word for that.
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Either apply some matrix algebra, or just solve these by high school math. For example,
divide the second equation by 2 to obtain 3 � C1 + 2C2, and subtract the two equations to
get 5 � C2. Then C1 � −7 as −2 � C1 + 5. Hence, the solution we are looking for is

y � −7e2x
+ 5e4x .

Let us generalize this example into a method. Suppose that we have an equation

a y′′ + b y′ + c y � 0, (2.3)

where a , b , c are constants. Try the solution y � e rx to obtain

ar2e rx
+ bre rx

+ ce rx
� 0.

Divide by e rx to obtain the so-called characteristic equation of the ODE:

ar2
+ br + c � 0.

Solve for the r by using the quadratic formula.

r1, r2 �
−b ±

√
b2 − 4ac

2a
.

So e r1x and e r2x are solutions. There is still a difficulty if r1 � r2, but it is not hard to
overcome.
Theorem 2.2.1. Suppose that r1 and r2 are the roots of the characteristic equation.

(i) If r1 and r2 are distinct and real (when b2 − 4ac > 0), then (2.3) has the general solution

y � C1e r1x
+ C2e r2x .

(ii) If r1 � r2 (happens when b2 − 4ac � 0), then (2.3) has the general solution

y � (C1 + C2x) e r1x .

Example 2.2.1: Solve
y′′ − k2 y � 0.

The characteristic equation is r2 − k2 � 0 or (r − k)(r + k) � 0. Consequently, e−kx and ekx

are the two linearly independent solutions, and the general solution is

y � C1ekx
+ C2e−kx .

Since cosh s �
e s+e−s

2 and sinh s �
e s−e−s

2 , we can also write the general solution as

y � D1 cosh(kx) + D2 sinh(kx).
Example 2.2.2: Find the general solution of

y′′ − 8y′ + 16y � 0.

The characteristic equation is r2 − 8r + 16 � (r − 4)2 � 0. The equation has a double
root r1 � r2 � 4. The general solution is, therefore,

y � (C1 + C2x) e4x
� C1e4x

+ C2xe4x .
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Exercise 2.2.2: Check that e4x and xe4x are linearly independent.

That e4x solves the equation is clear. If xe4x solves the equation, then we know we are
done. Let us compute y′ � e4x + 4xe4x and y′′ � 8e4x + 16xe4x . Plug in

y′′ − 8y′ + 16y � 8e4x
+ 16xe4x − 8(e4x

+ 4xe4x) + 16xe4x
� 0.

In some sense, a doubled root rarely happens. If coefficients are picked randomly, a
doubled root is unlikely. There are, however, some natural phenomena (such as resonance
as we will see) where a doubled root does happen, so we cannot just dismiss this case.

Let us give a short argument for why the solution xe rx works when the root is doubled.
This case is really a limiting case of when the two roots are distinct and very close. Note
that e r2x−e r1x

r2−r1
is a solution when the roots are distinct. When we take the limit as r1 goes to

r2, we are really taking the derivative of e rx using r as the variable. Therefore, the limit is
xe rx , and hence this is a solution in the doubled root case.

2.2.2 Complex numbers and Euler’s formula

A polynomial may have complex roots. The equation r2 + 1 � 0 has no real roots, but it
does have two complex roots. Here we review some properties of complex numbers.

Complex numbers may seem a strange concept, especially because of the terminology.
There is nothing imaginary or really complicated about complex numbers. A complex
number is simply a pair of real numbers, (a , b). Think of a complex number as a point in the
plane. We add complex numbers in the straightforward way: (a , b) + (c , d) � (a + c , b + d).
We define multiplication by

(a , b) × (c , d) def� (ac − bd , ad + bc).

It turns out that with this multiplication rule, all the standard properties of arithmetic hold.
Further, and most importantly (0, 1) × (0, 1) � (−1, 0).

Generally we write (a , b) as a + ib, and we treat i as if it were an unknown. When b is
zero, then (a , 0) is just the number a. We do arithmetic with complex numbers just as we
would with polynomials. The property we just mentioned becomes i2 � −1. So whenever
we see i2, we replace it by −1. For example,

(2 + 3i)(4i) − 5i � (2 × 4)i + (3 × 4)i2 − 5i � 8i + 12(−1) − 5i � −12 + 3i.

The numbers i and −i are the two roots of r2 + 1 � 0. Engineers often use the letter j
instead of i for the square root of −1. We use the mathematicians’ convention and use i.

Exercise 2.2.3: Make sure you understand (that you can justify) the following identities:

i2 � −1, i3 � −i, i4 � 1,a) 1
i
� −i,b)

(3 − 7i)(−2 − 9i) � · · · � −69 − 13i,c) (3−2i)(3+2i) � 32−(2i)2 � 32+22 � 13,d)
1

3−2i �
1

3−2i
3+2i
3+2i �

3+2i
13 �

3
13 +

2
13 i.e)
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We also define the exponential ea+ib of a complex number. We do this by writing down
the Taylor series and plugging in the complex number. Because most properties of the
exponential can be proved by looking at the Taylor series, these properties still hold for the
complex exponential. For example the very important property: ex+y � ex e y . This means
that ea+ib � ea e ib . Hence if we can compute e ib , we can compute ea+ib . For e ib we use the
so-called Euler’s formula.

Theorem 2.2.2 (Euler’s formula).

e iθ
� cos θ + i sin θ and e−iθ

� cos θ − i sin θ.

In other words, ea+ib � ea (cos(b) + i sin(b)
)
� ea cos(b) + iea sin(b).

Exercise 2.2.4: Using Euler’s formula, check the identities:

cos θ �
e iθ + e−iθ

2 and sin θ �
e iθ − e−iθ

2i
.

Exercise 2.2.5: Double angle identities: Start with e i(2θ) �
(
e iθ)2. Use Euler on each side and

deduce:
cos(2θ) � cos2 θ − sin2 θ and sin(2θ) � 2 sin θ cos θ.

For a complex number a + ib we call a the real part and b the imaginary part of the
number. Often the following notation is used,

Re(a + ib) � a and Im(a + ib) � b.

2.2.3 Complex roots

Suppose the equation a y′′ + b y′ + c y � 0 has the characteristic equation ar2 + br + c � 0
that has complex roots. By the quadratic formula, the roots are −b±

√
b2−4ac

2a . These roots are
complex if b2 − 4ac < 0. In this case the roots are

r1, r2 �
−b
2a
± i

√
4ac − b2

2a
.

As you can see, we always get a pair of roots of the form α ± iβ. In this case we can still
write the solution as

y � C1e(α+iβ)x
+ C2e(α−iβ)x .

However, the exponential is now complex-valued. We need to allow C1 and C2 to be
complex numbers to obtain a real-valued solution (which is what we are after). While
there is nothing particularly wrong with this approach, it can make calculations harder
and it is generally preferred to find two real-valued solutions.

Here we can use Euler’s formula. Let

y1 � e(α+iβ)x and y2 � e(α−iβ)x .
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Then

y1 � eαx cos(βx) + ieαx sin(βx),
y2 � eαx cos(βx) − ieαx sin(βx).

Linear combinations of solutions are also solutions. Hence,

y3 �
y1 + y2

2 � eαx cos(βx),

y4 �
y1 − y2

2i
� eαx sin(βx),

are also solutions. Furthermore, they are real-valued. It is not hard to see that they are
linearly independent (not multiples of each other). Therefore, we have the following
theorem.

Theorem 2.2.3. Take the equation

a y′′ + b y′ + c y � 0.

If the characteristic equation has the roots α ± iβ (when b2 − 4ac < 0), then the general solution is

y � C1eαx cos(βx) + C2eαx sin(βx).

Example 2.2.3: Find the general solution of y′′ + k2 y � 0, for a constant k > 0.
The characteristic equation is r2 + k2 � 0. Therefore, the roots are r � ±ik, and by the

theorem, we have the general solution

y � C1 cos(kx) + C2 sin(kx).

Example 2.2.4: Find the solution of y′′ − 6y′ + 13y � 0, y(0) � 0, y′(0) � 10.
The characteristic equation is r2 − 6r + 13 � 0. By completing the square we get

(r − 3)2 + 22 � 0 and hence the roots are r � 3 ± 2i. By the theorem we have the general
solution

y � C1e3x cos(2x) + C2e3x sin(2x).
To find the solution satisfying the initial conditions, we first plug in zero to get

0 � y(0) � C1e0 cos 0 + C2e0 sin 0 � C1.

Hence, C1 � 0 and y � C2e3x sin(2x). We differentiate,

y′ � 3C2e3x sin(2x) + 2C2e3x cos(2x).

We again plug in the initial condition and obtain 10 � y′(0) � 2C2, or C2 � 5. The solution
we are seeking is

y � 5e3x sin(2x).
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2.2.4 Exercises
Exercise 2.2.6: Find the general solution of 2y′′ + 2y′ − 4y � 0.

Exercise 2.2.7: Find the general solution of y′′ + 9y′ − 10y � 0.

Exercise 2.2.8: Solve y′′ − 8y′ + 16y � 0 for y(0) � 2, y′(0) � 0.

Exercise 2.2.9: Solve y′′ + 9y′ � 0 for y(0) � 1, y′(0) � 1.

Exercise 2.2.10: Find the general solution of 2y′′ + 50y � 0.

Exercise 2.2.11: Find the general solution of y′′ + 6y′ + 13y � 0.

Exercise 2.2.12: Find the general solution of y′′ � 0 using the methods of this section.

Exercise 2.2.13: The method of this section applies to equations of other orders than two. We will
see higher orders later. Try to solve the first order equation 2y′ + 3y � 0 using the methods of this
section.

Exercise 2.2.14: Let us revisit the Cauchy–Euler equations of Exercise 2.1.6 on page 88. Suppose
now that (b − a)2 − 4ac < 0. Find a formula for the general solution of ax2 y′′ + bx y′ + c y � 0.
Hint: Note that xr � e r ln x .

Exercise 2.2.15: Find the solution to y′′ − (2α)y′ + α2 y � 0, y(0) � a, y′(0) � b, where α, a,
and b are real numbers.

Exercise 2.2.16: Construct an equation such that y � C1e−2x cos(3x) + C2e−2x sin(3x) is the
general solution.

Exercise 2.2.51: a) If r1 , r2, show that e r1x and e r2x are linearly independent.

b) Show that e rx and xe rx are linearly independent.

Exercise 2.2.52: Find the general solution to each of the following DEs:

a) 2y′′ + 8y′ + 8y � 0

b) y′′ + 2y′ + 2y � 0

c) 2y′′ + 5y′ − 3y � 0

d) y′′ − 4y′ + 13y � 0

e) 9y′′ − 6y′ + y � 0

f) y′′ + 4y′ + 5y � 0

Exercise 2.2.101: Find the general solution to y′′ + 4y′ + 2y � 0.

Exercise 2.2.102: Find the general solution to y′′ − 6y′ + 9y � 0.



2.2. CONSTANT COEFFICIENT SECOND ORDER LINEAR ODES 97

Exercise 2.2.103: Find the solution to 2y′′ + y′ + y � 0, y(0) � 1, y′(0) � −2.

Exercise 2.2.104: Find the solution to 2y′′ + y′ − 3y � 0, y(0) � a, y′(0) � b.

Exercise 2.2.105: Find the solution to z′′(t) � −2z′(t) − 2z(t), z(0) � 2, z′(0) � −2.

Exercise 2.2.106: Find the solution to y′′ − (α + β)y′ + αβy � 0, y(0) � a, y′(0) � b, where α,
β, a, and b are real numbers, and α , β.

Exercise 2.2.107: Construct an equation such that y � C1e3x + C2e−2x is the general solution.

Exercise 2.2.151: Construct the DE for each of the following general solutions:

a) y � C1e−3x + C2e−5x

b) y � C1 + C2e4x

c) y � C1e−2x + C2xe−2x

d) y � C1e−x cos x + C2e−x sin x

e) y � C1 + C2x

Exercise 2.2.152: Find the general solution to each of the following Cauchy-Euler equations, for
x > 0.

a) x2 y′′ + 3x y′ + 2y � 0

b) x2 y′′ − 3x y′ + 4y � 0

c) x2 y′′ + 3x y′ + 5y � 0

d) 3x2 y′′ + 14x y′ − 4y � 0

e) 4x2 y′′ + 8x y′ + y � 0

f) 4x2 y′′ + 8x y′ + 5y � 0
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2.3 Higher order linear ODEs
Note: somewhat more than 1 lecture, §3.2 and §3.3 in [EP], §4.1 and §4.2 in [BD]

We briefly study higher order equations. Equations appearing in applications tend to
be second order. Higher order equations do appear from time to time, but generally the
world around us is “second order.”

The basic results about linear ODEs of higher order are essentially the same as for second
order equations, with 2 replaced by n. The important concept of linear independence is
somewhat more complicated when more than two functions are involved. For higher order
constant coefficient ODEs, the methods developed are also somewhat harder to apply, but
we will not dwell on these complications. It is also possible to use the methods for systems
of linear equations from chapter 3 to solve higher order constant coefficient equations.

Let us start with a general homogeneous linear equation

y(n) + pn−1(x)y(n−1)
+ · · · + p1(x)y′ + p0(x)y � 0. (2.4)

Theorem 2.3.1 (Superposition). Suppose y1, y2, . . . , yn are solutions of the homogeneous
equation (2.4). Then

y(x) � C1 y1(x) + C2 y2(x) + · · · + Cn yn(x)
also solves (2.4) for arbitrary constants C1, C2, . . . , Cn .

In other words, a linear combination of solutions to (2.4) is also a solution to (2.4). We
also have the existence and uniqueness theorem for nonhomogeneous linear equations.

Theorem 2.3.2 (Existence and uniqueness). Suppose p0 through pn−1, and f are continuous
functions on some interval I, a is a number in I, and b0, b1, . . . , bn−1 are constants. The equation

y(n) + pn−1(x)y(n−1)
+ · · · + p1(x)y′ + p0(x)y � f (x)

has exactly one solution y(x) defined on the same interval I satisfying the initial conditions

y(a) � b0, y′(a) � b1, . . . , y(n−1)(a) � bn−1.

2.3.1 Linear independence
When we had two functions y1 and y2 we said they were linearly independent if one was
not the multiple of the other. Same idea holds for n functions. In this case it is easier to
state as follows. The functions y1, y2, . . . , yn are linearly independent if the equation

c1 y1 + c2 y2 + · · · + cn yn � 0

has only the trivial solution c1 � c2 � · · · � cn � 0, where the equation must hold for all x.
If we can solve equation with some constants where for example c1 , 0, then we can solve
for y1 as a linear combination of the others. If the functions are not linearly independent,
they are linearly dependent.
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Example 2.3.1: Show that ex , e2x , e3x are linearly independent.
Let us give several ways to show this fact. Many textbooks (including [EP] and [F])

introduce Wronskians, but it is difficult to see why they work and they are not really
necessary here.

Let us write down
c1ex

+ c2e2x
+ c3e3x

� 0.
We use rules of exponentials and write z � ex . Hence z2 � e2x and z3 � e3x . Then we have

c1z + c2z2
+ c3z3

� 0.

The left-hand side is a third degree polynomial in z. It is either identically zero, or it has
at most 3 zeros. Therefore, it is identically zero, c1 � c2 � c3 � 0, and the functions are
linearly independent.

Let us try another way. As before we write

c1ex
+ c2e2x

+ c3e3x
� 0.

This equation has to hold for all x. We divide through by e3x to get

c1e−2x
+ c2e−x

+ c3 � 0.

As the equation is true for all x, let x →∞. After taking the limit we see that c3 � 0. Hence
our equation becomes

c1ex
+ c2e2x

� 0.
Rinse, repeat!

How about yet another way. We again write

c1ex
+ c2e2x

+ c3e3x
� 0.

We can evaluate the equation and its derivatives at different values of x to obtain equations
for c1, c2, and c3. Let us first divide by ex for simplicity.

c1 + c2ex
+ c3e2x

� 0.

We set x � 0 to get the equation c1 + c2 + c3 � 0. Now differentiate both sides

c2ex
+ 2c3e2x

� 0.

We set x � 0 to get c2 + 2c3 � 0. We divide by ex again and differentiate to get 2c3ex � 0.
It is clear that c3 is zero. Then c2 must be zero as c2 � −2c3, and c1 must be zero because
c1 + c2 + c3 � 0.

There is no one best way to do it. All of these methods are perfectly valid. The important
thing is to understand why the functions are linearly independent.
Example 2.3.2: On the other hand, the functions ex , e−x , and cosh x are linearly dependent.
Simply apply definition of the hyperbolic cosine:

cosh x �
ex + e−x

2 or 2 cosh x − ex − e−x
� 0.
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2.3.2 Constant coefficient higher order ODEs
When we have a higher order constant coefficient homogeneous linear equation, the song
and dance is exactly the same as it was for second order. We just need to find more
solutions. If the equation is nth order, we need to find n linearly independent solutions. It
is best seen by example.

Example 2.3.3: Find the general solution to

y′′′ − 3y′′ − y′ + 3y � 0. (2.5)

Try: y � e rx . We plug in and get

r3e rx︸︷︷︸
y′′′

−3 r2e rx︸︷︷︸
y′′

− re rx︸︷︷︸
y′

+3 e rx︸︷︷︸
y

� 0.

We divide through by e rx . Then

r3 − 3r2 − r + 3 � 0.

The trick now is to find the roots. There is a formula for the roots of degree 3 and 4
polynomials but it is very complicated. There is no formula for higher degree polynomials.
That does not mean that the roots do not exist. There are always n roots for an nth degree
polynomial. They may be repeated and they may be complex. Computers are pretty good
at finding roots approximately for reasonable size polynomials.

A good place to start is to plot the polynomial and check where it is zero. We can also
simply try plugging in. We just start plugging in numbers r � −2,−1, 0, 1, 2, . . . and see if
we get a hit (we can also try complex numbers). Even if we do not get a hit, we may get
an indication of where the root is. For example, we plug r � −2 into our polynomial and
get −15; we plug in r � 0 and get 3. That means there is a root between r � −2 and r � 0,
because the sign changed. If we find one root, say r1, then we know (r − r1) is a factor of
our polynomial. Polynomial long division can then be used.

A good strategy is to begin with r � 0, 1, or −1. These are easy to compute. Our
polynomial has two such roots, r1 � −1 and r2 � 1. There should be 3 roots and the last
root is reasonably easy to find. The constant term in a monic∗ polynomial such as this is the
multiple of the negations of all the roots because r3 − 3r2 − r + 3 � (r − r1)(r − r2)(r − r3). So

3 � (−r1)(−r2)(−r3) � (1)(−1)(−r3) � r3.

You should check that r3 � 3 really is a root. Hence e−x , ex and e3x are solutions to (2.5).
They are linearly independent as can easily be checked, and there are 3 of them, which
happens to be exactly the number we need. So the general solution is

y � C1e−x
+ C2ex

+ C3e3x .

∗The word monic means that the coefficient of the top degree rd , in our case r3, is 1.
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Suppose we were given some initial conditions y(0) � 1, y′(0) � 2, and y′′(0) � 3. Then

1 � y(0) � C1 + C2 + C3,

2 � y′(0) � −C1 + C2 + 3C3,

3 � y′′(0) � C1 + C2 + 9C3.

It is possible to find the solution by high school algebra, but it would be a pain. The sensible
way to solve a system of equations such as this is to use matrix algebra, see § 3.2. For now
we note that the solution is C1 � −1/4, C2 � 1, and C3 � 1/4. The specific solution to the
ODE is

y �
−1
4 e−x

+ ex
+

1
4 e3x .

Next, suppose that we have real roots, but they are repeated. Let us say we have a root
r repeated k times. In the spirit of the second order solution, and for the same reasons, we
have the solutions

e rx , xe rx , x2e rx , . . . , xk−1e rx .

We take a linear combination of these solutions to find the general solution.
Example 2.3.4: Solve

y(4) − 3y′′′ + 3y′′ − y′ � 0.
We note that the characteristic equation is

r4 − 3r3
+ 3r2 − r � 0.

By inspection we note that r4 − 3r3 + 3r2 − r � r(r − 1)3. Hence the roots given with
multiplicity are r � 0, 1, 1, 1. Thus the general solution is

y � (C1 + C2x + C3x2) ex︸                     ︷︷                     ︸
terms coming from r�1

+ C4︸︷︷︸
from r�0

.

The case of complex roots is similar to second order equations. Complex roots always
come in pairs r � α ± iβ. Suppose we have two such complex roots, each repeated k times.
The corresponding solution is

(C0 + C1x + · · · + Ck−1xk−1) eαx cos(βx) + (D0 + D1x + · · · + Dk−1xk−1) eαx sin(βx).

where C0, . . . , Ck−1, D0, . . . , Dk−1 are arbitrary constants.
Example 2.3.5: Solve

y(4) − 4y′′′ + 8y′′ − 8y′ + 4y � 0.
The characteristic equation is

r4 − 4r3
+ 8r2 − 8r + 4 � 0,

(r2 − 2r + 2)2 � 0,(
(r − 1)2 + 1

)2
� 0.
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Hence the roots are 1± i, both with multiplicity 2. Hence the general solution to the ODE is

y � (C1 + C2x) ex cos x + (C3 + C4x) ex sin x.

The way we solved the characteristic equation above is really by guessing or by inspection.
It is not so easy in general. We could also have asked a computer or an advanced calculator
for the roots.

2.3.3 Exercises
Exercise 2.3.1: Find the general solution for y′′′ − y′′ + y′ − y � 0.

Exercise 2.3.2: Find the general solution for y(4) − 5y′′′ + 6y′′ � 0.

Exercise 2.3.3: Find the general solution for y′′′ + 2y′′ + 2y′ � 0.

Exercise 2.3.4: Suppose the characteristic equation for an ODE is (r − 1)2(r − 2)2 � 0.

Find such a differential equation.a)

Find its general solution.b)

Exercise 2.3.5: Suppose that a fourth order equation has a solution y � 2e4x x cos x.

Find such an equation.a)

Find the initial conditions that the given solution satisfies.b)

Exercise 2.3.6: Find the general solution for the equation of Exercise 2.3.5.

Exercise 2.3.7: Let f (x) � ex − cos x, g(x) � ex + cos x, and h(x) � cos x. Are f (x), g(x), and
h(x) linearly independent? If so, show it, if not, find a linear combination that works.

Exercise 2.3.8: Let f (x) � 0, g(x) � cos x, and h(x) � sin x. Are f (x), g(x), and h(x) linearly
independent? If so, show it, if not, find a linear combination that works.

Exercise 2.3.9: Are x, x2, and x4 linearly independent? If so, show it, if not, find a linear
combination that works.

Exercise 2.3.10: Are ex , xex , and x2ex linearly independent? If so, show it, if not, find a linear
combination that works.

Exercise 2.3.11: Find an equation such that y � xe−2x sin(3x) is a solution.

Exercise 2.3.101: Find the general solution of y(5) − y(4) � 0.
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Exercise 2.3.102: Suppose that the characteristic equation of a third order differential equation has
roots ±2i and 3.

What is the characteristic equation?a)

Find the corresponding differential equation.b)

Find the general solution.c)

Exercise 2.3.103: Solve 1001y′′′ + 3.2y′′ + πy′ −
√

4y � 0, y(0) � 0, y′(0) � 0, y′′(0) � 0.

Exercise 2.3.104: Are ex , ex+1, e2x , sin(x) linearly independent? If so, show it, if not find a linear
combination that works.

Exercise 2.3.105: Are sin(x), x, x sin(x) linearly independent? If so, show it, if not find a linear
combination that works.

Exercise 2.3.106: Find an equation such that y � cos(x), y � sin(x), y � ex are solutions.

Exercise 2.3.151: Find the general solution to the following DEs:

a) 4y(4) + 7y′′′ − 2y′′ � 0

b) y(4) − 16y � 0

c) y(4) − 5y′′ + 4y � 0

d) y(5) + 6y′′′ + 9y′ � 0

e) y(4) + 8y′′ − 9y � 0

f) y(5) + y(4) − 12y′′′ � 0

g) y(4) + 3y′′′ + 3y′′ + y′ � 0

h) y(4) − 8y′′ + 16y � 0
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2.4 Mechanical vibrations
Note: 2 lectures, §3.4 in [EP], §3.7 in [BD]

Let us look at some applications of linear second order constant coefficient equations.

2.4.1 Some examples

damping c

m
k F(t)Our first example is a mass on a spring. Suppose we have a

mass m > 0 (in kilograms) connected by a spring with spring
constant k > 0 (in newtons per meter) to a fixed wall. There
may be some external force F(t) (in newtons) acting on the
mass. Finally, there is some friction measured by c ≥ 0 (in
newton-seconds per meter) as the mass slides along the floor (or perhaps a damper is
connected).

Let x be the displacement of the mass (x � 0 is the rest position), with x growing to
the right (away from the wall). The force exerted by the spring is proportional to the
compression of the spring by Hooke’s law. Therefore, it is kx in the negative direction.
Similarly the amount of force exerted by friction is proportional to the velocity of the mass.
By Newton’s second law we know that force equals mass times acceleration and hence
mx′′ � F(t) − cx′ − kx or

mx′′ + cx′ + kx � F(t).

This is a linear second order constant coefficient ODE. We say the motion is

(i) forced, if F . 0 (if F is not identically zero),

(ii) unforced or free, if F ≡ 0 (if F is identically zero),

(iii) damped, if c > 0, and

(iv) undamped, if c � 0.

This system appears in lots of applications even if it does not at first seem like it. Many
real-world scenarios can be simplified to a mass on a spring. For example, a bungee
jump setup is essentially a mass and spring system (you are the mass). It would be good
if someone did the math before you jump off the bridge, right? Let us give two other
examples.

E L
C
R

Here is an example for electrical engineers. Consider the pictured
RLC circuit. There is a resistor with a resistance of R ohms, an inductor
with an inductance of L henries, and a capacitor with a capacitance
of C farads. There is also an electric source (such as a battery) giving
a voltage of E(t) volts at time t (measured in seconds). Let Q(t) be the
charge in coulombs on the capacitor and I(t) be the current in the circuit. The relation
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between the two is Q′ � I. By elementary principles we find LI′ + RI + Q/C � E. We
differentiate to get

LI′′(t) + RI′(t) + 1
C

I(t) � E′(t).

This is a nonhomogeneous second order constant coefficient linear equation. As L, R, and
C are all positive, this system behaves just like the mass and spring system. Position of
the mass is replaced by current. Mass is replaced by inductance, damping is replaced by
resistance, and the spring constant is replaced by one over the capacitance. The change in
voltage becomes the forcing function—for constant voltage this is an unforced motion.

θ

m gm g sin θ

m

L

mLθ′′

Our next example behaves like a mass and spring system
only approximately. Suppose a mass m hangs on a pendulum
of length L. We seek an equation for the angle θ(t) (in radians).
Let g be the force of gravity. Elementary physics mandates that
the equation is

θ′′ +
g
L

sin θ � 0.

Let us derive this equation using Newton’s second law: force
equals mass times acceleration. The acceleration is Lθ′′ and
mass is m. So mLθ′′ has to be equal to the tangential component of the force given by
the gravity, which is m g sin θ in the opposite direction. So mLθ′′ � −m g sin θ. The m
curiously cancels from the equation.

Now we make our approximation. For small θ we have that approximately sin θ ≈ θ.
This can be seen by looking at the graph. In Figure 2.1 we can see that for approximately
−0.5 < θ < 0.5 (in radians) the graphs of sin θ and θ are almost the same.

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0
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0.5

1.0

-1.0
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0.0

0.5

1.0

Figure 2.1: The graphs of sin θ and θ (in radians).

Therefore, when the swings are small, θ
is small and we can model the behavior by
the simpler linear equation

θ′′ +
g
L
θ � 0.

The errors from this approximation build
up. So after a long time, the state of the
real-world system might be substantially
different fromour solution. Alsowewill see
that in a mass-spring system, the amplitude
is independent of the period. This is not
true for a pendulum. Nevertheless, for
reasonably short periods of time and small
swings (that is, only small angles θ), the approximation is reasonably good.

In real-world problems it is often necessary to make these types of simplifications.
We must understand both the mathematics and the physics of the situation to see if the
simplification is valid in the context of the questions we are trying to answer.
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2.4.2 Free undamped motion
In this section we only consider free or unforced motion, as we do not know yet how to
solve nonhomogeneous equations. Let us start with undamped motion where c � 0. The
equation is

mx′′ + kx � 0.

We divide by m and let ω0 �
√

k/m to rewrite the equation as

x′′ + ω2
0x � 0.

The general solution to this equation is

x(t) � A cos(ω0t) + B sin(ω0t).

By a trigonometric identity

A cos(ω0t) + B sin(ω0t) � C cos(ω0t − γ),

for two different constants C and γ. It is not hard to compute that C �
√

A2 + B2 and tan γ �

B/A. Therefore, we let C and γ be our arbitrary constants and write x(t) � C cos(ω0t − γ).

Exercise 2.4.1: Justify the identity A cos(ω0t) + B sin(ω0t) � C cos(ω0t − γ) and verify the
equations for C and γ. Hint: Start with cos(α − β) � cos(α) cos(β) + sin(α) sin(β) and multiply
by C. Then what should α and β be?

While it is generally easier to use the first form with A and B to solve for the initial
conditions, the second form is much more natural. The constants C and γ have nice
physical interpretation. Write the solution as

x(t) � C cos(ω0t − γ).

This is a pure-frequency oscillation (a sine wave). The amplitude is C, ω0 is the (angular)
frequency, and γ is the so-called phase shift. The phase shift just shifts the graph left or right.
We call ω0 the natural (angular) frequency. This entire setup is called simple harmonic motion.

Let us pause to explain the word angular before the word frequency. The units of ω0
are radians per unit time, not cycles per unit time as is the usual measure of frequency.
Because one cycle is 2π radians, the usual frequency is given by ω0

2π . It is simply a matter of
where we put the constant 2π, and that is a matter of taste.

The period of the motion is one over the frequency (in cycles per unit time) and hence
2π
ω0
. That is the amount of time it takes to complete one full cycle.

Example 2.4.1: Suppose that m � 2 kg and k � 8 N/m. The whole mass and spring setup
is sitting on a truck that was traveling at 1m/s. The truck crashes and hence stops. The
mass was held in place 0.5 meters forward from the rest position. During the crash
the mass gets loose. That is, the mass is now moving forward at 1m/s, while the other
end of the spring is held in place. The mass therefore starts oscillating. What is the
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frequency of the resulting oscillation? What is the amplitude? The units are the mks units
(meters-kilograms-seconds).

The setup means that the mass was at half a meter in the positive direction during the
crash and relative to the wall the spring is mounted to, the mass was moving forward (in
the positive direction) at 1m/s. This gives us the initial conditions.

So the equation with initial conditions is

2x′′ + 8x � 0, x(0) � 0.5, x′(0) � 1.

We directly compute ω0 �
√

k/m �
√

4 � 2. Hence the angular frequency is 2. The usual
frequency in Hertz (cycles per second) is 2/2π � 1/π ≈ 0.318.

The general solution is
x(t) � A cos(2t) + B sin(2t).

Letting x(0) � 0.5 means A � 0.5. Then x′(t) � −2(0.5) sin(2t)+2B cos(2t). Letting x′(0) � 1
we get B � 0.5. Therefore, the amplitude is C �

√
A2 + B2 �

√
0.25 + 0.25 �

√
0.5 ≈ 0.707.

The solution is
x(t) � 0.5 cos(2t) + 0.5 sin(2t).

A plot of x(t) is shown in Figure 2.2.
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Figure 2.2: Simple undamped oscillation.

In general, for free undamped motion, a
solution of the form

x(t) � A cos(ω0t) + B sin(ω0t),

corresponds to the initial conditions x(0) �
A and x′(0) � ω0B. Therefore, it is easy to
figure out A and B from the initial condi-
tions. The amplitude and the phase shift
can then be computed from A and B. In
the example, we have already found the am-
plitude C. Let us compute the phase shift.
We know that tan γ � B/A � 1. We take the
arctangent of 1 and get π/4 or approximately
0.785. We still need to check if this γ is in
the correct quadrant (and add π to γ if it is not). Since both A and B are positive, then γ
should be in the first quadrant, π/4 radians is in the first quadrant, so γ � π/4.

Note: Many calculators and computer software have not only the atan function for
arctangent, but also what is sometimes called atan2. This function takes two arguments, B
and A, and returns a γ in the correct quadrant for you.

2.4.3 Free damped motion
Let us now focus on damped motion. Let us rewrite the equation

mx′′ + cx′ + kx � 0,
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as
x′′ + 2px′ + ω2

0x � 0,

where

ω0 �

√
k
m
, p �

c
2m

.

The characteristic equation is
r2

+ 2pr + ω2
0 � 0.

Using the quadratic formula we get that the roots are

r � −p ±
√

p2 − ω2
0 .

The form of the solution depends on whether we get complex or real roots. We get real
roots if and only if the following number is nonnegative:

p2 − ω2
0 �

( c
2m

)2
− k

m
�

c2 − 4km
4m2 .

The sign of p2 − ω2
0 is the same as the sign of c2 − 4km. Thus we get real roots if and only if

c2 − 4km is nonnegative, or in other words if c2 ≥ 4km.

Overdamping
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Figure 2.3: Overdamped motion for several differ-
ent initial conditions.

When c2 − 4km > 0, the system is over-
damped. In this case, there are two distinct
real roots r1 and r2. Both roots are nega-
tive: As

√
p2 − ω2

0 is always less than p, then

−p ±
√

p2 − ω2
0 is negative in either case.

The solution is

x(t) � C1e r1t
+ C2e r2t .

Since r1, r2 are negative, x(t) → 0 as t →∞.
Thus the mass will tend towards the rest
position as time goes to infinity. For a few
sample plots for different initial conditions,
see Figure 2.3.

No oscillation happens. In fact, the
graph crosses the x-axis at most once. To see why, we try to solve 0 � C1e r1t + C2e r2t .
Therefore, C1e r1t � −C2e r2t and using laws of exponents we obtain

−C1
C2

� e(r2−r1)t .
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This equation has at most one solution t ≥ 0. For some initial conditions the graph never
crosses the x-axis, as is evident from the sample graphs.

Example 2.4.2: Suppose the mass is released from rest. That is x(0) � x0 and x′(0) � 0.
Then

x(t) � x0
r1 − r2

(
r1e r2t − r2e r1t ) .

It is not hard to see that this satisfies the initial conditions.

Critical damping

When c2 − 4km � 0, the system is critically damped. In this case, there is one root of
multiplicity 2 and this root is −p. Our solution is

x(t) � C1e−pt
+ C2te−pt .

The behavior of a critically damped system is very similar to an overdamped system. After
all a critically damped system is in some sense a limit of overdamped systems. Since
these equations are really only an approximation to the real world, in reality we are never
critically damped, it is a place we can only reach in theory. We are always a little bit
underdamped or a little bit overdamped. It is better not to dwell on critical damping.

Underdamping
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Figure 2.4: Underdampedmotionwith the envelope
curves shown.

When c2 − 4km < 0, the system is under-
damped. In this case, the roots are complex.

r � −p ±
√

p2 − ω2
0

� −p ±
√
−1

√
ω2

0 − p2

� −p ± iω1,

where ω1 �

√
ω2

0 − p2. Our solution is

x(t) � e−pt (A cos(ω1t) + B sin(ω1t)
)
,

or
x(t) � Ce−pt cos(ω1t − γ).

An example plot is given in Figure 2.4. Note that we still have that x(t) → 0 as t →∞.
The figure also shows the envelope curves Ce−pt and−Ce−pt . The solution is the oscillating

line between the two envelope curves. The envelope curves give the maximum amplitude
of the oscillation at any given point in time. For example, if you are bungee jumping, you
are really interested in computing the envelope curve as not to hit the concrete with your
head.
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The phase shift γ shifts the oscillation left or right, but within the envelope curves (the
envelope curves do not change if γ changes).

Notice that the angular pseudo-frequency∗ becomes smaller when the damping c (and
hence p) becomes larger. This makes sense. When we change the damping just a little bit,
we do not expect the behavior of the solution to change dramatically. If we keep making c
larger, then at some point the solution should start looking like the solution for critical
damping or overdamping, where no oscillation happens. So if c2 approaches 4km, we
want ω1 to approach 0.

On the other hand, when c gets smaller, ω1 approaches ω0 (ω1 is always smaller than
ω0), and the solution looksmore andmore like the steady periodic motion of the undamped
case. The envelope curves become flatter and flatter as c (and hence p) goes to 0.

2.4.4 Exercises
Exercise 2.4.2: Consider a mass and spring system with a mass m � 2, spring constant k � 3, and
damping constant c � 1.

Set up and find the general solution of the system.a)

Is the system underdamped, overdamped or critically damped?b)

If the system is not critically damped, find a c that makes the system critically damped.c)

Exercise 2.4.3: Do Exercise 2.4.2 for m � 3, k � 12, and c � 12.

Exercise 2.4.4: Using the mks units (meters-kilograms-seconds), suppose you have a spring with
spring constant 4N/m. You want to use it to weigh items. Assume no friction. You place the mass
on the spring and put it in motion.

You count and find that the frequency is 0.8Hz (cycles per second). What is the mass?a)

Find a formula for the mass m given the frequency ω in Hz.b)

Exercise 2.4.5: Suppose we add possible friction to Exercise 2.4.4. Further, suppose you do not
know the spring constant, but you have two reference weights 1 kg and 2 kg to calibrate your setup.
You put each in motion on your spring and measure the frequency. For the 1 kg weight you measured
1.1Hz, for the 2 kg weight you measured 0.8Hz.

Find k (spring constant) and c (damping constant).a)

Find a formula for the mass in terms of the frequency in Hz. Note that there may be more
than one possible mass for a given frequency.

b)

For an unknown object you measured 0.2Hz, what is the mass of the object? Suppose that
you know that the mass of the unknown object is more than a kilogram.

c)

∗We do not call ω1 a frequency since the solution is not really a periodic function.
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Exercise 2.4.6: Suppose you wish to measure the friction a mass of 0.1 kg experiences as it slides
along a floor (you wish to find c). You have a spring with spring constant k � 5 N/m. You take the
spring, you attach it to the mass and fix it to a wall. Then you pull on the spring and let the mass
go. You find that the mass oscillates with frequency 1Hz. What is the friction?

Exercise 2.4.101: A mass of 2 kilograms is on a spring with spring constant k newtons per meter
with no damping. Suppose the system is at rest and at time t � 0 the mass is kicked and starts
traveling at 2 meters per second. How large does k have to be to so that the mass does not go further
than 3 meters from the rest position?

Exercise 2.4.102: Suppose we have an RLC circuit with a resistor of 100 milliohms (0.1 ohms),
inductor of inductance of 50 millihenries (0.05 henries), and a capacitor of 5 farads, with constant
voltage.

Set up the ODE equation for the current I.a)

Find the general solution.b)

Solve for I(0) � 10 and I′(0) � 0.c)

Exercise 2.4.103: A 5000 kg railcar hits a bumper (a spring) at 1m/s, and the spring compresses by
0.1m. Assume no damping.

Find k.a)

How far does the spring compress when a 10000 kg railcar hits the spring at the same speed?b)

If the spring would break if it compresses further than 0.3m, what is the maximum mass of a
railcar that can hit it at 1m/s?

c)

What is the maximum mass of a railcar that can hit the spring without breaking at 2m/s?d)

Exercise 2.4.104: A mass of m kg is on a spring with k � 3 N/m and c � 2 Ns/m. Find the mass
m0 for which there is critical damping. If m < m0, does the system oscillate or not, that is, is it
underdamped or overdamped?

Exercise 2.4.151: Solve the following IVPs for position x(t).

If the system is overdamped or critically damped, solve a second IVP for the undamped sys-
tem. Re-write the solution for the undamped system in the form xu(t) � C cos(ω0t − γ).

If the system is underdamped, re-write the solution in the form x(t) � Ce−pt cos(ω1t − γ)
where ω1 is the pseudo-frequency of the damped oscillation.

a) 2x′′ + 5x′ + 2x � 0; x(0) � 2, x′(0) � 1

b) x′′ + 8x′ + 20x � 0; x(0) � 2, x′(0) � −4



112 CHAPTER 2. HIGHER ORDER LINEAR ODES

c) x′′ + 6x′ + 9x � 0; x(0) � 2, x′(0) � 4

d) 4x′′ + 4x′ + 17x � 0; x(0) � 4, x′(0) � 4

e) x′′ + 6x′ + 25x � 0; x(0) � 2, x′(0) � −2
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2.5 Nonhomogeneous equations
Note: 2 lectures, §3.5 in [EP], §3.5 and §3.6 in [BD]

2.5.1 Solving nonhomogeneous equations
We have solved linear constant coefficient homogeneous equations. What about nonhomo-
geneous linear ODEs? For example, the equations for forced mechanical vibrations. That
is, suppose we have an equation such as

y′′ + 5y′ + 6y � 2x + 1. (2.6)

We will write Ly � 2x + 1 when the exact form of the operator is not important. We
solve (2.6) in the following manner. First, we find the general solution yc to the associated
homogeneous equation

y′′ + 5y′ + 6y � 0. (2.7)

We call yc the complementary solution. Next, we find a single particular solution yp to (2.6) in
some way. Then

y � yc + yp

is the general solution to (2.6). We have Lyc � 0 and Lyp � 2x + 1. As L is a linear operator
we verify that y is a solution, Ly � L(yc + yp) � Lyc + Lyp � 0 + (2x + 1). Let us see why
we obtain the general solution.

Let yp and ỹp be two different particular solutions to (2.6). Write the difference as
w � yp − ỹp . Then plug w into the left-hand side of the equation to get

w′′ + 5w′ + 6w � (y′′p + 5y′p + 6yp) − ( ỹ′′p + 5 ỹ′p + 6 ỹp) � (2x + 1) − (2x + 1) � 0.

Using the operator notation the calculation becomes simpler. As L is a linear operator we
write

Lw � L(yp − ỹp) � Lyp − Lỹp � (2x + 1) − (2x + 1) � 0.

So w � yp − ỹp is a solution to (2.7), that is Lw � 0. Any two solutions of (2.6) differ by a
solution to the homogeneous equation (2.7). The solution y � yc + yp includes all solutions
to (2.6), since yc is the general solution to the associated homogeneous equation.
Theorem 2.5.1. Let Ly � f (x) be a linear ODE (not necessarily constant coefficient). Let yc be
the complementary solution (the general solution to the associated homogeneous equation Ly � 0)
and let yp be any particular solution to Ly � f (x). Then the general solution to Ly � f (x) is

y � yc + yp .

The moral of the story is that we can find the particular solution in any old way. If we
find a different particular solution (by a different method, or simply by guessing), then we
still get the same general solution. The formula may look different, and the constants we
have to choose to satisfy the initial conditions may be different, but it is the same solution.
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2.5.2 Undetermined coefficients
The trick is to somehow, in a smart way, guess one particular solution to (2.6). Note that
2x + 1 is a polynomial, and the left-hand side of the equation will be a polynomial if we let
y be a polynomial of the same degree. Let us try

yp � Ax + B.

We plug yp into the left hand side to obtain

y′′p + 5y′p + 6yp � (Ax + B)′′ + 5(Ax + B)′ + 6(Ax + B)
� 0 + 5A + 6Ax + 6B � 6Ax + (5A + 6B).

So 6Ax+(5A+6B) � 2x+1. Therefore, A � 1/3 and B � −1/9. That means yp �
1
3 x− 1

9 �
3x−1

9 .
Solving the complementary problem (exercise!) we get

yc � C1e−2x
+ C2e−3x .

Hence the general solution to (2.6) is

y � C1e−2x
+ C2e−3x

+
3x − 1

9 .

Now suppose we are further given some initial conditions. For example, y(0) � 0 and
y′(0) � 1/3. First find y′ � −2C1e−2x − 3C2e−3x + 1/3. Then

0 � y(0) � C1 + C2 −
1
9 ,

1
3 � y′(0) � −2C1 − 3C2 +

1
3 .

We solve to get C1 � 1/3 and C2 � −2/9. The particular solution we want is

y(x) � 1
3 e−2x − 2

9 e−3x
+

3x − 1
9 �

3e−2x − 2e−3x + 3x − 1
9 .

Exercise 2.5.1: Check that y really solves the equation (2.6) and the given initial conditions.

Note: A common mistake is to solve for constants using the initial conditions with yc
and only add the particular solution yp after that. That will not work. You need to first
compute y � yc + yp and only then solve for the constants using the initial conditions.

A right-hand side consisting of exponentials, sines, and cosines can be handled similarly.
For example,

y′′ + 2y′ + 2y � cos(2x).
Let us find some yp . We start by guessing the solution includes some multiple of cos(2x).
We may have to also add a multiple of sin(2x) to our guess since derivatives of cosine are
sines. We try

yp � A cos(2x) + B sin(2x).
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We plug yp into the equation and we get

−4A cos(2x) − 4B sin(2x)︸                           ︷︷                           ︸
y′′p

+2
(
−2A sin(2x) + 2B cos(2x)

)︸                             ︷︷                             ︸
y′p

+ 2
(
A cos(2x) + 2B sin(2x)

)︸                         ︷︷                         ︸
yp

� cos(2x),

or
(−4A + 4B + 2A) cos(2x) + (−4B − 4A + 2B) sin(2x) � cos(2x).

The left-hand side must equal to right-hand side. Namely, −4A + 4B + 2A � 1 and
−4B − 4A + 2B � 0. So −2A + 4B � 1 and 2A + B � 0 and hence A � −1/10 and B � 1/5. So

yp � A cos(2x) + B sin(2x) � − cos(2x) + 2 sin(2x)
10 .

Similarly, if the right-hand side contains exponentials we try exponentials. If

Ly � e3x ,

we try y � Ae3x as our guess and try to solve for A.
When the right-hand side is a multiple of sines, cosines, exponentials, and polynomials,

we can use the product rule for differentiation to come up with a guess. We need to guess
a form for yp such that Lyp is of the same form, and has all the terms needed to for the
right-hand side. For example,

Ly � (1 + 3x2) e−x cos(πx).

For this equation, we guess

yp � (A + Bx + Cx2) e−x cos(πx) + (D + Ex + Fx2) e−x sin(πx).

We plug in and then hopefully get equations that we can solve for A, B, C, D, E, and F. As
you can see this can make for a very long and tedious calculation very quickly. C’est la vie!

There is one hiccup in all this. It could be that our guess actually solves the associated
homogeneous equation. That is, suppose we have

y′′ − 9y � e3x .

We would love to guess y � Ae3x , but if we plug this into the left-hand side of the equation
we get

y′′ − 9y � 9Ae3x − 9Ae3x
� 0 , e3x .

There is no way we can choose A to make the left-hand side be e3x . The trick in this case is
to multiply our guess by x to get rid of duplication with the complementary solution. That
is first we compute yc (solution to Ly � 0)

yc � C1e−3x
+ C2e3x ,
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and we note that the e3x term is a duplicate with our desired guess. We modify our guess
to y � Axe3x so that there is no duplication anymore. Let us try: y′ � Ae3x + 3Axe3x and
y′′ � 6Ae3x + 9Axe3x , so

y′′ − 9y � 6Ae3x
+ 9Axe3x − 9Axe3x

� 6Ae3x .

Thus 6Ae3x is supposed to equal e3x . Hence, 6A � 1 and so A � 1/6. We can now write the
general solution as

y � yc + yp � C1e−3x
+ C2e3x

+
1
6 xe3x .

It is possible that multiplying by x does not get rid of all duplication. For example,

y′′ − 6y′ + 9y � e3x .

The complementary solution is yc � C1e3x + C2xe3x . Guessing y � Axe3x would not get
us anywhere. In this case we want to guess yp � Ax2e3x . Basically, we want to multiply
our guess by x until all duplication is gone. But no more! Multiplying too many times will
not work.

Finally, what if the right-hand side has several terms, such as

Ly � e2x
+ cos x.

In this case we find u that solves Lu � e2x and v that solves Lv � cos x (that is, do each
term separately). Then note that if y � u + v, then Ly � e2x + cos x. This is because L is
linear; we have Ly � L(u + v) � Lu + Lv � e2x + cos x.

2.5.3 Variation of parameters
The method of undetermined coefficients works for many basic problems that crop up.
But it does not work all the time. It only works when the right-hand side of the equation
Ly � f (x) has finitely many linearly independent derivatives, so that we can write a guess
that consists of them all. Some equations are a bit tougher. Consider

y′′ + y � tan x.

Each new derivative of tan x looks completely different and cannot be written as a linear
combination of the previous derivatives. If we start differentiating tan x, we get:

sec2 x , 2 sec2 x tan x , 4 sec2 x tan2 x + 2 sec4 x ,

8 sec2 x tan3 x + 16 sec4 x tan x , 16 sec2 x tan4 x + 88 sec4 x tan2 x + 16 sec6 x , . . .

This equation calls for a different method. We present the method of variation of
parameters, which handles any equation of the form Ly � f (x), provided we can solve
certain integrals. For simplicity, we restrict ourselves to second order constant coefficient
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equations, but the method works for higher order equations just as well (the computations
become more tedious). The method also works for equations with nonconstant coefficients,
provided we can solve the associated homogeneous equation.

Perhaps it is best to explain this method by example. Let us try to solve the equation

Ly � y′′ + y � tan x.

First we find the complementary solution (solution to Lyc � 0). We get yc � C1 y1 + C2 y2,
where y1 � cos x and y2 � sin x. To find a particular solution to the nonhomogeneous
equation we try

yp � y � u1 y1 + u2 y2,

where u1 and u2 are functions and not constants. We are trying to satisfy Ly � tan x. That
gives us one condition on the functions u1 and u2. Compute (note the product rule!)

y′ � (u′1 y1 + u′2 y2) + (u1 y′1 + u2 y′2).

We can still impose one more condition at our discretion to simplify computations (we
have two unknown functions, so we should be allowed two conditions). We require that
(u′1 y1 + u′2 y2) � 0. This makes computing the second derivative easier.

y′ � u1 y′1 + u2 y′2,
y′′ � (u′1 y′1 + u′2 y′2) + (u1 y′′1 + u2 y′′2 ).

Since y1 and y2 are solutions to y′′+ y � 0, we find y′′1 � −y1 and y′′2 � −y2. (If the equation
was a more general y′′ + p(x)y′ + q(x)y � 0, we would have y′′i � −p(x)y′i − q(x)yi .) So

y′′ � (u′1 y′1 + u′2 y′2) − (u1 y1 + u2 y2).

We have (u1 y1 + u2 y2) � y and so

y′′ � (u′1 y′1 + u′2 y′2) − y ,

and hence
y′′ + y � Ly � u′1 y′1 + u′2 y′2.

For y to satisfy Ly � f (x)we must have f (x) � u′1 y′1 + u′2 y′2.
What we need to solve are the two equations (conditions) we imposed on u1 and u2:

u′1 y1 + u′2 y2 � 0,
u′1 y′1 + u′2 y′2 � f (x).

We solve for u′1 and u′2 in terms of f (x), y1 and y2. We always get these formulas for any
Ly � f (x), where Ly � y′′ + p(x)y′ + q(x)y. There is a general formula for the solution we
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could just plug into, but instead of memorizing that, it is better, and easier, to just repeat
what we do below. In our case the two equations are

u′1 cos(x) + u′2 sin(x) � 0,
−u′1 sin(x) + u′2 cos(x) � tan(x).

Hence

u′1 cos(x) sin(x) + u′2 sin2(x) � 0,
−u′1 sin(x) cos(x) + u′2 cos2(x) � tan(x) cos(x) � sin(x).

And thus

u′2
(
sin2(x) + cos2(x)

)
� sin(x),

u′2 � sin(x),

u′1 �
− sin2(x)

cos(x) � − tan(x) sin(x).

We integrate u′1 and u′2 to get u1 and u2.

u1 �

∫
u′1 dx �

∫
− tan(x) sin(x) dx �

1
2 ln

����sin(x) − 1
sin(x) + 1

���� + sin(x),

u2 �

∫
u′2 dx �

∫
sin(x) dx � − cos(x).

So our particular solution is

yp � u1 y1 + u2 y2 �
1
2 cos(x) ln

����sin(x) − 1
sin(x) + 1

���� + cos(x) sin(x) − cos(x) sin(x) �

�
1
2 cos(x) ln

����sin(x) − 1
sin(x) + 1

���� .
The general solution to y′′ + y � tan x is, therefore,

y � C1 cos(x) + C2 sin(x) + 1
2 cos(x) ln

����sin(x) − 1
sin(x) + 1

���� .
2.5.4 Undetermined coefficients with Python
If you’d like to check your answer to an undetermined coefficients problem, you can do it
using sympy, as we show below for the differential equation d2 y

dx2 + 2 dy
dx + 2y � cos 2x and

the guess y � A cos 2x + B sin 2x.
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from resources306 import *

x,A,B = sp.symbols('x A B')

cos2x,sin2x = sp.cos(2*x),sp.sin(2*x) # shorthand

y = A*cos2x + B*sin2x # our guessed form of the solution

de_lhs = sp.diff(y,x,x) + 2*sp.diff(y,x) + 2*y

de_rhs = cos2x

de = de_lhs - de_rhs # shove everything to the LHS, equate this to 0

de

−4A sin (2x) + 2A cos (2x) + 2B sin (2x) + 4B cos (2x) − 4 (A cos (2x) + B sin (2x)) − cos (2x)

eqs = [ de.coeff(cos2x), de.coeff(sin2x)) ]

eqs

[2A + 4B − 1, −4A + 2B]

sp.solve( eqs, [A,B] ) {
A : 1

10 , B : 1
5

}
2.5.5 Exercises

Exercise 2.5.2: Find a particular solution of y′′ − y′ − 6y � e2x .

Exercise 2.5.3: Find a particular solution of y′′ − 4y′ + 4y � e2x .

Exercise 2.5.4: Solve the initial value problem y′′+9y � cos(3x)+sin(3x) for y(0) � 2, y′(0) � 1.

Exercise 2.5.5: Set up the form of the particular solution but do not solve for the coefficients for
y(4) − 2y′′′ + y′′ � ex .

Exercise 2.5.6: Set up the form of the particular solution but do not solve for the coefficients for
y(4) − 2y′′′ + y′′ � ex + x + sin x.

Exercise 2.5.7:

Using variation of parameters find a particular solution of y′′ − 2y′ + y � ex .a)

Find a particular solution using undetermined coefficients.b)

Are the two solutions you found the same? See also Exercise 2.5.10.c)

Exercise 2.5.8: Find a particular solution of y′′ − 2y′ + y � sin(x2). It is OK to leave the answer
as a definite integral.

Exercise 2.5.9: For an arbitrary constant c find a particular solution to y′′− y � e cx . Hint: Make
sure to handle every possible real c.
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Exercise 2.5.10:

Using variation of parameters find a particular solution of y′′ − y � ex .a)

Find a particular solution using undetermined coefficients.b)

Are the two solutions you found the same? What is going on?c)

Exercise 2.5.101: Find a particular solution to y′′ − y′ + y � 2 sin(3x)
Exercise 2.5.102:

Find a particular solution to y′′ + 2y � ex + x3.a)

Find the general solution.b)

Exercise 2.5.103: Solve y′′ + 2y′ + y � x2, y(0) � 1, y′(0) � 2.

Exercise 2.5.104: Use variation of parameters to find a particular solution of y′′ − y �
1

ex+e−x .

Exercise 2.5.105: For an arbitrary constant c find the general solution to y′′ − 2y � sin(x + c).
Exercise 2.5.151: Apply the method of undetermined coefficients to find the general solution to the
following DEs. Include the form of yp , but do not determine the coefficients

a) y′′′ − 4y′′ + 5y′ � 3x + 5e2x sin x

b) y′′′ − 4y′ � x2 + 3e2x − e3x

c) y′′′ + 4y′′ + 13y′ � 3x2 + 5 − 6e−2x cos 3x

d) y(4) + 2y′′′ − 3y′′ � 4x + 2e−3x − 3e5x

e) y(4) − 9y′′ � 5e−3x − 2x2 + 7

f) y(5) − 2y(4) − 8y′′′ � 4x + 1 + 2e−2x − 3e4x

g) y(5) + 2y(4) + 2y′′′ � 4x3 − x2 + 5e−x sin x

Exercise 2.5.152: Apply the method of undetermined coefficients to find the general solution to the
following DEs. Determine the form and coefficients of yp

a) y′′ − 2y′ � 8x + 5e3x

b) y′′′ + y′′ − 2y′ � 2x + e2x

c) y′′ + 6y′ + 13y � cos x

d) y′′′ + y′′ − 6y′ � x2 + 2x + 4e3x

Exercise 2.5.153: Based upon the solutions in Exercise 2.5.152, solve the following IVPs:

a) y′′ − 2y′ � 8x + 5e3x; y(0) � 0, y′(0) � −1

b) y′′′ + y′′ − 2y′ � 2x + e2x; y(0) � 1, y′(0) � y′′(0) � 0
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2.6 Forced oscillations and resonance
Note: 2 lectures, §3.6 in [EP], §3.8 in [BD]

damping c

m
k F(t)Let us return back to the example of a mass on a spring.

We examine the case of forced oscillations, which we did not
yet handle. That is, we consider the equation

mx′′ + cx′ + kx � F(t),
for some nonzero F(t). The setup is again: m is mass, c is friction, k is the spring constant,
and F(t) is an external force acting on the mass.

We are interested in periodic forcing, such as noncentered rotating parts, or perhaps loud
sounds, or other sources of periodic force. Once we learn about Fourier series in chapter 4,
we will see that we cover all periodic functions by simply considering F(t) � F0 cos(ωt) (or
sine instead of cosine, the calculations are essentially the same).

2.6.1 Undamped forced motion and resonance
First let us consider undamped (c � 0) motion. We have the equation

mx′′ + kx � F0 cos(ωt).
This equation has the complementary solution (solution to the associated homogeneous
equation)

xc � C1 cos(ω0t) + C2 sin(ω0t),
where ω0 �

√
k/m is the natural frequency (angular). It is the frequency at which the system

“wants to oscillate” without external interference.
Suppose that ω0 , ω. We try the solution xp � A cos(ωt) and solve for A. We do not

need a sine in our trial solution as after plugging in we only have cosines. If you include a
sine, it is fine; you will find that its coefficient is zero (I could not find a second rhyme).

We solve using the method of undetermined coefficients. We find that

xp �
F0

m(ω2
0 − ω2)

cos(ωt).

We leave it as an exercise to do the algebra required.
The general solution is

x � C1 cos(ω0t) + C2 sin(ω0t) + F0

m(ω2
0 − ω2)

cos(ωt).

Written another way

x � C cos(ω0t − γ) + F0

m(ω2
0 − ω2)

cos(ωt).

The solution is a superposition of two cosine waves at different frequencies.
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Example 2.6.1: Take

0.5x′′ + 8x � 10 cos(πt), x(0) � 0, x′(0) � 0.

Let us compute. First we read off the parameters: ω � π, ω0 �
√

8/0.5 � 4, F0 � 10,
m � 0.5. The general solution is

x � C1 cos(4t) + C2 sin(4t) + 20
16 − π2 cos(πt).
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Figure 2.5: Graph of 20
16−π2

(
cos(πt) − cos(4t)

)
.

Solve for C1 and C2 using the initial
conditions: C1 �

−20
16−π2 and C2 � 0. Hence

x �
20

16 − π2
(
cos(πt) − cos(4t)

)
.

Notice the “beating” behavior in Fig-
ure 2.5. First use the trigonometric identity

2 sin
(

A − B
2

)
sin

(
A + B

2

)
� cos B − cos A

to get

x �
20

16 − π2

(
2 sin

(
4 − π

2 t
)

sin
(

4 + π
2 t

))
.

The function x is a high frequency wave
modulated by a low frequency wave.

Now suppose ω0 � ω. Obviously, we cannot try the solution A cos(ωt) and then use
the method of undetermined coefficients. We notice that cos(ωt) solves the associated
homogeneous equation. Therefore, we try xp � At cos(ωt)+ Bt sin(ωt). This time we need
the sine term, since the second derivative of t cos(ωt) contains sines. We write the equation

x′′ + ω2x �
F0
m

cos(ωt).

Plugging xp into the left-hand side we get

2Bω cos(ωt) − 2Aω sin(ωt) � F0
m

cos(ωt).

Hence A � 0 and B �
F0

2mω . Our particular solution is F0
2mω t sin(ωt) and our general solution

is
x � C1 cos(ωt) + C2 sin(ωt) + F0

2mω
t sin(ωt).

The important term is the last one (the particular solution we found). This term grows
without bound as t →∞. In fact it oscillates between F0t

2mω and −F0t
2mω . The first two terms

only oscillate between ±
√

C2
1 + C2

2, which becomes smaller and smaller in proportion to
the oscillations of the last term as t gets larger. In Figure 2.6 on the next page we see the
graph with C1 � C2 � 0, F0 � 2, m � 1, ω � π.
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Figure 2.6: Graph of 1
π t sin(πt).

By forcing the system in just the right fre-
quency we produce very wild oscillations.
This kind of behavior is called resonance or
perhaps pure resonance. Sometimes reso-
nance is desired. For example, remember
when as a kid you could start swinging by
just moving back and forth on the swing
seat in the “correct frequency”? You were
trying to achieve resonance. The force of
each one of your moves was small, but after
a while it produced large swings.

On the other hand resonance can be de-
structive. In an earthquake some buildings
collapse while others may be relatively un-
damaged. This is due to different buildings having different resonance frequencies. So
figuring out the resonance frequency can be very important.

A common (butwrong) example of destructive force of resonance is the TacomaNarrows
bridge failure. It turns out there was a different phenomenon at play∗.

2.6.2 Damped forced motion and practical resonance
In real life things are not as simple as they were above. There is, of course, some damping.
Our equation becomes

mx′′ + cx′ + kx � F0 cos(ωt), (2.8)
for some c > 0. We solved the homogeneous problem before. We let

p �
c

2m
, ω0 �

√
k
m
.

We replace equation (2.8) with

x′′ + 2px′ + ω2
0x �

F0
m

cos(ωt).

The roots of the characteristic equation of the associated homogeneous problem are
r1, r2 � −p ±

√
p2 − ω2

0. The form of the general solution of the associated homogeneous
equation depends on the sign of p2 − ω2

0, or equivalently on the sign of c2 − 4km, as before:

xc �


C1e r1t + C2e r2t if c2 > 4km ,
C1e−pt + C2te−pt if c2 � 4km ,
e−pt (C1 cos(ω1t) + C2 sin(ω1t)

)
if c2 < 4km ,

where ω1 �

√
ω2

0 − p2. In any case, we see that xc(t) → 0 as t →∞.

∗K. Billah and R. Scanlan, Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks,
American Journal of Physics, 59(2), 1991, 118–124, http://www.ketchum.org/billah/Billah-Scanlan.pdf
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Let us find a particular solution. There can be no conflicts when trying to solve for the
undetermined coefficients by trying xp � A cos(ωt) + B sin(ωt). Let us plug in and solve
for A and B. We get (the tedious details are left to reader)(

(ω2
0 − ω2)B − 2ωpA

)
sin(ωt) +

(
(ω2

0 − ω2)A + 2ωpB
)

cos(ωt) � F0
m

cos(ωt).

We solve for A and B:

A �
(ω2

0 − ω2)F0

m(2ωp)2 + m(ω2
0 − ω2)2

,

B �
2ωpF0

m(2ωp)2 + m(ω2
0 − ω2)2

.

We also compute C �
√

A2 + B2 to be

C �
F0

m
√
(2ωp)2 + (ω2

0 − ω2)2
.

Thus our particular solution is

xp �
(ω2

0 − ω2)F0

m(2ωp)2 + m(ω2
0 − ω2)2

cos(ωt) +
2ωpF0

m(2ωp)2 + m(ω2
0 − ω2)2

sin(ωt).

Or in the alternative notation we have amplitude C and phase shift γ where (if ω , ω0)

tan γ �
B
A

�
2ωp

ω2
0 − ω2

.

Hence,

xp �
F0

m
√
(2ωp)2 + (ω2

0 − ω2)2
cos(ωt − γ).

If ω � ω0, then A � 0, B � C �
F0

2mωp , and γ � π/2.
For reasons we will explain in a moment, we call xc the transient solution and denote

it by xtr . We call the xp from above the steady periodic solution and denote it by xsp . The
general solution is

x � xc + xp � xtr + xsp .

The transient solution xc � xtr goes to zero as t → ∞, as all the terms involve an
exponential with a negative exponent. So for large t, the effect of xtr is negligible and we
see essentially only xsp . Hence the name transient. Notice that xsp involves no arbitrary
constants, and the initial conditions only affect xtr . Thus, the effect of the initial conditions
is negligible after some period of time. We might as well focus on the steady periodic
solution and ignore the transient solution. See Figure 2.7 on the facing page for a graph
given several different initial conditions.
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Figure 2.7: Solutions with different initial con-
ditions for parameters k � 1, m � 1, F0 � 1,
c � 0.7, and ω � 1.1.

The speed at which xtr goes to zero de-
pends on p (and hence c). The bigger p is
(the bigger c is), the “faster” xtr becomes
negligible. So the smaller the damping, the
longer the “transient region.” This is consis-
tent with the observation that when c � 0,
the initial conditions affect the behavior for
all time (i.e. an infinite “transient region”).

Let us describe what we mean by res-
onance when damping is present. Since
there were no conflicts when solving with
undetermined coefficient, there is no term
that goes to infinity. We look instead at
the maximum value of the amplitude of
the steady periodic solution. Let C be the
amplitude of xsp . If we plot C as a function
of ω (with all other parameters fixed), we can find its maximum. We call the ω that
achieves this maximum the practical resonance frequency. We call the maximal amplitude
C(ω) the practical resonance amplitude. Thus when damping is present we talk of practical
resonance rather than pure resonance. A sample plot for three different values of c is given
in Figure 2.8. As you can see the practical resonance amplitude grows as damping gets
smaller, and practical resonance can disappear altogether when damping is large.
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Figure 2.8: Graph of C(ω) showing practical resonance with parameters k � 1, m � 1, F0 � 1. The top
line is with c � 0.4, the middle line with c � 0.8, and the bottom line with c � 1.6.

To find the maximum we need to find the derivative C′(ω). Computation shows

C′(ω) �
−2ω(2p2 + ω2 − ω2

0)F0

m
(
(2ωp)2 + (ω2

0 − ω2)2
)3/2 .
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This is zero either when ω � 0 or when 2p2 + ω2 − ω2
0 � 0. In other words, C′(ω) � 0 when

ω �

√
ω2

0 − 2p2 or ω � 0.

If ω2
0 − 2p2 is positive, then

√
ω2

0 − 2p2 is the practical resonance frequency (that is the
point where C(ω) is maximal). This follows by the first derivative test for example as then
C′(ω) > 0 for small ω in this case. If on the other hand ω2

0 − 2p2 is not positive, then C(ω)
achieves its maximum at ω � 0, and there is no practical resonance since we assume ω > 0
in our system. In this case the amplitude gets larger as the forcing frequency gets smaller.

If practical resonance occurs, the frequency is smaller than ω0. As the damping c (and
hence p) becomes smaller, the practical resonance frequency goes to ω0. So when damping
is very small, ω0 is a good estimate of the practical resonance frequency. This behavior
agrees with the observation that when c � 0, then ω0 is the resonance frequency.

Another interesting observation to make is that when ω→∞, then C→ 0. This means
that if the forcing frequency gets too high it does not manage to get the mass moving in
the mass-spring system. This is quite reasonable intuitively. If we wiggle back and forth
really fast while sitting on a swing, we will not get it moving at all, no matter how forceful.
Fast vibrations just cancel each other out before the mass has any chance of responding by
moving one way or the other.

The behavior is more complicated if the forcing function is not an exact cosine wave,
but for example a square wave. A general periodic function will be the sum (superposition)
of many cosine waves of different frequencies. The reader is encouraged to come back to
this section once we have learned about the Fourier series.

2.6.3 Symbolic computation with Python
As an example of symbolic computation in Python, we repeat the above computation using
sympy.

from resources306 import *

a,b,w,w0,p,t,G0 = sp.symbols('a b w w0 p t G0')

x = a*sp.cos(w*t) + b*sp.sin(w*t)

# Write the DE with everything on the LHS, implicitly set to 0

de = sp.diff(x,t,t) + 2*p*sp.diff(x,t) + w0**2*x - G0*sp.cos(w*t)

display(de)

dec = de.subs(t,0) # get the coefficient of cos(wt)

des = de.subs(t,sp.pi/2/w) # get the coefficient of sin(wt)

display(dec); display(des)

sol = sp.solve([dec,des],[a,b])

display(sol)

amp = sp.simplify( sp.sqrt(a**2 + b**2).subs(sol) )

display( amp )
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amp = amp.subs({G0:1,w0:1}) # choose units of time and amplitude

for pval in [2,1,0.5,0.25,0.125,0.0625]:

ampp = amp.subs(p,pval)

expressionplot( ampp, w, 0, 3, label='damping = '+str(pval) )

plt.legend()

plt.xlabel('forcing frequency, w'); plt.ylabel('amplitude of response')

plt.savefig('myresonanceplot.png')

2.6.4 Exercises
Exercise 2.6.1: Derive a formula for xsp if the equation is mx′′ + cx′ + kx � F0 sin(ωt). Assume
c > 0.

Exercise 2.6.2: Derive a formula for xsp if the equation is mx′′ + cx′ + kx � F0 cos(ωt) +
F1 cos(3ωt). Assume c > 0.

Exercise 2.6.3: Take mx′′ + cx′ + kx � F0 cos(ωt). Fix m > 0, k > 0, and F0 > 0. Consider
the function C(ω). For what values of c (solve in terms of m, k, and F0) will there be no practical
resonance (that is, for what values of c is there no maximum of C(ω) for ω > 0)?
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Exercise 2.6.4: Take mx′′ + cx′ + kx � F0 cos(ωt). Fix c > 0, k > 0, and F0 > 0. Consider the
function C(ω). For what values of m (solve in terms of c, k, and F0) will there be no practical
resonance (that is, for what values of m is there no maximum of C(ω) for ω > 0)?

Exercise 2.6.5: A water tower in an earthquake acts as a mass-spring system. Assume that the
container on top is full and the water does not move around. The container then acts as the mass
and the support acts as the spring, where the induced vibrations are horizontal. The container with
water has a mass of m � 10, 000 kg. It takes a force of 1000 newtons to displace the container 1
meter. For simplicity assume no friction. When the earthquake hits the water tower is at rest (it is
not moving). The earthquake induces an external force F(t) � mAω2 cos(ωt).

What is the natural frequency of the water tower?a)

If ω is not the natural frequency, find a formula for the maximal amplitude of the resulting
oscillations of the water container (the maximal deviation from the rest position). The motion
will be a high frequency wave modulated by a low frequency wave, so simply find the constant
in front of the sines.

b)

Suppose A � 1 and an earthquake with frequency 0.5 cycles per second comes. What is the
amplitude of the oscillations? Suppose that if the water tower moves more than 1.5 meter
from the rest position, the tower collapses. Will the tower collapse?

c)

Exercise 2.6.101: A mass of 4 kg on a spring with k � 4 N/m and a damping constant c � 1 Ns/m.
Suppose that F0 � 2 N. Using forcing function F0 cos(ωt), find the ω that causes practical
resonance and find the amplitude.

Exercise 2.6.102: Derive a formula for xsp for mx′′+ cx′+ kx � F0 cos(ωt)+A, where A is some
constant. Assume c > 0.

Exercise 2.6.103: Suppose there is no damping in a mass and spring system with m � 5, k � 20,
and F0 � 5. Suppose ω is chosen to be precisely the resonance frequency.

Find ω.a)

Find the amplitude of the oscillations at time t � 100, given the system is at rest at t � 0.b)

Exercise 2.6.151: Apply the method of undermined coefficients to solve the following initial value
problems:

a) x′′ + 4x � 15 cos 3t; x(0) � 2, x′(0) � 1

b) x′′ + 9x � 4 sin 2t; x(0) � 3, x′(0) � −2

c) x′′ + 16x � 2 cos 3t + 5 sin 3t; x(0) � −1, x′(0) � 1



Chapter 3

Systems of ODEs

3.1 Introduction to systems of ODEs

Note: 1 to 1.5 lectures, §4.1 in [EP], §7.1 in [BD]

3.1.1 Systems

Often we do not have just one dependent variable and one equation. And as we will see,
we may end up with systems of several equations and several dependent variables even if
we start with a single equation.

If we have several dependent variables, suppose y1, y2, . . . , yn , then we can have
a differential equation involving all of them and their derivatives with respect to one
independent variable x. For example, y′′1 � f (y′1, y′2, y1, y2, x). Usually, when we have two
dependent variables we have two equations such as

y′′1 � f1(y′1, y′2, y1, y2, x),
y′′2 � f2(y′1, y′2, y1, y2, x),

for some functions f1 and f2. We call the above a system of differential equations. More
precisely, the above is a second order system of ODEs as second order derivatives appear.
The system

x′1 � g1(x1, x2, x3, t),
x′2 � g2(x1, x2, x3, t),
x′3 � g3(x1, x2, x3, t),

is a first order system, where x1, x2, x3 are the dependent variables, and t is the independent
variable.

The terminology for systems is essentially the same as for single equations. For the
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system above, a solution is a set of three functions x1(t), x2(t), x3(t), such that

x′1(t) � g1
(
x1(t), x2(t), x3(t), t

)
,

x′2(t) � g2
(
x1(t), x2(t), x3(t), t

)
,

x′3(t) � g3
(
x1(t), x2(t), x3(t), t

)
.

We usually also have an initial condition. Just like for single equations we specify x1, x2,
and x3 for some fixed t. For example, x1(0) � a1, x2(0) � a2, x3(0) � a3. For some constants
a1, a2, and a3. For the second order system we would also specify the first derivatives at a
point. And if we find a solution with constants in it, where by solving for the constants we
find a solution for any initial condition, we call this solution the general solution. Best to
look at a simple example.

Example 3.1.1: Sometimes a system is easy to solve by solving for one variable and then
for the second variable. Take the first order system

y′1 � y1,

y′2 � y1 − y2,

with y1, y2 as the dependent variables and x as the independent variable. And consider
initial conditions y1(0) � 1, y2(0) � 2.

We note that y1 � C1ex is the general solution of the first equation. We then plug this
y1 into the second equation and get the equation y′2 � C1ex − y2, which is a linear first
order equation that is easily solved for y2. By the method of integrating factor we get

ex y2 �
C1
2 e2x

+ C2,

or y2 �
C1
2 ex + C2e−x . The general solution to the system is, therefore,

y1 � C1ex , y2 �
C1
2 ex

+ C2e−x .

We solve for C1 and C2 given the initial conditions. We substitute x � 0 and find that
C1 � 1 and C2 � 3/2. Thus the solution is y1 � ex , and y2 � (1/2)ex + (3/2)e−x .

Generally, we will not be so lucky to be able to solve for each variable separately as in
the example above, and we will have to solve for all variables at once. While we won’t
generally be able to solve for one variable and then the next, we will try to salvage as much
as possible from this technique. It will turn out that in a certain sense we will still (try to)
solve a bunch of single equations and put their solutions together. Let’s not worry right
now about how to solve systems yet.

We will mostly consider the linear systems. The example above is an example of a linear
first order system. It is linear as none of the dependent variables or their derivatives appear
in nonlinear functions or with powers higher than one (x, y, x′ and y′, constants, and
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functions of t can appear, but not x y or (y′)2 or x3). Another, more complicated, example
of a linear system is

y′′1 � e t y′1 + t2 y1 + 5y2 + sin(t),
y′′2 � t y′1 − y′2 + 2y1 + cos(t).

3.1.2 Applications
Let us consider some simple applications of systems and how to set up the equations.

Example 3.1.2: First, we consider salt and brine tanks, but this time water flows from one
to the other and back. We again consider that the tanks are evenly mixed.

x1 x2

rrVol. = V Vol. = V

Figure 3.1: A closed system of two brine tanks.

Suppose we have two tanks, each containing volume V liters of salt brine. The amount
of salt in the first tank is x1 grams, and the amount of salt in the second tank is x2 grams.
The liquid is perfectly mixed and flows at the rate r liters per second out of each tank into
the other. See Figure 3.1.

The rate of change of x1, that is x′1, is the rate of salt coming in minus the rate going out.
The rate coming in is the density of the salt in tank 2, that is x2

V , times the rate r. The rate
coming out is the density of the salt in tank 1, that is x1

V , times the rate r. In other words it is

x′1 �
x2
V

r − x1
V

r �
r
V

x2 −
r
V

x1 �
r
V
(x2 − x1).

Similarly we find the rate x′2, where the roles of x1 and x2 are reversed. All in all, the
system of ODEs for this problem is

x′1 �
r
V
(x2 − x1),

x′2 �
r
V
(x1 − x2).

In this system we cannot solve for x1 or x2 separately. We must solve for both x1 and x2 at
once, which is intuitively clear since the amount of salt in one tank affects the amount in
the other. We can’t know x1 before we know x2, and vice versa.
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We don’t yet know how to find all the solutions, but intuitively we can at least find
some solutions. Suppose we know that initially the tanks have the same amount of salt.
That is, we have an initial condition such as x1(0) � x2(0) � C. Then clearly the amount
of salt coming and out of each tank is the same, so the amounts are not changing. In
other words, x1 � C and x2 � C (the constant functions) is a solution: x′1 � x′2 � 0, and
x2 − x1 � x1 − x2 � 0, so the equations are satisfied.

Let us think about the setup a little bit more without solving it. Suppose the initial
conditions are x1(0) � A and x2(0) � B, for two different constants A and B. Since no salt is
coming in or out of this closed system, the total amount of salt is constant. That is, x1 + x2
is constant, and so it equals A + B. Intuitively if A is bigger than B, then more salt will flow
out of tank one than into it. Eventually, after a long time we would then expect the amount
of salt in each tank to equalize. In other words, the solutions of both x1 and x2 should tend
towards A+B

2 . Once you know how to solve systems you will find out that this really is so.

Example 3.1.3: Let us look at a second order example. We return to the mass and spring
setup, but this time we consider two masses.

k
m2m1

x1 x2

Consider one spring with constant k and two masses m1
and m2. Think of the masses as carts that ride along a straight
track with no friction. Let x1 be the displacement of the first
cart and x2 be the displacement of the second cart. That is, we
put the two carts somewhere with no tension on the spring,
and we mark the position of the first and second cart and call those the zero positions.
Then x1 measures how far the first cart is from its zero position, and x2 measures how far
the second cart is from its zero position. The force exerted by the spring on the first cart
is k(x2 − x1), since x2 − x1 is how far the string is stretched (or compressed) from the rest
position. The force exerted on the second cart is the opposite, thus the same thing with a
negative sign. Newton’s second law states that force equals mass times acceleration. So the
system of equations is

m1x′′1 � k(x2 − x1),
m2x′′2 � −k(x2 − x1).

Again, we cannot solve for the x1 or x2 variable separately. That we must solve for both
x1 and x2 at once is intuitively clear, since where the first cart goes depends on exactly
where the second cart goes and vice-versa.

3.1.3 Changing to first order

Before we talk about how to handle systems, let us note that in some sense we need only
consider first order systems. Let us take an nth order differential equation

y(n) � F(y(n−1), . . . , y′, y , x).
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We define new variables u1, u2, . . . , un and write the system

u′1 � u2,

u′2 � u3,
...

u′n−1 � un ,

u′n � F(un , un−1, . . . , u2, u1, x).

We solve this system for u1, u2, . . . , un . Once we have solved for the u’s, we can discard u2
through un and let y � u1. This y solves the original equation.
Example 3.1.4: Take x′′′ � 2x′′ + 8x′ + x + t. Letting u1 � x, u2 � x′, u3 � x′′, we find the
system:

u′1 � u2, u′2 � u3, u′3 � 2u3 + 8u2 + u1 + t .

A similar process can be followed for a system of higher order differential equations.
For example, a system of k differential equations in k unknowns, all of order n, can be
transformed into a first order system of n × k equations and n × k unknowns.
Example 3.1.5: Consider the system from the carts example,

m1x′′1 � k(x2 − x1), m2x′′2 � −k(x2 − x1).

Let u1 � x1, u2 � x′1, u3 � x2, u4 � x′2. The second order system becomes the first order
system

u′1 � u2, m1u′2 � k(u3 − u1), u′3 � u4, m2u′4 � −k(u3 − u1).

Example 3.1.6: The idea works in reverse as well. Consider the system

x′ � 2y − x , y′ � x ,

where the independent variable is t. We wish to solve for the initial conditions x(0) � 1,
y(0) � 0.

If we differentiate the second equation, we get y′′ � x′. We know what x′ is in terms of
x and y, and we know that x � y′. So,

y′′ � x′ � 2y − x � 2y − y′.

We now have the equation y′′ + y′ − 2y � 0. We know how to solve this equation and we
find that y � C1e−2t + C2e t . Once we have y, we use the equation y′ � x to get x.

x � y′ � −2C1e−2t
+ C2e t .

We solve for the initial conditions 1 � x(0) � −2C1 + C2 and 0 � y(0) � C1 + C2. Hence,
C1 � −C2 and 1 � 3C2. So C1 � −1/3 and C2 � 1/3. Our solution is

x �
2e−2t + e t

3 , y �
−e−2t + e t

3 .
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Exercise 3.1.1: Plug in and check that this really is the solution.

It is useful to go back and forth between systems and higher order equations for other
reasons. For example, software for solving ODE numerically (approximation) is generally
for first order systems. So to use it, you have to take whatever ODE you want to solve and
convert it to a first order system. In fact, it is not very hard to adapt computer code for
the Euler or Runge–Kutta method for first order equations to handle first order systems.
We essentially just treat the dependent variable not as a number but as a vector. In many
mathematical computer languages there is almost no distinction in syntax.

3.1.4 Autonomous systems and vector fields

A system where the equations do not depend on the independent variable is called an
autonomous system. For example the system y′ � 2y − x, y′ � x is autonomous as t is the
independent variable but does not appear in the equations.

For autonomous systems we can the so-called direction field or vector field, a plot similar
to a slope field, but instead of giving a slope at each point, we give a direction (and a
magnitude). The previous example, x′ � 2y − x, y′ � x, says that at the point (x , y) the
direction in which we should travel to satisfy the equations should be the direction of the
vector (2y − x , x) with the speed equal to the magnitude of this vector. So we draw the
vector (2y − x , x) at the point (x , y) and we do this for many points on the x y-plane. For
example, at the point (1, 2)we draw the vector

(
2(2) − 1, 1

)
� (3, 1), a vector pointing to the

right and a little bit up, while at the point (2, 1)we draw the vector
(
2(1) − 2, 2

)
� (0, 2) a

vector that points straight up. When drawing the vectors, we will scale down their size to
fit many of them on the same direction field. We are mostly interested in their direction
and relative size. See Figure 3.2 on the next page.

We can draw a path of the solution in the plane. Suppose the solution is given by
x � f (t), y � g(t). We pick an interval of t (say 0 ≤ t ≤ 2 for our example) and plot all the
points

(
f (t), g(t)

)
for t in the selected range. The resulting picture is called the phase portrait

(or phase plane portrait). The particular curve obtained is called the trajectory or solution
curve. See an example plot in Figure 3.3 on the facing page. In the figure the solution starts
at (1, 0) and travels along the vector field for a distance of 2 units of t. We solved this
system precisely, so we compute x(2) and y(2) to find x(2) ≈ 2.475 and y(2) ≈ 2.457. This
point corresponds to the top right end of the plotted solution curve in the figure.

Notice the similarity to the diagramswe drew for autonomous systems in one dimension.
But note how much more complicated things become when we allow just one extra
dimension.

We can draw phase portraits and trajectories in the x y-plane even if the system is not
autonomous. In this case however we cannot draw the direction field, since the field
changes as t changes. For each t we would get a different direction field.
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Figure 3.2: The direction field for x′ � 2y − x,
y′ � x.
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Figure 3.3: The direction field for x′ � 2y − x,
y′ � x with the trajectory of the solution starting
at (1, 0) for 0 ≤ t ≤ 2.

3.1.5 Picard’s theorem

Perhaps before going further, let us mention that Picard’s theorem on existence and
uniqueness still holds for systems of ODE. Let us restate this theorem in the setting of
systems. A general first order system is of the form

x′1 � F1(x1, x2, . . . , xn , t),
x′2 � F2(x1, x2, . . . , xn , t),
...

x′n � Fn(x1, x2, . . . , xn , t).

(3.1)

Theorem 3.1.1 (Picard’s theorem on existence and uniqueness for systems). If for every
j � 1, 2, . . . , n and every k � 1, 2, . . . , n each F j is continuous and the derivative ∂F j

∂xk
exists and is

continuous near some (x0
1 , x

0
2 , . . . , x

0
n , t0), then a solution to (3.1) subject to the initial condition

x1(t0) � x0
1, x2(t0) � x0

2, . . . , xn(t0) � x0
n exists (at least for some small interval of t’s) and is

unique.

That is, a unique solution exists for any initial condition given that the system is
reasonable (F j and its partial derivatives in the x variables are continuous). As for single
equations we may not have a solution for all time t, but at least for some short period of
time.

As we can change any nth order ODE into a first order system, then we notice that this
theorem provides also the existence and uniqueness of solutions for higher order equations
that we have until now not stated explicitly.
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3.1.6 Exercises
Exercise 3.1.2: Find the general solution of x′1 � x2 − x1 + t, x′2 � x2.

Exercise 3.1.3: Find the general solution of x′1 � 3x1 − x2 + e t , x′2 � x1.

Exercise 3.1.4: Write a y′′ + b y′ + c y � f (x) as a first order system of ODEs.

Exercise 3.1.5: Write x′′ + y2 y′ − x3 � sin(t), y′′ + (x′ + y′)2 − x � 0 as a first order system of
ODEs.

Exercise 3.1.6: Suppose two masses on carts on frictionless surface are at displacements x1 and x2
as in Example 3.1.3 on page 132. Suppose that a rocket applies force F in the positive direction on
cart x1. Set up the system of equations.

Exercise 3.1.7: Suppose the tanks are as in Example 3.1.2 on page 131, starting both at volume V ,
but now the rate of flow from tank 1 to tank 2 is r1, and rate of flow from tank 2 to tank one is r2. In
particular, the volumes will now be changing. Set up the system of equations.

Exercise 3.1.101: Find the general solution to y′1 � 3y1, y′2 � y1 + y2, y′3 � y1 + y3.

Exercise 3.1.102: Solve y′ � 2x, x′ � x + y, x(0) � 1, y(0) � 3.

Exercise 3.1.103: Write x′′′ � x + t as a first order system.

Exercise 3.1.104: Write y′′1 + y1 + y2 � t, y′′2 + y1 − y2 � t2 as a first order system.

Exercise 3.1.105: Suppose two masses on carts on frictionless surface are at displacements x1 and
x2 as in Example 3.1.3 on page 132. Suppose initial displacement is x1(0) � x2(0) � 0, and initial
velocity is x′1(0) � x′2(0) � a for some number a. Use your intuition to solve the system, explain
your reasoning.

Exercise 3.1.106: Suppose the tanks are as in Example 3.1.2 on page 131 except that clean water
flows in at the rate s liters per second into tank 1, and brine flows out of tank 2 and into the sewer
also at the rate of s liters per second.

Draw the picture.a)

Set up the system of equations.b)

Intuitively, what happens as t goes to infinity, explain.c)
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3.2 Matrices and linear systems
Note: 1.5 lectures, first part of §5.1 in [EP], §7.2 and §7.3 in [BD]

.

3.2.1 Matrices and vectors
Before we start talking about linear systems of ODEs, we need to talk about matrices, so let
us review these briefly. A matrix is an m × n array of numbers (m rows and n columns).
For example, we denote a 3 × 5 matrix as follows

A �


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35

 .
The numbers ai j are called elements or entries.

By a vectorwe usually mean a column vector, that is an m × 1 matrix. If we mean a row
vector, we will explicitly say so (a row vector is a 1 × n matrix). We usually denote matrices
by upper case letters and vectors by lower case letters with an arrow such as ®x or ®b. By ®0
we mean the vector of all zeros.

We define some operations on matrices. We want 1 × 1 matrices to really act like
numbers, so our operations have to be compatible with this viewpoint.

First, we can multiply a matrix by a scalar (a number). We simply multiply each entry
in the matrix by the scalar. For example,

2
[
1 2 3
4 5 6

]
�

[
2 4 6
8 10 12

]
.

Matrix addition is also easy. We add matrices element by element. For example,[
1 2 3
4 5 6

]
+

[
1 1 −1
0 2 4

]
�

[
2 3 2
4 7 10

]
.

If the sizes do not match, then addition is not defined.
If we denote by 0 the matrix with all zero entries, by c, d scalars, and by A, B, C matrices,

we have the following familiar rules:

A + 0 � A � 0 + A,
A + B � B + A,

(A + B) + C � A + (B + C),
c(A + B) � cA + cB,
(c + d)A � cA + dA.
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Another useful operation for matrices is the so-called transpose. This operation just
swaps rows and columns of a matrix. The transpose of A is denoted by AT . Example:

[
1 2 3
4 5 6

]T

�


1 4
2 5
3 6


3.2.2 Matrix multiplication

Let us now define matrix multiplication. First we define the so-called dot product (or inner
product) of two vectors. Usually this will be a row vector multiplied with a column vector
of the same size. For the dot product we multiply each pair of entries from the first and the
second vector and we sum these products. The result is a single number. For example,

[
a1 a2 a3

]
·

b1
b2
b3

 � a1b1 + a2b2 + a3b3.

And similarly for larger (or smaller) vectors.
Armed with the dot product we define the product of matrices. First let us denote by

rowi(A) the ith row of A and by column j(A) the jth column of A. For an m × n matrix A
and an n × p matrix B we can define the product AB. We let AB be an m × p matrix whose
i jth entry is the dot product

rowi(A) · column j(B).

Do note how the sizes match up: m × n multiplied by n × p is m × p. Example:

[
1 2 3
4 5 6

] 
1 0 −1
1 1 1
1 0 0

 �

�

[
1 · 1 + 2 · 1 + 3 · 1 1 · 0 + 2 · 1 + 3 · 0 1 · (−1) + 2 · 1 + 3 · 0
4 · 1 + 5 · 1 + 6 · 1 4 · 0 + 5 · 1 + 6 · 0 4 · (−1) + 5 · 1 + 6 · 0

]
�

[
6 2 1

15 5 1

]
For multiplication we want an analogue of a 1. This analogue is the so-called identity

matrix. The identity matrix is a square matrix with 1s on the diagonal and zeros everywhere
else. It is usually denoted by I. For each size we have a different identity matrix and so
sometimes we may denote the size as a subscript. For example, the I3 would be the 3 × 3
identity matrix

I � I3 �


1 0 0
0 1 0
0 0 1

 .
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We have the following rules for matrix multiplication. Suppose that A, B, C are matrices
of the correct sizes so that the following make sense. Let α denote a scalar (number).

A(BC) � (AB)C,
A(B + C) � AB + AC,
(B + C)A � BA + CA,
α(AB) � (αA)B � A(αB),

IA � A � AI .

A few warnings are in order.

(i) AB , BA in general (it may be true by fluke sometimes). That is, matrices do not
commute. For example, take A �

[ 1 1
1 1

]
and B �

[ 1 0
0 2

]
.

(ii) AB � AC does not necessarily imply B � C, even if A is not 0.

(iii) AB � 0does not necessarilymean thatA � 0 or B � 0. Try, for example, A � B �
[ 0 1

0 0
]
.

For the last two items to hold we would need to “divide” by a matrix. This is where the
matrix inverse comes in. Suppose that A and B are n × n matrices such that

AB � I � BA.

Then we call B the inverse of A and we denote B by A−1. If the inverse of A exists, then we
call A invertible. If A is not invertible, we sometimes say A is singular.

If A is invertible, then AB � AC does imply that B � C (in particular the inverse of A is
unique). We just multiply both sides by A−1 (on the left) to get A−1AB � A−1AC or IB � IC
or B � C. It is also not hard to see that (A−1)−1

� A.

3.2.3 The determinant
For square matrices we define a useful quantity called the determinant. We define the
determinant of a 1 × 1 matrix as the value of its only entry. For a 2 × 2 matrix we define

det
( [

a b
c d

] )
def
� ad − bc.

Before trying to define the determinant for larger matrices, let us note the meaning of
the determinant. Consider an n × n matrix as a mapping of the n-dimensional euclidean
space Rn to itself, where ®x gets sent to A®x. In particular, a 2 × 2 matrix A is a mapping
of the plane to itself. The determinant of A is the factor by which the area of objects
changes. If we take the unit square (square of side 1) in the plane, then A takes the square
to a parallelogram of area |det(A)|. The sign of det(A) denotes changing of orientation
(negative if the axes get flipped). For example, let

A �

[
1 1
−1 1

]
.
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Then det(A) � 1 + 1 � 2. Let us see where the (unit) square with vertices (0, 0), (1, 0), (0, 1),
and (1, 1) gets sent. Clearly (0, 0) gets sent to (0, 0).[

1 1
−1 1

] [
1
0

]
�

[
1
−1

]
,

[
1 1
−1 1

] [
0
1

]
�

[
1
1

]
,

[
1 1
−1 1

] [
1
1

]
�

[
2
0

]
.

The image of the square is another square with vertices (0, 0), (1,−1), (1, 1), and (2, 0). The
image square has a side of length

√
2 and is therefore of area 2.

If you think back to high school geometry, you may have seen a formula for computing
the area of a parallelogram with vertices (0, 0), (a , c), (b , d) and (a + b , c + d). And it is
precisely ���� det

( [
a b
c d

] ) ���� .
The vertical lines above mean absolute value. The matrix

[
a b
c d

]
carries the unit square to

the given parallelogram.
Let us look at the determinant for larger matrices. We define Ai j as the matrix A with

the ith row and the jth column deleted. To compute the determinant of a matrix, pick one
row, say the ith row and compute:

det(A) �
n∑

j�1
(−1)i+ jai j det(Ai j).

For the first row we get

det(A) � a11 det(A11) − a12 det(A12) + a13 det(A13) − · · ·
{
+a1n det(A1n) if n is odd,
−a1n det(A1n) if n even.

We alternately add and subtract the determinants of the submatrices Ai j multiplied by
ai j for a fixed i and all j. For a 3 × 3 matrix, picking the first row, we get det(A) �
a11 det(A11) − a12 det(A12) + a13 det(A13). For example,

det ©«

1 2 3
4 5 6
7 8 9

ª®¬ � 1 · det
( [

5 6
8 9

] )
− 2 · det

( [
4 6
7 9

] )
+ 3 · det

( [
4 5
7 8

] )
� 1(5 · 9 − 6 · 8) − 2(4 · 9 − 6 · 7) + 3(4 · 8 − 5 · 7) � 0.

The numbers (−1)i+ j det(Ai j) are called cofactors of thematrix and this way of computing
the determinant is called the cofactor expansion. No matter which row you pick, you always
get the same number. It is also possible to compute the determinant by expanding along
columns (picking a column instead of a row above). It is true that det(A) � det(AT).

A common notation for the determinant is a pair of vertical lines:����a b
c d

���� � det
( [

a b
c d

] )
.
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I personally find this notation confusing as vertical lines usually mean a positive quantity,
while determinants can be negative. Also think about how to write the absolute value of a
determinant. I will not use this notation in this book.

Think of the determinants telling you the scaling of a mapping. If B doubles the sizes
of geometric objects and A triples them, then AB (which applies B to an object and then A)
should make size go up by a factor of 6. This is true in general:

det(AB) � det(A)det(B).

This property is one of the most useful, and it is employed often to actually compute
determinants. A particularly interesting consequence is to note what it means for existence
of inverses. Take A and B to be inverses of each other, that is AB � I. Then

det(A)det(B) � det(AB) � det(I) � 1.

Neither det(A) nor det(B) can be zero. Let us state this as a theorem as it will be very
important in the context of this course.
Theorem 3.2.1. An n × n matrix A is invertible if and only if det(A) , 0.

In fact, det(A−1)det(A) � 1 says that det(A−1) � 1
det(A) . So we even know what the

determinant of A−1 is before we know how to compute A−1.
There is a simple formula for the inverse of a 2 × 2 matrix[

a b
c d

]−1

�
1

ad − bc

[
d −b
−c a

]
.

Notice the determinant of the matrix [ a b
c d ] in the denominator of the fraction. The formula

only works if the determinant is nonzero, otherwise we are dividing by zero.

3.2.4 Solving linear systems
One application of matrices we will need is to solve systems of linear equations. This is
best shown by example. Suppose that we have the following system of linear equations

2x1 + 2x2 + 2x3 � 2,
x1 + x2 + 3x3 � 5,
x1 + 4x2 + x3 � 10.

Without changing the solution, we could swap equations in this system, we could
multiply any of the equations by a nonzero number, and we could add a multiple of one
equation to another equation. It turns out these operations always suffice to find a solution.

It is easier to write the system as a matrix equation. The system above can be written as
2 2 2
1 1 3
1 4 1



x1
x2
x3

 �


2
5

10

 .
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To solve the system we put the coefficient matrix (the matrix on the left-hand side of the
equation) together with the vector on the right and side and get the so-called augmented
matrix 

2 2 2 2
1 1 3 5
1 4 1 10

 .
We apply the following three elementary operations.

(i) Swap two rows.

(ii) Multiply a row by a nonzero number.

(iii) Add a multiple of one row to another row.

We keep doing these operations until we get into a state where it is easy to read off the
answer, or until we get into a contradiction indicating no solution, for example if we come
up with an equation such as 0 � 1.

Let us work through the example. First multiply the first row by 1/2 to obtain
1 1 1 1
1 1 3 5
1 4 1 10

 .
Now subtract the first row from the second and third row.

1 1 1 1
0 0 2 4
0 3 0 9


Multiply the last row by 1/3 and the second row by 1/2.

1 1 1 1
0 0 1 2
0 1 0 3


Swap rows 2 and 3. 

1 1 1 1
0 1 0 3
0 0 1 2


Subtract the last row from the first, then subtract the second row from the first.

1 0 0 −4
0 1 0 3
0 0 1 2


If we think about what equations this augmented matrix represents, we see that x1 � −4,
x2 � 3, and x3 � 2. We try this solution in the original system and, voilà, it works!
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Exercise 3.2.1: Check that the solution above really solves the given equations.

We write this equation in matrix notation as

A®x � ®b ,

where A is the matrix
[ 2 2 2

1 1 3
1 4 1

]
and ®b is the vector

[ 2
5

10

]
. The solution can also be computed

via the inverse,
®x � A−1A®x � A−1®b.

It is possible that the solution is not unique, or that no solution exists. It is easy to tell if
a solution does not exist. If during the row reduction you come up with a rowwhere all the
entries except the last one are zero (the last entry in a row corresponds to the right-hand
side of the equation), then the system is inconsistent and has no solution. For example, for
a system of 3 equations and 3 unknowns, if you find a row such as [ 0 0 0 | 1 ] in the
augmented matrix, you know the system is inconsistent. That row corresponds to 0 � 1.

You generally try to use row operations until the following conditions are satisfied. The
first (from the left) nonzero entry in each row is called the leading entry.

(i) The leading entry in any row is strictly to the right of the leading entry of the row
above.

(ii) Any zero rows are below all the nonzero rows.

(iii) All leading entries are 1.

(iv) All the entries above and below a leading entry are zero.

Such a matrix is said to be in reduced row echelon form. The variables corresponding to
columns with no leading entries are said to be free variables. Free variables mean that we can
pick those variables to be anything we want and then solve for the rest of the unknowns.
Example 3.2.1: The following augmented matrix is in reduced row echelon form.

1 2 0 3
0 0 1 1
0 0 0 0


Suppose the variables are x1, x2, and x3. Then x2 is the free variable, x1 � 3 − 2x2, and
x3 � 1.

On the other hand if during the row reduction process you come up with the matrix
1 2 13 3
0 0 1 1
0 0 0 3

 ,
there is no need to go further. The last row corresponds to the equation 0x1 + 0x2 + 0x3 � 3,
which is preposterous. Hence, no solution exists.
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3.2.5 Computing the inverse

If the matrix A is square and there exists a unique solution ®x to A®x � ®b for any ®b (there are
no free variables), then A is invertible. Multiplying both sides by A−1, you can see that
®x � A−1®b. So it is useful to compute the inverse if you want to solve the equation for many
different right-hand sides ®b.

We have a formula for the 2 × 2 inverse, but it is also not hard to compute inverses of
larger matrices. While we will not have too much occasion to compute inverses for larger
matrices than 2 × 2 by hand, let us touch on how to do it. Finding the inverse of A is
actually just solving a bunch of linear equations. If we can solve A®xk � ®ek where ®ek is the
vector with all zeros except a 1 at the kth position, then the inverse is the matrix with the
columns ®xk for k � 1, 2, . . . , n (exercise: why?). Therefore, to find the inverse we write a
larger n × 2n augmented matrix [A | I ], where I is the identity matrix. We then perform
row reduction. The reduced row echelon form of [A | I ] will be of the form [ I | A−1 ] if
and only if A is invertible. We then just read off the inverse A−1.

3.2.6 Exercises

Exercise 3.2.2: Solve
[ 1 2

3 4
]
®x �

[ 5
6
]
by using matrix inverse.

Exercise 3.2.3: Compute determinant of
[ 9 −2 −6
−8 3 6
10 −2 −6

]
.

Exercise 3.2.4: Compute determinant of
[ 1 2 3 1

4 0 5 0
6 0 7 0
8 0 10 1

]
. Hint: Expand along the proper row or column

to make the calculations simpler.

Exercise 3.2.5: Compute inverse of
[ 1 2 3

1 1 1
0 1 0

]
.

Exercise 3.2.6: For which h is
[ 1 2 3

4 5 6
7 8 h

]
not invertible? Is there only one such h? Are there several?

Infinitely many?

Exercise 3.2.7: For which h is
[

h 1 1
0 h 0
1 1 h

]
not invertible? Find all such h.

Exercise 3.2.8: Solve
[ 9 −2 −6
−8 3 6
10 −2 −6

]
®x �

[ 1
2
3

]
.

Exercise 3.2.9: Solve
[ 5 3 7

8 4 4
6 3 3

]
®x �

[ 2
0
0

]
.

Exercise 3.2.10: Solve
[ 3 2 3 0

3 3 3 3
0 2 4 2
2 3 4 3

]
®x �

[ 2
0
4
1

]
.

Exercise 3.2.11: Find 3 nonzero 2 × 2 matrices A, B, and C such that AB � AC but B , C.

Exercise 3.2.51: Solve
[ 2 −3
−1 5

]
®x �

[ 1
−2

]
by using the matrix inverse.
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Exercise 3.2.52: For a general 2 × 2 matrix A �
[

a b
c d

]
, show AI � IA � A.

Exercise 3.2.53: For each of the following pairs of matrices A, B calculate the products AB and
BA, if they exist.

a) A �
[ 1 2
−1 3

]
, B �

[ 0 3
2 −4

]
b) A �

[ −2 −1
1 0

]
, B �

[ 1 0 5
2 4 3

]
c) A �

[ 1 0 2
3 −1 4
2 1 3

]
, B �

[ 4 1 2
1 0 1
3 2 0

]
Exercise 3.2.54: For each of the following matrices, compute A−1, then show that AA−1 � A−1A �

I .

a) A �
[ 1 −1

2 3
]

b) A �
[ 2 1

4 3
]

Exercise 3.2.101: Compute determinant of
[ 1 1 1

2 3 −5
1 −1 0

]
Exercise 3.2.102: Find t such that

[ 1 t
−1 2

]
is not invertible.

Exercise 3.2.103: Solve
[ 1 1

1 −1
]
®x �

[ 10
20

]
.

Exercise 3.2.104: Suppose a , b , c are nonzero numbers. Let M �
[

a 0
0 b

]
, N �

[
a 0 0
0 b 0
0 0 c

]
.

Compute M−1.a) Compute N−1.b)
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3.3 Linear systems of ODEs
Note: less than 1 lecture, second part of §5.1 in [EP], §7.4 in [BD]

First let us talk about matrix- or vector-valued functions. Such a function is just a matrix
or vector whose entries depend on some variable. If t is the independent variable, we write
a vector-valued function ®x(t) as

®x(t) �


x1(t)
x2(t)
...

xn(t)

 .
Similarly a matrix-valued function A(t) is

A(t) �


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
...

...
. . .

...
an1(t) an2(t) · · · ann(t)

 .
The derivative A′(t) or dA

dt is just the matrix-valued function whose i jth entry is a′i j(t).
Rules of differentiation of matrix-valued functions are similar to rules for normal

functions. Let A(t) and B(t) be matrix-valued functions. Let c a scalar and let C be a
constant matrix. Then (

A(t) + B(t)
)′
� A′(t) + B′(t),(

A(t)B(t)
)′
� A′(t)B(t) + A(t)B′(t),(

cA(t)
)′
� cA′(t),(

CA(t)
)′
� CA′(t),(

A(t)C
)′
� A′(t)C.

Note the order of the multiplication in the last two expressions.
A first order linear system of ODEs is a system that can be written as the vector equation

®x′(t) � P(t)®x(t) + ®f (t),

where P(t) is a matrix-valued function, and ®x(t) and ®f (t) are vector-valued functions. We
will often suppress the dependence on t and only write ®x′ � P ®x + ®f . A solution of the
system is a vector-valued function ®x satisfying the vector equation.

For example, the equations

x′1 � 2tx1 + e t x2 + t2,

x′2 �
x1
t
− x2 + e t ,
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can be written as
®x′ �

[
2t e t

1/t −1

]
®x +

[
t2

e t

]
.

We will mostly concentrate on equations that are not just linear, but are in fact constant
coefficient equations. That is, the matrix P will be constant; it will not depend on t.

When ®f � ®0 (the zero vector), then we say the system is homogeneous. For homogeneous
linear systems we have the principle of superposition, just like for single homogeneous
equations.
Theorem 3.3.1 (Superposition). Let ®x′ � P ®x be a linear homogeneous system of ODEs. Suppose
that ®x1, ®x2, . . . , ®xn are n solutions of the equation and c1, c2, . . . , cn are any constants, then

®x � c1 ®x1 + c2 ®x2 + · · · + cn ®xn , (3.2)

is also a solution. Furthermore, if this is a system of n equations (P is n × n), and ®x1, ®x2, . . . , ®xn
are linearly independent, then every solution ®x can be written as (3.2).

Linear independence for vector-valued functions is the same idea as for normal functions.
The vector-valued functions ®x1, ®x2, . . . , ®xn are linearly independent when

c1 ®x1 + c2 ®x2 + · · · + cn ®xn � ®0

has only the solution c1 � c2 � · · · � cn � 0, where the equation must hold for all t.

Example 3.3.1: ®x1 �

[
t2
t

]
, ®x2 �

[
0

1+t

]
, ®x3 �

[
−t2

1

]
are linearly dependent because ®x1 + ®x3 �

®x2, and this holds for all t. So c1 � 1, c2 � −1, and c3 � 1 above will work.
On the other hand if we change the example just slightly ®x1 �

[
t2
t

]
, ®x2 �

[
0
t

]
, ®x3 �

[
−t2

1

]
,

then the functions are linearly independent. First write c1 ®x1 + c2 ®x2 + c3 ®x3 � ®0 and note
that it has to hold for all t. We get that

c1 ®x1 + c2 ®x2 + c3 ®x3 �

[
c1t2 − c3t2

c1t + c2t + c3

]
�

[
0
0

]
.

In other words c1t2 − c3t2 � 0 and c1t + c2t + c3 � 0. If we set t � 0, then the second
equation becomes c3 � 0. But then the first equation becomes c1t2 � 0 for all t and so
c1 � 0. Thus the second equation is just c2t � 0, which means c2 � 0. So c1 � c2 � c3 � 0 is
the only solution and ®x1, ®x2, and ®x3 are linearly independent.

The linear combination c1 ®x1 + c2 ®x2 + · · · + cn ®xn could always be written as

X(t) ®c ,

where X(t) is thematrix with columns ®x1, ®x2, . . . , ®xn , and ®c is the column vector with entries
c1, c2, . . . , cn . Assuming that ®x1, ®x2, . . . , ®xn are linearly independent, the matrix-valued
function X(t) is called a fundamental matrix, or a fundamental matrix solution.

To solve nonhomogeneous first order linear systems, we use the same technique as we
applied to solve single linear nonhomogeneous equations.
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Theorem 3.3.2. Let ®x′ � P ®x+ ®f be a linear system of ODEs. Suppose ®xp is one particular solution.
Then every solution can be written as

®x � ®xc + ®xp ,

where ®xc is a solution to the associated homogeneous equation (®x′ � P ®x).
The procedure for systems is the same as for single equations. We find a particular

solution to the nonhomogeneous equation, then we find the general solution to the
associated homogeneous equation, and finally we add the two together.

Alright, suppose you have found the general solution of ®x′ � P ®x + ®f . Next suppose
you are given an initial condition of the form

®x(t0) � ®b

for some fixed t0 and a constant vector ®b. Let X(t) be a fundamental matrix solution of
the associated homogeneous equation (i.e. columns of X(t) are solutions). The general
solution can be written as

®x(t) � X(t) ®c + ®xp(t).
We are seeking a vector ®c such that

®b � ®x(t0) � X(t0) ®c + ®xp(t0).

In other words, we are solving for ®c the nonhomogeneous system of linear equations

X(t0) ®c � ®b − ®xp(t0).

Example 3.3.2: In § 3.1 we solved the system

x′1 � x1,

x′2 � x1 − x2,

with initial conditions x1(0) � 1, x2(0) � 2. Let us consider this problem in the language of
this section.

The system is homogeneous, so ®f (t) � ®0. We write the system and the initial conditions
as

®x′ �
[
1 0
1 −1

]
®x , ®x(0) �

[
1
2

]
.

We found the general solution is x1 � c1e t and x2 �
c1
2 e t + c2e−t . Letting c1 � 1 and

c2 � 0, we obtain the solution
[

e t

(1/2)e t

]
. Letting c1 � 0 and c2 � 1, we obtain

[ 0
e−t

]
. These

two solutions are linearly independent, as can be seen by setting t � 0, and noting that
the resulting constant vectors are linearly independent. In matrix notation, a fundamental
matrix solution is, therefore,

X(t) �
[

e t 0
1
2 e t e−t

]
.
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To solve the initial value problem we solve for ®c in the equation

X(0) ®c � ®b ,

or in other words, [
1 0
1
2 1

]
®c �

[
1
2

]
.

A single elementary row operation shows ®c �
[ 1

3/2
]
. Our solution is

®x(t) � X(t) ®c �

[
e t 0

1
2 e t e−t

] [
1
3
2

]
�

[
e t

1
2 e t + 3

2 e−t

]
.

This new solution agrees with our previous solution from § 3.1.

3.3.1 Exercises
Exercise 3.3.1: Write the system x′1 � 2x1 − 3tx2 + sin t, x′2 � e t x1 + 3x2 + cos t in the form
®x′ � P(t)®x + ®f (t).

Exercise 3.3.2:

Verify that the system ®x′ �
[ 1 3

3 1
]
®x has the two solutions

[ 1
1
]

e4t and
[ 1
−1

]
e−2t .a)

Write down the general solution.b)

Write down the general solution in the form x1 �?, x2 �? (i.e. write down a formula for each
element of the solution).

c)

Exercise 3.3.3: Verify that
[ 1

1
]

e t and
[ 1
−1

]
e t are linearly independent. Hint: Just plug in t � 0.

Exercise 3.3.4: Verify that
[ 1

1
0

]
e t and

[ 1
−1
1

]
e t and

[ 1
−1
1

]
e2t are linearly independent. Hint: You

must be a bit more tricky than in the previous exercise.

Exercise 3.3.5: Verify that
[ t

t2
]
and

[
t3

t4

]
are linearly independent.

Exercise 3.3.6: Take the system x′1 + x′2 � x1, x′1 − x′2 � x2.

Write it in the form A®x′ � B ®x for matrices A and B.a)

Compute A−1 and use that to write the system in the form ®x′ � P ®x.b)

Exercise 3.3.51: Write the following nth- order DEs as a system of n 1st- order DEs, then write the

system of the form ®x ′(t) � P(t)®x(t) + ®f (t)

a) x′′ + e t x′ − (sin t)x � cos t
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b) x′′′ − (tan−1 t)x′′ + t2x′ − 3x � t4

c) x′′′ − t3x′ + e t2
x � sin2 t

d) tx′′′ + te t x′′ − t2x′ + x � e t4
, t > 0

e) x(4) + 5x′′′ − (6 cos t)x′′ + t2x � (tan−1 t)

f) t2x(4) − 2x′′ + tx � ln t , t > 0

Exercise 3.3.101: Are
[

e2t

e t

]
and

[
e t

e2t

]
linearly independent? Justify.

Exercise 3.3.102: Are
[ cosh(t)

1
]
,
[

e t

1
]
, and

[
e−t

1
]
linearly independent? Justify.

Exercise 3.3.103: Write x′ � 3x − y + e t , y′ � tx in matrix notation.

Exercise 3.3.104:

Write x′1 � 2tx2, x′2 � 2tx2 in matrix notation.a)

Solve and write the solution in matrix notation.b)
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3.4 Eigenvalue method
Note: 2 lectures, §5.2 in [EP], part of §7.3, §7.5, and §7.6 in [BD]

In this section we will learn how to solve linear homogeneous constant coefficient
systems of ODEs by the eigenvalue method. Suppose we have such a system

®x′ � P ®x ,

where P is a constant square matrix. We wish to adapt the method for the single constant
coefficient equation by trying the function eλt . However, ®x is a vector. So we try ®x � ®veλt ,
where ®v is an arbitrary constant vector. We plug this ®x into the equation to get

λ®veλt︸︷︷︸
®x′

� P ®veλt︸︷︷︸
P ®x

.

We divide by eλt and notice that we are looking for a scalar λ and a vector ®v that satisfy
the equation

λ®v � P ®v.
To solve this equation we need a little bit more linear algebra, which we now review.

3.4.1 Eigenvalues and eigenvectors of a matrix
Let A be a constant square matrix. Suppose there is a scalar λ and a nonzero vector ®v such
that

A®v � λ®v.
We call λ an eigenvalue of A and we call ®v a corresponding eigenvector.

Example 3.4.1: The matrix
[ 2 1

0 1
]
has an eigenvalue λ � 2 with a corresponding eigenvector[ 1

0
]
as [

2 1
0 1

] [
1
0

]
�

[
2
0

]
� 2

[
1
0

]
.

Let us see how to compute eigenvalues for any matrix. Rewrite the equation for an
eigenvalue as

(A − λI)®v � ®0.
This equation has a nonzero solution ®v only if A − λI is not invertible. Were it invertible,
we could write (A − λI)−1(A − λI)®v � (A − λI)−1®0, which implies ®v � ®0. Therefore, A has
the eigenvalue λ if and only if λ solves the equation

det(A − λI) � 0.

Consequently, wewill be able to find an eigenvalue of A without finding a corresponding
eigenvector. An eigenvector will have to be found later, once λ is known.
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Example 3.4.2: Find all eigenvalues of
[ 2 1 1

1 2 0
0 0 2

]
.

We write

det ©«

2 1 1
1 2 0
0 0 2

 − λ

1 0 0
0 1 0
0 0 1

ª®¬ � det ©«

2 − λ 1 1

1 2 − λ 0
0 0 2 − λ

ª®¬ �

� (2 − λ)
(
(2 − λ)2 − 1

)
� −(λ − 1)(λ − 2)(λ − 3).

So the eigenvalues are λ � 1, λ � 2, and λ � 3.
For an n× n matrix, the polynomial we get by computing det(A−λI) is of degree n, and

hence in general, we have n eigenvalues. Some may be repeated, some may be complex.
To find an eigenvector corresponding to an eigenvalue λ, we write

(A − λI)®v � ®0,

and solve for a nontrivial (nonzero) vector ®v. If λ is an eigenvalue, there will be at least one
free variable, and so for each distinct eigenvalue λ, we can always find an eigenvector.

Example 3.4.3: Find an eigenvector of
[ 2 1 1

1 2 0
0 0 2

]
corresponding to the eigenvalue λ � 3.

We write

(A − λI)®v �
©«

2 1 1
1 2 0
0 0 2

 − 3

1 0 0
0 1 0
0 0 1

ª®¬

v1
v2
v3

 �


−1 1 1
1 −1 0
0 0 −1



v1
v2
v3

 � ®0.

It is easy to solve this system of linear equations. We write down the augmented matrix
−1 1 1 0
1 −1 0 0
0 0 −1 0

 ,
and perform row operations (exercise: which ones?) until we get:

1 −1 0 0
0 0 1 0
0 0 0 0

 .
The entries of ®v have to satisfy the equations v1 − v2 � 0, v3 � 0, and v2 is a free variable.
We can pick v2 to be arbitrary (but nonzero), let v1 � v2, and of course v3 � 0. For example,
if we pick v2 � 1, then ®v �

[ 1
1
0

]
. Let us verify that ®v really is an eigenvector corresponding

to λ � 3: 
2 1 1
1 2 0
0 0 2



1
1
0

 �


3
3
0

 � 3

1
1
0

 .
Yay! It worked.
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Exercise 3.4.1 (easy): Are eigenvectors unique? Can you find a different eigenvector for λ � 3 in
the example above? How are the two eigenvectors related?

Exercise 3.4.2: When the matrix is 2 × 2 you do not need to do row operations when computing an
eigenvector, you can read it off from A − λI (if you have computed the eigenvalues correctly). Can
you see why? Explain. Try it for the matrix

[ 2 1
1 2

]
.

3.4.2 The eigenvalue method with distinct real eigenvalues
OK. We have the system of equations

®x′ � P ®x.

We find the eigenvalues λ1, λ2, . . . , λn of the matrix P, and corresponding eigenvectors ®v1,
®v2, . . . , ®vn . Now we notice that the functions ®v1eλ1t , ®v2eλ2t , . . . , ®vn eλn t are solutions of the
system of equations and hence ®x � c1 ®v1eλ1t + c2 ®v2eλ2t + · · · + cn ®vn eλn t is a solution.
Theorem 3.4.1. Take ®x′ � P ®x. If P is an n × n constant matrix that has n distinct real eigenvalues
λ1, λ2, . . . , λn , then there exist n linearly independent corresponding eigenvectors ®v1, ®v2, . . . , ®vn ,
and the general solution to ®x′ � P ®x can be written as

®x � c1 ®v1eλ1t
+ c2 ®v2eλ2t

+ · · · + cn ®vneλn t .

The corresponding fundamental matrix solution is

X(t) �
[
®v1eλ1t ®v2eλ2t · · · ®vneλn t ] .

That is, X(t) is the matrix whose jth column is ®v j eλ j t .
Example 3.4.4: Consider the system

®x′ �

2 1 1
1 2 0
0 0 2

 ®x.
Find the general solution.

Earlier, we found the eigenvalues are 1, 2, 3. We found the eigenvector
[ 1

1
0

]
for the

eigenvalue 3. Similarly we find the eigenvector
[ 1
−1
0

]
for the eigenvalue 1, and

[ 0
1
−1

]
for the

eigenvalue 2 (exercise: check). Hence our general solution is

®x � c1


1
−1
0

 e t
+ c2


0
1
−1

 e2t
+ c3


1
1
0

 e3t
�


c1e t + c3e3t

−c1e t + c2e2t + c3e3t

−c2e2t

 .
In terms of a fundamental matrix solution,

®x � X(t) ®c �


e t 0 e3t

−e t e2t e3t

0 −e2t 0



c1
c2
c3

 .
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Exercise 3.4.3: Check that this ®x really solves the system.

Note: If we write a single homogeneous linear constant coefficient nth order equation
as a first order system (as we did in § 3.1), then the eigenvalue equation

det(P − λI) � 0

is essentially the same as the characteristic equation we got in § 2.2 and § 2.3.

3.4.3 Complex eigenvalues
A matrix may very well have complex eigenvalues even if all the entries are real. Take, for
example,

®x′ �
[

1 1
−1 1

]
®x.

Let us compute the eigenvalues of the matrix P �
[ 1 1
−1 1

]
.

det(P − λI) � det
( [

1 − λ 1
−1 1 − λ

] )
� (1 − λ)2 + 1 � λ2 − 2λ + 2 � 0.

Thus λ � 1 ± i. Corresponding eigenvectors are also complex. Start with λ � 1 − i.(
P − (1 − i)I

)
®v � ®0,[

i 1
−1 i

]
®v � ®0.

The equations iv1 + v2 � 0 and −v1 + iv2 � 0 are multiples of each other. So we only need
to consider one of them. After picking v2 � 1, for example, we have an eigenvector ®v �

[
i
1
]
.

In similar fashion we find that
[ −i

1
]
is an eigenvector corresponding to the eigenvalue 1 + i.

We could write the solution as

®x � c1

[
i
1

]
e(1−i)t

+ c2

[
−i
1

]
e(1+i)t

�

[
c1ie(1−i)t − c2ie(1+i)t

c1e(1−i)t + c2e(1+i)t

]
.

We would then need to look for complex values c1 and c2 to solve any initial conditions. It
is perhaps not completely clear that we get a real solution. After solving for c1 and c2, we
could use Euler’s formula and do the whole song and dance we did before, but we will not.
We will apply the formula in a smarter way first to find independent real solutions.

We claim that we did not have to look for a second eigenvector (nor for the second
eigenvalue). All complex eigenvalues come in pairs (because the matrix P is real).

First a small detour. The real part of a complex number z can be computed as z+z̄
2 ,

where the bar above z means a + ib � a − ib. This operation is called the complex conjugate.
If a is a real number, then ā � a. Similarly we bar whole vectors or matrices by taking
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the complex conjugate of every entry. Suppose a matrix P is real. Then P � P, and so
P ®x � P ®x � P ®x. Also the complex conjugate of 0 is still 0, therefore,

®0 � ®0 � (P − λI)®v � (P − λ̄I)®v.

In other words, if λ � a+ ib is an eigenvalue, then so is λ̄ � a− ib. And if ®v is an eigenvector
corresponding to the eigenvalue λ, then ®v is an eigenvector corresponding to the eigenvalue
λ̄.

Suppose a + ib is a complex eigenvalue of P, and ®v is a corresponding eigenvector. Then

®x1 � ®ve(a+ib)t

is a solution (complex-valued) of ®x′ � P ®x. Euler’s formula shows that ea+ib � ea−ib , and so

®x2 � ®x1 � ®ve(a−ib)t

is also a solution. As ®x1 and ®x2 are solutions, the function

®x3 � Re ®x1 � Re ®ve(a+ib)t
�
®x1 + ®x1

2 �
®x1 + ®x2

2 �
1
2
®x1 +

1
2
®x2

is also a solution. And ®x3 is real-valued! Similarly as Im z �
z−z̄
2i is the imaginary part, we

find that

®x4 � Im ®x1 �
®x1 − ®x1

2i
�
®x1 − ®x2

2i
.

is also a real-valued solution. It turns out that ®x3 and ®x4 are linearly independent. We will
use Euler’s formula to separate out the real and imaginary part.

Returning to our problem,

®x1 �

[
i
1

]
e(1−i)t

�

[
i
1

] (
e t cos t − ie t sin t

)
�

[
ie t cos t + e t sin t
e t cos t − ie t sin t

]
�

[
e t sin t
e t cos t

]
+ i

[
e t cos t
−e t sin t

]
.

Then
Re ®x1 �

[
e t sin t
e t cos t

]
, and Im ®x1 �

[
e t cos t
−e t sin t

]
,

are the two real-valued linearly independent solutions we seek.

Exercise 3.4.4: Check that these really are solutions.

The general solution is

®x � c1

[
e t sin t
e t cos t

]
+ c2

[
e t cos t
−e t sin t

]
�

[
c1e t sin t + c2e t cos t
c1e t cos t − c2e t sin t

]
.

This solution is real-valued for real c1 and c2. We now solve for any initial conditions we
may have.

Let us summarize as a theorem.
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Theorem 3.4.2. Let P be a real-valued constant matrix. If P has a complex eigenvalue a + ib and
a corresponding eigenvector ®v, then P also has a complex eigenvalue a − ib with a corresponding
eigenvector ®v. Furthermore, ®x′ � P ®x has two linearly independent real-valued solutions

®x1 � Re ®ve(a+ib)t , and ®x2 � Im ®ve(a+ib)t .

For each pair of complex eigenvalues a + ib and a − ib, we get two real-valued linearly
independent solutions. We then go on to the next eigenvalue, which is either a real
eigenvalue or another complex eigenvalue pair. If we have n distinct eigenvalues (real
or complex), then we end up with n linearly independent solutions. If we had only two
equations (n � 2) as in the example above, then once we found two solutions we are
finished, and our general solution is

®x � c1 ®x1 + c2 ®x2 � c1
(
Re ®ve(a+ib)t )

+ c2
(
Im ®ve(a+ib)t ) .

We can now find a real-valued general solution to any homogeneous system where the
matrix has distinct eigenvalues. When we have repeated eigenvalues, matters get a bit
more complicated and we will look at that situation in § 3.7.

3.4.4 Eigenvalues and eigenvectors with Python

Both numpy and sympy provide functions to compute eigenvalues and eigenvectors.
They present the results in rather different ways. numpy.linalg.eig() gives a list of the
eigenvalues ("j" is used for the imaginary unit), followed by an array whose columns are
the corresponding eigenvectors. sympy.Matrix.eigenvects() returns a list of tuples, each of
which has the eigenvalue, its algebraic multiplicity, and a list of corresponding eigenvectors.
Numpy uses floating point arithmetic, while sympy does exact rational arithmetic if the
input is integer or rational.
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3.4.5 Exercises
Exercise 3.4.5 (easy): Let A be a 3 × 3 matrix with an eigenvalue of 3 and a corresponding
eigenvector ®v �

[ 1
−1
3

]
. Find A®v.

Exercise 3.4.6:

Find the general solution of x′1 � 2x1, x′2 � 3x2 using the eigenvalue method (first write the
system in the form ®x′ � A®x).

a)

Solve the system by solving each equation separately and verify you get the same general
solution.

b)

Exercise 3.4.7: Find the general solution of x′1 � 3x1 + x2, x′2 � 2x1 + 4x2 using the eigenvalue
method.

Exercise 3.4.8: Find the general solution of x′1 � x1 − 2x2, x′2 � 2x1 + x2 using the eigenvalue
method. Do not use complex exponentials in your solution.

Exercise 3.4.9:

Compute eigenvalues and eigenvectors of A �

[ 9 −2 −6
−8 3 6
10 −2 −6

]
.a)

Find the general solution of ®x′ � A®x.b)

Exercise 3.4.10: Compute eigenvalues and eigenvectors of
[ −2 −1 −1

3 2 1
−3 −1 0

]
.

Exercise 3.4.11: Let a , b , c , d , e , f be numbers. Find the eigenvalues of
[

a b c
0 d e
0 0 f

]
.

Exercise 3.4.101:

Compute eigenvalues and eigenvectors of A �

[ 1 0 3
−1 0 1
2 0 2

]
.a)

Solve the system ®x ′ � A®x.b)

Exercise 3.4.102:

Compute eigenvalues and eigenvectors of A �
[ 1 1
−1 0

]
.a)

Solve the system ®x ′ � A®x.b)

Exercise 3.4.103: Solve x′1 � x2, x′2 � x1 using the eigenvalue method.

Exercise 3.4.104: Solve x′1 � x2, x′2 � −x1 using the eigenvalue method.

Exercise 3.4.151: Solve each of the following systems by the eigenvalue method. If ICs are given,
find the particular solution to the system. If no ICs are given, find the general solution. Write all
solutions in vector form.
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a) x′1 � 3x1 − x2, x′2 � 7x1 − 5x2

b) x′1 � 4x1 + x2, x′2 � 6x1 − x2

c) x′1 � x1 − x2, x′2 � 5x1 − 3x2

d) x′1 � −2x1 + 5x2, x′2 � −6x1 + 9x2; x1(0) � 1, x2(0) � 3

e) x′1 � 3x1 + 4x2, x′2 � −5x1 + 7x2

f) x′1 � −x1 − x2, x′2 � 5x1 + x2; x1(0) � −2, x2(0) � 1

g) x′1 � −4x1 + x2, x′2 � 2x1 − 3x2; x1(0) � 2, x2(0) � −3

h) x′1 � −x1 − 2x2, x′2 � 9x1 + 5x2

i) x′1 � x1 + 5x2, x′2 � −2x1 − x2

j) x′1 � 5x1 + 7x2, x′2 � −2x1 − 4x2; x1(0) � −2, x2(0) � −3
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3.5 Two-dimensional systems and their vector fields
Note: 1 lecture, part of §6.2 in [EP], parts of §7.5 and §7.6 in [BD]

Let us take a moment to talk about constant coefficient linear homogeneous systems in
the plane. Much intuition can be obtained by studying this simple case. Suppose we use
coordinates (x , y) for the plane as usual, and suppose P �

[
a b
c d

]
is a 2× 2 matrix. Consider

the system [
x
y

] ′
� P

[
x
y

]
or

[
x
y

] ′
�

[
a b
c d

] [
x
y

]
. (3.3)

The system is autonomous (compare this section to § 1.6) and so we can draw a vector field
(see the end of § 3.1). We will be able to visually tell what the vector field looks like and how
the solutions behave, once we find the eigenvalues and eigenvectors of the matrix P. For
this section, we assume that P has two eigenvalues and two corresponding eigenvectors.

Case 1. Suppose that the eigenvalues of P are real and positive. We find two corre-
sponding eigenvectors and plot them in the plane. For example, take the matrix

[ 1 1
0 2

]
. The

eigenvalues are 1 and 2 and corresponding eigenvectors are
[ 1

0
]
and

[ 1
1
]
. See Figure 3.4.
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Figure 3.4: Eigenvectors of P.

Suppose the point (x , y) is on the line
determined by an eigenvector ®v for an eigen-
value λ. That is,

[ x
y
]
� α®v for some scalar

α. Then[
x
y

] ′
� P

[
x
y

]
� P(α®v) � α(P ®v) � αλ®v.

The derivative is a multiple of ®v and hence
points along the line determined by ®v. As
λ > 0, the derivative points in the direction
of ®v when α is positive and in the oppo-
site direction when α is negative. Let us
draw the lines determined by the eigenvec-
tors, and let us draw arrows on the lines to
indicate the directions. See Figure 3.5 on the facing page.

We fill in the rest of the arrows for the vector field and we also draw a few solutions.
See Figure 3.6 on the next page. The picture looks like a source with arrows coming out
from the origin. Hence we call this type of picture a source or sometimes an unstable node.

Case 2. Suppose both eigenvalues are negative. For example, take the negation of the
matrix in case 1,

[ −1 −1
0 −2

]
. The eigenvalues are −1 and −2 and corresponding eigenvectors

are the same,
[ 1

0
]
and

[ 1
1
]
. The calculation and the picture are almost the same. The only

difference is that the eigenvalues are negative and hence all arrows are reversed. We get the
picture in Figure 3.7 on the facing page. We call this kind of picture a sink or a stable node.

Case 3. Suppose one eigenvalue is positive and one is negative. For example the matrix[ 1 1
0 −2

]
. The eigenvalues are 1 and −2 and corresponding eigenvectors are

[ 1
0
]
and

[ 1
−3

]
.
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Figure 3.5: Eigenvectors of P with directions.
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Figure 3.6: Example source vector field with eigen-
vectors and solutions.
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Figure 3.7: Example sink vector field with eigen-
vectors and solutions.
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Figure 3.8: Example saddle vector field with eigen-
vectors and solutions.

We reverse the arrows on one line (corresponding to the negative eigenvalue) and we
obtain the picture in Figure 3.8. We call this picture a saddle point.

For the next three cases we will assume the eigenvalues are complex. In this case the
eigenvectors are also complex and we cannot just plot them in the plane.

Case 4. Suppose the eigenvalues are purely imaginary. That is, suppose the eigenvalues
are ±ib. For example, let P �

[ 0 1
−4 0

]
. The eigenvalues turn out to be ±2i and eigenvectors

are
[ 1

2i

]
and

[ 1
−2i

]
. Consider the eigenvalue 2i and its eigenvector

[ 1
2i

]
. The real and

imaginary parts of ®ve2it are

Re
[

1
2i

]
e2it

�

[
cos(2t)
−2 sin(2t)

]
, Im

[
1
2i

]
e2it

�

[
sin(2t)

2 cos(2t)

]
.
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We can take any linear combination of them to get other solutions, which one we take
depends on the initial conditions. Now note that the real part is a parametric equation for
an ellipse. Same with the imaginary part and in fact any linear combination of the two.
This is what happens in general when the eigenvalues are purely imaginary. So when the
eigenvalues are purely imaginary, we get ellipses for the solutions. This type of picture is
sometimes called a center. See Figure 3.9.
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Figure 3.9: Example center vector field.
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Figure 3.10: Example spiral source vector field.

Case 5. Now suppose the complex eigenvalues have a positive real part. That is, suppose
the eigenvalues are a ± ib for some a > 0. For example, let P �

[ 1 1
−4 1

]
. The eigenvalues

turn out to be 1± 2i and eigenvectors are
[ 1

2i

]
and

[ 1
−2i

]
. We take 1 + 2i and its eigenvector[ 1

2i

]
and find the real and imaginary parts of ®ve(1+2i)t are

Re
[

1
2i

]
e(1+2i)t

� e t
[

cos(2t)
−2 sin(2t)

]
, Im

[
1
2i

]
e(1+2i)t

� e t
[

sin(2t)
2 cos(2t)

]
.

Note the e t in front of the solutions. The solutions grow in magnitude while spinning
around the origin. Hence we get a spiral source. See Figure 3.10.

Case 6. Finally suppose the complex eigenvalues have a negative real part. That is,
suppose the eigenvalues are −a ± ib for some a > 0. For example, let P �

[ −1 −1
4 −1

]
. The

eigenvalues turn out to be −1 ± 2i and eigenvectors are
[ 1
−2i

]
and

[ 1
2i

]
. We take −1 − 2i

and its eigenvector
[ 1

2i

]
and find the real and imaginary parts of ®ve(−1−2i)t are

Re
[

1
2i

]
e(−1−2i)t

� e−t
[

cos(2t)
2 sin(2t)

]
, Im

[
1
2i

]
e(−1−2i)t

� e−t
[
− sin(2t)
2 cos(2t)

]
.

Note the e−t in front of the solutions. The solutions shrink in magnitude while spinning
around the origin. Hence we get a spiral sink. See Figure 3.11 on the facing page.
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Figure 3.11: Example spiral sink vector field.

We summarize the behavior of linear homogeneous two-dimensional systems given by
a nonsingular matrix in Table 3.1. Systems where one of the eigenvalues is zero (the matrix
is singular) come up in practice from time to time, see Example 3.1.2 on page 131, and the
pictures are somewhat different (simpler in a way). See the exercises.

Eigenvalues Behavior

real and both positive source / unstable node
real and both negative sink / stable node
real and opposite signs saddle
purely imaginary center point / ellipses
complex with positive real part spiral source
complex with negative real part spiral sink

Table 3.1: Summary of behavior of linear homogeneous two-dimensional systems.

3.5.1 Exercises
Exercise 3.5.1: Take the equation mx′′ + cx′ + kx � 0, with m > 0, c ≥ 0, k > 0 for the
mass-spring system.

Convert this to a system of first order equations.a)

Classify for what m , c , k do you get which behavior.b)

Can you explain from physical intuition why you do not get all the different kinds of behavior
here?

c)
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Exercise 3.5.2: What happens in the case when P �
[ 1 1

0 1
]
? In this case the eigenvalue is repeated

and there is only one independent eigenvector. What picture does this look like?

Exercise 3.5.3: What happens in the case when P �
[ 1 1

1 1
]
? Does this look like any of the pictures

we have drawn?

Exercise 3.5.4: Which behaviors are possible if P is diagonal, that is P �
[

a 0
0 b

]
? You can assume

that a and b are not zero.

Exercise 3.5.5: Take the system from Example 3.1.2 on page 131, x′1 �
r
V (x2−x1), x′2 �

r
V (x1−x2).

As we said, one of the eigenvalues is zero. What is the other eigenvalue, how does the picture look
like and what happens when t goes to infinity.

Exercise 3.5.101: Describe the behavior of the following systems without solving:

x′ � x + y, y′ � x − y.a) x′1 � x1 + x2, x′2 � 2x2.b)

x′1 � −2x2, x′2 � 2x1.c) x′ � x + 3y, y′ � −2x − 4y.d)

x′ � x − 4y, y′ � −4x + y.e)

Exercise 3.5.102: Suppose that ®x ′ � A®x where A is a 2 by 2 matrix with eigenvalues 2 ± i.
Describe the behavior.

Exercise 3.5.103: Take
[ x

y
] ′

�
[ 0 1

0 0
] [ x

y
]
. Draw the vector field and describe the behavior. Is it

one of the behaviors that we have seen before?
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3.6 Second order systems and applications

Note: more than 2 lectures, §5.4 in [EP], not in [BD]

3.6.1 Undamped mass-spring systems
While we did say that we will usually only look at first order systems, it is sometimes more
convenient to study the system in the way it arises naturally. For example, suppose we have
3 masses connected by springs between two walls. We could pick any higher number, and
the math would be essentially the same, but for simplicity we pick 3 right now. Let us also
assume no friction, that is, the system is undamped. The masses are m1, m2, and m3 and
the spring constants are k1, k2, k3, and k4. Let x1 be the displacement from rest position of
the first mass, and x2 and x3 the displacement of the second and third mass. We make, as
usual, positive values go right (as x1 grows, the first mass is moving right). See Figure 3.12.

k1
m1

k2
m2

k3
m3

k4

Figure 3.12: System of masses and springs.

This simple system turns up in unexpected places. For example, our world really
consists of many small particles of matter interacting together. When we try the system
above with many more masses, we obtain a good approximation to how an elastic material
behaves. By somehow taking a limit of the number of masses going to infinity, we obtain
the continuous one-dimensional wave equation (that we study in § 4.7). But we digress.

Let us set up the equations for the three mass system. By Hooke’s law, the force acting
on the mass equals the spring compression times the spring constant. By Newton’s second
law, force is mass times acceleration. So if we sum the forces acting on each mass, put the
right sign in front of each term, depending on the direction in which it is acting, and set
this equal to mass times the acceleration, we end up with the desired system of equations.

m1x′′1 � −k1x1 + k2(x2 − x1) � −(k1 + k2)x1 + k2x2,

m2x′′2 � −k2(x2 − x1) + k3(x3 − x2) � k2x1 − (k2 + k3)x2 + k3x3,

m3x′′3 � −k3(x3 − x2) − k4x3 � k3x2 − (k3 + k4)x3.

We define the matrices

M �


m1 0 0
0 m2 0
0 0 m3

 and K �


−(k1 + k2) k2 0

k2 −(k2 + k3) k3
0 k3 −(k3 + k4)

 .
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We write the equation simply as
M ®x′′ � K ®x.

At this point we could introduce 3 new variables and write out a system of 6 first order
equations. We claim this simple setup is easier to handle as a second order system. We call
®x the displacement vector, M the mass matrix, and K the stiffness matrix.

Exercise 3.6.1: Repeat this setup for 4 masses (find the matrices M and K). Do it for 5 masses.
Can you find a prescription to do it for n masses?

As with a single equation we want to “divide by M.” This means computing the inverse
of M. The masses are all nonzero and M is a diagonal matrix, so computing the inverse is
easy:

M−1
�


1

m1
0 0

0 1
m2

0
0 0 1

m3

 .
This fact follows readily by how we multiply diagonal matrices. As an exercise, you should
verify that MM−1 � M−1M � I.

Let A � M−1K. We look at the system ®x′′ � M−1K ®x, or

®x′′ � A®x.

Many real world systems can be modeled by this equation. For simplicity, we will only talk
about the given masses-and-springs problem. We try a solution of the form

®x � ®veαt .

We compute that for this guess, ®x′′ � α2 ®veαt . We plug our guess into the equation and get

α2 ®veαt
� A®veαt .

We divide by eαt to arrive at α2 ®v � A®v. Hence if α2 is an eigenvalue of A and ®v is a
corresponding eigenvector, we have found a solution.

In our example, and in other common applications, A has only real negative eigenvalues
(and possibly a zero eigenvalue). So we study only this case. When an eigenvalue λ is
negative, it means that α2 � λ is negative. Hence there is some real number ω such that
−ω2 � λ. Then α � ±iω. The solution we guessed was

®x � ®v
(
cos(ωt) + i sin(ωt)

)
.

By taking the real and imaginary parts (note that ®v is real), we find that ®v cos(ωt) and
®v sin(ωt) are linearly independent solutions.

If an eigenvalue is zero, it turns out that both ®v and ®vt are solutions, where ®v is an
eigenvector corresponding to the eigenvalue 0.
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Exercise 3.6.2: Show that if A has a zero eigenvalue and ®v is a corresponding eigenvector, then
®x � ®v(a + bt) is a solution of ®x′′ � A®x for arbitrary constants a and b.

Theorem 3.6.1. Let A be a real n × n matrix with n distinct real negative (or zero) eigenvalues we
denote by −ω2

1 > −ω2
2 > · · · > −ω2

n , and corresponding eigenvectors by ®v1, ®v2, . . . , ®vn . If A is
invertible (that is, if ω1 > 0), then

®x(t) �
n∑

i�1
®vi

(
ai cos(ωi t) + bi sin(ωi t)

)
,

is the general solution of
®x′′ � A®x ,

for some arbitrary constants ai and bi . If A has a zero eigenvalue, that is ω1 � 0, and all other
eigenvalues are distinct and negative, then the general solution can be written as

®x(t) � ®v1(a1 + b1t) +
n∑

i�2
®vi

(
ai cos(ωi t) + bi sin(ωi t)

)
.

We use this solution and the setup from the introduction of this section even when
some of the masses and springs are missing. For example, when there are only 2 masses
and only 2 springs, simply take only the equations for the two masses and set all the spring
constants for the springs that are missing to zero.

3.6.2 Examples

Example 3.6.1: Consider the setup in Figure 3.13, with m1 � 2 kg, m2 � 1 kg, k1 � 4 N/m,
and k2 � 2 N/m.

k1
m1

k2
m2

Figure 3.13: System of masses and springs.

The equations we write down are[
2 0
0 1

]
®x′′ �

[
−(4 + 2) 2

2 −2

]
®x ,

or
®x′′ �

[
−3 1
2 −2

]
®x.
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We find the eigenvalues of A to be λ � −1,−4 (exercise). We find corresponding
eigenvectors to be

[ 1
2
]
and

[ 1
−1

]
respectively (exercise).

We check the theorem and note that ω1 � 1 and ω2 � 2. Hence the general solution is

®x �

[
1
2

] (
a1 cos(t) + b1 sin(t)

)
+

[
1
−1

] (
a2 cos(2t) + b2 sin(2t)

)
.

The two terms in the solution represent the two so-called natural or normal modes of
oscillation. And the two (angular) frequencies are the natural frequencies. The first natural
frequency is 1, and second natural frequency is 2. The two modes are plotted in Figure 3.14.
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Figure 3.14: The two modes of the mass-spring system. In the left plot the masses are moving in unison
and in the right plot are masses moving in the opposite direction.

Let us write the solution as

®x �

[
1
2

]
c1 cos(t − α1) +

[
1
−1

]
c2 cos(2t − α2).

The first term, [
1
2

]
c1 cos(t − α1) �

[
c1 cos(t − α1)

2c1 cos(t − α1)

]
,

corresponds to the mode where the masses move synchronously in the same direction.
The second term, [

1
−1

]
c2 cos(2t − α2) �

[
c2 cos(2t − α2)
−c2 cos(2t − α2)

]
,

corresponds to the mode where the masses move synchronously but in opposite directions.
The general solution is a combination of the two modes. That is, the initial conditions

determine the amplitude and phase shift of each mode. As an example, suppose we have
initial conditions

®x(0) �
[

1
−1

]
, ®x′(0) �

[
0
6

]
.
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We use the a j , b j constants to solve for initial conditions. First[
1
−1

]
� ®x(0) �

[
1
2

]
a1 +

[
1
−1

]
a2 �

[
a1 + a2

2a1 − a2

]
.

We solve (exercise) to find a1 � 0, a2 � 1. To find the b1 and b2, we differentiate first:

®x′ �
[
1
2

] (
−a1 sin(t) + b1 cos(t)

)
+

[
1
−1

] (
−2a2 sin(2t) + 2b2 cos(2t)

)
.

Now we solve: [
0
6

]
� ®x′(0) �

[
1
2

]
b1 +

[
1
−1

]
2b2 �

[
b1 + 2b2

2b1 − 2b2

]
.

Again solve (exercise) to find b1 � 2, b2 � −1. So our solution is

®x �

[
1
2

]
2 sin(t) +

[
1
−1

] (
cos(2t) − sin(2t)

)
�

[
2 sin(t) + cos(2t) − sin(2t)
4 sin(t) − cos(2t) + sin(2t)

]
.

The graphs of the two displacements, x1 and x2 of the two carts is in Figure 3.15.
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Figure 3.15: Superposition of the two modes given the initial conditions.

Example 3.6.2: We have two toy rail cars. Car 1 of mass 2 kg is traveling at 3m/s towards
the second rail car of mass 1 kg. There is a bumper on the second rail car that engages at
the moment the cars hit (it connects to two cars) and does not let go. The bumper acts
like a spring of spring constant k � 2 N/m. The second car is 10 meters from a wall. See
Figure 3.16 on the next page.

We want to ask several questions. At what time after the cars link does impact with the
wall happen? What is the speed of car 2 when it hits the wall?

OK, let us first set the system up. Let t � 0 be the time when the two cars link up. Let x1
be the displacement of the first car from the position at t � 0, and let x2 be the displacement
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m1
k

m2

10 meters

Figure 3.16: The crash of two rail cars.

of the second car from its original location. Then the time when x2(t) � 10 is exactly the
time when impact with wall occurs. For this t, x′2(t) is the speed at impact. This system
acts just like the system of the previous example but without k1. Hence the equation is[

2 0
0 1

]
®x′′ �

[
−2 2
2 −2

]
®x ,

or

®x′′ �
[
−1 1
2 −2

]
®x.

We compute the eigenvalues of A. It is not hard to see that the eigenvalues are 0 and
−3 (exercise). Furthermore, eigenvectors are

[ 1
1
]
and

[ 1
−2

]
respectively (exercise). Then

ω1 � 0, ω2 �
√

3, and by the second part of the theorem the general solution is

®x �

[
1
1

]
(a1 + b1t) +

[
1
−2

] (
a2 cos(

√
3 t) + b2 sin(

√
3 t)

)
�

[
a1 + b1t + a2 cos(

√
3 t) + b2 sin(

√
3 t)

a1 + b1t − 2a2 cos(
√

3 t) − 2b2 sin(
√

3 t)

]
.

We now apply the initial conditions. First the cars start at position 0 so x1(0) � 0 and
x2(0) � 0. The first car is traveling at 3m/s, so x′1(0) � 3 and the second car starts at rest, so
x′2(0) � 0. The first conditions says

®0 � ®x(0) �
[

a1 + a2
a1 − 2a2

]
.

It is not hard to see that a1 � a2 � 0. We set a1 � 0 and a2 � 0 in ®x(t) and differentiate to get

®x′(t) �
[

b1 +
√

3 b2 cos(
√

3 t)
b1 − 2

√
3 b2 cos(

√
3 t)

]
.

So [
3
0

]
� ®x′(0) �

[
b1 +
√

3 b2
b1 − 2

√
3 b2

]
.
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Solving these two equations we find b1 � 2 and b2 �
1√
3
. Hence the position of our cars is

(until the impact with the wall)

®x �

[
2t + 1√

3
sin(
√

3 t)
2t − 2√

3
sin(
√

3 t)

]
.

Note how the presence of the zero eigenvalue resulted in a term containing t. This means
that the cars will be traveling in the positive direction as time grows, which is what we
expect.

What we are really interested in is the second expression, the one for x2. We have
x2(t) � 2t − 2√

3
sin(
√

3 t). See Figure 3.17 for the plot of x2 versus time.
Just from the graph we can see that time of impact will be a little more than 5 seconds

from time zero. For this we have to solve the equation 10 � x2(t) � 2t − 2√
3

sin(
√

3 t). Using
a computer (or even a graphing calculator) we find that timpact ≈ 5.22 seconds.
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Figure 3.17: Position of the second car in time
(ignoring the wall).

The speed of the second car is x′2 �

2 − 2 cos(
√

3 t). At the time of impact (5.22
seconds from t � 0)we get x′2(timpact) ≈ 3.85.
The maximum speed is the maximum of
2 − 2 cos(

√
3 t), which is 4. We are traveling

at almost the maximum speed when we hit
the wall.

Suppose that Bob is a tiny person sitting
on car 2. Bob has a Martini in his hand and
would like not to spill it. Let us suppose
Bob would not spill his Martini when the
first car links up with car 2, but if car 2 hits
the wall at any speed greater than zero, Bob
will spill his drink. Suppose Bob can move
car 2 a few meters towards or away from
the wall (he cannot go all the way to the wall, nor can he get out of the way of the first car).
Is there a “safe” distance for him to be at? A distance such that the impact with the wall is
at zero speed?

The answer is yes. Looking at Figure 3.17, we note the “plateau” between t � 3 and
t � 4. There is a point where the speed is zero. To find it we solve x′2(t) � 0. This is when
cos(
√

3 t) � 1 or in other words when t � 2π√
3
, 4π√

3
, . . . and so on. We plug in the first value

to obtain x2

(
2π√

3

)
�

4π√
3
≈ 7.26. So a “safe” distance is about 7 and a quarter meters from

the wall.
Alternatively Bob could move away from the wall towards the incoming car 2, where

another safe distance is x2

(
4π√

3

)
�

8π√
3
≈ 14.51 and so on. We can use all the different t such

that x′2(t) � 0. Of course t � 0 is also a solution, corresponding to x2 � 0, but that means
standing right at the wall.



172 CHAPTER 3. SYSTEMS OF ODES

3.6.3 Forced oscillations
Finally we move to forced oscillations. Suppose that now our system is

®x′′ � A®x + ®F cos(ωt). (3.4)

That is, we are adding periodic forcing to the system in the direction of the vector ®F.
As before, this system just requires us to find one particular solution ®xp , add it to the

general solution of the associated homogeneous system ®xc , and we will have the general
solution to (3.4). Let us suppose that ω is not one of the natural frequencies of ®x′′ � A®x,
then we can guess

®xp � ®c cos(ωt),
where ®c is an unknown constant vector. Note that we do not need to use sine since there
are only second derivatives. We solve for ®c to find ®xp . This is really just the method of
undetermined coefficients for systems. Let us differentiate ®xp twice to get

®x′′p � −ω2®c cos(ωt).

Plug ®xp and ®x′′p into equation (3.4):

®x′′p︷          ︸︸          ︷
−ω2®c cos(ωt) �

A®xp︷       ︸︸       ︷
A®c cos(ωt)+®F cos(ωt).

We cancel out the cosine and rearrange the equation to obtain

(A + ω2I)®c � −®F.

So
®c � (A + ω2I)−1(−®F).

Of course this is possible only if (A + ω2I) �
(
A − (−ω2)I

)
is invertible. That matrix is

invertible if and only if −ω2 is not an eigenvalue of A. That is true if and only if ω is not a
natural frequency of the system.

We simplified things a little bit. If we wish to have the forcing term to be in the units of
force, say Newtons, then we must write

M ®x′′ � K ®x + ®G cos(ωt).

If we then write things in terms of A � M−1K, we have

®x′′ � M−1K ®x + M−1 ®G cos(ωt) or ®x′′ � A®x + ®F cos(ωt),

where ®F � M−1 ®G.
Example 3.6.3: Let us take the example in Figure 3.13 on page 167with the same parameters
as before: m1 � 2, m2 � 1, k1 � 4, and k2 � 2. Now suppose that there is a force 2 cos(3t)
acting on the second cart.
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The equation is[
2 0
0 1

]
®x′′ �

[
−4 2
2 −2

]
®x +

[
0
2

]
cos(3t) or ®x′′ �

[
−3 1
2 −2

]
®x +

[
0
2

]
cos(3t).

We solved the associated homogeneous equation before and found the complementary
solution to be

®xc �

[
1
2

] (
a1 cos(t) + b1 sin(t)

)
+

[
1
−1

] (
a2 cos(2t) + b2 sin(2t)

)
.

The natural frequencies are 1 and 2. As 3 is not a natural frequency, we try ®c cos(3t).
We invert (A + 32I): ( [−3 1

2 −2

]
+ 32I

)−1

�

[
6 1
2 7

]−1

�

[ 7
40

−1
40

−1
20

3
20

]
.

Hence,

®c � (A + ω2I)−1(−®F) �
[ 7

40
−1
40

−1
20

3
20

] [
0
−2

]
�

[ 1
20
−3
10

]
.

Combining with the general solution of the associated homogeneous problem, we get
that the general solution to ®x′′ � A®x + ®F cos(ωt) is

®x � ®xc + ®xp �

[
1
2

] (
a1 cos(t) + b1 sin(t)

)
+

[
1
−1

] (
a2 cos(2t) + b2 sin(2t)

)
+

[ 1
20
−3
10

]
cos(3t).

We then solve for the constants a1, a2, b1, and b2 using any initial conditions we are given.

Note that given force ®f , we write the equation as M ®x′′ � K ®x + ®f to get the units right.
Then we write ®x′′ � M−1K ®x + M−1 ®f . The term ®g � M−1 ®f in ®x′′ � A®x + ®g is in units of force
per unit mass.

If ω is a natural frequency of the system, resonance may occur, because we will have to
try a particular solution of the form

®xp � ®c t sin(ωt) + ®d cos(ωt).

That is assuming that the eigenvalues of the coefficient matrix are distinct. Next, note that
the amplitude of this solution grows without bound as t grows.

3.6.4 Exercises
Exercise 3.6.3: Find a particular solution to

®x′′ �
[
−3 1
2 −2

]
®x +

[
0
2

]
cos(2t).
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Exercise 3.6.4 (challenging): Let us take the example in Figure 3.13 on page 167 with the same
parameters as before: m1 � 2, k1 � 4, and k2 � 2, except for m2, which is unknown. Suppose
that there is a force cos(5t) acting on the first mass. Find an m2 such that there exists a particular
solution where the first mass does not move.

Note: This idea is called dynamic damping. In practice there will be a small amount of
damping and so any transient solution will disappear and after long enough time, the first mass will
always come to a stop.

Exercise 3.6.5: Let us take the Example 3.6.2 on page 169, but that at time of impact, car 2 is
moving to the left at the speed of 3m/s.

Find the behavior of the system after linkup.a)

Will the second car hit the wall, or will it be moving away from the wall as time goes on?b)

At what speed would the first car have to be traveling for the system to essentially stay in
place after linkup?

c)

Exercise 3.6.6: Let us take the example in Figure 3.13 on page 167 with parameters m1 � m2 � 1,
k1 � k2 � 1. Does there exist a set of initial conditions for which the first cart moves but the second
cart does not? If so, find those conditions. If not, argue why not.

Exercise 3.6.101: Find the general solution to
[ 1 0 0

0 2 0
0 0 3

]
®x ′′ �

[ −3 0 0
2 −4 0
0 6 −3

]
®x +

[ cos(2t)
0
0

]
.

Exercise 3.6.102: Suppose there are three carts of equal mass m and connected by two springs of
constant k (and no connections to walls). Set up the system and find its general solution.

Exercise 3.6.103: Suppose a cart of mass 2 kg is attached by a spring of constant k � 1 to a cart of
mass 3 kg, which is attached to the wall by a spring also of constant k � 1. Suppose that the initial
position of the first cart is 1 meter in the positive direction from the rest position, and the second
mass starts at the rest position. The masses are not moving and are let go. Find the position of the
second mass as a function of time.
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3.7 Multiple eigenvalues
Note: 1 or 1.5 lectures, §5.5 in [EP], §7.8 in [BD]

It may happen that a matrix A has some “repeated” eigenvalues. That is, the character-
istic equation det(A − λI) � 0 may have repeated roots. This is actually unlikely to happen
for a random matrix. If we take a small perturbation of A (we change the entries of A
slightly), we get a matrix with distinct eigenvalues. As any system we want to solve in
practice is an approximation to reality anyway, it is not absolutely indispensable to know
how to solve these corner cases. On the other hand, these cases do come up in applications
from time to time. Furthermore, if we have distinct but very close eigenvalues, the behavior
is similar to that of repeated eigenvalues, and so understanding that case will give us
insight into what is going on.

3.7.1 Geometric multiplicity
Take the diagonal matrix

A �

[
3 0
0 3

]
.

A has an eigenvalue 3 of multiplicity 2. We call the multiplicity of the eigenvalue in the
characteristic equation the algebraic multiplicity. In this case, there also exist 2 linearly
independent eigenvectors,

[ 1
0
]
and

[ 0
1
]
corresponding to the eigenvalue 3. This means

that the so-called geometric multiplicity of this eigenvalue is also 2.
In all the theorems where we required a matrix to have n distinct eigenvalues, we only

really needed to have n linearly independent eigenvectors. For example, ®x′ � A®x has the
general solution

®x � c1

[
1
0

]
e3t

+ c2

[
0
1

]
e3t .

Let us restate the theorem about real eigenvalues. In the following theorem we will repeat
eigenvalues according to (algebraic) multiplicity. So for the matrix A above, we would say
that it has eigenvalues 3 and 3.

Theorem 3.7.1. Suppose the n × n matrix P has n real eigenvalues (not necessarily distinct), λ1,
λ2, . . . , λn , and there are n linearly independent corresponding eigenvectors ®v1, ®v2, . . . , ®vn . Then
the general solution to ®x′ � P ®x can be written as

®x � c1 ®v1eλ1t
+ c2 ®v2eλ2t

+ · · · + cn ®vneλn t .

The geometric multiplicity of an eigenvalue of algebraic multiplicity n is equal to the
number of corresponding linearly independent eigenvectors. The geometric multiplicity is
always less than or equal to the algebraic multiplicity. The theorem handles the case when
these two multiplicities are equal for all eigenvalues. If for an eigenvalue the geometric
multiplicity is equal to the algebraic multiplicity, then we say the eigenvalue is complete.
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In other words, the hypothesis of the theorem could be stated as saying that if all the
eigenvalues of P are complete, then there are n linearly independent eigenvectors and thus
we have the given general solution.

If the geometric multiplicity of an eigenvalue is 2 or greater, then the set of linearly
independent eigenvectors is not unique up to multiples as it was before. For example, for
the diagonal matrix A �

[ 3 0
0 3

]
we could also pick eigenvectors

[ 1
1
]
and

[ 1
−1

]
, or in fact any

pair of two linearly independent vectors. The number of linearly independent eigenvectors
corresponding to λ is the number of free variables we obtain when solving A®v � λ®v. We
pick specific values for those free variables to obtain eigenvectors. If you pick different
values, you may get different eigenvectors.

3.7.2 Defective eigenvalues
If an n × n matrix has less than n linearly independent eigenvectors, it is said to be deficient.
Then there is at least one eigenvalue with an algebraic multiplicity that is higher than its
geometric multiplicity. We call this eigenvalue defective and the difference between the two
multiplicities we call the defect.

Example 3.7.1: The matrix [
3 1
0 3

]
has an eigenvalue 3 of algebraic multiplicity 2. Let us try to compute eigenvectors.[

0 1
0 0

] [
v1
v2

]
� ®0.

We must have that v2 � 0. Hence any eigenvector is of the form
[ v1

0
]
. Any two such

vectors are linearly dependent, and hence the geometric multiplicity of the eigenvalue is 1.
Therefore, the defect is 1, and we can no longer apply the eigenvalue method directly to a
system of ODEs with such a coefficient matrix.

Roughly, the key observation is that if λ is an eigenvalue of A of algebraic multiplicity
m, then we can find certain m linearly independent vectors solving (A − λI)k ®v � ®0 for
various powers k. We will call these generalized eigenvectors.

Let us continue with the example A �
[ 3 1

0 3
]
and the equation ®x′ � A®x. We found an

eigenvalue λ � 3 of (algebraic) multiplicity 2 and defect 1. We found one eigenvector
®v �

[ 1
0
]
. We have one solution

®x1 � ®ve3t
�

[
1
0

]
e3t .

We are now stuck, we get no other solutions from standard eigenvectors. But we need two
linearly independent solutions to find the general solution of the equation.
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Let us try (in the spirit of repeated roots of the characteristic equation for a single
equation) another solution of the form

®x2 � (®v2 + ®v1t) e3t .

We differentiate to get

®x′2 � ®v1e3t
+ 3(®v2 + ®v1t) e3t

� (3®v2 + ®v1) e3t
+ 3®v1te3t .

As we are assuming that ®x2 is a solution, ®x′2 must equal A®x2. So let’s compute A®x2:

A®x2 � A(®v2 + ®v1t) e3t
� A®v2e3t

+ A®v1te3t .

By looking at the coefficients of e3t and te3t we see 3®v2 + ®v1 � A®v2 and 3®v1 � A®v1. This
means that

(A − 3I)®v2 � ®v1, and (A − 3I)®v1 � ®0.

Therefore, ®x2 is a solution if these two equations are satisfied. The second equation is
satisfied if ®v1 is an eigenvector, and we found the eigenvector above, so let ®v1 �

[ 1
0
]
. So, if

we can find a ®v2 that solves (A − 3I)®v2 � ®v1, then we are done. This is just a bunch of linear
equations to solve and we are by now very good at that. Let us solve (A − 3I)®v2 � ®v1. Write[

0 1
0 0

] [
a
b

]
�

[
1
0

]
.

By inspection we see that letting a � 0 (a could be anything in fact) and b � 1 does the job.
Hence we can take ®v2 �

[ 0
1
]
. Our general solution to ®x′ � A®x is

®x � c1

[
1
0

]
e3t

+ c2

( [
0
1

]
+

[
1
0

]
t
)

e3t
�

[
c1e3t + c2te3t

c2e3t

]
.

Let us check that we really do have the solution. First x′1 � c13e3t + c2e3t +3c2te3t � 3x1+ x2.
Good. Now x′2 � 3c2e3t � 3x2. Good.

In the example, if we plug (A − 3I)®v2 � ®v1 into (A − 3I)®v1 � ®0 we find

(A − 3I)(A − 3I)®v2 � ®0, or (A − 3I)2 ®v2 � ®0.

Furthermore, if (A − 3I) ®w , ®0, then (A − 3I) ®w is an eigenvector, a multiple of ®v1. In this
2 × 2 case (A − 3I)2 is just the zero matrix (exercise). So any vector ®w solves (A − 3I)2 ®w � ®0
and we just need a ®w such that (A − 3I) ®w , ®0. Then we could use ®w for ®v2, and (A − 3I) ®w
for ®v1.

Note that the system ®x′ � A®x has a simpler solution since A is a so-called upper triangular
matrix, that is every entry below the diagonal is zero. In particular, the equation for x2
does not depend on x1. Mind you, not every defective matrix is triangular.
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Exercise 3.7.1: Solve ®x′ �
[ 3 1

0 3
]
®x by first solving for x2 and then for x1 independently. Check

that you got the same solution as we did above.

Let us describe the general algorithm. Suppose that λ is an eigenvalue of multiplicity 2,
defect 1. First find an eigenvector ®v1 of λ. That is, ®v1 solves (A − λI)®v1 � ®0. Then, find a
vector ®v2 such that

(A − λI)®v2 � ®v1.

This gives us two linearly independent solutions

®x1 � ®v1eλt ,

®x2 �
(
®v2 + ®v1t

)
eλt .

Example 3.7.2: Consider the system

®x′ �


2 −5 0
0 2 0
−1 4 1

 ®x.
Compute the eigenvalues,

0 � det(A − λI) � det ©«

2 − λ −5 0

0 2 − λ 0
−1 4 1 − λ

ª®¬ � (2 − λ)2(1 − λ).

The eigenvalues are 1 and 2, where 2 has multiplicity 2. We leave it to the reader to find
that

[ 0
0
1

]
is an eigenvector for the eigenvalue λ � 1.

Let’s focus on λ � 2. We compute eigenvectors:

®0 � (A − 2I)®v �


0 −5 0
0 0 0
−1 4 −1



v1
v2
v3

 .
The first equation says that v2 � 0, so the last equation is −v1 − v3 � 0. Let v3 be the free
variable to find that v1 � −v3. Perhaps let v3 � −1 to find an eigenvector

[ 1
0
−1

]
. Problem is

that setting v3 to anything else just gets multiples of this vector and so we have a defect of
1. Let ®v1 be the eigenvector and let’s look for a generalized eigenvector ®v2:

(A − 2I)®v2 � ®v1,

or 
0 −5 0
0 0 0
−1 4 −1



a
b
c

 �


1
0
−1

 ,
where we used a, b, c as components of ®v2 for simplicity. The first equation says −5b � 1
so b � −1/5. The second equation says nothing. The last equation is −a + 4b − c � −1, or
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a + 4/5 + c � 1, or a + c � 1/5. We let c be the free variable and we choose c � 0. We find

®v2 �

[
1/5
−1/5

0

]
.

The general solution is therefore,

®x � c1


0
0
1

 e t
+ c2


1
0
−1

 e2t
+ c3

©«


1/5
−1/5

0

 +


1
0
−1

 tª®¬ e2t .

This machinery can also be generalized to higher multiplicities and higher defects. We
will not go over this method in detail, but let us just sketch the ideas. Suppose that A has
an eigenvalue λ of multiplicity m. We find vectors such that

(A − λI)k ®v � ®0, but (A − λI)k−1 ®v , ®0.

Such vectors are called generalized eigenvectors (then ®v1 � (A − λI)k−1 ®v is an eigenvector).
For the eigenvector ®v1 there is a chain of generalized eigenvectors ®v2 through ®vk such that:

(A − λI)®v1 � ®0,
(A − λI)®v2 � ®v1,

...

(A − λI)®vk � ®vk−1.

Really once you find the ®vk such that (A − λI)k ®vk � ®0 but (A − λI)k−1 ®vk , ®0, you find the
entire chain since you can compute the rest, ®vk−1 � (A − λI)®vk , ®vk−2 � (A − λI)®vk−1, etc.
We form the linearly independent solutions

®x1 � ®v1eλt ,

®x2 � (®v2 + ®v1t) eλt ,
...

®xk �

(
®vk + ®vk−1t + ®vk−2

t2

2 + · · · + ®v2
tk−2

(k − 2)! + ®v1
tk−1

(k − 1)!

)
eλt .

Recall that k! � 1 · 2 · 3 · · · (k − 1) · k is the factorial. If you have an eigenvalue of geometric
multiplicity `, you will have to find ` such chains (some of them might be short: just the
single eigenvector equation). We go until we form m linearly independent solutions where
m is the algebraic multiplicity. We don’t quite know which specific eigenvectors go with
which chain, so start by finding ®vk first for the longest possible chain and go from there.

For example, if λ is an eigenvalue of A of algebraic multiplicity 3 and defect 2, then
solve

(A − λI)®v1 � ®0, (A − λI)®v2 � ®v1, (A − λI)®v3 � ®v2.
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That is, find ®v3 such that (A − λI)3 ®v3 � ®0, but (A − λI)2 ®v3 , ®0. Then you are done as
®v2 � (A − λI)®v3 and ®v1 � (A − λI)®v2. The 3 linearly independent solutions are

®x1 � ®v1eλt , ®x2 � (®v2 + ®v1t) eλt , ®x3 �

(
®v3 + ®v2t + ®v1

t2

2

)
eλt .

If on the other hand A has an eigenvalue λ of algebraic multiplicity 3 and defect 1, then
solve

(A − λI)®v1 � ®0, (A − λI)®v2 � ®0, (A − λI)®v3 � ®v2.

Here ®v1 and ®v2 are actual honest eigenvectors, and ®v3 is a generalized eigenvector. So
there are two chains. To solve, first find a ®v3 such that (A − λI)2 ®v3 � ®0, but (A − λI)®v3 , ®0.
Then ®v2 � (A − λI)®v3 is going to be an eigenvector. Then solve for an eigenvector ®v1 that is
linearly independent from ®v2. You get 3 linearly independent solutions

®x1 � ®v1eλt , ®x2 � ®v2eλt , ®x3 � (®v3 + ®v2t) eλt .

3.7.3 Exercises

Exercise 3.7.2: Let A �
[ 5 −3

3 −1
]
. Find the general solution of ®x′ � A®x.

Exercise 3.7.3: Let A �

[ 5 −4 4
0 3 0
−2 4 −1

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x′ � A®x.c)

Exercise 3.7.4: Let A �

[ 2 1 0
0 2 0
0 0 2

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x′ � A®x in two different ways and verify you get the same answer.c)

Exercise 3.7.5: Let A �

[ 0 1 2
−1 −2 −2
−4 4 7

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x′ � A®x.c)
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Exercise 3.7.6: Let A �

[ 0 4 −2
−1 −4 1
0 0 −2

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x′ � A®x.c)

Exercise 3.7.7: Let A �

[ 2 1 −1
−1 0 2
−1 −2 4

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x′ � A®x.c)

Exercise 3.7.8: Suppose that A is a 2 × 2 matrix with a repeated eigenvalue λ. Suppose that there
are two linearly independent eigenvectors. Show that A � λI.

Exercise 3.7.101: Let A �

[ 1 1 1
1 1 1
1 1 1

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x ′ � A®x.c)

Exercise 3.7.102: Let A �

[ 1 3 3
1 1 0
−1 1 2

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x ′ � A®x.c)

Exercise 3.7.103: Let A �

[ 2 0 0
−1 −1 9
0 −1 5

]
.

What are the eigenvalues?a)

What is/are the defect(s) of the eigenvalue(s)?b)

Find the general solution of ®x ′ � A®x.c)

Exercise 3.7.104: Let A � [ a a
b c ], where a, b, and c are unknowns. Suppose that 5 is a doubled

eigenvalue of defect 1, and suppose that
[ 1

0
]
is a corresponding eigenvector. Find A and show that

there is only one such matrix A.
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Exercise 3.7.151: Find the general solution in vector form to each of the following systems. If ICs
are given, find the particular solution. Classify the critical point for each system, then sketch the
qualitatively- different solution curves for the general solution.

a) x′1 � 9x1 + 4x2, x′2 � −4x1 + x2

b) x′1 � −5x1 + x2, x′2 � −x1 − 3x2

c) x′1 � −x1 − 2x2, x′2 � 2x1 − 5x2; x1(0) � −1, x2(0) � 3

d) x′1 � 6x1 + x2, x′2 � −x1 + 8x2; x1(0) � −2, x2(0) � 5

e) x′1 � 7x1 + x2, x′2 � −4x1 + 3x2

f) x′1 � −8x1 − x2, x′2 � 4x1 − 4x2
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3.8 Matrix exponentials
Note: 2 lectures, §5.6 in [EP], §7.7 in [BD]

3.8.1 Definition
There is another way of finding a fundamental matrix solution of a system. Consider the
constant coefficient equation

®x′ � P ®x.
If this would be just one equation (when P is a number or a 1 × 1 matrix), then the solution
would be

®x � ePt .

That doesn’t make sense if P is a larger matrix, but essentially the same computation that
led to the above works for matrices when we define ePt properly. First let us write down
the Taylor series for eat for some number a:

eat
� 1 + at +

(at)2
2 +

(at)3
6 +

(at)4
24 + · · · �

∞∑
k�0

(at)k
k! .

Recall k! � 1 · 2 · 3 · · · k is the factorial, and 0! � 1. We differentiate this series term by term

d
dt

(
eat )

� 0 + a + a2t +
a3t2

2 +
a4t3

6 + · · · � a
(
1 + at +

(at)2
2 +

(at)3
6 + · · ·

)
� aeat .

Maybe we can try the same trick with matrices. For an n × n matrix A we define the matrix
exponential as

eA def
� I + A +

1
2A2

+
1
6A3

+ · · · + 1
k!Ak

+ · · ·

Let us not worry about convergence. The series really does always converge. We usually
write Pt as tP by convention when P is a matrix. With this small change and by the exact
same calculation as above we have that

d
dt

(
e tP )

� Pe tP .

Now P and hence e tP is an n × n matrix. What we are looking for is a vector. In the 1 × 1
case we would at this point multiply by an arbitrary constant to get the general solution. In
the matrix case we multiply by a column vector ®c.
Theorem 3.8.1. Let P be an n × n matrix. Then the general solution to ®x′ � P ®x is

®x � e tP®c ,

where ®c is an arbitrary constant vector. In fact, ®x(0) � ®c.
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Let us check:
d
dt
®x �

d
dt

(
e tP®c

)
� Pe tP®c � P ®x.

Hence e tP is a fundamental matrix solution of the homogeneous system. So if we can
compute the matrix exponential, we have another method of solving constant coefficient
homogeneous systems. It also makes it easy to solve for initial conditions. To solve ®x′ � A®x,
®x(0) � ®b, we take the solution

®x � e tA®b.
This equation follows because e0A � I, so ®x(0) � e0A®b � ®b.

We mention a drawback of matrix exponentials. In general eA+B , eAeB. The trouble is
that matrices do not commute, that is, in general AB , BA. If you try to prove eA+B , eAeB

using the Taylor series, you will see why the lack of commutativity becomes a problem.
However, it is still true that if AB � BA, that is, if A and B commute, then eA+B � eAeB.
We will find this fact useful. Let us restate this as a theorem to make a point.
Theorem 3.8.2. If AB � BA, then eA+B � eAeB. Otherwise, eA+B , eAeB in general.

3.8.2 Simple cases
In some instances it may work to just plug into the series definition. Suppose the matrix is
diagonal. For example, D �

[
a 0
0 b

]
. Then

Dk
�

[
ak 0
0 bk

]
,

and

eD
� I + D +

1
2D2

+
1
6D3

+ · · ·

�

[
1 0
0 1

]
+

[
a 0
0 b

]
+

1
2

[
a2 0
0 b2

]
+

1
6

[
a3 0
0 b3

]
+ · · · �

[
ea 0
0 eb

]
.

So by this rationale

e I
�

[
e 0
0 e

]
and eaI

�

[
ea 0
0 ea

]
.

This makes exponentials of certain other matrices easy to compute. For example, the
matrix A �

[ 5 4
−1 1

]
can be written as 3I + B where B �

[ 2 4
−1 −2

]
. Notice that B2 �

[ 0 0
0 0

]
. So

Bk � 0 for all k ≥ 2. Therefore, eB � I + B. Suppose we actually want to compute e tA. The
matrices 3tI and tB commute (exercise: check this) and e tB � I + tB, since (tB)2 � t2B2 � 0.
We write

e tA
� e3tI+tB

� e3tI e tB
�

[
e3t 0
0 e3t

]
(I + tB) �

�

[
e3t 0
0 e3t

] [
1 + 2t 4t
−t 1 − 2t

]
�

[
(1 + 2t) e3t 4te3t

−te3t (1 − 2t) e3t

]
.
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We found a fundamental matrix solution for the system ®x′ � A®x. Note that this matrix has
a repeated eigenvalue with a defect; there is only one eigenvector for the eigenvalue 3. So
we found a perhaps easier way to handle this case. In fact, if a matrix A is 2 × 2 and has an
eigenvalue λ of multiplicity 2, then either A � λI, or A � λI + B where B2 � 0. This is a
good exercise.

Exercise 3.8.1: Suppose that A is 2 × 2 and λ is the only eigenvalue. Show that (A − λI)2 � 0,
and therefore that we can write A � λI + B, where B2 � 0 (and possibly B � 0). Hint: First write
down what does it mean for the eigenvalue to be of multiplicity 2. You will get an equation for the
entries. Now compute the square of B.

Matrices B such that Bk � 0 for some k are called nilpotent. Computation of the matrix
exponential for nilpotent matrices is easy by just writing down the first k terms of the
Taylor series.

3.8.3 General matrices
In general, the exponential is not as easy to compute as above. We usually cannot write a
matrix as a sum of commuting matrices where the exponential is simple for each one. But
fear not, it is still not too difficult provided we can find enough eigenvectors. First we need
the following interesting result about matrix exponentials. For two square matrices A and
B, with B invertible, we have

eBAB−1
� BeAB−1.

This can be seen by writing down the Taylor series. First

(BAB−1)2 � BAB−1BAB−1
� BAIAB−1

� BA2B−1.

And by the same reasoning (BAB−1)k � BAkB−1. Now write the Taylor series for eBAB−1 :

eBAB−1
� I + BAB−1

+
1
2(BAB−1)2 + 1

6(BAB−1)3 + · · ·

� BB−1
+ BAB−1

+
1
2BA2B−1

+
1
6BA3B−1

+ · · ·

� B
(
I + A +

1
2A2

+
1
6A3

+ · · ·
)
B−1

� BeAB−1.

Given a square matrix A, we can usually write A � EDE−1, where D is diagonal and
E invertible. This procedure is called diagonalization. If we can do that, the computation
of the exponential becomes easy as eD is just taking the exponential of the entries on the
diagonal. Adding t into the mix, we can then compute the exponential

e tA
� Ee tDE−1.
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To diagonalize A we need n linearly independent eigenvectors of A. Otherwise, this
method of computing the exponential does not work and we need to be trickier, but
we will not get into such details. Let E be the matrix with the eigenvectors as columns.
Let λ1, λ2, . . . , λn be the eigenvalues and let ®v1, ®v2, . . . , ®vn be the eigenvectors, then
E � [ ®v1 ®v2 · · · ®vn ]. Make a diagonal matrix D with the eigenvalues on the diagonal:

D �


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .
We compute

AE � A[ ®v1 ®v2 · · · ®vn ]
� [A®v1 A®v2 · · · A®vn ]
� [ λ1 ®v1 λ2 ®v2 · · · λn ®vn ]
� [ ®v1 ®v2 · · · ®vn ]D
� ED.

The columns of E are linearly independent as these are linearly independent eigenvectors
of A. Hence E is invertible. Since AE � ED, we multiply on the right by E−1 and we get

A � EDE−1.

This means that eA � EeDE−1. Multiplying the matrix by t we obtain

e tA
� Ee tDE−1

� E


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλn t

 E−1. (3.5)

The formula (3.5), therefore, gives the formula for computing a fundamentalmatrix solution
e tA for the system ®x′ � A®x, in the case where we have n linearly independent eigenvectors.

This computation still works when the eigenvalues and eigenvectors are complex,
though then you have to compute with complex numbers. It is clear from the definition
that if A is real, then e tA is real. So you will only need complex numbers in the computation
and not for the result. You may need to apply Euler’s formula to simplify the result. If
simplified properly, the final matrix will not have any complex numbers in it.

Example 3.8.1: Compute a fundamental matrix solution using the matrix exponential for
the system [

x
y

] ′
�

[
1 2
2 1

] [
x
y

]
.
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Then compute the particular solution for the initial conditions x(0) � 4 and y(0) � 2.
Let A be the coefficient matrix

[ 1 2
2 1

]
. We first compute (exercise) that the eigenvalues

are 3 and −1 and corresponding eigenvectors are
[ 1

1
]
and

[ 1
−1

]
. Hence the diagonalization

of A is [
1 2
2 1

]
︸ ︷︷ ︸

A

�

[
1 1
1 −1

]
︸   ︷︷   ︸

E

[
3 0
0 −1

]
︸   ︷︷   ︸

D

[
1 1
1 −1

]−1

︸      ︷︷      ︸
E−1

.

We write

e tA
� Ee tDE−1

�

[
1 1
1 −1

] [
e3t 0
0 e−t

] [
1 1
1 −1

]−1

�

[
1 1
1 −1

] [
e3t 0
0 e−t

]
−1
2

[
−1 −1
−1 1

]
�
−1
2

[
e3t e−t

e3t −e−t

] [
−1 −1
−1 1

]
�
−1
2

[
−e3t − e−t −e3t + e−t

−e3t + e−t −e3t − e−t

]
�

[
e3t+e−t

2
e3t−e−t

2
e3t−e−t

2
e3t+e−t

2

]
.

The initial conditions are x(0) � 4 and y(0) � 2. Hence, by the property that e0A � I
we find that the particular solution we are looking for is e tA®b where ®b is

[ 4
2
]
. Then the

particular solution we are looking for is[
x
y

]
�

[
e3t+e−t

2
e3t−e−t

2
e3t−e−t

2
e3t+e−t

2

] [
4
2

]
�

[
2e3t + 2e−t + e3t − e−t

2e3t − 2e−t + e3t + e−t

]
�

[
3e3t + e−t

3e3t − e−t

]
.

3.8.4 Fundamental matrix solutions

We note that if you can compute a fundamental matrix solution in a different way, you can
use this to find the matrix exponential e tA. A fundamental matrix solution of a system of
ODEs is not unique. The exponential is the fundamental matrix solution with the property
that for t � 0 we get the identity matrix. So we must find the right fundamental matrix
solution. Let X be any fundamental matrix solution to ®x′ � A®x. Then we claim

e tA
� X(t) [X(0)]−1 .

Clearly, if we plug t � 0 into X(t) [X(0)]−1 we get the identity. We can multiply a
fundamental matrix solution on the right by any constant invertible matrix and we still
get a fundamental matrix solution. All we are doing is changing what are the arbitrary
constants in the general solution ®x(t) � X(t) ®c.



188 CHAPTER 3. SYSTEMS OF ODES

3.8.5 Approximations
If you think about it, the computation of any fundamental matrix solution X using the
eigenvalue method is just as difficult as the computation of e tA. So perhaps we did not
gain much by this new tool. However, the Taylor series expansion actually gives us a way
to approximate solutions, which the eigenvalue method did not.

The simplest thing we can do is to just compute the series up to a certain number of
terms. There are better ways to approximate the exponential∗. In many cases however, few
terms of the Taylor series give a reasonable approximation for the exponential and may
suffice for the application. For example, let us compute the first 4 terms of the series for the
matrix A �

[ 1 2
2 1

]
.

e tA ≈ I + tA +
t2

2 A2
+

t3

6 A3
� I + t

[
1 2
2 1

]
+ t2

[ 5
2 2
2 5

2

]
+ t3

[ 13
6

7
3

7
3

13
6

]
�

�

[
1 + t + 5

2 t2 + 13
6 t3 2 t + 2 t2 + 7

3 t3

2 t + 2 t2 + 7
3 t3 1 + t + 5

2 t2 + 13
6 t3

]
.

Just like the scalar version of the Taylor series approximation, the approximation will be
better for small t and worse for larger t. For larger t, we will generally have to compute
more terms. Let us see how we stack up against the real solution with t � 0.1. The
approximate solution is approximately (rounded to 8 decimal places)

e0.1 A ≈ I + 0.1 A +
0.12

2 A2
+

0.13

6 A3
�

[
1.12716667 0.22233333
0.22233333 1.12716667

]
.

And plugging t � 0.1 into the real solution (rounded to 8 decimal places) we get

e0.1 A
�

[
1.12734811 0.22251069
0.22251069 1.12734811

]
.

Not bad at all! Although if we take the same approximation for t � 1 we get

I + A +
1
2A2

+
1
6A3

�

[
6.66666667 6.33333333
6.33333333 6.66666667

]
,

while the real value is (again rounded to 8 decimal places)

eA
�

[
10.22670818 9.85882874
9.85882874 10.22670818

]
.

So the approximation is not very good once we get up to t � 1. To get a good approximation
at t � 1 (say up to 2 decimal places) we would need to go up to the 11th power (exercise).

∗C. Moler and C.F. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five
Years Later, SIAM Review 45 (1), 2003, 3–49
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3.8.6 Exercises
Exercise 3.8.2: Using the matrix exponential, find a fundamental matrix solution for the system
x′ � 3x + y, y′ � x + 3y.

Exercise 3.8.3: Find e tA for the matrix A �
[ 2 3

0 2
]
.

Exercise 3.8.4: Find a fundamental matrix solution for the system x′1 � 7x1 + 4x2 + 12x3,
x′2 � x1 + 2x2 + x3, x′3 � −3x1 − 2x2 − 5x3. Then find the solution that satisfies ®x(0) �

[ 0
1
−2

]
.

Exercise 3.8.5: Compute the matrix exponential eA for A �
[ 1 2

0 1
]
.

Exercise 3.8.6 (challenging): SupposeAB � BA. Show that under this assumption, eA+B � eAeB.

Exercise 3.8.7: Use Exercise 3.8.6 to show that (eA)−1
� e−A. In particular this means that eA is

invertible even if A is not.

Exercise 3.8.8: Let A be a 2 × 2 matrix with eigenvalues −1, 1, and corresponding eigenvectors[ 1
1
]
,
[ 0

1
]
.

Find matrix A with these properties.a)

Find a fundamental matrix solution to ®x′ � A®x.b)

Solve the system in with initial conditions ®x(0) �
[ 2

3
]
.c)

Exercise 3.8.9: Suppose that A is an n × n matrix with a repeated eigenvalue λ of multiplicity n.
Suppose that there are n linearly independent eigenvectors. Show that the matrix is diagonal, in
particular A � λI. Hint: Use diagonalization and the fact that the identity matrix commutes with
every other matrix.

Exercise 3.8.10: Let A �
[ −1 −1

1 −3
]
.

Find e tA.a) Solve ®x′ � A®x, ®x(0) �
[ 1
−2

]
.b)

Exercise 3.8.11: Let A �
[ 1 2

3 4
]
. Approximate e tA by expanding the power series up to the third

order.

Exercise 3.8.12: For any positive integer n, find a formula (or a recipe) for An for the following
matrices:[

3 0
0 9

]
a)

[
5 2
4 7

]
b)

[
0 1
0 0

]
c)

[
2 1
0 2

]
d)

Exercise 3.8.101: Compute e tA where A �
[ 1 −2
−2 1

]
.

Exercise 3.8.102: Compute e tA where A �

[ 1 −3 2
−2 1 2
−1 −3 4

]
.
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Exercise 3.8.103:

Compute e tA where A �
[ 3 −1

1 1
]
.a) Solve ®x ′ � A®x for ®x(0) �

[ 1
2
]
.b)

Exercise 3.8.104: Compute the first 3 terms (up to the second degree) of the Taylor expansion of
e tA where A �

[ 2 3
2 2

]
(Write as a single matrix). Then use it to approximate e0.1A.

Exercise 3.8.105: For any positive integer n, find a formula (or a recipe) for An for the following
matrices:[

7 4
−5 −2

]
a)

[
−3 4
−6 −7

]
b)

[
0 1
1 0

]
c)
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3.9 Nonhomogeneous systems
Note: 3 lectures (may have to skip a little), somewhat different from §5.7 in [EP], §7.9 in [BD]

3.9.1 First order constant coefficient

Integrating factor

Let us first focus on the nonhomogeneous first order equation

®x′(t) � A®x(t) + ®f (t),

where A is a constant matrix. The first method we look at is the integrating factor method.
For simplicity we rewrite the equation as

®x′(t) + P ®x(t) � ®f (t),

where P � −A. We multiply both sides of the equation by e tP (being mindful that we are
dealing with matrices that may not commute) to obtain

e tP ®x′(t) + e tPP ®x(t) � e tP ®f (t).

We notice that Pe tP � e tPP. This fact follows by writing down the series definition of e tP :

Pe tP
� P

(
I + tP +

1
2(tP)2 + · · ·

)
� P + tP2

+
1
2 t2P3

+ · · · �

�

(
I + tP +

1
2(tP)2 + · · ·

)
P � e tPP.

So d
dt

(
e tP ) � Pe tP � e tPP. The product rule says

d
dt

(
e tP ®x(t)

)
� e tP ®x′(t) + e tPP ®x(t),

and so
d
dt

(
e tP ®x(t)

)
� e tP ®f (t).

We can now integrate. That is, we integrate each component of the vector separately

e tP ®x(t) �
∫

e tP ®f (t) dt + ®c.

Recall from Exercise 3.8.7 that (e tP)−1
� e−tP . Therefore, we obtain

®x(t) � e−tP
∫

e tP ®f (t) dt + e−tP®c.



192 CHAPTER 3. SYSTEMS OF ODES

Perhaps it is better understood as a definite integral. In this case it will be easy to also
solve for the initial conditions. Consider the equation with initial conditions

®x′(t) + P ®x(t) � ®f (t), ®x(0) � ®b.

The solution can then be written as

®x(t) � e−tP
∫ t

0
e sP ®f (s) ds + e−tP®b. (3.6)

Again, the integration means that each component of the vector e sP ®f (s) is integrated
separately. It is not hard to see that (3.6) really does satisfy the initial condition ®x(0) � ®b.

®x(0) � e−0P
∫ 0

0
e sP ®f (s) ds + e−0P®b � I®b � ®b.

Example 3.9.1: Suppose that we have the system

x′1 + 5x1 − 3x2 � e t ,

x′2 + 3x1 − x2 � 0,

with initial conditions x1(0) � 1, x2(0) � 0.
Let us write the system as

®x′ +
[
5 −3
3 −1

]
®x �

[
e t

0

]
, ®x(0) �

[
1
0

]
.

The matrix P �
[ 5 −3

3 −1
]
has a doubled eigenvalue 2 with defect 1, and we leave it as an

exercise to double check we computed e tP correctly. Once we have e tP , we find e−tP , simply
by negating t.

e tP
�

[
(1 + 3t) e2t −3te2t

3te2t (1 − 3t) e2t

]
, e−tP

�

[
(1 − 3t) e−2t 3te−2t

−3te−2t (1 + 3t) e−2t

]
.

Instead of computing the whole formula at once, let us do it in stages. First∫ t

0
e sP ®f (s) ds �

∫ t

0

[
(1 + 3s) e2s −3se2s

3se2s (1 − 3s) e2s

] [
e s

0

]
ds

�

∫ t

0

[
(1 + 3s) e3s

3se3s

]
ds

�

[∫ t
0 (1 + 3s) e3s ds∫ t

0 3se3s ds

]
�

[
te3t

(3t−1) e3t+1
3

]
(used integration by parts).



3.9. NONHOMOGENEOUS SYSTEMS 193

Then

®x(t) � e−tP
∫ t

0
e sP ®f (s) ds + e−tP®b

�

[
(1 − 3t) e−2t 3te−2t

−3te−2t (1 + 3t) e−2t

] [
te3t

(3t−1) e3t+1
3

]
+

[
(1 − 3t) e−2t 3te−2t

−3te−2t (1 + 3t) e−2t

] [
1
0

]
�

[
te−2t

− e t

3 +
( 1

3 + t
)

e−2t

]
+

[
(1 − 3t) e−2t

−3te−2t

]
�

[
(1 − 2t) e−2t

− e t

3 +
( 1

3 − 2t
)

e−2t

]
.

Phew!
Let us check that this really works.

x′1 + 5x1 − 3x2 � (4te−2t − 4e−2t) + 5(1 − 2t) e−2t
+ e t − (1 − 6t) e−2t

� e t .

Similarly (exercise) x′2 + 3x1 − x2 � 0. The initial conditions are also satisfied (exercise).
For systems, the integrating factor method only works if P does not depend on t, that

is, P is constant. The problem is that in general

d
dt

[
e
∫

P(t) dt
]
, P(t) e

∫
P(t) dt ,

because matrix multiplication is not commutative.

Eigenvector decomposition

For the next method, note that eigenvectors of a matrix give the directions in which the
matrix acts like a scalar. If we solve the system along these directions, the computations
are simpler as we treat the matrix as a scalar. We then put those solutions together to get
the general solution for the system.

Take the equation
®x′(t) � A®x(t) + ®f (t). (3.7)

Assume A has n linearly independent eigenvectors ®v1, ®v2, . . . , ®vn . Write

®x(t) � ®v1 ξ1(t) + ®v2 ξ2(t) + · · · + ®vn ξn(t). (3.8)

That is, we wish to write our solution as a linear combination of eigenvectors of A. If we
solve for the scalar functions ξ1 through ξn , we have our solution ®x. Let us decompose ®f
in terms of the eigenvectors as well. We wish to write

®f (t) � ®v1 g1(t) + ®v2 g2(t) + · · · + ®vn gn(t). (3.9)

That is, we wish to find g1 through gn that satisfy (3.9). Since all the eigenvectors are
independent, the matrix E � [ ®v1 ®v2 · · · ®vn ] is invertible. Write the equation (3.9) as
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®f � E ®g, where the components of ®g are the functions g1 through gn . Then ®g � E−1 ®f .
Hence it is always possible to find ®g when there are n linearly independent eigenvectors.

We plug (3.8) into (3.7), and note that A®vk � λk ®vk :

®x′︷                          ︸︸                          ︷
®v1ξ
′
1 + ®v2ξ

′
2 + · · · + ®vnξ

′
n �

A®x︷                                ︸︸                                ︷
A

(
®v1ξ1 + ®v2ξ2 + · · · + ®vnξn

)
+

®f︷                          ︸︸                          ︷
®v1 g1 + ®v2 g2 + · · · + ®vn gn

� A®v1ξ1 + A®v2ξ2 + · · · + A®vnξn + ®v1 g1 + ®v2 g2 + · · · + ®vn gn

� ®v1λ1ξ1 + ®v2λ2ξ2 + · · · + ®vnλnξn + ®v1 g1 + ®v2 g2 + · · · + ®vn gn

� ®v1(λ1ξ1 + g1) + ®v2(λ2ξ2 + g2) + · · · + ®vn(λnξn + gn).

If we identify the coefficients of the vectors ®v1 through ®vn , we get the equations

ξ′1 � λ1ξ1 + g1,

ξ′2 � λ2ξ2 + g2,
...

ξ′n � λnξn + gn .

Each one of these equations is independent of the others. They are all linear first order
equations and can easily be solved by the standard integrating factor method for single
equations. That is, for the kth equation we write

ξ′k(t) − λkξk(t) � gk(t).

We use the integrating factor e−λk t to find that

d
dt

[
ξk(t) e−λk t

]
� e−λk t gk(t).

We integrate and solve for ξk to get

ξk(t) � eλk t
∫

e−λk t gk(t) dt + Ck eλk t .

If we are looking for just any particular solution, we can set Ck to be zero. If we leave these
constants in, we get the general solution. Write ®x(t) � ®v1ξ1(t)+ ®v2ξ2(t)+ · · ·+ ®vnξn(t), and
we are done.

As always, it is perhaps better to write these integrals as definite integrals. Suppose that
we have an initial condition ®x(0) � ®b. Take ®a � E−1®b to find ®b � ®v1a1 + ®v2a2 + · · · + ®vn an ,
just like before. Then if we write

ξk(t) � eλk t
∫ t

0
e−λk s gk(s) ds + ak eλk t ,
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we get the particular solution ®x(t) � ®v1ξ1(t) + ®v2ξ2(t) + · · · + ®vnξn(t) satisfying ®x(0) � ®b,
because ξk(0) � ak .

Let us remark that the technique we just outlined is the eigenvalue method applied to
nonhomogeneous systems. If a system is homogeneous, that is, if ®f � ®0, then the equations
we get are ξ′k � λkξk , and so ξk � Ck eλk t are the solutions and that’s precisely what we got
in § 3.4.

Example 3.9.2: Let A �
[ 1 3

3 1
]
. Solve ®x′ � A®x + ®f where ®f (t) �

[
2e t

2t

]
for ®x(0) �

[
3/16
−5/16

]
.

The eigenvalues of A are −2 and 4 and corresponding eigenvectors are
[ 1
−1

]
and

[ 1
1
]

respectively. This calculation is left as an exercise. We write down the matrix E of the
eigenvectors and compute its inverse (using the inverse formula for 2 × 2 matrices)

E �

[
1 1
−1 1

]
, E−1

�
1
2

[
1 −1
1 1

]
.

We are looking for a solution of the form ®x �
[ 1
−1

]
ξ1 +

[ 1
1
]
ξ2. We first need to write ®f

in terms of the eigenvectors. That is we wish to write ®f �
[

2e t

2t

]
�

[ 1
−1

]
g1 +

[ 1
1
]

g2. Thus[
g1
g2

]
� E−1

[
2e t

2t

]
�

1
2

[
1 −1
1 1

] [
2e t

2t

]
�

[
e t − t
e t + t

]
.

So g1 � e t − t and g2 � e t + t.
We further need to write ®x(0) in terms of the eigenvectors. That is, we wish to write

®x(0) �
[

3/16
−5/16

]
�

[ 1
−1

]
a1 +

[ 1
1
]

a2. Hence[
a1

a2

]
� E−1

[
3/16

−5/16

]
�

[
1/4
−1/16

]
.

So a1 � 1/4 and a2 � −1/16. We plug our ®x into the equation and get

®x′︷               ︸︸               ︷[
1
−1

]
ξ′1 +

[
1
1

]
ξ′2 �

A®x︷                    ︸︸                    ︷
A

[
1
−1

]
ξ1 + A

[
1
1

]
ξ2 +

®f︷               ︸︸               ︷[
1
−1

]
g1 +

[
1
1

]
g2

�

[
1
−1

]
(−2ξ1) +

[
1
1

]
4ξ2 +

[
1
−1

]
(e t − t) +

[
1
1

]
(e t

+ t).

We get the two equations

ξ′1 � −2ξ1 + e t − t , where ξ1(0) � a1 �
1
4 ,

ξ′2 � 4ξ2 + e t
+ t , where ξ2(0) � a2 �

−1
16 .
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We solve with integrating factor. Computation of the integral is left as an exercise to the
student. You will need integration by parts.

ξ1 � e−2t
∫

e2t (e t − t) dt + C1e−2t
�

e t

3 −
t
2 +

1
4 + C1e−2t .

C1 is the constant of integration. As ξ1(0) � 1/4, then 1/4 � 1/3 + 1/4 + C1 and hence C1 � −1/3.
Similarly

ξ2 � e4t
∫

e−4t (e t
+ t) dt + C2e4t

� − e t

3 −
t
4 −

1
16 + C2e4t .

As ξ2(0) � −1/16 we have −1/16 � −1/3 − 1/16 + C2 and hence C2 � 1/3. The solution is

®x(t) �
[

1
−1

] (
e t − e−2t

3 +
1 − 2t

4

)
︸                    ︷︷                    ︸

ξ1

+

[
1
1

] (
e4t − e t

3 − 4t + 1
16

)
︸                  ︷︷                  ︸

ξ2

�

[
e4t−e−2t

3 +
3−12t

16
e−2t+e4t−2e t

3 +
4t−5

16

]
.

That is, x1 �
e4t−e−2t

3 +
3−12t

16 and x2 �
e−2t+e4t−2e t

3 +
4t−5

16 .

Exercise 3.9.1: Check that x1 and x2 solve the problem. Check both that they satisfy the differential
equation and that they satisfy the initial conditions.

Undetermined coefficients

We also have the method of undetermined coefficients for systems. The only difference
here is that we have to use unknown vectors rather than just numbers. Same caveats apply
to undetermined coefficients for systems as for single equations. This method does not
always work. Furthermore, if the right-hand side is complicated, we have to solve for lots
of variables. Each element of an unknown vector is an unknown number. So in system of
3 equations if we have say 4 unknown vectors (this would not be uncommon), then we
already have 12 unknown numbers that we need to solve for. The method can turn into
a lot of tedious work if done by hand. As this method is essentially the same as it is for
single equations, let us just do an example.

Example 3.9.3: Let A �
[ −1 0
−2 1

]
. Find a particular solution of ®x′ � A®x + ®f where ®f (t) �

[
e t

t

]
.

Note that we can solve this system in an easier way (can you see how?), but for the
purposes of the example, let us use the eigenvalue method plus undetermined coefficients.

The eigenvalues of A are −1 and 1 and corresponding eigenvectors are
[ 1

1
]
and

[ 0
1
]

respectively. Hence our complementary solution is

®xc � α1

[
1
1

]
e−t

+ α2

[
0
1

]
e t ,

for some arbitrary constants α1 and α2.
We would want to guess a particular solution of

®x � ®ae t
+ ®bt + ®c.
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However, something of the form ®ae t appears in the complementary solution. Because we
do not yet know if the vector ®a is a multiple of

[ 0
1
]
, we do not know if a conflict arises. It is

possible that there is no conflict, but to be safe we should also try ®bte t . Here we find the
crux of the difference between a single equation and systems. We try both terms ®ae t and
®bte t in the solution, not just the term ®bte t . Therefore, we try

®x � ®ae t
+ ®bte t

+ ®ct + ®d.

Thus we have 8 unknowns. We write ®a �

[
a1
a2

]
, ®b �

[
b1
b2

]
, ®c �

[
c1
c2

]
, and ®d �

[
d1
d2

]
. We plug

®x into the equation. First let us compute ®x′.

®x′ �
(
®a + ®b

)
e t

+ ®bte t
+ ®c �

[
a1 + b1
a2 + b2

]
e t

+

[
b1
b2

]
te t

+

[
c1
c2

]
.

Now ®x′ must equal A®x + ®f , which is

A®x + ®f � A®ae t
+ A®bte t

+ A®ct + A ®d + ®f

�

[
−a1

−2a1 + a2

]
e t

+

[
−b1

−2b1 + b2

]
te t

+

[
−c1

−2c1 + c2

]
t +

[
−d1

−2d1 + d2

]
+

[
1
0

]
e t

+

[
0
1

]
t

�

[
−a1 + 1
−2a1 + a2

]
e t

+

[
−b1

−2b1 + b2

]
te t

+

[
−c1

−2c1 + c2 + 1

]
t +

[
−d1

−2d1 + d2

]
.

We identify the coefficients of e t , te t , t and any constant vectors in ®x′ and in A®x + ®f to find
the equations:

a1 + b1 � −a1 + 1, 0 � −c1,

a2 + b2 � −2a1 + a2, 0 � −2c1 + c2 + 1,
b1 � −b1, c1 � −d1,

b2 � −2b1 + b2, c2 � −2d1 + d2.

We could write the 8 × 9 augmented matrix and start row reduction, but it is easier to just
solve the equations in an ad hoc manner. Immediately we see that b1 � 0, c1 � 0, d1 � 0.
Plugging these back in, we get that c2 � −1 and d2 � −1. The remaining equations that tell
us something are

a1 � −a1 + 1,
a2 + b2 � −2a1 + a2.

So a1 � 1/2 and b2 � −1. Finally, a2 can be arbitrary and still satisfy the equations. We are
looking for just a single solution so presumably the simplest one is when a2 � 0. Therefore,

®x � ®ae t
+ ®bte t

+ ®ct + ®d �

[
1/2
0

]
e t

+

[
0
−1

]
te t

+

[
0
−1

]
t +

[
0
−1

]
�

[ 1
2 e t

−te t − t − 1

]
.

That is, x1 �
1
2 e t , x2 � −te t − t − 1. We would add this to the complementary solution to

get the general solution of the problem. Notice that both ®ae t and ®bte t were really needed.
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Exercise 3.9.2: Check that x1 and x2 solve the problem. Try setting a2 � 1 and check we get a
solution as well. What is the difference between the two solutions we obtained (one with a2 � 0 and
one with a2 � 1)?

As you can see, other than the handling of conflicts, undetermined coefficients works
exactly the same as it did for single equations. However, the computations can get out of
hand pretty quickly for systems. The equation we considered was pretty simple.

3.9.2 First order variable coefficient

Variation of parameters

Just as for a single equation, there is the method of variation of parameters. For constant
coefficient systems, it is essentially the same thing as the integrating factor method we
discussed earlier. However, this method works for any linear system, even if it is not
constant coefficient, provided we somehow solve the associated homogeneous problem.

Suppose we have the equation

®x′ � A(t) ®x + ®f (t). (3.10)

Further, suppose we solved the associated homogeneous equation ®x′ � A(t) ®x and found a
fundamental matrix solution X(t). The general solution to the associated homogeneous
equation is X(t)®c for a constant vector ®c. Just like for variation of parameters for single
equation we try the solution to the nonhomogeneous equation of the form

®xp � X(t) ®u(t),

where ®u(t) is a vector-valued function instead of a constant. We substitute ®xp into (3.10) to
obtain

X′(t) ®u(t) + X(t) ®u′(t)︸                      ︷︷                      ︸
®x′p(t)

� A(t)X(t) ®u(t)︸           ︷︷           ︸
A(t)®xp(t)

+ ®f (t).

ButX(t) is a fundamentalmatrix solution to thehomogeneousproblem. SoX′(t) � A(t)X(t),
and

���
���X′(t) ®u(t) + X(t) ®u′(t) �����

��X′(t) ®u(t) + ®f (t).

Hence X(t) ®u′(t) � ®f (t). If we compute [X(t)]−1, then ®u′(t) � [X(t)]−1 ®f (t). We integrate to
obtain ®u and we have the particular solution ®xp � X(t) ®u(t). Let us write this as a formula

®xp � X(t)
∫
[X(t)]−1 ®f (t) dt .

If A is constant and X(t) � e tA, then [X(t)]−1
� e−tA. We get a solution ®xp �

e tA
∫

e−tA ®f (t) dt, which is precisely what we got using the integrating factor method.
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Example 3.9.4: Find a particular solution to

®x′ � 1
t2 + 1

[
t −1
1 t

]
®x +

[
t
1

]
(t2

+ 1). (3.11)

Here A �
1

t2+1
[

t −1
1 t

]
is most definitely not constant. Perhaps by a lucky guess, we find

that X �
[ 1 −t

t 1
]
solves X′(t) � A(t)X(t). Once we know the complementary solution we

can easily find a solution to (3.11). First we find

[X(t)]−1
�

1
t2 + 1

[
1 t
−t 1

]
.

Next we know a particular solution to (3.11) is

®xp � X(t)
∫
[X(t)]−1 ®f (t) dt

�

[
1 −t
t 1

] ∫
1

t2 + 1

[
1 t
−t 1

] [
t
1

]
(t2

+ 1) dt

�

[
1 −t
t 1

] ∫ [
2t

−t2 + 1

]
dt

�

[
1 −t
t 1

] [
t2

−1
3 t3 + t

]
�

[ 1
3 t4

2
3 t3 + t

]
.

Adding the complementary solution we find the general solution to (3.11):

®x �

[
1 −t
t 1

] [
c1
c2

]
+

[ 1
3 t4

2
3 t3 + t

]
�

[
c1 − c2t + 1

3 t4

c2 + (c1 + 1) t + 2
3 t3

]
.

Exercise 3.9.3: Check that x1 �
1
3 t4 and x2 �

2
3 t3 + t really solve (3.11).

In the variation of parameters, just like in the integrating factor method we can obtain
the general solution by adding in constants of integration. That is, we will add X(t)®c for a
vector of arbitrary constants. But that is precisely the complementary solution.

3.9.3 Second order constant coefficients

Undetermined coefficients

We have already seen a simple example of the method of undetermined coefficients for
second order systems in § 3.6. This method is essentially the same as undetermined
coefficients for first order systems. There are some simplifications that we can make, as we
did in § 3.6. Let the equation be

®x′′ � A®x + ®F(t),
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where A is a constant matrix. If ®F(t) is of the form ®F0 cos(ωt), then as two derivatives of
cosine is again cosine we can try a solution of the form

®xp � ®c cos(ωt),

and we do not need to introduce sines.
If the ®F is a sum of cosines, note that we still have the superposition principle. If

®F(t) � ®F0 cos(ω0t) + ®F1 cos(ω1t), then we would try ®a cos(ω0t) for the problem ®x′′ �
A®x+ ®F0 cos(ω0t), and we would try ®b cos(ω1t) for the problem ®x′′ � A®x+ ®F1 cos(ω1t). Then
we sum the solutions.

However, if there is duplication with the complementary solution, or the equation is of
the form ®x′′ � A®x′ + B ®x + ®F(t), then we need to do the same thing as we do for first order
systems.

You will never go wrong with putting in more terms than needed into your guess. You
will find that the extra coefficients will turn out to be zero. But it is useful to save some
time and effort.

Eigenvector decomposition

If we have the system
®x′′ � A®x + ®f (t),

we can do eigenvector decomposition, just like for first order systems.
Let λ1, λ2, . . . , λn be the eigenvalues and ®v1, ®v2, . . . , ®vn be eigenvectors. Again form the

matrix E � [ ®v1 ®v2 · · · ®vn ]. Write

®x(t) � ®v1 ξ1(t) + ®v2 ξ2(t) + · · · + ®vn ξn(t).

Decompose ®f in terms of the eigenvectors

®f (t) � ®v1 g1(t) + ®v2 g2(t) + · · · + ®vn gn(t),

where, again, ®g � E−1 ®f .
We plug in, and as before we obtain

®x′′︷                           ︸︸                           ︷
®v1ξ
′′
1 + ®v2ξ

′′
2 + · · · + ®vnξ

′′
n �

A®x︷                                ︸︸                                ︷
A

(
®v1ξ1 + ®v2ξ2 + · · · + ®vnξn

)
+

®f︷                          ︸︸                          ︷
®v1 g1 + ®v2 g2 + · · · + ®vn gn

� A®v1ξ1 + A®v2ξ2 + · · · + A®vnξn + ®v1 g1 + ®v2 g2 + · · · + ®vn gn

� ®v1λ1ξ1 + ®v2λ2ξ2 + · · · + ®vnλnξn + ®v1 g1 + ®v2 g2 + · · · + ®vn gn

� ®v1(λ1ξ1 + g1) + ®v2(λ2ξ2 + g2) + · · · + ®vn(λnξn + gn).
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We identify the coefficients of the eigenvectors to get the equations

ξ′′1 � λ1ξ1 + g1,

ξ′′2 � λ2ξ2 + g2,
...

ξ′′n � λnξn + gn .

Each one of these equations is independent of the others. We solve each equation using the
methods of chapter 2. We write ®x(t) � ®v1ξ1(t) + ®v2ξ2(t) + · · · + ®vnξn(t), and we are done;
we have a particular solution. We find the general solutions for ξ1 through ξn , and again
®x(t) � ®v1ξ1(t) + ®v2 ξ2(t) + · · · + ®vnξn(t) is the general solution (and not just a particular
solution).

Example 3.9.5: Let us do the example from § 3.6 using this method. The equation is

®x′′ �
[
−3 1
2 −2

]
®x +

[
0
2

]
cos(3t).

The eigenvalues are −1 and −4, with eigenvectors
[ 1

2
]
and

[ 1
−1

]
. Therefore E �

[ 1 1
2 −1

]
and

E−1 �
1
3
[ 1 1

2 −1
]
. Therefore,[

g1

g2

]
� E−1 ®f (t) � 1

3

[
1 1
2 −1

] [
0

2 cos(3t)

]
�

[ 2
3 cos(3t)
−2
3 cos(3t)

]
.

So after the whole song and dance of plugging in, the equations we get are

ξ′′1 � −ξ1 +
2
3 cos(3t), ξ′′2 � −4 ξ2 −

2
3 cos(3t).

For each equation we use the method of undetermined coefficients. We try C1 cos(3t) for
the first equation and C2 cos(3t) for the second equation. We plug in to get

−9C1 cos(3t) � −C1 cos(3t) + 2
3 cos(3t),

−9C2 cos(3t) � −4C2 cos(3t) − 2
3 cos(3t).

We solve each of these equations separately. We get−9C1 � −C1+2/3 and−9C2 � −4C2−2/3.
And hence C1 � −1/12 and C2 � 2/15. So our particular solution is

®x �

[
1
2

] (
−1
12 cos(3t)

)
+

[
1
−1

] (
2

15 cos(3t)
)
�

[
1/20
−3/10

]
cos(3t).

This solution matches what we got previously in § 3.6.
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3.9.4 Exercises
Exercise 3.9.4: Find a particular solution to x′ � x + 2y + 2t, y′ � 3x + 2y − 4,

using integrating factor method,a) using eigenvector decomposition,b)

using undetermined coefficients.c)

Exercise 3.9.5: Find the general solution to x′ � 4x + y − 1, y′ � x + 4y − e t ,

using integrating factor method,a) using eigenvector decomposition,b)

using undetermined coefficients.c)

Exercise 3.9.6: Find the general solution to x′′1 � −6x1 + 3x2 + cos(t), x′′2 � 2x1 − 7x2 + 3 cos(t),

using eigenvector decomposition,a) using undetermined coefficients.b)

Exercise 3.9.7: Find the general solution to x′′1 � −6x1+3x2+cos(2t), x′′2 � 2x1−7x2+3 cos(2t),

using eigenvector decomposition,a) using undetermined coefficients.b)

Exercise 3.9.8: Take the equation ®x′ �
[ 1

t −1
1 1

t

]
®x +

[
t2

−t

]
.

Check that ®xc � c1

[
t sin t
−t cos t

]
+ c2

[
t cos t
t sin t

]
is the complementary solution.a)

Use variation of parameters to find a particular solution.b)

Exercise 3.9.101: Find a particular solution to x′ � 5x + 4y + t, y′ � x + 8y − t,

using integrating factor method,a) using eigenvector decomposition,b)

using undetermined coefficients.c)

Exercise 3.9.102: Find a particular solution to x′ � y + e t , y′ � x + e t ,

using integrating factor method,a) using eigenvector decomposition,b)

using undetermined coefficients.c)

Exercise 3.9.103: Solve x′1 � x2 + t, x′2 � x1 + t with initial conditions x1(0) � 1, x2(0) � 2,
using eigenvector decomposition.

Exercise 3.9.104: Solve x′′1 � −3x1 + x2 + t, x′′2 � 9x1 + 5x2 + cos(t) with initial conditions
x1(0) � 0, x2(0) � 0, x′1(0) � 0, x′2(0) � 0, using eigenvector decomposition.



Chapter 6

The Laplace transform

6.1 The Laplace transform
Note: 1.5–2 lectures, §10.1 in [EP], §6.1 and parts of §6.2 in [BD]

6.1.1 The transform

In this chapter we will discuss the Laplace transform†. The Laplace transform is a very
efficient method to solve certain ODE or PDE problems. The transform takes a differential
equation and turns it into an algebraic equation. If the algebraic equation can be solved,
applying the inverse transformgives us our desired solution. The Laplace transformalso has
applications in the analysis of electrical circuits, NMR spectroscopy, signal processing, and
elsewhere. Finally, understanding the Laplace transform will also help with understanding
the related Fourier transform, which, however, requires more understanding of complex
numbers. We will not cover the Fourier transform.

The Laplace transform also gives a lot of insight into the nature of the equations we are
dealing with. It can be seen as converting between the time and the frequency domain. For
example, take the standard equation

mx′′(t) + cx′(t) + kx(t) � f (t).

We can think of t as time and f (t) as incoming signal. The Laplace transform will convert
the equation from a differential equation in time to an algebraic (no derivatives) equation,
where the new independent variable s is the frequency.

We can think of the Laplace transform as a black box. It eats functions and spits out
functions in a new variable. We write L

{
f (t)

}
� F(s) for the Laplace transform of f (t).

It is common to write lower case letters for functions in the time domain and upper case
letters for functions in the frequency domain. We use the same letter to denote that one

†Just like the Laplace equation and the Laplacian, the Laplace transform is also named after Pierre-Simon,
marquis de Laplace (1749–1827).

https://en.wikipedia.org/wiki/Laplace
https://en.wikipedia.org/wiki/Laplace
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function is the Laplace transform of the other. For example F(s) is the Laplace transform of
f (t). Let us define the transform.

L
{

f (t)
}
� F(s) def�

∫ ∞

0
e−st f (t) dt .

We note that we are only considering t ≥ 0 in the transform. Of course, if we think of t
as time there is no problem, we are generally interested in finding out what will happen
in the future (Laplace transform is one place where it is safe to ignore the past). Let us
compute some simple transforms.

Example 6.1.1: Suppose f (t) � 1, then

L{1} �
∫ ∞

0
e−st dt �

[
e−st

−s

]∞
t�0

� lim
h→∞

[
e−st

−s

] h

t�0
� lim

h→∞

(
e−sh

−s
− 1
−s

)
�

1
s
.

The limit (the improper integral) only exists if s > 0. So L{1} is only defined for s > 0.

Example 6.1.2: Suppose f (t) � e−at , then

L
{

e−at}
�

∫ ∞

0
e−st e−at dt �

∫ ∞

0
e−(s+a)t dt �

[
e−(s+a)t

−(s + a)

]∞
t�0

�
1

s + a
.

The limit only exists if s + a > 0. So L
{

e−at
}
is only defined for s + a > 0.

Example 6.1.3: Suppose f (t) � t, then using integration by parts

L{t} �
∫ ∞

0
e−st t dt

�

[
−te−st

s

]∞
t�0

+
1
s

∫ ∞

0
e−st dt

� 0 +
1
s

[
e−st

−s

]∞
t�0

�
1
s2 .

Again, the limit only exists if s > 0.

Example 6.1.4: A common function is the unit step function, which is sometimes called the
Heaviside function∗. This function is generally given as

u(t) �
{

0 if t < 0,
1 if t ≥ 0.

∗The function is named after the English mathematician, engineer, and physicist Oliver Heaviside
(1850–1925). Only by coincidence is the function “heavy” on “one side.”

https://en.wikipedia.org/wiki/Heaviside
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Let us find the Laplace transform of u(t − a), where a ≥ 0 is some constant. That is, the
function that is 0 for t < a and 1 for t ≥ a.

L
{

u(t − a)
}
�

∫ ∞

0
e−st u(t − a) dt �

∫ ∞

a
e−st dt �

[
e−st

−s

]∞
t�a

�
e−as

s
,

where of course s > 0 (and a ≥ 0 as we said before).

By applying similar procedures we can compute the transforms of many elementary
functions. Many basic transforms are listed in Table 6.1.

f (t) L
{

f (t)
}

f (t) L
{

f (t)
}

C C
s sin(ωt) ω

s2+ω2

t 1
s2 cos(ωt) s

s2+ω2

t2 2
s3 sinh(ωt) ω

s2−ω2

t3 6
s4 cosh(ωt) s

s2−ω2

tn n!
sn+1 u(t − a) e−as

s

e−at 1
s+a

Table 6.1: Some Laplace transforms (C, ω, and a are constants).

Exercise 6.1.1: Verify Table 6.1.

Since the transform is defined by an integral. We can use the linearity properties of the
integral. For example, suppose C is a constant, then

L
{
C f (t)

}
�

∫ ∞

0
e−stC f (t) dt � C

∫ ∞

0
e−st f (t) dt � CL

{
f (t)

}
.

So we can “pull out” a constant out of the transform. Similarly we have linearity. Since
linearity is very important we state it as a theorem.

Theorem 6.1.1 (Linearity of the Laplace transform). Suppose that A, B, and C are constants,
then

L
{
A f (t) + Bg(t)

}
� AL

{
f (t)

}
+ BL

{
g(t)

}
,

and in particular
L

{
C f (t)

}
� CL

{
f (t)

}
.

Exercise 6.1.2: Verify the theorem. That is, show that L
{
A f (t) + Bg(t)

}
� AL

{
f (t)

}
+

BL
{

g(t)
}
.
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These rules together with Table 6.1 on the preceding page make it easy to find the
Laplace transform of a whole lot of functions already. But be careful. It is a common
mistake to think that the Laplace transform of a product is the product of the transforms.
In general

L
{

f (t)g(t)
}
, L

{
f (t)

}
L

{
g(t)

}
.

It must also be noted that not all functions have a Laplace transform. For example, the
function 1

t does not have a Laplace transform as the integral diverges for all s. Similarly,
tan t or e t2 do not have Laplace transforms.

6.1.2 Existence and uniqueness
When does the Laplace transform exist? A function f (t) is of exponential order as t goes to
infinity if

| f (t)| ≤ Me ct ,

for some constants M and c, for sufficiently large t (say for all t > t0 for some t0). The
simplest way to check this condition is to try and compute

lim
t→∞

f (t)
e ct .

If the limit exists and is finite (usually zero), then f (t) is of exponential order.

Exercise 6.1.3: Use L’Hopital’s rule from calculus to show that a polynomial is of exponential order.
Hint: Note that a sum of two exponential order functions is also of exponential order. Then show
that tn is of exponential order for any n.

For an exponential order function we have existence and uniqueness of the Laplace
transform.

Theorem 6.1.2 (Existence). Let f (t) be continuous and of exponential order for a certain constant
c. Then F(s) � L

{
f (t)

}
is defined for all s > c.

The existence is not difficult to see. Let f (t) be of exponential order, that is | f (t)| ≤ Me ct

for all t > 0 (for simplicity t0 � 0). Let s > c, or in other words (c − s) < 0. By the
comparison theorem from calculus, the improper integral defining L

{
f (t)

}
exists if the

following integral exists∫ ∞

0
e−st(Me ct) dt � M

∫ ∞

0
e(c−s)t dt � M

[
e(c−s)t

c − s

]∞
t�0

�
M

c − s
.

The transform also exists for some other functions that are not of exponential order,
but that will not be relevant to us. Before dealing with uniqueness, let us note that for
exponential order functions we obtain that their Laplace transform decays at infinity:

lim
s→∞

F(s) � 0.
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Theorem 6.1.3 (Uniqueness). Let f (t) and g(t) be continuous and of exponential order. Suppose
that there exists a constant C, such that F(s) � G(s) for all s > C. Then f (t) � g(t) for all t ≥ 0.

Both theorems hold for piecewise continuous functions as well. Recall that piecewise
continuous means that the function is continuous except perhaps at a discrete set of points,
where it has jump discontinuities like the Heaviside function. Uniqueness, however, does
not “see” values at the discontinuities. So we can only conclude that f (t) � g(t) outside of
discontinuities. For example, the unit step function is sometimes defined using u(0) � 1/2.
This new step function, however, has the exact same Laplace transform as the one we
defined earlier where u(0) � 1.

6.1.3 The inverse transform
As we said, the Laplace transform will allow us to convert a differential equation into an
algebraic equation. Once we solve the algebraic equation in the frequency domain we will
want to get back to the time domain, as that is what we are interested in. Given a function
F(s), we wish to find a function f (t) such that L

{
f (t)

}
� F(s). Theorem 6.1.3 says that the

solution f (t) is unique. So we can without fear make the following definition.
Suppose F(s) � L

{
f (t)

}
for some function f (t). Define the inverse Laplace transform as

L−1{F(s)
} def
� f (t).

There is an integral formula for the inverse, but it is not as simple as the transform itself—it
requires complex numbers and path integrals. For us it will suffice to compute the inverse
using Table 6.1 on page 205.

Example 6.1.5: Take F(s) � 1
s+1 . Find the inverse Laplace transform.

We look at the table to find
L−1

{
1

s + 1

}
� e−t .

As the Laplace transform is linear, the inverse Laplace transform is also linear. That is,

L−1{AF(s) + BG(s)
}
� AL−1{F(s)

}
+ BL−1{G(s)

}
.

Of course, we also have L−1{AF(s)
}
� AL−1{F(s)

}
. Let us demonstrate how linearity can

be used.

Example 6.1.6: Take F(s) � s2+s+1
s3+s . Find the inverse Laplace transform.

First we use the method of partial fractions to write F in a form where we can use Table 6.1
on page 205. We factor the denominator as s(s2 + 1) and write

s2 + s + 1
s3 + s

�
A
s
+

Bs + C
s2 + 1

.

Putting the right-hand side over a common denominator and equating the numerators
we get A(s2 + 1) + s(Bs + C) � s2 + s + 1. Expanding and equating coefficients we obtain
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A + B � 1, C � 1, A � 1, and thus B � 0. In other words,

F(s) � s2 + s + 1
s3 + s

�
1
s
+

1
s2 + 1

.

By linearity of the inverse Laplace transform we get

L−1
{

s2 + s + 1
s3 + s

}
� L−1

{
1
s

}
+ L−1

{
1

s2 + 1

}
� 1 + sin t .

Another useful property is the so-called shifting property or the first shifting property

L
{

e−at f (t)
}
� F(s + a),

where F(s) is the Laplace transform of f (t).

Exercise 6.1.4: Derive the first shifting property from the definition of the Laplace transform.

The shifting property can be used, for example, when the denominator is a more
complicated quadratic that may come up in the method of partial fractions. We complete
the square and write such quadratics as (s + a)2 + b and then use the shifting property.

Example 6.1.7: Find L−1 { 1
s2+4s+8

}
.

First we complete the square to make the denominator (s + 2)2 + 4. Next we find

L−1
{

1
s2 + 4

}
�

1
2 sin(2t).

Putting it all together with the shifting property, we find

L−1
{

1
s2 + 4s + 8

}
� L−1

{
1

(s + 2)2 + 4

}
�

1
2 e−2t sin(2t).

In general, we want to be able to apply the inverse Laplace transform to rational
functions, that is functions of the form

F(s)
G(s)

where F(s) and G(s) are polynomials. Since normally, for the functions that we are
considering, the Laplace transform goes to zero as s → ∞, it is not hard to see that the
degree of F(s)must be smaller than that of G(s). Such rational functions are called proper
rational functions and we can always apply the method of partial fractions. Of course this
means we need to be able to factor the denominator into linear and quadratic terms, which
involves finding the roots of the denominator.
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6.1.4 The Laplace transform with Python
We show how to compute Laplace and inverse Laplace transforms below. The expression
θ(t − 3) in the sympy output represents the Heaviside unit step function u(t − 3).

6.1.5 Exercises

Exercise 6.1.5: Find the Laplace transform of 3 + t5 + sin(πt).

Exercise 6.1.6: Find the Laplace transform of a + bt + ct2 for some constants a, b, and c.

Exercise 6.1.7: Find the Laplace transform of A cos(ωt) + B sin(ωt).

Exercise 6.1.8: Find the Laplace transform of cos2(ωt).

Exercise 6.1.9: Find the inverse Laplace transform of 4
s2−9 .

Exercise 6.1.10: Find the inverse Laplace transform of 2s
s2−1 .
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Exercise 6.1.11: Find the inverse Laplace transform of 1
(s−1)2(s+1) .

Exercise 6.1.12: Find the Laplace transform of f (t) �
{

t if t ≥ 1,
0 if t < 1.

Exercise 6.1.13: Find the inverse Laplace transform of s
(s2+s+2)(s+4) .

Exercise 6.1.14: Find the Laplace transform of sin
(
ω(t − a)

)
.

Exercise 6.1.15: Find the Laplace transform of t sin(ωt). Hint: Several integrations by parts.

Exercise 6.1.51: Apply the definition to find the Laplace transform of each of the following functions:

a) f (t) � 2

b) f (t) � e5t

c) f (t) � 2
3e3t

d) f (t) � t + 1

e) f (t) � 5 − 2t

f) f (t) � eπt+2

Exercise 6.1.52: Apply the definition to find the Laplace transform of each of the following functions,
represented graphically by:

a)

b)
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c)

d)

Exercise 6.1.101: Find the Laplace transform of 4(t + 1)2.

Exercise 6.1.102: Find the inverse Laplace transform of 8
s3(s+2) .

Exercise 6.1.103: Find the Laplace transform of te−t (Hint: integrate by parts).

Exercise 6.1.104: Find the Laplace transform of sin(t)e−t (Hint: integrate by parts).

Exercise 6.1.151: Using linearity and the transforms for tn , e−at , sinωt, and cosωt , find the
Laplace transform for each of the following functions:

a) f (t) � 2 − 5 cos 3t + t4

2 − 6e7t

b) f (t) � 1
3eπt + 2 sin πt + (2t + 1)2

c) f (t) � 3e−5t+2 − 3t3

4 + sin2 2t

d) f (t) � 4 cos
√

2 t − 2
3 + (t2 + t)2

e) f (t) � 2 sin 3t
5 +

t5

6 − cos2 3t

Exercise 6.1.152: Using linearity and the inverse transforms for n!
sn+1 , 1

s+a ,
ω

s2+ω2 and s
s2+ω2 , find

the inverse Laplace transform for each of the following functions:

a) F(s) � 3
s − 2

s−6 +
5

s2+9
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b) F(s) � 1
4s4 +

3
7(s+π) +

2s
s2+4

c) F(s) � 1
2s+6 − 3

4s3 +
3s+2
s2+9

d) F(s) � 1
s − 2

3s2 +
5

s−π2

e) F(s) � 1
6s5 +

5s−7
s2+3

Exercise 6.1.153: Use the method of partial fractions to find the inverse Laplace transform of the
following functions:

a) F(s) � 3
s(s−2)

b) F(s) � 2s+1
s(s2+4)

c) F(s) � s+4
s2−s−6

d) F(s) � s2+s+2
s2(s+1)

e) F(s) � 3s3+s
s4+3s2+2

Exercise 6.1.154: Apply the first shifting property (translation of the transform along the s-axis)
to find the Laplace transform of the following functions:

a) f (t) � t4e3t

b) f (t) � 3t3e−2t

c) f (t) � e4t cos 3t

d) f (t) � 2e−3t sin 5t

e) f (t) � 3e−πt cos 2πt

Exercise 6.1.155: Apply the first shifting property to find the inverse Laplace transform of the
following functions:

a) F(s) � 1
(s−2)4

b) F(s) � 1
2(s+π)2

c) F(s) � s−3
s2−6s+25

d) F(s) � 1
s2+8s+16

e) F(s) � 4s+3
s2+4s+13

f) F(s) � 3s+4
s2−2s+5



6.2. TRANSFORMS OF DERIVATIVES AND ODES 213

6.2 Transforms of derivatives and ODEs
Note: 2 lectures, §7.2–7.3 in [EP], §6.2 and §6.3 in [BD]

6.2.1 Transforms of derivatives
Let us see how the Laplace transform is used for differential equations. First let us try to
find the Laplace transform of a function that is a derivative. Suppose g(t) is a differentiable
function of exponential order, that is, |g(t)| ≤ Me ct for some M and c. So L

{
g(t)

}
exists,

and what is more, limt→∞ e−st g(t) � 0 when s > c. Then

L
{

g′(t)
}
�

∫ ∞

0
e−st g′(t) dt �

[
e−st g(t)

]∞
t�0
−

∫ ∞

0
(−s) e−st g(t) dt � −g(0) + sL

{
g(t)

}
.

We repeat this procedure for higher derivatives. The results are listed in Table 6.2. The
procedure also works for piecewise smooth functions, that is functions that are piecewise
continuous with a piecewise continuous derivative.

f (t) L
{

f (t)
}
� F(s)

g′(t) sG(s) − g(0)
g′′(t) s2G(s) − s g(0) − g′(0)
g′′′(t) s3G(s) − s2 g(0) − s g′(0) − g′′(0)

Table 6.2: Laplace transforms of derivatives (G(s) � L
{

g(t)
}
as usual).

Exercise 6.2.1: Verify Table 6.2.

6.2.2 Solving ODEs with the Laplace transform
Notice that the Laplace transform turns differentiation into multiplication by s. Let us see
how to apply this fact to differential equations.
Example 6.2.1: Take the equation

x′′(t) + x(t) � cos(2t), x(0) � 0, x′(0) � 1.

We will take the Laplace transform of both sides. By X(s) we will, as usual, denote the
Laplace transform of x(t).

L
{

x′′(t) + x(t)
}
� L

{
cos(2t)

}
,

s2X(s) − sx(0) − x′(0) + X(s) � s
s2 + 4

.



214 CHAPTER 6. THE LAPLACE TRANSFORM

We plug in the initial conditions now—this makes the computations more streamlined—to
obtain

s2X(s) − 1 + X(s) � s
s2 + 4

.

We solve for X(s),
X(s) � s

(s2 + 1)(s2 + 4) +
1

s2 + 1
.

We use partial fractions (exercise) to write

X(s) � 1
3

s
s2 + 1

− 1
3

s
s2 + 4

+
1

s2 + 1
.

Now take the inverse Laplace transform to obtain

x(t) � 1
3 cos(t) − 1

3 cos(2t) + sin(t).

The procedure for linear constant coefficient equations is as follows. We take an ordinary
differential equation in the time variable t. We apply the Laplace transform to transform
the equation into an algebraic (non differential) equation in the frequency domain. All the
x(t), x′(t), x′′(t), and so on, will be converted to X(s), sX(s) − x(0), s2X(s) − sx(0) − x′(0),
and so on. We solve the equation for X(s). Then taking the inverse transform, if possible,
we find x(t).

It should be noted that since not every function has a Laplace transform, not every
equation can be solved in thismanner. Also if the equation is not a linear constant coefficient
ODE, then by applying the Laplace transform we may not obtain an algebraic equation.

6.2.3 Using the Heaviside function
Before we move on to more general equations than those we could solve before, we want to
consider the Heaviside function. See Figure 6.1 on the next page for the graph.

u(t) �
{

0 if t < 0,
1 if t ≥ 0.

This function is useful for putting together functions, or cutting functions off. Most
commonly it is used as u(t − a) for some constant a. This just shifts the graph to the right
by a. That is, it is a function that is 0 when t < a and 1 when t ≥ a. Suppose for example
that f (t) is a “signal” and you started receiving the signal sin t at time t � π. The function
f (t) should then be defined as

f (t) �
{

0 if t < π,
sin t if t ≥ π.

Using the Heaviside function, f (t) can be written as

f (t) � u(t − π) sin t .
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Figure 6.1: Plot of the Heaviside (unit step) function u(t).

Similarly the step function that is 1 on the interval [1, 2) and zero everywhere else can be
written as

u(t − 1) − u(t − 2).

The Heaviside function is useful to define functions defined piecewise. If you want to
define f (t) such that f (t) � t when t is in [0, 1], f (t) � −t + 2 when t is in [1, 2], and
f (t) � 0 otherwise, then you can use the expression

f (t) � t
(
u(t) − u(t − 1)

)
+ (−t + 2)

(
u(t − 1) − u(t − 2)

)
.

Hence it is useful to know how the Heaviside function interacts with the Laplace
transform. We have already seen that

L
{

u(t − a)
}
�

e−as

s
.

This can be generalized into a shifting property or second shifting property.

L
{

f (t − a) u(t − a)
}
� e−asL

{
f (t)

}
. (6.1)

Example 6.2.2: Suppose that the forcing function is not periodic. For example, suppose
that we had a mass-spring system

x′′(t) + x(t) � f (t), x(0) � 0, x′(0) � 0,

where f (t) � 1 if 1 ≤ t < 5 and zero otherwise. We could imagine a mass-spring system,
where a rocket is fired for 4 seconds starting at t � 1. Or perhaps an RLC circuit, where
the voltage is raised at a constant rate for 4 seconds starting at t � 1, and then held steady
again starting at t � 5.
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We can write f (t) � u(t − 1) − u(t − 5). We transform the equation and we plug in the
initial conditions as before to obtain

s2X(s) + X(s) � e−s

s
− e−5s

s
.

We solve for X(s) to obtain

X(s) � e−s

s(s2 + 1) −
e−5s

s(s2 + 1) .

We leave it as an exercise to the reader to show that

L−1
{

1
s(s2 + 1)

}
� 1 − cos t .

In other words L{1 − cos t} � 1
s(s2+1) . So using (6.1) we find

L−1
{

e−s

s(s2 + 1)

}
� L−1 {e−sL{1 − cos t}} �

(
1 − cos(t − 1)

)
u(t − 1).

Similarly

L−1
{

e−5s

s(s2 + 1)

}
� L−1 {

e−5sL{1 − cos t}
}
�

(
1 − cos(t − 5)

)
u(t − 5).

Hence, the solution is

x(t) �
(
1 − cos(t − 1)

)
u(t − 1) −

(
1 − cos(t − 5)

)
u(t − 5).

The plot of this solution is given in Figure 6.2 on the facing page.

6.2.4 Transfer functions
Laplace transform leads to the following useful concept for studying the steady state
behavior of a linear system. Suppose we have an equation of the form

Lx � f (t),

where L is a linear constant coefficient differential operator. Then f (t) is usually thought
of as input of the system and x(t) is thought of as the output of the system. For example,
for a mass-spring system the input is the forcing function and output is the behavior of
the mass. We would like to have a convenient way to study the behavior of the system for
different inputs.

Let us suppose that all the initial conditions are zero and take the Laplace transform of
the equation, we obtain the equation

A(s)X(s) � F(s).
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Figure 6.2: Plot of x(t).

Solving for the ratio X(s)/F(s)we obtain the so-called transfer function H(s) � 1/A(s).

H(s) � X(s)
F(s) .

In other words, X(s) � H(s)F(s). We obtain an algebraic dependence of the output of the
system based on the input. We can now easily study the steady state behavior of the system
given different inputs by simply multiplying by the transfer function.

Example 6.2.3: Given x′′+ω2
0x � f (t), let us find the transfer function (assuming the initial

conditions are zero).
First, we take the Laplace transform of the equation.

s2X(s) + ω2
0X(s) � F(s).

Now we solve for the transfer function X(s)/F(s).

H(s) � X(s)
F(s) �

1
s2 + ω2

0
.

Let us see how to use the transfer function. Suppose we have the constant input f (t) � 1.
Hence F(s) � 1/s, and

X(s) � H(s)F(s) � 1
s2 + ω2

0

1
s
.

Taking the inverse Laplace transform of X(s)we obtain

x(t) � 1 − cos(ω0t)
ω2

0
.
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6.2.5 Transforms of integrals
A feature of Laplace transforms is that it is also able to easily deal with integral equations.
That is, equations in which integrals rather than derivatives of functions appear. The basic
property, which can be proved by applying the definition and doing integration by parts, is

L
{∫ t

0
f (τ) dτ

}
�

1
s

F(s).

It is sometimes useful (e.g. for computing the inverse transform) to write this as∫ t

0
f (τ) dτ � L−1

{
1
s

F(s)
}
.

Example 6.2.4: To compute L−1
{

1
s(s2+1)

}
we could proceed by applying this integration

rule.

L−1
{

1
s

1
s2 + 1

}
�

∫ t

0
L−1

{
1

s2 + 1

}
dτ �

∫ t

0
sin τ dτ � 1 − cos t .

Example 6.2.5: An equation containing an integral of the unknown function is called an
integral equation. For example, take

t2
�

∫ t

0
eτx(τ) dτ,

where we wish to solve for x(t). We apply the Laplace transform and the shifting property
to get

2
s3 �

1
s
L

{
e t x(t)

}
�

1
s

X(s − 1),

where X(s) � L
{

x(t)
}
. Thus

X(s − 1) � 2
s2 or X(s) � 2

(s + 1)2
.

We use the shifting property again

x(t) � 2e−t t .

6.2.6 Exercises
Exercise 6.2.2: Using the Heaviside function write down the piecewise function that is 0 for t < 0,
t2 for t in [0, 1] and t for t > 1.

Exercise 6.2.3: Using the Laplace transform solve

mx′′ + cx′ + kx � 0, x(0) � a , x′(0) � b ,

where m > 0, c > 0, k > 0, and c2 − 4km > 0 (system is overdamped).
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Exercise 6.2.4: Using the Laplace transform solve

mx′′ + cx′ + kx � 0, x(0) � a , x′(0) � b ,

where m > 0, c > 0, k > 0, and c2 − 4km < 0 (system is underdamped).

Exercise 6.2.5: Using the Laplace transform solve

mx′′ + cx′ + kx � 0, x(0) � a , x′(0) � b ,

where m > 0, c > 0, k > 0, and c2 � 4km (system is critically damped).

Exercise 6.2.6: Solve x′′ + x � u(t − 1) for initial conditions x(0) � 0 and x′(0) � 0.

Exercise 6.2.7: Show the differentiation of the transform property. Suppose L
{

f (t)
}
� F(s), then

show
L

{
−t f (t)

}
� F′(s).

Hint: Differentiate under the integral sign.

Exercise 6.2.8: Solve x′′′+ x � t3u(t − 1) for initial conditions x(0) � 1 and x′(0) � 0, x′′(0) � 0.

Exercise 6.2.9: Show the second shifting property: L
{

f (t − a) u(t − a)
}
� e−asL

{
f (t)

}
.

Exercise 6.2.10: Let us think of the mass-spring system with a rocket from Example 6.2.2. We
noticed that the solution kept oscillating after the rocket stopped running. The amplitude of the
oscillation depends on the time that the rocket was fired (for 4 seconds in the example).

Find a formula for the amplitude of the resulting oscillation in terms of the amount of time the
rocket is fired.

a)

Is there a nonzero time (if so what is it?) for which the rocket fires and the resulting oscillation
has amplitude 0 (the mass is not moving)?

b)

Exercise 6.2.11: Define

f (t) �


(t − 1)2 if 1 ≤ t < 2,
3 − t if 2 ≤ t < 3,
0 otherwise.

Sketch the graph of f (t).a)

Write down f (t) using the Heaviside function.b)

Solve x′′ + x � f (t), x(0) � 0, x′(0) � 0 using Laplace transform.c)

Exercise 6.2.12: Find the transfer function for mx′′ + cx′ + kx � f (t) (assuming the initial
conditions are zero).
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Exercise 6.2.101: Using the Heaviside function u(t), write down the function

f (t) �


0 if t < 1,
t − 1 if 1 ≤ t < 2,
1 if 2 ≤ t .

Exercise 6.2.102: Solve x′′ − x � (t2 − 1)u(t − 1) for initial conditions x(0) � 1, x′(0) � 2 using
the Laplace transform.

Exercise 6.2.103: Find the transfer function for x′ + x � f (t) (assuming the initial conditions are
zero).

Exercise 6.2.151: Use Laplace transforms to solve the following IVPs:

a) x′′ + 25x � 0; x(0) � 1, x′(0) � 2

b) x′′ + 4x � 2; x(0) � 3, x′(0) � −1

c) x′′ + 9x � cos t; x(0) � −1, x′(0) � 1

d) x′′ + 5x′ + 6x � 3; x(0) � x′(0) � 0

e) x′′ + 2x′ + 5x � 0; x(0) � 2, x′(0) � 1

f) x′′ + 6x′ + 25x � 0; x(0) � 1, x′(0) � 3

Exercise 6.2.152: Apply the second shifting property (step-translation along the t-axis) and
Heaviside step functions to find the Laplace transforms of the following functions:

a) f (t) �
{

cos t 0 ≤ t < 2π,
0 t ≥ 2π.

b) f (t) �


0 0 ≤ t < 2,
1 2 ≤ t < 5,
2 t ≥ 5.

c) f (t) �
{

sin 2t 0 ≤ t < 3π,
0 t ≥ 3π.

d) f (t) �


0 0 ≤ t < 2,
cos πt 2 ≤ t < 5,
0 t ≥ 5.
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e) f (t) �


0 0 ≤ t < π,
sin 3t π ≤ t < 4π,
0 t ≥ 4π.

Exercise 6.2.153: Apply the second shifting property (step- translation along the t-axis) to find the
inverse Laplace transform of the following functions:

a) F(s) � e−3s

(s−4)

b) F(s) � e−2s

s3

c) F(s) � e−2πs

s2+9

d) F(s) � e−s−e−2s

s+1

e) F(s) � s(1+e−πs)
s2+4

f) F(s) � e−2πs−e−3πs

s2+16

Exercise 6.2.154: Apply the integration property, as in Example 6.2.4, to find the inverse Laplace
transform of the following functions:

a) F(s) � 1
s(s+2)

b) F(s) � 2
s(s2+9)

c) F(s) � s+1
s(s2+4)

d) F(s) � 1
s2(s+3)

e) F(s) � 3
s2(s2+1)

f) F(s) � 2
s2(s−π)
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6.3 Convolution
Note: 1 or 1.5 lectures, §7.2 in [EP], §6.6 in [BD]

6.3.1 The convolution
We said that the Laplace transformation of a product is not the product of the transforms.
All hope is not lost however. We simply have to use a different type of a “product.” Take
two functions f (t) and g(t) defined for t ≥ 0, and define the convolution∗ of f (t) and g(t) as

( f ∗ g)(t) def�
∫ t

0
f (τ)g(t − τ) dτ. (6.2)

As you can see, the convolution of two functions of t is another function of t.
Example 6.3.1: Take f (t) � e t and g(t) � t for t ≥ 0. Then

( f ∗ g)(t) �
∫ t

0
eτ(t − τ) dτ � e t − t − 1.

To solve the integral we did one integration by parts.
Example 6.3.2: Take f (t) � sin(ωt) and g(t) � cos(ωt) for t ≥ 0. Then

( f ∗ g)(t) �
∫ t

0
sin(ωτ) cos

(
ω(t − τ)

)
dτ.

We apply the identity

cos(θ) sin(ψ) � 1
2

(
sin(θ + ψ) − sin(θ − ψ)

)
.

Hence,

( f ∗ g)(t) �
∫ t

0

1
2

(
sin(ωt) − sin(ωt − 2ωτ)

)
dτ

�

[
1
2 τ sin(ωt) + 1

4ω cos(2ωτ − ωt)
] t

τ�0

�
1
2 t sin(ωt).

The formula holds only for t ≥ 0. We assumed that f and g are zero (or simply not defined)
for negative t.

∗For those that have seen convolution defined before, you may have seen it defined as ( f ∗ g)(t) �∫ ∞
−∞ f (τ)g(t − τ) dτ. This definition agrees with (6.2) if you define f (t) and g(t) to be zero for t < 0. When
discussing the Laplace transform the definition we gave is sufficient. Convolution does occur in many other
applications, however, where you may have to use the more general definition with infinities.
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The convolution has many properties that make it behave like a product. Let c be a
constant and f , g, and h be functions then

f ∗ g � g ∗ f ,
(c f ) ∗ g � f ∗ (c g) � c( f ∗ g),
( f ∗ g) ∗ h � f ∗ (g ∗ h).

The most interesting property for us, and the main result of this section is the following
theorem.
Theorem 6.3.1. Let f (t) and g(t) be of exponential order, then

L
{
( f ∗ g)(t)

}
� L

{∫ t

0
f (τ)g(t − τ) dτ

}
� L

{
f (t)

}
L

{
g(t)

}
.

In other words, the Laplace transform of a convolution is the product of the Laplace
transforms. The simplest way to use this result is in reverse.
Example 6.3.3: Suppose we have the function of s defined by

1
(s + 1)s2 �

1
s + 1

1
s2 .

We recognize the two entries of Table 6.2. That is

L−1
{

1
s + 1

}
� e−t and L−1

{
1
s2

}
� t .

Therefore,

L−1
{

1
s + 1

1
s2

}
�

∫ t

0
τe−(t−τ) dτ � e−t

+ t − 1.

The calculation of the integral involved an integration by parts.

6.3.2 Solving ODEs
The next example demonstrates the full power of the convolution and the Laplace transform.
We can give the solution to the forced oscillation problem for any forcing function as a
definite integral.
Example 6.3.4: Find the solution to

x′′ + ω2
0x � f (t), x(0) � 0, x′(0) � 0,

for an arbitrary function f (t).
We first apply the Laplace transform to the equation. Denote the transform of x(t) by

X(s) and the transform of f (t) by F(s) as usual.

s2X(s) + ω2
0X(s) � F(s),
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or in other words
X(s) � F(s) 1

s2 + ω2
0
.

We know

L−1

{
1

s2 + ω2
0

}
�

sin(ω0t)
ω0

.

Therefore,

x(t) �
∫ t

0
f (τ)

sin
(
ω0(t − τ)

)
ω0

dτ,

or if we reverse the order

x(t) �
∫ t

0

sin(ω0τ)
ω0

f (t − τ) dτ.

Let us notice one more feature of this example. We can now see how Laplace transform
handles resonance. Suppose that f (t) � cos(ω0t). Then

x(t) �
∫ t

0

sin(ω0τ)
ω0

cos
(
ω0(t − τ)

)
dτ �

1
ω0

∫ t

0
sin(ω0τ) cos

(
ω0(t − τ)

)
dτ.

We have computed the convolution of sine and cosine in Example 6.3.2. Hence

x(t) �
(

1
ω0

) (
1
2 t sin(ω0t)

)
�

1
2ω0

t sin(ω0t).

Note the t in front of the sine. The solution, therefore, grows without bound as t gets large,
meaning we get resonance.

Similarly, we can solve any constant coefficient equation with an arbitrary forcing
function f (t) as a definite integral using convolution. A definite integral, rather than
a closed form solution, is usually enough for most practical purposes. It is not hard to
numerically evaluate a definite integral.

6.3.3 Volterra integral equation
A common integral equation is the Volterra integral equation∗

x(t) � f (t) +
∫ t

0
g(t − τ)x(τ) dτ,

where f (t) and g(t) are known functions and x(t) is an unknown we wish to solve for. To
find x(t), we apply the Laplace transform to the equation to obtain

X(s) � F(s) + G(s)X(s),
∗Named for the Italian mathematician Vito Volterra (1860–1940).

https://en.wikipedia.org/wiki/Vito_Volterra
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where X(s), F(s), and G(s) are the Laplace transforms of x(t), f (t), and g(t) respectively.
We find

X(s) � F(s)
1 − G(s) .

To find x(t)we now need to find the inverse Laplace transform of X(s).
Example 6.3.5: Solve

x(t) � e−t
+

∫ t

0
sinh(t − τ)x(τ) dτ.

We apply Laplace transform to obtain

X(s) � 1
s + 1 +

1
s2 − 1

X(s),

or

X(s) �
1

s+1

1 − 1
s2−1

�
s − 1
s2 − 2

�
s

s2 − 2
− 1

s2 − 2
.

It is not hard to apply Table 6.1 on page 205 to find

x(t) � cosh
(√

2 t
)
− 1√

2
sinh

(√
2 t

)
.

6.3.4 Exercises

Exercise 6.3.1: Let f (t) � t2 for t ≥ 0, and g(t) � u(t − 1). Compute f ∗ g.

Exercise 6.3.2: Let f (t) � t for t ≥ 0, and g(t) � sin t for t ≥ 0. Compute f ∗ g.

Exercise 6.3.3: Find the solution to

mx′′ + cx′ + kx � f (t), x(0) � 0, x′(0) � 0,

for an arbitrary function f (t), where m > 0, c > 0, k > 0, and c2 − 4km > 0 (system is
overdamped). Write the solution as a definite integral.

Exercise 6.3.4: Find the solution to

mx′′ + cx′ + kx � f (t), x(0) � 0, x′(0) � 0,

for an arbitrary function f (t), where m > 0, c > 0, k > 0, and c2 − 4km < 0 (system is
underdamped). Write the solution as a definite integral.

Exercise 6.3.5: Find the solution to

mx′′ + cx′ + kx � f (t), x(0) � 0, x′(0) � 0,

for an arbitrary function f (t), where m > 0, c > 0, k > 0, and c2 � 4km (system is critically
damped). Write the solution as a definite integral.
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Exercise 6.3.6: Solve

x(t) � e−t
+

∫ t

0
cos(t − τ)x(τ) dτ.

Exercise 6.3.7: Solve

x(t) � cos t +
∫ t

0
cos(t − τ)x(τ) dτ.

Exercise 6.3.8: Compute L−1
{

s
(s2+4)2

}
using convolution.

Exercise 6.3.9: Write down the solution to x′′ − 2x � e−t2 , x(0) � 0, x′(0) � 0 as a definite
integral. Hint: Do not try to compute the Laplace transform of e−t2 .

Exercise 6.3.51: Apply Theorem 6.3.1 to find the inverse Laplace transform of each of the following
functions. Check each result by showing thatL[( f ∗ g)(t)] � L[ f (t)]L[g(t)] � F(s)G(s) � H(s).

a) H(s) � 1
(s+2)(s−3)

b) H(s) � 2
s(s+4)

c) H(s) � 4
s(s2+9)

d) H(s) � 1
(s−2)2

e) H(s) � 1
s2(s+1)

Exercise 6.3.101: Let f (t) � cos t for t ≥ 0, and g(t) � e−t . Compute f ∗ g.

Exercise 6.3.102: Compute L−1 { 5
s4+s2

}
using convolution.

Exercise 6.3.103: Solve x′′ + x � sin t, x(0) � 0, x′(0) � 0 using convolution.

Exercise 6.3.104: Solve x′′′ + x′ � f (t), x(0) � 0, x′(0) � 0, x′′(0) � 0 using convolution. Write
the result as a definite integral.

Exercise 6.3.151: Compute the convolution f ∗ g for the following functions:

a) f (t) � 3, g(t) � cos 2t

b) f (t) � (t + 3)2, g(t) � 2

c) f (t) � e−2t , g(t) � e3t

d) f (t) � t , g(t) � sin t

e) f (t) � t , g(t) � e2t
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6.4 Dirac delta and impulse response

Note: 1 or 1.5 lecture, §7.6 in [EP], §6.5 in [BD]

6.4.1 Rectangular pulse

Often in applications we study a physical system by putting in a short pulse and then
seeing what the system does. The resulting behavior is often called impulse response. Let us
see what we mean by a pulse. The simplest kind of a pulse is a simple rectangular pulse
defined by

ϕ(t) �


0 if t < a ,
M if a ≤ t < b ,
0 if b ≤ t .

See Figure 6.3 for a graph.
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Figure 6.3: Sample square pulse with a � 0.5,
b � 1 and M � 2.

Notice that

ϕ(t) � M
(
u(t − a) − u(t − b)

)
,

where u(t) is the unit step function.
Let us take the Laplace transform of a

square pulse,

L
{
ϕ(t)

}
� L

{
M

(
u(t − a) − u(t − b)

)}
� M

e−as − e−bs

s
.

For simplicity we let a � 0, and it is
convenient to set M � 1/b to have∫ ∞

0
ϕ(t) dt � 1.

That is, to have the pulse have “unit mass.” For such a pulse we compute

L
{
ϕ(t)

}
� L

{
u(t) − u(t − b)

b

}
�

1 − e−bs

bs
.

We generally want b to be very small. That is, we wish to have the pulse be very short and
very tall. By letting b go to zero we arrive at the concept of the Dirac delta function.
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6.4.2 The delta function
TheDirac delta function∗ is not exactly a function; it is sometimes called a generalized function.
We avoid unnecessary details and simply say that it is an object that does not really make
sense unless we integrate it. The motivation is that we would like a “function” δ(t) such
that for any continuous function f (t)we have∫ ∞

−∞
δ(t) f (t) dt � f (0).

The formula should hold if we integrate over any interval that contains 0, not just (−∞,∞).
So δ(t) is a “function” with all its “mass” at the single point t � 0. In other words, for any
interval [c , d]∫ d

c
δ(t) dt �

{
1 if the interval [c , d] contains 0, i.e. c ≤ 0 ≤ d ,
0 otherwise.

Unfortunately there is no such function in the classical sense. You could informally think
that δ(t) is zero for t , 0 and somehow infinite at t � 0.

A good way to think about δ(t) is as a limit of short pulses whose integral is 1. For
example, suppose that we have a square pulse ϕ(t) as above with a � 0, M � 1/b, that is
ϕ(t) � u(t)−u(t−b)

b . Compute∫ ∞

−∞
ϕ(t) f (t) dt �

∫ ∞

−∞

u(t) − u(t − b)
b

f (t) dt �
1
b

∫ b

0
f (t) dt .

If f (t) is continuous at t � 0, then for very small b, the function f (t) is approximately equal
to f (0) on the interval [0, b]. We approximate the integral

1
b

∫ b

0
f (t) dt ≈ 1

b

∫ b

0
f (0) dt � f (0).

Hence,

lim
b→0

∫ ∞

−∞
ϕ(t) f (t) dt � lim

b→0

1
b

∫ b

0
f (t) dt � f (0).

Let us therefore accept δ(t) as an object that is possible to integrate. We often want to
shift δ to another point, for example δ(t − a). In that case we have∫ ∞

−∞
δ(t − a) f (t) dt � f (a).

Note that δ(a − t) is the same object as δ(t − a). In other words, the convolution of δ(t)
with f (t) is again f (t),

( f ∗ δ)(t) �
∫ t

0
δ(t − s) f (s) ds � f (t).

∗Named after the English physicist and mathematician Paul Adrien Maurice Dirac (1902–1984).

https://en.wikipedia.org/wiki/Paul_Dirac
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As we can integrate δ(t), let us compute its Laplace transform.

L
{
δ(t − a)

}
�

∫ ∞

0
e−stδ(t − a) dt � e−as .

In particular,
L

{
δ(t)

}
� 1.

Remark 6.4.1: Notice that the Laplace transform of δ(t− a) looks like the Laplace transform
of the derivative of the Heaviside function u(t − a), if we could differentiate the Heaviside
function. First notice

L
{

u(t − a)
}
�

e−as

s
.

To obtain what the Laplace transform of the derivative would be we multiply by s, to obtain
e−as , which is the Laplace transform of δ(t − a). We see the same thing using integration,∫ t

0
δ(s − a) ds � u(t − a).

So in a certain sense
“ d

dt

[
u(t − a)

]
� δ(t − a). ”

This line of reasoning allows us to talk about derivatives of functions with jump discontinu-
ities. We can think of the derivative of the Heaviside function u(t − a) as being somehow
infinite at a, which is precisely our intuitive understanding of the delta function.

Example 6.4.1: Let us compute L−1 { s+1
s

}
. So far we have always looked at proper rational

functions in the s variable. That is, the numerator was always of lower degree than the
denominator. Not so with s+1

s . We write,

L−1
{

s + 1
s

}
� L−1

{
1 +

1
s

}
� L−1{1} + L−1

{
1
s

}
� δ(t) + 1.

The resulting object is a generalized function and only makes sense when put underneath
an integral.

6.4.3 Impulse response
As we said before, in the differential equation Lx � f (t), we think of f (t) as input, and x(t)
as the output. Often it is important to find the response to an impulse, and then we use the
delta function in place of f (t). The solution to

Lx � δ(t)

is called the impulse response.
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Example 6.4.2: Solve (find the impulse response)

x′′ + ω2
0x � δ(t), x(0) � 0, x′(0) � 0. (6.3)

We first apply the Laplace transform to the equation. Denote the transform of x(t) by
X(s).

s2X(s) + ω2
0X(s) � 1, and so X(s) � 1

s2 + ω2
0
.

Taking the inverse Laplace transform we obtain

x(t) � sin(ω0t)
ω0

.

Let us notice something about the example above. We showed before that when the
input is f (t), then the solution to Lx � f (t) is given by

x(t) �
∫ t

0
f (τ)

sin
(
ω0(t − τ)

)
ω0

dτ.

That is, the solution for an arbitrary input is given as convolutionwith the impulse response.
Let us see why. The key is to notice that for functions x(t) and f (t),

(x ∗ f )′′(t) � d2

dt2

[∫ t

0
f (τ)x(t − τ) dτ

]
�

∫ t

0
f (τ)x′′(t − τ) dτ � (x′′ ∗ f )(t).

We simply differentiate twice under the integral∗, the details are left as an exercise. If we
convolve the entire equation (6.3), the left-hand side becomes

(x′′ + ω2
0x) ∗ f � (x′′ ∗ f ) + ω2

0(x ∗ f ) � (x ∗ f )′′ + ω2
0(x ∗ f ).

The right-hand side becomes
(δ ∗ f )(t) � f (t).

Therefore y(t) � (x ∗ f )(t) is the solution to

y′′ + ω2
0 y � f (t).

This procedure works in general for other linear equations Lx � f (t). If you determine
the impulse response, you also know how to obtain the output x(t) for any input f (t) by
simply convolving the impulse response and the input f (t).

∗You should really think of the integral going over (−∞,∞) rather than over [0, t] and simply assume that
f (t) and x(t) are continuous and zero for negative t.
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6.4.4 Three-point beam bending
Let us give another quite different example where delta functions turn up. In this case
representing point loads on a steel beam. Suppose we have a beam of length L, resting
on two simple supports at the ends. Let x denote the position on the beam, and let y(x)
denote the deflection of the beam in the vertical direction. The deflection y(x) satisfies the
Euler–Bernoulli equation∗,

EI
d4 y
dx4 � F(x),

where E and I are constants† and F(x) is the force applied per unit length at position x. The
situation we are interested in is when the force is applied at a single point as in Figure 6.4.

x

y Fδ(x − a)

Figure 6.4: Three-point bending.

In this case the equation becomes

EI
d4 y
dx4 � −Fδ(x − a),

where x � a is the point where the mass is applied. F is the force applied and the minus
sign indicates that the force is downward, that is, in the negative y direction. The end
points of the beam satisfy the conditions,

y(0) � 0, y′′(0) � 0,
y(L) � 0, y′′(L) � 0.

See § 5.2 for further information about endpoint conditions applied to beams.
Example 6.4.3: Suppose that length of the beam is 2, and suppose that EI � 1 for simplicity.
Further suppose that the force F � 1 is applied at x � 1. That is, we have the equation

d4 y
dx4 � −δ(x − 1),

and the endpoint conditions are

y(0) � 0, y′′(0) � 0, y(2) � 0, y′′(2) � 0.
∗Named for the Swiss mathematicians Jacob Bernoulli (1654–1705), Daniel Bernoulli (1700–1782), the

nephew of Jacob, and Leonhard Paul Euler (1707–1783).
†E is the elastic modulus and I is the second moment of area. Let us not worry about the details and

simply think of these as some given constants.

https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Daniel_Bernoulli
https://en.wikipedia.org/wiki/Euler
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We could integrate, but using the Laplace transform is even easier. We apply the
transform in the x variable rather than the t variable. Let us again denote the transform of
y(x) as Y(s).

s4Y(s) − s3 y(0) − s2 y′(0) − s y′′(0) − y′′′(0) � −e−s .

We notice that y(0) � 0 and y′′(0) � 0. Let us call C1 � y′(0) and C2 � y′′′(0). We solve for
Y(s),

Y(s) � −e−s

s4 +
C1
s2 +

C2
s4 .

We take the inverse Laplace transform utilizing the second shifting property (6.1) to take
the inverse of the first term.

y(x) � −(x − 1)3
6 u(x − 1) + C1x +

C2
6 x3.

We still need to apply two of the endpoint conditions. As the conditions are at x � 2 we
can simply replace u(x − 1) � 1 when taking the derivatives. Therefore,

0 � y(2) � −(2 − 1)3
6 + C1(2) +

C2
6 23

�
−1
6 + 2C1 +

4
3C2,

and
0 � y′′(2) � −3 · 2 · (2 − 1)

6 +
C2
6 3 · 2 · 2 � −1 + 2C2.

Hence C2 �
1
2 and solving for C1 using the first equation we obtain C1 �

−1
4 . Our solution

for the beam deflection is

y(x) � −(x − 1)3
6 u(x − 1) − x

4 +
x3

12 .

6.4.5 Exercises
Exercise 6.4.1: Solve (find the impulse response) x′′ + x′ + x � δ(t), x(0) � 0, x′(0) � 0.

Exercise 6.4.2: Solve (find the impulse response) x′′ + 2x′ + x � δ(t), x(0) � 0, x′(0) � 0.

Exercise 6.4.3: A pulse can come later and can be bigger. Solve x′′ + 4x � 4δ(t − 1), x(0) � 0,
x′(0) � 0.

Exercise 6.4.4: Suppose that f (t) and g(t) are differentiable functions and suppose that f (t) �
g(t) � 0 for all t ≤ 0. Show that

( f ∗ g)′(t) � ( f ′ ∗ g)(t) � ( f ∗ g′)(t).

Exercise 6.4.5: Suppose that Lx � δ(t), x(0) � 0, x′(0) � 0, has the solution x � e−t for t > 0.
Find the solution to Lx � t2, x(0) � 0, x′(0) � 0 for t > 0.

Exercise 6.4.6: Compute L−1
{

s2+s+1
s2

}
.
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Exercise 6.4.7 (challenging): Solve Example 6.4.3 via integrating 4 times in the x variable.

Exercise 6.4.8: Suppose we have a beam of length 1 simply supported at the ends and suppose that
force F � 1 is applied at x �

3
4 in the downward direction. Suppose that EI � 1 for simplicity. Find

the beam deflection y(x).

Exercise 6.4.101: Solve (find the impulse response) x′′ � δ(t), x(0) � 0, x′(0) � 0.

Exercise 6.4.102: Solve (find the impulse response) x′ + ax � δ(t), x(0) � 0, x′(0) � 0.

Exercise 6.4.103: Suppose that Lx � δ(t), x(0) � 0, x′(0) � 0, has the solution x(t) � cos(t) for
t > 0. Find (in closed form) the solution to Lx � sin(t), x(0) � 0, x′(0) � 0 for t > 0.

Exercise 6.4.104: Compute L−1
{

s2

s2+1

}
.

Exercise 6.4.105: Compute L−1
{

3s2e−s+2
s2

}
.

Exercise 6.4.151: Solve the following IVPs:

a) x′′ + 16x � δ(t − 3); x(0) � 1, x′(0) � 0

b) x′′ + 9x � 1 + δ(t − 4); x(0) � x′(0) � 0

c) x′′ + x′ − 6x � 4δ(t − 2); x(0) � 0, x′(0) � 4

d) x′′ + 6x′ + 9x � δ(t − 4); x(0) � 0, x′(0) � 2

e) x′′ + 2x′ + 10x � δ(t − π); x(0) � x′(0) � 0
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Chapter 7

Power series methods

7.1 Power series
Note: 1 or 1.5 lecture, §8.1 in [EP], §5.1 in [BD]

Many functions can be written in terms of a power series

∞∑
k�0

ak(x − x0)k .

If we assume that a solution of a differential equation is written as a power series, then
perhaps we can use a method reminiscent of undetermined coefficients. That is, we will
try to solve for the numbers ak . Before we can carry out this process, let us review some
results and concepts about power series.

7.1.1 Definition
As we said, a power series is an expression such as

∞∑
k�0

ak(x − x0)k � a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · , (7.1)

where a0, a1, a2, . . . , ak , . . . and x0 are constants. Let

Sn(x) �
n∑

k�0
ak(x − x0)k � a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · · + an(x − x0)n ,

denote the so-called partial sum. If for some x, the limit

lim
n→∞

Sn(x) � lim
n→∞

n∑
k�0

ak(x − x0)k
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exists, then we say that the series (7.1) converges at x. At x � x0, the series always converges
to a0. When (7.1) converges at any other point x , x0, we say that (7.1) is a convergent power
series, and we write

∞∑
k�0

ak(x − x0)k � lim
n→∞

n∑
k�0

ak(x − x0)k .

If the series does not converge for any point x , x0, we say that the series is divergent.

Example 7.1.1: The series
∞∑

k�0

1
k! xk

� 1 + x +
x2

2 +
x3

6 + · · ·

is convergent for any x. Recall that k! � 1 · 2 · 3 · · · k is the factorial. By convention we define
0! � 1. You may recall that this series converges to ex .

We say that (7.1) converges absolutely at x whenever the limit

lim
n→∞

n∑
k�0
|ak | |x − x0 |k

exists. That is, the series
∑∞

k�0 |ak | |x − x0 |k is convergent. If (7.1) converges absolutely at x,
then it converges at x. However, the opposite implication is not true.

Example 7.1.2: The series
∞∑

k�1

1
k

xk

converges absolutely for all x in the interval (−1, 1). It converges at x � −1, as
∑∞

k�1
(−1)k

k
converges (conditionally) by the alternating series test. The power series does not converge
absolutely at x � −1, because

∑∞
k�1

1
k does not converge. The series diverges at x � 1.

7.1.2 Radius of convergence
If a power series converges absolutely at some x1, then for all x such that |x − x0 | ≤ |x1 − x0 |
(that is, x is closer than x1 to x0) we have

��ak(x − x0)k
�� ≤ ��ak(x1 − x0)k

�� for all k. As
the numbers

��ak(x1 − x0)k
�� sum to some finite limit, summing smaller positive numbers��ak(x − x0)k

�� must also have a finite limit. Hence, the series must converge absolutely at x.

Theorem 7.1.1. For a power series (7.1), there exists a number ρ (we allow ρ � ∞) called the
radius of convergence such that the series converges absolutely on the interval (x0 − ρ, x0 + ρ)
and diverges for x < x0 − ρ and x > x0 + ρ. We write ρ � ∞ if the series converges for all x.

See Figure 7.1 on the facing page. In Example 7.1.1 the radius of convergence is ρ � ∞
as the series converges everywhere. In Example 7.1.2 the radius of convergence is ρ � 1.
We note that ρ � 0 is another way of saying that the series is divergent.
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x0 x0 + ρx0 − ρ

diverges converges absolutely diverges

Figure 7.1: Convergence of a power series.

A useful test for convergence of a series is the ratio test. Suppose that
∞∑

k�0
ck

is a series and the limit
L � lim

k→∞

���� ck+1
ck

����
exists. Then the series converges absolutely if L < 1 and diverges if L > 1.

We apply this test to the series (7.1). Let ck � ak(x − x0)k in the test. Compute

L � lim
k→∞

���� ck+1
ck

���� � lim
k→∞

�����ak+1(x − x0)k+1

ak(x − x0)k

����� � lim
k→∞

����ak+1
ak

���� |x − x0 |.

Define A by

A � lim
k→∞

����ak+1
ak

���� .
Then if 1 > L � A|x − x0 | the series (7.1) converges absolutely. If A � 0, then the series
always converges. If A > 0, then the series converges absolutely if |x − x0 | < 1/A, and
diverges if |x − x0 | > 1/A. That is, the radius of convergence is 1/A.

A similar test is the root test. Suppose

L � lim
k→∞

k
√
|ck |

exists. Then
∑∞

k�0 ck converges absolutely if L < 1 and diverges if L > 1. We can use the
same calculation as above to find A. Let us summarize.
Theorem 7.1.2 (Ratio and root tests for power series). Consider a power series

∞∑
k�0

ak(x − x0)k

such that
A � lim

k→∞

����ak+1
ak

���� or A � lim
k→∞

k
√
|ak |

exists. If A � 0, then the radius of convergence of the series is ∞. Otherwise, the radius of
convergence is 1/A.
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Example 7.1.3: Suppose we have the series

∞∑
k�0

2−k(x − 1)k .

First we compute the limit in the ratio test,

A � lim
k→∞

����ak+1
ak

���� � lim
k→∞

����2−k−1

2−k

���� � lim
k→∞

2−1
� 1/2.

Therefore the radius of convergence is 2, and the series converges absolutely on the interval
(−1, 3). And we could just as well have used the root test:

A � lim
k→∞

lim
k→∞

k
√
|ak | � lim

k→∞
k
√
|2−k | � lim

k→∞
2−1

� 1/2.

Example 7.1.4: Consider
∞∑

k�0

1
kk

xk .

Compute the limit for the root test,

A � lim
k→∞

k
√
|ak | � lim

k→∞
k

√���� 1
kk

���� � lim
k→∞

k

√����1k ����k � lim
k→∞

1
k
� 0.

So the radius of convergence is∞: the series converges everywhere. The ratio test would
also work here.

The root or the ratio test does not always apply. That is the limit of
�� ak+1

ak

�� or k
√
|ak | might

not exist. There exist more sophisticated ways of finding the radius of convergence, but
those would be beyond the scope of this chapter. The two methods above cover many of
the series that arise in practice. Often if the root test applies, so does the ratio test, and vice
versa, though the limit might be easier to compute in one way than the other.

7.1.3 Analytic functions
Functions represented by power series are called analytic functions. Not every function is
analytic, although the majority of the functions you have seen in calculus are.

An analytic function f (x) is equal to its Taylor series∗ near a point x0. That is, for x near
x0 we have

f (x) �
∞∑

k�0

f (k)(x0)
k! (x − x0)k , (7.2)

where f (k)(x0) denotes the kth derivative of f (x) at the point x0.
∗Named after the English mathematician Sir Brook Taylor (1685–1731).

http://en.wikipedia.org/wiki/Brook_Taylor
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For example, sine is an analytic function and its Taylor series around x0 � 0 is given by

sin(x) �
∞∑

n�0

(−1)n

(2n + 1)! x2n+1.

In Figure 7.2 we plot sin(x) and the truncations of the series up to degree 5 and 9. You can
see that the approximation is very good for x near 0, but gets worse for x further away
from 0. This is what happens in general. To get a good approximation far away from x0
you need to take more and more terms of the Taylor series.

-10 -5 0 5 10

-10 -5 0 5 10
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-2
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1

2

3
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-1

0

1

2

3

Figure 7.2: The sine function and its Taylor approximations around x0 � 0 of 5th and 9th degree.

7.1.4 Manipulating power series
One of the main properties of power series that we will use is that we can differentiate
them term by term. That is, suppose that

∑
ak(x − x0)k is a convergent power series. Then

for x in the radius of convergence we have

d
dx

[ ∞∑
k�0

ak(x − x0)k
]
�

∞∑
k�1

kak(x − x0)k−1.

Notice that the term corresponding to k � 0 disappeared as it was constant. The radius of
convergence of the differentiated series is the same as that of the original.
Example 7.1.5: Let us show that the exponential y � ex solves y′ � y. First write

y � ex
�

∞∑
k�0

1
k! xk .

Now differentiate

y′ �
∞∑

k�1
k

1
k! xk−1

�

∞∑
k�1

1
(k − 1)! xk−1.
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We reindex the series by simply replacing k with k + 1. The series does not change, what
changes is simply how we write it. After reindexing the series starts at k � 0 again.

∞∑
k�1

1
(k − 1)! xk−1

�

∞∑
k+1�1

1(
(k + 1) − 1

)
!
x(k+1)−1

�

∞∑
k�0

1
k! xk .

That was precisely the power series for ex that we started with, so we showed that
d

dx [ex] � ex .
Convergent power series can be added and multiplied together, and multiplied by

constants using the following rules. First, we can add series by adding term by term,( ∞∑
k�0

ak(x − x0)k
)
+

( ∞∑
k�0

bk(x − x0)k
)
�

∞∑
k�0
(ak + bk)(x − x0)k .

We can multiply by constants,

α

( ∞∑
k�0

ak(x − x0)k
)
�

∞∑
k�0

αak(x − x0)k .

We can also multiply series together,( ∞∑
k�0

ak(x − x0)k
) ( ∞∑

k�0
bk(x − x0)k

)
�

∞∑
k�0

ck(x − x0)k ,

where ck � a0bk + a1bk−1 + · · · + ak b0. The radius of convergence of the sum or the product
is at least the minimum of the radii of convergence of the two series involved.

7.1.5 Power series for rational functions
Polynomials are simply finite power series. That is, a polynomial is a power series where
the ak are zero for all k large enough. We can always expand a polynomial as a power series
about any point x0 by writing the polynomial as a polynomial in (x − x0). For example, let
us write 2x2 − 3x + 4 as a power series around x0 � 1:

2x2 − 3x + 4 � 3 + (x − 1) + 2(x − 1)2.

In other words a0 � 3, a1 � 1, a2 � 2, and all other ak � 0. To do this, we know that ak � 0
for all k ≥ 3 as the polynomial is of degree 2. We write a0 + a1(x − 1) + a2(x − 1)2, we
expand, and we solve for a0, a1, and a2. We could have also differentiated at x � 1 and
used the Taylor series formula (7.2).

Let us look at rational functions, that is, ratios of polynomials. An important fact is
that a series for a function only defines the function on an interval even if the function is
defined elsewhere. For example, for −1 < x < 1 we have

1
1 − x

�

∞∑
k�0

xk
� 1 + x + x2

+ · · ·
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This series is called the geometric series. The ratio test tells us that the radius of convergence
is 1. The series diverges for x ≤ −1 and x ≥ 1, even though 1

1−x is defined for all x , 1.
We can use the geometric series together with rules for addition and multiplication of

power series to expand rational functions around a point, as long as the denominator is
not zero at x0. Note that as for polynomials, we could equivalently use the Taylor series
expansion (7.2).
Example 7.1.6: Expand x

1+2x+x2 as a power series around the origin (x0 � 0) and find the
radius of convergence.

First, write 1 + 2x + x2 � (1 + x)2 �
(
1 − (−x)

)2. Compute

x
1 + 2x + x2 � x

(
1

1 − (−x)

)2

� x

( ∞∑
k�0
(−1)k xk

)2

� x

( ∞∑
k�0

ck xk

)
�

∞∑
k�0

ck xk+1,

where to get ck , we use the formula for the product of series. We obtain, c0 � 1,
c1 � −1 − 1 � −2, c2 � 1 + 1 + 1 � 3, etc. Therefore

x
1 + 2x + x2 �

∞∑
k�1
(−1)k+1kxk

� x − 2x2
+ 3x3 − 4x4

+ · · ·

The radius of convergence is at least 1. We use the ratio test

lim
k→∞

����ak+1
ak

���� � lim
k→∞

�����(−1)k+2(k + 1)
(−1)k+1k

����� � lim
k→∞

k + 1
k

� 1.

So the radius of convergence is actually equal to 1.
When the rational function is more complicated, it is also possible to use method of

partial fractions. For example, to find the Taylor series for x3+x
x2−1 , we write

x3 + x
x2 − 1

� x +
1

1 + x
− 1

1 − x
� x +

∞∑
k�0
(−1)k xk −

∞∑
k�0

xk
� −x +

∞∑
k�3

k odd

(−2)xk .

7.1.6 Exercises

Exercise 7.1.1: Is the power series
∞∑

k�0
ek xk convergent? If so, what is the radius of convergence?
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Exercise 7.1.2: Is the power series
∞∑

k�0
kxk convergent? If so, what is the radius of convergence?

Exercise 7.1.3: Is the power series
∞∑

k�0
k!xk convergent? If so, what is the radius of convergence?

Exercise 7.1.4: Is the power series
∞∑

k�0

1
(2k)!(x − 10)k convergent? If so, what is the radius of

convergence?

Exercise 7.1.5: Determine the Taylor series for sin x around the point x0 � π.

Exercise 7.1.6: Determine the Taylor series for ln x around the point x0 � 1, and find the radius of
convergence.

Exercise 7.1.7: Determine the Taylor series and its radius of convergence of 1
1 + x

around x0 � 0.

Exercise 7.1.8: Determine the Taylor series and its radius of convergence of x
4 − x2 around x0 � 0.

Hint: You will not be able to use the ratio test.

Exercise 7.1.9: Expand x5 + 5x + 1 as a power series around x0 � 5.

Exercise 7.1.10: Suppose that the ratio test applies to a series
∞∑

k�0
ak xk . Show, using the ratio test,

that the radius of convergence of the differentiated series is the same as that of the original series.

Exercise 7.1.11: Suppose that f is an analytic function such that f (n)(0) � n. Find f (1).

Exercise 7.1.51: For each of the following 1st-order DEs:

i. Find the solution such that y(0) � y0 by separation of variables.

ii. Find the solution such that y(0) � y0 by the power series method about x0 � 0.

iii. Using the power series expansions for the functions ex and 1
1−x , show that the power series of

the function y(x) found in i. is the same as the power series solution found in ii.

a) y′ + 3y � 0

b) 2y′ + 5y � 0

c) 3y′ � 2y

d) y′ + x y � 0

e) (x − 1)y′ + y � 0
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f) (2 + x)y′ + y � 0

g) (1 − 3x)y′ − 3y � 0

Exercise 7.1.101: Is the power series
∞∑

n�1
(0.1)n xn convergent? If so, what is the radius of

convergence?

Exercise 7.1.102 (challenging): Is the power series
∞∑

n�1

n!
nn xn convergent? If so, what is the radius

of convergence?

Exercise 7.1.103: Using the geometric series, expand 1
1−x around x0 � 2. For what x does the

series converge?

Exercise 7.1.104 (challenging): Find the Taylor series for x7ex around x0 � 0.

Exercise 7.1.105 (challenging): Imagine f and g are analytic functions such that f (k)(0) � g(k)(0)
for all large enough k. What can you say about f (x) − g(x)?
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7.2 Series solutions of linear second order ODEs
Note: 1 or 1.5 lecture, §8.2 in [EP], §5.2 and §5.3 in [BD]

Suppose we have a linear second order homogeneous ODE of the form

p(x)y′′ + q(x)y′ + r(x)y � 0.

Suppose that p(x), q(x), and r(x) are polynomials. We will try a solution of the form

y �

∞∑
k�0

ak(x − x0)k

and solve for the ak to try to obtain a solution defined in some interval around x0.
The point x0 is called an ordinary point if p(x0) , 0. That is, the functions

q(x)
p(x) and r(x)

p(x)

are defined for x near x0. If p(x0) � 0, then we say x0 is a singular point. Handling singular
points is harder than ordinary points and so we now focus only on ordinary points.
Example 7.2.1: Let us start with a very simple example

y′′ − y � 0.

Let us try a power series solution near x0 � 0, which is an ordinary point. Every point is an
ordinary point in fact, as the equation is constant coefficient. We already know we should
obtain exponentials or the hyperbolic sine and cosine, but let us pretend we do not know
this.

We try

y �

∞∑
k�0

ak xk .

If we differentiate, the k � 0 term is a constant and hence disappears. We therefore get

y′ �
∞∑

k�1
kak xk−1.

We differentiate yet again to obtain (now the k � 1 term disappears)

y′′ �
∞∑

k�2
k(k − 1)ak xk−2.

We reindex the series (replace k with k + 2) to obtain

y′′ �
∞∑

k�0
(k + 2) (k + 1) ak+2xk .
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Now we plug y and y′′ into the differential equation

0 � y′′ − y �

( ∞∑
k�0
(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k�0

ak xk

)
�

∞∑
k�0

(
(k + 2) (k + 1) ak+2xk − ak xk

)
�

∞∑
k�0

(
(k + 2) (k + 1) ak+2 − ak

)
xk .

As y′′ − y is supposed to be equal to 0, we know that the coefficients of the resulting series
must be equal to 0. Therefore,

(k + 2) (k + 1) ak+2 − ak � 0, or ak+2 �
ak

(k + 2)(k + 1) .

The equation above is called a recurrence relation for the coefficients of the power series. It
did not matter what a0 or a1 was. They can be arbitrary. But once we pick a0 and a1, then
all other coefficients are determined by the recurrence relation.

Let us see what the coefficients must be. First, a0 and a1 are arbitrary

a2 �
a0
2 , a3 �

a1
(3)(2) , a4 �

a2
(4)(3) �

a0
(4)(3)(2) , a5 �

a3
(5)(4) �

a1
(5)(4)(3)(2) , . . .

So we note that for even k, that is k � 2n we get

ak � a2n �
a0
(2n)! ,

and for odd k, that is k � 2n + 1 we have

ak � a2n+1 �
a1

(2n + 1)! .

Let us write down the series

y �

∞∑
k�0

ak xk
�

∞∑
n�0

(
a0
(2n)! x2n

+
a1

(2n + 1)! x2n+1
)
� a0

∞∑
n�0

1
(2n)! x2n

+ a1

∞∑
n�0

1
(2n + 1)! x2n+1.

We recognize the two series as the hyperbolic sine and cosine. Therefore,

y � a0 cosh x + a1 sinh x.

Of course, in general we will not be able to recognize the series that appears, since
usually there will not be any elementary function that matches it. In that case we will be
content with the series.
Example 7.2.2: Let us do a more complex example. Consider Airy’s equation∗:

y′′ − x y � 0,

near the point x0 � 0. Note that x0 � 0 is an ordinary point.
∗Named after the English mathematician Sir George Biddell Airy (1801–1892).

http://en.wikipedia.org/wiki/George_Biddell_Airy
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We try

y �

∞∑
k�0

ak xk .

We differentiate twice (as above) to obtain

y′′ �
∞∑

k�2
k (k − 1) ak xk−2.

We plug y into the equation

0 � y′′ − x y �

( ∞∑
k�2

k (k − 1) ak xk−2

)
− x

( ∞∑
k�0

ak xk

)
�

( ∞∑
k�2

k (k − 1) ak xk−2

)
−

( ∞∑
k�0

ak xk+1

)
.

We reindex to make things easier to sum

0 � y′′ − x y �

(
2a2 +

∞∑
k�1
(k + 2) (k + 1) ak+2xk

)
−

( ∞∑
k�1

ak−1xk

)
� 2a2 +

∞∑
k�1

(
(k + 2) (k + 1) ak+2 − ak−1

)
xk .

Again y′′ − x y is supposed to be 0, so a2 � 0, and

(k + 2) (k + 1) ak+2 − ak−1 � 0, or ak+2 �
ak−1

(k + 2)(k + 1) .

We jump in steps of three. First, since a2 � 0 we must have , a5 � 0, a8 � 0, a11 � 0, etc. In
general, a3n+2 � 0.

The constants a0 and a1 are arbitrary and we obtain

a3 �
a0
(3)(2) , a4 �

a1
(4)(3) , a6 �

a3
(6)(5) �

a0
(6)(5)(3)(2) , a7 �

a4
(7)(6) �

a1
(7)(6)(4)(3) , . . .

For ak where k is a multiple of 3, that is k � 3n we notice that

a3n �
a0

(2)(3)(5)(6) · · · (3n − 1)(3n) .

For ak where k � 3n + 1, we notice

a3n+1 �
a1

(3)(4)(6)(7) · · · (3n)(3n + 1) .
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In other words, if we write down the series for y, it has two parts

y �

(
a0 +

a0
6 x3

+
a0

180 x6
+ · · · + a0

(2)(3)(5)(6) · · · (3n − 1)(3n)x
3n

+ · · ·
)

+

(
a1x +

a1
12 x4

+
a1

504 x7
+ · · · + a1

(3)(4)(6)(7) · · · (3n)(3n + 1)x
3n+1

+ · · ·
)

� a0

(
1 +

1
6 x3

+
1

180 x6
+ · · · + 1

(2)(3)(5)(6) · · · (3n − 1)(3n)x
3n

+ · · ·
)

+ a1

(
x +

1
12 x4

+
1

504 x7
+ · · · + 1

(3)(4)(6)(7) · · · (3n)(3n + 1)x
3n+1

+ · · ·
)
.

We define

y1(x) � 1 +
1
6 x3

+
1

180 x6
+ · · · + 1

(2)(3)(5)(6) · · · (3n − 1)(3n)x
3n

+ · · · ,

y2(x) � x +
1

12 x4
+

1
504 x7

+ · · · + 1
(3)(4)(6)(7) · · · (3n)(3n + 1)x

3n+1
+ · · · ,

and write the general solution to the equation as y(x) � a0 y1(x) + a1 y2(x). If we plug
in x � 0 into the power series for y1 and y2, we find y1(0) � 1 and y2(0) � 0. Similarly,
y′1(0) � 0 and y′2(0) � 1. Therefore y � a0 y1 + a1 y2 is a solution that satisfies the initial
conditions y(0) � a0 and y′(0) � a1.

-5.0 -2.5 0.0 2.5 5.0

-5.0 -2.5 0.0 2.5 5.0

-5.0

-2.5

0.0

2.5

5.0

7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

Figure 7.3: The two solutions y1 and y2 to Airy’s equation.

The functions y1 and y2 cannot be written in terms of the elementary functions that you
know. See Figure 7.3 for the plot of the solutions y1 and y2. These functions have many
interesting properties. For example, they are oscillatory for negative x (like solutions to
y′′ + y � 0) and for positive x they grow without bound (like solutions to y′′ − y � 0).

Sometimes a solution may turn out to be a polynomial.
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Example 7.2.3: Let us find a solution to the so-called Hermite’s equation of order n∗:

y′′ − 2x y′ + 2n y � 0.

Let us find a solution around the point x0 � 0. We try

y �

∞∑
k�0

ak xk .

We differentiate (as above) to obtain

y′ �
∞∑

k�1
kak xk−1,

y′′ �
∞∑

k�2
k (k − 1) ak xk−2.

Now we plug into the equation

0 � y′′ − 2x y′ + 2n y

�

( ∞∑
k�2

k(k − 1)ak xk−2

)
− 2x

( ∞∑
k�1

kak xk−1

)
+ 2n

( ∞∑
k�0

ak xk

)
�

( ∞∑
k�2

k(k − 1)ak xk−2

)
−

( ∞∑
k�1

2kak xk

)
+

( ∞∑
k�0

2nak xk

)
�

(
2a2 +

∞∑
k�1
(k + 2)(k + 1)ak+2xk

)
−

( ∞∑
k�1

2kak xk

)
+

(
2na0 +

∞∑
k�1

2nak xk

)
� 2a2 + 2na0 +

∞∑
k�1

(
(k + 2)(k + 1)ak+2 − 2kak + 2nak

)
xk .

As y′′ − 2x y′ + 2n y � 0 we have

(k + 2)(k + 1)ak+2 + (−2k + 2n)ak � 0, or ak+2 �
(2k − 2n)
(k + 2)(k + 1)ak .

This recurrence relation actually includes a2 � −na0 (which comes about from 2a2 + 2na0 �

0). Again a0 and a1 are arbitrary.

a2 �
−2n
(2)(1)a0, a3 �

2(1 − n)
(3)(2) a1,

a4 �
2(2 − n)
(4)(3) a2 �

22(2 − n)(−n)
(4)(3)(2)(1) a0,

∗Named after the French mathematician Charles Hermite (1822–1901).

http://en.wikipedia.org/wiki/Hermite
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a5 �
2(3 − n)
(5)(4) a3 �

22(3 − n)(1 − n)
(5)(4)(3)(2) a1, . . .

Let us separate the even and odd coefficients. We find that

a2m �
2m(−n)(2 − n) · · · (2m − 2 − n)

(2m)! ,

a2m+1 �
2m(1 − n)(3 − n) · · · (2m − 1 − n)

(2m + 1)! .

Let us write down the two series, one with the even powers and one with the odd.

y1(x) � 1 +
2(−n)

2! x2
+

22(−n)(2 − n)
4! x4

+
23(−n)(2 − n)(4 − n)

6! x6
+ · · · ,

y2(x) � x +
2(1 − n)

3! x3
+

22(1 − n)(3 − n)
5! x5

+
23(1 − n)(3 − n)(5 − n)

7! x7
+ · · · .

We then write
y(x) � a0 y1(x) + a1 y2(x).

We remark that if n is a positive even integer, then y1(x) is a polynomial as all the
coefficients in the series beyond a certain degree are zero. If n is a positive odd integer,
then y2(x) is a polynomial. For example, if n � 4, then

y1(x) � 1 +
2(−4)

2! x2
+

22(−4)(2 − 4)
4! x4

� 1 − 4x2
+

4
3 x4.

7.2.1 Exercises
In the following exercises, when asked to solve an equation using power series methods,
you should find the first few terms of the series, and if possible find a general formula for
the kth coefficient.

Exercise 7.2.1: Use power series methods to solve y′′ + y � 0 at the point x0 � 1.

Exercise 7.2.2: Use power series methods to solve y′′ + 4x y � 0 at the point x0 � 0.

Exercise 7.2.3: Use power series methods to solve y′′ − x y � 0 at the point x0 � 1.

Exercise 7.2.4: Use power series methods to solve y′′ + x2 y � 0 at the point x0 � 0.

Exercise 7.2.5: The methods work for other orders than second order. Try the methods of this section
to solve the first order system y′ − x y � 0 at the point x0 � 0.

Exercise 7.2.6 (Chebyshev’s equation of order p):

Solve (1 − x2)y′′ − x y′ + p2 y � 0 using power series methods at x0 � 0.a)

For what p is there a polynomial solution?b)
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Exercise 7.2.7: Find a polynomial solution to (x2 + 1)y′′ − 2x y′ + 2y � 0 using power series
methods.

Exercise 7.2.8:

Use power series methods to solve (1 − x)y′′ + y � 0 at the point x0 � 0.a)

Use the solution to part a) to find a solution for x y′′ + y � 0 around the point x0 � 1.b)

Exercise 7.2.101: Use power series methods to solve y′′ + 2x3 y � 0 at the point x0 � 0.

Exercise 7.2.102 (challenging): Power series methods also work for nonhomogeneous equations.

Use power series methods to solve y′′ − x y �
1

1−x at the point x0 � 0. Hint: Recall the
geometric series.

a)

Now solve for the initial condition y(0) � 0, y′(0) � 0.b)

Exercise 7.2.103: Attempt to solve x2 y′′ − y � 0 at x0 � 0 using the power series method of this
section (x0 is a singular point). Can you find at least one solution? Can you find more than one
solution?
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7.3 Singular points and the method of Frobenius
Note: 1 or 1.5 lectures, §8.4 and §8.5 in [EP], §5.4–§5.7 in [BD]

While behavior of ODEs at singular points is more complicated, certain singular points
are not especially difficult to solve. Let us look at some examples before giving a general
method. We may be lucky and obtain a power series solution using the method of the
previous section, but in general we may have to try other things.

7.3.1 Examples

Example 7.3.1: Let us first look at a simple first order equation

2x y′ − y � 0.

Note that x � 0 is a singular point. If we try to plug in

y �

∞∑
k�0

ak xk ,

we obtain

0 � 2x y′ − y � 2x

( ∞∑
k�1

kak xk−1

)
−

( ∞∑
k�0

ak xk

)
� a0 +

∞∑
k�1
(2kak − ak) xk .

First, a0 � 0. Next, the only way to solve 0 � 2kak − ak � (2k − 1) ak for k � 1, 2, 3, . . . is
for ak � 0 for all k. Therefore we only get the trivial solution y � 0. We need a nonzero
solution to get the general solution.

Let us try y � xr for some real number r. Consequently our solution—if we can find
one—may only make sense for positive x. Then y′ � rxr−1. So

0 � 2x y′ − y � 2xrxr−1 − xr
� (2r − 1)xr .

Therefore r � 1/2, or in other words y � x1/2. Multiplying by a constant, the general
solution for positive x is

y � Cx1/2.

If C , 0, then the derivative of the solution “blows up” at x � 0 (the singular point). There
is only one solution that is differentiable at x � 0 and that’s the trivial solution y � 0.

Not every problem with a singular point has a solution of the form y � xr , of course.
But perhaps we can combine the methods. What we will do is to try a solution of the form

y � xr f (x)
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where f (x) is an analytic function.
Example 7.3.2: Consider the equation

4x2 y′′ − 4x2 y′ + (1 − 2x)y � 0,

and again note that x � 0 is a singular point.
Let us try

y � xr
∞∑

k�0
ak xk

�

∞∑
k�0

ak xk+r ,

where r is a real number, not necessarily an integer. Again if such a solution exists, it may
only exist for positive x. First let us find the derivatives

y′ �
∞∑

k�0
(k + r) ak xk+r−1,

y′′ �
∞∑

k�0
(k + r) (k + r − 1) ak xk+r−2.

Plugging into our equation we obtain

0 � 4x2 y′′ − 4x2 y′ + (1 − 2x)y

� 4x2

( ∞∑
k�0
(k + r) (k + r − 1) ak xk+r−2

)
− 4x2

( ∞∑
k�0
(k + r) ak xk+r−1

)
+ (1 − 2x)

( ∞∑
k�0

ak xk+r

)
�

( ∞∑
k�0

4(k + r) (k + r − 1) ak xk+r

)
−

( ∞∑
k�0

4(k + r) ak xk+r+1

)
+

( ∞∑
k�0

ak xk+r

)
−

( ∞∑
k�0

2ak xk+r+1

)
�

( ∞∑
k�0

4(k + r) (k + r − 1) ak xk+r

)
−

( ∞∑
k�1

4(k + r − 1) ak−1xk+r

)
+

( ∞∑
k�0

ak xk+r

)
−

( ∞∑
k�1

2ak−1xk+r

)
� 4r(r − 1) a0xr

+ a0xr
+

∞∑
k�1

(
4(k + r) (k + r − 1) ak − 4(k + r − 1) ak−1 + ak − 2ak−1

)
xk+r

�
(
4r(r − 1) + 1

)
a0xr

+

∞∑
k�1

( (
4(k + r) (k + r − 1) + 1

)
ak −

(
4(k + r − 1) + 2

)
ak−1

)
xk+r .

To have a solution we must first have
(
4r(r − 1)+ 1

)
a0 � 0. Supposing that a0 , 0 we obtain

4r(r − 1) + 1 � 0.
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This equation is called the indicial equation. This particular indicial equation has a double
root at r � 1/2.

OK, so we know what r has to be. That knowledge we obtained simply by looking at
the coefficient of xr . All other coefficients of xk+r also have to be zero so(

4(k + r) (k + r − 1) + 1
)

ak −
(
4(k + r − 1) + 2

)
ak−1 � 0.

If we plug in r � 1/2 and solve for ak , we get

ak �
4(k + 1/2 − 1) + 2

4(k + 1/2) (k + 1/2 − 1) + 1
ak−1 �

1
k

ak−1.

Let us set a0 � 1. Then

a1 �
1
1 a0 � 1, a2 �

1
2 a1 �

1
2 , a3 �

1
3 a2 �

1
3 · 2 , a4 �

1
4 a3 �

1
4 · 3 · 2 , · · ·

Extrapolating, we notice that

ak �
1

k(k − 1)(k − 2) · · · 3 · 2 �
1
k! .

In other words,

y �

∞∑
k�0

ak xk+r
�

∞∑
k�0

1
k! xk+1/2

� x1/2
∞∑

k�0

1
k! xk

� x1/2ex .

That was lucky! In general, we will not be able to write the series in terms of elementary
functions.

We have one solution, let us call it y1 � x1/2ex . But what about a second solution? If we
want a general solution, we need two linearly independent solutions. Picking a0 to be a
different constant only gets us a constant multiple of y1, and we do not have any other r to
try; we only have one solution to the indicial equation. Well, there are powers of x floating
around and we are taking derivatives, perhaps the logarithm (the antiderivative of x−1) is
around as well. It turns out we want to try for another solution of the form

y2 �

∞∑
k�0

bk xk+r
+ (ln x)y1,

which in our case is

y2 �

∞∑
k�0

bk xk+1/2
+ (ln x)x1/2ex .

We now differentiate this equation, substitute into the differential equation and solve for
bk . A long computation ensues and we obtain some recursion relation for bk . The reader
can (and should) try this to obtain for example the first three terms

b1 � b0 − 1, b2 �
2b1 − 1

4 , b3 �
6b2 − 1

18 , . . .

We thenfix b0 and obtain a solution y2. Thenwewrite the general solution as y � Ay1+By2.
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7.3.2 The method of Frobenius
Before giving the general method, let us clarify when the method applies. Let

p(x)y′′ + q(x)y′ + r(x)y � 0

be an ODE. As before, if p(x0) � 0, then x0 is a singular point. If, furthermore, the limits

lim
x→x0

(x − x0)
q(x)
p(x) and lim

x→x0
(x − x0)2

r(x)
p(x)

both exist and are finite, then we say that x0 is a regular singular point.
Example 7.3.3: Often, and for the rest of this section, x0 � 0. Consider

x2 y′′ + x(1 + x)y′ + (π + x2)y � 0.

Write

lim
x→0

x
q(x)
p(x) � lim

x→0
x

x(1 + x)
x2 � lim

x→0
(1 + x) � 1,

lim
x→0

x2 r(x)
p(x) � lim

x→0
x2 (π + x2)

x2 � lim
x→0
(π + x2) � π.

So x � 0 is a regular singular point.
On the other hand if we make the slight change

x2 y′′ + (1 + x)y′ + (π + x2)y � 0,

then
lim
x→0

x
q(x)
p(x) � lim

x→0
x
(1 + x)

x2 � lim
x→0

1 + x
x

� DNE.

Here DNE stands for does not exist. The point 0 is a singular point, but not a regular singular
point.

Let us now discuss the generalMethod of Frobenius∗. We only consider the method at
the point x � 0 for simplicity. The main idea is the following theorem.
Theorem 7.3.1 (Method of Frobenius). Suppose that

p(x)y′′ + q(x)y′ + r(x)y � 0 (7.3)

has a regular singular point at x � 0. Then there exists at least one solution of the form

y � xr
∞∑

k�0
ak xk ,

where a0 � 1. A solution of this form is called a Frobenius-type solution.

∗Named after the German mathematician Ferdinand Georg Frobenius (1849–1917).

http://en.wikipedia.org/wiki/Ferdinand_Georg_Frobenius
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The method usually breaks down like this:

(i) We seek a Frobenius-type solution of the form

y �

∞∑
k�0

ak xk+r .

We plug this y into equation (7.3). We collect terms and write everything as a single
series.

(ii) The obtained series must be zero. Setting the first coefficient (usually the coefficient of
xr) in the series to zero we obtain the indicial equation, which is a quadratic polynomial
in r.

(iii) If the indicial equation has two real roots r1 and r2 such that r1 − r2 is not an integer,
then we have two linearly independent Frobenius-type solutions. Using the first root,
we plug in

y1 � xr1

∞∑
k�0

ak xk ,

and we solve for all ak to obtain the first solution. Then using the second root, we
plug in

y2 � xr2

∞∑
k�0

bk xk ,

and solve for all bk to obtain the second solution.

(iv) If the indicial equation has a doubled root r, then there we find one solution

y1 � xr
∞∑

k�0
ak xk ,

and then we obtain a new solution by plugging

y2 � xr
∞∑

k�0
bk xk

+ (ln x)y1,

into equation (7.3) and solving for the constants bk .

(v) If the indicial equation has two real roots such that r1 − r2 is an integer, then one
solution is

y1 � xr1

∞∑
k�0

ak xk ,
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and the second linearly independent solution is of the form

y2 � xr2

∞∑
k�0

bk xk
+ C(ln x)y1,

where we plug y2 into (7.3) and solve for the constants bk and C.

(vi) Finally, if the indicial equation has complex roots, then solving for ak in the solution

y � xr1

∞∑
k�0

ak xk

results in a complex-valued function—all the ak are complex numbers. We obtain
our two linearly independent solutions∗ by taking the real and imaginary parts of y.

The main idea is to find at least one Frobenius-type solution. If we are lucky and find
two, we are done. If we only get one, we either use the ideas above or even a different
method such as reduction of order (see § 2.1) to obtain a second solution.

7.3.3 Bessel functions

An important class of functions that arises commonly in physics are the Bessel functions†.
For example, these functions appear when solving the wave equation in two and three
dimensions. First consider Bessel’s equation of order p:

x2 y′′ + x y′ +
(
x2 − p2) y � 0.

We allow p to be any number, not just an integer, although integers and multiples of 1/2 are
most important in applications.

When we plug

y �

∞∑
k�0

ak xk+r

into Bessel’s equation of order p, we obtain the indicial equation

r(r − 1) + r − p2
� (r − p)(r + p) � 0.

Therefore we obtain two roots r1 � p and r2 � −p. If p is not an integer, then following the
method of Frobenius and setting a0 � 1, we obtain linearly independent solutions of the
form

y1 � xp
∞∑

k�0

(−1)k x2k

22k k!(k + p)(k − 1 + p) · · · (2 + p)(1 + p)
,

y2 � x−p
∞∑

k�0

(−1)k x2k

22k k!(k − p)(k − 1 − p) · · · (2 − p)(1 − p)
.

∗See Joseph L. Neuringera, The Frobenius method for complex roots of the indicial equation, International
Journal of Mathematical Education in Science and Technology, Volume 9, Issue 1, 1978, 71–77.

†Named after the German astronomer and mathematician Friedrich Wilhelm Bessel (1784–1846).

http://en.wikipedia.org/wiki/Friedrich_Bessel
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Exercise 7.3.1:

Verify that the indicial equation of Bessel’s equation of order p is (r − p)(r + p) � 0.a)

Suppose p is not an integer. Carry out the computation to obtain the solutions y1 and y2
above.

b)

Bessel functions are convenient constant multiples of y1 and y2. First we must define
the gamma function

Γ(x) �
∫ ∞

0
tx−1e−t dt .

Notice that Γ(1) � 1. The gamma function also has a wonderful property

Γ(x + 1) � xΓ(x).

From this property, it follows that Γ(n) � (n − 1)! when n is an integer. So the gamma
function is a continuous version of the factorial. We compute:

Γ(k + p + 1) � (k + p)(k − 1 + p) · · · (2 + p)(1 + p)Γ(1 + p),
Γ(k − p + 1) � (k − p)(k − 1 − p) · · · (2 − p)(1 − p)Γ(1 − p).

Exercise 7.3.2: Verify the identities above using Γ(x + 1) � xΓ(x).

We define the Bessel functions of the first kind of order p and −p as

Jp(x) �
1

2pΓ(1 + p) y1 �

∞∑
k�0

(−1)k

k!Γ(k + p + 1)
( x

2

)2k+p
,

J−p(x) �
1

2−pΓ(1 − p) y2 �

∞∑
k�0

(−1)k

k!Γ(k − p + 1)
( x

2

)2k−p
.

As these are constant multiples of the solutions we found above, these are both solutions
to Bessel’s equation of order p. The constants are picked for convenience.

When p is not an integer, Jp and J−p are linearly independent. When n is an integer we
obtain

Jn(x) �
∞∑

k�0

(−1)k

k! (k + n)!
( x

2

)2k+n
.

In this case
Jn(x) � (−1)n J−n(x),

and so J−n is not a second linearly independent solution. The other solution is the so-called
Bessel function of second kind. These make sense only for integer orders n and are defined as
limits of linear combinations of Jp(x) and J−p(x), as p approaches n in the following way:

Yn(x) � lim
p→n

cos(pπ)Jp(x) − J−p(x)
sin(pπ) .
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Each linear combination of Jp(x) and J−p(x) is a solution to Bessel’s equation of order p.
Then as we take the limit as p goes to n, we see that Yn(x) is a solution to Bessel’s equation
of order n. It also turns out that Yn(x) and Jn(x) are linearly independent. Therefore when
n is an integer, we have the general solution to Bessel’s equation of order n:

y � AJn(x) + BYn(x),

for arbitrary constants A and B. Note that Yn(x) goes to negative infinity at x � 0. Many
mathematical software packages have these functions Jn(x) and Yn(x) defined, so they
can be used just like say sin(x) and cos(x). In fact, Bessel functions have some similar
properties. For example, −J1(x) is a derivative of J0(x), and in general the derivative of
Jn(x) can be written as a linear combination of Jn−1(x) and Jn+1(x). Furthermore, these
functions oscillate, although they are not periodic. See Figure 7.4 for graphs of Bessel
functions.
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Figure 7.4: Plot of the J0(x) and J1(x) in the first graph and Y0(x) and Y1(x) in the second graph.

Example 7.3.4: Other equations can sometimes be solved in terms of the Bessel functions.
For example, given a positive constant λ,

x y′′ + y′ + λ2x y � 0,

can be changed to x2 y′′ + x y′ + λ2x2 y � 0. Then changing variables t � λx, we obtain via
chain rule the equation in y and t:

t2 y′′ + t y′ + t2 y � 0,

which we recognize as Bessel’s equation of order 0. Therefore the general solution is
y(t) � AJ0(t) + BY0(t), or in terms of x:

y � AJ0(λx) + BY0(λx).

This equation comes up, for example, when finding the fundamental modes of vibration of
a circular drum, but we digress.
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7.3.4 Exercises

Exercise 7.3.3: Find a particular (Frobenius-type) solution of x2 y′′ + x y′ + (1 + x)y � 0.

Exercise 7.3.4: Find a particular (Frobenius-type) solution of x y′′ − y � 0.

Exercise 7.3.5: Find a particular (Frobenius-type) solution of y′′ + 1
x y′ − x y � 0.

Exercise 7.3.6: Find the general solution of 2x y′′ + y′ − x2 y � 0.

Exercise 7.3.7: Find the general solution of x2 y′′ − x y′ − y � 0.

Exercise 7.3.8: In the following equations classify the point x � 0 as ordinary, regular singular,
or singular but not regular singular.

x2(1 + x2)y′′ + x y � 0a) x2 y′′ + y′ + y � 0b)

x y′′ + x3 y′ + y � 0c) x y′′ + x y′ − ex y � 0d)

x2 y′′ + x2 y′ + x2 y � 0e)

Exercise 7.3.101: In the following equations classify the point x � 0 as ordinary, regular singular,
or singular but not regular singular.

y′′ + y � 0a) x3 y′′ + (1 + x)y � 0b)

x y′′ + x5 y′ + y � 0c) sin(x)y′′ − y � 0d)

cos(x)y′′ − sin(x)y � 0e)

Exercise 7.3.102: Find the general solution of x2 y′′ − y � 0.

Exercise 7.3.103: Find a particular solution of x2 y′′ + (x − 3/4)y � 0.

Exercise 7.3.104 (tricky): Find the general solution of x2 y′′ − x y′ + y � 0.
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Chapter 8

Nonlinear systems

8.1 Linearization, critical points, and equilibria
Note: 1 lecture, §6.1–§6.2 in [EP], §9.2–§9.3 in [BD]

Except for a few brief detours in chapter 1, we considered mostly linear equations.
Linear equations suffice in many applications, but in reality most phenomena require
nonlinear equations. Nonlinear equations, however, are notoriously more difficult to
understand than linear ones, and many strange new phenomena appear when we allow
our equations to be nonlinear.

Not to worry, we did not waste all this time studying linear equations. Nonlinear
equations can often be approximated by linear ones if we only need a solution “locally,” for
example, only for a short period of time, or only for certain parameters. Understanding
linear equations can also give us qualitative understanding about a more general nonlinear
problem. The idea is similar to what you did in calculus in trying to approximate a function
by a line with the right slope.

θ
L

m

In § 2.4 we looked at the pendulum of length L. The goal was to
solve for the angle θ(t) as a function of the time t. The equation for
the setup is the nonlinear equation

θ′′ +
g
L

sin θ � 0.

Instead of solving this equation, we solved the rather easier linear
equation

θ′′ +
g
L
θ � 0.

While the solution to the linear equation is not exactly what we were looking for, it is rather
close to the original, as long as the angle θ is small and the time period involved is short.

You might ask: Why don’t we just solve the nonlinear problem? Well, it might be very
difficult, impractical, or impossible to solve analytically, depending on the equation in
question. We may not even be interested in the actual solution, we might only be interested
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in some qualitative idea of what the solution is doing. For example, what happens as time
goes to infinity?

8.1.1 Autonomous systems and phase plane analysis
We restrict our attention to a two-dimensional autonomous system

x′ � f (x , y), y′ � g(x , y),

where f (x , y) and g(x , y) are functions of two variables, and the derivatives are taken with
respect to time t. Solutions are functions x(t) and y(t) such that

x′(t) � f
(
x(t), y(t)

)
, y′(t) � g

(
x(t), y(t)

)
.

The way we will analyze the system is very similar to § 1.6, where we studied a single
autonomous equation. The ideas in two dimensions are the same, but the behavior can be
far more complicated.

It may be best to think of the system of equations as the single vector equation[
x
y

] ′
�

[
f (x , y)
g(x , y)

]
. (8.1)

As in § 3.1 we draw the phase portrait (or phase diagram), where each point (x , y) corresponds
to a specific state of the system. We draw the vector field given at each point (x , y) by the
vector

[
f (x ,y)
g(x ,y)

]
. And as before if we find solutions, we draw the trajectories by plotting all

points
(
x(t), y(t)

)
for a certain range of t.

Example 8.1.1: Consider the second order equation x′′ � −x + x2. Write this equation as a
first order nonlinear system

x′ � y , y′ � −x + x2.

The phase portrait with some trajectories is drawn in Figure 8.1 on the facing page.
From the phase portrait it should be clear that even this simple system has fairly

complicated behavior. Some trajectories keep oscillating around the origin, and some go
off towards infinity. We will return to this example often, and analyze it completely in this
(and the next) section.

If we zoom into the diagram near a point where
[

f (x ,y)
g(x ,y)

]
is not zero, then nearby the

arrows point generally in essentially that same direction and have essentially the same
magnitude. In other words the behavior is not that interesting near such a point. We are of
course assuming that f (x , y) and g(x , y) are continuous.

Let us concentrate on those points in the phase diagram above where the trajectories
seem to start, end, or go around. We see two such points: (0, 0) and (1, 0). The trajectories
seem to go around the point (0, 0), and they seem to either go in or out of the point (1, 0).
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Figure 8.1: Phase portrait with some trajectories of x′ � y, y′ � −x + x2.

These points are precisely those points where the derivatives of both x and y are zero. Let
us define the critical points as the points (x , y) such that[

f (x , y)
g(x , y)

]
� ®0.

In other words, these are the points where both f (x , y) � 0 and g(x , y) � 0.
The critical points are where the behavior of the system is in some sense the most

complicated. If
[

f (x ,y)
g(x ,y)

]
is zero, then nearby, the vector can point in any directionwhatsoever.

Also, the trajectories are either going towards, away from, or around these points, so if we
are looking for long-term qualitative behavior of the system, we should look at what is
happening near the critical points.

Critical points are also sometimes called equilibria, since we have so-called equilibrium
solutions at critical points. If (x0, y0) is a critical point, then we have the solutions

x(t) � x0, y(t) � y0.

In Example 8.1.1 on the preceding page, there are two equilibrium solutions:

x(t) � 0, y(t) � 0, and x(t) � 1, y(t) � 0.

Compare this discussion on equilibria to the discussion in § 1.6. The underlying concept is
exactly the same.

8.1.2 Linearization
In § 3.5 we studied the behavior of a homogeneous linear system of two equations near a
critical point. For a linear system of two variables given by an invertible matrix, the only
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critical point is the origin (0, 0). Let us put the understanding we gained in that section to
good use understanding what happens near critical points of nonlinear systems.

In calculus we learned to estimate a function by taking its derivative and linearizing.
We work similarly with nonlinear systems of ODE. Suppose (x0, y0) is a critical point. First
change variables to (u , v), so that (u , v) � (0, 0) corresponds to (x0, y0). That is,

u � x − x0, v � y − y0.

Next we need to find the derivative. In multivariable calculus you may have seen that the
several variables version of the derivative is the Jacobian matrix∗. The Jacobian matrix of the
vector-valued function

[
f (x ,y)
g(x ,y)

]
at (x0, y0) is[ ∂ f

∂x (x0, y0) ∂ f
∂y (x0, y0)

∂g
∂x (x0, y0) ∂g

∂y (x0, y0)

]
.

This matrix gives the best linear approximation as u and v (and therefore x and y) vary.
We define the linearization of the equation (8.1) as the linear system[

u
v

] ′
�

[ ∂ f
∂x (x0, y0) ∂ f

∂y (x0, y0)
∂g
∂x (x0, y0) ∂g

∂y (x0, y0)

] [
u
v

]
.

Example 8.1.2: Let us keep with the same equations as Example 8.1.1: x′ � y, y′ � −x + x2.
There are two critical points, (0, 0) and (1, 0). The Jacobian matrix at any point is[ ∂ f

∂x (x , y) ∂ f
∂y (x , y)

∂g
∂x (x , y) ∂g

∂y (x , y)

]
�

[
0 1

−1 + 2x 0

]
.

Therefore at (0, 0), we have u � x and v � y, and the linearization is[
u
v

] ′
�

[
0 1
−1 0

] [
u
v

]
.

At the point (1, 0), we have u � x − 1 and v � y, and the linearization is[
u
v

] ′
�

[
0 1
1 0

] [
u
v

]
.

The phase diagrams of the two linearizations at the point (0, 0) and (1, 0) are given in
Figure 8.2 on the facing page. Note that the variables are now u and v. Compare Figure 8.2
with Figure 8.1 on the previous page, and look especially at the behavior near the critical
points.

∗Named for the German mathematician Carl Gustav Jacob Jacobi (1804–1851).

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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Figure 8.2: Phase diagram with some trajectories of linearizations at the critical points (0, 0) (left) and
(1, 0) (right) of x′ � y, y′ � −x + x2.
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8.1.3 Vector fields of 2D systems with Python
The resources306 module provides a function fieldplot to plot the vector field of the two-
dimensional autonomous system of ODEs (8.1). It works just like fieldplotlinear except that
instead of a matrix, it takes a pair of functions of two variables. You supply a Python
function that takes the pair (x , y) and returns the pair ( f (x , y), g(x , y)). You also givethe
desired ranges for the horizontal and vertical axes, followed by any desired graphical
options. In the example below we use fieldplot to make a vector field plot for the system[

x
y

] ′
�

[
−y cos(x + y − 1)
x cos(x − y + 1)

]
. (8.2)

from resources306 import *

def F(X):

x,y = X

return -y*cos(x+y-1), x*cos(x-y+1)

cos = np.cos

plt.figure(figsize=(10,10))

plt.subplot(111,aspect=1) # optional: make scales same on the two axes

fieldplot(F,-2,5,-2.5,2.5,color='b',alpha=0.5)
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8.1.4 Exercises
Exercise 8.1.1: Sketch the phase plane vector field for:

x′ � x2, y′ � y2,a) x′ � (x − y)2, y′ � −x,b) x′ � e y , y′ � ex .c)

Exercise 8.1.2: Match systems

x′ � x2, y′ � y2,1) x′ � x y, y′ � 1 + y2,2) x′ � sin(πy), y′ � x,3)

to the vector fields below. Justify.

a) b) c)

Exercise 8.1.3: Find the critical points and linearizations of the following systems.

x′ � x2 − y2, y′ � x2 + y2 − 1,a) x′ � −y, y′ � 3x + yx2,b)

x′ � x2 + y, y′ � y2 + x.c)

Exercise 8.1.4: For the following systems, verify they have critical point at (0, 0), and find the
linearization at (0, 0).

x′ � x + 2y + x2 − y2, y′ � 2y − x2a) x′ � −y, y′ � x − y3b)

x′ � ax + b y + f (x , y), y′ � cx + dy + g(x , y), where f (0, 0) � 0, g(0, 0) � 0, and all first
partial derivatives of f and g are also zero at (0, 0), that is, ∂ f

∂x (0, 0) �
∂ f
∂y (0, 0) �

∂g
∂x (0, 0) �

∂g
∂y (0, 0) � 0.

c)

Exercise 8.1.5: Take x′ � (x − y)2, y′ � (x + y)2.

Find the set of critical points.a)

Sketch a phase diagram and describe the behavior near the critical point(s).b)

Find the linearization. Is it helpful in understanding the system?c)

Exercise 8.1.6: Take x′ � x2, y′ � x3.

Find the set of critical points.a)

Sketch a phase diagram and describe the behavior near the critical point(s).b)

Find the linearization. Is it helpful in understanding the system?c)
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Exercise 8.1.101: Find the critical points and linearizations of the following systems.

x′ � sin(πy) + (x − 1)2, y′ � y2 − y,a) x′ � x + y + y2, y′ � x,b)

x′ � (x − 1)2 + y, y′ � x2 + y.c)

Exercise 8.1.102: Match systems

x′ � y2, y′ � −x2,1) x′ � y, y′ � (x − 1)(x + 1),2)

x′ � y + x2, y′ � −x,3)

to the vector fields below. Justify.

a) b) c)

Exercise 8.1.103: The idea of critical points and linearization works in higher dimensions as well.
You simply make the Jacobian matrix bigger by adding more functions and more variables. For the
following system of 3 equations find the critical points and their linearizations:

x′ � x + z2, y′ � z2 − y , z′ � z + x2.

Exercise 8.1.104: Any two-dimensional non-autonomous system x′ � f (x , y , t), y′ � g(x , y , t)
can be written as a three-dimensional autonomous system (three equations). Write down this
autonomous system using the variables u, v, w.
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8.2 Stability and classification of isolated critical points

Note: 1.5–2 lectures, §6.1–§6.2 in [EP], §9.2–§9.3 in [BD]

8.2.1 Isolated critical points and almost linear systems
A critical point is isolated if it is the only critical point in some small “neighborhood” of the
point. That is, if we zoom in far enough it is the only critical point we see. In the example
above, the critical point was isolated. If on the other hand there would be a whole curve of
critical points, then it would not be isolated.

A system is called almost linear at a critical point (x0, y0), if the critical point is isolated
and the Jacobian matrix at the point is invertible, or equivalently if the linearized system
has an isolated critical point. In such a case, the nonlinear terms are very small and the
system behaves like its linearization, at least if we are close to the critical point.

For example, the system in Examples 8.1.1 and 8.1.2 has two isolated critical points
(0, 0) and (0, 1), and is almost linear at both critical points as the Jacobian matrices at both
points,

[ 0 1
−1 0

]
and

[ 0 1
1 0

]
, are invertible.

On the other hand, the system x′ � x2, y′ � y2 has an isolated critical point at (0, 0),
however the Jacobian matrix [

2x 0
0 2y

]
is zero when (x , y) � (0, 0). So the system is not almost linear. Even a worse example is the
system x′ � x, y′ � x2, which does not have isolated critical points; x′ and y′ are both zero
whenever x � 0, that is, the entire y-axis.

Fortunately, most often critical points are isolated, and the system is almost linear at
the critical points. So if we learn what happens there, we will have figured out the majority
of situations that arise in applications.

8.2.2 Stability and classification of isolated critical points
Once we have an isolated critical point, the system is almost linear at that critical point,
and we computed the associated linearized system, we can classify what happens to the
solutions. We more or less use the classification for linear two-variable systems from § 3.5,
with one minor caveat. Let us list the behaviors depending on the eigenvalues of the
Jacobian matrix at the critical point in Table 8.1 on the following page. This table is very
similar to Table 3.1 on page 163, with the exception of missing “center” points. We will
discuss centers later, as they are more complicated.

In the third column, we mark points as asymptotically stable or unstable. Formally, a
stable critical point (x0, y0) is one where given any small distance ε to (x0, y0), and any initial
condition within a perhaps smaller radius around (x0, y0), the trajectory of the system
never goes further away from (x0, y0) than ε. An unstable critical point is one that is not
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Eigenvalues of the Jacobian matrix Behavior Stability

real and both positive source / unstable node unstable
real and both negative sink / stable node asymptotically stable
real and opposite signs saddle unstable
complex with positive real part spiral source unstable
complex with negative real part spiral sink asymptotically stable

Table 8.1: Behavior of an almost linear system near an isolated critical point.

stable. Informally, a point is stable if we start close to a critical point and follow a trajectory
we either go towards, or at least not away from, this critical point.

A stable critical point (x0, y0) is called asymptotically stable if given any initial condition
sufficiently close to (x0, y0) and any solution

(
x(t), y(t)

)
satisfying that condition, then

lim
t→∞

(
x(t), y(t)

)
� (x0, y0).

That is, the critical point is asymptotically stable if any trajectory for a sufficiently close
initial condition goes towards the critical point (x0, y0).
Example 8.2.1: Consider x′ � −y − x2, y′ � −x + y2. See Figure 8.3 on the facing page for
the phase diagram. Let us find the critical points. These are the points where −y − x2 � 0
and −x + y2 � 0. The first equation means y � −x2, and so y2 � x4. Plugging into the
second equation we obtain −x + x4 � 0. Factoring we obtain x(1 − x3) � 0. Since we are
looking only for real solutions we get either x � 0 or x � 1. Solving for the corresponding
y using y � −x2, we get two critical points, one being (0, 0) and the other being (1,−1).
Clearly the critical points are isolated.

Let us compute the Jacobian matrix:[
−2x −1
−1 2y

]
.

At the point (0, 0)we get the matrix
[ 0 −1
−1 0

]
and so the two eigenvalues are 1 and −1. As

the matrix is invertible, the system is almost linear at (0, 0). As the eigenvalues are real and
of opposite signs, we get a saddle point, which is an unstable equilibrium point.

At the point (1,−1)we get the matrix
[ −2 −1
−1 −2

]
and computing the eigenvalues we get −1,

−3. The matrix is invertible, and so the system is almost linear at (1,−1). As we have real
eigenvalues and both negative, the critical point is a sink, and therefore an asymptotically
stable equilibrium point. That is, if we start with any point (xi , yi) close to (1,−1) as an
initial condition and plot a trajectory, it approaches (1,−1). In other words,

lim
t→∞

(
x(t), y(t)

)
� (1,−1).
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Figure 8.3: The phase portrait with few sample trajectories of x′ � −y − x2, y′ � −x + y2.

As you can see from the diagram, this behavior is true even for some initial points quite far
from (1,−1), but it is definitely not true for all initial points.

Example 8.2.2: Let us look at x′ � y + y2ex , y′ � x. First let us find the critical points.
These are the points where y+ y2ex � 0 and x � 0. Simplifying we get 0 � y+ y2 � y(y+1).
So the critical points are (0, 0) and (0,−1), and hence are isolated. Let us compute the
Jacobian matrix: [

y2ex 1 + 2yex

1 0

]
.

At the point (0, 0) we get the matrix
[ 0 1

1 0
]
and so the two eigenvalues are 1 and −1. As

the matrix is invertible, the system is almost linear at (0, 0). And, as the eigenvalues are
real and of opposite signs, we get a saddle point, which is an unstable equilibrium point.

At the point (0,−1) we get the matrix
[ 1 −1

1 0
]
whose eigenvalues are 1

2 ± i
√

3
2 . The matrix

is invertible, and so the system is almost linear at (0,−1). As we have complex eigenvalues
with positive real part, the critical point is a spiral source, and therefore an unstable
equilibrium point.

See Figure 8.4 on the next page for the phase diagram. Notice the two critical points,
and the behavior of the arrows in the vector field around these points.

8.2.3 The trouble with centers
Recall, a linear system with a center means that trajectories travel in closed elliptical orbits
in some direction around the critical point. Such a critical point we call a center or a stable
center. It is not an asymptotically stable critical point, as the trajectories never approach the
critical point, but at least if you start sufficiently close to the critical point, you stay close to
the critical point. The simplest example of such behavior is the linear system with a center.
Another example is the critical point (0, 0) in Example 8.1.1 on page 262.
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Figure 8.4: The phase portrait with few sample trajectories of x′ � y + y2ex , y′ � x.

The trouble with a center in a nonlinear system is that whether the trajectory goes
towards or away from the critical point is governed by the sign of the real part of the
eigenvalues of the Jacobian matrix, and the Jacobian matrix in a nonlinear system changes
from point to point. Since this real part is zero at the critical point itself, it can have either
sign nearby, meaning the trajectory could be pulled towards or away from the critical point.

Example 8.2.3: An example of such a problematic behavior is the system x′ � y , y′ �
−x + y3. The only critical point is the origin (0, 0). The Jacobian matrix is[

0 1
−1 3y2

]
.

At (0, 0) the Jacobian matrix is
[ 0 1
−1 0

]
, which has eigenvalues ±i. So the linearization has a

center.
Using the quadratic equation, the eigenvalues of the Jacobian matrix at any point (x , y)

are

λ �
3
2 y2 ± i

√
4 − 9y4

2 .

At any point where y , 0 (so at most points near the origin), the eigenvalues have a positive
real part (y2 can never be negative). This positive real part pulls the trajectory away from
the origin. A sample trajectory for an initial condition near the origin is given in Figure 8.5
on the next page.

The moral of the example is that further analysis is needed when the linearization has a
center. The analysis will in general be more complicated than in the example above, and
is more likely to involve case-by-case consideration. Such a complication should not be
surprising to you. By now in your mathematical career, you have seen many places where
a simple test is inconclusive, recall for example the second derivative test for maxima or
minima, and requires more careful, and perhaps ad hoc analysis of the situation.
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Figure 8.5: An unstable critical point (spiral source) at the origin for x′ � y , y′ � −x + y3, even if the
linearization has a center.

8.2.4 Conservative equations
An equation of the form

x′′ + f (x) � 0
for an arbitrary function f (x) is called a conservative equation. For example the pendulum
equation is a conservative equation. The equations are conservative as there is no friction
in the system so the energy in the system is “conserved.” Let us write this equation as a
system of nonlinear ODE.

x′ � y , y′ � − f (x).
These types of equations have the advantage that we can solve for their trajectories easily.

The trick is to first think of y as a function of x for a moment. Then use the chain rule

x′′ � y′ �
dy
dx

x′ � y
dy
dx
,

where the prime indicates a derivative with respect to t. We obtain y dy
dx + f (x) � 0. We

integrate with respect to x to get
∫

y dy
dx dx +

∫
f (x) dx � C. In other words

1
2 y2

+

∫
f (x) dx � C.

We obtained an implicit equation for the trajectories, with different C giving different
trajectories. The value of C is conserved on any trajectory. This expression is sometimes
called the Hamiltonian or the energy of the system. If you look back to § 1.8, you will notice
that y dy

dx + f (x) � 0 is an exact equation, and we just found a potential function.
Example 8.2.4: Let us find the trajectories for the equation x′′ + x − x2 � 0, which is the
equation from Example 8.1.1 on page 262. The corresponding first order system is

x′ � y , y′ � −x + x2.
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Trajectories satisfy
1
2 y2

+
1
2 x2 − 1

3 x3
� C.

We solve for y

y � ±
√
−x2 +

2
3 x3 + 2C.

Plotting these graphs we get exactly the trajectories in Figure 8.1 on page 263. In
particular we notice that near the origin the trajectories are closed curves: they keep going
around the origin, never spiraling in or out. Therefore we discovered a way to verify that
the critical point at (0, 0) is a stable center. The critical point at (0, 1) is a saddle as we
already noticed. This example is typical for conservative equations.

Consider an arbitrary conservative equation x′′ + f (x) � 0. All critical points occur
when y � 0 (the x-axis), that is when x′ � 0. The critical points are those points on the
x-axis where f (x) � 0. The trajectories are given by

y � ±

√
−2

∫
f (x) dx + 2C.

So all trajectories are mirrored across the x-axis. In particular, there can be no spiral sources
nor sinks. The Jacobian matrix is [

0 1
− f ′(x) 0

]
.

The critical point is almost linear if f ′(x) , 0 at the critical point. Let J denote the Jacobian
matrix. The eigenvalues of J are solutions to

0 � det(J − λI) � λ2
+ f ′(x).

Therefore λ � ±
√
− f ′(x). In other words, either we get real eigenvalues of opposite signs

(if f ′(x) < 0), or we get purely imaginary eigenvalues (if f ′(x) > 0). There are only two
possibilities for critical points, either an unstable saddle point, or a stable center. There are
never any sinks or sources.

8.2.5 Phase portraits and equilibria with Python
The resources306 module also provides a function phaseportrait to numerically compute
and plot solution curves of the two-dimensional autonomous system of ODEs (8.1). This
works just like phaseportraitlinear described in § 8.1.3, except that instead of a matrix, you
supply a Python function that takes the pair (x , y) and returns the pair ( f (x , y), g(x , y)).
This Python function can be the same one used with fieldplot. In the example below we use
phaseportrait to add some solution curves to the example from the previous section. We
also add dots to mark some equilibria. These are computed using fsolve, which is imported
by resources306 from the module scipy.optimize. You give fsolve the function whose zero you
want, and a rough guess at the location: fsolve will try to return an accurate approximation
of the zero.
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from resources306 import *

def F(X):

x,y = X

return -y*cos(x+y-1), x*cos(x-y+1)

cos = np.cos

plt.figure(figsize=(10,10))

plt.subplot(111,aspect=1) # optional: make scales same on the two axes

fieldplot(F,-2,5,-2.5,2.5,color='k',alpha=0.25)

phaseportrait(F, [(.25,0),(.25,.25),(.5,.5,-4,3),(-1,1),(-.5,.5),

(-1,-1),(2,1,-3,3),(1,1,-3,3)], color='k' )

x0,y0 = 0,0

x1,y1 = fsolve( F, (1,1) )

x2,y2 = fsolve( F, (3,-1) )

x3,y3 = fsolve( F, (0,4) )

x4,y4 = fsolve( F, (-2,-2) )

plt.plot(x0,y0,'ko', x1,y1,'ko', x2,y2,'ko', x3,y3,'ko', x4,y4,'ko')

8.2.6 Exercises
Exercise 8.2.1: For the systems below, find and classify the critical points, also indicate if the
equilibria are stable, asymptotically stable, or unstable.

x′ � −x + 3x2, y′ � −ya) x′ � x2 + y2 − 1, y′ � xb)

x′ � yex , y′ � y − x + y2c)
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Exercise 8.2.2: Find the implicit equations of the trajectories of the following conservative systems.
Next find their critical points (if any) and classify them.

x′′ + x + x3 � 0a) θ′′ + sin θ � 0b)

z′′ + (z − 1)(z + 1) � 0c) x′′ + x2 + 1 � 0d)

Exercise 8.2.3: Find and classify the critical point(s) of x′ � −x2, y′ � −y2.

Exercise 8.2.4: Suppose x′ � −x y, y′ � x2 − 1 − y.

Show there are two spiral sinks at (−1, 0) and (1, 0).a)

For any initial point of the form (0, y0), find what is the trajectory.b)

Can a trajectory starting at (x0, y0) where x0 > 0 spiral into the critical point at (−1, 0)?
Why or why not?

c)

Exercise 8.2.5: In the example x′ � y, y′ � y3 − x show that for any trajectory, the distance from
the origin is an increasing function. Conclude that the origin behaves like is a spiral source. Hint:
Consider f (t) �

(
x(t)

)2
+

(
y(t)

)2 and show it has positive derivative.

Exercise 8.2.6: Suppose f is always positive. Find the trajectories of x′′ + f (x′) � 0. Are there
any critical points?

Exercise 8.2.7: Suppose that x′ � f (x , y), y′ � g(x , y). Suppose that g(x , y) > 1 for all x and
y. Are there any critical points? What can we say about the trajectories at t goes to infinity?

Exercise 8.2.51: For the system below, find and classify the critical points.

a) x′ � x − y − x2 + x y , y′ � −y − x2

b) x′ � −x + sin y , y′ � 2x

c) x′ � x3 − 4x , y′ � 3x3 − 12x + y

d) x′ � 4y + 5 sin x , y′ � −3y

Exercise 8.2.52: For the systems below:

i. Find all critical points (equilibria).

ii. Determine the linearized system for each of the points in (i.). Classify each of the critical
points (equilibria). If the critical points are not spirals or centers, find all eigenvectors.

iii. Sketch the global phase portrait. Include the eigenvectors for the linearized system at each
critical point and draw arrows on the solution curves to indicate the direction of flow.

a) x′ � x2 − x + y , y′ � 2x2 − 2x
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b) x′ � −3x + y , y′ � −y + x2

c) x′ � −x + y2, y′ � x + 2y

d) x′ � 2x + y , y′ � −y + x2

e) x′ � y2 − 1, y′ � x3 − 1

f) x′ � 3y2 − 3y + x , y′ � y2 − y

Exercise 8.2.101: For the systems below, find and classify the critical points.

x′ � −x + x2, y′ � ya) x′ � y − y2 − x, y′ � −xb) x′ � x y, y′ � x + y − 1c)

Exercise 8.2.102: Find the implicit equations of the trajectories of the following conservative systems.
Next find their critical points (if any) and classify them.

x′′ + x2 � 4a) x′′ + ex � 0b) x′′ + (x + 1)ex � 0c)

Exercise 8.2.103: The conservative system x′′ + x3 � 0 is not almost linear. Classify its critical
point(s) nonetheless.

Exercise 8.2.104: Derive an analogous classification of critical points for equations in one dimension,
such as x′ � f (x) based on the derivative. A point x0 is critical when f (x0) � 0 and almost linear
if in addition f ′(x0) , 0. Figure out if the critical point is stable or unstable depending on the sign
of f ′(x0). Explain. Hint: see § 1.6.
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8.3 Applications of nonlinear systems
Note: 2 lectures, §6.3–§6.4 in [EP], §9.3, §9.5 in [BD]

In this section we study two very standard examples of nonlinear systems. First, we
look at the nonlinear pendulum equation. We saw the pendulum equation’s linearization
before, but we noted it was only valid for small angles and short times. Now we find
out what happens for large angles. Next, we look at the predator-prey equation, which
finds various applications in modeling problems in biology, chemistry, economics, and
elsewhere.

8.3.1 Pendulum

The first examplewe study is the pendulum equation θ′′+ g
L sin θ � 0. Here, θ is the angular

displacement, g is the gravitational acceleration, and L is the length of the pendulum. In
this equation we disregard friction, so we are talking about an idealized pendulum.

θ
L

m

This equation is a conservative equation, so we can use our
analysis of conservative equations from the previous section. Let us
change the equation to a two-dimensional system in variables (θ, ω)
by introducing the new variable ω:[

θ
ω

] ′
�

[
ω

− g
L sin θ

]
.

The critical points of this system are when ω � 0 and − g
L sin θ � 0, or in other words if

sin θ � 0. So the critical points are when ω � 0 and θ is a multiple of π. That is, the points
are . . . (−2π, 0), (−π, 0), (0, 0), (π, 0), (2π, 0) . . .. While there are infinitely many critical
points, they are all isolated. Let us compute the Jacobian matrix:

∂
∂θ

(
ω
)

∂
∂ω

(
ω
)

∂
∂θ

(
− g

L sin θ
)

∂
∂ω

(
− g

L sin θ
) �

[
0 1

− g
L cos θ 0

]
.

For conservative equations, there are two types of critical points. Either stable centers,

or saddle points. The eigenvalues of the Jacobian matrix are λ � ±
√
− g

L cos θ.
The eigenvalues are going to be real when cos θ < 0. This happens at the odd

multiples of π. The eigenvalues are going to be purely imaginary when cos θ > 0.
This happens at the even multiples of π. Therefore the system has a stable center
at the points . . . (−2π, 0), (0, 0), (2π, 0) . . ., and it has an unstable saddle at the points
. . . (−3π, 0), (−π, 0), (π, 0), (3π, 0) . . .. Look at the phase diagram in Figure 8.6 on the facing
page, where for simplicity we let g

L � 1.
In the linearized equation we have only a single critical point, the center at (0, 0). Now

we see more clearly what we meant when we said the linearization is good for small
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Figure 8.6: Phase plane diagram and some trajectories of the nonlinear pendulum equation.

angles. The horizontal axis is the deflection angle. The vertical axis is the angular velocity
of the pendulum. Suppose we start at θ � 0 (no deflection), and we start with a small
angular velocity ω. Then the trajectory keeps going around the critical point (0, 0) in an
approximate circle. This corresponds to short swings of the pendulum back and forth.
When θ stays small, the trajectories really look like circles and hence are very close to our
linearization.

When we give the pendulum a big enough push, it goes across the top and keeps
spinning about its axis. This behavior corresponds to the wavy curves that do not cross the
horizontal axis in the phase diagram. Let us suppose we look at the top curves, when the
angular velocity ω is large and positive. Then the pendulum is going around and around
its axis. The velocity is going to be large when the pendulum is near the bottom, and the
velocity is the smallest when the pendulum is close to the top of its loop.

At each critical point, there is an equilibrium solution. Consider the solution θ � 0;
the pendulum is not moving and is hanging straight down. This is a stable place for the
pendulum to be, hence this is a stable equilibrium.

The other type of equilibrium solution is at the unstable point, for example θ � π. Here
the pendulum is upside down. Sure you can balance the pendulum this way and it will
stay, but this is an unstable equilibrium. Even the tiniest push will make the pendulum
start swinging wildly.

See Figure 8.7 on the next page for a diagram. The first picture is the stable equilibrium
θ � 0. The second picture corresponds to those “almost circles” in the phase diagram
around θ � 0 when the angular velocity is small. The next picture is the unstable
equilibrium θ � π. The last picture corresponds to the wavy lines for large angular
velocities.

The quantity
1
2ω

2 −
g
L

cos θ
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Small angular velocities Large angular velocitiesθ � 0 θ � π

Figure 8.7: Various possibilities for the motion of the pendulum.

is conserved by any solution. This is the energy or the Hamiltonian of the system.
We have a conservative equation and so (exercise) the trajectories are given by

ω � ±
√

2g
L

cos θ + C,

for various values of C. Let us look at the initial condition of (θ0, 0), that is, we take the
pendulum to angle θ0, and just let it go (initial angular velocity 0). We plug the initial
conditions into the above and solve for C to obtain

C � −
2g
L

cos θ0.

Thus the expression for the trajectory is

ω � ±
√

2g
L

√
cos θ − cos θ0.

Let us figure out the period. That is, the time it takes for the pendulum to swing back
and forth. We notice that the trajectory about the origin in the phase plane is symmetric
about both the θ and the ω-axis. That is, in terms of θ, the time it takes from θ0 to −θ0 is
the same as it takes from −θ0 back to θ0. Furthermore, the time it takes from −θ0 to 0 is the
same as to go from 0 to θ0. Therefore, let us find how long it takes for the pendulum to go
from angle 0 to angle θ0, which is a quarter of the full oscillation and then multiply by 4.

We figure out this time by finding dt
dθ and integrating from 0 to θ0. The period is four

times this integral. Let us stay in the region where ω is positive. Since ω �
dθ
dt , inverting

we get

dt
dθ

�

√
L

2g
1√

cos θ − cos θ0
.
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Therefore the period T is given by

T � 4

√
L

2g

∫ θ0

0

1√
cos θ − cos θ0

dθ.

The integral is an improper integral, and we cannot in general evaluate it symbolically. We
must resort to numerical approximation if we want to compute a particular T.

Recall from § 2.4, the linearized equation θ′′ + g
Lθ � 0 has period

Tlinear � 2π

√
L
g
.

We plot T, Tlinear, and the relative error T−Tlinear
T in Figure 8.8. The relative error says how

far is our approximation from the real period percentage-wise. Note that Tlinear is simply a
constant, it does not change with the initial angle θ0. The actual period T gets larger and
larger as θ0 gets larger. Notice how the relative error is small when θ0 is small. It is still
only 15% when θ0 �

π
2 , that is, a 90 degree angle. The error is 3.8% when starting at π4 , a

45 degree angle. At a 5 degree initial angle, the error is only 0.048%.
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Figure 8.8: The plot of T and Tlinear with
g
L � 1 (left), and the plot of the relative error T−Tlinear

T (right), for
θ0 between 0 and π/2.

While it is not immediately obvious from the formula, it is true that

lim
θ0↑π

T � ∞.

That is, the period goes to infinity as the initial angle approaches the unstable equilibrium
point. So if we put the pendulum almost upside down it may take a very long time before
it gets down. This is consistent with the limiting behavior, where the exactly upside down
pendulum never makes an oscillation, so we could think of that as infinite period.
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8.3.2 Predator-prey or Lotka–Volterra systems
One of the most common simple applications of nonlinear systems are the so-called
predator-prey or Lotka–Volterra∗ systems. For example, these systems arise when two species
interact, one as the prey and one as the predator. It is then no surprise that the equations
also see applications in economics. The system also arises in chemical reactions. In biology,
this system of equations explains the natural periodic variations of populations of different
species in nature. Before the application of differential equations, these periodic variations
in the population baffled biologists.

We keep with the classical example of hares and foxes in a forest, it is the easiest to
understand.

x � # of hares (the prey),
y � # of foxes (the predator).

When there are a lot of hares, there is plenty of food for the foxes, so the fox population
grows. However, when the fox population grows, the foxes eat more hares, so when there
are lots of foxes, the hare population should go down, and vice versa. The Lotka–Volterra
model proposes that this behavior is described by the system of equations

x′ � (a − b y)x ,
y′ � (cx − d)y ,

where a , b , c , d are some parameters that describe the interaction of the foxes and hares†.
In this model, these are all positive numbers.

Let us analyze the idea behind this model. The model is a slightly more complicated
idea based on the exponential population model. First expand,

x′ � (a − b y)x � ax − b yx.

The hares are expected to simply grow exponentially in the absence of foxes, that is where
the ax term comes in, the growth in population is proportional to the population itself.
We are assuming the hares always find enough food and have enough space to reproduce.
However, there is another component −b yx, that is, the population also is decreasing
proportionally to the number of foxes. Together we can write the equation as (a − b y)x, so
it is like exponential growth or decay but the constant depends on the number of foxes.

The equation for foxes is very similar, expand again

y′ � (cx − d)y � cx y − dy.

The foxes need food (hares) to reproduce: the more food, the bigger the rate of growth,
hence the cx y term. On the other hand, there are natural deaths in the fox population, and
hence the −dy term.

∗Named for the American mathematician, chemist, and statistician Alfred James Lotka (1880–1949) and
the Italian mathematician and physicist Vito Volterra (1860–1940).

†This interaction does not end well for the hare.

https://en.wikipedia.org/wiki/Alfred_J._Lotka
https://en.wikipedia.org/wiki/Vito_Volterra
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Without further delay, let us start with an explicit example. Suppose the equations are

x′ � (0.4 − 0.01y)x , y′ � (0.003x − 0.3)y.

See Figure 8.9 for the phase portrait. In this example it makes sense to also plot x and y as
graphs with respect to time. Therefore the second graph in Figure 8.9 is the graph of x and
y on the vertical axis (the prey x is the thinner line with taller peaks), against time on the
horizontal axis. The particular solution graphed was with initial conditions of 20 foxes and
50 hares.
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Figure 8.9: The phase portrait (left) and graphs of x and y for a sample solution (right).

Let us analyze what we see on the graphs. We work in the general setting rather than
putting in specific numbers. We start with finding the critical points. Set (a − b y)x � 0,
and (cx − d)y � 0. The first equation is satisfied if either x � 0 or y � a/b. If x � 0, the
second equation implies y � 0. If y � a/b, the second equation implies x � d/c. There are
two equilibria: at (0, 0) when there are no animals at all, and at (d/c, a/b). In our specific
example x � d/c � 100, and y � a/b � 40. This is the point where there are 100 hares and 40
foxes.

We compute the Jacobian matrix:[
a − b y −bx

c y cx − d

]
.

At the origin (0, 0) we get the matrix
[

a 0
0 −d

]
, so the eigenvalues are a and −d, hence real

and of opposite signs. So the critical point at the origin is a saddle. This makes sense. If
you started with some foxes but no hares, then the foxes would go extinct, that is, you
would approach the origin. If you started with no foxes and a few hares, then the hares
would keep multiplying without check, and so you would go away from the origin.

OK, how about the other critical point at (d/c, a/b). Here the Jacobian matrix becomes[
0 − bd

c
ac
b 0

]
.
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The eigenvalues satisfy λ2 + ad � 0. In other words, λ � ±i
√

ad. The eigenvalues being
purely imaginary, we are in the case where we cannot quite decide using only linearization.
We could have a stable center, spiral sink, or a spiral source. That is, the equilibrium could
be asymptotically stable, stable, or unstable. Of course I gave you a picture above that
seems to imply it is a stable center. But never trust a picture only. Perhaps the oscillations
are getting larger and larger, but only very slowly. Of course this would be bad as it would
imply something will go wrong with our population sooner or later. And I only graphed a
very specific example with very specific trajectories.

How can we be sure we are in the stable situation? As we said before, in the case of
purely imaginary eigenvalues, we have to do a bit more work. Previously we found that for
conservative systems, there was a certain quantity that was conserved on the trajectories,
and hence the trajectories had to go in closed loops. We can use a similar technique here.
We just have to figure out what is the conserved quantity. After some trial and error we
find the constant

C �
ya xd

e cx+b y
� ya xd e−cx−b y

is conserved. Such a quantity is called the constant of motion. Let us check C really is a
constant of motion. How do we check, you say? Well, a constant is something that does
not change with time, so let us compute the derivative with respect to time:

C′ � a ya−1 y′xd e−cx−b y
+ ya dxd−1x′e−cx−b y

+ ya xd e−cx−b y(−cx′ − b y′).

Our equations give us what x′ and y′ are so let us plug those in:

C′ � a ya−1(cx − d)yxd e−cx−b y
+ ya dxd−1(a − b y)xe−cx−b y

+ ya xd e−cx−b y (−c(a − b y)x − b(cx − d)y
)

� ya xde−cx−b y
(
a(cx − d) + d(a − b y) +

(
−c(a − b y)x − b(cx − d)y

) )
� 0.

So along the trajectories C is constant. In fact, the expression C �
ya xd

e cx+b y gives us an implicit
equation for the trajectories. In any case, once we have found this constant of motion, it
must be true that the trajectories are simple curves, that is, the level curves of ya xd

e cx+b y . It
turns out, the critical point at (d/c, a/b) is a maximum for C (left as an exercise). So (d/c, a/b)
is a stable equilibrium point, and we do not have to worry about the foxes and hares going
extinct or their populations exploding.

One blemish on this wonderful model is that the number of foxes and hares are discrete
quantities and we are modeling with continuous variables. Our model has no problem
with there being 0.1 fox in the forest for example, while in reality that makes no sense. The
approximation is a reasonable one as long as the number of foxes and hares are large, but
it does not make much sense for small numbers. One must be careful in interpreting any
results from such a model.
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An interesting consequence (perhaps counterintuitive) of this model is that adding
animals to the forest might lead to extinction, because the variations will get too big, and
one of the populations will get close to zero. For example, suppose there are 20 foxes and
50 hares as before, but now we bring in more foxes, bringing their number to 200. If we
run the computation, we find the number of hares will plummet to just slightly more than
1 hare in the whole forest. In reality that most likely means the hares die out, and then the
foxes will die out as well as they will have nothing to eat.

Showing that a system of equations has a stable solution can be a very difficult problem.
When Isaac Newton put forth his laws of planetary motions, he proved that a single
planet orbiting a single sun is a stable system. But any solar system with more than 1
planet proved very difficult indeed. In fact, such a system behaves chaotically (see § 8.5),
meaning small changes in initial conditions lead to very different long-term outcomes.
From numerical experimentation and measurements, we know the earth will not fly out
into the empty space or crash into the sun, for at least some millions of years or so. But we
do not know what happens beyond that.

8.3.3 Exercises
Exercise 8.3.1: Take the damped nonlinear pendulum equation θ′′ + µθ′ + (g/L) sin θ � 0
for some µ > 0 (that is, there is some friction).

Suppose µ � 1 and g/L � 1 for simplicity, find and classify the critical points.a)

Do the same for any µ > 0 and any g and L, but such that the damping is small, in particular,
µ2 < 4(g/L).

b)

Explain what your findings mean, and if it agrees with what you expect in reality.c)

Exercise 8.3.2: Suppose the hares do not grow exponentially, but logistically. In particular consider

x′ � (0.4 − 0.01y)x − γx2, y′ � (0.003x − 0.3)y.

For the following two values of γ, find and classify all the critical points in the positive quadrant,
that is, for x ≥ 0 and y ≥ 0. Then sketch the phase diagram. Discuss the implication for the long
term behavior of the population.

γ � 0.001,a) γ � 0.01.b)

Exercise 8.3.3:

Suppose x and y are positive variables. Show yx
ex+y attains a maximum at (1, 1).a)

Suppose a , b , c , d are positive constants, and also suppose x and y are positive variables.
Show ya xd

e cx+b y attains a maximum at (d/c, a/b).
b)
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Exercise 8.3.4: Suppose that for the pendulum equation we take a trajectory giving the spinning-

around motion, for example ω �

√
2g
L cos θ +

2g
L + ω2

0. This is the trajectory where the lowest
angular velocity is ω2

0. Find an integral expression for how long it takes the pendulum to go all the
way around.

Exercise 8.3.5 (challenging): Take the pendulum, suppose the initial position is θ � 0.

Find the expression for ω giving the trajectory with initial condition (0, ω0). Hint: Figure
out what C should be in terms of ω0.

a)

Find the crucial angular velocity ω1, such that for any higher initial angular velocity, the
pendulum will keep going around its axis, and for any lower initial angular velocity, the
pendulum will simply swing back and forth. Hint: When the pendulum doesn’t go over the
top the expression for ω will be undefined for some θs.

b)

What do you think happens if the initial condition is (0, ω1), that is, the initial angle is 0, and
the initial angular velocity is exactly ω1.

c)

Exercise 8.3.51: For each of the following nonlinear, damped mass-spring equations,

i. Write the corresponding 1st- order system.

ii. Find all critical points (equilibria).

iii. Determine the linearized system for each of the points in (i.). Classify each of the critical
points. If the critical points are not spirals or centers, find all eigenvectors.

iv. Sketch the global phase portrait for the almost-linear system. Include the eigenvectors for the
linearized system at each critical point and draw arrows on the solution curves to indicate the
direction of flow.

a) x′′ + 9x − x3 � 0

b) x′′ + x′ + 2x − x2 � 0

c) x′′ + 2x′ + 4x − x3 � 0

d) x′′ + 9x − 10x3 + x5 � 0

Exercise 8.3.52: For each of the following nonlinear systems,

i. Find all critical points (equilibria).

ii. Determine the linearized system for each of the points in (i.). Classify each of the critical
points. If the critical points are not spirals or centers, find all eigenvectors.

iii. Sketch the phase portrait, showing at least 4 critical points. Include the eigenvectors for the
linearized system at each critical point and draw arrows on the solution curves to indicate the
direction of flow.
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a) x′ � 2y , y′ � sin x − y

b) x′ � −2x + 4 sin y , y′ � 2x

c) x′ � x − y , y′ � 2 sin x

d) x′ � 3y , y′ � sin(πx)

e) x′ � sin(πy), y′ � x + y

Exercise 8.3.101: Take the damped nonlinear pendulum equation θ′′ + µθ′ + (g/L) sin θ � 0 for
some µ > 0 (that is, there is friction). Suppose the friction is large, in particular µ2 > 4(g/L).

Find and classify the critical points.a)

Explain what your findings mean, and if it agrees with what you expect in reality.b)

Exercise 8.3.102: Suppose we have the system predator-prey system where the foxes are also killed
at a constant rate h (h foxes killed per unit time): x′ � (a − b y)x , y′ � (cx − d)y − h.

Find the critical points and the Jacobian matrices of the system.a)

Put in the constants a � 0.4, b � 0.01, c � 0.003, d � 0.3, h � 10. Analyze the critical
points. What do you think it says about the forest?

b)

Exercise 8.3.103 (challenging): Suppose the foxes never die. That is, we have the system
x′ � (a − b y)x , y′ � cx y. Find the critical points and notice they are not isolated. What will
happen to the population in the forest if it starts at some positive numbers. Hint: Think of the
constant of motion.
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8.4 Limit cycles
Note: less than 1 lecture, discussed in §6.1 and §6.4 in [EP] , §9.7 in [BD]

For nonlinear systems, trajectories do not simply need to approach or leave a single
point. They may in fact approach a larger set, such as a circle or another closed curve.

Example 8.4.1: The Van der Pol oscillator∗ is the following equation

x′′ − µ(1 − x2)x′ + x � 0,

where µ is some positive constant. The Van der Pol oscillator originated with electrical
circuits, but finds applications in diverse fields such as biology, seismology, and other
physical sciences.

For simplicity, let us use µ � 1. A phase diagram is given in the left-hand plot in
Figure 8.10. Notice how the trajectories seem to very quickly settle on a closed curve. On
the right-hand side is the plot of a single solution for t � 0 to t � 30 with initial conditions
x(0) � 0.1 and x′(0) � 0.1. The solution quickly tends to a periodic solution.
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Figure 8.10: The phase portrait (left) and a graph of a sample solution of the Van der Pol oscillator.

The Van der Pol oscillator is an example of so-called relaxation oscillation. The word
relaxation comes from the sudden jump (the very steep part of the solution). For larger µ
the steep part becomes even more pronounced, for small µ the limit cycle looks more like a
circle. In fact, setting µ � 0, we get x′′ + x � 0, which is a linear system with a center and
all trajectories become circles.

A trajectory in the phase portrait that is a closed curve (a curve that is a loop) is called a
closed trajectory. A limit cycle is a closed trajectory such that at least one other trajectory
spirals into it (or spirals out of it). For example, the closed curve in the phase portrait for

∗Named for the Dutch physicist Balthasar van der Pol (1889–1959).

https://en.wikipedia.org/wiki/Balthasar_van_der_Pol
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the Van der Pol equation is a limit cycle. If all trajectories that start near the limit cycle
spiral into it, the limit cycle is called asymptotically stable. The limit cycle in the Van der Pol
oscillator is asymptotically stable.

Given a closed trajectory on an autonomous system, any solution that starts on it is
periodic. Such a curve is called a periodic orbit. More precisely, if

(
x(t), y(t)

)
is a solution

such that for some t0 the point
(
x(t0), y(t0)

)
lies on a periodic orbit, then both x(t) and y(t)

are periodic functions (with the same period). That is, there is some number P such that
x(t) � x(t + P) and y(t) � y(t + P).

Consider the system
x′ � f (x , y), y′ � g(x , y), (8.3)

where the functions f and g have continuous derivatives in some region R in the plane.

Theorem 8.4.1 (Poincaré–Bendixson∗). Suppose R is a closed bounded region (a region in the
plane that includes its boundary and does not have points arbitrarily far from the origin). Suppose(
x(t), y(t)

)
is a solution of (8.3) in R that exists for all t ≥ t0. Then either the solution is a periodic

function, or the solution tends towards a periodic solution in R.

The main point of the theorem is that if you find one solution that exists for all t large
enough (that is, as t goes to infinity) and stays within a bounded region, then you have
found either a periodic orbit, or a solution that spirals towards a limit cycle or tends to a
critical point. That is, in the long term, the behavior is very close to a periodic function.
Note that a constant solution at a critical point is periodic (with any period). The theorem is
more a qualitative statement rather than something to help us in computations. In practice
it is hard to find analytic solutions and so hard to show rigorously that they exist for all time.
But if we think the solution exists we numerically solve for a large time to approximate the
limit cycle. Another caveat is that the theorem only works in two dimensions. In three
dimensions and higher, there is simply too much room.

The theorem applies to all solutions in the Van der Pol oscillator. Solutions that start at
any point except the origin (0, 0)will tend to the periodic solution around the limit cycle,
and if the initial condition of (0, 0)will lead to the constant solution x � 0, y � 0.

Example 8.4.2: Consider

x′ � y + (x2
+ y2 − 1)2x , y′ � −x + (x2

+ y2 − 1)2 y.

A vector field along with solutions with initial conditions (1.02, 0), (0.9, 0), and (0.1, 0) are
drawn in Figure 8.11 on the next page.

Notice that points on the unit circle (distance one from the origin) satisfy x2 + y2 − 1 � 0.
And x(t) � sin(t), y � cos(t) is a solution of the system. Therefore we have a closed
trajectory. For points off the unit circle, the second term in x′ pushes the solution further
away from the y-axis than the system x′ � y, y′ � −x, and y′ pushes the solution further
away from the x-axis than the linear system x′ � y, y′ � −x. In other words for all other
initial conditions the trajectory will spiral out.

∗Ivar Otto Bendixson (1861–1935) was a Swedish mathematician.

https://en.wikipedia.org/wiki/Ivar_Otto_Bendixson
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Figure 8.11: Unstable limit cycle example.

This means that for initial conditions inside the unit circle, the solution spirals out
towards the periodic solution on the unit circle, and for initial conditions outside the unit
circle the solutions spiral off towards infinity. Therefore the unit circle is a limit cycle, but
not an asymptotically stable one. The Poincaré–Bendixson Theorem applies to the initial
points inside the unit circle, as those solutions stay bounded, but not to those outside, as
those solutions go off to infinity.

A very similar analysis applies to the system

x′ � y + (x2
+ y2 − 1)x , y′ � −x + (x2

+ y2 − 1)y.

We still obtain a closed trajectory on the unit circle, and points outside the unit circle spiral
out to infinity, but now points inside the unit circle spiral towards the critical point at the
origin. So this system does not have a limit cycle, even though it has a closed trajectory.

Due to the Picard theorem (Theorem 3.1.1 on page 135) we find that no matter where
we are in the plane we can always find a solution a little bit further in time, as long as f and
g have continuous derivatives. So if we find a closed trajectory in an autonomous system,
then for every initial point inside the closed trajectory, the solution will exist for all time
and it will stay bounded (it will stay inside the closed trajectory). So the moment we found
the solution above going around the unit circle, we knew that for every initial point inside
the circle, the solution exists for all time and the Poincaré–Bendixson theorem applies.

Let us next look for conditions when limit cycles (or periodic orbits) do not exist. We
assume the equation (8.3) is defined on a simply connected region, that is, a region with no
holes we can go around. For example the entire plane is a simply connected region, and
so is the inside of the unit disc. However, the entire plane minus a point is not a simply
connected domain as it has a “hole” at the origin.
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Theorem 8.4.2 (Bendixson–Dulac∗). Suppose R is a simply connected region, and the expression†

∂ f
∂x

+
∂g
∂y

is either always positive or always negative on R (except perhaps a small set such as on isolated
points or curves) then the system (8.3) has no closed trajectory inside R.

The theorem gives us a way of ruling out the existence of a closed trajectory, and hence
a way of ruling out limit cycles. The exception about points or curves means that we can
allow the expression to be zero at a few points, or perhaps on a curve, but not on any larger
set.

Example 8.4.3: Let us look at x′ � y + y2ex , y′ � x in the entire plane (see Example 8.2.2
on page 271). The entire plane is simply connected and so we can apply the theorem. We
compute ∂ f

∂x +
∂g
∂y � y2ex + 0. The function y2ex is always positive except on the line y � 0.

Therefore, via the theorem, the system has no closed trajectories.

In some books (or the internet) the theorem is not stated carefully and it concludes there
are no periodic solutions. That is not quite right. The example above has two critical points
and hence it has constant solutions, and constant functions are periodic. The conclusion of
the theorem should be that there exist no trajectories that form closed curves. Another
way to state the conclusion of the theorem would be to say that there exist no nonconstant
periodic solutions that stay in R.

Example 8.4.4: Let us look at a somewhat more complicated example. Take the system
x′ � −y − x2, y′ � −x + y2 (see Example 8.2.1 on page 270). We compute ∂ f

∂x +
∂g
∂y �

−2x + 2y � 2(−x + y). This expression takes on both signs, so if we are talking about the
whole plane we cannot simply apply the theorem. However, we could apply it on the set
where −x + y ≥ 0. Via the theorem, there is no closed trajectory in that set. Similarly, there
is no closed trajectory in the set −x + y ≤ 0. We cannot conclude (yet) that there is no
closed trajectory in the entire plane. Perhaps half of it is in the set where −x + y ≥ 0 and
the other half is in the set where −x + y ≤ 0.

The key is to look at the linewhere−x+y � 0, or x � y. On this line x′ � −y−x2 � −x−x2

and y′ � −x + y2 � −x + x2. In particular, when x � y then x′ ≤ y′. That means that the
arrows, the vectors (x′, y′), always point into the set where −x + y ≥ 0. There is no way we
can start in the set where −x + y ≥ 0 and go into the set where −x + y ≤ 0. Once we are in
the set where −x + y ≥ 0, we stay there. So no closed trajectory can have points in both
sets.

Example 8.4.5: Consider x′ � y + (x2 + y2 − 1)x, y′ � −x + (x2 + y2 − 1)y, and consider
the region R given by x2 + y2 > 1

2 . That is, R is the region outside a circle of radius 1√
2

∗Henri Dulac (1870–1955) was a French mathematician.
†Usually the expression in the Bendixson–Dulac Theorem is ∂(ϕ f )

∂x +
∂(ϕg)
∂y for some continuously differen-

tiable function ϕ. For simplicity, let us just consider the case ϕ � 1.

https://en.wikipedia.org/wiki/Henri_Dulac
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centered at the origin. Then there is a closed trajectory in R, namely x � cos(t), y � sin(t).
Furthermore,

∂ f
∂x

+
∂g
∂x

� 4x2
+ 4y2 − 2,

which is always positive on R. So what is going on? The Bendixson–Dulac theorem does
not apply since the region R is not simply connected—it has a hole, the circle we cut out!

8.4.1 Exercises
Exercise 8.4.1: Show that the following systems have no closed trajectories.

x′ � x3 + y , y′ � y3 + x2,a) x′ � ex−y , y′ � ex+y ,b)

x′ � x + 3y2 − y3, y′ � y3 + x2.c)

Exercise 8.4.2: Formulate a condition for a 2-by-2 linear system ®x′ � A®x to not be a center using
the Bendixson–Dulac theorem. That is, the theorem says something about certain elements of A.

Exercise 8.4.3: Explain why the Bendixson–Dulac Theorem does not apply for any conservative
system x′′ + h(x) � 0.

Exercise 8.4.4: A system such as x′ � x , y′ � y has solutions that exist for all time t, yet there are
no closed trajectories. Explain why the Poincaré–Bendixson Theorem does not apply.

Exercise 8.4.5: Differential equations can also be given in different coordinate systems. Suppose
we have the system r′ � 1 − r2, θ′ � 1 given in polar coordinates. Find all the closed trajectories
and check if they are limit cycles and if so, if they are asymptotically stable or not.

Exercise 8.4.101: Show that the following systems have no closed trajectories.

x′ � x + y2, y′ � y + x2,a) x′ � −x sin2(y), y′ � ex ,b)

x′ � x y , y′ � x + x2.c)

Exercise 8.4.102: Suppose an autonomous system in the plane has a solution x � cos(t) + e−t ,
y � sin(t) + e−t . What can you say about the system (in particular about limit cycles and periodic
solutions)?

Exercise 8.4.103: Show that the limit cycle of the Van der Pol oscillator (for µ > 0) must not lie
completely in the set where −1 < x < 1. Compare with Figure 8.10 on page 288.

Exercise 8.4.104: Suppose we have the system r′ � sin(r), θ′ � 1 given in polar coordinates. Find
all the closed trajectories.
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8.5 Chaos

Note: 1 lecture, §6.5 in [EP], §9.8 in [BD]

You have surely heard the story about the flap of a butterfly wing in the Amazon
causing hurricanes in the North Atlantic. In a prior section, we mentioned that a small
change in initial conditions of the planets can lead to very different configuration of the
planets in the long term. These are examples of chaotic systems. Mathematical chaos is
not really chaos, there is precise order behind the scenes. Everything is still deterministic.
However a chaotic system is extremely sensitive to initial conditions. This also means even
small errors induced via numerical approximation create large errors very quickly, so it is
almost impossible to numerically approximate for long times. This is a large part of the
trouble, as chaotic systems cannot be in general solved analytically.

Take the weather, the most well-known chaotic system. A small change in the initial
conditions (the temperature at every point of the atmosphere for example) produces
drastically different predictions in relatively short time, and so we cannot accurately
predict weather. And we do not actually know the exact initial conditions. We measure
temperatures at a few points with some error, and then we somehow estimate what is in
between. There is no way we can accurately measure the effects of every butterfly wing.
Then we solve the equations numerically introducing new errors. You should not trust
weather prediction more than a few days out.

Chaotic behavior was first noticed by Edward Lorenz∗ in the 1960s when trying to
model thermally induced air convection (movement). Lorentz was looking at the relatively
simple system:

x′ � −10x + 10y , y′ � 28x − y − xz , z′ � −8
3 z + x y.

A small change in the initial conditions yields a very different solution after a reasonably
short time.

A simple example the reader can experiment with, and which displays
chaotic behavior, is a double pendulum. The equations for this setup are
somewhat complicated, and their derivation is quite tedious, so we will not
bother to write them down. The idea is to put a pendulum on the end of
another pendulum. The movement of the bottom mass will appear chaotic.
This type of chaotic system is a basis for a whole number of office novelty
desk toys. It is simple to build a version. Take a piece of a string. Tie two
heavy nuts at different points of the string; one at the end, and one a bit
above. Now give the bottom nut a little push. As long as the swings are not too big and
the string stays tight, you have a double pendulum system.

∗Edward Norton Lorenz (1917–2008) was an American mathematician and meteorologist.

https://en.wikipedia.org/wiki/Edward_Norton_Lorenz
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8.5.1 Duffing equation and strange attractors
Let us study the so-called Duffing equation:

x′′ + ax′ + bx + cx3
� C cos(ωt).

Here a, b, c, C, and ω are constants. Except for the cx3 term, this equation looks like a
forced mass-spring system. The cx3 means the spring does not exactly obey Hooke’s law
(which no real-world spring actually does obey exactly). When c is not zero, the equation
does not have a closed form solution, so we must resort to numerical solutions, as is usual
for nonlinear systems. Not all choices of constants and initial conditions exhibit chaotic
behavior. Let us study

x′′ + 0.05x′ + x3
� 8 cos(t).

The equation is not autonomous, so we cannot draw the vector field in the phase plane.
We can still draw the trajectories. In Figure 8.12 we plot trajectories for t going from 0 to
15, for two very close initial conditions (x , x′) � (2, 3) and (x , x′) � (2, 2.9), and also the
solutions in the (x , t) space. The two trajectories are close at first, but after a while diverge
significantly. This sensitivity to initial conditions is precisely what we mean by the system
behaving chaotically.

Figure 8.12: On left, two trajectories in phase space for 0 ≤ t ≤ 15, for the Duffing equation one with
initial conditions (2, 3) and the other with (2, 2.9). On right the two solutions in (x , t)-space.

Let us see the long term behavior. In Figure 8.13 on the next page, we plot the behavior
of the system for initial conditions (2, 3) for a longer period of time. It is hard to see any
particular pattern in the shape of the solution except that it seems to oscillate, but each
oscillation appears quite unique. The oscillation is expected due to the forcing term. We
mention that to produce the picture accurately, a ridiculously large number of steps∗ had
to be used in the numerical algorithm, as even small errors quickly propagate in a chaotic
system.

∗In fact for reference, 30,000 steps were used with the Runge–Kutta algorithm, see exercises in § 1.7.
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Figure 8.13: The solution to the given Duffing equation for t from 0 to 100.

It is very difficult to analyze chaotic systems, or to find the order behind the madness,
but let us try to do something that we did for the standard mass-spring system. One
way we analyzed the system is that we figured out what was the long term behavior (not
dependent on initial conditions). From the figure above, it is clear that we will not get a
nice exact description of the long term behavior for this chaotic system, but perhaps we
can find some order to what happens on each “oscillation” and what do these oscillations
have in common.

The concept we explore is that of a Poincaré section∗. Instead of looking at t in a certain
interval, we look at where the system is at a certain sequence of points in time. Imagine
flashing a strobe at a fixed frequency and drawing the points where the solution is during
the flashes. The right strobing frequency depends on the system in question. The correct
frequency for the forced Duffing equation (and other similar systems) is the frequency of
the forcing term. For the Duffing equation above, find a solution

(
x(t), y(t)

)
, and look at

the points(
x(0), y(0)

)
,

(
x(2π), y(2π)

)
,

(
x(4π), y(4π)

)
,

(
x(6π), y(6π)

)
, . . .

As we are really not interested in the transient part of the solution, that is, the part of
the solution that depends on the initial condition, we skip some number of steps in the
beginning. For example, we might skip the first 100 such steps and start plotting points at
t � 100(2π), that is(

x(200π), y(200π)
)
,

(
x(202π), y(202π)

)
,

(
x(204π), y(204π)

)
, . . .

The plot of these points is the Poincaré section. After plotting enough points, a curious
pattern emerges in Figure 8.14 on the following page (the left-hand picture), a so-called
strange attractor.

∗Named for the French polymath Jules Henri Poincaré (1854–1912).

https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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Figure 8.14: Strange attractor. The left plot is with no phase shift, the right plot has phase shift π/4.

Given a sequence of points, an attractor is a set towards which the points in the sequence
eventually get closer and closer to, that is, they are attracted. The Poincaré section is not
really the attractor itself, but as the points are very close to it, we see its shape. The strange
attractor is a very complicated set. It has fractal structure, that is, if you zoom in as far as
you want, you keep seeing the same complicated structure.

The initial condition makes no difference. If we start with a different initial condition,
the points eventually gravitate towards the attractor, and so as long as we throw away
the first few points, we get the same picture. Similarly small errors in the numerical
approximations do not matter here.

An amazing thing is that a chaotic system such as the Duffing equation is not random
at all. There is a very complicated order to it, and the strange attractor says something
about this order. We cannot quite say what state the system will be in eventually, but given
the fixed strobing frequency we narrow it down to the points on the attractor.

If we use a phase shift, for example π/4, and look at the times

π/4, 2π + π/4, 4π + π/4, 6π + π/4, . . .

we obtain a slightly different attractor. The picture is the right-hand side of Figure 8.14. It
is as if we had rotated, moved, and slightly distorted the original. For each phase shift you
can find the set of points towards which the system periodically keeps coming back to.

Study the pictures and notice especially the scales—where are these attractors located
in the phase plane. Notice the regions where the strange attractor lives and compare it to
the plot of the trajectories in Figure 8.12 on page 294.

Let us compare this section to the discussion in § 2.6 about forced oscillations. Take the
equation

x′′ + 2px′ + ω2
0x �

F0
m

cos(ωt).

This is like the Duffing equation, but with no x3 term. The steady periodic solution is of
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the form
x � C cos(ωt + γ).

Strobing using the frequency ω, we obtain a single point in the phase space. The attractor
in this setting is a single point—an expected result as the system is not chaotic. It was
the opposite of chaotic: Any difference induced by the initial conditions dies away very
quickly, and we settle into always the same steady periodic motion.

8.5.2 The Lorenz system
In two dimensions to find chaotic behavior, we must study forced, or non-autonomous,
systems such as the Duffing equation. The Poincaré–Bendixson Theorem says that a
solution to an autonomous two-dimensional system that exists for all time in the future
and does not go towards infinity is periodic or tends towards a periodic solution. Hardly
the chaotic behavior we are looking for.

In three dimensions even autonomous systems can be chaotic. Let us very briefly return
to the Lorenz system

x′ � −10x + 10y , y′ � 28x − y − xz , z′ � −8
3 z + x y.

TheLorenz system is an autonomous system in three dimensions exhibiting chaotic behavior.
See the Figure 8.15 for a sample trajectory, which is now a curve in three-dimensional space.
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Figure 8.15: A trajectory in the Lorenz system.
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The solutions tend to an attractor in space, the so-called Lorenz attractor. In this case no
strobing is necessary. Again we cannot quite see the attractor itself, but if we try to follow a
solution for long enough, as in the figure, we get a pretty good picture of what the attractor
looks like. The Lorenz attractor is also a strange attractor and has a complicated fractal
structure. And, just as for the Duffing equation, what we want to draw is not the whole
trajectory, but start drawing the trajectory after a while, once it is close to the attractor.

The path of the trajectory is not simply a repeating figure-eight. The trajectory spins
some seemingly random number of times on the left, then spins a number of times on the
right, and so on. As this system arose in weather prediction, one can perhaps imagine a few
days of warm weather and then a few days of cold weather, where it is not easy to predict
when the weather will change, just as it is not really easy to predict far in advance when
the solution will jump onto the other side. See Figure 8.16 for a plot of the x component of
the solution drawn above. A negative x corresponds to the left “loop” and a positive x
corresponds to the right “loop”.

Most of the mathematics we studied in this book is quite classical and well understood.
On the other hand, chaos, including the Lorenz system, continues to be the subject of
current research. Furthermore, chaos has found applications not just in the sciences, but
also in art.
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Figure 8.16: Graph of the x(t) component of the solution.

8.5.3 Exercises

Exercise 8.5.1: For the non-chaotic equation x′′ + 2px′ + ω2
0x �

F0
m cos(ωt), suppose we strobe

with frequency ω as we mentioned above. Use the known steady periodic solution to find precisely
the point which is the attractor for the Poincaré section.
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Exercise 8.5.2 (project): A simple fractal attractor can be drawn via the following chaos game.
Draw the three vertices of a triangle and label them, say p1, p2 and p3. Draw some random point p
(it does not have to be one of the three points above). Roll a die to pick of the p1, p2, or p3 randomly
(for example 1 and 4 mean p1, 2 and 5 mean p2, and 3 and 6 mean p3). Suppose we picked p2, then
let pnew be the point exactly halfway between p and p2. Draw this point and let p now refer to this
new point pnew. Rinse, repeat. Try to be precise and draw as many iterations as possible. Your
points will be attracted to the so-called Sierpinski triangle. A computer was used to run the game
for 10,000 iterations to obtain the picture in Figure 8.17.
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Figure 8.17: 10,000 iterations of the chaos game producing the Sierpinski triangle.

Exercise 8.5.3 (project): Construct the double pendulum described in the text with a string and
two nuts (or heavy beads). Play around with the position of the middle nut, and perhaps use different
weight nuts. Describe what you find.

Exercise 8.5.4 (computer project): Use a computer software (such as Matlab, Octave, or perhaps
even a spreadsheet), plot the solution of the given forced Duffing equation with Euler’s method.
Plotting the solution for t from 0 to 100 with several different (small) step sizes. Discuss.

Exercise 8.5.101: Find critical points of the Lorenz system and the associated linearizations.
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Appendix A

Table of Laplace Transforms

The function u is the Heaviside function, δ is the Dirac delta function, and

Γ(t) �
∫ ∞

0
e−ττt−1 dτ, erf(t) � 2√

π

∫ t

0
e−τ

2
dτ, erfc(t) � 1 − erf(t).

f (t) F(s) � L
{

f (t)
}
�

∫ ∞
0 e−st f (t) dt

C C
s

t 1
s2

t2 2
s3

tn n!
sn+1

tp (p > 0) Γ(p+1)
sp+1

e−at 1
s+a

sin(ωt) ω
s2+ω2

cos(ωt) s
s2+ω2

sinh(ωt) ω
s2−ω2

cosh(ωt) s
s2−ω2

u(t − a) e−as

s

δ(t) 1

δ(t − a) e−as

erf
( t

2a

) 1
s e(as)2 erfc(as)

1√
πt

exp
(
−a2

4t

)
(a ≥ 0) e−as

√
s

1√
πt
− aea2t erfc(a

√
t) (a > 0) 1√

s+a
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f (t) F(s) � L
{

f (t)
}
�

∫ ∞
0 e−st f (t) dt

a f (t) + b g(t) aF(s) + bG(s)
f (at) (a > 0) 1

a F
( s

a

)
f (t − a)u(t − a) e−asF(s)
e−at f (t) F(s + a)
g′(t) sG(s) − g(0)
g′′(t) s2G(s) − s g(0) − g′(0)
g′′′(t) s3G(s) − s2 g(0) − s g′(0) − g′′(0)
g(n)(t) snG(s) − sn−1 g(0) − · · · − g(n−1)(0)

( f ∗ g)(t) �
∫ t

0 f (τ)g(t − τ) dτ F(s)G(s)
t f (t) −F′(s)
tn f (t) (−1)nF(n)(s)∫ t

0 f (τ)dτ 1
s F(s)

f (t)
t

∫ ∞
s F(σ)dσ
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Answers to Selected Exercises

0.2.101: Compute x′ � −2e−2t and x′′ � 4e−2t . Then (4e−2t) + 4(−2e−2t) + 4(e−2t) � 0.
0.2.102: Yes.
0.2.103: y � xr is a solution for r � 0 and r � 2.
0.2.104: C1 � 100, C2 � −90
0.2.105: ϕ � −9e8s

0.2.106: a) x � 9e−4t b) x � cos(2t) + sin(2t) c) p � 4e3q d) T � 3 sinh(2x)
0.2.151:

a) y � ce−
5
7 x

b) y � c1e
1
2 x + c2e−4x

c) y � c1e5x + c2e−2x

d) y � c1e−
2
3 x

+ c2e3x

e) y � c1e−x + c2e
1
4 x

0.2.152:

a) C � 5

b) C � e−2

c) C �
π
4

d) C � −8

0.3.101: a) PDE, equation, second order, linear, nonhomogeneous, constant coefficient.
b) ODE, equation, first order, linear, nonhomogeneous, not constant coefficient, not
autonomous.
c) ODE, equation, seventh order, linear, homogeneous, constant coefficient, autonomous.
d)ODE, equation, second order, linear, nonhomogeneous, constant coefficient, autonomous.
e) ODE, system, second order, nonlinear.
f) PDE, equation, second order, nonlinear.
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0.3.102: equation: a(x)y � b(x), solution: y �
b(x)
a(x) .

0.3.103: k � 0 or k � 1
1.1.101: y � ex + x2

2 + 9

1.1.102: x � (3t − 2)1/3

1.1.103: x � sin−1 (t + 1
)

1.1.104: 170
1.1.105: If n , 1, then y �

(
(1 − n)x + 1

)1/(1−n). If n � 1, then y � ex .
1.1.106: The equation is r′ � −C for some constant C. The snowball will be completely
melted in 25 minutes from time t � 0.
1.1.107: y � Ax3 + Bx2 + Cx + D, so 4 constants.
1.1.151:

a) y �
x5

5 +
e2x

4 + Cx + D

b) y �
x5

10 +
x3

6 + Cx2 + Dx + E

c) y � − sin(2x)
8 + Cx2 + Dx + E

1.1.152:

a) y � x3 + x2 + 2x − 5

b) y � 9e
1
3 x

+ x − 11

c) y �
4
3(x + 9)3/2 − 5x − 26

1.2.101:

y � 0 is a solution such that y(0) � 0.
1.2.102: Yes a solution exists. y′ � f (x , y) where f (x , y) � x y. The function f (x , y) is
continuous and ∂ f

∂y � x, which is also continuous near (0, 0). So a solution exists and is
unique. (In fact y � 0 is the solution).
1.2.103: No, the equation is not defined at (x , y) � (1, 0).
1.2.104: a) y′ � cos y, b) y′ � y cos(x), c) y′ � sin x. Justification left to reader.
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1.2.105: Picard does not apply as f is not continuous at y � 0. The equation does not have
a continuously differentiable solution. Suppose it did. Notice that y′(0) � 1. By the first
derivative test, y(x) > 0 for small positive x. But then for those x we would have y′(x) � 0,
so clearly the derivative cannot be continuous.

1.2.106: The solution is y(x) �
∫ x

x0
f (s) ds + y0, and this does indeed exist for every x.

1.3.101: y � Cex2

1.3.102: x � e t3
+ 1

1.3.103: x3 + x � t + 2
1.3.104: y �

1
1−ln x

1.3.105: sin(y) � − cos(x) + C
1.3.106: The range is approximately 7.45 to 12.15 minutes.

1.3.107: a) x �
1000e t

e t+24 . b) 102 rabbits after one month, 861 after 5 months, 999 after 10
months, 1000 after 15 months.
1.3.151: 100e−0.00012×3315 ≈ 67%
1.3.152:

a) 100
3 ln 2 ≈ 23.1 yr

b) 250000e−3/4 ≈ $118, 092

1.3.153: 7 ln(2)/ln(5/4) ≈ 21.7 yr
1.3.154:

a) k �
1
5 ln 4

3 ≈ 0.05754

b) P′ � kP with P(0) � 0.9 million,
P(t) � 0.9ekt where k �

1
5 ln 4

3

c) P(20) � 0.9e4 ln 4
3 � 0.9

( 4
3
)4 ≈ 2.84 million

d) P(30) � 0.9e6 ln 4
3 � 0.9

( 4
3
)6 ≈ 5.06 million

1.3.155:

a) r � ln(4/3)/10 ≈ 2.88%

b) A0 � $40000/e8r � $40000/(4/3)4/5 ≈ $31777

1.3.156: λ � ln
(

m1
m2

)
/(t2 − t1) (yr)−1

1.3.157: 28.8 ln(40)/ln(2) ≈ 153.3 years.

1.3.158: y � ex3+x2−2
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1.3.159: y �
9(x−1)

x+1

1.3.160: y � −
√

ln(x2 + 1) + 4
1.3.161: y � 2 sec(x)
1.3.162: y � −

√
2xex − 2ex + 27

1.4.101: y � Ce−x3
+ 1/3

1.4.102: y � 2ecos(2x)+1 + 1
1.4.103: 250 grams

1.4.104: P(5) � 1000e2×5−0.05×52
� 1000e8.75 ≈ 6.31 × 106

1.4.105: Ah′ � I − kh, where k is a constant with units m2s.
1.4.151:

a) v(t) � 70 − 60e−kt ft/sec where k � ln(2)/3 ≈ 0.2310 (sec)−1

b) At t � 3 ln(6)/ln(2) ≈ 7.755 sec

1.4.152:

a) x(t) � 100 − 90e−kt where k �
1
4 ln 9

7 (hr)−1

b) x(7) � 100 − 90e−k(7) ≈ 42.0%

c) x′(7) � 90ke−k(7) ≈ 3.7%/hr

1.4.153:

a) v(t) � 50(1 − e−t/2) ft/sec

b) 2 ln 5 ≈ 3.2 sec

c) 100 ln 5 − 80 ≈ 81 ft

1.4.154:

a) A(t) � $750,000 − $450,000e0.04t

b) 25 ln 5
3 ≈ 12.8 years

c) A0 � $750,000

1.4.155:

a) v(t) � 40 − 39e−
1
10 t m/s

b) 40 − 20e1/2 ≈ 7.03 m/s

1.4.156:
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a) C(t) � 100 − 180e−k t µg/mL where k �
1
3 ln 16

13 ≈ 0.0692 (sec)−1

b) 3 ln(16/11)
ln(16/13) − 3 ≈ 2.41 sec

1.4.157:

a) 2 ln 15/13
ln 13/12 ≈ 3.58 minutes before 2 PM

b) 2 ln 13/9
ln 13/12 ≈ 9.19 minutes after 2 PM

1.4.158: y(x) � −2 + 6e2x

1.4.159: y(x) � 1 + ce−x2

1.4.160: y(x) � e2x3−1

1.4.161: y(x) � 2x5 + cx3

1.4.162: y(x) � 2
√

x + cx−2

1.4.163: y(x) � 2 + 3e− sin x

1.4.164: y(x) � −3
2(x + 2)−1 + c(x + 2)

1.4.165: y(x) � ln x
x +

3
x

1.4.166: y(x) � (x + e)ecos 3x

1.4.167: y(x) � tan−1 x+c
x2+1

1.4.168: y(x) � 1
2 x − 1

4 + ce−2x

1.5.101: y �
2

3x−2

1.5.102: y �
3−x2

2x

1.5.103: y �
(
7e3x + 3x + 1

)1/3

1.5.104: y �
√

x2 − ln(C − x)

1.5.151: y(x)
y(x)+2x � Ax2, y(x) � 2Ax3

1−Ax2 �
2x3

c−x2 , c � 1/A

1.5.152:
√

v + 1 − ln(
√

v + 1) � 1
2 x + c, where v(x) � x + y(x) − 5

1.5.153: y(x) � (35 x−2 + cx3)− 1
3

1.5.154: y(x) � tan(x +
π
4 ) − x − 7

1.5.155: y(x) � −2x3 − x

1.5.156: y(x) � sin−1(12 e2x + x − 1
2)

1.5.157: x2

y2 + ln
(

y2

x2

)
� ln

(
1
x2

)
+ c

1.5.158: y(x) � (13 + ce−5x3) 1
5

1.5.159: ln |1 − e2y | � −2x + c, y(x) � 1
2 ln

(
1 ± e−2x+c )
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1.5.160: y(x) � (Ax6 − x3) 1
3

1.5.161: y(x) � ( x2

6 + c)3e−3/x

1.6.101: a) 0, 1, 2 are critical points. b) x � 0 is unstable (semistable), x � 1 is stable,
and x � 2 is unstable. c) 1
1.6.102: a) There are no critical points. b)∞

1.6.103: a) dx
dt � kx(M − x) + A b) kM+

√
(kM)2+4Ak
2k

1.6.104: a) α is a stable critical point, β is an unstable one. b) α, c) α, d)∞ or DNE.
1.7.101: Approximately: 1.0000, 1.2397, 1.3829
1.7.102: a) 0, 8, 12 b) x(4) � 16, so errors are: 16, 8, 4. c) Factors are 0.5, 0.5, 0.5.
1.7.103: a) 0, 0, 0 b) x � 0 is a solution so errors are: 0, 0, 0.
1.7.104: a) Improved Euler: y(1) ≈ 3.3897 for h � 1/4, y(1) ≈ 3.4237 for h � 1/8, b)
Standard Euler: y(1) ≈ 2.8828 for h � 1/4, y(1) ≈ 3.1316 for h � 1/8, c) y � 2ex − x − 1, so
y(2) is approximately 3.4366. d) Approximate errors for improved Euler: 0.046852 for
h � 1/4, and 0.012881 for h � 1/8. For standard Euler: 0.55375 for h � 1/4, and 0.30499 for
h � 1/8. Factor is approximately 0.27 for improved Euler, and 0.55 for standard Euler.
1.8.101: a) ex y + sin(x) � C b) x2 + x y − 2y2 � C c) ex + e y � C d) x3 + 3x y + y3 � C

1.8.102: a) Integrating factor is y, equation becomes dx + 3y2 dy � 0. b) Integrating
factor is ex , equation becomes ex dx − e−y dy � 0. c) Integrating factor is y2, equation
becomes (cos(x) + y) dx + x dy � 0. d) Integrating factor is x, equation becomes
(2x y + y2) dx + (x2 + 2x y) dy � 0.
1.8.103: a) The equation is− f (x) dx+ 1

g(y) dy, and this is exact becauseM � − f (x), N �
1

g(y) ,
so My � 0 � Nx . b) −x dx +

1
y dy � 0, leads to potential function F(x , y) � − x2

2 + ln|y |,
solving F(x , y) � C leads to the same solution as the example.
2.1.101: Yes. To justify try to find a constant A such that sin(x) � Aex for all x.
2.1.102: No. ex+2 � e2ex .
2.1.103: y � 5
2.1.104: y � C1 ln(x) + C2

2.1.105: y′′ − 3y′ + 2y � 0
2.1.151: y(x) � −2 cos 5x +

3
5 sin 5x

2.1.152: y(x) � 2e2x + 2e−3x

2.1.153: y(x) � −e−4x − 8xe−4x

2.1.154: y(x) � 7
2 e−2x − 1

2 e−4x

2.1.155: y(x) � 2e−3x + 11xe−3x

2.2.101: y � C1e(−2+
√

2)x + C2e(−2−
√

2)x

2.2.102: y � C1e3x + C2xe3x
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2.2.103: y � e−x/4 cos
(
(
√

7/4)x
)
−
√

7e−x/4 sin
(
(
√

7/4)x
)

2.2.104: y �
2(a−b)

5 e−3x/2 + 3a+2b
5 ex

2.2.105: z(t) � 2e−t cos(t)
2.2.106: y �

aβ−b
β−α eαx + b−aα

β−α eβx

2.2.107: y′′ − y′ − 6y � 0
2.2.151:

a) y′′ + 8y′ + 15y � 0

b) y′′ − 4y′ � 0

c) y′′ + 4y′ + 4y � 0

d) y′′ + 2y′ + 2y � 0

e) y′′ � 0

2.2.152:

a) y(x) � C1
cos(ln x)

x + C2
sin(ln x)

x

b) y(x) � C1x2 + C2x2 ln x

c) y(x) � C1
cos(2 ln x)

x + C2
sin(2 ln x)

x

d) y(x) � C1x
1
3 + C2x−4

e) y(x) � C1x−
1
2 + C2x−

1
2 ln x

f) y(x) � C1
cos(ln x)√

x
+ C2

sin(ln x)√
x

2.3.101: y � C1ex + C2x3 + C3x2 + C4x + C5

2.3.102: a) r3−3r2+4r−12 � 0 b) y′′′−3y′′+4y′−12y � 0 c) y � C1e3x +C2 sin(2x)+
C3 cos(2x)
2.3.103: y � 0
2.3.104: No. e1ex − ex+1 � 0.
2.3.105: Yes. (Hint: First note that sin(x) is bounded. Then note that x and x sin(x) cannot
be multiples of each other.)
2.3.106: y′′′ − y′′ + y′ − y � 0
2.3.151:

a) y(x) � C1 + C2x + C3e
1
4 x + C4e−2x

b) y(x) � C1e−2x + C2e2x + C3 cos 2x + C4 sin 2x
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c) y(x) � C1e−x + C2ex + C3e−2x + C4e2x

d) y(x) � C1 + C2 cos
√

3x + C3 sin
√

3x + C4x cos
√

3x + C5x sin
√

3x

e) y(x) � C1e−x + C2ex + C3 cos 3x + C4 sin 3x

f) y(x) � C1 + C2x + C3x2 + C4e−4x + C5e3x

g) y(x) � C1 + C2e−x + C3xe−x + C4x2e−x

h) y(x) � C1e−2x + C2e2x + C3xe−2x + C4xe2x

2.4.101: k � 8/9 (and larger)

2.4.102: a) 0.05I′′ + 0.1I′ + (1/5)I � 0 b) I � Ce−t cos(
√

3 t − γ) c) I � 10e−t cos(
√

3 t) +
10√

3
e−t sin(

√
3 t)

2.4.103: a) k � 500000 b) 1
5
√

2
≈ 0.141 c) 45000 kg d) 11250 kg

2.4.104: m0 �
1
3 . If m < m0, then the system is overdamped and will not oscillate.

2.4.151:

a) x(t) � 10
3 e−

1
2 t − 4

3 e−2t ;
Undamped xu(t) � 2 cos t + sin t �

√
5 cos(t − γ)where γ � cos−1

(
2√
5

)
≈ 0.464

b) x(t) � 2e−4t(cos(2t) + sin(2t)) � 2
√

2e−4t cos(2t − π
4 )

c) x(t) � 2e−3t + 10te−3t ;
Undamped xu(t) � 2 cos(3t) + 4

3 sin(3t) � 2
√

13
3 cos(3t − γ) where γ � cos−1

(
3√
13

)
≈

0.588

d) x(t) � e−t/2(4 cos(2t) + 3 sin(2t)) � 5e−t/2 cos(2t − γ)where γ � cos−1 ( 4
5
)
≈ 0.644

e) x(t) � e−3t(2 cos(4t) + sin(4t)) �
√

5e−3t cos(4t − γ)where γ � cos−1
(

2√
5

)
≈ 0.464

2.5.101: y �
−16 sin(3x)+6 cos(3x)

73

2.5.102: a) y �
2ex+3x3−9x

6 b) y � C1 cos(
√

2x) + C2 sin(
√

2x) + 2ex+3x3−9x
6

2.5.103: y(x) � x2 − 4x + 6 + e−x(x − 5)

2.5.104: y �
2xex−(ex+e−x) log(e2x+1)

4

2.5.105: y �
− sin(x+c)

3 + C1e
√

2 x + C2e−
√

2 x

2.5.151:

a) y(x) � C1 + C2e2x cos x + C3e2x sin x + Ax2 + Bx + Cxe2x sin x + Dxe2x cos x
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b) y(x) � C1 + C2e−2x + C3e2x + Ax3 + Bx2 + Cx + Dxe2x + Ee3x

c) y(x) � C1+C2e−2x cos 3x+C3e−2x sin 3x+Ax3+Bx2+Cx+Dxe−2x cos 3x+Exe−2x sin 3x

d) y(x) � C1 + C2x + C3e−3x + C4ex + Ax3 + Bx2 + Cxe−3x + De5x

e) y(x) � C1 + C2x + C3e−3x + C4e3x + Axe−3x + Bx4 + Cx3 + Dx2

f) y(x) � C1 + C2x + C3x2 + C4e4x + C5e−2x + Ax4 + Bx3 + Cxe−2x + Dxe4x

g) y(x) � C1 + C2x + C3x2 + C4e−x cos x + C5e−x sin x + Ax6 + Bx5 + Cx4 + Dx3 +

Exe−x sin x + Fxe−x cos x

2.5.152:

a) y(x) � C1 + C2e2x − 2x2 − 2x +
5
3 e3x

b) y(x) � C1 + C2e−2x + C3ex − 1
2 x2 − 1

2 x +
1
8 e2x

c) y(x) � C1e−3x cos 2x + C2e−3x sin 2x +
1

15 cos x +
1

30 sin x

d) y(x) � C1 + C2e−3x + C3e2x − 1
18 x3 − 7

36 x2 − 13
108 x +

2
9 e3x

2.5.153:

a) y(x) � 1
3 − 2e2x − 2x2 − 2x +

5
3 e3x

b) y(x) � 9
16 +

11
48 e−2x + 1

12 ex − 1
2 x2 − 1

2 x +
1
8 e2x

2.6.101: ω �

√
31

4
√

2
≈ 0.984 C(ω) � 16

3
√

7
≈ 2.016

2.6.102: xsp �
(ω2

0−ω2)F0

m(2ωp)2+m(ω2
0−ω2)2

cos(ωt)+ 2ωpF0

m(2ωp)2+m(ω2
0−ω2)2

sin(ωt)+ A
k , where p �

c
2m and

ω0 �

√
k
m .

2.6.103: a) ω � 2 b) 25
2.6.151:

a) x(t) � 5 cos 2t + 1
2 sin 2t − 3 cos 3t

b) x(t) � 3 cos 3t − 6
5 sin 3t + 4

5 sin 2t

c) x(t) � −9
7 cos 4t − 2

7 sin 4t + 2
7 cos 3t + 5

7 sin 3t

3.1.101: y1 � C1e3x , y2 � y(x) � C2ex +
C1
2 e3x , y3 � y(x) � C3ex +

C1
2 e3x

3.1.102: x �
5
3 e2t − 2

3 e−t , y �
5
3 e2t + 4

3 e−t

3.1.103: x′1 � x2, x′2 � x3, x′3 � x1 + t

3.1.104: y′3 + y1 + y2 � t, y′4 + y1 − y2 � t2, y′1 � y3, y′2 � y4
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3.1.105: x1 � x2 � at. Explanation of the intuition is left to reader.
3.1.106: a) Left to reader. b) x′1 �

r
V (x2− x1), x′2 �

r
V x1− r−s

V x2. c) As t goes to infinity,
both x1 and x2 go to zero, explanation is left to reader.
3.2.101: −15
3.2.102: −2
3.2.103: ®x �

[ 15
−5

]
3.2.104: a)

[
1/a 0
0 1/b

]
b)

[
1/a 0 0
0 1/b 0
0 0 1/c

]
3.3.101: Yes.
3.3.102: No. 2

[ cosh(t)
1

]
−

[
e t

1
]
−

[
e−t

1
]
� ®0

3.3.103:
[ x

y
] ′
�

[ 3 −1
t 0

] [ x
y
]
+

[
e t

0
]

3.3.104: a) ®x ′ �
[ 0 2t

0 2t

]
®x b) ®x �

[
C2e t2

+C1

C2e t2

]
3.4.101: a) Eigenvalues: 4, 0,−1 Eigenvectors:

[ 1
0
1

]
,
[ 0

1
0

]
,
[ 3

5
−2

]
b) ®x � C1

[ 1
0
1

]
e4t + C2

[ 0
1
0

]
+ C3

[ 3
5
−2

]
e−t

3.4.102: a) Eigenvalues: 1+
√

3i
2 , 1−

√
3i

2 , Eigenvectors:
[
−2

1−
√

3i

]
,
[
−2

1+
√

3i

]
b) ®x � C1e t/2

[
−2 cos

(√
3t
2

)
cos

(√
3t
2

)
+
√

3 sin
(√

3t
2

) ] + C2e t/2
[

−2 sin
(√

3t
2

)
sin

(√
3t
2

)
−
√

3 cos
(√

3t
2

) ]
3.4.103: ®x � C1

[ 1
1
]

e t + C2
[ 1
−1

]
e−t

3.4.104: ®x � C1

[
cos(t)
− sin(t)

]
+ C2

[
sin(t)
cos(t)

]
3.4.151:

a) ®x(t) � C1
[ 1

7
]

e−4t + C2
[ 1

1
]

e2t

b) ®x(t) � C1
[ 1
−6

]
e−2t + C2

[ 1
1
]

e5t

c) ®x(t) � C1
[ cos t

2 cos t+sin t
]

e−t + C2
[ sin t

2 sin t−cos t
]

e−t

d) ®x(t) � −9
[ 1

1
]

e3t + 2
[ 5

6
]

e4t

e) ®x(t) � C1
[ 2 cos 4t

cos 4t−2 sin 4t

]
e5t + C2

[ 2 sin 4t
sin 4t+2 cos 4t

]
e5t

f) ®x(t) � 2
[ − cos 2t

cos 2t−2 sin 2t

]
− 1

2
[ − sin 2t

sin 2t+2 cos 2t

]
g) ®x(t) � −1

3
[ 1

2
]

e−2t + 7
3
[ 1
−1

]
e−5t

h) ®x(t) � C1
[ −2 cos 3t

3 cos 3t−3 sin 3t

]
e2t + C2

[ −2 sin 3t
3 sin 3t+3 cos 3t

]
e2t

i) ®x(t) � C1
[ 5 cos 3t
− cos 3t−3 sin 3t

]
+ C2

[ 5 sin 3t
− sin 3t+3 cos 3t

]
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j) ®x(t) � −
[ 7
−2

]
e3t + 5

[ 1
−1

]
e−2t

3.5.101: a) Two eigenvalues: ±
√

2 so the behavior is a saddle. b) Two eigenvalues: 1
and 2, so the behavior is a source. c) Two eigenvalues: ±2i, so the behavior is a center
(ellipses). d) Two eigenvalues: −1 and −2, so the behavior is a sink. e) Two eigenvalues:
5 and −3, so the behavior is a saddle.
3.5.102: Spiral source.
3.5.103:

The solution does not move anywhere if y � 0. When y is positive, the solution moves
(with constant speed) in the positive x direction. When y is negative, the solution moves
(with constant speed) in the negative x direction. It is not one of the behaviors we have
seen.
Note that the matrix has a double eigenvalue 0 and the general solution is x � C1t + C2
and y � C1, which agrees with the description above.

3.6.101: ®x �

[ 1
−1
1

] (
a1 cos(

√
3 t) + b1 sin(

√
3 t)

)
+

[ 0
1
−2

] (
a2 cos(

√
2 t) + b2 sin(

√
2 t)

)
+[ 0

0
1

] (
a3 cos(t) + b3 sin(t)

)
+

[
−1
1/2
2/3

]
cos(2t)

3.6.102:
[

m 0 0
0 m 0
0 0 m

]
®x ′′ �

[ −k k 0
k −2k k
0 k −k

]
®x. Solution: ®x �

[ 1
−2
1

] (
a1 cos(

√
3k/m t)+b1 sin(

√
3k/m t)

)
+

[ 1
0
−1

] (
a2 cos(

√
k/m t) + b2 sin(

√
k/m t)

)
+

[ 1
1
1

] (
a3t + b3

)
.

3.6.103: x2 � (2/5) cos(
√

1/6 t) − (2/5) cos(t)

3.7.101: a) 3, 0, 0 b) No defects. c) ®x � C1

[ 1
1
1

]
e3t + C2

[ 1
0
−1

]
+ C3

[ 0
1
−1

]
3.7.102: a) 1, 1, 2
b) Eigenvalue 1 has a defect of 1
c) ®x � C1

[ 0
1
−1

]
e t + C2

( [ 1
0
0

]
+ t

[ 0
1
−1

] )
e t + C3

[ 3
3
−2

]
e2t

3.7.103: a) 2, 2, 2
b) Eigenvalue 2 has a defect of 2
c) ®x � C1

[ 0
3
1

]
e2t + C2

( [ 0
−1
0

]
+ t

[ 0
3
1

] )
e2t + C3

( [ 1
0
0

]
+ t

[ 0
−1
0

]
+

t2

2

[ 0
3
1

] )
e2t

3.7.104: A �
[ 5 5

0 5
]

3.7.151:
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a) ®x(t) � C1
[ 4
−4

]
e5t + C2

( [ 4
−4

]
t +

[ 1
0
] )

e5t

b) ®x(t) � C1
[ −1
−1

]
e−4t + C2

( [ −1
−1

]
t +

[ 1
0
] )

e−4t

c) ®x(t) � 3
2
[ 2

2
]

e−3t − 4
[ 2t+1

2t

]
e−3t

d) ®x(t) � −5
[ −1
−1

]
e7t − 7

[ −t+1
−t

]
e7t

e) ®x(t) � C1
[ 2
−4

]
e5t + C2

( [ 2
−4

]
t +

[ 1
0
] )

e5t

f) ®x(t) � C1
[ −2

4
]

e−6t + C2

( [ −2
4
]

t +
[ 1

0
] )

e−6t

3.8.101: e tA �

[
e3t+e−t

2
e−t−e3t

2
e−t−e3t

2
e3t+e−t

2

]
3.8.102: e tA �

[
2e3t−4e2t+3e t 3et

2 − 3e3t
2 −e3t+4e2t−3e t

2e t−2e2t e t 2e2t−2e t

2e3t−5e2t+3e t 3et
2 − 3e3t

2 −e3t+5e2t−3e t

]
3.8.103: a) e tA �

[
(t+1) e2t −te2t

te2t (1−t) e2t

]
b) ®x �

[
(1−t) e2t

(2−t) e2t

]
3.8.104:

[
1+2t+5t2 3t+6t2

2t+4t2 1+2t+5t2

]
e0.1A ≈

[ 1.25 0.36
0.24 1.25

]
3.8.105: a)

[
5(3n) − 2n+2 4(3n) − 2n+2

5(2n) − 5(3n) 5(2n) − 4(3n)

]
b)

[
3 − 2(3n) 2(3n) − 2
3 − 3n+1 3n+1 − 2

]
c)

[
1 0
0 1

]
if n is even, and

[
0 1
1 0

]
if n is odd.

3.9.101: The general solution is (particular solutions should agree with one of these):
x(t) � C1e9t + 4C2e4t − t/3 − 5/54, y(t) � C1e9t − C2e4t + t/6 + 7/216

3.9.102: The general solution is (particular solutions should agree with one of these):
x(t) � C1e t + C2e−t + te t , y(t) � C1e t − C2e−t + te t

3.9.103: ®x �
[ 1

1
] ( 5

2 e t − t − 1
)
+

[ 1
−1

] −1
2 e−t

3.9.104: ®x �
[ 1

9
] ((

1
140 +

1
120
√

6

)
e
√

6t +

(
1

140 +
1

120
√

6

)
e−
√

6t − t
60 −

cos(t)
70

)
+

[ 1
−1

] (
−9
80 sin(2t) + 1

30 cos(2t) + 9t
40 −

cos(t)
30

)
6.1.101: 8

s3 +
8
s2 +

4
s

6.1.102: 2t2 − 2t + 1 − e−2t

6.1.103: 1
(s+1)2

6.1.104: 1
s2+2s+2

6.1.151:

a) F(s) � 2
s − 5s

s2+9 +
12
s5 − 6

s−7
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b) F(s) � 1
3(s+π) +

2π
s2+π2 +

8
s3 +

4
s2 +

1
s

c) F(s) � 3e2

s+5 − 9
2s4 +

1
2s − s

2(s2+16)

d) F(s) � 4s
s2+2 −

2
3s +

24
s5 +

12
s4 +

2
s3

e) F(s) � 6
5(s2+9) +

20
s6 − 1

2s − s
2(s2+36)

6.1.152:

a) f (t) � 3 − 2e6t + 5
3 sin 3t

b) f (t) � 1
24 t3 + 3

7 e−πt + 2 cos 2t

c) f (t) � 1
2 e−3t − 3

8 t2 + 3 cos 3t + 2
3 sin 3t

d) f (t) � 1 − 2
3 t + 5eπ

2t

e) f (t) � 1
144 t4 + 5 cos

√
3 t − 7√

3
sin
√

3 t

6.1.153:

a) f (t) � −3
2 +

3
2 e2t

b) f (t) � 1
4 − 1

4 cos 2t + sin 2t

c) f (t) � 7
5 e3t − 2

5 e−2t

d) f (t) � −1 + 2t + 2e−t

e) f (t) � −2 cos t + 5 cos
√

2 t

6.1.154:

a) F(s) � 24
(s−3)5

b) F(s) � 18
(s+2)4

c) F(s) � s−4
(s−4)2+9

d) F(s) � 10
(s+3)2+25

e) F(s) � 3(s+π)
(s+π)2+4π2

6.1.155:

a) f (t) � 1
6 t3e2t
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b) f (t) � 1
4 t2e−πt

c) f (t) � e3t cos 4t

d) f (t) � te−4t

e) f (t) � 4e−2t cos 3t − 5
3 e−2t sin 3t

f) f (t) � 3e t cos 2t + 7
2 e t sin 2t

6.2.101: f (t) � (t − 1)
(
u(t − 1) − u(t − 2)

)
+ u(t − 2)

6.2.102: x(t) � (2e t−1 − t2 − 1)u(t − 1) − 1
2 e−t + 3

2 e t

6.2.103: H(s) � 1
s+1

6.2.151:

a) x(t) � cos 5t + 2
5 sin 5t

b) x(t) � 3 cos 2t − 1
2 sin 2t + 1

2 − 1
2 cos 2t

c) x(t) � − cos 3t + 1
3 sin 3t + 1

8 cos t − 1
8 cos 3t

d) x(t) � 1
2 − 3

2 e−2t + e−3t

e) x(t) � 2e−t cos 2t + 3
2 e−t sin 2t

f) x(t) � e−3t cos 4t + 3
2 e−3t sin 4t

6.2.152:

a) F(s) � (1−e−2πs)s
s2+1

b) F(s) � e−2s+e−5s

s

c) F(s) � 2(1−e−3πs)
s2+4

d) F(s) � (e
−2s+e−5s)s

s2+π2

e) F(s) � −3(e−πs+e−4πs)
s2+9

6.2.153:

a) f (t) � u(t − 3)e4(t−3)

b) f (t) � 1
2 u(t − 2)(t − 2)2

c) f (t) � 1
3 u(t − 2π) sin 3(t − 2π)

d) f (t) � u(t − 1)e−(t−1) − u(t − 2)e−(t−2)
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e) f (t) � cos 2t + u(t − π) cos 2(t − π)

f) f (t) � 1
4 u(t − 2π) sin 4(t − 2π) − 1

4 u(t − 3π) sin 4(t − 3π)

6.2.154:

a) f (t) � 1
2 − 1

2 e−2t

b) f (t) � 2
9 − 2

9 cos 3t

c) f (t) � 1
4 − 1

4 cos 2t + 1
2 sin 2t

d) f (t) � −1
9 +

1
3 t + 1

9 e−3t

e) f (t) � 3t − 3 sin t

f) f (t) � − 2
π2 − 2

π t + 2
π2 eπt

6.3.101: 1
2(cos t + sin t − e−t)

6.3.102: 5t − 5 sin t
6.3.103: 1

2(sin t − t cos t)

6.3.104:
∫ t

0 f (τ)
(
1 − cos(t − τ)

)
dτ

6.3.151:

a) ( f ∗ g)(t) � 3
2 sin 2t

b) ( f ∗ g)(t) � 2
3(t + 3)3 − 18

c) ( f ∗ g)(t) � 1
5 e3t − 1

5 e−2t

d) ( f ∗ g)(t) � t − sin t

e) ( f ∗ g)(t) � −1
4 − 1

2 t + 1
4 e2t

6.4.101: x(t) � t
6.4.102: x(t) � e−at

6.4.103: x(t) � (cos ∗ sin)(t) � 1
2 t sin(t)

6.4.104: δ(t) − sin(t)
6.4.105: 3δ(t − 1) + 2t
6.4.151:

a) cos (4 t) + 1
4 u (t − 3) sin (4 t − 12)

b) x(t) � 1
9 − 1

9 cos 3t + 1
3 u(t − 4) sin 3(t − 4)

c) x(t) � 4
5 e2t − 4

5 e−3t + 4
5 u(t − 2)e2(t−2) − 4

5 u(t − 2)e−3(t−2)
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d) x(t) � 2te−3t + u(t − 4)(t − 4)e−3(t−4)

e) x(t) � 1
3 u(t − π)e−(t−π) sin 3(t − π)

7.1.101: Yes. Radius of convergence is 10.
7.1.102: Yes. Radius of convergence is e.

7.1.103: 1
1−x � − 1

1−(2−x) so
1

1−x �

∞∑
n�0
(−1)n+1(x − 2)n , which converges for 1 < x < 3.

7.1.104:
∞∑

n�7

1
(n−7)! x

n

7.1.105: f (x) − g(x) is a polynomial. Hint: Use Taylor series.

7.2.101: a2 � 0, a3 � 0, a4 � 0, recurrence relation (for k ≥ 5): ak �
−2ak−5
k(k−1) , so:

y(x) � a0 + a1x − a0
10 x5 − a1

15 x6 + a0
450 x10 + a1

825 x11 − a0
47250 x15 − a1

99000 x16 + · · ·
7.2.102: a) a2 �

1
2 , and for k ≥ 1 we have ak �

ak−3+1
k(k−1) , so

y(x) � a0+ a1x+ 1
2 x2+ a0+1

6 x3+ a1+1
12 x4+ 3

40 x5+ a0+2
30 x6+ a1+2

42 x7+ 5
112 x8+ a0+3

72 x9+ a1+3
90 x10+ · · ·

b) y(x) � 1
2 x2 + 1

6 x3 + 1
12 x4 + 3

40 x5 + 1
15 x6 + 1

21 x7 + 5
112 x8 + 1

24 x9 + 1
30 x10 + · · ·

7.2.103: Applying the method of this section directly we obtain ak � 0 for all k and so
y(x) � 0 is the only solution we find.
7.3.101: a) ordinary, b) singular but not regular singular, c) regular singular, d) regular
singular, e) ordinary.

7.3.102: y � Ax
1+
√

5
2 + Bx

1−
√

5
2

7.3.103: y � x3/2
∞∑

k�0

(−1)−1

k! (k+2)! x
k (Note that for convenience we did not pick a0 � 1)

7.3.104: y � Ax + Bx ln(x)
8.1.101: a) Critical points (0, 0) and (0, 1). At (0, 0) using u � x, v � y the linearization
is u′ � −2u − (1/π)v, v′ � −v. At (0, 1) using u � x, v � y − 1 the linearization is
u′ � −2u + (1/π)v, v′ � v.
b) Critical point (0, 0). Using u � x, v � y the linearization is u′ � u + v, v′ � u.
c) Critical point (1/2, −1/4). Using u � x − 1/2, v � y + 1/4 the linearization is u′ � −u + v,
v′ � u + v.
8.1.102: 1) is c), 2) is a), 3) is b)
8.1.103: Critical points are (0, 0, 0), and (−1, 1,−1). The linearization at the origin using
variables u � x, v � y, w � z is u′ � u, v′ � −v, z′ � w. The linearization at the point
(−1, 1,−1) using variables u � x + 1, v � y − 1, w � z + 1 is u′ � u − 2w, v′ � −v − 2w,
w′ � w − 2u.
8.1.104: u′ � f (u , v , w), v′ � g(u , v , w), w′ � 1.
8.2.101: a) (0, 0): saddle (unstable), (1, 0): source (unstable), b) (0, 0): spiral sink
(asymptotically stable), (0, 1): saddle (unstable), c) (1, 0): saddle (unstable), (0, 1):
saddle (unstable)
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8.2.102: a) 1
2 y2 + 1

3 x3 − 4x � C, critical points: (−2, 0), an unstable saddle, and (2, 0), a
stable center. b) 1

2 y2 + ex � C, no critical points. c) 1
2 y2 + xex � C, critical point at

(−1, 0) is a stable center.
8.2.103: Critical point at (0, 0). Trajectories are y � ±

√
2C + (1/2)x4, for C > 0, these give

closed curves around the origin, so the critical point is a stable center.
8.2.104: A critical point x0 is stable if f ′(x0) < 0 and unstable when f ′(x0) > 0.
8.3.101: a) Critical points are ω � 0, θ � kπ for any integer k. When k is odd, we have a
saddle point. When k is even we get a sink. b) The findings mean the pendulum will
simply go to one of the sinks, for example (0, 0) and it will not swing back and forth. The
friction is too high for it to oscillate, just like an overdamped mass-spring system.
8.3.102: a) Solving for the critical points we get (0,−h/d) and ( bh+ad

ac , a
b ). The Jacobian

matrix at (0,−h/d) is
[

a+bh/d 0
−ch/d −d

]
whose eigenvalues are a+ bh/d and −d. So the eigenvalues

are always real of opposite signs and we get a saddle (In the application however we are
only looking at the positive quadrant so this critical point is not relevant). At ( bh+ad

ac , a
b )

we get Jacobian matrix
[

0 − b(bh+ad)
ac

ac
b

bh+ad
a −d

]
. b) For the specific numbers given, the second critical

point is (550
3 , 40) the matrix is

[
0 −11/6

3/25 1/4

]
, which has eigenvalues 5±i

√
327

40 . Therefore there
is a spiral source. This means the solution spirals outwards. The solution will eventually
hit one of the axes, x � 0 or y � 0, so something will die out in the forest.
8.3.103: The critical points are on the line x � 0. In the positive quadrant the y′ is always
positive and so the fox population always grows. The constant of motion is C � yae−cx−b y ,
for any C this curve must hit the y-axis (why?), so the trajectory will simply approach a
point on the y axis somewhere and the number of hares will go to zero.
8.4.101: Use Bendixson–Dulac Theorem. a) fx + gy � 1 + 1 > 0, so no closed trajectories.
b) fx + gy � − sin2(y) + 0 < 0 for all x , y except the lines given by y � kπ (where we get
zero), so no closed trajectories. c) fx + gy � y + 0 > 0 for all x , y except the line given by
y � 0 (where we get zero), so no closed trajectories.
8.4.102: Using Poincaré–Bendixson Theorem, the system has a limit cycle, which is the
unit circle centered at the origin as x � cos(t) + e−t , y � sin(t) + e−t gets closer and closer
to the unit circle. Thus we also have that x � cos(t), y � sin(t) is the periodic solution.
8.4.103: f (x , y) � y, g(x , y) � µ(1−x2)y−x. So fx+ gy � µ(1−x2). The Bendixson–Dulac
Theorem says there is no closed trajectory lying entirely in the set x2 < 1.
8.4.104: The closed trajectories are thosewhere sin(r) � 0, therefore, all the circles centered
at the origin with radius that is a multiple of π are closed trajectories.

8.5.101: Critical points: (0, 0, 0), (3
√

8, 3
√

8, 27), (−3
√

8,−3
√

8, 27). Linearization at (0, 0, 0)
using u � x, v � y, w � z is u′ � −10u + 10v, v′ � 28u − v, w′ � −(8/3)w. Linearization at
(3
√

8, 3
√

8, 27)using u � x−3
√

8, v � y−3
√

8, w � z−27 is u′ � −10u+10v, v′ � u−v−3
√

8w,
w′ � 3

√
8u+3

√
8v−(8/3)w. Linearization at (−3

√
8,−3
√

8, 27)using u � x+3
√

8, v � y+3
√

8,
w � z − 27 is u′ � −10u + 10v, v′ � u − v + 3

√
8w, w′ � −3

√
8u − 3

√
8v − (8/3)w.
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