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each of the five marks. Section-III, five questions to be set, one from each unit. The candidate will be
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Preliminaries: Initial value problem and the equivalent integral equation, mth order equation in d-dimensions as
a first order system, concepts of local existence, existence in the large and uniquness of solutions with examples.

Basic Theorems: Ascoli-Arzela Theorem, A theorem on convergene of solutions of a family of initial value
problems.

Picard-Lindel of theorem: Peano's existence theorem and corollary. Maximal intervals of existence. Exten-
sion theorem and corollaries. Kamke's convergence theorem. Kneser' theorem (statement only).

Unit-II

Dependence on initial conditions and parameters: Preliminaries, Continuity, Differentiability, Higher Order
Differentiability.

Differential Inequalities and Uniqueness: Gronwall's inequality, Maximal and Minimal solutions. Differen-
tial inequalities. A theorem of Wintner, Uniqueness Theorems, Nagumo's and Osgood's criteria.

Egres points and Lyapunov functions. Successive approximations.

Unit-III

Linear Differential Equations: Linear Systems, Variation of constants, reduction to smaller systems. Basic
inequalities, constant coefficients, Floquet theory, Adjoint systems, Higher order equations.

Unit-IV

Poincare-Bendixson Theory: Autonomous sytems, Umlanfsatz, Index of stationary point. Poincare-Bendixson
theorem. Stability of periodic solutions, rotation points, foci, nodes and saddle points.

Use of Implicit function and fixed point theorems: Period solutions, Linear equations, Non-linear problems.

Second order Boundary value problems – Linear Problems, Non-linear problems, Aprori bounds.

Unit-V

Linear second order equations: Preliminaries, Basic facts, Theorems of Sturm. Sturm-Liouville Boundary
Value Problems, Number of zeros, Non-oscillatory equations and principal solutions. Non-oscillation theorems.
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DIFFERENTIAL AND INTEGRAL EQUATIONS 

 
 

The subject of differential equations is large, diverse, powerful, useful, and full of surprises.  
Differential equations can be studied on their own-just because they are intrinsically interesting.  
Or, they may be studied by a physicist, engineer, biologist, economist, physician, or political 
scientist because they can model (quantitatively explain) many physical or abstract systems.  Just 
what is a differential equation?  A differential equation having y as the dependent variable 
(unknown function) and t as the independent variable has the form  

   F �
�
�

�
�
�
�

�
n

n

2

2

dt
yd

,...,
dt

yd
,

dt
dy

y,t  = 0  

for some positive integer n.  (If n is 0, the equation is an algebraic or transcendental equation, 
rather than a differential equation).  Here is the same idea in words :  

Definition.  A differential equation is an equation that relates in a non-trivial manner an 
unknown function and one or more of the derivatives or differentials of that unknown function 
with respect to one or more independent variables.  

The phrase “in a nontrivial manner” is added because some equations that appear to satisfy the 
above definition are really identities.  That is, they are always true, no matter what the unknown 
function might be.  An example of such an equation is :  

sin2  �
�

�
�
�

�

dt
dy

cos2 �
�

�
�
�

�

dt
dy

=  1.  

This equation is satisfied by every differential function of one variable.  Another example is :  

   
2

y
dt
dy

�
�

�
�
�

� −  = 
2

dt
dy
�
�

�
�
�

� − 2y �
�

�
�
�

�

dt
dy

+ y2 .  

Classification of Differential Equations  

Differential equations are classified in several different ways :  ordinary or partial; linear or 
nonlinear.  There are even special subclassifications: homogeneous or nonhomogeneous; 
autonomous or nonautonomous; first-order, second-order,….,nth order.  Most of these names 
for the various types have been inherited from other areas of mathematics, so there is some 
ambiguity in the meanings.  But the context of any discussion will make clear what a given name 
means in that context.  There are reasons for these classifications, the primary one being to enable 
discussions about differential equations to focus on the subject matter in a clear and unambiguous 
manner.  Our attention will be on ordinary differential equations.  Some will be linear, some 
nonlinear.  Some will be first-order, some second-order, and some of higher order than second.  
What is the order of a differential equation?  As a rule, only those differential equations are 
considered which are algebraic in the differential coefficients. 
Definition. The order of a differential equation is the order of the highest derivative that appears 
(nontrivially) in the equation.  
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At this early stage in our studies, we need only be able to distinguish ordinary from partial 
differential equations.  This is easy: a differential equation is an ordinary differential equation if 
the only derivatives of the unknown function(s) are ordinary derivatives, and a differential 
equation is a partial differential equation if the only derivatives of the unknown function (s) are 
partial derivatives.  

Example.  Here are some ordinary differential equations :  

 
dt
dy

= 1+y2   (first-order)   [nonlinear] 

 
2

2

dt
yd

+ y = 3 cos t  (second-order)  [linear, nonhomogeneous] 

 
2

2

3

3

dt
yd

3
dt

yd + − 5y = 0  (third-order)   [linear, homogeneous] 

Example.  Here are some partial differential equations :  

 
y
u

x
u

∂
∂=

∂
∂

  (first-order in x and y)  

 
2

2
2

x
u

c
t
u

∂
∂=

∂
∂

  (first-order in t; second-order in x)  

 
2

2

2

2

y
u

x
u

∂
∂+

∂
∂

 = 0   (second-order in x and y)  

 
yx
u2

∂∂
∂

= 3  (second-order)  

Linearity.   We now introduce the important concept of linearity applied to such equations.  This 
concept will help us to classify these equations still further.  

Definition.  An ordinary differential equation of order n, in the dependent variable y and the 
independent variable t, is said to be a linear equation which can be expressed in the form  

 a0(t) 1n

1n

1n

n

dt
yd

)t(a
dt

yd
−

−
+  + … + an−1(t) )t(a

dt
dy

n+ y = Q(t)   (*) 

where a0(t) is not identically zero on [a.b].  

The right handed member Q(t) of (*) is called the nonhomogeneous term.  If Q(t) is identically 
zero, equation (*) reduces to  

 a0(t) 1n

1n

1n

n

dt
yd

)t(a
dt

yd
−

−
+ + … an(t)y = 0       (**) 

and is then called homogeneous.   Thus a linear homogeneous differential equation of order n does 
not contain a term involving the independent variable alone.  
Examples.  The ordinary differential equations  

(i) y6
dt
dy

7
dt

yd
2

2

++ = 0 ,  

(ii) t7 y
dt
dy

t6
dt

yd
2

3

++ = sin t ,   

are both linear.  
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Definition.   An ordinary differential equation which is not linear is called a nonlinear ordinary 
differential equation. 

Example.  The following ordinary homogeneous differential equations are all nonlinear. 

(i) 3
2

2

y6
dt
dy

7
dt

yd ++ = 0 ,  

(ii) y6
dt
dy

4
dt

yd 3

2

2

+�
�

�
�
�

�+ = 0,  

(iii)  y6
dt
dy

y6
dt

yd
2

2

++  = 0 .  

Definition.  To say that y = g(t) is a solution of differential equation 

 F �
�
�

�
�
�
�

�
n

n

dt
yd

,...,
dt
dy

,y,t  = 0   

on an interval I means that  
 F(t, g(t), g′(t),…, g(n)(t)) = 0 ,  

for every choice of t in the interval I.   In other words, a solution, when substituted into the 
differential equation, makes the equation identically true for t in I.  

Initial-value problem.  An initial-value problem associated with a first order differential equation 
is of the form  

  
dt
dy

= f(t,y),  t  ε I  

  y(t0) = y0 ,  
for some point t0 ε I .  
 An initial-value problem associated with a second order differential equation has the form  

  �
�

�
�
�

�=
dt
dy

,y,tf
dt

yd
2

2

 ,   t ε I        

with initial conditions  
   y(t0) = y0 ,   

y′(t0) = ξ0 ,  
for some point t0 ε I.  

Integral Equations 

An integral equation is an equation in which the unknown function, say  u(t), appears under an 
integral sign.  A general example of an integral equation in u(t) is  
  u(t) = f(t) + � K(t,s)u(s)ds 
where K(t,s) is a function of two variables called the kernel or nucleus of the integral equation.  
According to Bocher [1914], the name integral equations was suggested in 1888 by du Bois-
Reymond, although the first appearance of integral equations is accredited to Abel for his thesis 
work on the Tautochrone, which was published in 1823 and 1826.  There is also the opinion that 
such first appearance was in Laplace’s work in 1782 as it shall make sense when we speak of the 
inverse Laplace transform. For example, the Laplace transform of the given (known) function f(t), 
0 < t < ∞ , is 

  L{f(t)} = F(s) = �
∞

0

e−stf(t)dt,  s > a  
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provided that the integral converges for s > a.  So, if we are now given F(s), say F(s) = 
2s

1
 , s > 0 , 

and we are to find the original function (now as unknown) f(t), or the inverse Laplace transform of 
F(s), i.e., f(t) = L−1{F(s)}, 

  
2s

1
= �

∞

0

e−stf(t)dt , 

then we are against solving above integral equation in (the unknown) f(t).  So it does make sense 
that integral equations started with Laplace, since he was, in the final analysis, after recovering the 
original function f(t) from knowing F(s).  In our above example, f(t) = t.  

In the same vein, Fourier in 1820 solved for the inverse f(t) of the following Fourier transform 
F(λ) of f(t), −∞ < t < ∞ ,  

  F{f} = F(λ) = �
∞

∞−
e−iλt f(t) dt  

as  

  f(t) = F−1{F} = �
∞

∞−π2
1

eiλt F(λ)dλ .  

Hence in finding the (unknown) f(t), he solved an integral equation in f(t).  With such an explicit 
solution f(t), it is not surprising that some historians consider this Fourier (inverse transform) result 
as the first very clear and reachable solution of an integral equation. 

Some problems have their mathematical representation appear directly, and in a very natural way, 
in terms of integral equations. Other problems, whose direct representation is in terms of 
differential equations and their auxiliary conditions, may also be reduced to integral equations.  
Problems of a “hereditary” nature fall under the first category, since the state of the system u(t) at 
any time t depends by definition on all the previous states u(t−τ) at the previous times t−τ, which 
means that we must sum over them, hence involve them under the integral sign in an integral 
equation.  We may then say that such problems, among others, have integral equations as their 
natural mathematical representation.   The rest of the examples are problems that are formulated in 
terms of ordinary or partial differential equations with initial and/or boundary conditions that are 
reduced to an integral equation or equations.  The advantage here is that the auxiliary conditions 
are automatically satisfied, since they are incorporated in the process of formulating the resulting 
integral equation.  The other advantage of the integral equation form is in the case when both 
differential equations as well as integral equations forms do not have exact, closed-form solutions 
in terms of elementary known functions.   
 
CLASSIFICATION OF INTEGRAL EQUATIONS 

The most of the integral equations fall under two main categories :  Volterra and Fredholm integral 
equations.  A Volterra integral equation for the first kind is of the form  

 −f(x) = � ξξξ
x

a

d)(u),x(K ,   

and a Volterra integral equation of the second kind is of the type  

 u(x) = f(x) = � ξξξ
x

a

d)(u),x(K .  

A Fredholm integral equation of the first and second kind are, respectively,  
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  −f(x) = � ξξξ
b

a

d)(u),x(K ,  

    u(x) = f(x) + � ξξξ
b

a

d)(u),x(K .  

Initial value problems reduced to Volterra Integral Equations 

Now, we shall illustrate in detail how an initial value  problem associated with a linear-
differential equation and auxiliary conditions reduces to a Volterra integral equation.  

Example 1.  Consider the initial-value problem  

     
dt
dy

= f(t, y) ,   t ε I        (1) 

              y(t0) = y0         (2)  
Integrating (1) w.r.t.  t from t0 to t, we write  

  y(t) − y(t0) =  �
t

0

ds))s(y,s(f  

  � y(t) = y0 + �
t

t0

ds))s(y,s(f       (3) 

which is a Volterra integral equation of the second kind.  Conversely, the differentiation of (3) 
gives 

  
dt
dy

= f(t, y(t)) for all t ε I       (4) 

Further, from (3), we write, on putting t = t0 both sides,  
  y(t0) = y0 .         (5) 
That is, y(t) given by (4) also satisfies the initial condition in (5).  

Example 2.  Consider the initial value problem associated with the second-order differential 
equation  

  
2

2

dt
yd

 = λ y(t) + g(t) ,        (1)  

  y(0)  =  1,   
y′(0) = 0  .         (2)  

We integrate equation (1) w.r.t. ‘t’ over the interval [0, t].  We obtain  

  
dt
dy − y′(0) = λ � � ξξ+ξξ

t

0

t

0

d)(gd)(y  

or   
dt
dy

 = λ � � ξξ+ξξ
t

0

t

0

d)(gd)(u  ,       (3)  

using one initial condition given in (2).  Integrating again, we find  

 y(t) − y(0) = λ � �
ξt

0 0

y(s)ds + dξ + � �
ξt

0 0

g(s)ds dξ 

or              y(t) = 1 + �
t

0

(t−s) g(s)ds + λ �
t

0

(t−s)y(s)ds  
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 �     y(t) = f(t) + λ �
t

0

K(t,s) y(s)ds,     (4) 

where f(t) = 1 + �
t

0

(t−s)g(s)ds is the non-homogeneous term and K(t, s) = t−s is the kernel of 

Volterra integral equation (4).  Integral equation (4) automatically takes care of two auxiliary 
conditions in (2).  

Now, we shall consider the initial value problem associated with the general second-order 
differential equation. 

Example 3.   )t(y)t(B
dt
dy

)t(A
dt

yd
2

2

++  = g(t),      (1)  

    y(a) = c1,  
 y′(a) = c2 .        (2) 

We write 

  )t(g)t(y)t(B
dt
dy

)t(A
dt

yd
2

2

+−−= . 

We now integrate over the interval (a, t) to obtain  

    � � � ξξ+ξξξ−ξξξ−=−
t

a

t

a

t

a
2 d)(gd)(y)(Bd)(©y)(Ac

dt
dy

  

       = [ ] � � � ξξ+ξξξ−ξξξ+ξξ−
t

a

t

a

t

a

t
a )d)(gd)(y)(Bd)(y)(©A)(y)(A  

       = [ ] )a(Ac)t(y)t(Ad)(gd)(y)(B)(©A 1

t

a

t

a

+−ξξ+ξξξ−ξ �� .  (3) 

Integrating (3) again, we obtain  

 y(t) − c1−c2(t−a) = � �−−−
t

a

t

a

ds)s(y)s(Ads)s(y)]s(B)s(©A)[st(  

    + � −+−
t

a
1 ]at)[a(Acds)s(g)st( . 

This implies  
 

 y(t) = � +−−−
t

a

)t(fds)s(y)]s(A)}s(B)s(©A){st[(     (4)  

where the non-homogeneous term f(t) is  

 f(t) = � −
t

a

)st( g(s)ds + (t−a) [c1(A(a)) + c2] + c1 .    (5)  

Equation (4) is a Volterra integral equation of the second kind of the type  

 y(t) = f(t) + �
t

a

ds)s(y)s,t(K  ,        (6) 

in which the kernel K(t, s) is given by 
 K(t,s) = (t−s) [A′(s)−B(s)] − A(s) .       (7) 
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Integral equation (5) is equivalent to the given initial value problem and it takes care of auxiliary 
conditions in (2). 

 
Exercise 

Obtain the Volterra integral equation corresponding to each of the following initial value problems 
(a) y′′ + λy = 0 ;    y(0) = 1, y′(0) = 0  
(b) y′′ + λy = 0 ;   y(0) = 0,  y′(0) = 1 
(c) y′′ +   y = sin t ;  y(0) = 1, y′(0) = 1  
(d) y′′ −y+ t = 0 ;   y(0) = 1, y′(0) = 0  
(e) y′′+λy = f(t);   y(0) = 1, y′(0) = 0   
(f) y′′+ty =  1,   y(0) = y′(0) = 0  
(g) y′′−2ty′ −  3y = 0 ,  y(0) = 1, y′(0) = 0 . 
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EXISTENCE THEOREM 
 
 
Let I denote an open interval on the real line −∞ < t < ∞, that is, the set of all real t satisfying              
a < t < b for some real constants a and b.   The set of all complex-valued functions having k 
continuous derivatives on I is denoted by Ck(I).  If f is a member of this set, one writes f ε Ck(I), or 
f ε Ck on I.    The symbol ε is to be read “is a member of” or “belongs to.”  It is convenient to 
extend the definition of Ck to intervals I which may not be open.   The real intervals a < t < b,           
a ≤ t ≤ b, a ≤ t < b, and a < t ≤ b will be denoted by (a, b), [a,b], [a, b), and (a, b], respectively.  If f 
ε Ck on (a,b), and in addition the right-hand kth derivative of f exists at a and is continuous from 
the right at a, then f is said to be of class Ck on [a, b).  Similarly, if the kth derivative is continuous 
from the left at b, then f  ε Ck on (a, b].  If both these conditions hold, one says f ε Ck on [a, b].  
A nonempty set S of points of the real (t, y) plane will be called connected if any two points of S 
can be joined by a continuous curve which lies entirely in S.  
A non-empty set S of points of the ty-plane is called open if each point of S is an interior point of 
S.  

An open and connected set in the ty-plane is called a domain. 
A point P is called a boundary point of a domain D if every circle around P contains both points 
in D and points not in D.  

A domain plus its boundary points will be called a closed domain.  
If D is a domain in the real (t, y) plane, the set of all complex-valued functions f defined on D such 
that all kth-order partial derivatives ∂kf/∂tp∂yq (p+q = k) exist and are continuous on D is denoted 
by Ck(D), and one writes f ε Ck(D), or f ε Ck on D.  

The sets C0(I) and C0(D), the continuous functions on I and D, will be denoted by C(I) and C(D), 
respectively.  

Let D be a domain in the (t, y) plane and suppose f is a real-valued function such that f ε C(D).  
Then the central problem may be phrased as follows:  

Problem.  To find a differentiable function φ defined on a real t interval I such that  
(i)  (t, ϕ(t) ε D    (t ε I)  

(ii)   )]t([
dt
d ϕ = f(t, ϕ(t))  (t ε I)  

This problem is called an ordinary differential equation of the first order, and is denoted by  

  
dt
dy

= f(t,y) .        (E)  

If such an interval I and function ϕ exist, then ϕ is called a solution of the differential equation (E) 
on I. Clearly if ϕ is a solution of (E) on I, then ϕ ε C1 on I, on account of (ii).  

In geometrical language, (E) prescribes a slope f(t, y) at each point of D.  A solution ϕ on I is a 
function whose graph [the set of all points (t, ϕ (t)), t ε I] has the slope f(t, ϕ(t)) for each t ε I.  
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Suppose (t0, y0) is a given point in D.  Then an initial-value problem associated with differential 
equation (E) and this point (t0, y0) is formulated in the following way :  

Initial-value Problem.  To find an interval I containing t0 and a solution ϕ = ϕ(t) of differential 
equation 

  
dt
dy

= f(t, y)  for (t, y) ε D  

on I satisfying the initial condition  
  ϕ(t0) = y0 .  
As seen earlier, this initial-value problem is completely equivalent to the finding of a continuous 
function ϕ = ϕ(t) on I satisfying the integral equation  

  ϕ(t) = y0 + �
t

t0

(f s, ϕ(s))ds,   t ε I .  

Remark.  Given a continuous function f(t, y) on a domain D, the first question to be answered is  
 “Whether there exists a solution of the differential equation  

  
dt
dy

= f(t, y)   for all t ε I” 

The answer is YES, if interval I is properly prescribed.  

Example.  Consider the differential equation  

  
dt
dy

= y2 ,  y(1) = −1   with t0 = 1 ε I .  

A solution of this problem is  
  ϕ(t) = −t−1 .  
However, this solution does not exist at t = 0, although 
            f(t,y) = y2  
is continuous at t = 0.  

This example shows that any general existence theorem will necessarily have to be of LOCAL 
nature around t0.  Existence in the large can only be asserted under additional conditions on f.  

Existence in the large.  On what t-ranges does a solution of initial-value problem  

    
dt
dy

= f(t,y),  

y(t0) = y0,  t ε I  
exist? 
Let E be a subset of (t,y) space where  
     E = {(t,y)| 0 ≤ t ≤ 1, |y| ≤ 1} . 
Consider I V P  

  
dt
dy

= f(t, y), y(0) = 1 .                  0                 1/2               1 

A solution of this IVP may exist for 0 ≤ t ≤ 1/2  and increase from 0 to 1 as t goes from 0 to 1/2 , 
then one cannot expect to have an extension of solutions, y(t), for t > 1/2.   

Uniqueness of solutions 

Let y be a scalar and consider the IVP  

dt
dy

 = |y|1/2 ,  y(0) = 0 .  
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This IVP has more than one solution.  
First solution :   y(t) = 0 for all t.  

Second solution: It has one parameter family of solutions defined by  

  y(t) = 
�
�

�
�

�

≥�
�

�
	



� −
≤

ctfor
2

ct
ctfor0

2  

where c is an arbitrary constant with c ≥ 0 .  Thus, solution of this IVP is not unique.  

Definition (∈∈∈∈-approximate solution) 

Let f be a real-valued continuous function on a domain D in the (t,y) plane.  An ∈-approximate 
solution of an ODE of the first order  

   
dt
dy

= f(t,y)  

on a t-interval I is a function ϕ ε C(I) such that  
i)  (t, ϕ(t)) ε D   for all t ε I  
ii) ϕ ε C1(I) , except possibly for a finite set of points S on I where ϕ′(t) may have simple 

discontinuities (i.e., at such points of S, the right and left limits of φ′(t) exist but are not 
equal),  

iii) |ϕ′(t) − f(t, ϕ(t))| < ∈   for  t ε I − S.  

Remark (1)   When ∈ = 0 , then it will be understood that the set S is empty, i.e., S = φ.  So (ii) 
holds for all t ε I.  
(2)  The statement (ii) implies that ϕ have  a piecewise continuous derivative on I, and we shall 
denote it by  
  ϕ ε Cp

1(I).  
(3) Consider the rectangle                                                               y  

R =  {(t, y) : |t−t0| ≤ a, |y−y0| ≤ b,  a > 0, b > 0}  (1) 
about the point (t0, y0).                                                                y0+b 
Let f ε C on the rectangle R.  Since the rectangle R is a closed    y0 
set, so the continuous function f on R is bounded.  Let              y0−b 
 M = max |f(t,y)| on R         (2) 

Let α = min (a, 
M
b

)         (3)                             t0−a  t0    t0+a         t 

 
(Cauchy-Euler construction of an approximate solution).  

Theorem 2.1.  Let f ε C on the rectangle R.  Given ∈ > 0 , there exists an ∈∈∈∈-approximate 
solution ϕ of ODE of first order  

   
dt
dy

= f(t,y)         (1) 

on the interval I  = {t : |t − t0| ≤ α} such that ϕ(t0) = y0 ,  α being some constant.   

Proof.  Let ∈ 0  be given.  We shall construct an ∈−approximate solution for the interval                
[t0, t0+ α].   A similar construction will define it for [t0 −α, t0].  

This approximate solution will consist of a polygonal path starting at (t0, y0), i.e., a finite number 
of straight-line segments joined end to end.  

        R 
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                    M 
                   
       
          (t0,y0)      T 
                     -M 
 

 
Since f is continuous on the closed rectangle  
 R = {(t,y) : |t−t0| ≤ a,  |y−y0| ≤ b,  a > 0 ,  b > 0 }      (2) 
So f is bounded and uniform continuous on R.  Let  
 M = 

R
max |f(t,y)|          (3) 

and  

 α = min(a, 
M
b

) .          (4) 

Then  

(i) α = a  if M ≤ 
a
b

   (fig 2.1a)  

(ii) α = 
M
b

   if M ≥  
a
b

  (fig. 2.1b)  

In the first case, we get a solution valid in the whole interval |t − t0| ≤ a,  whereas in the second of 
the interval case, we get a solution valid only on I, a sub-interval f|t−t0| ≤ a .  

 
                                                                                                                                  y0 +b           

 
 

      y0                                                                                                                                    y0 
 
 
 

       x0 − a                     x0                            x0 + a           x0 −a    x0−α            x0             x0+α   x0+a 
                             (a)                                                                          (b) 
                         Fig. 2.1 
 

We consider the second case when M ≥ 
a
b

.  Since f is uniformly continuous on R, therefore, for 

given ∈ > 0 ,  there exists a real number δ = δ∈ = δ(∈) > 0 such that  
                                         y 
                                                                           y0 + b      Q 
  
                                                                                                      t0+α 
                                                                             c       P1                          
                                                                                                  t0 +a 
 
  
                                                                                     t1          Q1 
                                                                           t 
                                                                   Fig. 2.2 
     

 |f(t,y) − f(t,y)| ≤ ∈          (5) 
provided  
  |t−t | ≤ δ∈ ,  |y−y| ≤ δ∈        (6) 
for   (t, y) ε R and  (t , y) ε R .  

Slope(-M) Slope M 
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Now divide the interval [t0, t0 + α] into n parts such that  
  t0 < t1 < … < tn = t0 + α  
and  

  max.|tk − tk−1| ≤  min (δ∈,  
M

∈δ
) .       (7) 

Starting from the point C (t0, y0), we construct a straight-line segment with slope f(t0, y0) 
proceeding to the right of t0 until it intersects the line t = t1 at some point P1(t1, y1).  Here, slope of 
line CP1 is f(t0, y0).  This line segment, CP1 , must lie inside the triangular region T bounded by the 
lines issuing from C with slope M and −M, and the line t = t0+α, as shown in the figure (2.2) above 
because, we have, in this case,   

  α = 
M
b

 .         (8) 

Now, at the point P1(t1, y1), we construct to the right of t1 a straight-line segment with slope f(t1, 
y1) upto the intersection with line t = t2 , say at the point P2(t2, y2).  

Continuing in this fashion, in a finite number of steps, the resultant path ϕ(t) will meet the line               
t = t0 + α at the point Pn(tn, yn).  Further, this polygon path (fig. 2.3) will lie entirely within the 
region T.  This ϕ is the required ∈−approximate solution.  

                           y 

 

 

                          t0+a    

 

 

                           o                                                                                                 t 
 

Fig. 2.3 
Analytically, the solution function ϕ(t) has the equation  

 ϕ(t) = ϕ(tk−1) + f(tk+1, ϕ(tk−1)) (t−tk−1)       (9) 
 

for t ∈ [tk−1, tk]  and k = 1,2,…,n, and φ(t0) = y0 .  From the construction of the function φ, it is 
clear that ϕ ε C′p on [t0, t0 +α], and that  
 |ϕ(t) − ϕ(t) | ≤ M|t−t |         (10) 
where t, t are in [t0, t0 + α] .  

If t is such that tk−1 ≤ t ≤ tk, then equations (7) and (10) together imply that  
 |ϕ(t) − ϕ(tk−1)| ≤ M|t−tk−1|  

≤ M|tk−tk−1|  

≤ M.
M

∈δ
= δ∈ . 

From equations (4), (5), (7) and (9), we obtain  
  |ϕ′(t) − f(t, ϕ(t)) | = |f(tk−1, ϕ(tk−1)) − f(t, ϕ(t))| 
          ≤ ∈ ,        (12) 
where tk−1 ≤ t ≤ tk . 
This shows that ϕ is an ∈-approximate solution, as desired.   This completes the proof.  

                      
                                                    T            
                                  

                      (t0,y0)          t1   t2    t3    t0+α      
        



EXISTENCE THEOREM 17

Remark.  After finding an “∈-approximate solution” of an IVP, one may prove that there exists a 
sequence of these approximate solutions which tend to a solution.  To achieve this aim, the notion 
of an equicontinuous set of functions is required.  

Definition (Equicontinuous set family of functions) 

Statement.  A set of functions F = {f} defined on a real interval I is said to be equicontinuous on I 
if, for given any ∈ > 0 , there exists a real number δ = δ∈ = δ(∈) > 0 ,  independent of f ε F, such 
that  
  |f(t) − f(t)| < ∈  

whenever |t−t | < δ∈  for t , t ∈ I .  

Note.   In this definition, the choice of δ∈ does not depend on the member f of family F but is 
admissible for all f in the family F.  

Theorem 2.2.  (Due to Ascoli). 

Statement.  On a bounded interval I, let F = {f} be an infinite, uniformly bounded, equicontinuous 
set of functions.  Prove that F contains a sequence which is uniformly convergent on I.  

Proof.  Let {rk}, k =  1,2,…, be all the rational numbers present in the bounded interval I 
enumerated/listed in some order.  The set of numbers {f(r1) : f ε F} is bounded, hence there exists a 
sequence of distinct functions 

11 nn f},f{ ε F, such that the sequence )}r(f{ 1n1
 is convergent.  

Similarly, the set of numbers )}r(f{ 2n1
has a convergent subsequence )}r(f{ 2n2

. 

Continuity in this way, an infinite set of functions 
knf ε F, n, k = 1,2,…, is obtained which have the 

property that }f{
kn converges at r1, r2,.., rk .   

 
Define  
  gn = fnn .         (1) 
Now, it will be shown that {gn} is the required sequence which is uniformly convergent on I.  
Clearly, {gn} converges at each point rk of the rationals on I.  Thus, given any ∈ > 0 , and each 
rational number rk ε I, there exists an integer N∈(rk)  such that  
 |gn(rk) − gm(rk)| < ∈   for an, m > N∈(rk) .       (2) 
Since the set F is equicontinuous, there exists a real number δ = δ∈ = δ(∈) > 0, which is 
independent of f ε F , such that  
  |f(t) − f(t ) | < ∈ ,         (3) 
for  
  |t−t | < δ∈  and  t, t ε I .  
We divide the interval I into a finite number of subintervals I1, I2,…, Ip such that the length of the 
largest subinterval is less than δ∈ , i.e.,  
  max.{l(Ik) : k = 1,2,…, p} < δ∈ .      (4) 
For each such subinterval Ik, choose a rational number rk ε Ik .  If t ε I, then t ε Ik for some 
suitable k.  Hence, by (2) and (3), it follows that  
 |gn(t) − gm(t) | ≤ |gn(t) − gn(rk)| + |gn(rk) − gm(rk) + |gm(rk)−gm(t)| 
             < ∈ + ∈ + ∈ = 3∈ ,       (5)  
provided that  
  m,n > max {N∈(r1 ), N∈(r2),…, N∈(rp )} . 
This proves the uniform convergence of the sequence {gn} on I, where gn ∈ F for each n ∈ N .  
This completes the proof.  
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Remark. The existence of a solution to the initial-value problem, without any further restriction on 
the function f(t, y) is guaranteed by the following Cauchy-Peano theorem.  

Theorem 2.3.  (known as Cauchy-Peano Existence theorem).  

Statement.  If f ε C on the rectangle R, then there exists a solution ϕ ε C1 of the differential 
equation  

  
dt
dy

= f(t,y) 

on the interval |t−t0| ≤ α  for which ϕ(t0) = y0, where  

   R = {(t,y) : |t−t0| ≤ a, |y−y0| ≤ b,  a > 0, b > 0 }, α =  min (a, 
M
b

),   

M = max |f(t,y)| on R .  

Proof.  Let {∈n}, n = 1,2,…, be a monotonically decreasing sequence of positive real numbers 
which tends to 0 as n→∞ .  By theorem 2.1,  for each such ∈n, there exists an ∈n−approximate 
solution, say ϕn,  of ODE  

  
dt
dy

 = f(t, y)          (1) 

on the interval  
|t−t0| ≤ α  with ϕn(t0) = y0 .        (2) 

It is being given that  

 α = min (a, 
M
b

)           (3) 

 M = max|f(t,y)|   for (t,y) ε R         (4) 
 R = {(t,y): |t−t0| ≤ a,  |y−y0| ≤ b,  a > 0 , b> 0 }.      (5) 
Further, from theorem 2.1, it follows that  
 |ϕn(t) − ϕn(t) | ≤  M |t−t |        (6) 
for t, t in [t0, t0+α] .  
 Applying (6) to t = t0 and since, we know that  

  |t−t0| ≤  α ≤ 
M
b

 ,        (7) 

it follows that  
 |ϕn(t) − y0| < b   for all t in   |t−t0| < α .       (8) 
This implies that the sequence {ϕn} is uniformly bounded by |y0| + b.    

Further, (6) implies that the sequence {ϕn} is an equicontinuous set.  Hence, by the theorem 2.2, 
there exists a subsequence {

knφ },  k = 1,2,.., of {ϕn} , converging uniformly on the interval [t0 −α, 

t0 + α] to a limit function φ, which must be continuous since each φn is continuous.  
Now, we shall show that this limit function φ is a solution of (1) which meets the required 
specifications.  For this, we write the relation defining φn as an ∈n−approximate solution in an 
integral form, as follows :  

 φn(t) = y0 + �
t

0t

[f(s, φn(s))  + ∆n(s)] ds       (9) 

where  
 ∆n(s) = φ′n(s) − f(s, φn(s))         (10) 
at those points where φ′n exists, and ∆n(s) = 0 ,  otherwise.  
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 Because φn is an ∈n-approximate solution, so  
  |∆n(s)| ≤  ∈n .          (11) 
Since f is uniformly continuous on R, and 

knφ → φ uniformly on [t0 −α, t0 + α] as k→∞, it follows 
that  
  f(t, 

knφ (t)) → f(t, φ(t)) 

uniformly on [t0 −α, t0 + α] , as k →∞ .  
Replacing n by nk in (9), one obtains, in letting k → ∞,  

  φ(t) = y0 + �
t

0t

f(s, φ(s))ds .       (12) 

From (12), we get  
  φ(t0) = y0          (13) 
and upon differentiation, as f is continuous,  

  
dt
dφ

= f(t, φ(t)) .        (14) 

It is clear from (13) and (14) that φ  is a solution of ODE (1) through the point (t0, y0) on the 
interval |t−t0| ≤ α of class C1.  This completes the proof of the theorem.  

Remarks.  (1) If uniqueness of solution is assured, the choice of a subsequence in theorem 2.1 is 
unnecessary.  
(2) It can happen that the choice of a subsequence is unnecessary even though uniqueness is 

not satisfied.  Consider the example  

dt
dy

 =  y1/3 .          (1) 

There are an infinite number of solutions starting/issuing at the point C(0,0) which exist on                
I = [0,1].  
 For any c, 0 ≤ c ≤ 1, the function φc defined by  

  φc(t) = 
�
�

�
�

�

≤<�



�
�
�

� −
≤≤

1tc
3

)ct(2
ct00

2/3       (2) 

is a solution of (1) on I.   If the construction of theorem 2.1  is applied to equation (1), one finds 
that the only polygonal path starting at the path C(0,0) is φ1.  This shows that this method cannot, 
in general, give all solutions of (1).  

Theorem 2.4.  Let f ε C on a domain D in the (t, y) plane, and suppose (t0, y0) is any point in D.  
Then there exists a solution φ of  

  
dt
dy

= f(t,y)   for (t, y) ε D  ,    y(t0) = y0      (1) 

on some t-interval containing t0 in its interior.  

Proof.   Since domain D is open, there exists an r > 0 such that all points whose distance from 
C(t0, y0) is less than r, are contained in D.  
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Let R be any closed rectangle containing C(t0, y0), and contained in this open circle of radius r.  
Then  theorem 2.2 applied to (1) on R gives the required result.  
 

R 

D 
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UNIQUENESS OF SOLUTIONS 

 
We consider the following examples. 

Example 1: Consider the initial value problem 

 
dt
dy

= y2/3 in [0, 1], 

y(0) = 0. 
Hence f(t, y) = y2/3 is a continuous function. 
There are two solutions of it, namely, 

y1(t)  ≡ 0,  

 y2(t) = 
27

3t
 in [0, 1] . 

Example 2: Consider the initial value problem 

dt
dy

 = y1/2 in [0, 1] 

y(0) = 0. 
In this problem f(t,y) = y1/2 is continuous.  This problem also have two solutions, namely, 

y1(t) ≡ 0,  

y2(t) = 
4

2t
 in [0, 1] 

Example 3: Consider the initial value problem 

dt
dy

 = y1/3 in [0, 1],  

y(0) = 0. 

Here f(t, y) = y1/3 is a continuous function. Further 
y1(t) ≡ 0,  

y2(t) = 
2/3

3
2
�
�

�
�
�

� t
, 

are two solutions of the above initial value problem. 
The above examples show that something more than the continuity of f (t,y) in the differential 
equation 

dt
dy

 = f(t, y) in D 

is required in order to guarantee that a solution passing through a given point (t0, y0) ∈ D be 
unique. 
A simple condition which permits one to imply uniqueness of solution is the Lipschitz condition, 
defined below. 
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Definition:  Suppose f(t, y) is defined in a domain D in the (t, y) plane. If there exists a constant K 
> 0 such that 

| f(t, y1) – f(t, y2) | ≤ K| y1 – y2 | 
for every pair of points (t, y1) and (t, y2) in D, then f (t,y) is said to satisfy a Lipschitz condition 
w.r.t. y in D. The constant K is called the Lipschitz constant. 

Notations: (1) The fact that f(t,y) satisfy Lipschitz condition is expressed as  
f ∈ Lip in D. 

(2) If, in addition f ∈ C in D, we write as 
f ∈ (C, Lip) in D. 

Remark.  If f ∈ Lip in D, then f is uniformly continuous in y for each fixed t, although nothing is 
implied concerning the continuity of f w.r.t. “t”. 

Definition(Convex set):   A set D ⊆ R2 is said to be convex set if D contains the line segment 
joining any two points in D. 

Theorem (3.1): Let f(t, y) be such that 
y
f

∂
∂

 exists and is bounded for all (t, y)∈ D, where D is a 

domain or closed domain such that the line segment joining any two points of D lies entirely 
within D, Then f satisfies a Lipschitz condition, (with respect to y) in D, where the Lipschitz 
constant is given by  

K = 
D)y,t(

lub
∈

 
y

)y,t(f
∂

∂
    . 

Proof:  Since 
y

)y,t(f
∂

∂
 exists and is bounded for all (t, y)∈D, there exists a constant K (K > 0) 

such that 

 
D)y,t(

lub
∈

 
y

)y,t(f
∂

∂
  = K .      (1) 

Moreover, by the mean value theorem of differential calculus, for any pair of points (t, y1), (t, y2) 
in D there exists ξ , y1 < ξ1< y2, such that  

f(t, y1) - f(t, y1) = (y1 – y2) 
y

),t(f 1

∂
ξ∂

,     (2) 

for (t, ξ) ∈ D.  Thus 

| f(t, y1) - f(t, y2)| = |y1 – y2| 
y

),t(f 11

∂
ξ∂

  

   ≤ |y1 – y2| �
�
�

�
�
�
�

�

∂
∂

∈ y
)y,t(f

lub
D)y,t(

  

  = K | y1 – y2 |,  
This implies   

              | f(t, y1) - f(t, y2)| ≤ K | y1 – y2 | ,     (3) 
for all (t, y1), (t, y2) in D. This shows that f(t, y) satisfies a Lipschitz condition in D and K is the 
Lipschitz constant.    

Remark 1 : The sufficient condition of the above theorem (3.1) is not necessary for f (t, y) to 
satisfy a Lipschitz condition in D. That is, there exists function f(t, y) such that f satisfy a Lipschitz 
condition in D but such that the hypothesis of theorem (3.1) is not satisfied. 
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(a) Consider the function f defined by 
f(t, y) = t | y | ,        (1) 

where D is the rectangle defined by  
D = {(t,y) | t | ≤ a, | y | ≤ b}       (2) 

we note that 
| f(t, y1) – f(t, y2) | = |t| y1| − t|y2||  
                             ≤ | t | | y1 – y2 |  

     ≤ a|y1- y2 |       (3) 
for all (t, y1) and (t, y2) in D.    (Θ | |y1| - |y2| | ≤ | y1 – y2 |) 

Thus f(t,y) satisfies a Lipschitz condition in D. However, the partial derivative 
y
f

∂
∂

 does not exists 

at any point (t, 0) ∈ D for which t ≠ 0. 
(b) Consider the function f(t, y) given by 

f(t, y) = t2
 | y |        (1) 

in the rectangle  
      R = {| (t, y) | |t| ≤ 1, |y| ≤ 1}.      (2) 

We find  
| f(t, y1) – f(t, y2) | ≤ | t2 |y1| - t2 |y2| |  

     ≤ | t2 | | y1 – y2 |  
     ≤ | y1 – y2 |      (3) 

in R. So f(t, y) satisfies a Lipschitz condition, with Lipschitz constant 1. However, the partial 

derivative 
y
f

∂
∂

 does not exist at any point (t, 0) in R for t ≠ 0, as 

0
lim
→h h

tfhtf )0,()0,( −+
 

= 
0

lim
→h h

tht 0.|| 22 −
 

= 
0

lim
→h h

ht ||2

      (4) 

does not exist. 

Remark 2 : The two initial value problems, discussed in the beginning of this lesson, did not have 
a unique solution, and this can now be attributed to the failure of the Lipschitz condition at  t = 0. 

Definition: The series  �
∞

=1n

un(t) is said to converge uniformly to a function u(t) on the interval         

a ≤ t ≤ b if its sequence of partial sums, {Sn(t)}, converges uniformly to u(t) on the interval  a ≤ t ≤ 
b. 

Weierstrass M-test : Suppose {un(t)} is a sequence of real valued functions defined on the 
interval a ≤ t ≤ b, and suppose 

| un(t) | ≤ Mn  for all n = 1, 2, 3, ….. 

and for all t ∈ [a, b]. Then the series �
∞

=1n

un(t) converges uniformly on the interval [a, b] if the 

series �
∞

=1n

Mn of positive real numbers converges. 



           DIFFERENTIAL EQUATIONS 
 

24

Note : The existence proof given in Cauchy-Peano existence theorem (2.1) is unsatisfactory in the 
respect that there is no constructive method given for obtaining a solution to the initial value 
problem. In particular, if f(t, y) satisfies a Lipschitz condition in addition to its continuity, a 
relatively simple yet a very useful method exists, known as the method of successive 
approximations, which deduces the existence and uniqueness of a solution of the given initial 
value problem. This method is also called Picard iteration method and which is given in the 
following theorem. 

Theorem 3.2 : (Picard – Lindelof Theorem) 

Statement:  Let D be a domain of the ty-plane. Let (t0, y0) be an interior point of D. Let rectangle 
R = {(t, y) : | t – t0 | ≤ a, | y – y0 | ≤ b, a > 0, b > 0} lie within D. Let f(t, y) be a real valued function 
which is continuous in D, satisfies a Lipschiz condition (w.r.t. y) in D and   M = max | f(t, y) | in R. 
Then, there exists a unique solution φ = φ(t) of the initial value problem  

dt
dy

 = f(t, y) in D, y(t0) = y0 

on the closed interval | t – t0 | ≤ α, where α = min{a, 
M
b

}. 

Proof :  The given initial value problem is equivalent to the following Volterra integral equation 

y(t) = y0 + �
t

t0

f(s, y(s)) ds,       (1) 

for | t – t0 | ≤ a. Thus, a solution of the given I V P on | t – t0 | ≤ α must satisfy (1) and conversely. 
Now, we define a sequence {φk} of successive approximations (Picard iterants) of the problem by 
the recurrence formulas  

 00 y)t( =φ ,  

φk+1(t) = y0 + � φ
t

0t
k ds))s(,s(f  ,      (2) 

on the interval | t – t0 | ≤ α. Here, k = 0, 1, 2, ….. 
We shall be considering the interval [t0, t0 + α] only. Similar arguments hold for the interval             
[t0 − α, t0]. Firstly, it will be shown that  
(i) every φk(t) exists on [ t0, t0 + α],  
(ii) φk ∈ C1, and  
(iii) | φk(t) – y0 | ≤ M(t – t0) ,       (3) 
for  t ∈ [t0, t0 + α] and for all k. We shall prove it by the mathematical induction. 

Obviously φ0, being the constant function, satisfies these conditions. Now, we assume that ϕk does 
the same and we shall prove the requirements for φk+1 . 
By assumption, f(t, φk(t)) is defined and continuous on the interval [t0, t0 + α]. Hence, by formula 
(2),  

φk+1(t) exists on [t0, t0 + α],  
φk+1(t) ∈ Cs

1 there,  
and 

| φk+1(t) – y0 |   = | �
t

t0

f(s, φk(s)) ds | 
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≤ �
t

t0

| f(s, φk(s)) | ds 

              = M(t – t0) .      (4) 
Therefore these properties are shared by the function φk(t) by induction, for all k. 

Secondly it shall be proved that the sequence {φk}of functions converges uniformly to a 
continuous function φ = φ(t) on I. For this, we define 

∆ k(t) = | φk+1(t) - φk(t) | ,     (5) 
for t ∈ [t0, t0 + α]. From equations (2) and (5), we write 

  ∆ k(t) = | �
t

t0

{f(s, φk(s)) – f(s, φk-1(s)}ds | 

 ≤ �
t

t0

| f(s, φk(s)) – f(s, φk-1(s) | ds 

 ≤ K �
t

t0

| φk(s) - φk-1(s) | ds 

 = K �
t

t0

∆ k-1(s) ds ,     (6) 

where K is a Lipschitz constant and we have used the fact that f ∈ Lip on R. 

Equation (3) gives for k = 1, 
 ∆ 0(t) = | φ1(t) - φ0(t) |  
           = | φ1(t) – y0 |  
           ≤ M(t – t0) , 

 and an easy induction (left as an exercise to a reader) on (6) implies that 

∆ k(t) ≤ 
)!1k(

)K(
.

K
M 1k

+
α +

,  (Θ t – t0 ≤ α)   (7) 

for all k and t ∈ [t0, t0 + α]. 

This shows that the terms of the series �
∞

=

∆
0k

k(t) are majorized by those of the power series for 

�
�

�
�
�

�

K
M

[eαK – 1], and therefore, by the Weierstrass M – test for uniform convergence, the series 

�
=

∆
0k

k(t) is uniformly convergent on [t0, t0 + α]. 

Thus, the series 

φ0(t) + �
∞

=0k

[φk+1(t) - φk(t)] ,      (8) 

is absolutely and uniform convergent on the interval [t0, t0 + α]. Consequently, the sequence of its 
partial sums 

Sn+1(t)  = φ0(t) + �
−

=

1

0

n

k

[φk+1(t) - φk(t)]  

= φn(t) ,       (9) 
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is absolutely and uniformly convergent on the interval [t0, t0 + α], to a limit function, say 
φ(t),which is continuous on [t0, t0 + α].  

Thirdly, it will be shown that this limit function φ(t) is a solution of desired problem in equation 
(1). As φ is continuous, so f(s, φ(s)) exists for s ∈ [t0, t0 + α] and  

| �
t

t0

[f(s, φ(s)) – f(s, φk(s))] ds | 

≤ �
t

t0

| f(s, φ(s)) – f(s, φk(s)) | ds 

≤ K �
t

t0

| φ(s) - φk(s) | ds      (10) 

as f satisfies the Lipschitz condition on R. 
Since φk → φ uniformly on [t0, t0 + α], so  

| φ(s) - φk(s) | → 0 as k → ∞      (11) 
uniformly on the interval [t0, t0 + α]. Combining (10) and (11), it follows that 

f(s, φk(s)) → f(s, φ(s)) on [t0, t0 + α]     (12) 
uniformly as k → ∞. Consequently equations (2), (9) and (12) imply that, on taking k → ∞, we get 
at once  

φ(t) = y0 + �
t

t0

f(s, φ(s)) ds .      (13) 

This proves that φ(t) is a solution of integral equations (1), and, therefore, a solution of the given 
initial – value problem on the interval [t0, t0 + α].  

Finally, we shall prove that solutions of (1) is unique. If possible, suppose that Ψ = Ψ(t) is another 
solution of integral equations (1). Then  

Ψ(t) = y0 + �
t

t0

 f(s, Ψ(s)) ds,       (14)    

on I. Let  
N = Max | φ(t) - Ψ(t) | on I.      (15) 

From equations (13) to (14), we obtain  

| φ(t) - Ψ(t) |    = | �
t

t0

 {f(s, φ(t)) - f(s , Ψ(s))}ds |  

≤ �
t

t0

 | f(s, φ(t)) - f(s , Ψ(s) | ds  

≤ K �
t

t0

 | φ(s) -  Ψ(s) | ds .    (16) 

Using (15) in (16), we get  
| φ(t) - Ψ(t)| ≤ KN(t – t0), for t∈ [t0, t0 + α].     (17) 

By the repeated use of (16) and (17), we obtain  

| φ(t) - Ψ(t)| ≤ 
!n

)tt(NK n
0

n −
, t∈ [t0, t0 + α]     (18) 
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and for all n = 1, 2, 3, ……. Since, the series �
−
!n

)tt(K n
0

n

 of positive terms converges for              

t∈[t0, t0 + α], therefore, 
 

!n
)tt(K n

0
n −

 → 0 for all t∈[to, to + α]     (19) 

as n → ∞. From equations (18) and (19), we find 
| φ(t) - Ψ(t)| ≤ 0 for all t0 ≤ t ≤ t0 + α 

This implies  
φ(t) = Ψ(t) for all t0 ≤ t ≤ t0 + α      (20) 

thus, solution φ = φ(t) of the given initial – value problem is unique the interval [t0 – t0 + α].                
We can carry through similar agreements on the interval [t0 −α, t0]. This completes the proof of the 
theorem. 

Remark: A significant and useful feature of this proof is that the sequence {φn(t)} converges 
uniformly to φ(t), which is the unique solution of the given initial – value problem. The proof is 
also constructive in that it provides a method of obtaining approximate solutions to any required 
degree of accuracy. However, from this point of view, it is rarely of practical value as the iterates 
usually converge too slowly to be useful. Further, the above theorem is only a local existence 
theorem in that, whatever the original interval of definition, | t – t0 | ≤ a, in general the solution is 
only guaranteed to exist in a smaller interval, | t – t0 | ≤ α, where α ≤ a. 

Example 1. Consider the initial value problem 
dt
dy

= y, y(0) = 1.  

Solution. Integrating over the interval [0, t], we obtain  

y(t) = 1 + �
t

0

y(s)ds ,        (1) 

which is a volterra integral of the second kind. Let  
φ0(t) = 1 .        (2) 

Then , by Picard’s method  

        φ1(t) = 1 + �
t

0

φ0(s) ds 

        = 1 + �
t

0

1 ds  

        = 1 + t  ,         (3) 

φ2(t) = 1 + �
t

0

φ1(s)ds  

        = 1 + �
t

0

(1 + s) ds    

        = 1 + t + 
!2

2t
,        (4) 

φ3(t) = 1 + �
t

0

φ2(s)ds  
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        = 1 + �
t

0

(1 + s +
!2

2s
)ds  

        = 1 + t + 
!2

2t
 + 

!3

3t
 .      (5) 

Continuing like this, we shall obtain   

φn(t) = 1 + t + 
!2

2t
 + 

!3

3t
 + ….+ 

!n
t n

 .     (6) 

Taking the limit as n → ∞ , we get  
                 

∞→n
lim φn(t) = et .         (7) 

This implies that  
                       φ(t) = et         (8) 
is the unique solution of the given initial value problem, by the Picard’s method of successive 
approximations.   

Example 2: Solve the initial – value problem   

dt
dy

= t2 y, y(0) = 1  

By Picard method.  

Solution. The corresponding integral equation is  

y(t) = 1 +  �
t

0

s2 y(s)ds.      (1) 

Picard’s iterates are  
φ0(t) = 1 ,        (2) 

φ1(t) = 1  +  �
t

0

s2 . 1ds  

        = 1 + 
3

3t
 ,       (3) 

φ2(t) = 1  +  �
t

0

s2
��
�

�
��
�

�
+

3
1

3s
ds  

        = 1 + 
3

3t
 + 

!2
1

 
23

3 �
�
�

�
��
�

� t
,      (4) 

φ3(t) = 1  + �
t

0

s2
��
�

�
+

3
1

3s
 + 

!2
1

�
�

�

�

��
�

�
��
�

�
23

3
s

 ds 

        = 1 + 
3

3t
 + 

!2
1

 
23

3 �
�
�

�
��
�

� t
+ 

!3
1

 
33

3 ��
�

�
��
�

� t
,    (5) 

   Μ 

φn(t) = 1 + �
t

0

s2 φn-1(s) ds 
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        = 1 + 
3

3t
 + 

!2
1

 
23

3 �
�
�

�
��
�

� t
+…..+ 

!
1
n

 
n

t
��
�

�
��
�

�

3

3

.    (6) 

The exact solution can easily be seen to be  
φ(t) = )3/( 3te ,        (7) 

to which the above approximate solutions converge. 
Example 3: Solve the initial-value problem  

dt
dy

 = t(y – t2 + 2), y(0) = 1 , 

by Picard’s method. 

Solution. The integral equation, equivalent to the above initial value problem is  

y(t) = 1 + �
t

0

s(y(s) – s2 + 2) ds.     (1) 

The approximate solutions are  
φ0(t) = 1 , 

φ1(t) = 1 + �
t

0

s(3 – s2) ds  

        = 1 + 
2

3 2t
 - 

4
1

t4       (2) 

φ2(t) = 1 + �
t

0

s �
�
�

�
�
�
�

�
−+

4
s

2
s

3
42

ds , 

        = 1 + 
2

3 2t
 + 

8

4t
- 

24

6t
      (3) 

 φ3(t) = 1 + �
t

0

s �
�
�

�
�
�
�

�
−++

24
s

8
s

2
s

3
642

ds  

         = 1 + 
2

3 2t
+ 

8

4t
+ 

48

6t
 - 

192

8t
 ,     (4) 

and so on. 
The exact solution can be easily found to be  

      φ(t) = t2 + 2/2te  

             = t2 + 1 + 
2

2t
 + 

8

4t
+ 

48

6t
 + 

384

8t
 + …….to ∞ .  (5) 

Example 4: Solve the differential equation 

dt
dy

 = t y, y(0) = 1 , 

by the method of successive approximations. 

Solution : We write f(t, y) = t y  and the integral equation corresponding to the initial value 
problem is  

y(t) = 1 + �
t

0

t y(t) dt.       (1) 

The successive approximations are, given by, 
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φ0(t) = 1,  

φn(t) = 1 + �
t

0

t φn-1(t) dt,      (2) 

   for n = 1, 2, 3, ….. 
Thus  

φ0(t) = 1 ,        (3) 

φ1(t) = 1 + �
t

0

s ds  

        = 1 + 
2

2t
,        (4) 

φ2(t) = 1 + �
t

0

s �
�
�

�
�
�
�

�
+

2
s

1
2

ds 

        = 1 + �
t

0
�
�
�

�
�
�
�

�
+

2
s

s
2

ds 

        = 1 +  
2

2t
 + 

4.2

4t
.      (5) 

We shall establish by induction that 
 

φn(t) = 1 + ��
�

�
��
�

�

2

2t
+ 

!2
1

 
22

2 ��
�

�
��
�

� t
+ ……..+ 

!
1
n

 
22

2 ��
�

�
��
�

� t
,   (6) 

for all n. 
for n = 0, 1, 2; we have already checked the relation (6). Suppose that.   

φn-1(t) = 1 + ��
�

�
��
�

�

2

2t
+ 

!2
1

 
22

2 ��
�

�
��
�

� t
+ ……..+ 

!
1
n

 
12

2

−

��
�

�
��
�

�
n

t
   (7) 

Then 

φn(t) = 1 +  �
t

0

s 
	


	
�
�

�
�
�

�
�
�
�

�
+

2
s

1
2

 + 
!2

1
 

22

2
s
�
�
�

�
�
�
�

�
+ ……..+ 

!1
1
−n

 
	


	
�
�

��
�

�
��
�

�
−12

2

n
t

ds 

        = 1 +  �
t

0

 


�
�

+
2
s

s
3

 + 
!2

1
 2

5

2
s

 + ……..+ 
!1

1
−n

 


�
�

−

−

1n

1n2

2
s

ds 

        = 1 +   
4.22

42 tt +


�
�

 + 
!2

1
 

6.22

6t
 + ……..+ 

!1
1
−n

 


�
�

− )2(2 1

2

n
t

n

n

 . 

This implies  

                         φn(t) = 1 + ��
�

�
��
�

�

2

2t
+ 

!2
1

 
22

2 ��
�

�
��
�

� t
+ 

!3
1

 
32

2 ��
�

�
��
�

� t
+ ……..+ 

!
1
n

 .
2

2 n
t
��
�

�
��
�

�
 (8) 

Therefore, by the principle of mathematical induction, the equality (6) is true for all n = 1, 2, 
3,…… Moreover, we observe that φn(t) is the partial sum of the first (n + 1) terms of the infinite 
series expansion of the function  

φ(t) = e 2

2t

.        (9) 
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Further this series converges for all real t. This means that      
φn(t) → φ(t) , 

for all real t. Hence, the function φ is the required solution.  
                                                 
Example 5:  Solve the initial value problem  

dt
dy

= -y, y(0) = 1 

by the method of successive approximations. 

Solution :  The integral equation equivalent to the given initial value problem is  

y(t) = 1 + �
t

0

-y(s) ds = 1 -  �
t

0

y(s) ds.    (1) 

The successive approximations given by Picard’s method are  
φ0(t) = 1,  

                      φn+1(t) = 1 - �
t

0

φn(t) dt. for n = 1, 2,………     (2) 

We find 

φ1(t) = 1 - �
t

0

ds  

         = 1 – t  ,        (3) 

φ2(t) = 1 - �
t

0

(1 – s)ds  

        = 1 – t + 
!2

2t
 ,       (4) 

 φ3(t) = 1 - �
t

0
�
�
�

�
�
�
�

�
+−

!2
s

s1
2

ds  

         = 1 – t + 
!2

2t
 - 

!3

3t
.      (5) 

By the induction, it may be verified that (left as an exercise to the readers) 

φn(t) = 1 - 
!1

t
 + 

!2

2t
 - 

!3

3t
+… + (−1)n 

!n
t n

 .    (6) 

We observe that φn(t) is the partial sum of the first (n + 1) terms of the infinite series expansion of 
the function  

φ(t) = e-t  .        (7) 
Further this series converges for all real t. This means that  
           φn(t) → φ(t) = e-t ,  
for all t. Hence the function φ, given in (7) , is the solution of the given problem. 
Example 6:  Solve the initial value problem  

dt
dy

= 2ty, y(0) = 1  

by the method of successive approximations.  
Solutions : The given initial – value problem is equivalent to the integral equation  
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y(t) = 1 + �
t

0

2s . y(s) ds .       (1) 

The successive approximations are  
   φ0(t) = 1,  

ϕn+1(t) = 1 +  �
t

0

2s φn (s) ds.      (2) 

we find 

φ1(t) = 1 + 2  �
t

0

s . 1ds       (3) 

        = 1 + t2 ,  

φ2(t) = 1 + 2  �
t

0

s(1 + s2) ds  

        = 1 + t2 +  
!2

4t
,       (4) 

φ3(t) = 1 +   �
t

0

2s �
�
�

�
�
�
�

�
++

!2
s4

2 s 1  ds 

        = 1 + t2 + 
!2

4t
 + 

!3

6t
.      (5) 

From the induction, we shall find (left as an exercise) 

φn(t) = 1 + t2 + 
!2

4t
 + 

!3

6t
 +……….+ 

!

2

n
t n

.    (6) 

we visualize that φn(t) is the partial sum of the first (n + 1) terms of the infinite series expansion of 
the function  

φ (t) = e
2t .         (7)  

Further this series converges uniformly for all real t. This means that  
φn(t) → φ(t) = e

2t  
for all t. Hence the function φ(t) is the required solution of the given problem. 

Example 7: Solve the initial value problem     

dt
dy

= y, y(1) = 1 

by the method of successive approximations.  

Solutions : The given problem is equivalent to the integral equation 

y(t) = 1 + �
t

1

y(s) ds.       (1) 

The successive approximations are given by  
φ0(t) = 1,  

φn+1(t) = 1 + �
t

1

φn(s) ds .       (2)    

we find  
φ0(t) = 1 ,        (3) 
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φ1(t) = 1 + �
t

1

 ds         

        = t  ,        (4) 

φ2(t) = 1 + �
t

1

 s ds  

        = 1 + �
t

1

 [(s – 1) + 1] ds.     (5) 

Here, it is convenient to have integrand occurring in the successive approximations in powers of   
(s – 1) rather than in powers of s (Θ t0 = 1 and not zero). Therefore, (5) gives  

φ2(t) = 1 + 


�
�



�
� −+

2
)1s(

s
2

 = 1 + (t – 1) + 
!2
)1( 2−t

.      (6) 

 φ3(t) = 1 +  �
t

1

ds
2

)1s(
)1s(1

2



�
�



�
� −+−+  

                                 = 
!3
)1t(

!2
)1t(

)1t(1
32 −−

+−+  .     (7) 

By induction, we shall obtain (exercise)  

    φn(t) = 
!
)1(

........
!3
)1(

!2
)1(

)1(1
32

n
ttt

t
n−++−+−+−+ .  (8) 

We note that φn(t) is the partial sum of the first (n + 1) terms of the infinite series expansion of the 
function  

    φ(t) = et-1.        (9) 
Moreover this series converges for all real t. Therefore,  

φn(t) → φ(t) = et-1 

for all t. Hence the function ϕ(t), given in (8), is the required solution of the given problem. 
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THE n-th ORDER DIFFERENTIAL EQUATION  

 
 
Let n be a positive integer. Let f1, f2,...,fn be n real valued continuous functions defined on some 
domain D of the real (t, y1, y2,…,yn) space, which is (n + 1) dimensional. As before, t ∈I and            
yi = yi(t) for t ∈I.  

A system of n ordinary differential equations of the first order is of the type (in normal form) 

dt
dy1

= f1(t, y1, y2, y3,…,yn)  

2

dt
dy

= f2(t, y1, y2,…,yn) 

……………………… 
n

dt
dy

= fn(t, y1, y2, ……,yn) 

or written as  
i

dt
dy

= fi(t, y1, y2, ……,yn), 1≤ i ≤ n.      

Initial – value problem:  Let (t0, 1
0y , 2

0y , ……, ny0 ) ∈D. The initial – value problem consists of 
finding n differentiable functions φ1(t), φ2(t),…… φn(t) defined on a real t intend I such that   
(i) (t, φ1(t), φ2(t),…….., φn(t)) ∈D for all t ∈I 

(ii) 
dt

td i )(φ
 = f i(t, φ1(t), φ2(t),…….., φn(t)) for all t ∈I 

(iii) φi(t0) = iy0  for 1 ≤ i ≤ n. 

Remark: The results so for obtained (for the case n = 1) can be carried over successfully the 
system of differential equations (5).  Let Rn be the n – dimensional real Euclidean space with its 
elements y = ( y1, y2, ……,yn), yi ∈R for 1 ≤ i ≤ n. In developing the theory of system of 
differential equations (5), we shall need to use a convenient measure of the magnitude (or norm) 
of y = ( y1, y2, ……,yn). It is denoted by | y | and defined as  

| y | = | y1 | + | y2 | +………+ | yn |  

      = �
=

n

i 1

| yi |.    

We prefer to use this norm. The distance between two points y1and y2 of Rn is defined to be           
| y2 – y1|. Here, | y | is a non – negative real number.  

Note : Other definitions for the magnitude for a vector y ∈Rn are 

| y | =  �
=

n

i 1

| yi |2 , 
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 | y | = max. (| yi |)   
All are, of course, equivalent.  

Result (Normed linear Space) : The linear space Rn is a normal linear space in which the norm 
function | | : Rn → R, satisfies the following properties  
(i) | y | = 0 if and only if y = 0; 
(ii) | y | ≥ 0; 
(iii) | y1 + y2 | ≤ | y1 | + | y2 |   
(iv) | αy | = | α | | y | 
for all y1, y2, y in Rn and α ∈R is a scalar.  

Definition (Metric Space): Let M be a non – empty set. A functions ρ: M x M → R is said to be 
a metric on M if it satisfies the following properties  
(i)  ρ (x, y) = ρ (y, x) 
(ii)  ρ (x, y) = 0 ⇔ x = y 
(iii)  ρ (x, y) ≤ ρ (x, z) + ρ (z, y)  
Then, the pair (M, ρ) is called a metric space or we simply say that M is a metric space with 
metric ρ.  

Note : ρ is also termed as distance function.  

Result : The normed linear space Rn is a metric space with metric ρ induced by its norm and 
defined as  

ρ (y1, y2) = | y1 – y2 |. 

Definition : A sequence of vectors {yk} in Rn is said to be convergent if it is convergent w. r. t. 
this distance function.  

Remark : Sequence {yk} is convergent iff each of the component sequence { i
ky }, 1 ≤ i ≤ n, is 

convergent. 

Definition : A Banach space is a complete normed linear space, complete as a derived / induced 
metric space.  

Definition : Lipschitz conditions in Rn 

Suppose a vector function f(t, y) is defined on a domain D of the (t, y) space with y ∈Rn and t ∈I. 
If there exists a constant K > 0 such that  

| f(t, y1) – f(t, y2) | ≤ K | y1 – y2 |      
holds for every pair (t, y1) and (t, y2) in D, then the vector functions f (t,y) is said to satisfy a 
Lipschitz condition w. r. t. the variable y in D, and one write, as before, 

f ∈Lip in D. 
Constant K is called Lipschitz constant.   

Note :- The admissible values of K depend on the norm in the f – space as well as the norm in 
the y – space. 

Definitions : ∈∈∈∈- approximate solution in Rn 
Suppose f ∈C on a domain D in the (t, y) space. An ∈-approximate solution of the vector 
differential equation  

dt
dy

 = f(t, y); y ∈Rn, t ∈(a, b) = I 

on an interval I is a vector functions φ(t)∈C on I such that  
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(i)   (t, φ(t)) ∈D for t ∈I 
(ii)   φ ∈ C1on I except possibly for a finite set of point S on I. 
(iii)   | φ′(t) – f(t, φ(t) | ≤ ∈ for t ∈ I – S. 
Definition: A solution of vector differential equation on an interval I is a vector function 
φ = (φ1, φ2, …..,φn) defined on I satisfying 
(i)   (t, φ(t)) ∈ D  for t ∈ I  

(ii)   
dt
dφ

= f(t, φ (t))  for t ∈ I. 

 
Definition: (Equi-continuous family) 
Let E ⊂ Rn be a subset. A family F = {f} of functions f(y) defined on E is said to be equi-
continuous if , for each ∈ > 0, there exists δ = δ∈ > 0 such that 
| f(y1) – f(y2) | ≤ ∈  
whenever y1, y2 ∈ E, f ∈ F and | y1 - y2 | ≤ δ. 

Observations : (1) The choice of δ∈ does not depend on f (y) but is valid for all admissible 
functions f (y) in  the family F. 
(2) The most frequently encountered equicontinuous families F will occur when all f ∈ F satisfy 
the Lipschitz condition on the (t, y) space w.r.t. y. Here, there exists a Lipschitz constant K for all 

f ∈ F and we may choose δ∈ = 
K
∈

, for given ∈ > 0. 

Remarks: (1) In terms of the definitions introduced above, all the previous theorems discussed in 
chapters 1-3, are valid for the vector differential equation 

dt
dy

= f(t, y), y ∈ Rn 

if, in their statements and proofs, y is replaced by the word “vector y”, f is replaced by the word 
“vector function f” and the magnitude is understood in the sense of norm, defined above for 
vectors. 
(2) The Ascoli theorem (2.2) is valid for vectors also. Therefore, it will be assumed from now 
onwards that these theorems stand proved for the more general vector differential equation  

dt
dy

= f(t, y), t ∈ I and y ∈ Rn. 

Now, we shall write the system of differential equations introduced earlier in vector notation. To 
achieve this, we introduce the vector y with components yi(i = 1, 2, …,n), so that 

y(t) = 

.
)t(y

)t(y
)t(y

n

2

1

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−  

The derivative of a vector valued function y(t) is 
dt
dy

, and is defined to be the vector(or column-

matrix/vector) whose components are 
dt

tdy i )(
, (i = 1, 2,….,n), so that 
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dt
dy

 = 

�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�

�

�

−
−

dt
dy

dt
dy
dt

dy

n

2

1

  . 

Similarly, we define the vector valued function f(t, y), a specified function of the vector y and real 
variable t, to be the vector whose components are fi(t, y), 1 ≤ i ≤ n, so that 

f(t, y) = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−
−

),(

),(

),(
2

1

ytf

ytf

ytf

n

 

It follows at once that first order system mentioned earlier can be written in the compact vector 
form 

dt
dy

 = f(t, y). 

Special case (Linear System) : When the first order system is linear, then functions fi(t, y1, y2, 
…,yn) are of the particular form 

fi(t, y1, y2, …,yn) = �
=

n

k 1

aik(t) yk, 1 ≤ i ≤ n 

in which aik(t) are continuous functions on I . In this case, this system is, in fact, 

dt
dy1

= a11(t) y1 + a12(t) y2 + a13(t) y3 +…… a1n(t) yn . 

dt
dy 2

= a21(t) y1 + a22(t) y2 + a23(t) y3 +…… a2n(t) yn . 

      Μ 

     
dt

dy n

= an1(t) y1 + an2(t) y2 + an3(t) y3 +…… ann(t) yn . 

This linear system can be put in the compact vector form  

dt
dy

 = A(t) y       

where the matrix A(t) is of type n × n and  

A(t) = 
�
�
�

�

�

�
�
�

�

�

−−−−−−−−−−−−−−
)t(a.........)t(a)t(a

)t(a.........)t(a)t(a
)t(a.........)t(a)t(a

nn2n1n

n22221

n11211

 

and  
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y = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−
−

ny

y

y
2

1

 with 
dt
dy

= 

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

−
−

dt
dy

dt
dy
dt

dy

n

2

1

  .  

In this case, f (t,y) satisfies a Lipschitz condition on the (n + 1) – dimensional region D, where 
D = {(t, y) | a ≤ t ≤ b, y ∈ Rn, | y | < ∞ }. 
(Here, D is not a domain, since it is not open). In fact, for (t, y1) and (t, y2) in D, 
| f(t, y1) – f(t, y2)| ≤ K | y1 – y2 | 

with  K = max. 
�
	



�
�


�

=
∈

=

n

1i
ik n,....,2,1k

]b,a[t
:|)t(a|  

The above mentioned linear system is, therefore, expressible as 

dt
dy i

 = �
=

n

k 1

aik(t) yk , 1 ≤ i ≤ n.      

Result I: For the linear system of differential equations 

dt
dyα

= �
=

n

k 1

aαk(t) yk , 1 ≤ α ≤ n.      

where the functions aαk(t) ∈ C on [a, b], there exists one and only one solution φ(t) of  this system 
on [a, b] passing through any point (t0, y0) ∈ D. 

Result II: Let the functions aij(t), (i, j = 1,2,….n), be continuous on an open interval I, which may 
be unbounded. Then there exists on I one and only one solution ϕ of the vector differential 
equation satisfying the initial condition φ(t0) = y0, t0 ∈ I, | y0 | < ∞. 

Note : For the proofs of these results, the reader is advised to consult the book by Coddington and 
Levinson. 

Reduction of nth order ODE to a first – order vector differential equation  

This can be achieved by introducing variables to represent the derivatives appearing in the given 
nth order ODE. 

Now, we consider a differential equation of nth order of the type 
z(n) = f(t, z, z(1), z(2),….., z(n)) 

Where z(j) = j

j

dt
zd

(j = 1, 2, ..,n), t is a real variable on interval I, z and f are scalars (and not 

vector), and the function f is defined on a domain D of the real (n + 1)-dimensional space. 

Problem : To find a function φ = φ(t) defined on a real t-interval I possessing n derivatives there 
such that 
(i)  (t, φ(t), φ(1)(t), φ(2)(t),….φ(n -1)(t)) ∈ D   for all t ∈ I  
(ii)  φ(n)(t) = f(t, φ(t), φ(1)(t), φ(2)(t),….φ(n-1)(t))  for all t ∈ I . 
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If such an interval I and a function φ(t) exist, then φ(t) is said to be a solution of the given nth 
order differential equation on the interval I. If φ is a solution, clearly φ ∈ Cn on I. Note that φ is 
not a vector here. 

Initial value problem : 
Let (t0, z0

1, z0
2,…,z0

n) ∈ D. Then the problem of finding a solution φ of the given nth order ODE 
on an interval I containing t0 such that 

φ(t0) = z0
1, φ(1)(t0) = z0

2,…..,φ(n-1)(t0) = zn 
is called an initial – value problem. 

Remark : The theory of the solution of nth order ODE can be reduced to the theory of a system 
of n first – order differential equations.  For this, we make the substitutions  

z = y1 
z(1) = y2 

z(2) = y3 

Μ  
z(n-1) = yn 

Then, we get the following system of n first order differential equations in n unknowns y1, y2, …., 
yn. 

  
dt
dy1

 = y2 

dt
dy 2

 = y3 

………… 

                     
dt

dy 1n−
 = yn 

dt
dy n

 = f(t, y1, y2,…., yn) . 

This system, in turn, is equivalent to the following first-order vector differential equation 

dt
dy

 = f(t, y) , 

where  

      y = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−
−

ny

y

y
2

1

, f = 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
−

),....,,,( 21

3

2

n

n

yyytf

y

y

y

. 

Theorem (4.1) : Consider the nth order ordinary differential equation 

�
�
�

�
�
�
�

�
= −

−

1n

1n

n

n

dt

zd
,...,

dt
dz

,z,tf
dt

zd
 

where the function f is continuous and satisfies Lipschitz condition in a domain D of real (n + 1)-
dimensional space. Let (t0, z0

1, z0
2,…,z0

n) be a point of D. Prove that there exists a unique solution 
φ(t) of the given nth order differential equation such that 
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φ(t0) = z0
1, φ(1)(t0) = z0

2,…..,φ(n-1)(t0) = z0
n, 

defined on some interval around t0. 

Proof : Consider the substitutions 

y1 = z, y2 = 
dt

dz
, y3 = 

dt

dz
,….,yn = 

1n

1n

dt

zd
−

−

    (1) 

We shall now prove that, the given nth order differential equation is equivalent to the following 
system of n first order ordinary differential equations. 

dt
dy1

 = y2 

dt
dy 2

 = y3 

Μ 
 

   

dt
dy n 1−

 = yn 

dt
dy n

 = f(t, y1,y2,…..,yn).      (2) 

Let φ = φ(t) be a solution of the given nth order initial value problem. We define  

φ1 = φ, φ2 = 
dt
dφ

,…,φn = 1

1

−

−

n

n

dt
d φ

 .     (3) 

Let  

y = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−
−

nφ

φ
φ

2

1

 ,         (4) 

be a vector of functions. Then y is a solution of the first order system (2) which satisfies the initial 
conditions 

     φ1(t0) = z0
1, φ2(t0) = z0

2,……, φm(t0) = z0
m .     (5) 

Conversely, now it is assumed that a vector function y = 
�
�
�

�

�

�
�
�

�

�

φ

φ
φ

n

2

1

Μ  is a solution of first order system 

(2) which satisfies initial conditions in (5). Then 

dt
d 1φ

 = φ2 

dt
d 2φ

= φ3
 = 2

12

dt
d φ

 

dt
d 3φ

= φ4
 = 3

13

dt
d φ
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       Μ 

dt
d n 1−φ

= φn
 = 1

11

−

−

n

n

dt
d φ

 ,       (6) 

and  

dt
d nφ

 = f(t, φ1, φ2,φ3,….,φn) 

or  

n

1n

dt
d φ

 = f(t, φ1, 
dt

d 1φ
, 

dt
d 1φ

,…, 1

11

−

−

n

n

dt
d φ

).    (7) 

This shows that y = φ1 is a solution of the given nth order ordinary equation and this solution, 
using (5), satisfies the initial conditions 

φ1(t0) = z0
1, 

dt
d 1φ

(t0) = z0
2,….., 1

11

−

−

n

n

dt
d φ

(t0) = z0
n .  (8) 

This establishes the desired equivalence. This completes the proof.   
Remark 1 : It also shows that the first component φ1 of the vector     

y = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−
−

nφ

φ
φ

2

1

 

is a solution of the given nth order ordinary differential equation . 

Now (t0, z0
1, z0

2,…,z0
n) is a point of D, there exists an (n + 1)-dimensional rectangle, say R, about 

this point such that the function f satisfies the stated hypothesis in the rectangle R.  

Thus, the system (2) of the first order equations satisfies all the hypothesis(necessary) in the 
rectangle R. So, there exists a unique solution (φ1, φ2, …,φn) of system (2) which satisfies the 
conditions in (8) and this solution is defined on some sufficiently small interval around t0. Thus, if 
we set 

φ = φ1,          
the above shown equivalence gives the desired conclusion. 

Remark 2: It is thus clear that all statements proved about the system (2) of n first-order 
equations carry over directly to statements about the nth order ordinary differential equation. In 
particular, we state the following theorem about linear equation. 

Theorem (4.2) :  Consider the linear ordinary differential equation 

a0(t) n

n

dt

yd
 + a1(t) 1n

1n

dt

yd
−

−

 +…..+ an-1(t) 
dt
dy

 + an(t) y = F(t) 

where a0,a1, ….,an and F are continuous functions on the interval a ≤ t ≤ b and a0(t) ≠ 0 on              
a ≤ t ≤ b. Let t0 be a point of the interval a ≤ t ≤ b and let z0

1, z0
2,…,z0

n be n real constants. Prove 
that there exists a unique solution φ = φ(t) of the above ODE such that 
φ(t0) = z0

1, φ(1)(t0) = z0
2,…..,φ(n-1)(t0) = z0

n. 
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Remark: Let y = 
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�

�
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�
�
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−
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n

2

1

y

y
y

, A(t) = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−−−−

−−−−−−−−−−−−−−−−−
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−

)t(a
)t(F

0

0
0

0

 . 

Then, the nth order ODE is equivalent to the following first order linear non-homogeneous vector 
differential equation 

dt
dy

 = A(t) y + Q(t). 

Definition: This vector equation is sometimes called the companion vector equation of the nth 
order scalar differential equation. 
Note: For more details, readers are advised to consult the book by Ross, S.L. 
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MAXIMAL INTERVAL OF EXISTENCE 

 
Suppose that the initial- valued problem 

dt
dy

 = f(t, y), y(t0) = y0 ,      (1) 

possesses a unique solution, say φ0, on interval | t – t0 | ≤ h, but nothing is implied about φ0 outside 
this interval. Let 

t1 = t0 + h, y1 = φ0(t1) .       (2) 
Now, this point (t1, y1) is obviously a point of the rectangle R and it is also a point of the domain D 
in which the hypothesis of existence and uniqueness theorems are satisfied. 

Thus we can reapply the existence and uniqueness theorems to conclude that the initial-value 
problem 

dt
dy

 = f(t, y),  

y(t1) = y1,        (3) 
possesses a unique solution, say φ1, which is defined on some interval [t1, t1 + h1], where h1 > 0 
(Fig. 5.1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig. 5.1 : Continuation of solutions 

Now let us define a function φ as follows: 

R 
 
 
 
 
 
 
 
 
                t0        t1        t2 

φ0(t)    φ1(t) 

t =
 t 0

−h
 

t =
 t 0

+h
 

t =
 t 1

+h
1 
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φ(t) = 
�
�
�

+≤≤
=+≤≤−

1111

1000

)(
)(

htttt

thtthtt

φ
φ

 .     (4) 

We now assert / claim that φ is a solution of the I V P (1) on the extended interval [t0 – h, t1 + h1]. 
We note that the function φ(t) is continuous on this interval and is such that  

φ(t0) = y0.        (5) 
For the interval [t0 – h, t0 + h], I V P (1) imply 

φ0(t) = y0 + �
t

t0

f(s, φ0(s)) ds,      (6) 

and hence 

φ(t) = y0 + �
t

t0

f(t, φ(t)) dt,      (7) 

for all t ∈ [t0 - h, t0 + h]. On the interval [t0 + h, t1 + h1] , we have 

φ1(t) = y1 + �
t

1t
f(s, φ1(s)) ds 

or 

φ(t) = y1 + �
t

1t
f(s, φ1(s)) ds ,      (8) 

using equation (3). From (7), we have 

y1 = φ(t1) = y0 + �
1

0

t

t

f(s, φ(s)) ds .     (9) 

From equations (8) and (9), we thus have 

φ(t) = y0 + �
t

t0

f(s, φ(s)) ds,      (10) 

on the interval [t0 + h, t1 + h1].   Thus, combining the results (7) and (10), we see that φ satisfies the 
integral equation (7) on the extended interval [t0 - h, t1 + h1]. Since φ is continuous on this interval, 
so is f(s, φ(s)). Thus 

dt
td )(φ

 = f(t, φ(t))  ,       (11) 

on the extended interval [t0 - h, t1 + h1]. Therefore, φ is a solution of the I V P (1) on this larger 
interval. 

Definition: The solution φ, so defined, is called a continuation of the solution φ0 to the interval 
[t0 - h, t1 + h1]. 

Remark : The process of continuation of a solution can be carried further. If we now apply the 
basic existence and uniqueness theorem again at the point (t1 + h1, φ( t1 + h1)), we may thus obtains 
the continuation over the still longer interval t0 – h ≤ t ≤ t2 + h2 where t2 = t1 + h1 and          h2 > 0.  

Repeating this process further, we may continue the solution over successively longer intervals           
t0 – h ≤ t ≤ tn + hn, extending farther and farther to the right of t0 + h. Also, in like manner, it may 
be continued over successively longer intervals extending farther and farther to the left of t0 – h. 
Thus, repeating the process indefinitely on both the left and the right, we continue the solutions to 
successively longer intervals [cn, dn], where [t0 - h, t0 + h] = [c0, d0] ⊂ [c1, d1] ⊂ [c2, d2]⊂….⊂          
[cn, dn] ⊂…. 
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Let  c = lim cn, d = lim dn. 
We thus obtain a largest open interval (c, d) over which the solution φ, satisfying the initial 
condition φ(t0) = y0, may be defined. 

Example : Consider the I V P  

dt
dy

 = y2,   

y(-1) = 1 . 

It has a solution φ(t) = 
t
1−

 through the point (-1, 1) and this solution eists on the interval [-1, 0] but 

cannot be continued further to the right. Because, in that case, φ does not stay within the region D, 
where f(t, y) = y2 is bounded. 
 
Maximal interval of existence: 

Let f(t, y) be a continuous function on a (t, y)-set E. Let φ = φ(t) be a solution of the differential 
equation  

dt
dy

 = f(t, y) ,        (1) 

on an interval I. 
The interval I is called a right maximal interval of existence for φ if there does not exist an 
extension of φ(t) over an interval, say I1, so that φ = φ(t) remains a solution of (1), where I is a 
proper subset of I1 and I, I1 have different right end points. 
A left maximal interval of existence for φ is defined similarly. 

Definition: A maximal interval of existence of a solution of ODE (1) is an interval which is both a 
left and right maximal interval. 

Kneser′′′′s theorem (without proof): This theorem is about the case of non-unique solutions of 
initial value problems. 

Statement: Let f(t, y) be continuous on the rectangle R,  

R = {(t, y) : t0 ≤ t ≤ t0 + a, | y – y0 | ≤ b. a > 0, b > 0}.  

Let | f(t, y) | ≤ M and α = min(a, 
M
b

), and t0 ≤ c ≤ t0 + α. Let Sc be the set of points yc for 

which there is a solution y = y(t) of the initial value problem. 

dt
dy

 = f(t, y), y(t0) = y0  on [t0, c]  

such that 
y( c ) = yc. 

Then the set Sc is a closed connected set. 

Kamke′′′′s Convergence theorem(Statement only): 
Let f(t, y) be continuous for t0 ≤ t ≤ t0 + a and all y. Let t0 < c ≤ t0 + a and assume that all solutions 
y(t) of initial value problem 

                       
dt
dy

 = f(t, y) , y(t0) = y0 
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exist on t0 ≤ t ≤ c. Then, the set Sc is a continuum. 
 
Books recommended for reading (for Unit I : Chapters 1-5) are 
1. E. A. Coddington and N. Levinson 
 Theory of ODE, McGraw Hill, NY(1955) 
2. S. L. Ross 
 Differential Equations, John Wiley & Sons, Third Edition, 1984. 
3. G. Birkhoff and G. C. Rota  
 ODE, 3rd edition, John Wiley & Sons , NY, 1978. 
4. E. L. Ince. 
 ODE, Dover Publications. 
5. P. Hertman  
 ODE, John Wiley & Sons, NY, 1964 
6. G. F. Simmons 
 Differential Equations with Applications and Historical Notes, McGraw Hill, 1991. 
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DEPENDENCE OF SOLUTIONS ON INITIAL 
CONDITIONS AND PARAMETERS 
 
 
Dependence of Solutions on Initial Conditions  

Consider the first order I V P 

dt
dy

 = y,  

           y(t0) = y0.       (1) 
It has the solution (exercise,  to obtain it)  

φ(t) = y0 0tte −  ,        (2) 
which passes through the point (t0, y0). The functions φ in (2) can be considered as function, not 
only t ∈ I, but of the coordinates of point (t0, y0), through which the solution curve passes. The 
solution function φ in (2), without any confusion /ambiguity can be written as  

φ(t, t0, y0) = y0 0tte −  .       (3) 
Now, we shall investigate the behavior of the solutions as functions of the initial conditions for the 
general problem. 

Let f(t, y) be continuous and satisfy a Lipschitz condition w. r. t. ′y′ in a domain D. Let (t0, y0) be a 
fixed point of D. Now, by Picard’s existence and uniqueness theorem (3.2), the initial value 
problem 

dt
dy

 = f(t, y),  

y(t0) = y0 ,        (1) 
has a unique solution φ defined as some sufficiently small interval [t0 – h0, t0 + h0] around t0 . Now 
suppose that the initial y-value is changed from y0 to Y0. Our first concern is whether or not the 
new initial – value problem 

dt
dy

 = f(t, y) , 

y(t0) = Y0 ,        (2) 
also has a unique solution on some sufficiently small interval | t – t0 | ≤ h1. If Y0 is such that              
| Y0 – y0 | is sufficiently small, then we can be certain that the problem (2) does possess a unique 
solution on some such interval | t – t0 | ≤ h1. In fact, let the rectangle R: | t – t0 | ≤ a, | y – y0 | ≤ b, lie 
in D and let Y0 be such that | Y0 – y0 | ≤ b/2. Then, by Picards theorem, this problem has a unique 
solution ψ which is defined and contained in R for | t – t0 | ≤ h1, where h1 = min(a, b/2M) and              
M = max | f(t, y) | for (t, y) ∈ R. Thus we may assume that there exists δ > 0 and h > 0 such that 
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for each Y0 satisfying | Y0 – y0 | ≤ δ, problem (2) possesses a unique solution φ(x, Y0) on                   
|t – t0| ≤  h  (see Figure 6.1 below).  
 
 
 
 
                                                              y 
 
             

             
  
 
 
 
             y0 

 
 
 
               0 

     0                      1/t0          t 

    Fig.6.1  Plots of solution for different values of y0  

To illustrate this, consider the I VP 

dt
dy

 = t y3,  

y(0) = y0 , 
Its solution is  

φ(t) = y0(1 – y0
2 t2)-1/2 ,  

and is only defined for the interval | t | < | y0 |−1. Here, y0 can be regarded as an arbitrary constant 
and, as y0 varies, the solutions fill the entire t – y plane. The general solution is shown in the 
following figure (6.2).  Nevertheless, for each particular value y0, the corresponding unique 
solution is defined only over an interval whose size depends on y0. 
 
            y 
                                                   y = y0 + δ 
                           
                          t = t0 – h0                       φ(t) 
                          t = t0 – h                    
                                                          
                                                        (t0, y0)  t = t0 + h0  
            (t0, Y0) φ(x, Y0) 
                 t = t0+h  
           
                                                         y = y0-δ  
           t 
                                                       Fig. 6.2 
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We are now in a position to state the basic theorem concerning the dependence of solutions on 
initial conditions. 
 
Theorem 6.1. Let f be continuous and satisfy a Lipschitz condition with respect to y, with 
Lipschitz constant k, in a domain D of the ty plane; and let (t0, y0) be a fixed point of D. Assume 
there exists δ > 0 and h > 0 such that for each Y0 satisfying | Y0 –y0 | ≤ δ the I VP 

  
dt
dy

 = f(t, y), 

  y(t0) = Y0 ,  
possesses a unique solution φ(t,Y0) defined and contained in D on | t - t0 | ≤ h. Let φ denote the 
unique solution of I VP when Y0 = y0 , and φ~  denotes the unique solution of I VP when Y0 = y~ 0, 
where |  y~ 0 - y0 | = δ1 ≤ δ.    Prove that  

 | φ~ (t) - φ(t) | ≤ δ1 ekh on | t – t0 | ≤ h. 

Proof. From Picards theorem, we know that  
 φ = limn→∞ φn,        (1) 

where  
       φn(t) = y0 + �

t
0t

f [ t, φn-1(t)]dt  (n = 1, 2, 3,……), 

and φ0 (t) = y0; | t – t0 | ≤ h. 
In like manner, 
     φ~  = limn→∞  φ

~
n,        (3) 

where  

 φ~ n(t) = y~ 0 + �
t

0t
f [ t, φ~ n-1(t)]dt  (n = 1, 2, 3,……),   (4) 

 and  φ~ 0(t) = y~ 0; | t –t0 | ≤ h. 
We shall show by induction that 

 | φ~ n(t) - φ n(t) | ≤ δ1�
=

n

j 0 j
)tt(K j

0
j −

      (5) 

on [t0, t0 + h], where K is the Lipschitz constant. We thus assume that on [t0, t0 + h], 

 | φ~ n-1(t) - φ n−1(t) | ≤ δ1�
−

=

1

0

n

j j
)tt(K j

0
j −

     (6) 

Then  
    | φ~ n(t) -φn(t) =  | y~ 0 + �

t
0t

f [ t, φ~ n-1(t)]dt - y0 -  �
t
0t

f [ t, φn-1(t)]dt |  

≤ | y~ 0 - y0| + �
t
0t

| f [ t, φ~ n-1(t)] - f [ t, φn-1(t)] | dt. 

Applying the Lipschitz condition, we have  
 | f [ t, φ~ n-1(t)] - f [ t, φn-1(t)] | ≤ K | φ~ n-1(t)- φn-1(t); 
and so, since  

 | y~ 0 – y0 | = δ1, 

therefore,  
 | φ~ n(t)- φn(t) | ≤ δ1 + k �

t
0t

 | φ~ n-1(t)- φn-1(t) | dt.    (7) 
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Using the assumption (6), we have 

| φ~ n(t)- φn(t) | ≤ δ1 + k �
t

0t
δ1 �

−

=

1

0

n

j !j
)tt(K j

0
j −

dt 

 = δ1 + kδ1�
−

=

1

0

n

j !j
k j

�
t

0t
(t –t0)j dt = δ1[1 + �

−

=

1

0

n

j )!1j(
)tt(k 1j

0
1j

+
− ++

]. (8)  

Since 

 δ1 [1 + �
−

=

1

0

n

j )!1j(
)tt(K 1j

0
1j

+
− ++

] = δ1 �
=

n

j 0 !j
)tt(K jj −

,    (9) 

we have 

 | φ~ n(t) - φ n(t) | ≤ δ1�
=

n

j 0 !j
)tt(K j

0
j −

,     (10) 

which is (6) with (n –1) replaced by n. 
Also, on [t0, t0 +h], we have   

 | φ~ 1(t) - φ 1(t) | = | y~ 0 + �
t

0t
f[t, y~ 0]dt – y0 - �

t

0t
f[t, y0] dt | 

 ≤ | y~ 0 – y0 | + �
t

0t
| f[t, y~ 0] – f[t, y0] | dt 

 ≤ δ1 + �
t

0t
K | y~ 0 – y0 | dt  

= δ1 + K δ1(t – t0).      (11) 
Thus (10.23) holds for n = 1. Hence the induction is complete and (5) holds on [t0, t0 + h]. Using 
similar arguments on [t0 – h, t0], we have 

| φ~ n(t) - φ n(t) | ≤ δ1 �
=

n

j 0 !j
)tt(K j

0
j −

 

  ≤ δ1 �
=

n

j 0 !j
)Kh( j

 

for all t on | t – t0 | ≤ h, n = 1, 2, 3, …. Letting n → ∞, we have 

  | φ~ (t) - φ (t) | ≤ δ1 �
∞

=0j !j
)Kh( j

      (12) 

But �
∞

=0j !j
)Kh( j

 = eKh; and so we have obtained the desired inequality  

           | φ~ 1(t) - φ 1(t) | ≤ δ1 = eKh on | t – t0 | ≤ h.     (13) 
This completes the proof of the theorem. 

Cor : The solution φ(t, Y0) of I V P is a continuous functions of the initial value Y0 at Y0 = y0.  

Proof :- It follows immediately from the results of the above theorem. 

Remark :  Thus under the conditions stated, if the initial values if the two solutions φ and φ~  differ 
by sufficiently small amount, then their values will differ by an arbitrarily small amount at every 
point of | t – t 0 | ≤ h. Geometrically, this means that if the corresponding integral curves are 
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sufficiently close to each other initially, then they will be arbitrarily close to each other for all t 
such that | t – t0 | ≤ h. 
 
 
Dependence on Parameters: 

In many practical problems the dynamical system which the differential equation  

dt
dy

 = f(t, y)        (1) 

describes contains external parameters, as well as the dependent variable y. 
Assume that the right side member of the above ODE contains a parameter vector µ and µ-space 
has m real dimensions. Let Dµ be the domain of µ - space for which   

| µ - µ0 | < c        (2) 
where µ0 is fixed and c > 0. The differential equation 

dt
dy

 = f(t, y, µ)        (3) 

will now be considered. Here, f(t, y, µ) is required to be a continuous function of t, y and µ for            
(t, y) ∈ D and µ ∈ Dµ. The initial condition for the above differential equation is again the same, 
i.e.,  

y(t0) = y0.        (4) 
Now, for each fixed value of µ, say µ = µ0, there exists a unique solution which, however, depends 
on µ0 as well. In order to incorporate the dependence of the solutions on initial conditions t0 and y0, 
as well as on µ, we adopt the device of allowing t0 and y0 to depend on µ so that  

t0 = t0(µ) and y0 = y0(µ)       (5) 
are continuous functions of µ. Before to proceed further, we extend the notion of the Lipschitz 
condition as follows: 

| f(t, y1; µ) – f(t, y2; µ) | ≤ L| y1 – y2 |     (6) 
uniformly for all (t, y1),  (t, y2) ∈ D and µ ∈ Dµ, L being a Lipschitz constant. The constant L is 
independent of t, y1, y2 and µ. 

Theorem 6.2 : Let f(t, y; µ) be continuous for 
| t – t0 | ≤ a,  | y – y0 | ≤ b, | µ - µ0 | ≤ c 

and satisfy a Lipschitz condition with constant L in this region. Let y0(µ) and t0(µ) be continuous 
functions of µ for | µ - µ0 | ≤ c such that y0(µ0) = y0 and t0(µ0) = t0. Then there exists a  
δ > 0 and ∈ > 0 such that the initial – value problem 

      
dt
dy

 = f(t, y; µ),   

y(t0(µ)) = y0(µ)       (1) 
has a unique solution for | t – t0 | ≤ δ and | µ - µ0 | ≤ ∈ which is a continuous function of t and µ. 

Proof :- The initial – value problem (1) is equivalent to the following integral equation, 

y(t; µ) = y0(µ) + �
t

t )(0 µ

f(y(s; µ), s; µ) ds.    (2) 

The proof is analogous to that of  previous theorem (6.1). Thus, we define the iterates 
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φ0(t; µ) = y0(µ),…., φn+1(t; µ) = y0(µ) + �
t

t )(0 µ

f(φn(s; µ), s; µ) ds. (3) 

  n =  1,2,….  
The first step is to choose regions over which t and µ can vary such that each iterate remains with 
in the domain of definition of f(t, y; µ). Let 

δ = 
2
1

min{a, b/M},       (4) 

where M is such that  
| f(t, y; µ) | ≤ M for  | t – t0 | ≤ a , | y – y0 | ≤ b and | µ - µ0 | ≤ c. (5)  

Then choose ∈ (0 < ∈ ≤ c) so that, for  
| µ - µ0 | ≤ ∈.  

We must have 

        | t0(µ) – t0 | < 
2
1 δ and | y0(µ) – y | < 

4
1

b.     (6) 

It follows that, if | t – t0 | < δ then 
| t – t0(µ) | ≤ | t – t0 | + | t0(µ) – t0 |  

                 ≤ 
2
3 δ.       (7) 

Next, it may be shown easily that 
         | φn+1(t; µ) – φ0(µ) | ≤ M | t – t0(µ) |  

                                         ≤ 
4
3

b ,    

for | t – t0(µ) | ≤ 
2
3 δ . 

But then, for | t – t0 | ≤ δ, it follows that 
| φn+1(t; µ) – y0 | ≤ | φn+1(t; µ) – y0(µ) | + | y0(µ) – y0 | ≤ b . 

Thus each iterate is well defined for | t – t0 | ≤ δ and | µ - µ0 | ≤ ∈. Next, it can be shown that 

| φn+1(t; µ) – φn(t; µ) | ≤ M Ln 
)!1N(
|)(tt| 1n

0

+
µ− +

 ,     (8) 

and, hence, the sequence φn+1(t; µ) is uniformly convergent to a limit function φ(t; µ). The key new 
result here is that the continuity if f(t, µ; µ) in t , y and µ, and the continuity if y0(µ) and t0(µ), 
ensures that each iterate is a continuous function of t and µ  for | t – t0 | ≤ δ and | µ - µ0 | ≤ ∈. 
Hence, since the convergence is uniform, φ(t; µ) is also a continuous function of t and µ. The rest 
of the proof, that x(t, µ) solves the initial value problem, now follows immediately. 
This completes the proof of the theorem.  
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DIFFERENTIAL INEQUATIONS  

 
In the following r, u, v, U, V are scalars while y, z, f, g are n – dimensional vectors. Now, we 
state and prove Gronwall’s inequality, which is one of the simplest and most useful results 
involving an integral inequation. 
 
Theorem7.1 (GRONWALL’S INEQUALITY). 
Statement: Let u(t) and v(t) be non – negative, continuous functions defined on closed interval 
[a, b]. Let c ≥ 0 and  

v(t) ≤ c + �
t

a

v(s) u(s) ds,   for a ≤ t ≤ b 

then  

v(t) ≤ c exp �
�

�
�
�

�
�
t

a

dssu )(   for a ≤ t ≤ b. 

and, in particular, if c = 0, then v(t) ≡ 0. 
Proof :- Case I : When c > 0. 

 Let       V(t) = c + �
t

a

v(s) u(s) ds .      (1) 

Then         v(a) = c        (2),  
and by hypothesis 

v(t) ≤ V(t) ,        (3)                    

and 

V(t) ≥ c > 0 on [a, b],      (4) 

as u and v are non – negative functions. Also, from (1), we have, on [a, b], 

V′(t) = v(t) u(t)  

        ≤ V(t) u(t), 

using (3). This implies, using (4),  
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)(
)(©

tV
tV ≤ u(t).        (5) 

Integrating (5) over [a, t], we get 

V(t) ≤ c exp[ �
t

a

u(s) ds] 

or  V(t) ≤ V(t) ≤ c �
�

�
�
�

�
�
t

a

dssu )(exp  

or  v(t) ≤ c exp �
�

�
�
�

�
�
t

a

dssu )( .      (6) 

This proves the result. 

Case II : When c = 0. Letting c → 0+ in (6), we get the desired result. 
Restatement : Another form of Gronwall′s inequality is given below. 

Statement: Let r(t) be continuous for | t – t0 | ≤ δ and satisfy the inequalities 

  0 ≤ r(t) ≤ ∈ + δ �
t

t

dssr
0

)(  

for some non-negative constants ∈ and δ. Then 
0 ≤ r(t) ≤ ∈ exp{δ| t – t0 |}. 

Proof:  On taking c = ∈ , t0 = a and u(t) = δ in theorem 7.1, the result follows immediately. 

Cor. 1. Let f(t, y) satisfy a Lipschitz condition with constant L for y ∈ D and | t – t0 | ≤ δ. Let y(t) 
and  z(t) be solutions of problem  

dt
dy

= f(t, y)  

for | t – t0 | ≤ δ such that 
                                  y(t0) = y0 , z(t0) = z0  , 
where y0, z0 ∈ D. Then 

| y(t) – z(t) | ≤ | y0 – z0 | exp{L| t – t0 |}. 
Proof :-  In the integral equation formulation, it follows that 

z(t) = z0 + �
t

t0

f(s, z(s)) ds, y(t) = y0 + �
t

t0

f(s, y(s)) ds. (1) 

Subtracting, we see that 

z(t) – y(t) = z0 – y0 + �
t

t0

[f(s, z(s)) – f(s, y(s))] ds.   (2) 

Taking the norm of both sides and applying the Lipschitz condition, it follows that 
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0 ≤ | z(t) – y(t) |  

   ≤ | z0 – y0 | + � −
t

t0

ds|)s(y)s(z|L  .     (3) 

From Gronwall’s inequality (7.1), with r(t) = | z(t) – y(t) | , ∈ = | x0 – y0 | and δ = L, the result 
follows immediately. 

Cor. 2. Let f(t,y) satisfy a Lipschitz condition for y ∈ D and | t – t0 | ≤ δ. Then the initial value 
problem has a unique solution, that is, there is at most one continuous function y(t) which 
satisfies 

dt
dy

 = f(t, y),   

y(t0) = y0. 

Proof :- Putting z0 = y0 in Cor. 1,  we see that z(t) = y(t) for all | t – t0 | ≤ δ, thus establishing the 
uniqueness  of the initial value problem, whenever f(t, y) satisfies a Lipschitz condition. Hence 
the result. 

Note : Cor.1 also shows that the solutions of the initial value problem are continuous in the 
initial data, since it follows that if y0 → z0, then y(t) → z(t) uniformly for all | t – t0 | ≤ δ. Thus, 
proveded the Lipschitz condition holds, the initial value problem is well–set. 

The comparison Theorems: 
Since most differential equations can not be solved in terms of elementary functions, it is 
important to be able to compare the unknown solutions of one differential equation with the 
known solutions of another. The following theorems give such comparisons. 

Theorem 7.2. Let f(t, y) satisfy a Lipschitz condition for t ≥ a. If the function u = u(t) satisfies 
the differential inequality 

dt
dy

 ≤ f(t, y)  for t ≥ a      (1) 

and v = v(t) is a solution of differential equation  

dt
dy

 = f(t, y)        (2) 

satisfying the initial conditions 
u(a) = v(a) = c0       (3) 

then u(t) ≤ v(t) for t ≥ a.        (4) 

Proof :- If possible, suppose that 
u(t1) > v(t1)        (5) 

for some t1 in the given interval. Let t0 be the largest t in the interval [a, t1] such that  
 u(t) ≤ v(t).  

Then 
u(t0) = v(t0) .        (6) 

Let    σ(t) = u(t) – v(t).       (7) 
Then   σ(t0) = 0,  σ(t1) > 0      (8A) 
and   σ(t) ≥ 0 for  [t0, t1].       (8B) 
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Also for t0 ≤ t ≤ t1, 
σ′(t) = u′(t) - v′(t) 

                  ≤ f(t, u(t)) – f(t, v(t)), using (1) & (2) 
                     ≤ K| u(t) – v(t) |,  
          = K σ(t),        (8C) 
where K is the Lipschitz constant for the function f. 

Multiplying both sides of (8C) by e-Kt, we write 
0 ≥ e-Kt.{σ′(t) – K σ(t)} 

  = 
dt
d

{σ(t). e-Kt} . 

This implies 

dt
d

{σ(t). e-Kt} ≤ 0 in [t0, t1]     (9) 

So,  σ(t). e-Kt is a decreasing function for [t0, t1]. 
Therefore σ(t). eKt ≤ σ(t0).  oKte−   for all t in [t0, t1] 
  � σ(t) ≤ σ(t0) )tt(K oe −  
  � σ(t) ≤ 0  for all t in [t0, t1], using (8A) 
  � σ(t) vanishes identically zero in [t0, t1] . 
This contradicts the assumption in (5) that σ(t1) > 0. Hence, we conclude that 

u(t) ≤ v(t)   
for all t in the given interval. 
This completes the proof. 

Theorem 7.3. (Comparison Theorem). 
Let u = u(t) and v = v(t) be solutions of differential equations 

dt
dy

 = U(t, y), 
dt
dz

 = V(t, z)      (1) 

respectively, where 
U(t, y) ≤ V(t, y)       (2) 

in the strip a ≤ t ≤ b and U or V satisfies a Lipschitz conditions, and  
u(a) = v(a).        (3) 

Then    u(t) ≤ v(t)  for all t ∈ [a, b].      (4) 

Proof :- Let V satisfy a Lipschitz conditions. Since 

  
dt
dy

 = U(t, y) ≤ V(t, y), 

the functions u(t) and v(t) satisfy the conditions of theorem 7.2 with V in place of f. Therefore, 
the inequality (4) follows immediately.  

If U satisfies a Lipschitz condition, the functions 
f(t) =  − u(t),  g(t) = − v(t)      (5) 

satisfies the differential equations 

dt
du

 = − U(t, −u) , 
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and 

 
dt
dv

 = −V(t, −v)  

      ≤ − U(t, −v),  using (2) .     (6)   
Theorem 7.3 now yields the inequality 

           g(t) ≤    f(t)  for t ≥ a 
    � −g(t) ≥ −f(t)  for t ≥ a 

� v(t) ≥ u(t)   for t ≥ a 
� u(t) ≤ u(t) .  for t ≥ a 

This completes the proof. 

Remark :  The inequality u(t) ≤ v(t) in this comparison theorem 7.3 can often be replaced by a 
strict inequality. 

Corollary 1: In theorem 7.3, for any t1 > a,  either 
u(t1) < v(t1) or  u(t) ≡ v(t)  for a ≤ t ≤ t1. 

Proof :- By theorem 7.3, u(t) ≤ v(t) for all t > a.      (1)  
Let t1 > a be aby value of t. 
         
        a  t1                   b 
If u(t1) is not less than v(t1), then u(t1) = v(t1).       (2) 
Then, either u and v are identically equal for a ≤ t ≤ t1, or else 

u(t0) < v(t0)         (3) 
for some t0 in the interval (a, t1). 
Let σ1(t) = v(t) – u(t)           (4) 
        

for t ∈ [a, t1]. Then  
σ1(t0) > 0,                                                             (5) 
and by theorem 7.3,     

u(t) ≤ v(t) for t ∈ [a, t1] 
� σ(t) ≥ 0 .  for t ∈ [a, t1]       (6) 

Further, for t ∈ [a, t1], 
σ1′(t) = v′(t) - u′(t) 
         = V(t, v(t)) – U((t, u(t)) 
         ≥ V(t, v(t)) – V(t, u(t)) (Θ U ≤ V given)            
         ≥ − K{v(t) – u(t)} 

   � σ1′(t) ≥ − K σ1 
   � (σ1′ + K σ1) ≥ 0 .         (7) 

Hence 
{eKt.σ1(t)}′ = eKt{σ1′(t) + K σ1(t) } ≥ 0,   

using (7) for t ∈ [a, t1]. This shows that the function φ(t) = ekt + σ1(t) is an increasing function on 
the interval [a, t1]. So  

φ(t) ≥ φ(t0)  for t ∈[t0, t1,]  
� ekt σ1(t) ≥ eKt

0 σ1(t0) 
�      σ1(t) ≥ σ1(t0) )tt(K 0e −−  > 0 
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�      σ1(t) > 0 in [t0, t1]  
�v(t)–u(t) > 0 in [t0, t1] 
�        v(t) > u(t) in [t0, t1] ≤ [a, b] 

which is a contradictions. Hence, u and v are identical for a ≤ t ≤ t1. This completes the proof. 

Cor 2. In theorem 7.3, assume that U, as well as V, satisfies a Lipschitz conditions and, instead 
of u(a) = v(a), that u(a) < v(a). 
Then  

u(t) < v(t)  for t > a. 

Proof :- The proof will be by contradiction.  
If we had u(t) ≥ v(t) for some t > a, there would be a first t = t1 >a, where 

u(t) ≥ v(t).        (1) 
We define two functions 

y = φ(t) = u(−t),  
z = ψ(t) = v(−t) .       (2) 

Then φ and ψ satisfy the differential equations 

dt
dy

 = −U(−t, y), 
dt
dz

 = −V(−t, z)     (3) 

as well as the respective initial conditions, respectively, 
φ(-t1) = ψ(−t1).        (4) 

Since 
−U(−t, y) ≥ −V(−t, y) .      (5) 

We can apply theorem 7.3 in the internal [-t1, -a], knowing that the function – U(-t, y) satisfies a 
Lipschitz condition. So, by theorem 7.3, we conclude that 

       φ(t) ≥ ψ(t) in [-t1, -a] 
� φ(-a) ≥ ψ(-a) 
�  u(a) ≥ v(a),       (6) 

a contradiction. Hence, by contradiction, assertion of the corollary 2 holds. That is, 
u(t) < v(t)  for t > a.      (7) 

Hence, the result. 
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MAXIMAL & MINIMAL SOLUTIONS, LYAPUNOV 
FUNCTIONS 
 
 
Let U(t, u) be a continuous function on a plane (t, u) set E. by a maximal solution u = uM(t) of the 
initial value problem 

dt
du

 = U(t, u),  

u(t0) = u0 ,        (1) 
is meant a solution of above I V P on a maximal interval of existence such that if u(t) is any 
solution of (1), then  

u(t) ≤ um(t)        (2) 
holds on the common interval of existence of u, uM. 
Similarly, a solution u = um(t) of I V P (1), defined on a maximal interval of existence, is called a 
minimal solution of it if  

u(t) ≥ uM(t) ,        (3) 
for every other solution u(t) of I V P (1), and inequality (3) holds on the common interval of 
existence of u, um. 

Note: (1) Every solution must remain between a maximal solution and a minimal solution. 
 (2) Sometimes the maximal and minimal solutions are the same over an interval. Then the 
solution is unique over any interval where this occurs. 

Notation. Let f(t, y) be continuous on an open (t, y)- set Ω. Let u(t, y) be a real valued function 
defined in a vicinity of a point (t1, y1) ∈ Ω. Let y(t) be a solution of the system 

dt
dy

 = f(t, y)        (1) 

satisfying initial condition  
y(t1) =  y1.        (2) 

If u(t, y(t)) is differentiable at t = t1, this derivative is called the trajectory derivative of u(t, y) at 
the point (t1, y1) along the orbit y = y(t) and is denoted by u&(t1, y1). 

Remark. When u(t, y) has continuous partial derivatives, its trajectory derivative exists and can be 
calculated without finding solutions of (1). In fact,  

u&(t, y) = 
t
u

∂
∂

 + (grad u). f(t, y)     (3) 

where the dot on the right side of (3) signifies scalar multiplication and  

grad u = ��
�

�
��
�

�

∂
∂

∂
∂

∂
∂

ny
u

y
u

y
u

,....,, 21       (4) 
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is the gradient of u w.r.t. y = (y1, y2,…, yn). 
Now, we consider the autonomous system 

dt
dy

 = f(y)        (5) 

(i.e., when f does not depend on t explicitly). We assume that f(y) is defined on an open set 
containing y = 0. 

Definition. Let V(y) be a scalar function of y, defined and continuous, with continuous partial 
derivatives at all points in a domain D containing the origin y = 0 and such that V(0) = 0 . 

(i) The function V(y) is called positive definite in D if V(y) > 0 for all other points y in D. 
(ii) The function V(y) is called positive semi definite in D if V(y) ≥ 0 for all other points in D. 
(iii) The function V(y) is called negative definite in D if V(y) < 0 for all other points in D. 
(iv) The function V(y) is called negative semi definite in D if V(y) ≤ 0 for all other points in D. 

Example : The function  
V(y) = (y1)2 + (y2)2 + ….+(yn)2 

is positive semi-definite. 

Note: Let y(t) be a solution of the autonomous system (5) and consider the function V(t) = V(y(t)). 
Then the derivative of V along the orbit y = y(t) is  
   V&(t) = V&(y(t)) = (grad V). f(y)      (6) 

Definition : A real valued function V(y) defined on a neighborhood of y = 0 is called a Lyapunov 
function if  
(i) V(y) has continuous partial derivatives; 
(ii) V(y) ≥ 0 according as | y | ≥ 0; 
(iii) the trajectory / orbit derivative of V satisfies inequalityV&(y) ≤ 0. 

Result :- Let f(y) be continuous on an open set containing the point  y = 0, f(0) = 0, and let there 
exist a Lyapunov function V(y). Then the solution y = 0 of the autonomous system 

dt
dy  = f(y) 

is stable, in the sense of Lyapunov. 

Remark 1.  Roughly speaking, Lyapunov stability of the critical point y = 0 means that if a 
solution y(t) starts near y = 0, it remains near y = 0 in the future (t ≥ 0). 

Remark 2.  The proof of this result and other related results shall be discussed in detail in                 
chapter 14 .  

Non autonomous systems  
For nonautonomous systems, the definition of Lypunov function is suitably modified. 
Let f(t, y) be continuous for t ≥ T, | y | ≤ b and satisfy  

f(t, 0) = 0  for t ≥ T.      (7) 

Definition : A function V(t, y) defined for t > T, | y | ≤ b  is called a Lyapunov function if 
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(i)   V(t, y) has continuous partial derivatives; 
(ii)  V(t, 0) = 0  for t ≥ T; 
(iii) there exists a continuous functions W (y) on | y | ≤ b such that W(y) ≥ 0 according as              | 

y | ≥ 0; 
(iv) V(t, y) ≥ W(y) for t ≥ T; 
(v)  the trajectory derivative of V satisfies 

V&(t, y) ≤ 0. 

Remark : The scalar function V(y) can be regarded as a measure of the ″energy″ of the system 

dt
dy

 = f(t, y) 

and it seeks to demonstrate that either this ″energy″ decreases as t → ∞, indicating stability, or 
increases as , indicating instability. 
 To illustrate the use of Liapunov functions, consider the following examples. 
 
Example 1 : For n = 2, consider the system of equations  

dt
dy1

 = -2y1(y2)2 – (y1)3, 
dt

dy 2

 = -y2 + (y1)2 – y2. 

We try the function 
 V(y1, y2 ) = a (y1)2 + (y2)2, with constant a to be determined. We find 
V&(y1, y2 ) = −2 (y2)2 – 2a(y1)4 – 2(y1)2(y2)2.(2a – 1). 

Choose a = 1, so that 
             V&= -2(y2)2 – 2(y1)2{(y1)2 + (y2)2}. 

Now V is positive definite, while V& is negative definite. Consequently, the zero solution              

(y1 = y2 ≡ 0) is uniformly and asymptotically stable. We note that any choice of a ≥ 
2
1

 would be 

just as useful here. 

Example 2. Consider the two – dimensional plane autonomous system.         

dt
dy1

 = y2, 
dt

dy 2

 = −w2 y1 − α ( y1)2 y2. 

Putting u = y1, this system is equivalent to the second order O D E  

2

2

dt
ud

 + α u2 

dt
du

 +w2u = 0 

This equation can be recognised as the equation for a simple harmonic oscillator of frequency w, 
with a nonlinear damping term. Here, we try  

V(y1, y2) =  
2
1

{w2(y1)2 + (y2)2},       

which may be interpreted as the energy of the undamped oscillator. We find    
V&(y1, y2) = − α (y1)2 ( y2)2.  

For α > 0, V& is negative semi definite, showing that, as expected, the energy is damped. 
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Also note here that, for α < 0 < V&, is positive semi-definite. This example shows that, in seeking 
Liapunov functions, it is sometimes useful to identify V with the energy of the physical system 
which the equations describe.       

The readers are advised to refer the following books for reading (lessons 7-9 of Unit II ) : 

1. Birkhoff, G. and Rota, G.C.  
      Ordinary differential Equations, John Wiley and sons, Third edition (1978) 
2. Ross, S.L.  
      Differential Equations, John Wiley& sons, (1984) 
3. Hartman, P. 
      Ordinary differential Equations, John Wiley (1964).   
4. Deo, S.G. and Raghavendra, V. 
      Ordinary differential Equations and Stability Theory, Tata McGraw Hill, New Delhi, 1980. 
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LINEAR SYSTEMS AND VARIATION OF CONSTANTS 

 
Definition (Norm of a matrix).  Let A = (aij) be a n × n matrix of complex numbers. The norm of 
the matrix A, denoted by | A |, is defined as  

 | A | = �
i
�

j

| aij |        (1) 

Note :  If x ∈ Cn, then A x ∈ Cn. For x = (x1, x2, ………., xn) ∈ Cn , we have already defined  

 | x | = | x1 | + | x2 | + ……… + | xn | = �
j

| xi |.   (2) 

We note that the definition of | x | , given in (2), coincides with the definition, given in (1), when x 
is regarded as a row matrix.  

Result.  The norm of a matrix satisfies the following properties: 
(i) | A + B | ≤ | A | + | B |  
(ii) | A B | ≤ | A | | B |  
(iii) | A x | ≤ | A | | x |   
for x being a n–dimensional vector. 

Notes :- (1) A unit matrix of order n is denoted by En. We find | En | = n. 
             (2) | A | = | AT | = |A | = | A* |, where   A* = (A )T = )( TA . 

Definition:- The determinant of the matrix A is denoted by det A and trace of A is denoted by              
tr A, where  
 tr A = a11 + a22 + …+ ann. 
Remark : Let aij(t) be complex-valued functions of a real variable t on an interval I, for                  
1 ≤ i, j ≤ n. Let 

 A(t) = [aij(t)] 

denote a matrix function. If the elements of a matrix possess a property such as continuity, 
differentiability, or integrability, for brevity it is said that the matrix function A(t) has this 
property. In particular, If A(t) is differentiable, then 

 A′(t) =  
dt

tdA )(
 = [a′ij(t)]. 

If A(t) is integrable on an interval I = [a, b], then 

 �
b

a

A(t) dt = �
�

�
�
�

�
�
b

a
ij dtta )( . 

Notes:- (1) A′(t) means )(' tA  or [ )(tA ]′.  Here, dash indicates differentiation and not transpose. 
For transpose, we write (…)T. 
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            (2) In this chapter, the quantities u, v, p are scalars; c, y, z, f and g are n-dimensional 
column vectors; and A, B, C, X, Y, Z are matrices. The scalars, components of the vectors, and 
elements of the matrices will be supposed to be complex-valued. 

Definition (Characteristic polynomial) :- Let A be a square matrix of order n. Then,                     
det(λ E – A) is a polynomial in λ of degree n, and is called the characteristic polynomial of A. 
Its roots are called the characteristic roots or eigenvalues of the matrix A. 

Note:- If λ1, λ2, ….., λn are eigenvalues of A, then    

det(λ E – A) = 
1i

n

=
∏ (λ - λi). 

This gives det A =
1i

n

=
∏  λi, where the product is taken over all roots. 

Definition (Similar matrices) :-  Let A and B be two matrices of the n × n type. Then A and B are 
said to be similar if there exists a non-singular matrix P such that 
 B = P A P-1 . 

Result:- If A and B are similar matrices, then they have the same characteristic polynomial, 
because 
  det(λ E – B) = det[P(λ E – A)P-1] 
             = (det P) [det(λ E – A)] det(P-1) 
             = det (λ E – A). 
In particular, the coefficients of the powers of λ in polynomial, det (λ E – A), are invariant under 
similarity transformation. Two of the most important invariant are 
   (i) det A ≡ determinant of A 
   (ii)   tr A ≡ trace of A. 
We now state the following fundamental result concerning the canonical form of a matrix.  

Statement:- Every n × n complex matrix A is similar to a matrix of the form 

 J = 

�
�
�
�

�

�

�
�
�
�

�

�

−−−−−−−−

sJ

J

J

..........000

0..........00

0..........00

1

0

 

where J0 = dia [λ1, λ2,…., λq]  
is a diagonal matrix and  

 Ji = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

−−−−−−−−−−−−−−−−

+

+

+

+

iq

iq

iq

iq

λ
λ

λ
λ

0...........0000

1..........0000

00..........010

00..........001

, (i = 1, 2, …., s) 

The λj (j = 1, 2, …, q + s) are the characteristic roots of A, which need not all be distinct. If λj is a 
simple root, then it occurs in J0, and therefore, if all the roots are distinct, A is similar to the 
diagonal matrix  
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 J = 

�
�
�
�

�

�

�
�
�
�

�

�

−−−−−−−−

nλ

λ
λ

..........000

0..........00

0..........00

2

1

 

Remark 1:- From the above result, it follows that 

 det A = ∏
i

λi , tr(A) = �
i

λi  

where the product and sum are taken over all roots, each root counted a number of times equal to 
its multiplicity.  

Remark 2:- The matrices Ji are of the form 
 Ji = λq + i Eri + Zi  
where Ji has ri rows and ri columns, and  

 Zi = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−−−−−−−−−

00.........0000
10.........0000

00.........0100
00.........0010

. 

Remark 3:- An equally valid form is  
 Ji = λq+i Eri + γ Zi  

where  γ is any constant not zero.  

Remark 4:- The matrix Zi is nilpotent  as Zi
ri = 0. 

Definition 1:- (Sequence of matrices) 

Let { Am} be a sequence of matrices. It is said to be convergent if, given ∈ > 0, there exists a 
positive integer N such that  
 | Ap – Aq | < ∈ for p, q > N 
i.e., norm of (Ap – Aq) is less than ∈ whenever p, q > N. 

Definition 2 (Limit Matrix) :- A sequence {Am} of matrices is said to have a limit matrix A if, 
given ∈ > 0, there exists a positive integer N (depending upon ∈ only) such that 
 | Ap – A | < ∈ whenever p > N . 

Result:-  Clearly, sequence {Am} of matrices is convergent iff each of the component sequences  
is convergent. This implies that the sequence {Am} of matrices is convergent iff there exists a limit 
matrix to which it tends. 

Definition 3 (Infinite Series)  

The infinite series 

 A1 + A2 + ……..+ Am + …….. = �
∞

=1m

Am 

of matrices is said to be convergent if the sequence of its partial sums is convergent. 

Result :The sum of this series of matrices is defined to be the limit matrix of the sequence of 
partial sums. 
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Definition 4(Exponential of a matrix A) 

The infinite series  

 E + A + 
!3!2

32 AA + + …..to ∞ = E + �
∞

=1m !m
Am

 

is convergent for all A, since for any positive integers p, q, 

 | Sp – Sq | = �
+=

q

1pm !m
Am

  

     ≤ �
+=

q

pm 1 !
||

m
A m

 

and the latter represents the Cauchy difference for the series e|A|, of real numbers, which is 
convergent for all finite | A |. 
The sum of the above convergent series is denoted by  
 eA = exponential of matrix A. 

Remark. The exponential series is of great importance for the study of linear differential 
equations. 

Note(1):- For matrices, it is not, in general, true that 
 eA+B = eA eB. 
But this relation is valid if matrices A and B commute. 

Note(2):- It will be shown later on that  
 det(eA)  = etr(A) ≠ 0.  
Hence, eA is a non-singular matrix for all A. 

Note(3):- Since matrices A and ‘-A’ commute, so 
 e-A = (eA)-1. 

Result:- We know that every square matrix A satisfies its own characteristic equation 
 det(λ E – A) = 0. 
This result is sometimes very useful for the actual calculation of eA. For example, let  

 A = 		



�
��



�

00
10

. 

Its characteristic equation is λ2 = 0, which is satisfied by A, i.e., 
      A2 = 0. 
 � Am = 0 for m ≥ 2. 

Hence,      eA = E + A =. 		



�
��



�

10
11

 

Definition:- [Logarithm of a matrix]. Let B be a non-singular matrix. A logarithm of B is a 
matrix, say A, such that 
 eA = B. 

Remark (1) :- A is not unique, because, eA = eA+2πikE for k = 0, ±1, ±2,….. 

Remark (2) :- Indeed, if B is in the canonical form J, then A can be taken as  
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 A = 

	
	
	
	
	




�

�
�
�
�
�




�

−−−−−−−−−−

s

1

0

A..........000

0.........0A0

0.........00A

. 

provided that eAi
 = Ji for i = 0, 1, 2, …., s. 

It can also be verified that a suitable matrix A0 is given by 

 A0 = 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

λ
−−−−−−−−−−

λ
λ

q

2

1

log...........00

0........log0

0.........0log

. 

Remark (2) :- For any matrix M, we have 
 (P M P-1)k = P Mk P-1        for k = 1, 2,….. 
Consequently, we get 
 P(eM) P-1 = 

1−PMPe . 
Results (1).  Let Φ = Φ(t) be any n × n matrix of functions defined on a real t-interval I               
(the functions may be real or complex valued). Let  
 Φ(t) = (aij(t))n×n.       (1) 
Let Aij = cofactor of aji in Φ(t). 
Let Φ~  = (Aij).        (2) 
If Φ′(t) exists and Φ(t) is non-singular at t, then Φ-1(t) is differentiable at t and  

 Φ-1 = 
Φ

Φ
det

~
,         (3) 

and 
  Φ Φ−1 = Φ−1 Φ = E .       (4) 
Result (2) :-  We find 
 (Φ−1)′ = −Φ−1 Φ′ Φ-1,          det Φ ≠ 0.    (5) 

Solution:- We have 
                    (Φ Φ-1)′ = 0 
                   �       Φ′ Φ-1 + Φ(Φ-1)′ = 0 
                   �                      Φ(Φ-1)′ = - Φ′ Φ-1 
                    �                        (Φ-1)′ = - Φ-1 Φ′ Φ-1. 

Linear Systems  

Now we shall be discussing some basic facts and results about linear systems of differential 
equations in the homogeneous case, 

 
dt
dy

 = A(t) y,      (LH) 

and in the inhomogeneous / non-homogeneous case, 

 
dt
dy

 = A(t) y + b(t).     (NH) 

Throughout the study, A(t) is a continuous n × n matrix and b(t) a continuous vector on a t-interval 
I = [a, b]. The linear homogeneous system (LH) is also called a linear homogeneous system of the 
nth order. 
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Linear Homogeneous Systems 
We know that for given any y0, and t0 ∈ I, there exists a unique solution ϕ = ϕ(t) of linear 
homogeneous differential equation (LH) on I such that ϕ(t0) = y0. 

Remarks :- (i) The zero vector function on I is always a solution of system (LH). This solution is 
called the trivial solution of (LH). 

(ii) If a solution of (LH) is zero for some t0 ∈ I, then, by uniqueness theorem, it must be zero 
throughout I . 

Theorem 9.1. (Principle of Superposition) :- The set of all solutions of linear homogeneous 
system of nth order 

 
dt
dy

 = A(t) y,    t ∈ I      (LH) 

form an n-dimensional vector space over the complex field. 

Proof:-  Let ϕ1 and ϕ2 be solutions of linear homogeneous system (LH) and c1, c2 be two complex 
numbers. Then  
 ϕ1′(t) = A(t) ϕ1(t),   
 ϕ2′(t) = A(t) ϕ2(t) .       (1) 

Now   
dt
d

{c1 ϕ1 + c2 ϕ2} = c1
dt

d 1ϕ
 + c2

dt
d 2ϕ

   

         = c1 A ϕ1 + c2 A ϕ2 
         = A(c1 ϕ1 + c2 ϕ2 )     (2) 
This shows that c1 ϕ1 + c2 ϕ2 is again a solution of (LH). Hence, the set of solutions forms a linear/  
vector space over the field of complex numbers. 

To show that this solution space is n-dimensional, it is required to establish a set of n linearly 
independent solutions ϕ1, ϕ2,…., ϕn such that every other solutions of (LH) is a linear combination 
(with complex coefficients) of solutions ϕ1 , ϕ2,.., ϕn . 

We know that y-space is n-dimensional. Let ξi, i = 1, 2, …, n, be linearly independent points in this 
space. Then, by the existence theorem, for t0 ∈ I, there exists n solutions ϕi, 1 ≤ i ≤ n, of linear 
homogeneous system (LH) such that 
 ϕi(t0) = ξi,       1 ≤ i ≤ n .      (3) 
Now, we shall show that these solutions satisfy the required conditions. 

If the solutions ϕi are linearly dependent, then there exists n complex numbers ci, not all zero, such 
that 
 c1 ϕ1(t) + c2 ϕ2(t) + …..+ cn ϕn(t) = 0  for all t ∈ I.  (4) 
In particular, for t = t0, 
             c1 ϕ1(t0) + c2 ϕ2(t0) + …..+ cn ϕn(t0) = 0    
                 �    c1 ξ1 + c2 ξ2 + …..+ cn ξn = 0  ,     (5) 
and this contradicts the assumptions that the ξi are linearly independent. This contradiction shows 
that the solutions ϕi(t) are linearly independent.  

Let ϕ = ϕ(t), t ∈ I, be any solution of linear homogeneous system (LH) such that ϕ(t0) = ξ. Then, 
there exists unique constants k1, k2, …, kn such that 
 ξ = k1 ξ1 + k2 ξ2 + ….+ kn ξn      (6) 
as ξ belongs to n-dimensional y-space, for which ξi form a basis. Now, the function 
 k1ϕ1(t) + k2ϕ2(t) + …. + knϕn(t) ,      t ∈ I    (7) 
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is a solution of (LH) on the t-interval I and this solution assumes the value ξ at t = t0. Hence, by 
uniqueness theorem, this solution must be φ. That is,  
 ϕ = k1ϕ1 + k2ϕ2 + …..+ knϕn,  on I .      (8) 
This shows that every solution ϕ is a unique linear combination of the n solutions ϕi. 
Consequently, the solution space is n – dimensional. This completes the proof. 
 
Definition(Fundamental Set):-  Let 

 
dt
dy

 = A(t) y,    t ∈ I      (LH) 

be a linear homogeneous system of the nth order, A(t) being an n × n matrix. If ϕ1, ϕ2, …., ϕn form 
a set of n linearly independent solutions of the system (LH), they are said to form a basis or a 
fundamental set  of solutions of the linear homogeneous system (LH). 

Definition: (Fundamental Matrix)  

Let Φ(t) be a matrix whose n columns are n linearly independent solutions of the linear 
homogeneous system (LH) on interval I. That is,  
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where 
 φi(t) = (φi

1(t), φi
2(t),……, φI

n(t))      (2)    
for 1 ≤ i ≤ n. 
The matrix Φ(t) is called a fundamental matrix for the linear homogeneous system (LH). It is 
evident that Φ(t) satisfies the matrix – differential equation 
 Φ′(t) = A(t) Φ(t) for t ∈ I      
which is associated with the given system (LH). We means that Φ(t) is a solution of the following 
associated matrix differential equation 
 X′ = A(t) X,      t ∈ I.      (M) 
The matrix Φ(t) is called a solution of matrix equation (M) on the interval I.  

Remark: (1) It is now evident that a complete knowledge of the set of solutions of (LH) can be 
obtained if one knows a fundamental matrix for (LH), which is, of course, a particular solution of 
associated matrix – differential equation (M). 
Remark : (2) The determinant of matrix Φ(t) is called the Wronskian of the system (LH) w.r.t. 
{φ1, φ2,…, φn} and is denoted by W(φ1, φ2,…, φn). It is a function of t. 

Theorem 9.2 (Liouville’s formula):- 
 Let A(t) be an n × n matrix with continuous elements on an interval I = [a, b], and suppose Φ(t) is 
a matrix of functions on I satisfying the matrix differential equation. 
 Φ′(t) = A(t) Φ(t),    t ∈ I. 
Prove that det{Φ(t)} satisfies the first order scalar differential equation  
 (det Φ)′ = {tr(A)} (det Φ) , on I  
and for t0, t ∈ I, 

 det Φ(t) = {det Φ(t0)} exp 
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Proof:-  Let  
 Φ(t) = (φij(t))n×n,  A(t) = (aij(t))n ×n.     (1) 
Then the given matrix differential equation gives the following scalar differential equations 

 φij′(t) = �
=

n

k 1

aik(t) φkj(t), for i, j = 1, 2, …,n.   (2) 

We know that the derivative of det{Φ(t)} is a sum of n determinants and given by 

 (det Φ(t))′ =  
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Now, we shall consider each determinant on right hand side of equation (3), turn by turn. Using the 
values of φij′ from equation (2) in the first determinant on the right of (3), one gets 
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This determinant remain unchanged if one subtracts from the first row a12 times the second row 
plus a13 times the third row up to a1n times the nth row. This gives 
 1∆ = a11 (det Φ).       (5) 
Carrying out a similar procedure with the second determinant, one gets 
 2∆ = a22(det Φ).       (6) 
After n steps, one gets 

 n∆ = ann (det Φ).       (7) 
Thus, from equations (3) to (7), one finally gets 
 (det Φ)′ = (a11 + a22 + …….+ ann) (det Φ)  
    = (tr Φ) (det Φ) .      (8)  
This proves the first part of the theorem. 
Let u = det Φ, α(t) = tr Φ.       (9) 
Then, equation (8) is of the form 

 
dt
du

- α(t) u(t) = 0, 

or                
u
du

 = α(t) dt 

or �            u(t) = C exp 
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where C is a constant of integration.  
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On putting t = t0, both sides, we get 
 C = u(t0) .        (11) 
Hence, we get 

 u(t) = u(t0) exp 
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Consequently, 

 det[Φ(t)] = det[Φ(t0) exp ds))]s((tr[
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This proves the theorem finally. 

Theorem 9.3 :- A necessary and sufficient condition that a solution matrix Φ of differential 
equation 
 X′ = A(t) X,     t ∈ I        (M) 
be a fundamental matrix is that 
 det {Φ(t)} ≠ 0      for t ∈ I. 

Proof:- We know that, from Liouville theorem (9.2), 

 
dt
d

[det{Φ(t)}] = {tr A(t)} {det Φ(t)},    (1) 

and det{Φ(t)} = det{Φ(t0)} exp 
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for t0, t ∈ I. 
From (2), it follows that if  

  det Φ(t0) ≠ 0 for some t0 ∈ I,      (3) 

then  

  det{Φ(t)} ≠ 0 for all t ∈ I.     (4) 

Let Φ(t) be a fundamental matrix with column vectors ϕ1, ϕ2,….., ϕn. Then vectors ϕ1, ϕ2,….., ϕn 
form a set of n linearly independent solutions of linear homogeneous differential equation 

 
dt
dy

 = A(t) y,    t ∈ I       (LH) 

Let ϕ = ϕ(t) be any non-trivial solution of (LH). Then there exists unique constants c1, c2,…..,cn, 
not all zero, such that 
 ϕ(t) = c1ϕ1(t) + c2 ϕ2(t) + …… + cn ϕn(t) for all t ∈ I.  (5) 
Equation (5) can be expressed as  
 ϕ(t) = Φ (t) C        (6) 
where C is the column matrix / vector with components c1, c2,…..,cn.  

The relation (6) is a system of n linear non-homogeneous algebraic equations in the n unknowns 
c1, c2,…..,cn, at any t0 ∈ I, and has a unique solution for any choice of ϕ(t0). Consequently, 
 det{Φ(t0)} ≠ 0.       (7) 
Hence, by (2), it follows that 
 det{Φ(t)} ≠ 0     for any t ∈ I.      (8) 
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Conversely, let us assume that Φ(t) be a solution matrix of matrix differential equation (M) such 
that det{Φ(t)} ≠ 0 for t∈ I. Then, the column vectors, say φi, of the matrix Φ are linearly 
independent at every t ∈ I. So, by definition, Φ is a fundamental matrix for (LH). 
This completes the proof. 

Theorem 9.4:- If Φ is a fundamental matrix of the linear homogeneous system 

 
dt
dy

 = A(t) y        (LH) 

and C a complex constant non-singular matrix, then Φ C is again a fundamental matrix of (LH). 
Moreover, every fundamental matrix of (LH) is of this type for some non-singular constant matrix 
C.  

Proof:- As Φ(t) is a fundamental matrix of the system (LH), so  
 Φ′(t) = A(t) Φ(t) ,       (1) 
and  det{Φ(t)} ≠ 0  for t ∈ I.     (2) 
This implies 
 Φ′(t) C = A(t) Φ(t) C 
                  �  (Φ C)′ = A(t) {Φ C},       (3) 
C being a constant matrix. 
This shows that Φ C is a solution of matrix differential equation 
 X′ = A(t) X,       t ∈ I.       (M) 
Since det{Φ C} = (det Φ) (det C) ≠ 0 ,      (4) 
because neither det Φ = 0 nor det C = 0, being non-singular. It follows that Φ C is also a 
fundamental matrix. 

Conversely, Let ψ be any other fundamental matrix of the system (LH). Then  
 ψ′(t) = A(t) ψ(t)       (5) 
Let Φ-1 ψ = χ.        (6) 
Then X is non-singular and  
 ψ = Φ χ        (7) 
and  ψ′ = Φ′ χ + Φ χ′       (8)  
This implies A ψ = ψ′ 
         = Φ′ χ + Φ χ′ 
         = A(Φχ) + Φ χ′ 
         = A ψ + Φ χ′ . 
This gives 
 Φ χ′ = 0         
                    �    χ′ = 0  (Θ Φ is non-singular) 
                    �    χ = constant = C, a non–singular matrix. 
 � ψ = Φ C, using (7) 
This completes the proof. 

Note:- (1) If Φ is a fundamental matrix of (LH) and C is a constant non-singular matrix, then C Φ 
is not, in general, a fundamental matrix. 

Note :- (2) Two different homogeneous systems can not have the same fundamental matrix, for in 
(LH), 
 A(t) = Φ′(t) Φ-1(t) 
Hence Φ(t) determines A(t) uniquely. Although, the converse is not true. 
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Non homogeneous Linear Systems: 

If a fundamental matrix Φ for the corresponding homogeneous linear system (LH) is known, then 
there is a simple method for calculating a solution of non homogeneous linear system (NH). 

Theorem 9.5 :- If Φ(t) is a fundamental matrix for the homogeneous linear system 

 
dt
dy

 = A(t) y, t ∈ I           (LH) 

where A is a n × n matrix, then the function φ(t) defined by 

 ϕ(t) = Φ(t) 
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is a solution of non-homogeneous linear system  

 
dt
dy

   A(t) y + b(t)   t ∈ I       (NH) 

satisfying  

 ϕ(t0) = 0, t0 ∈ I 

Proof:- For any constant vector c, the function Φ c is a solution of homogeneous system (LH). The 
method here consists of considering c as a function of t on I such that 
 ϕ&(t) = Φ(t) c(t)       (1) 
is a solution of the non homogeneous system (NH). Then 
 ϕ′(t) = Φ′(t) c(t) + Φ(t) c′(t) 
         = {A(t) Φ(t)} c(t) + Φ(t) c′(t) 
         = A(t) ϕ(t) + Φ(t) c′(t) .      (2) 
Comparing (2) with given (NH), it follows that 
 Φ(t) c′(t) = b(t) 
 �    c′(t) = Φ-1(t) b(t) 

 �     c(t) = �
−Φ

t

t
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)()(1 , for t0 ∈ I .    (3) 

Also         c(t0) = 0.        (4) 
For equations (1) and (3), it follows that 

 ϕ(t) = Φ(t) 
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is a solution of (NH) with ϕ(t0) = 0. This completes the proof. 

Remark (1) The formula (5) is called the variation of constants formula for (NH). 

Remark (2) Under the assumptions of the above theorem, the solution ϕ = ϕ(t) of non 
homogeneous linear system (NH) satisfying the initial condition 
 ϕ(t0) = y0, t0 ∈ I, | y0 | < ∞ 
is given by     

 ϕ(t) = ϕh(t) + Φ(t) 
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where ϕh(t) is that solution of homogeneous linear system (LH) on I satisfying the condition.  
 ϕh(t0) = y0. 
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REDUCTION OF THE ORDER OF A HOMOGENEOUS 
SYSTEM, LINEAR HOMOGENEOUS SYSTEMS WITH 
CONSTANT COEFFICIENTS, ADJOINT SYSTEMS 
 
Consider the linear homogeneous differential equation 

 
dt
dy

 = A(t) y, t ∈ I       (LH) 

of order n, where A(t) is a matrix of type n × n. 
If m linearly independent solutions of (LH) are known, 0 < m < n, the determination of all 
solutions of (LH) is reduced essentially to the problem of determining the solutions of a linear 
homogeneous system of (n-m) differential equations. 

Suppose ϕ1, ϕ2, ……,ϕm are m linearly independent vectors with are known solutions of (LH) on 
an interval I. Let ϕj have components φj

i (i = 1, 2, …,n). 

Then the matrix (φj
i) is of the type n × m and the rank of this matrix, at each t ∈I, is m, because 

of the linear independence of its columns. This means that for each t ∈ I, there is an m × m 
determinant in this matrix (φj

i) which does not vanish there. 

Peck any t0 ∈ I. W.l.o.g. we assume that the determinant of the sub-matrix Φm whose elements 
are φj

i (i,j  = 1, 2, …,m) is not zero at t0. 

By the continuity of det Φm in its elements φj
i, and the continuity of the functions φj

i  near t0          
(in the nbd of t0), it follows that 
 det Φ(t) ≠ 0        (1) 
for t in some sub-interval I

~  containing  t0 and I
~ ⊂ I.      

  
The reduction process will be outlined for interval I

~ . (The idea behind this process is a 
modification of the method of variation of constants/parameters). 

Outlines of the reduction procedure 

Let U be the matrix with the vectors ϕ1, ϕ2,…..,ϕm as its first m columns and the vectors 
em+1,…,en for its last (n - m) columns, where ej is the column vector with all elements 0 except 
for the jth which is 1. That is, 
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In view of (1), the matrix U is non-singular on I
~ . Now, we make the substitution 

 y = U w        (3) 
is made in (LH). We note that, corresponding to w = ej (j = 1, 2, …,m), the transformation (3) 
yields y = ϕj. 

Thus, the substitution (3) may be expected to yield a system in w which will have                        
ej (j = 1, 2,…,m) as solutions. The use of (3) in (LH) gives 
 U′w + U w′ = A U w       (4) 

Writing this out gives 
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for i = 1, 2, ….,m , 
and  
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     for i = m+1, m+2,…..,n. 
As the vectors φj with components φj

i are solutions of system (LH), so 

(ϕj
i)′ = �
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n

k 1

 aik φj
k (i = 1, 2,….,n; j = 1, 2,…m)     (6) 

Using (6), relations (5a, b) results in 
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and  
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aik wk (i = m + 1, 2,…,n)    (7b) 

Since 
 det Φm ≠ 0 on I

~ ,       (8) 
the set of equations in (7a) may be solved for (wj)′, 1 ≤ j ≤ m, in terms of  known quantities         
φj

i, aik and wk (k = m          + 1,…,n). These values of (wj)′, so obtained, may then be put into the 
set of formulas of (7b). This process gives a set of first order differential order equations satisfied 
by wi (i = m + 1,…,n) of the type 

 (wi)′ = �
+=

n

mk 1

bik wk (i = m + 1, ….,n) ,    (9) 

which is a linear system of order n−m, on I
~ . 

Suppose 1
~

+mψ ,….., ψ~ n is a fundamental set on I
~  for the system (9). Let ψj

i be the components of 
ψ~ j (for i, j = m + 1,…,n). Let ψ~ n-m denote the matrix with elements ψj

i, i.e., 
 ψ~ n-m = (ψj

i)        (10) 
is a matrix of order n - m. Clearly, 
 det ψ~ n-m(t) ≠ 0 on I

~ .       (11) 
For each j = m + 1, …,n; let ψj

i (i = 1, 2,…..,m) be solved for by integration from the relations 
(in 7a) 

 �
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for i = 1, 2,…..,m and p = m + 1,….,n. 
Let ψp (p = m + 1,….,n) denote the vectors having components ψp

i (i = 1, 2,…,n). Let 
 ψp = ep  (p = 1, 2, ….,n)     (13)  

Now, ψp (p = 1, 2,…,n) satisfy system (9) and the first set of equations of (7a), they must also 
satisfy the second set of equations in (7b). Therefore, ψp (p = 1, 2,….,n) are solutions of (7a, b). 
If  Ψ is the matrix with columns ψp, p = 1, 2,….,n, and if 
 Φ = U Ψ ,        (14) 
then Φ is a matrix solution of system (LH) on  I

~ . As U is non-singular and  
 det Ψ = det Ψ~ n-m on I

~ ,      (15) 
it follows that Φ is non-singular on I

~ . Hence, Φ is a fundamental solution of system (LH) on I
~ . 

This completes the reduction procedure and it is summarized in the following theorem: 

Theorem 10.1 :- :Let ϕ1, ϕ2,….,ϕm (m < n) be m known linearly independent solutions of 
system (LH) with ϕj (j = 1, 2, …,m) having components φj

i (i = 1, 2, …,n). Assume the 
determinant of the matrix with elements φj

i is not zero on some sub - interval I
~  of I. Then the 

construction of a set of n linearly independent solutions of (LH) on I
~  can be reduced to the 

solution of a linear system (9) of order n -–m, plus quadratures (integrations) (12), using the 
substitution (3). 

Linear homogeneous systems with constant coefficients 

Consider the linear homogeneous system 

 
dt
dy

 = A y        (LHC) 

in which A is an n × n constant matrix. 
Let y1 ≠ 0 be a constant vector and λ be a complex number. By substituting 
 y = y1eλt        (1) 
into equation (1), we at once get   
 Ay1 = λ y1.        (2) 
Equation (2) shows that λ is an eigenvalue of the matrix A with corresponding non-zero eigen 
vector y1. Thus, to each eigenvalue λ of A, there corresponds at least one solution of system 
(LHC) of the (1). If the matrix A has n linearly independent eigen vectors y1, y2,….,yn belonging 
to the respective eigenvalues λ1, λ2,……,λn; then 
 φ = (y1 t1eλ , y2 t2eλ  ,…., yn tneλ  )     (3) 
is a fundamental matrix for the system (LHC). 

Theorem 10.2 :- A fundamental matrix Φ for the homogeneous linear system 

 
dt
dy

 = A y        (LHC) 

where A is an n × n constant matrix, is given by    
  Φ(t) = etA.        (| t | < ∞) 

Proof:- We have 
 e(t+∆t)A = etA+∆tA 
            = etA .e∆tA       (1) 
because t A and ∆tA commutes. Further 
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Taking limit as ∆t → 0, we immediately obtain. 

 
dt
d

(eAt) = A eAt.       (3) 

This shows that 
 Φ(t) = eAt        (4)   
is a solution of the given linear homogeneous system with constant coefficients.  Since 
 Φ(0) = E,        (5) 
it follows that 
 det{Φ(t)} = exp{t(tr A)} ≠ 0.      (6) 
This shows that Φ(t) is a fundamental matrix for the given system.   
Hence, the proof is complete. 

Theorem 10.3:- The solution ϕ of the linear homogeneous system with constant coefficients  

 
dt
dy

 = A y       (LHC) 

satisfying the initial condition 
 ϕ(t0) = y0 (| t0 | < ∞, | y0 | < ∞) 
is given by 
 ϕ(t) = {e(t-t0)A}y0 

Proof:- The successive approximations for a solution of the initial value problem are 
 φ0(t) = y0 ,        (1) 

 φn(t) = y0 + �
t

t0

A φn-1(s) ds,  for n ≥ 1.    (2) 

An induction shows that (left as an exercise for readers) 
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The sequence {ϕn(t)} converges uniformly on any bounded t-interval to the function 
 φ(t) = { A)tt( 0e − }y0,       (4)  
which is then a solution of the given initial value problem. This completes the proof. 

Note:- For the inhomogeneous initial value problem 

 
dt
dy

 = A y +b(t),     

 y(t0) = y0 , 
the solution is  

 ϕ(t) = {e(t-t0)A}y0 + �
t

t0

{e(t-s)A} b(s) ds. 

Form of the fundamental matrix  

Let J be the canonical form of the given matrix A. Then, there exists a non – singular constant 
matrix P such that  
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where J0 is a diagonal matrix with diagonal elements −λ1, λ2,…..,λq, and  
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is an ri × ri matrix (n = q + r1 + r2 +…..+rs). It follows that 

 etJ = 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−−−−−−−−
stJ

tJ

tJ

e

e

e

..........00

0........0

0..........0
1

0

.      (5) 

It is easy to see that 
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0........0

0..........0
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and 
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ttJ 2i
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iqi .    (7) 

Thus, if the canonical form (3) of the matrix A is known, then a fundamental matrix etA of 
system (LHC) is given explicitly by (2), where etJ is to be calculated from equations (5) to (7). 

Adjoint Systems 

Let Φ be a fundamental matrix for the system (LH), then Φ is non-singular and 
         ΦΦ−1 = E 
 � Φ′ Φ-1 + Φ (Φ−1) = 0 
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 �      Φ(Φ−1)′ = − Φ′ Φ−1 
 �         (Φ-1)′ = − Φ−1 Φ′ Φ−1 .     (1) 
Since Φ is a fundamental matrix for the system (LH), so 
      Φ′ = A Φ .        (2) 
From (1) and (2), it follows that 
 (Φ−1)′ = Φ−1 (A Φ) Φ−1  
            = − Φ−1 A .       (3) 
Taking conjugate transpose, we get 
 [(Φ*)-1]′ = − A* (Φ*)−1 .      (4) 
This shows that (Φ−1)* = (Φ*)−1 is a fundamental matrix for the linear homogeneous system 

 
dt
dy

 = −A*(t) y,  t ∈ I     (AS)   

Definition:- The system (AS) is called the adjoint to system (LH), and the matrix equation 
   X′ = - A*(t) X,  t ∈ I     (AM)   
is called the adjoint to matrix equation   

    X′ = A(t) X, t ∈ I .      (M) 

Remark:- The relationship is symmetric, for (LH) and (M) are the adjoints to (AS) and (AM), 
respectively. 

Theorem (10.4) :- If Φ is a fundamental matrix for linear homogeneous system 

 
dt
dy

 = A(t) y,  t∈ I,      (LH) 

then ψ is a fundamental matrix for its adjoint system 

 
dt
dy

 = − A*(t) y, t ∈ I,     (AS) 

if and only if  ψ* Φ = C , 
where C is a constant non-singular matrix. 

Proof:- Conditions is necessary. 
Since Φ is a fundamental matrix for (LH), so, by definition, (Φ*)-1 is a fundamental matrix for 
the linear homogeneous system (AS). Also ψ is an another fundamental matrix for the same 
linear homogeneous system (AS). So, ψ is of the type 
 ψ = (Φ*)-1 D ,        (1)  
where D is some constant non-singular matrix. From equation (1), we write 
 Φ* ψ = D 
                   � ψ* Φ = D*  
                   � ψ* Φ = C ,        (2) 
where C = D* is some constant non-singular matrix. This shows that the condition is necessary.  
Condition is sufficient. 
Now, suppose that Φ is a fundamental matrix for (LH) and satisfies the condition. Then, the 
given condition gives 
 ψ* = C Φ−1 
or   ψ = (Φ*)-1 C*.       (3) 

Since (Φ*)-1 is a fundamental matrix for the adjoint system (AS), hence, (Φ*)-1 C* and 
consequently ψ is a fundamental matrix of the adjoint system (AS). This completes the proof. 
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Remark:- If A* = − A         (1) 

Then (Φ*)−1 is also a fundamental matrix for (LH).  It follows that 
Φ = (Φ*)−1 C, for some constant non-singular matrix C 
 � Φ* Φ = C .        (2) 
Equation (2) implies that, in particular, the Euclidean length of any solution vector Φ of linear 
homogeneous system (LH) is constant. 
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FLOQUET THEORY 

Periodicity of solutions of differential systems is an interesting aspect of qualitative study. We 
shall study certain characterizations for the existence of such solutions. Consider a linear system  

 
dt
dy

 = A(t)y,   -∞ < t < ∞     (1) 

where A(t) is a n × n matrix of complex valued continuous functions of real variable t.  
Definition.  A solution y(t) is periodic with period w, w ≠ 0, when  
 y(t + w) = y(t)   for all t. 
Definition.  If  
 A(t + w) = A(t)  for all t, w ≠ 0, 
then the coefficient matrix is periodic with a period w and the linear system (1) is termed as 
linear system with periodic coefficients or simply as a periodic system. 

Note : Now an interesting question is, when does the system (1) admit periodic solutions and, if 
it admits a periodic solution, what can be said about the matrix A?  

Theorem(11.1): The necessary and sufficient conditions for the system 

 
dt
dy

 = Ay,   −∞ < t < ∞ 

where A is an n × n constant matrix, to admit a non – zero periodic solution of period w is that 
the matrix (E – eAw) is singular. 

Proof:-  We know that the general non – zero solution of the given system is  
 y(t) = eAt c,         (1) 
where c is an arbitrary non – zero constant vector. By definition, y(t) is periodic if and only if  
 y(t) = y( t + w) 
or                   eAt c = eA(t + w) c 
or  (E – eAw)c = 0 .        (2) 
Since c is a non – zero vector, it follows that the given system has a non – zero periodic solution 
of period w if and only if the matrix E – eAw is singular. This completes the proof.  

Theorem (11.2) (Representation theorem): If Φ(t) is a fundamental matrix for the periodic 
system  

 
dt
dy

 = A(t)y,    −∞ < t < ∞ 

with period w and  
 Ψ(t) = Φ(t + w),  −∞ < t < ∞  
then Ψ is also a fundamental matrix for the same system. Moreover, corresponding to every such 
Φ, there exists a periodic non – singular matrix P with period w, and a constant matrix R sung 
that  
 Φ(t) = P(t)eeR . 
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Proof:- As Φ(t) is a fundamental matrix for the given system, so  
 Φ′(t) = A(t) Φ(t),  −∞ < t < ∞     (1) 
Now, using (1), we obtain  
 Ψ′(t)  = Φ′(t + w)  
  = A(t + w) Φ (t + w) 
                                    = A(t) Ψ(t),    −∞ < t < ∞    (2) 
because A(t) is periodic with period w as given. Equation (2) shows that Ψ(t) is also a solution 
matrix of the given system. Since  
 det{ Ψ(t)} = det{Φ(t + w)} ≠ 0 ,     (3) 
it follows that Ψ(t) is also a fundamental matrix for the given system. 

Now Φ(t + w) and Φ(t) are two fundamental matrices of the same given linear system, so there 
exists a constant non- singular matrix C such that  
 Φ(t + w) = Φ(t)C .       (4) 
As C is a non–singular matrix, there exists a constant matrix R such that one can write  
 C = ewR .        (5) 
(here, wR, is called a logarithm of C) 

From equations (4) and (5), one obtains  
 Φ(t + w) = Φ(t) ewR.       (6) 
We define a matrix P(t) by the relation  
 P(t) = Φ(t) e-tR  .       (7) 
Then P(t) is a non – singular matrix as both Φ(t) and e-tR are non – singular matrices.  Moreover, 
 P(t + w) = Φ(t + w) e-(t + w)R,  
                  = Φ(t) ewR . e-(t + w)R, 
                                      = Φ(t) e-t R, 
                                      = P(t).       (8) 
This shows that the matrix P(t) is periodic with period w. Further, from equation (7), we write  
 Φ(t) = P(t) etR .       (9) 
This completes the proof of the theorem. 

Remarks:- (1) The representation of a fundamental matrix Φ(t), as given by (9), is of great 
interest. In this representations, Φ(t) has been expressed as a product of a periodic matrix P(t) 
with the same period w and matrix etR, where R is a constant matrix. 

(2) Neither the matrix R nor its eigen values are uniquely determined by the given periodic 
system. On the other hand, the eigen values of eR are uniquely determined by the given system. 

(3) The eigenvalues of C = ewR are called the eigenvalues of the given system. 

(4) The eigenvalues of R are called characteristic exponents.  

Significance of theorem: Suppose a fundamental matrix Φ of given periodic is known over an 
interval of length w, say 0 ≤ t ≤ w. Then, Φ(t) is at once determined over the entire domain              
(−∞, ∞) by relation (9). This process of extension is as follows. 
(i) A constant non – singular matrix C is given by  
 C = Φ-1(0) Φ(w) . 
(ii) A constant matrix R is given by 

 R = 
w
1

 (log C) .        

(iii) A periodic matrix P(t) is now determined by the relation 
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 P(t) = Φ(t) e-tR over the interval (0, w) . 
(iv) Since, P(t) is periodic with period w, so P(t) is determined at once over the entice interval          
(−∞, ∞).  
(v) Consequently, Φ(t) is determined over (-∞, ∞) through the relation (9). 

Theorem 11.3.  Find the explicit form that a set of n linearly independent solution vectors of the 

periodic system 
dt
dy

 A(t)y, -∞ < t < ∞, 

assumes. 

Solution:-  Let w be the period of the given system. Let Φ(t) be a fundamental matrix of the 
given periodic solutions. Then, by the representation theorem (11.2),  
 Φ(t) = P(t) etR ,       (1) 
where P(t) is a periodic non-singular matrix with period w and R is a constant matrix. Suppose R 
is similar to a matrix J of the form 

 J = 

�
�
�
�

�

�

�
�
�
�

�

�

−−−−−−−−−−−−−−

sJ

J

J

.............000

0.............00

0.............00

1

0

      (2) 

where J0 is a diagonal matrix with diagonal elements ρ1, ρ2, …….., ρq, and  

 Ji = 

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

ρ

ρ
−−−−−−−−−−−−−−−−−−−−−

ρ

ρ

+

+

+

+

iq

iq

iq

iq

0.............0000

1.............0000

00.............010

00............001

        (3) 

for i = 1, 2, ……, s. Here, ρj, (j = 1, 2, …….., q + s), are the eigenvalues of the matrix R, which 
need not all be distinct. Since R is similar to J, there exists a constant non-singular matrix T such 
that  
 T-1 R T = J .                   (4)    

Put  Φ1 = Φ T .         (5) 
Then  
 Φ1(t) = Φ T 
                                 = {P(t) etR}T 
                                 = {P(t)T}{T-1 etR T} 
                                 = P1(t) {et(T

1−
 R T)} 

                                 = P1(t) etj ,       (6) 
where      P1 = P T,         (7) 
is periodic with period w, i.e ,  
 ρ1(t + w) = ρ1(t)  for all t.      (8) 
From equation (2), the matrix etJ will have the form 
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 etJ = 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−−−−−−−−
stJ

tJ

tJ

e

e

e
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1

0

 ,      (9) 

where             

 0tJe  =
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�
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�

�

�

�
�
�
�
�

�

�

−−−−−−−−−
ρ

ρ

ρ

q

2

1

t

t

t

e.........00
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0..........0e

 ,      (10) 

 etJ i  = iqte +ρ   
� =+

=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−−−−−−−−−−−−−
−

−
−

−

i
i

2ri

1ri

nrq
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,
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)!2ri(
t

.............10

)!1ri(
t

.............t1

  (11) 

 
Clearly λi = iwe ρ .         (12) 

While the ρi are not uniquely determined, but real parts are. From (6), it follows that the columns 
ϕ1, ϕ2,……. ϕn of Φ1, which form a set of n linearly independent solutions of the given periodic 
system, are of the form 
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+
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+
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 ϕn – r s + 1(t) = etρ sq+  pn – r s + 1(t) 
 …………………………………………………. 

 ϕn(t) = sqte +ρ  ,)(.................)(
)!1( 1
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s
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  (13) 

where p1, p2,……… pn are the periodic column vectors of P1.     
Hence the result.  
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HIGHER ORDER LINEAR EQUATIONS 

 
Let a1(t), a2(t),……,an(t), b(t) be continuous, real – or complex valued functions defined on a real 
t – interval I = [a, b]. Now, we shall be considering the linear homogeneous differential equation 
 u(n) + a1(t)u(n -  1) +……….+ an – 1(t)u(1) + an(t)u = 0,   (1) 
and the corresponding inhomogeneous equation     
 u(n) + a1(t)u(n -  1) +……….+ an – 1(t)u(1) + an(t)u = b(t).  (2) 
The treatment of these nth order linear differential equations reduces to the systems 

 
dt
dy

 = A(t) y,        (3) 

and 
dt
dy

 = A(t) y + f(t),       (4) 

where y = (u(0), u(1), ….,u(n-1))T, u(0) = u,    (5) 

 A(t) = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−

−−−−−−−−−−−−−−−−−

− 11nn a..........................aa
1............0000

0...........0100
0...........0010

    (6) 

 f(t) = (0, 0, …., 0, b(t))T.      (7)  
We shall summarize the essential facts for this important case, in detail. 

Initial value problem 
 The I V P consisting of differential equation (1) together with initial conditions 
 u(t0) = u0, u′(t0) = u1,……..,u(n-1)(t0) = un-1,  for t0 ∈ I, 
where u0, u1,…,un-1 are arbitrary numbers, has a unique solution u = u(t) on the interval I = [a, b]. 
In particular, if  
 u0 = 0, u1 = 0,……,un-1 = 0, 
then u(t)  ≡ 0 on [a, b]. 

Wronskian 

Let φ1(t), φ2(t), ….,φn(t)  be n solutions of the linear differential equation (1). Then, the matrix 

 Φ = 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−−−−−−−−−
−−− )1()1(

2
)1(

1

21

21

.....

'.'.........'

...........

n
n

nn

n

n

φφφ

φφφ
φφφ

      (8) 
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is known as a solution matrix for equation (1). 

The determinant of this matrix Φ is called the Wronskian of equation (1) w.r.t. solutions ϕ1, 
ϕ2,…,ϕn. It is denoted by 
 W(ϕ1, ϕ2,…,ϕn). 
It is a function of t on the interval I for fixed functions ϕ1, ϕ2,…,ϕn. Its value at t is denoted by 
 W(t) = W(ϕ1, ϕ2,…,ϕn) (t). 
As shown/discussed earlier, we have 

 W(t) = W(t0) exp 
�
�
�

�

�
�
�

�
�
t

t

dssAtr
0

))(( , t ∈ I 

and  tr{A(s)} = - a1(s). 

So, W(t) = W(t0) exp 
�
�
�

�

�
�
�

�
− �

t

t

dssa
0

))(( 1 , for t ∈ I.   (9) 

Remark.   We denote  

 Ln ≡ )t(a
dt
d

)t(a...
dt
d

)t(a
dt
d

n1n1n

1n

1n

n

++++ −−

−
 

Then equation (1) is expressible as  
 Lnu = 0 .         (L) 

Theorem (12.1): A necessary and sufficient condition that n solutions ϕ1, ϕ2,…,ϕn of differential 
equation 
 Ln u = 0        (L) 
on an interval I be linearly dependent there is that 
 w(ϕ1, ϕ2,…,ϕn) (t) = 0  for all t ∈ I. 

Further, show that every solution of differential equation (L) is a suitable linear combination of 
any n linearly independent solutions of (L).  

Proof:- Let ϕ1, ϕ2,…,ϕn be linearly dependent on I. There, there exists constants c1, c2,…,cn; not 
all zero, such that 
 c1ϕ1 (t) + …..+ cn ϕn(t) = 0 for all t ∈ I    (1) 
Consequently, 
 c1ϕ1

(k) (t) + c2ϕ2
(k) (t) …..+ cn ϕn

(k)(t) = 0 for all t ∈ I  (2) 
       and k = 1, 2, …,n-1 
This is a homogeneous system of linear equations which has a non zero solution. So, we must 
have  
 W(ϕ1, ϕ2,…,ϕn) (t) = 0  for all t ∈ I,    (3) 
as constants ci are all not zero. 

This proves that the condition is necessary. 

Now, assume that the condition is satisfied. Then, the homogeneous matrix equation 
 Φ C = 0,        (4) 
has a non zero solution since  
 W = det Φ(t) = 0 for all t ∈ I.     (5) 
Let C = (k1, k2,……,kn)T,       (6) 
be a non-zero solution of system (4).  
We define a function f(t) as 
 f(t) = k1 ϕ1(t) + k2 ϕ2(t) +……+ kn ϕn(t) , t ∈ I.   (7) 
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Then f(t) is a solution of equation (L) satisfying the initial conditions 
 f(k) (t0) = 0 , for k = 0, 1, 2,….., n-1, t0 ∈ I.   (8) 
By uniqueness theorem, we must have 
 f(t) ≡ 0 , for all t ∈ I. 
This implies 
 k1 ϕ1(t) + k2 ϕ2(t) +……+ kn ϕn(t) = 0 for t ∈ I.  (9) 
Hence, solutions ϕ1, ϕ2,…,ϕn are linearly dependent on I. 
We know that every solution of vector  system 

 
dt
dy

 = A(t) y on I,       (10) 

where A = 

�
�
�
�
�
�

	




�
�
�
�
�
�

�




−−− − 11nn a................aa
1............000

0............100
0...........010

ΜΜΜ      (11) 

is a linear combination of n linearly independent vector solutions, and equations (L) and (10) are 
equivalent.  

So, every solution of Ln u = 0 is a linear combination of any n linearly independent solution of Ln 

u = 0. This completes the proof. 

Definition: A set of n linearly independent solutions of differential equation (L) is called a 
basis/a fundamental set. 

Cor1: A necessary and sufficient condition that n solutions ϕ1, ϕ2,…,ϕn of  
 Ln u = 0 on I 
be linearly independent is that 
 W(t) ≠ 0  for t ∈ I. 

Cor. 2 :  If  ϕ1, ϕ2,…,ϕn are n solutions of  
 Ln u = 0 on  I, 
then W(ϕ1, ϕ2,…,ϕn)(t) is either identically zero on I or nowhere zero. 

Theorem (12.2) : Suppose  ϕ1, ϕ2,…,ϕn are n functions which possess continuous nth order 
derivatives on a real t-interval I, and  
 W(ϕ1, ϕ2,…,ϕn)(t) ≠ 0  on I. 
Then there exists a unique homogeneous differential equation of order n for which these 
functions form a fundamental set, namely, 

 (- 1)n .0
),....,,(
),....,,,(

21

21 =
n

n

W
uW

ϕϕϕ
ϕϕϕ

 

Proof:- Consider the equation 
 W(u, ϕ1, ϕ2,…,ϕn) = 0 . 
In the determinant form, it is 
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)n(
n

)n(
2

)n(
1n

n

'
n

'
2

'
1

n21

......
dt

ud

........
dt
du

........u

ϕϕϕ

ϕϕϕ

ϕϕϕ

Μ  = 0,     (1) 

on interval I. On expanding by the first column, we see that equation (1) is a linear differential 

equation in u and coefficient of  n

n

dt
ud

 is (-1)n W(ϕ1, ϕ2,…,ϕn), which is not zero by hypothesis. 

Hence, equation (1) is a linear homogeneous differential equation of order n. From (1), we see 
that 
 u = ϕi(t), t ∈ I, i = 1, 2,…..,n     (2) 
are n solutions of equation (1) as two columns of (1) then become identical in the determinant on 
left side.  In view of the hypothesis that 
 W(ϕ1, ϕ2,…,ϕn) ≠ 0  on I,      (3) 
It follows that solutions ϕ1, ϕ2,…,ϕn form a fundamental set for differential equation (1) on the 
interval I. 

The uniqueness of the equation follows from the fact that the corresponding vectors iϕ̂  with 
components ϕi

(0), ϕi
(1),…,ϕi

(n-1) determine the coefficient matrix uniquely of the associated 
system 

 
dt
dy

 = A(t) y ,        (4) 

with A(t) = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−−

−−−−−−−−−−−−−−−−−

−− 121 ...............
1...........0000

0..........0100
0..........0010

aaaa nnn

,    (5) 

when the given equation is expressed as  

 n

n

dt
ud

 + a1(t) 1

1

−

−

n

n

dt
ud

 + a2(t) 2

2

−

−

n

n

dt
ud

 + ……+ an(t) u = 0, t ∈ I. (6) 

We know that there is a one-to-one correspondence between linear equations of order n and 
linear system of type (4) and (5). This completes the proof. 

Reduction of order 

A direct procedure is suggested by the following process, which is the variation of constants 
adapted to  

 n

n

dt
ud

 + a1(t) 1

1

−

−

n

n

dt
ud

+ ……+ an(t) u = 0.    (1) 

Let ϕ1 be a known solution of differential equation (1). Then, the substitution 
 y = v(t) ϕ1(t) ,        (2) 
gives a linear differential equation of the nth order in v which has v = 1 as a solution since ϕ1 is a 
solution of equation (1). Thus, the coefficient of v in the new transformed equation must be zero. 
Let 
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 w = v′ = 
dt
dv

.        (3) 

Then, the above obtained equation is a differential equation in w and it is now of order (n-1). 

If ϕ2 is another solution of equation (1), which is independent of ϕ1, then 
'

1

2
��
	



��
�




ϕ
ϕ

is a solution of 

the (n-1)st order equation in w, which can, by a repetition of the above, be reduced to an 
equation of order (n-2), etc., and so on. 

Adjoint Equations 

Associated with the form operator 

 Ln = a0(t) n

n

dt
d

 + a1(t) 1

1

−

−

n

n

dt
d

+ ……+ an(t), t ∈ I   (1) 

there is another linear operator of order n, denoted by Ln
+ and called the adjoint of Ln, defined 

by 

 Ln
+ = (-1)n 

n

n

dt
d

[a0(t) .   ] + (-1)n-1
1

1

−

−

n

n

dt
d

[a1(t) .  ] + …..+ an(t), (2) 

          
For t ∈ I.  If g(t) is any function defined on I which is such that {ak g(t)} has n-k derivatives on 
I (for k = 0, 1, 2,….,n), then 

Ln
+ g = (-1)n 

n

n

dt
d

[a0(t) g(t) ] + (-1)n-1 
1

1

−

−

n

n

dt
d

[a1(t) g(t) ] + …..+ an(t) g(t) . (3) 

           
Definition: The differential equation 
 Ln v = 0, t ∈ I,       (4) 
is called the adjoint equation to  
 Ln u = 0 on I. 

If ak(t) ∈ Cn-k on I and ϕ(t) is a solution of equation (4) with n derivatives on I, then using the 
product rule of differentiation, we get 
 Ln

+ ϕ = (-1)na0 ϕ(n) +……… = 0 ,     (5) 
and by dividing by (-1)na0, one sees that φ(t) is a solution of a differential equation of order n of 
the type considered earlier. 

Special Case: When a0(t) = 1 for all t ∈ I. 
The nth order differential equation is  
 Ln u = u(n) + a1(t) u(n-1) + …..+ an u = 0, t ∈ I   (6) 
The system associated with (6) is  

 
dt
dy

 = A(t) y, t ∈ I       (7) 

with its adjoint system as   

 
dt
dy

 = -A*(t) y,   t ∈ I       (8) 
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where A* = -

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−

−
−

−

−

1

2

2n

1n

n

a1.......00

a0..........00

a0..........10

a0..........01

a0..........00

ΜΜΜ
.    (9)  

In terms of components, equations (8) and (9) give 
 (y1)′ =an yn, (yk)′ = - yk-1 +an-k+1 yn,     (10) 
where y = (y1, y2,…..,yn) , (k = 2, 3,…,n) . 
Thus, if ϕ1, ϕ2,….,ϕn is a solution of system (10) for which (φk(t))(k) and [an-k+1 φn(t) ](k-1) exists, 
one obtains, by differentiating kth relation in equation (10), (k-1) times and solving for (ϕn)(n), 
 (ϕn)(n) - (a1 ϕn )(n-1) + ………+ (-1)n (an ϕn ) = 0 .   (11)  
Therefore, ϕn satisfies the nth order differential equation 
 Ln

+ y = 0,        (12) 
which is just the adjoint equation to differential equation (6). 

Remark : The importance of Ln
+ is due to an interesting relation connecting Ln and Ln

+, which is 
indispensible for the study of boundary value problems. 

Theorem (12.3):(Lagrange’s identity) : 

In the nth order differential operator 

 Ln ≡ a0(t) n

n

dt
d

 + a1(t) 1

1

−

−

n

n

dt
d

 + ……+ an(t), t ∈ I, 

suppose ak(t) ∈ Cn-k on I (k = 0, 1, 2, …..,n). If u, v are two complex functions on I possessing n 
derivatives there, then 

 v Ln u – u 
dt
d

vLn =+ {P(u, v)} , 

where P(u, v) is a form in (u, u′,……,u(n-1)) and (v, v′,……,v(n-1)) given by 

 P(u, v) = ��
==

m

j

n

m 11

(-1)j-1. u(m-j) (an-m.v )j-1. 

Proof:- Consider the expression 
 U(m-1) V – U(m-2) V′ +…….+ (-1)m-2 U′ V(m-2) + (-1)m-1.U.V(m-2)  
for m = 0, 1, 2,……,n. 

Then  
dt
d

[ U(m-1) V – U(m-2) V′ +…….+ (-1)m-2 U′ V(m-2) + (-1)m-1.U.V(m-1)] 

 = [U(m) V + U(m) V′]  
– [U(m-1)

 V′ + U(m-2) V″]  
+ …….+(-1)m-2[U″ V(m-2) + U′ V(m-1)] + (-1)m-1[U′ V(m-1) + U V(m)] 

 = U(m) V + (-1)(m-1) U V(m), for m = 0, 1, 2,…,n.   (1) 
This implies 

V U(m) = (-1)m V(m) U +  
dt
d

[ U(m-1) V – U(m-2) V′ +…….+ (-1)m-2 U′ V(m-2) + (-1)m-1.U.V(m-1)] 

for m = 0, 1, 2,….,n.         (2) 
Applying (2) with U = u, v = a0 v , m = n;  
       U = u, v = a1 v , m = n - 1; 
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       ------------------------------ 
                              U = u, v = an - 1 v , m = 1; 
successively, we obtain  
 (a0 v )u(n) = (-1)n . u . ( v a0)(n)  

                + 
dt
d

[u(n – 1)( v a0) – u(n – 2) ( v a0)′ +………….+ (-1)n – 2 u′( v a0)(n – 2)  

                                       + (-1)n – 1. u . ( v a0)(n – 1)] 
                    (a1 v )u(n - 1) = (-1)n - 1 . u . ( v a1)(n - 1)  

                                       + 
dt
d

[u(n – 2)( v a1) – u(n – 3) ( v a1)′ +………….+ (-1)n – 2 .u .( v a1)(n – 2)] 

 …………………………………………………………………………………… 

                       (an – 1 v )u′ = − u .( v an – 1)′ +
dt
d

[u .( v an - 1)] 

 ( an v )u = u( v an) . 
Adding all these expressions vertically, one obtains  

 v Lnu – u  
dt
d

vLn =+
�
�

�
�
�

�
−�

=

−−−
n

j

jjnj vau
1

)1(
0

)(1 )()1(   

      + 
dt
d

�
�

�
�
�

�
−�

−

=

−−−−
1

1

)1(
1

)1(1 )()1(
n

j

jjnj vau  

      +………….……………… 

      +
dt
d

�
�

�
�
�

�
−�

=

−−−
1

1

)1()1(1 )()1(
j

j
n

jj vau . 

This implies  

v Lnu – u  
dt
d

vLn =+

�
�
�

�

�
�
�

�

�
�
�

−� �
=

−
−

−

=

−
n

m

j
mn

jm
m

j

j vau
1

)1()(

1

1 ).(..)1(   

   =  
dt
d

{P(u, v)}       (3) 

where  

P(u, v) = �
=

n

m 1
�
�

�
�
�

�
−�

=

−
−

−−
m

j

j
mn

jmj vau
1

)1()(1 ).(..)1(      (4) 

This completes the proof.  

Definition: P(u, v) is called the BILINEAR Concomitant associated with operator Ln and (3) 
is called the Lagranges identity. 

Corollary (Grean’s Formula) : 
If the ak in Ln, and u, v are the same as in theorem (12.3) then for any t1, t2 ∈I, 

 �
2

1

t

t

 ( v Lnu – u  )vLn
+ dt = P(u, v) |t = t 2  - P(u, v) | t = t 1

. 
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Proof:- Integrating the Lagrange’s identity from t1 to t2, we obtain the above result, known as 

Green’s formula.  

Applications of Lagrange’s identity : 
If ψ is a known non – trivial solution of  
 Ln

+  v = 0 on I, 
then the problem of finding a non – trivial solutions of the differential equation  
 Lnu = 0 on I, 
is reduced, by Lagrenge’s identity, to finding a function ϕ on I satisfying an ordinary differential 
equation of order n – 1, namely.  
 P (u, ψ) = constant, 
i.e.,  

  � �
= =
�
�

�n

m

n

j1 1

(-1)j – 1 u(m - j) (an – m.ψ )(j – 1) = c, c = constant. 

The Non-homogeneous linear differential equation of order n : 

On a real t – interval I, suppose a1(t), ……….,an(t) and b(t) are continuous functions, and 
consider the equation  

u(n) + a1(t)u(n - 1) + …………+ an(t)u = b(t) .    (1) 
The system associated with this equation is given by  

 
dt
dy

 = A(t)y + f(t),            t∈I,      (2) 

where A(t) is a matrix given by  

 A(t) =

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−
−−−−−−−−−−−−−−−−−−

− 11nn a..............aa

0...........1000
0...........0100
0...........0010

, f(t) =  

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

)t(b
0

0
0

Μ  .   (3) 

Thus, the system (2) associated with inhomogeneous equation (1), is linear and non-
homogeneous. The existence and uniqueness of solutions of system (2) can be interpreted, as 
usual, as existence and uniqueness results for the nth order non-homogenous differential 
equation (1). 

The Linear equation of order n with constant coefficient :        

Now we consider the special case, when the coefficients  
 a1, a2, …….., an ,  
are all constants. Then  the interval I may be assumed to be the entire real t – axis, i.e.,                 
I = (-∞, ∞). In this case, the nth order differential equation  
 u(n) + a1u(n - 1) +………..+ anu = 0,      (LH) 
has its associate system as  

  
dt
dy = Ay ,        (1) 

where A is the constant matrix given by 
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A = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−− −− 12n1nn a.....aaa
1..........000

0..........100
0..........010

ΜΜΜΜ .       (2) 

The characteristic polynomial for the matrix A is  
 f(λ) = det(λEn – A) ,        (3) 
which is of degree n in λ. 

Theorem (12.4) : The characteristic polynomial for the matrix, given above, is  
 f(λ) = λn  + a1λn-1 + a2λn-2 + …….. + an. 

Proof:-  we shall prove it by induction.  
For n = 1, A = (-a1) and so  

 f  (λ) = det(λE1 – A)  
        = | λ + a1 |  
        = λ + a1.        (1) 

So the result is true for n = 1. 
Assume that the result is true for n – 1. Then  

f(λ) = det(λEn – A) =  

122n1nn aa.....aaa
1..........000

00..........10
00..........01

+λ−−−
−λ
−−−−−−−−−−−−−−−−−

−λ
−λ

−−

 .   (2) 

Expanding (2) by the first column, we notice that the coefficient of λ is a determinant of order n 
– 1 which is equal to det(λEn-1 – A1), where  

A1 = 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

−−−

−−−−−−−−−−−−−

−−− 1321 .....
1..........000

0..........100
0..........010

aaaa nnn

.      (3) 

Therefore, by assumption of the result for n – 1, we have  
 det(λEn-1 – A1) = λn-1  + a1λn-2 + …….. + an-1.    (4) 
The only other non – zero element in the first column is an whose cofactor in the determinant (2) 
is 1. 
Hence, expansion of (2) becomes  

f(λ) = det(λEn – A)  
               = λ(λn-1  + a1λn-2 + …….. + an-1) + an . 1 
                = λn + a1λn-1 +………+ an-1 + an, 

which proves the result by induction. 

Remark :  This theorem (12.4) shows that f(λ) can be obtained from Lnu by formally changing 

u(k) to λk .  

Theorem (12.5) :- Let λ1, λ2,………. λs, be the distinct roots of the characteristic equation  
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 f(λ) = λn  + a1λn-1 + …….. + an = 0, 
and suppose λi has multiplicity mi (i = 1, 2, ……..,s). Then a fundamental set for the nth order 
homogeneous linear equation  
 Lnu = u(n) + a1u(n-1) + ………..+ anu = 0 
is given by the n functions 
  tk ite λ  ,   (k = 0, 1, 2, …….mi-1; i= 1, 2, ……, s). 
Proof:- We shall prove the theorem directly. From the theory of polynomial equations, we know 
that if λi is a root of f(λ) = 0 with multiplicity mi, then λi is also a root of the (m – 1) equations  

f ′(λ) = 0, f ″(λ) = 0, ……….., f(m – 1)(λ) = 0 .    (1) 
It is clear that   
  Ln(etλ) = f(λ)etλ,       (2) 
And in general  

Ln(tk etλ) = Ln �
�

�
�
�

�

∂
∂ λ

λ
t

k

k

e   

   = [ ])( λ

λ
t

nk

k

eL
∂
∂

  

  = [ ]λλ
λ

t
k

k

ef )(
∂
∂ , 

                          =
�
�

�
�
�

� λ++λ−+λ+λ −− k2)2k()1k()k( t)(f...t)(f
!2

)1k(k
t)(fk)(f etλ, (3) 

using Leibnitz rule. From equations (1) and (3), it follows that, for any fixed i,  
 Ln(tk etλi) = 0,         (4) 

for k = 0, 1, 2, ……., mi-1. This proves that functions tk etλi are solutions of nth order 
homogeneous equation.   

Now, it will be proved that these functions are linearly independent. If possible, suppose that 
they are not linearly independent. There exists constants cik, not all zero, such that  

 ��
=

−

=

s

i

m

k

i

1

1

0

ciktk ite λ  = 0 

or 

  �
=

σ

1i

Pi(t) ite λ  = 0 ,       (5) 

where the Pi(t) are polynomials and σ ≤ s is chooses so that  
 Pσ(t) ≠  0 while Pσ+i(t) ≡ 0 for i ≥ 1.      (6) 

Divide the above expression by ite λ  and differentiate enough times so that the polynomial P1(t) 
becomes zero. Note that the degrees and the non - identically vanishing nature of the 
polynomials multiplying e(λ i -λ 1 ) t, i > 1, do not change under this operation. Thus there are 
results 

 �
=

σ

2i
Qi(t) ite λ  = 0,       (7) 

where Qi(t) has the same degree as Pi(t) for i ≥ 2. 
Repeating the procedure results finally in a polynomial F(t) of a degree equal to that of Pσ(t) such 
that  

F(t) = 0 for all t.        (8) 
This is impossible, since a polynomial (of finite degree) can vanish only at isolated points.  
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Thus, the solutions (3) are linearly independent.  This completes the proof.   
 
Books recommended for reading for chapters  9 - 12 are   

(1)  S.L. Ross  Differential Equations 
(2)  E.A. Coddington  Theory of Ordinary Differential  

and N.Levinson  Equations 
(3)  P. Hertman   Differential Equations.                
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NONLINEAR DIFFERENTIAL EQUATIONS,  
PLANE AUTONOMOUS SYSTEMS 

 
 
There have been two major trends in the historical development of differential equations.  

The firs and the oldest is to find explicit solutions, either in closed form-which is rarely possible – 
or in terms of power series.  

In the second, one abandons all hopes of solving equations in any traditional sense, and instead 
concentrates on a search for qualitative information about the general behaviour of solution. 

The qualitative theory of nonlinear equations is totally different. It was founded by Poincare 
around 1880, in connection with his work in celestial mechanics.  Very little of a general nature 
is known about nonlinear equations. 

Why should one be interested in nonlinear differential equation?  The basic reason is that many 
physical systems and the equations that describe them are simply nonlinear from the onset. The 
usual linearization are approximating devices that are partly confessions or defeat of the practical 
view that half a loaf is better than none.  

Since any higher order differential equation can be transformed into a system of first order 
equations, we will restrict ourselves to such systems. 
Consider the first order system. 

       
dt
dy

= f(t, y) ,       …(1) 

where, to avoid unnecessary complications, we shall suppose that f(t, y) is defined and continuous 
for all y and all t ≥ t0, and satisfies a Lipschitz condition in y in any bounded domain. Then, for 
the initial-value problem. 
   y(t0) = y0 ,        …(2) 
the uniqueness and existence theorems show that there is a unique solution 
   y = y (t ; y0 , t0)           (t0 ≤ t < T),     …(3) 

where y(t ; y0, t0) is defined for all t ≥ t0. This will not be a significant restriction as in the 
applications to follow y(t) will either be a constant or a periodic function of t.  

Stability is connected with the question as to whether solutions which are in some sense close to 
y(t) at some instant will remain close for all subsequent times. Clearly, stability is a desirable 
property is dynamical processes, modelled here by the system of equations (1), are often subject 
to small, unpredictable disturbances. Unstable solutions are thus extremely difficult to realize 
either experimentally or numerically, as an arbitrarily small disturbance will eventually cause 
large deviation from the unstable solution.  
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Autonomous systems and the phase plane 

Definition. A system of differential equations 

   =
dt
dy

f(y) ,        …(1) 

in which the independent variable t does not occur explicitly, is called autonomous.  Thus, the 
characteristic property of autonomous systems is that the function f do not depend on the 
independent variable. When the variable t is thought of as representing time, autonomous system 
are thus steady stationary.   

The main point of this topic deals with the geometry of solutions of differential equations on a 
plane, i.e., n = 2. That is, the vector y in system (1) is two-dimensional. 

Definition. A point y = y0 is called a singular or stationary point of the autonomous system (1) 
if 
   f(y0) = 0,        …(2) 
and a regular point if 
   f(y0) ≠ 0.         …(3) 

Remark. The second order system (1), in general, correspond with second order non linear 
differential equation of the form  

   �
�

�
�
�

�=
dt
dx

,x
dt

xd
2

2

f .         …(1) 

If we imagine a simple dynamical system (with one degree of freedom) consisting of a particle of 

unit mass (m = 1) moving on the x-axis, and if f �
�

�
�
�

�

dt
dx

,x is the force acting on it, then equation (1) 

is the equation of motion of the particle. 

If we introduce the variable 

   y = 
dt
dx

 ,        …(2) 

then second order equation (1) is replaced by the equivalent first order autonomous two-
dimensional system 

   

�
�
�

��
	




=

=

)y,x(
dt
dy

y
dt
dx

f
         …(3) 

 We shall see that a good deal can be learned about the solutions of (1) by studying the 
solutions of system (3). 

Definitions :The values of x (position/distance) and 
dt
dx

(velocity), which at each instant 

characterize the state of the system, are called its phases. The plane of the variables x and 
dt
dx

is 

called the phase plane. 

Note : When t is regarded as a parameter, then in general a solution of system (3) is a pair of 
functions 
   x = x(t),  y = y(t)      …(4) 
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defining a curve in the xy-plane, which is simply the phase plane mentioned above. We shall be 
interested in the total picture/idea formed by these curves in the phase plane. 

Remark. More generally, we study autonomous two dimensional systems of the form 

   )y,x(G
dt
dy

),y,x(F
dt
dx ==  

where F and G are continuous and have continuous first partial derivatives through the xy-plane, 
which is called the phase plane of the system. 

Given a solution x = x(t), y = y(t) of the above system, we can plot the points (x(t), y(t)) in the 
phase plane, obtaining a graph or curve having x(t) and y(t) as parametric functions. 

To add a dynamic element to the geometry, think of the point (x(t), y(t)) as moving along this 
curve as t increases, endowing the curve with a sense of direction or orientation. 

Definition. The oriented locus of points (x(t), y(t)) in the phase plane, formed from a solution of 
the given two-dimensional plane autonomous system, is called a path |orbit| trajectory  of the 
system.   

Thus, a path is a directed curve in the phase plane. In figures, we will use arrows to indicate the 
direction in which the path is traced out as t increases. 

Remark : Returning now to general considerations, we will state some facts about trajectories. 
Consider the plane autonomous system 

   ),y,x(F
dt
dy =    

)y,x(G
dt
dy =         …(1) 

where F and G are continuous with continuous first partial derivatives for all points (x, y) in the 
phase plane. 

Fact 1. There is a trajectory through each point (x0, y0) in the phase plane.   

This is true because the initial-value problem   

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = , 

   x(t0) = x0,  
           y0(t0) = y0        (2) 

has a solution. This solution yields a trajectory through the point (x0, y0) in the phase plane. 
Fact 2. If x = ϕ (t), y = ψ(t) is a solution of the plane system (1) and c is a constant, then 
   x = ϕ (t + c), 

y = ψ(t + c) ,        (3) 

is also a solution of the system (1). When solutions are related in this way, we call their 
trajectories translations of each other.  These two trajectories have the same graph but (ϕ(t), 
ψ(t)) and (ϕ(t + c), ψ(t + c)) arrive at a given geometric point at different times. Infact, if the first 
arrives at P at time t0, the second gets there at time t0 − c. 
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Thus, the only way two trajectories of a plane system (1) can pass through the same point is if 
each is a translation of the other.   That is, two trajectories through the same point are 
translations of each other. 

Fact 3. A trajectory of a plane autonomous system (1) may not cross itself. The only exception to 
this occurs at those points of the phase plane where both F and G vanish. In the neighbourhood of 
such points (singular points), solutions exhibit particularly interesting behaviour.   

Fact 4. Trajectories may, however, be closed curves. Closed paths represent periodic solutions of 
the system. 

Critical point of a plane autonomous system. 

Definition. A point (x0, y0) of the phase plane is called a critical point of the plane autonomous 
system (1) if 
   F(x0, y0) = 0, and G(x0, y0) = 0. 
A critical point is also sometimes called an equilibrium point/stationary point. 

Note. At such a point, the unique solution is the constant solution. 
   x = x0 , and y = y0 . 

A constant solution does not define a path, so, no path goes through a critical point.  

Isolated Critical Point 

Definition. A critical point (x0, y0) is called isolated if there is a disk of positive radius about (x0, 
y0) containing no other critical point of the system. 

Remark 1. The means that there are no other critical points of the system arbitrarily close an 
isolated critical point to (x0, y0). We will only deal with isolated critical points, and so will take 
the phrase “critical point” to mean “isolated critical point”. We will also assume that F and G and 
their first partial derivatives are continuous throughout the plane, unless explicit exception is 
made.  

Remark 2. Suppose now that (x0, y0) is a critical point of the given system, and consider the 
initial value problem consisting of the system and the conditions x(t0) = x0 y(t0) = y0.  

Since   x′(t0) = F(x0, y0) = 0 ,  

and  

y′(t0) = G(x0, y0) = 0,  

the trajectory through (x0, y0) can never leave this point. We conclude that a trajectory through 
a critical point consists of just the single critical point. 

Remark 3 : Further, since different trajectories of an autonomous system cannot cross each other, 
no other trajectory can pass through a critical point. Thus, a trajectory beginning at a 
noncritical point can never reach a critical point. It may, however, approach arbitrarily close to 
a critical point, and it may do so in variety of ways. We will pursue this idea in the next section, 
where we will see that understanding the behaviour of trajectories near a critical point yields 
useful information about properties of solutions of the system.  

We will now consider how do trajectories/ paths behave as t→∞ or as t→−∞. This is the question 
of asymptotic behaviour.  To develop these ideas we will assume that P0(x0, y0) is an isolated 
critical point of the given plane autonomous system (1). 
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y 

P0 

x 

y 

x 

. P0 

Definition (Trajectory approaching a critical point). Let x = x(t), y = y(t) be a solution which 
parametrically represents the path C, and let P0(x0, y0) be a critical point of the given plane 
autonomous system.  

   ),y,x(F
dt
dx =  

 

   )y,x(G
dt
dy =  .  

 
    
The path C approaches the critical point P0(x0, y0) if and only if 
   

∞→t
lim  x(t) = x0 and 

∞→t
lim  y(t) = y0 , 

or    

−∞→t
lim x(t) = x0 and 

−∞→t
lim  y(t) = y0 . 

Explanation. This definition is illustrated in 
the adjoining figure. Think  of the trajectory 
as the path of a particle. For the trajectory to 
approach the critical point P0(x0, y0), the 
following must be true. 

Given a circle C about P0, we must be able to find a time, say, tC such that the particle is within 
the disk enclosed by C at all times later than tC, or at all times before tC.  Notice that, since the 
trajectory cannot cross a critical point, the particle never actually reaches P0 − it simply comes 
arbitrarily close in the limit. Further, this limit is irrespective of the solution that is actually used 
to represent the trajectory.  If x = x1(t), y = y1(t) is another solution defining the same trajectory, 
then one must have the same limits. 

Definition (Trajectory entering a critical point).  A trajectory {(x(t), y(t))} enters the critical 
point P0(x0, y0) of the plane autonomous system 

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = , 

if and only if the trajectory approaches P0, and also the quotient 

   
0

0

x)t(x
y)t(y

−
−

 , 

has  a finite limit as t→∞ or as t→−∞. 

Explanation. The ratio in this definition is the slope 
of the straight line from the particle at the point 
P(x(t), y(t)) at time t to the critical point P0(x0, y0). 
For the trajectory to enter P0, it must not only 
approach P0, but must do so along a definite 
direction, given by this limit. That is, as the 
trajectory approaches P0, it is more nearly moving 
along the line through P0 having this slope.  We note 
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that in this case, the trajectory approaches P0 along a 
specific direction. 

Remark. Without loss of generality, we will take the critical point (x0 , y0) to be the origin             
0(0, 0) in further discussions.  

If necessary, we make use of the linear transformation 
    ξ = x −x0,  

η = y−y0 ,  
which transforms the point (x0, y0) of the xy-plane into the origin (0,0) in the ξη-plane.   

Theorem (3.1).  For any continuously differential function V = V(x, y), each integral curve of the 
plane. autonomous system 

   ,
y

)y,x(V
dt
dx

∂
∂=  

   
x

)y,x(V
dt
dy

∂
∂−= , 

lies one some level curve 
   V(x, y) = constant. 

Proof. Along any solution curve, we have 

   
dt
dy

.
y
V

dt
dx

.
x
V

t�
dV

∂
∂+

∂
∂=  

          = 
x
v

.
y
v

t
v

.
x
v

∂
∂

∂
∂−

∂
∂

∂
∂

 

          = 0,        …(1) 
using the given plane autonomous system. Consequently     
   V(x(t), y(t)) = constt.       …(2) 
The associated steady flow is divergence free, because 

   div ��
�

�
��
�

�
−=�

�

�
�
�

� + ĵ
dx
dv

î
dy
dv

divĵ
dt
dy

î
dt
dx

  

        = 
xy

V
yx

V 22

∂∂
∂−

∂∂
∂

 

        = 0.       …(3) 

In fluid mechanics, such a steady flow (1) is called incompressible,  and the function                        
V = V(x, y) is called its stream function.  Also 

   .ĵ
dt
dy

î
dt
dx

�
�

�
�
�

� +  grad V 

            = ��
�

�
��
�

�

∂
∂−

∂
∂

��
�

�
��
�

�

∂
∂+

∂
∂

ĵ
y
V

î
x
V

ĵ
x
V

î
y
V

  

            = 0,        …(4) 

which shows that the level curves of V as the orthogonal trajectories to the gradient lines of V 
(or path lines). 

The main advantage of the representation 

   ,
y
V

dt
dx

∂
∂=    
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x
V

t
y

∂
∂−=

∂
∂

 ,        …(5) 

over the differential equation 

   
y/V
x/V

dx
dy

∂∂
∂∂−=  ,       …(6) 

is the following. Whereas the solution curves of (6) terminate whenever 
y
V

∂
∂

vanishes, those of (5) 

terminate only where the function V has a critical point in the sense that grad V = 0. This happens 
exactly where the autonomous system (5) has critical points. 

Illustration of theorem (13.1).   If we set 
   V = −(x2 + y2)/2 ,       (1) 
we get the system 

   ,y
dt
dx −= , 

x
dt
dy = ,        (2)  

having circular streamlines.  

If µ(x, y) is non-vanishing, then the system. 

   ,y
dt
dx µ−=  

   x
dt
dy µ=  ,         (3) 

also has circles for solution curves. Thus, we can construct a wide variety of autonomous systems 
having the same solution curves in this way.  

Example.  Consider the autonomous system  

  ,y
dt
dx −=  ,x

dt
dx =         (1) 

whose solutions are  

  x(t) =  r cos (t+c),  

y(t) = r sin (t+c) ,         (2) 

where r and c are arbitrary constants.  The graphs of these solutions are concentric circles, with 
centre at the origin, whose equations are  

  x2 + y2 = r2 .          (3) 

The corresponding first order equation, after eliminating t, is  

  
dt
dy

 =  
y
x

 ,         (4) 
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with solutions 

  y(x) = ± 22 xr − ,        (5) 

which are defined only for |x| < |r| .  Whereas the function −x/y is undefined where y = 0 , the 
functions F(x, y) = −y and G(x, y) =  x of the given system are defined throughout the plane.  
This gives an obvious advantage of the system (1) over the differential equation (4).  
The circles (3) form a regular curve 
family in the “punctured” xy-plane,  
the critical point O(0,0) being deleted.  

Example. For the autonomous system  

   ,y
dt
dx =    

x
dt
dy −= ,        …(1) 

i) find the real critical points of the system , 
ii) obtain the differential equation that gives the slope of the tangent to the paths of the 

system, 
iii) solve the above equation obtained in (ii) to obtain one parameter family of path. 

Solution. We have 

   x
dt
dy

dt
xd
2

2

−==  

 �  0x
dt

xd
2

2

=+ .        …(2) 

Similarly 

   0y
dt

yd
2

2

=+  .        …(3) 

The general solutions of equations (2) and (3) are, respectively,  
   x(t) = A cost + B sin t ,      …(4) 
   y(t) = C cost + D sin t  ,      …(5) 
where A, B, C, D are constants. From equations (1), (4) and (5), we get 

   �



�

+−=−−
+−=+

tcosDtsinCtsinBtcosA
tcosBtsinAtsinDtcosC

     …(6) 

This gives  
C = B, D = − A .       …(7) 
Hence, solutions of the system (1) are 

   �



�

−=
+=

tsinAtcosB)t(y
tsinBtcosA)t(x

 ,      …(8) 

where A and B are arbitrary constants. 

If these solutions are required to satisfy the supplementary initial conditions, say, 
   x(0) = 0, y(0) = 1 ,       …(9) 
then, we shall get  

    A = 0,  
     B = 1.  

 
                  x 

    y 

0(0,0) 
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Thus, solutions are  
   x(t) = sin t,  

y(t) = cost .        …(10) 
Further, if the solutions for x and y satisfy the supplementary conditions, say, 
   x(0) = −1, y(0) = 0 , 
then they assume the form 
   x(t) = sin (t− π/2),  

y(t) = cos(t− π/2) .       …(11) 

We see that solutions given by (10) is different from the solution (11), but both of them define the 
same path is the xy-plane as the path is translatory invariant.  
Eliminating the parameter t, we get 
   x2 + y2 = 1 .        …(12) 

The path is a circle with centre (0, 0) and 
radius 1.  As t increases from zero 
onwards, the path is traced in the 
clockwise direction.  

The differential equations which gives the tangent to the path, say C, is obtained by eliminating t 
between the given equations. We find 

   
dt/dx
dt/dy

dx
dy = ,   

y
x−=  ,        …(13) 

provided (x, y) ≠ (0, 0).  The one-parameter family of solutions of equation (13) is given by 
   x2 + y2 = α2, α = constt. ,      …(14) 
which are the parameter family of paths of the given system in the phase plane.  The only critical 
point of the given autonomous system (1) is the origin (0, 0) where F = G = 0 . 
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CLASSIFICATION OF CRITICAL POINTS AND THEIR 
STABILITY  
We will now distinguish four kinds of critical points, according to the way trajectories behave in 
their vicinity. Let 0(0, 0) be an isolated critical point of a plane autonomous system  

   ),y,x(F
dt
dx =    

)y,x(G
dt
dy =         …(1) 

where F and G have continuous first partial derivatives for all (x, y) in the phase plane. 

Type I : Center or Rotation Point 

Definition. A critical points 0(0, 0) is said to be a center of the system (1) if there exists a 
neighbourhood of 0(0, 0) which contains a countably infinite number of closed paths C1, C2, C3,…, 
Cn,…, each of which contain 0(0, 0) in its interior and diameter of Cn tends to zero as n→∞. 
However, 0(0, 0) is not approached by any path either as t→∞ or t→∞. 

 

 

 

 

 

 

 

 

               Fig. (14.1) 

Explanation. In the above figure (14.1), the origin 0(0,0) is the critical point which is a center of 
the given system.  It is surrounded by an infinite family of closed paths, members of which are 
arbitrarily near to 0(0, 0), but 0(0, 0) is not approached by any path as either t→∞ or as t→−∞. 

Type II : Saddle Point 

Definition. An isolated critical point 0(0, 0) of the system (1) is called a saddle point of the 
system (1) if there exists a neighbourhood of 0(0, 0) such that  

(i) there exists two paths which approach and enter 0(0, 0) from opposite directions as t→∞ 
and there exists two other paths which approach and enter 0(0, 0) from different opposite 
directions as t→−∞,                                                           

  (ii) in each of the four    domains between any two of the four paths in (i) there are 
infinitely many paths which are arbitrarily close to 0(0, 0) but do not approach 0(0, 0) either as 
t→+∞ or as t→−∞. 

    0 
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Explanations. The figure (14.2) shows the critical point 0(0, 0) as saddle point which is such that  

 

  

 

 

 

 

 

 

 

(i) it is approached and entered by two half-line paths AO and BO  as t→∞, these paths form the 
geometric curve AB, this solution tending to origin at t→+∞, 

 (ii) it is approached and entered by two half-line paths C0 and D0 as t→−∞, forming the 
geometric curve CD, 

 (iii) between the four half-line paths described in (i) and (ii), there are four domains R1, R2, 
R3 and R4 where each of these domains contains an infinite family of semi-hyperbolic paths which 
do not tend to 0(0, 0) as either t→+∞ or t→−∞, but which become asymptotic to one or another of 
the four half-line paths as t→+∞ or t→−∞. 

Type 3. Spiral point (focal point) 

Definition. The isolated critical point 0(0, 0) of the plane autonomous system (1) is called a spiral 
point (or focal point) if there exists a neighbourhood of 0(0, 0) such that every path C in this nbd 
has the following properties. 

 (i) C is defined for all t > t0 (or for all t < t0) for some number t0 ; 
 (ii) C approaches 0(0, 0) as t→+∞ (or as t→−∞); and 
 (iii) C approaches 0(0, 0) in a spiral-like manner, winding around 0(0, 0) an infinite number 
of times as t→+∞ (or as t→−∞). 
                                                                                                   
 
 
 
 
 
 
 
                       Fig. (14.3) 
Explanation. The above figure (14.3) shows the critical point 0(0, 0) as a spiral/focal point which 
is approached in a spiral-like manner by an infinite family of paths as t→+∞ or as t→−∞. We 
observe that while the paths approach 0(0, 0) they do not enter it. 

A point, say R, tracing such a path C approaches 0(0, 0) as t→+∞ (or as t→−∞), but the line OR 
does not tend to a definite direction, since the path C constantly winds about 0(0, 0). 

 

Fig (14.2) 
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Type (4) Node Point 

Definition. The isolated critical point 0(0, 0) of the plane autonomous system (1) is called a node 
if there exists a neighbourhood of 0(0, 0) such that every path C in this nbd has the following 
properties. 

(i) C is defined for all t > t0 (or for all t < t0) for some number t0 ; 

(ii) C approaches 0(0, 0) as t→+∞ (or as t→−∞]; and  

(ii) C enters 0(0, 0) as t→+∞ (or as t→−∞). 

Explanation. The figure below shows the critical point 0(0, 0) as a node point which is not only 
approached, but also entered by an infinite family of paths as t→+∞ or as t→−∞. 

 

 

 

 

 

 

 

 

 

 

   
        (Fig. 14.4) 

Here, a representative point R tracing such a path not only approaches 0 but does so in such a way 
that the line OR tends to a definite direction as t→+∞ or as t→−∞ . 

For the node shown here, there are Four “rectilinear paths” A0, B0, C0, and D0. All other paths 
are like “semiparabolas”. As each of these semi parabolic like paths approaches 0 (0,0) its slope 
approaches that of line AB. 

STABILITY OF CRITICAL POINTS 

Let 0(0, 0) be a critical point of the plane autonomous system 

   ),y,x(F
dt
dx =    

 )y,x(G
dt
dy = .       …(1) 

We will now define what it means for a critical point 0(0, 0) of the system (1) to be stable. 
Intuitively, 0 is stable if trajectories that are close to 0 (0,0) at some time remain “close” at all later 
times. 

Definition. Stable critical point 

Let C be a path system (1) defined parametrically by its solution 
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K2 

   x = f(t), y = g(t).       …(2) 

Let    D(t) = 22 )]t(g[)]t([ +f ,      …(3) 

denote the distance OR between the critical point 0(0, 0) and the point R(f(t), g(t)) on C. Then the 
critical point 0(0, 0) is said to be stable if for each ∈>0, there exists a number δ>0 such that the 
following is true :    

Every path C for which  

D(t0) < δ  for some value t0       …(4) 

is defined for all t ≥ t0 and is that  

   D(t) < ∈        for t ≤ + < ∞.      …(5) 

Explanation. We now analyze all aspects of definition of the stable point in detail with reference 
to the figure (14.5) given below, where 0(0, 0) is the isolated critical point. 

 

 

 

 

 

 

 

                  

                                                 Fig. (14.5) 

According to this definition, the point 0 (0,0) is stable if, corresponding to every positive real 
number ∈ , we can ensure the existence of another positive real number δ(depending on ∈) which 
does “something” for us. 

 To explain “something”, we must understand what the inequalities (4) and (5) means.   

Accordingly to inequality (4), it means that the distance between the critical point 0 (0,0) and the 
point R0 (corresponding to t = t0) on the path C must be less than δ. This implies that the point R0 
lies within the circle K1 of radius δ about 0 (0,0). 

Likewise, the inequality (5) means that the distance between 0(0,0) and any point R on the path C, 
for t ≥ t0, is less than ∈. Here, obviously δ ≤ ∈. It implies that for all t > t0, the points, like R, on 
the path C lie within the circle K2 of radius ∈ about 0(0, 0). 

This explains the meaning of “something”. When the critical point 0(0, 0) is stable, then every path 
C which is inside the circle K1 at t = t0, will remain inside the circle K2 of radius ∈, for all    t > t0. 

Roughly speaking, if every path C stays as close to the critical point 0(0, 0) as we want it  t0 (i.e., 
within distance ∈) after it once gets close enough (i.e., within distance δ), then the point 0(0, 0) is 
stable. 

Definition. A critical point is called unstable if it is not stable 

                    K1 
∈         t = t0 
              O 
     δ        (0,0)        
 
          

R 
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Illustrations. (i)  For stable critical points, we point out the centre, the spiral (focal) point and 
node point in previous figures are all stable. Of these three, the focal point and node are 
asymptotically stable. 

 (ii) If the directions of the paths in figures for focal and node points has been reversed, then 
the spiral point and the node of these respective figures would have been unstable. The saddle 
point of the above figure is unstable.  

Remark. Trajectories coming close to a stable point need not actually approach this point. But if 
they do approach this point, then we call the point asymptotically stable. 

Definition. Asymptotically stable critical point. 

Let 0(0, 0) be an isolated critical point of the plane autonomous system 

   ),y,x(F
dt
dx =    

)y,x(G
dt
dy =  .       …(1) 

Let C be a path of system (1); and let 

   x = f(t), y = g(t)        …(2) 

be a solution of system (1) representing C parametrically. Let 

   D(t) = 22 )]t(g[)]t([ +f  ,      …(3) 

denote the distance between the critical point 0(0, 0) and the point R(f(t), g(t)) on the curve C. The 
critical point 0(0, 0) is called asymptotically stable if 
 (i) it is stable and 
 (ii) there exists a number δ0>0 such that if 
   D(t0) < δ0 ,        …(4) 

for some value of t0, then 

   
+∞→t

lim f(t) = 0,  

+∞→t
lim g(t) = 0 .        …(5) 

To analyse this definition, we note that condition (i) requires that the critical point 0(0, 0) must be 
stable. That is, every path C will stay as close to (0, 0) as we desire after it once gets sufficiently 
close. 

But asymptotic stability is a stronger condition than mere stability. For, in addition to stability, the 
condition (ii) requires that every path that gets sufficiently close to (0, 0) ultimately approaches (0, 
0) as t→+∞.  

Linear plane autonomous system 

Eventually, we want to use these concepts to study the behaviour of solutions of nonlinear systems 
of differential equations. However, for linear systems, it is possible to state a definite criterion, 
which we will use later when we linearize problems.  

Consider the linear system   
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dt
dx

= ax + by, 

 
dt
dy

= cx + dy,        …(1) 

where a, b, c, d are real numbers, and 
   ad − bc ≠ 0 .        …(2) 

It is obvious that 0(0, 0) is the only critical point of the system (1), hence 0 (0,0) is an isolated 
critical point of it. We now seek solutions of the system (1) of the form 
   x(t) = c1 eλt,  

y(t) = c2 eλt ,        …(3) 

where c1, c2 are arbitrary constants and λ is a parameter.  The substitution of (3) into system (1) at 
once leads to the quadratic equation in λ, namely, 
   λ2 − (a + d)λ + (ad − bc) = 0,      …(4) 

which is called the characteristic equation of the linear plane autonomous system (1). By 
virtue of condition (2), λ = 0 is not a root of quadratic equation (4).   

Let λ1 and λ2 be the roots of the characteristic equation (4). We now state and prove the following 
theorem which shall determine the nature of the critical point 0(0, 0). 

Theorem (14.1).  The critical point 0(0, 0) of the linear system (1) is 
 (i) a node point if λ1 and λ2 are real, unequal, and of the same sign ; 
 (ii) a saddle point if λ1 and λ2 are real, unequal, and of the opposite sign ; 
 (iii) a node point if λ1 and λ2 are real and equal; 
 (iv) a spiral point if λ1 and λ2 are conjugate complex with real part not zero; 
 (v) a center if λ1 and λ2 are pure imaginary. 
The stability of the critical point 0(0, 0) of the linear system (1) is determined by the following 
theorem. 

Theorem (14.2). The critical point 0(0, 0) of the linear system (1) is 

 (i) asymptotically stable if λ1 and λ2 are real and negative or conjugate complex with 
negative real parts ; 
 (ii) a stable, but not asymptotically stable if λ1 and λ2 are pure imaginary ; 
 (iii) unstable, if either of λ1, λ2 is real and positive or if λ1 and  λ2 are conjugate complex 
with positive real parts. 

The results of the above theorems (14.1) and (14.2) are summarized in the following table.  

Table 

Nature of roots λ1 and λ2 of 
characteristic equation 
λ2 − (a +d)λ +(ad − bc) = 0 

Nature of critical point 0(0, 0) 
of linear system 

dt
dx

= ax + by, 

dt
dy

= cx + dy 

Stability of critical point           
0(0, 0) 

Real, unequal, and of same 
sign 

Node Asymptotically stable if roots 
are negative; unstable if roots 
are positive 

Real, unequal, and of opposite Saddle point Unstable 
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sign 
Real and equal Node Asymptotically sable if roots 

are negative; unstable if roots 
are positive 

Conjugate complex but not 
pure imaginary 

Spiral point Asymptotically stable if real 
part of roots is negative; 
unstable if real part of roots is 
positive 

Pure imaginary  Center  Stable, but not asymptotically 
stable 

Example. Determine the nature of the critical point 0(0, 0) of the linear system 

   
dt
dx

= 2x −7y,  

dt
dy  = 3x − 8y. 

Also determine whether or not the point is stable. 

Solution. The given plane autonomous system is linear and 0(0, 0) is the only critical point of it.  
We seek solution of the system of the type 

   
�
�
�

�

=

=
t�

2

t�
1

ec)t(y

ec)t(x
 ,       …(1) 

where c1 and c2 are arbitrary constants and λ is a parameter. Substituting (1) in the given system, 
we get at once 
   λc1 = 2c1 − 7c2 and λc2 = 3c1 − 8c2  .  
This implies 
   (λ−2) c1 + 7 c2 = 0 
   3c1 + (−8−λ) c2 = 0       …(2) 
To have a non trial solution of linear homogeneous system (2), we must have 

   0
�83

72�
=

−−
−

 . 

This implies 
   λ2 + 6λ + 5 = 0 ,       …(3) 
which is the characteristic equation of the given problem. Its roots are 
   λ1 = −5,  

λ2 = −1 ,        …(4) 

which are real, unequal, and of the same sign (both negative).  Therefore, the critical point 0(0, 0) 
of the given plane autonomous system is a NODE point. Since, λ1 and λ2 are real and negative, 
therefore, by Table above, the critical point 0(0, 0) is asymptotically stable. Hence the result.  

Example. Determine the nature of the critical point (0, 0) of the linear system 

   
dt
dx

= 2x + 4y,  

dt
dy

= −2x + 6y     

and determine whether or not the point is stable.  

Solution. It is obvious that 0(0, 0) is the only critical point of the given plane autonomous system. 
We seek a solution of the given system of the type 
    x(t) = c1 eλt, 
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 y(t) = c2 eλt ,        …(1) 

where c1 and c2 are arbitrary contents and λ is a parameter.  Substitution of (1) in the given system 
gives 
   λc1 = 2c1 + 4 c2, λc2 = −2c1 + 6c2 
or 

   �
�

�

=−+
=−+−

0c)6�(c2

0c)4(c)2�(

21

21 .      …(2) 

To have a non-trivial solution of homogeneous system (2),  we must have 

   0
6�2
42�

=
−
−−

 

or   λ2 − 8λ + 20 = 0,       …(3) 
which is the characteristic equation whose roots are  
   λ1 = 4 +2i,  

λ2 = 4 −2i .        …(4) 

These eigenvalues are conjugate pair but not pure imaginary. So the critical point 0(0, 0) is a 
SPIRAL POINT.  Since the real part of conjugate roots is positive, therefore, the critical point              
0(0, 0) is unstable by Table given above.  

Exercise I. Show that the origin is an unstable node of the linear system 

   ,yx3
dt
dx +=  

dt
dy

= x +3y . 

Exercise II. Show that the origin is an unstable saddle point of the linear system 

   ,y3x
dt
dx +−=  

 
dt
dy

 = 2x − 2y . 

Exercise III. Show that the origin is a stable centre but not asymptotically stable center of the 
linear system 

   ,yx3
dt
dx +=  

dt
dy

= −13x − 3y. 

Exercise IV. Show that the origin is an asymptotically stable node of the linear system 

   ,yx5
dt
dx +−=  

dt
dy

= x − 5y . 
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CRITICAL POINTS OF ALMOST LINEAR SYSTEMS, 
DEPENDENCE ON A PARAMETER AND  LIAPUNOV’S 
DIRECT METHOD FOR NONLINEAR SYSTEMS 
Let 0(0, 0) be an isolated critical point of the nonlinear real plane autonomous system 

   ),y,x(F
dt
dx =    

)y,x(G
dt
dy = .        …(1) 

The main result of this section enables us to draw conclusions about the behaviour of solutions of 
the system (1) when this system is not too different from a linear system. To decide what “not too 
different” means, consider systems of the special form 

   
dt
dx

= ax + by + P1(x, y) , 

   
dt
dy

= cx + dy + Q1(x, y) ,      …(2) 

where  
 (i) a, b, c, d are real constants and  
   ad − bc ≠ 0 ,        …(3) 

(ii) functions P1(x, y) and Q1(x, y) have continuous first order partial derivative for all       
(x, y), and are such that 

  ,0
yx

)y,x(P
lim

22

1

)0,0()y,x(
=

+→
   

0
yx

)y,x(Q
lim

22

1

)0,0()y,x(
=

+→
.      …(4) 

Definition. The functions P1(x, y) and Q1(x, y) are called perturbations, and the system is 
referred to as the perturbed system corresponding to the linear system 

   
dt
dx

= ax + by, 

 
dt
dy

= cx + dy .       …(5)   

Note. (1) The assumption (4) is 
   P1 = 0(r),  

Q1 = 0(r) , 
as r → 0 +, where r = 22 yx + .        …(4a) 

This guarantees that the perturbations tend to zero faster than the linear terms in (2). Also, it is 
easily seen that this condition and condition (3) imply that the origin 0 (0,0) is an isolated critical 
point for the system (2).  Such a critical point is also termed as “simple critical point”. 
Note. (2) One would suspect that the behaviour of the paths of the nonlinear system (2), near              
0(0, 0), would be similar to that of the paths of the related/corresponding linear system (5), 
obtained from nonlinear system (2) by neglecting the nonlinear terms. 



   DIFFERENTIAL EQUATIONS 
 

114

In other words, it would mean that the nature of the critical point 0(0, 0) of the nonlinear system 
(2) should be similar to that of the linear system (5), under the conditions mentioned in (3) and (4).  
In such a situation, the system (2) is called “almost linear”. 
The following theorem (without proof) enables us to draw conclusions about an almost linear 
system by examining the associated linear system.  
Theorem (15.1).  Let 0(0, 0) be an isolated critical point of the nonlinear system 

   
dt
dx

= ax + by + P1(x, y) , 

   
dt
dy

= cx + dy + Q1(x, y) ,      …(1) 

where a, b, c, d are real constants, and 
   ad − bc ≠ 0 ,        …(2) 

and P1(x, y) and Q1(x, y) have continuous first order partial derivatives for all (x, y) and are such 
that 

  ,0
yx

)y,x(P
lim

22

1

)0,0()y,x(
=

+→
   

0
yx

)y,x(Q
lim

22

1

)0,0()y,x(
=

+→
.      …(3) 

Consider the corresponding linear system 

   ,byax
dt
dx +=   

                                      dycx
dt
dy += ,       …(4) 

obtained from (1), by neglecting the nonlinear terms P1(x, y) and Q1(x, y). 0(0, 0) is also an 
isolated critical point of the associated linear system (4). Let λ1 and λ2 be the roots of the 
characteristic equation 
   λ2 − (a +d) λ + (ad − bc) = 0 ,      …(5) 
of the associated  linear system (4).  Then the following conclusions hold. 

(1)  The critical point 0 (0, 0) of nonlinear system (1) is of the same type as that of the associated 
linear system (4) in the following cases.  

 (i) If λ1 and λ2 are real, unequal, and of the same sign, then not only is O(0, 0) a node of 
linear system (4), but also 0(0, 0) is a node of nonlinear system (1). 

 (ii) If λ1 and λ2 are real  and unequal, and of opposite sign, then 0(0, 0) is a saddle point of 
both systems (1) and (4). 

 (iii) If λ1 and λ2 are real and equal and the system (4) is not such that 
   a = d ≠ 0, b = c = 0, 
then 0(0, 0) is a node point of both systems (1) and (4).  

 (iv) If λ1 and λ2 are conjugate complex with real part not zero, then 0(0, 0) is a spiral point 
of both systems (1), and (4). 

(2) The critical point 0(0, 0) of the nonlinear system (1) is not necessarily of the same type as that 
of the linear system (4) in the following cases : 

 (v) If λ1 and λ2 are real and equal and the system (4) is such that  
   a = d ≠ 0, b = c = 0 , 

then although 0(0, 0) is node of linear system (4), but the point 0(0, 0) may be either a node or a 
spiral point of nonlinear system (1).    
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 (vi) If λ1 and λ2 are pure imaginary, then although 0(0, 0) is a center of linear system (4), 
but the point 0(0, 0) may be either a center or a spiral point of nonlinear system (1) .  

Remark. Although the critical point 0(0, 0) of the non-linear system (1) is of the same type as that 
of the corresponding linear system (4) in cases (i) to (iv) of the above conclusion, the actual 
appearance of the paths is somewhat different  

Example 1. Consider the nonlinear plane autonomous system 

   
dt
dx

= 4x + 2y − 4xy , 

   
dt
dy

= x + 6y − 8x2y .       (1) 

It is obvious that the origin 0(0, 0) is an isolated critical point of it.  Here,  

P1(x, y) = −4xy  

and  

Q1(x, y) = −8 x2y         (2) 

are the perturbation functions. However,  

  0
yx

xy4
lim

22)0,0()y,x(
=

+

−
→

,  

and 

  0
yx

yx8
lim

22

2

)0,0()y,x(
=

+

−
→

.      (3) 

Therefore, the given nonlinear system is almost linear.  The associated linear system is     

  
dt
dx

= 4x − 2y , 

  
dt
dy

= x + 6y ,        (4) 

and the corresponding characteristic equation (left as an exercise) is  
   λ2 − 10λ + 26 = 0 ,       (5) 
with roots  

             λ1, λ2 = 5 + i.       (6) 
From the above theorem (15.1), it follows that the origin 0 (0,0) is a spiral point of the given 
nonlinear system. 

Example 2. Consider the nonlinear autonomous system 

  
dt
dx

= x − 3y + 4xy , 

   
dt
dy

= x + 7y − xy4.       (1) 

It is routine to verify that the origins 0(0, 0) is the only critical point of it and the required 
conditions for the above system to be almost linear hold (left as an exercise). The associated linear 
system is  

  
dt
dx

= x − 3y,  

dt
dy

= x + 7y .        (2) 

It can be checked that the characteristic equation associated with this linear system is (left as an 
exercise) 
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  λ2 − 8λ + 10 = 0 ,       (3) 
and its roots are 
   λ1, λ2 = 4 + 6 .       (4) 
Hence, by the theorem (15.1) stated above, the origin is 0(0,0) a node point of the given nonlinear 
system.  

The following theorem (without proof), based on the work of the Russian engineer and 
Mathematician, Alexander M. Liapunov, enables us to draw conclusions about stability of the 
origin for almost linear systems satisfying the hypothesis of the proceeding theorem (15.1). 

Theorem (15.2). Under the conditions of the preceding theorem (15.1), the following conclusions 
hold.  

 1. If λ1 and λ2 are either real and both negative, or complex with negative real parts, then 
the origin 0(0, 0) is asymptotically stable for both systems−linear and almost linear. 

 2. If λ1 and λ2 are both positive, or both complex with positive real parts, then the origin 
0(0, 0) is an unstable critical point of both systems−linear and almost linear. 

Example 1. Consider the nonlinear plane autonomous system 

  
dt
dx

= −x + y +x3y , 

   
dt
dy

= −2x − 3y −x2y2 .       (1) 

It can be verified that this system is almost−linear (left as an exercise). The associated linear 
system is    

  
dt
dx

= −x + y,  

dt
dy

= −2x − 3y  .        (2) 

  
It can be checked that the characteristic equations associated with this linear system is (left as an 
exercise)  
   λ2 + 4λ + 5 = 0,       (3) 
with roots 
   λ1, λ2 = −2 + i.        (4) 

Since the roots are complex with negative real parts, we conclude that the critical point 0(0, 0) is 
an asymptotically stable spiral point of both linear and almost linear systems. 

Example 2. Consider the nonlinear system 

  
dt
dx

= x + 4y −x2 ,  

dt
dy

= 6x − y + 2xy.       (1) 

It is obvious that the origin 0(0, 0) is a critical point of the given system. Further it can be checked 
that this system is almost linear (left as an exercise). The associated linear system is 

  
dt
dx

= x + 4y,  

dt
dy

= 6x − y.        (2) 

It can be verified that the associated characteristic equation is (left as an exercise) 
   λ2 − 25 = 0 , 
with roots  
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λ1 , λ2 = + 5.        (3) 

Since these eigenvalues are real, unequal and of opposite sign, so the critical point 0(0, 0) of the 
given nonlinear system is a saddle point. Further, it is also concluded that this critical point is 
unstable. 

Example 3. Find all the real critical points of the nonlinear system 

   
dt
dx

= 8x − y2,  

dt
dy

= −6y + 6x2,       (1) 

and determine the type and stability of each of these critical points. 

Solution. The critical points of the given system are given by the following system of algebraic 
equations  
   8x −y2 = 0,  

       −6y + 6x2 = 0 . 
Solving these equations, one finds (left as an exercise) that there are two real critical points, 
namely, 0(0, 0) and P0(2, 4). 

Critical point 0(0, 0). It may be checked that the given system is almost linear (left as an 
exercise). The corresponding linear system is 

   
dt
dx

= 8x,  

dt
dy

= −6y.        (3) 

It can be verified that (exercise) the characteristic equation of this linear system is 
   λ2 − 2λ −48 = 0,       (4) 

with roots λ1, λ2 = 8, −6. Since the roots are real, unequal, and of opposite sign, therefore, it is 
concluded that the critical point 0(0, 0) of the given nonlinear system is a saddle point. Further, it 
is also concluded that this saddle point is unstable. 

Critical point P0(2, 4). We make the transformation 
   α = x−2,  

β = y−4 .        (5) 

which transforms the critical point (x = 2, y = 4) into the origin (α = 0, β = 0) in the αβ-plane. The 
given nonlinear system now becomes 

   
dt
�d

= 8α − 8β − β2 , 

   
dt
�d

= 24α −6β + 6α2,       (6) 

which is almost linear (left as an exercise). Its associated linear system is 

   
dt
�d

= 8α − 8β,  

dt
�d

 = 24α − 6β .       (7) 

The corresponding characteristic equation is (exercise) 
   λ2 − 2λ + 144 = 0,       (8) 

with roots λ1, λ2 = 1 + 143 i, which are conjugate complex with real part not zero. Thus, the 
critical point (α = 0, β = 0) of the nonlinear system is a spiral point (why ?) and is unstable            
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(why ?). Consequently, the critical point P0 (2, 4) of the given nonlinear system is an unstable 
spiral point. Hence, the result.  

Dependence on a parameter 
Consider a differential equation of the form 

   2

2

dt
xd

= f(x, λ) ,        …(1) 

where f is analytic for all values of x and λ.  The equation (1) is equivalent to the following non-
linear plane autonomous system 

   ,y
dt
dx =  

dt
dy

= f(x, λ) .        …(2) 

For each fixed value of the parameter λ, the critical points of the system (2) are the points of the 
type (xc , 0), where the abscissas xc are the roots of the equation 
   f(x, λ) = 0,        …(3) 
considered as an equation in the unknown x. 

In general, as λ varies continuously through a given range of values, the corresponding xc vary and 
hence so do the corresponding critical points, paths, and solutions of the system (2). 
 A value of the parameter λ at which two or more critical points coalesce into less than their 
previous number is called a bifurcation value / critical value of the parameter λλλλ. At such a 
value, the nature of the corresponding paths changes abruptly.  

Note. In determining both the critical values of the parameter λ and the critical points of the 
system (2), it is often very useful to investigate the graph of the relation 
   f(x, λ) = 0,        …(4) 
in the xλ-plane.  

Theorem (15.3) (without proof) 

 Let   m 2

2

dt
xd

 = F(x),        …(1) 

be the differential equations of a conservative dynamical system, F being analytic for all values of 
x.  Consider the equivalent autonomous system 

   ,y
dt
dx =    

m
)x(F

dt
dy = .        …(2) 

Let (xc, 0) be a critical point of this system. Let V(x) be the potential energy function of the 
dynamical system (1) and defined by 
   V(x) = − � x

0 F(x) dx.       …(3) 
Then the following conclusions hold. 

 (1) If V has a relative minimum at x = xc, then the critical point (xc, 0) is a center and is 
stable. 

 (2) If V has a relative maximum at x = xc, then the critical point (xc, 0) is a saddle point and 
is unstable.  

 (3) If V has a horizontal inflection point at x = xc, then the critical point (xc, 0) is a 
“degenerate” type called a cusp and is unstable.  
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Example. Examine the critical points of the nonlinear plane autonomous system 

   ,y
dt
dx =  

dt
dy

= x2 − 4x +λ,       (1) 

where λ is a parameter. Also find the critical values of the parameter λ. 

Solution. The critical points of this system are the points P1(x1, 0) and P2(x2, 0) where x1 and x2 
are the roots of the quadratic equation 
   x2 − 4x + λ = 0,       (2) 
in the unknown x. We find 
   x1, = 2 �4 − ,  

 x2 = 2− 0�4 − .       (3) 
Thus, the critical points of the given system are the points 
   P1 (2 + �4 − , 0) and P2 (2− �4 − , 0) .    (4) 

For λ < 4, the roots x1, x2 are real and distinct.  

For λ = 4, the roots x1, x2 and real are equal, each equal to 2.  

For λ > 4, the roots are complex. 

Thus, for λ < 4, the critical points P1 and P2 are real and distinct. As λ →4 −, these two critical 
points approach each other ; and at λ = 4, they coalesce into the one single critical point (2, 0). For 
λ > 4, there are no real critical points. Therefore, the value λ = 4 is the critical value of the 
parameter λ. 

Now we will consider the three cases separately. 

Case I. When λ < 4. For each fixed value, say λ0, of λ such that λ0 < 4, the critical points P1 and P2 
are the real distinct points with coordinates 
   P1 (2 + 2

0�4 − , 0), P2(2− 0�4 − , 0) 
The corresponding potential energy function V(x, λ0) is given by  

   V(x, λ0) = − � x
0 (x2 − 4x +λ0) dx = −

3
x3

+ 2x2 − λ0 x.  …(3) 

Then              V′(x, λ0) = −x2 + 4x −λ0,  
                                  V′′ (x, λ0) = −2x + 4 .       …(4) 
Hence  
   V′′(2 + 0�4 − , λ0) = 0, V′′(2− 0�4 − ,λ0) > 0   …(5) 

This shows that the potential energy V(x, λ0) has a relative minimum at x = 2 − 0�4 − . 

Consequently, the critical point (2− 0�4 − , 0) is a centre and is stable.  

Similarly, one finds that (left as an exercise) the critical point (2+ 0�4 − , 0) is a saddle point and 
is unstable.  

Case. 2. When λ = 4. There is only one critical point P1(2, 0) of the given system. From equation 
(4), we find 
   V′(2, 4) = 0,  

V′′(2, 4) = 0 .        …(6) 
However, 
   V′′′(x, λ0) = −2, for all x and λ0  .     …(7) 
Therefore, 
   V′′′(2, 4) ≠ 0.        …(8) 
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Thus, the potential energy function V has a horizontal inflection point at x = 2.  So, the critical 
point P1(2, 0) is a cusp and is unstable. 

Case. 3. When λ > 4.  For each fixed value λ0 of λ such that  
   λ0 > 4, 

there are no real critical points of the given system. This completes the solution.  

Liapunov’s direct method to study stability 
Earlier, we have studied the stability of linear and almost linear systems. There are occasions when 
almost linear technique fails to give useful information, or when it is inconvenient or difficult to 
solve. An alternative approach is to consider the fully nonlinear system, using Liapunov’s direct 
method. This method is useful for studying the stability of more general plane autonomous 
systems. 

    ),y,x(F
dt
dx =   

)y,x(G
dt
dy = .        …(1) 

It is assumed that this system  has an isolated critical point at the origin 0(0, 0) and that functions 
F(x, y) and G(x, y) have continuous first partial derivatives for all (x, y). 

Definition. Let E = E(x, y) have continuous first order partial derivatives at all points (x, y) in a 
domain D containing the origin 0(0, 0).  The derivative of E w.r.t. the system (1) is denoted by E& 
and defined by 

   E&(x, y) = )y,x(G
y

)y,x(E
)y,x(F

x
)y,x(E

∂
∂+

∂
∂

    …(2) 

Remark. Let C be a path of the non-linear system (1).   Let 
   x = f(t), y = g(t) ,       …(3) 

be an arbitrary solution of system (1) defining C parametrically. Let E = E(x, y) have continuous 
first partial derivatives for all (x, y) in a domain, say D, containing the curve C. 

Now, E is a composite function of t along C. Using the chain rule, the derivative of E w.r.t “t” 
along the curve C is given by  

   
dt
dE

(f(t), g(t)) = Ex(f(t), g(t)) 
dt
df

+ Ey(f(t), g(t))
dt
dg

 

               = Ex(f(t), g(t)) F(f(t), g(t)) + Ey(f(t), g(t))G(f(t), g(t)) 
               = E&(f(t), g(t))      …(4) 
Thus, we see that the derivative of E (f(t), g(t)) w.r.t. “t” along the path C is equal to the derivative 
of E w.r.t. the system (1) evaluated at x = f(t), y = g(t). 

Definition. Let the plane autonomous nonlinear system 

   ),y,x(F
dt
dx =     

)y,x(G
dt
dy =  ,        …(1) 

have an isolated critical point at the origin 0(0, 0). Let F and G have continuous first order partial 
derivatives for all (x, y). 

 Let E = E(x, y) be a function which is positive definite for all (x, y) in a domain D 
containing the origin          0(0, 0) and such that the derivative E&(x, y) of E w.r.t the system (1) is 
negative semi-definite for all (x, y) ∈D.      
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 Then the function E is called a Liapunov function for the plane autonomous system (1) 
in D.  
 We now state two theorems (without proof) on the stability of the critical point 0(0, 0) of 
the nonlinear plane autonomous systems with the help of Liapunov functions. 

Theorem (15.4).  Let the nonlinear system 

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = ,  

have an isolated critical point at the origin 0(0, 0) and that F(x, y) and G(x, y) have continuous first 
order partial derivatives for all (x, y).  If there exists a Liapunov function E = E(x, y) for this 
system in some domain D containing the origin 0(0, 0), then the critical point 0(0, 0) of this system 
is stable.  
Theorem (15.5).  Let the nonlinear system 

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy =  ,  

have an isolated critical point at the origin 0(0, 0) and that F(x, y) and G(x, y) have continuous first 
order partial derivatives for all (x, y).  If there exists a Liapunov function E = E(x, y) for this 
system in some domain D containing the origin 0(0, 0) such that the derivative of E w.r.t. the given 
system, i.e., 

E&(x, y) = )y,x(G
y
E

)y,x(F
x
E

∂
∂+

∂
∂

    

is negative definite in D, then the critical point 0(0, 0) is asymptotically stable.  

Example. Construct a Liapunov function of the form Ax2 + By2 (where A and B are constants) for 
the plane autonomous nonlinear system 

   ,yx
dt
dx 2+−=  

   2xy
dt
dy +−=  ,  

and use it to determine whether the critical point 0(0, 0) of this system is asymptotically stable or 
at least stable.  

Solution. Consider the function 
   E(x, y) = x2 + y2       …(1) 
Then E(0, 0) = 0 and  
   E(x, y) > 0 for all (x, y) ≠ (0, 0).     …(2) 

Therefore, the function E(x, y) is positive definite in every domain D containing the origin           
0(0, 0). We find  

   
y
E

,x2
x
E

∂
∂=

∂
∂

= 2y.       …(3) 

The derivative of E(x, y) w.r.t. the given system, denoted by E&(x, y), is given by 

   E&(x, y) = )y,x(G
y
E

)y,x(F
x
E

∂
∂+

∂
∂

  

     = 2x(−x + y2)  + 2y(−y + x2) 
     =  −2(x2 + y2) + 2(x2y + xy2),     …(4) 
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since, as in the given system 
   F(x, y) = −x +y2,  

G(x, y) = −y +x2.       …(5) 
Clearly E&(0, 0) = 0.  Now, we observe the following : 
If x < 1 and y ≠ 0, then xy2 < y2 ; if y < 1 and x ≠ 0, then x2 y < x2. Thus, if x < 1, y < 1, and          
(x, y) ≠ (0, 0), then  
   x2y + xy2 < x2 + y2,       …(6) 
and hence 
   −(x2 + y2) + (x2y + xy2) < 0.      …(7) 

Thus, in every domain D containing (0, 0) and such that x < 1 and y < 1, E&(x, y) is negative 
definite and hence negative semi-definite. Therefore, E defined by (1) is a Liapunov function for 
the given system of nonlinear differential equations. Further, applying theorems (15.4) and (15.5), 
we see that the critical point 0(0, 0) is asymptotically stable. 

Remark. (1) Liapunov’s direct method is indeed “direct” in the sense that it does nto require any 
previous knowledge about the solution of nonlinear system or the type/nature of its critical point 
0(0, 0). Instead, if one can construct a Liapunov function for the given nonlinear system, then one 
can “directly” obtain information about the stability of the critical point 0(0, 0). However, there is 
no general method for constructing a Liapunov function, although methods for doing so are 
available for certain class of equations. 

 (2) In seeking Liapunov functions, it is sometimes useful to identify E with the energy of 
the physical system which the differential equations describe.   
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PERIODIC SOLUTIONS, BENDIXSON THEOREM, 
INDEX OF A CRITICAL POINT 

 

We are interested in obtaining criteria for the existence, or otherwise, of periodic solutions of a 
planar autonomous system 

   ),y,x(F
dt
dx =    

)y,x(G
dt
dy =  .       …(1) 

Clearly, the orbits or paths or trajectories of periodic solutions are closed curves in the phase plane.  

Theorem (16.1). Show that periodic solutions and closed paths of the planar autonomous system 
(1) are very closely related.  

Proof. First of all, if 
   x = f1(t), y = g1(t)       …(1) 

where f1 and g1 are not both constant functions, is a periodic solutions of system, 

  )y,x(F
dt
dx = , 

  )y,x(G
dt
dy = ,         …(2) 

then the path which this solution defines is a closed path. 
Secondly, let C be a closed path of the system (2) defined by a solution 
   x = f(t), y = g(t),       …(3) 
and suppose that 
   f(t0) = x0, g(t0) = y0 .       …(4) 
Since C is a closed curve, there exists a value,  

t1 = t0 + T, (say), T > 0,       …(5) 
such that 
   f(t1) = x0,  

g(t1) = y0 .        …(6) 
Now, the pair 
   x = f(t + T),  

y = g(t + T),        …(7) 
is also a solution of the same system (2). Further, at t = t0, this later solution assumes the value 
    f(t0 + T) = f(t1) = x0,  

g(t0 + T) = g(t1)  = y0 .       …(8) 

Therefore, by uniqueness theorem, the two solutions, given by (3) and (7), are identically for all t. 
That is,   
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x x 

y 

   f(t + T) = f(t),  
g(t +T) = g(t), for all t.      …(9) 

This shows that the solution (3), defining the closed curve C, is a periodic solution. This completes 
the proof. 

Definition. (Limit Cycle) 
 For a system 

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = ,  

a limit cycle is a closed trajectory that has non-closed trajectories spiraling towards it from either 
inside or outside as t increases.  Typical limit cycles are shown below : 
 
 
 
 
 
 
 
 
 
For a given planar autonomous system 

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = , 

we need a theorem giving sufficient conditions for the existence of a limit cycle of this system. 
The Poincare-Bendixson theorem is one of the few general theorems of this nature. Before stating 
this theorem, however, we shall state and prove a theorem on the non-existence of closed 
paths/trajectories of the given system, due to Bendixson. 

Theorem 16.2 (Known as Bendixson non-existence theorem). Let D be a domain in the           
xy-plane. Let the plane autonomous system be  

   ),y,x(F
dt
dx =    

)y,x(G
dt
dy =  ,        

where F and G have continuous first order derivatives in D. Suppose that 
y

)y,x(G
x

)y,x(F
∂

∂+
∂

∂
has 

the same sign throughout D. Then the given system has no closed path in the domain D. 

Proof. Suppose that C is the orbit of a periodic solution of the given plane autonomous system 

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = ,        …(1) 
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Let S be the region enclosed by C. Then, by Green’s theorem in the plane, we have 

   �=
�
�
�

�
�
�

∂
∂+

∂
∂

��
CS

dxdy
y
F

x
F

{F(x,y) dy − G(x,y) dx},   …(2) 

where the line integral is taken in the positive sense.  But, on the orbit C, the system of given 
differential equations holds, i.e., 

   ),y,x(F
dt
dx =   

)y,x(G
dt
dy = ,        …(3) 

holds on C. 

Let x = f(t), y = g(t) be the parametric equaths of the path C ; and let T denote the period of this 
solution. Then 

   ))t(g),t((F
dt

)t(df
f= , 

   =
dt

)t(dg
G(f(t), g(t)) ,       …(4) 

along C. Hence 
   �

C
[F(x, y)dy − G(x, y) dx] 

    = �
T
0 dt

dt
)t(d

)]t(g),t([G
dt

)t(dg
)]t(g),t([F �	



��


 − f
ff  

    = �
T
0 {F[f(t), g(t)] G[f(t), g(t)] − G[f(t), g(t)]. 

      F[f(t), g(t)]} dt 
    = 0 . 
Thus, 

   .0dxdy
y
G

x
F

S
=

�
�
�

�
�
�

∂
∂+

∂
∂

��       …(5) 

But the integrand in (5) has the same sign throughout the domain D. Hence, this double integral 
must be non-zero.  This contradiction proves that D can contain no closed path of the given 
system. 

Note : Theorem (16.2) may be restated in the following form :  

 “There are no periodic solutions in any domain where ��
�

�
��
�

�

∂
∂+

∂
∂

y
G

x
F

 is of one sign”.  

Example.   Let F(x, y) = 3x + 4y + x3  , 
  G(x, y) = 5x − 2y + y3 ,       (1) 
and consider the system 

   )y,x(G
dt
dy

),y,x(F
dt
dx == .      (2) 

The functions F(x, y) and G(x, y) and their derivatives are continuous throughout the phase plane. 
Further,  
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y 

C 

x 

   
y
G

x
F

∂
∂+

∂
∂

= 3 + 3x2 − 2 + 3y2 

       = 1 + 3 (x2 + y2) 
       > 0 ,        (3) 

for all (x, y). We conclude that the given autonomous system has no closed trajectory and hence no 
periodic solution.  

Theorem (16.3).  The orbit C of a periodic solution of a plane autonomous system must enclose 
atleast one critical point. 

Proof. The proof will be by contradiction. Suppose that the orbit C contains a region, say S, with 
no critical points of the plane autonomous systems 

   ),y,x(F
dt
dx =   

)y,x(G
dt
dy = .        …(1) 

 
 
 
 
 
 
 
 
 
 
 
Then   F2 + G2 ≠ 0 in S.       …(2) 
Let φ be the angle between the tangent vector to C and the x-axis, as shown in the figure above. 
Then clearly 
   �

C
dφ = 2π .           …(3) 

But          tan φ = 
dx
dy

 

dt/dx
dt/dy=      

)y,x(G
)y,x(F= .         …(4) 

This gives (left as an exercise) 

   dφ = 22 GF
GdFFdG

+
−

.       …(5) 

The Green’s theorem in the plane gives 

   d
C
� φ =

22
C GF

GdFFdG
+
−

�  

=
�
�
�

�
�
�

�
�

�
�
�

�

+∂
∂+�

�

�
�
�

�

+∂
∂

�� 2222
S GF

G
GGF

F
F

dFdG .   …(6) 

S 

φ 
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C G(x,y) 

F(x1,y1) 

But the integrand in the integral over S is identically zero (left as an exercise).  This leads to a 
contradiction.  Hence the result holds.  This completes the proof. 

Note. (1) The second theorem and shows that the location of critical points may be an indicator of 
the presence of periodic solutions. 
 (2) The two theorems have (16.2) and (16.3) provided negative criteria. They help us to 
determine if an autonomous system does not have a closed trajectory in a region of the plane. 

The next theorem (without proof), known as Poincare-Bendixson theorem, gives sufficient 
conditions for a closed trajectory to exist. It also relates the existence of periodic solutions to the 
location of critical points.  

Theorem 16.4. (Poincare-Bendixson Theorem).  Let the given plane autonomous system be 

    ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = ,  

where F and G have continuous first partial derivative in a domain D of the xy-plane. Let R ⊆ D 
be a closed bounded region containing no critical points of this system, and such that there is an 
orbit C which lies in R for all t ≥ 0 .  Then either C is a closed orbit, or C approaches a closed orbit 
spirally as t→∞. 

Remark. In either case, there exists a closed path of the given system in the region R.  

The Index of a critical point 

Simple closed curve. A closed curve having no double points is called a simple closed curve 
Example (i) A circle is a simple closed curve. 
Example (ii) The curve ∞ is not a simple closed curve. 
Consider the system 

   ),y,x(F
dt
dx =   

)y,x(G
dt
dy = ,        …(1) 

where F and G have continuous first order partial derivatives for all (x, y). Assume that all of the 
critical points of this system are isolated. Now consider a simple closed curve, say C, which passes 
through no critical points of this system. Consider a point (x1, y1) on the curve C and the vector 
 

a
ρ

= F(x1, y1) î + G(x1, y1) ĵ  ,      …(2) 
at the point (x1, y1). Let this vector make an angle θ with the positive x-direction. 

 
 
 
 
 
 
 
 
 

  (x1, y1) 

θ 
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Now, let (x1, y1) describe the curve C once in the positive (counterclockwise) direction and return 
to its original position. As the point (x1, y1) describes the curve C, the vector (2) changes 
continuously, and consequently the angle θ also varies continuously.  
 
When the point (x1, y1) reaches its original position, the angle θ will have changed by an amount, 
∆θ say.  

Definition. Let θ denote the angle from the positive x-direction to the vector F(x1, y1) î + G(x1, y1) 
ĵ  defined by the system  

   ),y,x(F
dt
dx =  

   )y,x(G
dt
dy = ,  

at the point (x1, y1). Let ∆θ denote the total change in θ as (x1, y1) describes the simple closed 
curve C once in the anticlockwise direction. The number  

I = 
π
θ∆

2
 

is called the index of the curve C w.r.t the given autonomous system.  

Remarks. (1) Clearly ∆θ is either equal to zero or a positive or negative integral multiple of 2π. 
Hence, the index I. is either 0 or a positive or negative integer. 

 (2) If the vector F(x1, y1) î + G(x1, y1) ĵ  merely oscillates but does not make a complete 
rotation as (x1, y1) describes C, then I = 0. 

 (3) If the net change ∆θ in θ is a decrease, then I < 0. 

Definition. By the index of an isolated critical point (x0, y0) of the given autonomous system, we 
mean the index of a simple enclose curve C which encloses (x0, y0) but no other critical point of 
the given system. 

Remark. (1) The index of a node/centre/spiral point is I = 1 . 
 (2) The index of a saddle point is I = −1. 

(3) Let (x0, y0) be an isolated critical point of a given system. Then all simple closed curves 
enclosing (x0, y0) but containing no other critical point of the given system, have the same index.  

For more information/detail, the reader is advised to refer to the following books. 

Books Suggested 

(1) S. L Ross  Differential Equations  
(2) R. Grim Shaw  Nonlinear Ordinary Differential Equations, CRC Press, 1993 
(3) P. Hertman  Differential Equations. 
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PRELIMINARIES ABOUT LINEAR SECOND ORDER 
DIFFERENTIAL EQUATIONS  
 
 
One of the most frequently occurring types of differential equation in mathematics and physical 
sciences is the linear  second order differential equation of the form 

   
dt
du

)t(g
dt

ud
2

2

+ + f(t) u = h(t) ,      …(1) 

or of the form 

   ��

�
��

�

dt
du

)t(p
dt
d

 + q(t) u = h(t).      …(2) 

Unless otherwise specified, it is assumed that the functions f(t), g(t), h(t) and p(t) ≠ 0, q(t) in these 
equations are continuous real/complex valued functions of some real variable  t on some interval I, 
which can be bounded or unbounded. 

Note 1. The form (2) is more general since (1) can be written as  

   ��

�
��

�

dt
du

)t(p
dt
d

+ p(t) f(t) u = p(t) h(t),     …(3) 

provided p(t) is defined as 
   p(t) = exp [ �

t
a g(s) ds],      …(4) 

for some a∈I.  

Note 2. If p(t) is continuously differentiable, then (2) can be written as  

   
�
	



�
�



=
�
	



�
�



+
�
	



�
�



+
)t(p
)t(h

u
)t(p
)t(q

dt
du

)t(p
)t('p

dt
ud
2

2

,    …(5) 

which is of form (1). 

Remark. When the function p(t), in equation (2), is continuous but does not have a continuous 
derivative, then equation (2) can not be written in the form (1).  In such a situation, equation (2) is 
to be interpreted as the first order linear system for the binary vector  

   y = �
�
�

�
�
�
�

�
2

1

y
y

,        …(6) 

where  

y1 = u, y2 = p(t)
dt
du

,       …(7) 

and equations are  
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   ,y
)t(p

1
dt

dy 2
1

=  

   )t(hy)t(q
dt

dy 1
2

+−= .       …(8) 

Equations in (8) can be put in the form 

   
dt
dy

= A(t) y + b(t) ,       …(9) 

where  A(t) = �
�

�
�
�

�

− 0)t(q
)t(p/10

, b(t) = �
�

�
�
�

�

)t(h
0

.     …(10) 

In other words, a solution u = u(t) of equation (2) is a continuously differentiable function such 

that p(t)
dt
du

has a continuous derivative satisfying (2). 

When p(t) ≠ 0, q(t), h(t) are continuous, the standard existence and uniqueness theorems for linear 
systems are applicable to system(9), hence equation (2). 

Particular Case.  When p(t) ≡ 1 on  I. Then equation (2) becomes 

   2

2

dt
ud

+ q(t) u = h(t)       …(11) 

Reduction of equation (2) to an equation of the type (11)  

When p(t) ≠ 0 is real valued, then we change the independent variables through the relation  

   s = �
t
a )�(p
�d

+ const. 

i.e.,   ds = dt/p(t),        …(12) 
for some a∈I. 
The function s = s(t) has a derivative  

   
)t(p

1
dt
ds = ≠ 0 , 

and so s = s(t) is strictly monotone. Hence s = s(t) has an inverse function 
   t = t(s) , 
define on some s-interval.  

 In terms of the new independent variable s, the differential equation (2) becomes, as 
derived below : 

   
ds
dt

.
dt
du

ds
du =  

         
dt
du

)t(p= , 

   
ds
dt

.
dt
du

)t(p
dt
d

ds
ud
2

2

��

�
��

�=      

��

�
��

�=
dt
du

)t(p
dt
d

)t(p .       …(13) 
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So, equation (2) becomes, after multiplying by p(t) throughout, 

   )t(h)t(pu)t(q)t(p
ds

ud
2

2

=+ ,      …(14) 

where t in p(t) q(t) and p(t) h(t) is replaced by the function t = t(s). Thus, equation (14) is of the 
type (11), under transformation given by (12). 

Reduction of equation (1) to an equation of the type (11)  

We change the dependent variable u into z by the relation 

   u(t) = z(t) exp ��

�
��

�
�− t
a �d)�(g

2
1

,     …(15) 

for some a∈I . Then  

         exp.z
dt
du = ��

�
��

�
�− t
a �d)�(g

2
1

. exp
dt
dz

)t(g
2
1 +

�
	



�
�

− ��

�
��

�
�− t
a �d)�(g

2
1

 

               = 
�
	



�
�

 +−

dt
dz

)t(g).t(z
2
1

exp ��

�
��

�
�− t
a �d)�(g

2
1

,    …(16) 

and           2

2

dt
ud

= 
�
	



�
�

 +−

dt
dz

)t(g)t(z
2
1

exp
�
	



�
�



�− t
a �d)�(g

2
1

�
	



�
�

− )t(g

2
1

 

           + 
�
	



�
�



+−− 2

2

dt
zd

)t('g)t(z
2
1

)t(g
dt
dz

2
1

exp
�
	



�
�



�− t
a �d)�(g

2
1

 

                = �
�

�
�
�

�
+−− 2

2
12

dt
zd

)t(g)t(z
2
1

dt
dz

)t(g)t(g)t(z
4
1

. exp 
�
	



�
�



�− t
a �d)�(g

2
1

. …(17)  

On substituting, equation (1) is transformed to 

   �
�

�
�
�

�
−++

2
)t(g

4
)t(g

)t(
dt

zd 12

2

2

f z = h(t). exp ��

�
��

�
�

t
a �d)�(g

2
1

,  …(18) 

which is of type (11).  This completes the reduction process.  

Note. Generally, the second order differential equations to be considered will be assumed to be of 
the form (2) or (11) 

Example. 1. The simplest differential equations of the type (11) are  
              u′′ = 0,  

u′′ + σ2 u = 0, u′′ − σ2 u = 0, σ ≠ 0.     …(1) 
The general solutions of these equations are, respectively,  
   u = c1 + c2 t, t

2
t

121 ecec)t(u,tsinctcosc)t(u σ−σ +=σ+σ=  , …(2) 
where c1 and c2 are arbitrary constants. 

Example. 2. Consider the differential equation 
   u′′ + bu′ + au = 0,       …(1) 

.tstanconsbeingbanda     
Then u(t) = eλt is a solution of equation (1) iff λ satisfies  
   λ2 + bλ + a = 0.       …(2)   
Hence, the general solution of equation (1) is 
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   u(t) = 2
bt

e
−

(c1 + c2 t)     
or    u(t) = c1

t2�
2

t1� ece +        …(3) 

according as quadratic equation (2) has a double root λ = 
2
1− b or distinct roots  

         λ1, λ2 = − ab
4
1

2
b 2 −± .  

When a and b are real and 
4
1

b2 − a < 0, then non real exponents in the solution can be avoided by 

writing  

   u(t) = e−bt/2 
��

�
	



��

�
�



�
�
�

�
�
�
�

�
−+�

�
�

�
�
�
�

�
− tb

4
1

asinct.b
4
1

acosc 2
2

2
1   …(4) 

Remark. The substitution 
   u(t) = z(t) e−bt/2 
reduces differential equation (1) to 

   ,0z
dt

zd 2
2

2

=σ+  

where 

               22 b
4
1

a −=σ . 

Definition. (Non-oscillatory and oscillatory functions) 

A real valued function f(t) defined and continuous in an interval [a, b] is said to be non-oscillatory 
in [a, b] if f(t) has not more than one zero in [a, b]. 

If f(t) has atleast two zeros in [a, b], then f(t) is said to be oscillatory in [a, b]. 

Examples. (i) consider the function  

tt BeAe)t(f −− +=  

for t ≥ 0 , A and B are constants.   Then f(t) is non-oscillatory. 

 (ii) Let    f(t) = sin t, t ≥ 0 .  
Then f(t) is oscillatory in [0, 4π] .     

Definition. (Non-oscillatory and oscillatory differential equations)  

A second order differential equation 

   
dt
du

)t(p
dt

ud
2

2

+ + q(t) y = h(t), t ≥ 0 

is called “non-oscillatory” if every solution u = u(t) of it, is non-oscillatory. Otherwise, differential 
equations is called oscillatory.  
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Example. (1) u′′ + u = 0  is oscillatory.  
Its general solution is   

u(t) = A cos t + B sin t , t ≥ 0 .  

W.l.o.g., we can assume that both A and B are non-zero constants, otherwise, u(t) is trivially 
oscillatory.  
In that case, u(t) has a zero at  
  t = n π + tan−1 (A/B), for n = 0, 1, 2, 3, …. 
So, this equation is oscillatory.  
Example. (2) consider the linear equation 
   u′′ − u = 0, for t = 0. 

Its general solution is ,BeAe)t(u tt −+= A & B are constants.  This solution is non-oscillatory. 
Hence, this equation is non-oscillatory.  

Definition. Let f(t) and g(t) be two real valued defined and continuous functions in some interval 
[a, b]. Then f(t) is said to oscillate more rapidly than g(t) if the number of zeros of f(t) in [a, b] 
exceed the number of zeros of g(t) in [a, b] by more than one. 
 
Example. Let f(t) = sin 2t in [0, 4π] 
  g(t) = sin t in  [0, 4π] 
Then zeros of f(t) are only half as far apart as 
the zeros of g(t). So f(t) oscillates more 
rapidly than g(t) in the interval  [0, 4π].   
 
Remark. Qualitative properties of solutions of differential equations assume importance in the 
absence of closed form solutions. 

 In case the solutions are not expressible in terms of the usual “known functions”, an 
analysis of the differential equation is necessary to find the facets of the solutions. 

 One such qualitative property, which has wide applications, is the oscillation of solutions.  

Pr����fer transformation/ Polar coordinate transformation 

 This transformation is applicable to linear homogeneous second order differential 
equations. This transformation yields an equivalent system of two first order differential equations. 
This transformation changes an equation from Liouville normal form to two successive ordinary 
differential equations. It is often used to obtain information about the zeros of solutions.  

Procedure. Suppose we have the Sturm-Liouville equation 

   ��

�
��

�

dt
du

)t(p
dt
d

+ q(t) u = 0,      …(1) 

defined on the interval I with p(t) > 0, p(t) ∈C1, and q(t) continuous.  If we think of this single 
second order equation (1) as two first order differential equations for the unknowns {u, u′}, then 
we can change the dependent variables from {u, u′} to {ρ(t), φ(t)} by 
   p(t) u′(t) = ρ(t) cos φ(t) , 
   u(t) = ρ(t) sin φ(t) .       …(2) 
This substitution (2) is called Prufer substitution. Equation (2) gives  
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   ρ(t) = [u2 + (p u′)2]1/2 > 0 , 

   φ(t) = tan−1
��
�

�
��
�

�

'up
u

 .       …(3) 

ρ is called the amplitude and φ the phase variable. Here u and u′ cannot vanish simultaneously 
(for a non-trivial solution), so ρ > 0. The correspondences (pu′, u) = (ρ, φ) defined by (2) and (3) 
are analytic with nonvanishing Jacobian. 
We now derive an equivalent system of differential equations for ρ(t) and φ(t). 
From equation (3), we have 
   cot φ = pu′/u .         …(4) 
Differentiating (4) w.r.t. ‘t’, we get 

− cosec2 φ 2

2

u
'pu

u
)''pu(

dt
d −=φ

 

              = −q(t) −
p
1

cot2φ . 

This implies 

   
)t(p

1
dt
d =φ

cos2 φ + q(t) sin2 φ .     …(5) 

Differentiating the relation 
   ρ2 = u2 + (pu′)2       …(6) 
w.r.t ‘t’ and simplifying, we obtain 

   �
�

�
�
�

�
−= )t(q

)t(p
1

dt
�d ρ sin φ cos φ 

         = �
�

�
�
�

�
− )t(q

)t(p
1

2
1 ρ sin 2φ .      …(7) 

The system, consisting of first order differential equations (5) and (7), is equivalent to the second 
order differential equation (1) in the sense that every non-trivial solution of this system defines a 
unique solution of the differential equation (1) by the Prufer substitution, and conversely. This 
system is called the Prufer system associated with the self-adjoint differential equation (1).    

The differential equation (5) of the Prufer system is a first-order differential equation in φ and t 
alone, and not containing the other dependent variable ρ. If a solution φ = φ(t) of first order 
ordinary differential equation (5) is known, then a corresponding solution of first order ordinary 
differential equation (7) is obtained as  

   ρ(t) = ρ(a) exp �
�

�
�
�

�

�
	



�
�



−� ds)s(�2sin)s(q
)s(p

1
2
1 t

a    …(8) 

Note. 1. Each solution of the Prufer system (5) & (7) depends on two constants, namely,  
(i) the initial amplitude ρ0 = ρ(t0)  
(ii) the initial phase φ(t0) = φ0 .  Changing the constant ρ0 just multiplies a solution u(t) 

of equation(1) by a constant factor. 
Thus, the zero of any solution u = u(t) of (1) can be located by studying only the differential 
equation (5). 
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 Note. 2. An advantage of differential equation (5) is that any solution of (5) exists on the whole 
interval I where p, q are continuous. This is clear from the relations between solutions of (1) and 
(5).  

Note. 3. For the study of zeros of u(t), the Prufer transformation is particularly useful since 
   u(t0) = 0 if and only if φ(t0) ≡ 0 (mod π).    …(9) 
This shows that the zero of any solution u(t) of equation (1) occur where the phase function φ(t) 
assumes the values 0, + π, + 2π, …, i.e., at all points where sin φ(t) = 0. At each of these points 
   cos2 φ = 1 ,        …(10) 

and 
dt
dφ

is positive when p(t) > 0, by equation (5). 

Note. 4. When φ(t) ≡ 0 (mod π), then the relation (4) is not defined. But the final equations (5) and 
(7) can still be derived by differentiating the relation 

   tan φ = 
'pu

u
 .        …(10)  

Illustration. Consider the linear second order homogeneous ordinary differential equation 
   t u′′ − u′ + t3 u = 0 .       …(1) 
It can be written in Liouville normal form as 

   ��

�
��

�

dt
du

t
1

dt
d

+ t u = 0,       …(2) 

giving    
�
	



=
=

.t)t(q
,t/1)t(p

         …(3) 

Therefore, first equation of Prufer system becomes 

   
dt
dφ

= t cos2 φ + t sin2 φ 

         = t.         …(4) 
Solving (4), we obtain 

   φ(t) = ,C
2
t 2

+         …(5) 

where C is an arbitrary constant.  

Then, the second differential equation of the Prufer system yield (left as an exercise) 
   ρ(t) = ρ(a).        …(6) 
Therefore, we conclude, from the Pruffer transformation, that 

   u(t) = ρ(a) sin �
�

�
�
�

�
+ c

2
t 2

,      …(7) 

or 

   u(t) = 
)C2/asin(

)C2/tsin()a(
2

2

+
+

 ,      …(8) 

as the solution of equation (1). 

Definition. Consider two differential equations 
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   �
�

�
�
�

�

dt
du

)t(p
dt
d

1 + q1(t) u = 0,      …(1) 

and   

   �
�

�
�
�

�

dt
du

)t(p
dt
d

2 + q2(t) u = 0,      …(2) 

where pi(t) and qi(t) are real-valued continuous functions defined on an interval I such that  
   p1(t) ≥ p2(t) > 0,       …(3) 
and 
   q1(t) ≤ q2(t)        …(4) 

Then the differential equation (2) is called a Sturm majorant for differential equation (1) on the 
interval I. And differential equation (1) is known as a Sturm minorant for equation (2).  

Remark. If, in addition, 
   q1(t) < q2(t) ,        …(5) 
or 
   p1(t) > p2(t) > 0 and q2(t) ≠ 0 ,     …(6) 
holds at some point t of I then equation (2) is called a strict Sturm majorant for equation (1) on 
the interval I.  
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BASIC FACTS OF LINEAR SECOND ORDER 
DIFFERENTIAL EQUATIONS 
 
 
We shall write the following homogeneous and inhomogeneous scalar differential equations 

   �
�

�
�
�

�

dt
du

)t(p
dt
d

+ q(t) u = 0      …(1) 

   �
�

�
�
�

�

dt
dw

)t(p
dt
d

+ q(t) w = h(t)      …(2) 

as the binary vector differential equations, respectively, 

   
dt
dx

= A(t) x,        …(3) 

   
dt
dy

= A(t) y + ��
�

�
��
�

�

)t(h
0

,       …(4) 

where 

   x =
�
�

�

�

�
�

�

�
=��

�

�
�
�
�

�

dt
du

)t(p

)t(u

x
x

2

1

       …(5) 

and 

   y = 
�
�

�

�

�
�

�

�
=��

�

�
�
�
�

�

dt
dw

)t(p

w

y
y

2

1

       …(6) 

are the vectors and A(t) is the 2×2 matrix 

   A(t) = ��
�

�
��
�

�

− 0)t(q
)t(p/10

.      …(7) 

We find 
   tr {A(t)} = 0.        …(8) 

Unless, otherwise stated, it is assumed that 0 ≠ p(t), q(t), h(t), and other coefficient functions are 
continuous, complex-valued functions on a t-interval I (which may or may not be closed and/or 
bounded). 

Result I. If to ∈ I and c1 and c2 are arbitrary complex numbers, then the initial value problem 

   ��

	

�

�

dt
dw

)t(p
dt
d

+ q(t) w = h(t)      …(1) 

   w(t0) = c1, 
   w′(t0) = c2,        …(2) 
has a unique solution which exists on whole interval I. 
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Results II. If to ∈I, then the initial-value problem  

    ��

	

�

�

dt
du

)t(p
dt
d

+ q(t) u = 0, t∈I      …(1) 

   u(t0) = 0, 
   u′(t0) = 0,        …(2) 
has trivial solution, namely,  
   u(t) ≡ 0 ,        …(3) 
on I, as the unique solution.  

Result III. If u(t) ≠ 0 is a solution of differential equation 

   


�
�

�
�
�

dt
du

)t(p
dt
d

 +q(t) u = 0, t∈I,      …(1) 

then the zeros of u(t) cannot have a cluster point in I.  

Proof. If possible, suppose that u(t) have a cluster point in I. Then, u(t) has an infinite number of 
zeros in some bounded interval [a, b], contained in I.  
Let    E = {t : t∈[a, b] such that u(t) = 0} .     …(2) 

Then E is a bounded and infinite subset of real number. Therefore, by the Bolzano-Weierstrass 
theorem, the set E has a limit point, say t0. Moreover t0 ∈[a, b] ⊂ I. Thus, there exists a sequence 
of distinct points of E(hence in I) which converges to t0 .  
 Let t→t0 through the sequence of zeros of u. Then the continuity of u implies that 
   

0tt
lim
→

u(t) = u(t0),       …(3) 

where t→t0 in the above sense. This gives 
   u′(t0) = 0.        …(4) 
Moreover, by definition,  

   u′(t0) = 
0tt

lim
→ 0

0

tt
)t(u)t(u

−
−

.      …(5) 

When t→t0 through the zero of u, then R.H.S. of (5) becomes zero so, 
   u′(t0) = 0 .        …(6) 

Thus u is a solution of (1) satisfying the initial conditions (4) and (6). Hence, by uniqueness 
theorem, u (t) ≡ 0 for all t∈[, b] ⊂ I .  
This is a contradiction. Hence, the result follows immediately. 

Result IV. (Superposition principles) 
 (A) Let u = u1(t), u2(t) be two solutions of homogeneous linear differential equation  

   �
�

�
�
�

�

dt
du

)t(p
dt
d

+ q(t) u = 0, t∈I,      …(1) 

and c1 and c2 be constants. Then c1 u1(t) + c2 u2(t) is a solution of (1).  
 (B) If w0(t) is a solution of non homogeneous linear differential equation 

   �
�

�
�
�

�

dt
dw

)t(p
dt
d

+ q(t) w = h(t), t∈I,     …(2) 

then w1(t) is also a solution of (2) if and only if  
   u(t) = w1(t) − w0(t)       …(3) 
is a solution of the corresponding homogeneous differential equation. 
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Results V. If u1(t), u2(t) are two solutions of homogeneous differential equation, then the 
corresponding vector solutions  

   x1 = ��
�

�
��
�

�

)t(u)t(p
)t(u

'
1

1 , 

   x2 = ��
�

�
��
�

�

)t(u)t(p
)t(u

'
2

2 , 

of binary system 

   )t(A
dt
dx = x ,        …(4) 

are linearly independent at every value of t if and only if u1(t) and u2(t) are linearly independent in 
the sense that if c1 and c2 are constants such that  
   c1 u1(t) + c2 u2(t) ≡ 0, for all t, 
then c1 = c2 = 0. 

Result VI. If u1(t), u2(t) are solution of homogeneous differential equation, then there is a 
constant c(depending on u1(t) and u2(t)) such that their Wronskian W(t) is given by 
   W(t) = W(u1(t), u2(t)) 
            = u1(t) u2′(t) − u1′(t) u2(t) 

            = 
)t(p

c
 .        …(1) 

Proof.  A solution matrix for linear binary homogeneous system 

   ,x)t(A
dt
dx =          …(2) 

is 

   X(t) = ��
�

�
��
�

�

)t('u)t(p)t('u)t(p
)t(u)t(u

21

21 , 

and 
   det X(t) = p(t) W(t).        …(3) 
Hence, the result follows, immediately.  

Result VII. Lagrange Identity. Consider the pair of differential equations. 

   


�
�

�
�
�

dt
du

)t(p
dt
d

+ q(t) u(t) = f(t),      …(1) 

   


�
�

�
�
�

dt
dv

)t(p
dt
d

+ q(t) v(t) = g(t) ,     …(2) 

where f = f(t) and g = g(t) are continuous functions on interval I. Multiplying the second relation 
(2) by u(t), the first (1) by u(t), and the results subtracted, one finds 

   �
�

	


�

�



�
�

�
�
� −

dt
du

v
dt
dv

u)t(p
dt
d

= gu − fv .     …(3) 

The relation (3) is called the Lagrange identity. Its integrated from 
   [p(u v′ − u′v) �= t

a
t
a] (gu − fv) ds ,     …(4) 

where [a, t] ⊂ I, is called Green’s formula.  
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Special Case. If f = g = 0, i.e., when u & v are solutions of homogeneous differential equations, 
then (3) implies that  
   p(t) {u(t) v′(t) − v(t) u′(t)} = constt = c, say. 
This gives 

   u(t) v′(t) − v(t) u′(t) = 
)t(p

c
.      …(5) 

This also proves, the result VI for homogeneous differential equations. 

 (a) In particular, it shows that u(t) and v(t) are linearly independent solutions of 
homogeneous differential equation iff c ≠ 0, in equation (5). 

 (b) If p(t) =  const ≠ 0, (e. g., p(t) ≡ 1), then equation (5) shows that the Wronskian of any 
pair of solutions of homogeneous second order linear differential equations is a constant. 

Result VIII. If one solution u(t) ≡/   0 of differential equation 

   


�
�

�
�
�

dt
du

)t(p
dt
d

 + q(t) u = 0 ,      …(1) 

is known, then the determination (atleast, locally) of other solution v(t) of (1) is obtained by 
considering a certain (reduction of order) differential equation of first order.  
Dividing relation (5) of result VII by u2(t), we get 

   
)t(u)t(p

c
)t(u
)t(v

dt
d

2
=



�
�

�
�
�

,   c = const..     …(2) 

Integrating  

   
)s(u)s(p

ds
cc

)t(u
)t(v

2
t
a1 �+=  , 

this gives  

 v(t) = c1 u(t) + c u(t) �
�

	


�

�
�

t
a 2 )s(u)s(p

ds
,      …(3) 

for a ∈I and for all t∈I. 

Theorem. 18.1. Let u(t) ≡/  0 be a real valued solution of homogeneous linear second order 
differential equation 

   


�
�

�
�
�

dt
du

)t(p
dt
d

 + q(t) u = 0 , 

on the interval [a, b], where p(t) > 0 and q(t) are real-valued and continuous. Let u(t) have exactly 
n(≥ 1) zeros, say, 
   t1 < t2 <… < tn  on [a, b]. 
Let φ(t) be a continuous function defined by 

   φ(t) = tan−1
��
�

�
��
�

�

'pu
u

, 

and 
   0 ≤ φ(a) < π . 
Prove that 
   φ(tk) = kπ, k = 1, 2,…,n 
and 
   φ(t) > kπ for t ∈[tk, b], k = 1, 2,…,n 
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Proof. From the hypothesis we write 

   tan φ = 
'pu

u
.        …(1) 

Differentiating (1), we shall obtain (left as an exercise to the reader) 

   
)t(p

1
dt
�d = cos2 φ + q(t) sin2 φ .     …(2) 

We note that at a t-value, say t0, 
   u(t0) = 0  
iff    φ(t0) = 0 
iff    φ(t0) ≡ 0 (mod π)       …(3) 
and, then   cos2φ(t0) = 1 .         …(4) 
So equation (2) gives 

   0
)t(p

1
dt
�d

0

>= ,       …(5) 

as p(t) > 0. This shows that φ(t) is an increasing function in the neighbourhoods of points where 
   φ(t) = jπ        …(6) 
for some integer j. It follows that from equation (3) that 
   φ(tk) = kπ,        …(7) 
and   φ(t) > φ(tk) = kπ for t∈[tk, b] .      …(8) 
This proves the theorem.  
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THEOREMS OF STURM AND ZEROS OF SOLUTIONS 
 
 
This lesson deals in the main, with differential equations of the type  

   L(u) ≡ ��

�
��

�

dt
du

)t(p
dt
d

+q(t) u = 0,     …(1) 

in which p(t) and q(t) are, throughout the closed interval a ≤ t ≤ b, continuous real functions of the 
real variable t. p(t) does not vanish, and may therefore be assumed to be positive, and has a 
continuous first derivative throughout the interval. 

The fundamental existence theorem has established the fact that differential equation (1) has one 
and only one continuous solution with a continuous derivative which satisfies the initial 
conditions  
   u(t0) = c1, u′(t0) = c2,       …(2) 

where t0 is any point of the closed interval [a, b]. But valuable as the existence theorem is from 
the theoretical point of view, it supplies little or no information as to the nature of the solution 
whose existence it guarantees. 

It is important from the point of view of physical applications, and not without theoretical interest, 
to determine the number of zeros which the solution has in the interval [a, b]. This problem was 
first attacked by Sturm in 1836. The theory based upon his work is now regarded as classical. The 
“theorems of comparison”, which form the core of the present lesson, are fundamental, and serve 
as the basis of a considerable body of further investigation.  In one of the previous lessons, we 
have proved that no continuous solution of equation (1) have an infinite number of zeros in [a, b] 
without being identically zero.  

The phrase “comparison theorems” for differential equations is used in the sense stated below : 

 “If a solution of a differential equation has a certain known property then the solutions of 
a second differential equation have the same or some related property under certain conditions”. 
 
These theorems have many interesting implications in the theory of oscillations.  

Theorem (19.1) Let u1(t) and u2(t) be two linearly independent solutions of 

   ��

�
��

�

dt
du

)t(p
dt
d

 + q(t) u = 0 , 

in [a, b], with p(t) > 0.  Prove that u1(t) and u2(t) do not admit common zeros.  

Proof. If possible, suppose that solutions u1(t) and u2(t) admit a common zero at t = t0, say,                
t0 ∈[a, b]. Then  

  u1(t0) = u12(t0) = 0 .       …(1) 
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From Abel’s lemma, we have 
   p(t) [u1(t) u′2(t) − u1′(t) u2′(t)] = constt = c ,    …(2) 
for all t∈[a, b]. In particular, for t = t0, we obtain 
   p(t0) [u1(t0) u2′(t0) − u1′(t0) u2(t0)] = c 
or   c = 0 .         …(3) 
Hence, from equations (2) and (3), we obtain  
   p(t) [u1(t) u2(t) − u1(t) u2(t)] = 0, for all t∈[a, b] 
 � u1(t) u2(t) − u1(t) u2(t) = 0 for all t∈[a, b], as p(t) > 0 
 � W(u1, u2)(t) = 0 for all t∈[a, b] .      …(4) 

Thus, it follows that u1 and u2 are linearly dependent (why) which is a contradiction to the 
hypothesis. Hence u1 and u2 can’t have common zero. This completes the proof.  

Restatement.  If non-trivial solutions u1(t) and u2(t) of differential equation 

   ��

�
��

�

dt
du

)t(p
dt
d

+ q(t) u = 0, t∈[a, b], 

have a common zero on [a, b], then they are linearly dependent on [a, b]. 

Theorem. (19.2). Let u(t) be a non-trivial solution of the differential equation. 

   ��

�
��

�

dt
du

)t(p
dt
d

+ q(t) u = 0 in [a, b]. 

Prove that the zeros of u(t) are isolated. 

Proof. Let t = t0 be a zero of u(t). Then 
   u(t0) = 0 .        …(1) 
Since u(t) is a non-trivial solution of differential equation,  

   ��

�
��

�

dt
du

)t(p
dt
d

 + q(t) u = 0, t∈[a, b]     …(2)\ 

it follows that 
   u′(t0) ≠ 0,        …(3) 

otherwise, by uniqueness theorem, u(t) ≡ 0, which is not the case. Now there are two possible 
cases.  

Case 1. Where  u′(t0) > 0 .        …(4) 

Since the derivative of u(t) is continuous and positive at t = t0, it follows that the function u(t) is 
strictly increasing in some neighbourhood of t = t0 . This means that t = t0 is the only zero of u(t) 
in that neighbourhood.  This shows that the zero, t = t0, of u(t) is isolated. 

Case 2. When   u′(t0) < 0 .        …(5) 
The proof is similar (left as an exercise) to that of case I. This completes the proof.  

Theorem. (19.3). Let u1(t) and u2(t) be non-trivial linearly dependent solutions of differential 
equation 

   ��

�
��

�

dt
du

)t(p
dt
d

+ q(t) u = 0, 

on [a, b], and p(t) > 0. Then the zeros of u1(t) and u2(t) are identical. 

Proof. Since u1(t) and u2(t) are linearly dependent on [a, b], so there exists constants c1 and c2, not 
both zero, such that  
   c1 u1(t) + c2 u2(t) = 0,       …(1) 
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for all t∈[a, b].   Now, we shall show that neither c1 nor c2 is zero.  
If c2 = 0, then (1) gives 
   c1 u1(t) = 0 for all t ∈ [a, b] 
 �   c1 = 0,        …(2) 
as u1(t)  ≡ 0 on [a, b]. This is a contradiction to the assumption that both of c1 and c2 are not zero.  
 
So 
   c2 ≠ 0.         …(3) 
Similarly (exercise), 
   c1 ≠ 0.         …(4) 
Let t = t0 be a zero of u1(t).  Then 
   u1(t0) = 0.        …(5) 
Equation (1) gives  
   c1 u1(t0) + c2 u2(t0) = 0 
 � c2 u2(t0) = 0 
 � u2(t0) = 0 .         …(6) 

This shows that t0 is also a zero u2(t).  Thus, every zero of u1(t) is also a zero of u2(t).  Similarly, 
(exercise) every zero of u2(t) is also a zero of  u1(t). Hence, u1(t) and u2(t) both have the same 
zeros. This completes the proof.  

Illustration. Consider the differential equation 

   2

2

dt
ud

+ u = 0,        …(1) 

with p(t) ≡ 1, q(t) ≡ 1 on every interval [a, b] of real line. 
Let   u1(t) = A sin t,        …(2) 
   u2(t) = B sin t,        …(3) 

where A and B are arbitrary constants. Then u1(t) and u2(t) are two non-trivial linearly dependent 
solutions of the given differential equation. These solutions have the following common zeros at 
   t = + nπ, n = 0, 1,2,3,… 
and no other zero.  

Theorem. (19.4). (known as Separation theorem). Let u1(t) and u2(t) be two real-valued non-
trivial linearly independent solutions of differential equation 

    ��

�
��

�

dt
du

)t(p
dt
d

+q(t) u = 0 , 

on the interval [a, b], with p(t) > 0.  Then the zeros of u1(t) separate and are separated by those of 
u2(t). 

Proof. Let t = t1, t2 be two consecutive zeros of u1(t) on [a, b] so, 
   u1(t1) = u1(t2) = 0, a ≤ t1 < t2 < b.     …(1) 

Since u1 and u2 are linearly independent on [a, b], so they do not admit common zeros (why). In 
particular, 
   u2(t1) ≠ 0, u2(t2) ≠ 0.       …(2) 
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   u1 u2 u2 u1 
 
   t1  t3  t4  t2 a b 

We shall now show that u2 has one zero in the open interval (t1, t2). If possible, suppose that it 

does not happen. Then, the quotient function ��
	



��
�




2

1

u
u

satisfies (how) all the requirements of Rolle’s 

theorem on the interval [t1, t2], which are  

i) 
2

1

u
u

 is continuous in [t1, t2] 

ii) 
2

1

u
u

has continuous derivative in (t1, t2) 

iii) ��
	



��
�




2

1

u
u

(t1) = ��
	



��
�




2

1

u
u

(t2) = 0 . 

So, 
©

2

1

u
u
��
	



��
�



has atleast one zero say, t = c, in (t1, t2). That is  

   
0t2

1

u
u

dt
d

=
�
�

�
�
�

�
��
	



��
�



= 0 

 � 0
)]c(u[g

)c)(u,u(W
2

2

21 =  

 � W(u1, u2) (c) = 0,        …(3) 

which implies that solution u1 and u2 are linearly dependent on [a, b]. This contradicts the 
hypothesis that u1 and u2 are linearly independent on [a, b]. This contradiction proves that u2(t) 
has atleast one zero in the open interval (t1, t2). So, the zero of u1 are separated by zero of u2. 

Now we shall show that u2 has exactly one 
zero in the open interval (t1, t2). If possible 
suppose that u2(t) has two consecutive zeros 
t3, t4 (t3 < t4) in the open interval (t1, t2). 

On interchanging the role of solutions u1 and u2, the just above proved conclusion shows that 
there is atleast one zero, say t = t5, of u1(t) in the open interval (t3, t4) with t1 < t5 < t2. 

This contradicts the assumption that t1 and t2 were two consective zero of u1(t).  This 
contradiction proves that u2(t) has exactly one zero between two consective zeros of u1(t).  
Similarly, between two consective zeros of u2(t), there will be exactly one zero of u1(t). This 
shows that the zeros of u1 separate the zero of u2(t).  Hence the proof is complete. 

Restatement. Prove that the zeros of two real linearly independent solutions of a linear 
differential equation of the second order separate one another. 

Note. This theorem may be stated roughly as follows : “The zeros of all solutions of a given 
differential equation oscillate equally rapidly”. 

This statement implies that the number of zeros of any solution in an interval [α, β] ⊂ [a, b], 
cannot exceed the number of zeros of any independent solution in the same interval by more than 
one.  

Illustration. Consider the differential equation 

   u
dt

ud
2

2

+  = 0.        …(1) 
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    t1          t2 a b 

Here p(t) ≡ 1, q(t) ≡ 1. Then 
   u1(t) = sin t,         …(2) 
   u2(t) = cos t,        …(3) 

are two linearly independent solutions of the given differentiation equation (1). Therefore, 
between any two consective zeros of one of these two solutions, there is precisely one zero of the 
other solution.  We know that zero of u1(t) are  
   t = n π for n = 0, 1, 2,….      …(4) 
and zeros of u2(t) are 

   t = (2 m + 1) 
2
π

for m = 0, 1, 2,…     …(5) 

which are separated by each other.  

Exercise. (1) Show that between any two consective real zeros of sin 3t + cos 3t, there is 
precisely one zero of sin 3t−cos 3t and conversely. State the result which is used to show this  
Exercise. (2) Show that the zero of 
   u1(t) = A sin t + B cos t 
   u2(t) = C sin t + D cos t,  
separate one another provided that 
   AD − BC ≠ 0. 
A, B, C, D being real constants.  

Exercise. (3) Use the Sturm separation theorem to show that between any two consective zeros of 
sin 2 t  cos 2t, there is precisely one zero of sin 2t − cos 2t. 

Theorem (19.5). (known as Sturm’s Fundamental Theorem). Consider the differential 
equations  

   ��

�
��

�

dt
du

)t(p
dt
d

+ q1(t) u = 0,      …(1) 

   ��

�
��

�

dt
du

)t(p
dt
d

 + q2(t) u = 0,      …(2) 

on the interval [a, b] such that p(t) > 0 have a continuous derivative on [a, b], and q1(t) < q2(t) be 
continuous functions on [a, b]. Let u1(t)  and u2(t) be respective non-trivial solutions of equations 
(1) and (2). Prove that between any two consective zeros of u1(t) on [a, b], there lies at least one 
zero of u2(t). 

Proof. Let t1 < t2 be two consective zeros of u1(t) on [a, b]. Then 
  u1(t1) = 0 = u1(t2). …(3) 
By hypothesis, we have 

  
dt
d

[p(t) u1′(t)] + q1(t) u1(t) = 0,  …(4) 

  
dt
d

 [p(t) u2′(t)] + q2(t) u2(t) = 0,  …(5) 

for all t∈[a, b]. Multiplying (4) by u2(t) and (5) by u1(t), and then subtracting, we obtain  

   
dt
d

[p(t) {u1′(t) u2(t) − u1(t) u2′(t)}] = [q2(t) −q1(t)] u1(t) u2(t), …(6) 

for all t∈[a, b]. Integrating w.r.t. ‘t’ over the interval [t1, t2], we obtain after using (3),  

   p(t2) u1′(t2) u2(t2) −p(t1) u1′(t1) u2(t1) = �
2t

1t
{q2(t) −q1(t)} u1(t) u2(t) dt. …(7) 
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t1 t2 

u1 

u2 

 If possible, on the contrary assume 
that u2(t) does not have any zero in the open 
interval (t1, t2) .  
W.l.o.g, we can assume that u1(t) and u2(t) 
are positive in the open interval (t1, t2), i.e., 
   u1(t) > 0, u2(t) > 0 in (t1, t2).        …(8) 
By hypothesis   p(t2) > 0, p(t1) > 0.       …(9) 
Also, by assumption 
   u2(t1) ≥ 0, u2(t2) ≥ 0.       …(10) 
As t1 and t2 are consective zeros of u1, so 
   u1′(t1) > 0, u1′(t2) < 0.       …(11) 
From equations (7) and (9) to (11), it follows that  
   � 2t

1t
{q2(t) − q1(t)} u1(t) u2(t) dt ≤ 0.     …(12) 

Also, 
   q2(t) − q1(t) > 0,       …(13) 
on [t1, t2], and 
   u1(t) > 0, u2(t) > 0       …(14) 
on (t1, t2) by assumption. From equations (13) and (14), it follows that 
   � 2t

1t
{q2(t) − q1(t)} u2(t) u2(t) dt > 0.     …(15) 

This contradicts (12). This contradiction proves that our assumption that u2(t) has no zero in      
(t1, t2) is wrong. So, u2(t) has atleast one zero between two consective zeros of u1(t).  

This completes the proof. 

Remark. (1) In particular, if u1(t) and u2(t) are both zero at t = t1 then the theorem (19.5) shows 
that u2(t) vanishes again before the consective zero of u1(t) appears. Thus, u2(t) oscillates more 
rapidly that u1(t). 

Remark. (2) Theorem (19.5) is also termed as “Sturm’s comparison theorem”. 

Example. State Sturm’s fundamental comparison theorem Verify it in the case of real solutions of 
the differential equation equations 

   2

2

dt
ud

+ A2 u = 0, 

and 

    2

2

dt
ud

 + B2 u = 0, 

where A and B are constants such that B > A > 0. 

Solution. Let 
   u1(t) = sin At,        ...(1) 
   u2(t) = sin Bt .        …(2) 
Then u1(t) and u2(t) are real solution of given equations, respectively.  Consecutive zeros of u1(t) 
are 

   
A

)1n(,
A
n π+π

 for n = 0, + 1, + 2,…     …(3) 
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u1(t) 

u2(t) 

ξ2 =  

By Sturm’s comparison theorem (19.5) with p(t) ≡ 1, q1(t) = A2, q2(t) = B2, q2>q1), the solution 

u2(t) has atleast one zero, say ξn, between the zeros 
A

)1n(and
A
n π+π

 of u1(t). That is,  

   
A

)1n(
A
n π+<ξ<π

η , n = 0, + 1, + 2,…,    …(4) 

we making take  

ξη = 
B

)1n( π+
,        …(5) 

as zero of u2(t)  .           
In particular, for n = 0, 

   t1 = 0, t2 = 
A
π

        …(6) 

are two consective zeros of u1(t). The zero t = 
B
π

 of u2(t) lies between t1 and t2, as 

   0 < 
B
π

<
A
π

 . …(8) 

 

                                                                                     t1= 0               π/B           t1 = π/A 
         ξ1 = 0                    
This verifies the results of comparison  

theorem.  Consequently, the solutions of differential equation (2) oscillates more rapidly than 
those of differential equation (1). 

Theorem (19.6) In the differential equation  

   2

2

dt
ud

+ q(t) u = 0,       …(1) 

let q(t) be real-valued continuous, and satisfying 
   0 < m ≤ q(t) ≤ M.       …(2) 
If u = u(t) ≡ 0 is a solution with a pair of consecutive zeros t = t1, t2 (t1 < t2), prove that 

   
M
π ≤ t2 − t1 ≤ 

m
π

.       …(3) 

Solution. Consider the differential equations with constant coefficients 

   2

2

dt
ud

 + m u = 0,       …(4) 

   2

2

dt
ud

 + Mu = 0.       …(5) 

we note that 
   u1(t) = sin m (t − t1)       …(6) 
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u1 

u 

t1 t2 t1+ m/π  

u2 

t1 t2 

u 

is a solution of differential equation (4) such 

that u1(t1) = 0 and u1 �
	



�
�


 π+
m

t1 = 0. That is, 

t1 and t1 + 
m
π

 are consecutive zeros of 

solution u1(t) of differential equations (4). It 
is also given that  
   q(t) ≥ m > 0 . 

Hence, by Sturm’s comparison theorem (19.5) the zeros t1 and t1 +
m
π

 of u1(t) are separated  by 

zero t = t2 of u(t).  So 

   t1 < t2 ≤ t1 + 
m
π

 

 �  t2 − t1 ≤ 
m
π

.        …(7) 

we again note that 
   u2(t) = sin M (t − t1)       …(8) 

is a solution of differential equation (5) with consective zeros t = t1, t1 +
M
π

. Also 

   M ≥ q(t) > 0 .          …(9) 
Hence, by Sturm’s comparison theorem 
(19.5), the consecutive zeros t1, t2 of u(t) are 

separated by the zero t = t1 +
M
π

 of u2(t). 

That is 

   t1 < t1  
M
π

 ≤ t2 

 �  
M
π

 ≤ t2 − t1 .        …(10) 

Hence from equation (9) and (10), the result follows.  

Remark. Theorems (19.4) to (19.6) provide information about the interlacing of zeros. 

Example. Given the differential equation 

   2

2

dt
ud

 + q(t) u = 0,       …(1) 

where q(t) > 0 on [a, b]. Let qm denote the minimum value of q(t) on [a, b]. If 

   qm > 2

22

)ab(
k

−
π

,        …(2) 

show that every real solutions of the given equation has atleast k zeros on a ≤ t ≤ b. 

Solution. Consider the differential equation 

   2

2

dt
ud

+ 2

22

)ab(
k

−
π

u = 0,       …(3) 

which has a solution 
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   u1(t) = sin �
	



�
�




−
π
ab

k
 (t −a) ,      …(4) 

and its zero are given by  

   t − a = π
π
−

k
)ab(n

 = ,
k

)ab(n −
for n = 0, + 1 + 2,… 

i.e.   (t−a) = 0, + 
k

)ab(3
,

k
)ab(2

,
k

ab −±−±−
, ….    …(5) 

we note that the zeros 

   t = a, ,a
k

)ab(k
,...,a

k
)ab(2

,a
k

ab +−+−+−
    …(6) 

                 ( ≡ t1, t2, t3,…, tk+1 say) 
of u1(t) are consective, lie in a ≤ t ≤ b and (k+1) in number. 
Since qm is the minimum value of q(t) an a ≤ t ≤ b, so, 

   q(t) ≥ qm > 2

22

)ab(
k

−
π

on a ≤ t ≤ b , 

 �  q(t) > 
2

ab
k

�
	



�
�




−
π

on a ≤ t ≤ b.      …(7) 

Now, we apply the Sturm comparison theorem (19.5) to differential equations (1) and (3) with 
inequality (7). By this theorem, there is atleast one zero of every solution of equation (1) between 
any two consective zeros of u1(t) in a ≤ t ≤ b. Consequently, there are atleast k zero of every 
solution of equation (1) on [a, b]. 

This completes the solution.  

Modifications due to Picone (without proof) 

Picone (1909) considered the more general case which compares the rapidity of the oscillations of 
the solutions of the two differential equations 

   
�
�
�

�
�
�

dt
du

)t(p
dt
d

1 − q1(t) u = 0,      …(1)  

   
�
�
�

�
�
�

dt
dv

)t(p
dt
d

2 + q2(t) v = 0,      …(2)  

wherein  
   p1(t) ≥ p2(t) > 0,       …(3) 
and 
   q1(t) ≤ q2(t),        …(4) 
in [a, b]. He showed that between any two consective zeros of u, there is atleast one zero of v.  

Article. (19.7) Find conditions that the solutions of differential equation 

   
�
�
�

�
�
�

dt
du

)t(p
dt
d − q(t) u = 0      …(1)  

for t in [a, b] may be oscillatory or non-oscillatory. 

Solution. The functions p(t) and q(t) in equation (1) are being supposed to be continuous and 
bounded in the closed interval [a, b]. Let Mp and Mq be the upper bounds of p(t) and q(t) in [a, b] 
respectively. Let mp and mq be their lower bounds, respectively. Then, throughout [a, b], we have 
   Mp ≥ p(t) ≥ mp > 0,       …(2) 
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and 
   Mq ≥ q(t) ≥ mq  .       …(3) 

Result. 1. Consider, the differential equation (with constant coefficients) 

   
�
�
�

�
�
�

dt
du

m
dt
d

p − mq u = 0,      …(4) 

which may be written as 

   
�
�

	




�
�

�



−

p

q
2

2

m

m

dt
ud

 u = 0.       …(5) 

By Picone theorem, the solutions of equation (1) do not oscillate more rapidly in [a, b] than the 
solution of (4). We observe that equation (4), in its alternative form (5), is immediately integrable. 
Solutions of (5) are as follows 

(i) If mq > 0, there is the exponential solution exp
�
�

�

�

�
�

�

�

��

�
�
�

��

�
�
�

t
m

m

p

q , which has no zero in [a, 

b]. Similarly, if mq = 0, the comparison solution may be taken as unity. Hence, if mq ≥ 0 the 
solutions of (4) are non-oscillatory. This leads to the conclusion that if q(t) ≥ 0 throughout the 
interval [a, b], the solutions of the given differential equation (1) are non-oscillatory. 

  (ii) If mq < 0, there is the oscillatory solution sin
��

�
�
�

��

�
�
�

�
�

	




�
�

�



− t

m

m

p

q . The interval between its 

consective zeros, or between consective zeros of any other solution of the comparison equation, is 

��

�
�
�

��

�
�
�

π
�
�

	




�
�

�



−

q

p

m

m
. If, therefore, 

   π
�
�

	




�
�

�



−

q

p

m

m
> b − a,       …(6) 

no solution of the given equation can have more than one zero in the interval [a, b]. Consequently 
the solutions of the given differential equation (1) are non-oscillatory provided 

   −
2

2

p

q

)ab(m

m

−
π< .       …(7) 

Result II. Now, we consider a second comparison equation (with constant coefficients) 

   
�
�
�

�
�
�

dt
du

M
dt
d

p − Mq u = 0,      …(8) 

or equivalently 

   
�
�

	




�
�

�



−

p

q
2

2

M

M

dt
ud

 u = 0.       …(9) 

Then the solutions of differential equation (1) oscillate atleast as rapidly as those of differential 
equation (9).  

 Let Mq be negative ; then the solutions of (9) are oscillatory, and the interval between 
consective zeros of any solution is 
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   { }�M/M qp− . 

It follows that a sufficient condition that the solutions of the given differential equation (1) should 
have atleast m zeros in the interval [a, b] is that 
   m π )M/M( qp− ≤ b − a 

or 

   − 2

22

p

q

)ab(
�m

M

M

−
≥

�
�

	




�
�

�



.       …(10) 

In particular, a sufficient condition that the differential equation (1) should possess a solution 
which oscillates in the interval [a, b] is that 

   − 2

2

p

q

)ab(
�

M

M

−
≥

�
�

	




�
�

�



. 

Theorem. (19.8) Consider the differential equations 

   
�
�
�

�
�
�

dt
du

)t(p
dt
d

+ q1(t) u = 0,      …(1) 

   
�
�
�

�
�
�

dt
dv

)t(p
dt
d

+ q2(t) v = 0,      …(2) 

where p(t) > 0, q2(t) > q1(t) on a ≤ t ≤ b. Furthermore, either 

 (i)   
)a(v
)a(©v

)a(u
)a(©u ≥ , u(a) ≠ 0, v(a) ≠ 0 ,     …(3) 

or 
 (ii)  u(a) = 0 , v(b) = 0.       …(4) 

Then v(t) has atleast as many zeros in [a, b] as u(t). In the case (3), if the zeros of u(t) are t1, t2,…, 
tn with a < t1 < t2 <…< tn ≤ b and the zeros of v(t) are ξ1, ξ2,…, ξm with a < ξ1 < ξ2 <…< ξm ≤ b, 
then 
   ξk < tk .        …(5) 

Proof. By the fundamental comparison theorem, between any two zeros of u(t), there is atleast 
one zero of v(t). Thus, v(t) has atleast n−1 zeros in [a, b]. It is sufficient to show that v(t) has a 
zero lying in the interval [a, t1]. 

 In case (ii), this is obvious as t = a is also a zero of v. In case (i), we assume, w. l. o. g., 
that u(t) > 0, v(t) > 0 in (a, t1). We have 
   [p(t) {v(t) u′(t) − v′(t) u(t) 1tt

at}] =
=  

   = p(t1) u′(t) v(t1) − p(a)
�
�
�

�
�
� −

)a(v)a(u
)a(©v)a(u)a(v)a(©u

. u(a) v(a) 

   = p(t1) u′(t1) v(t1) − p(a) 
�
�
�

�
�
�

−
)a(v
)a(©v

)a(u
)a(©u

u(a) v(a) 

   > 0         …(6) 

as   
)a(v
)a(©v

)a(u
)a(©u ≥ , p(a) ≥ 0, p(t1) ≥ 0, u′(t1) < 0, v(t1) > 0, u(a) > 0, v(a) > 0 , 

and 
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   � 1t
a {q2(t) − q1(t)} u(t) v(t) ≤ 0.     …(7) 

This is a contradiction, hence proof is complete.  

Theorem. (19.9) Consider the differential equations 

   
�
�
�

�
�
�

dt
du

)t(p
dt
d

+ q1(t) u = 0,      …(1) 

   
�
�
�

�
�
�

dt
dv

)t(p
dt
d

+ q2(t) v = 0,      …(2) 

where p(t) > 0, q2(t) > q1(t) on [a, b] . Further, let either  

 (i)   
)a(v
)a(©v

)a(u
)a(©u ≥ , u(a) ≠ 0, v(a) ≠ 0 ,     …(3) 

or 
 (ii)  u(a) = 0 v(b) = 0.       …(4) 
Suppose that u(t) and v(t) have the same number of zeros in [a, b]. Then, show that 

   
)b(v
)b(©v

)b(u
)b(©u > , if u(b) ≠ 0.  

Proof. Since u(b) ≠ 0 and v(t) has as many zeros in [a, b] as u(t), it follows that 
   v(b) ≠ 0,        …(5) 

since, in this case, tn < b and v(t) has atleast as many zeros as u(t) in [a, b] by virtue of comparison 
theorem.  

Applying Green’s identity t0 the interval [tn, b], we have  
   {p(t) [u′(t) v(t) − u(t) v′(t)] �= b

nt
b
nt

} [q2(t) − q1(t)] u(t) v(t) .  …(6) 

W.l.o. g, we may assume that u(t) > 0, v(t) > 0 in [tn, b]. Then 
   �

b
nt

[q2(t) − q1(t)] u(t) v(t) > 0.     …(7) 

So, using (6) and (7), we have 
   p(b) [u′(b) v(b) −u(b) v′(b)] > p(tn) [u′(tn) v(tn)],     (Θ u(tn) = 0) 
               > 0      (Θp(tn) >0, v(tn) >0 u′(tn) >0)  
 � u′(b) v(b) > u(b) v′(b) 

 � 
)b(v
)b(©v

)b(u
)b(©u > .   [Θ v(b) > 0, u(b) > 0] 

This proves the result.  

Theorem (19.10). Let the coefficient functions in differential equations 

   �
	



�
�




dt
du

)t(p
dt
d

1 + q1(t) u = 0,      …(1) 

   �
	



�
�




dt
du

)t(p
dt
d

2 + q2(t) u = 0,      …(2) 

be continuous on the interval I = [a, b] and let 
   p1(t) ≥ p2(t) > 0 and q1(t) ≤ q2(t).     …(3) 

Let u = u1(t) ≡/  0 be a solution of (1) and let u1(t) have exactly n (≥ 1) zeros t = t1 < t2 <…< tn in 
[a, b]. Let u = u2(t) ≡/  0 be a solution of (2) satisfying 

   
)a(u

)a(©u)a(p
)a(u

)a(©u)a(p

2

22

1

11 ≥  .      …(4) 
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Then u2(t) has atleast n zeros on a < t ≤ tn. Furthermore, u2(t) has at least n zeros on a < t < tn if 
either the inequality (4) holds or equation (2) is a strict Sturm majorant for equation (1) on the 
interval a ≤ t ≤ tn. 

Proof. In view of (4), it is possible to define a pair of continuous function φ1(t) and φ2(t) on the 
interval I = [a, b] by 

   φj(t) = tan−1

�
�

	




�
�

�




)t(u)t(p

)t(u
©
jj

j  j = 1, 2,    …(5) 

with   0 ≤ φ1(a) ≤ φ2(a) < π .       …(6) 
Then, the analogue of first order differential equation in Prufer transformation, is  

   
)t(p

1
dt

�d

j

j =  cos2 φj(t) + qj(t) sin2 φj(t) ≡ fj (t, φj), say .  …(7) 

Since the continuous functions fj (t, φj) are smooth as functions of the variable φj, the solutions of 
two differential equations in (7) are uniquely determined by their initial conditions. 
From inequalities in (3), it follows that 
   f1(t, φ) ≤ f2(t, φ) ,       …(8) 
for a ≤ t ≤ b and all φ. Also, the initial conditions satisfy the inequality in (6). So by comparison 
theorem for differential inequalities, it follows that   
   φ1(t) ≤ φ2(t) for t∈[a, b] .      …(9) 
In particular, by hypothesis  
   φ1(tn) = nπ.        …(10) 
From (9) and (10), it follows that 
   n π ≤ φ2(tn)        …(11) 
Hence it follows that u2(t) has atleast n zeros on the interval (a, tn]. 

Proof of last part of the theorem. 

Suppose first that the sign of inequality holds in (4). Then  
   φ1(a) < φ2(a)        …(12) 
Let φ20(t) be the solution of second equation (for j = 2) in (7) satisfying the initial condition 
   φ20(a) = φ1(a),        …(13) 
so that 
   φ20(a) < φ2(a).        …(14) 
Since solutions of equation (7), for j = 2, are uniquely determined by initial conditions, so  
   φ20(t) < φ2(t) for t∈{a, b].      …(15) 
From equation (9) and (15), we find 
   φ1(t) ≤ φ20(t) < φ2(t) for t ∈[a, b] ,     …(16) 
and equations (10) and (16) imply 
   φ2(tn) > nπ .        …(17) 
Hence u2(t) has n zeros on the interval (a, tn] . 

 Now, consider the case that equality holds in (4) but equation (2) is a strict Sturm majorant 
for equation (1) on the interval a ≤ t ≤ tn. Then, by definition, either  
   q1(t) < q2(t)                  …(18a) 
or 
   p1(t) > p2(t) > 0 and q2(t) ≠ 0                …(18b) 
holds at some point of [a, tn]. 
Write equation (7) for j = 2, as 
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1

2 p
1

©=φ cos2 φ2 + q1 sin2 φ1 + ∈(t)     …(19) 

where 

   ∈(t) = ��
	



��
�



−

12 p
1

p
1

cos2 φ2 + (q2 − q1) sin2 φ2 .    …(20) 

If the assertion/result is false, it follows from the case first considered that 
   φ1(t) = φ2(t) for a ≤ t ≤ tn.      …(21) 
Hence,  
   φ1

′(t) = φ2
′(t) 

and so 
   ∈(t) = 0 for a ≤ t ≤ tn .       …(22) 
Since  
   sin φ2(t) = 0 
only at the zeros of u2(t), it follows, from equation (20) and (22), that 
   q2(t) = q1(t) for a ≤ t ≤ tn.      …(23) 
Consequently, from equation (20), (22) and (23), we have 
   ( )1

1
1

2 pp −− −  cos2 φ2(t) = 0.      …(24) 

Since 1
1

1
2 p)t(p −− − (t) > 0 at some point t, it follows that  

   cos φ2(t) = 0        …(25) 
 � u2′(t) = 0.         …(26) 

If (18a) does not hold at any t on [a, tn], it follows that (18b) holds at some point t and hence on 
some subinterval of [a, tn]. But then 
   u2′(t) = 0, 
on this interval, thus 
   (p2 u2′)′ = 0, 
on this interval. But this contradicts 
   q2(t) ≠ 0 
on this interval. This contradiction proves the theorem. 
Remark. The above discussed comparison theorems aim at comparing the distribution of the zero 
of the solution of the given differential equation with the distribution of the zeros of the solution 
of some “other” differential equation.    
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STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS 
(SLBVP)  
 
 
By a boundary problem in its general sense is meant the question as to whether a given differential 
equation possesses or does not possess solutions which satisfy certain boundary, or end-point, 
conditions.   
SLBV problems represent a class of linear BVPs.  These problems arise naturally, for instance, 
when separation of variables is applied to the wave equation, the potential equations, or the 
diffusion equation.  The importance of these  problems lies in the fact that they generate sets of 
orthogonal functions.  The sets of orthogonal functions are useful in the expansion of a certain 
class of functions.  
 
The Sturm-Liouville differential equation is  

  ��

�
��

�

dt
du

)t(p
dt
d

+ [q(t) + λ r(t)] u = 0 ,      (1)  

where p, p′, q, and r are continuous and  

  p(t) > 0 ,  r(t) > 0  ,        (2)  
on the interval [a,b] and λ a real number.   Equation (1) is equivalently written as  
  L [u(t)] = −λ u(t),        (3) 
where the Sturm-Liouville operator, L, is defined by  

  L =  
�
�
	



�
� +��

�
��

� )t(q
dt
d

)t(p
dt
d

)t(r
1

     (4) 

The parametric λ is called an eigenvalue of the differential equation.  

Given a specific set of boundary conditions, there may be specific values of λ for which equation 
(1) has a non-trivial solution called eigenfunction.   For different types of boundary conditions, 
different types of behaviour are possible.  
 
Note :  The operator L, as defined above, is formally self-adjoint. The boundary conditions are of 
the form  
 α1 u(a) + α2u′(a) = 0   
 β1 u(b) + β2 u′(b) = 0    ,        (5)  
where α1 and α2 are constants (not both zero), and β1 and β2 are constants (not both zero). 
 The boundary conditions of the form  
 u(a) = u(b)   
 u(a) = u′(b)   ,          (6) 
are called periodic.  

Example.  Find non-trivial solutions of the SLBVP  
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 u
dt

ud
2

2

λ+  = 0 ,   

 u(0) = u(π) = 0.       (1) 
Solution.   λ  is a real number.  We consider separately the three cases : λ = 0, λ < 0 and λ > 0 .  

Case 1.  λ = 0.  In this case, a solution of given differential equation is  

  u(t) = c1 t + c2         (2) 

The boundary condition  u(0) = 0  implies 

    c2  = 0 .         (3) 

The boundary condition  u(π) = 0  implies 

c1π = 0  

or   c1 = 0 .        (4) 

This shows that, in this case, λ = 0  is not an eigenvalue as it corresponds to only trivial solution.  

Case 2.  When λ < 0 .  We write λ = −α2 ,  α > 0       (5) 

In this case, solution of given equation is of the type  
  u(t) = c1 eαt + c2 e−αt        (6)  
Now   the boundary condition u(0) = 0 implies 

c2 = −c1 ,         (7)  
and the boundary condition u(π) = 0 gives 

 c1(eαπ − e−απ ) = 0  
 or                   c1(e2απ −1) = 0 . 
To have a non-trivial solution, c1 should not be zero (otherwise, c2 will also be zero), so that  
  e2απ = 1  

or            α  = 0  
or            λ  = 0 ,        (8) 

which is not possible.  Thus, no negative real number can be an eigen-value of the given SLBVP.   

Case 3.   When λ > 0  .  We write λ = α2 , α > 0  .      (9) 
A solution of the given differential equation is  
  u(t) = c1 sin αt + c2cos αt  
The boundary condition u(0) = 0  implies  

     c2 = 0 ,         (10) 
and the condition u(π) = 0 gives  
              c1sin απ = 0  
 or           sin   απ = 0   (otherwise, if c1 = 0 , no non-trivial solution exist)  

or                     α =  ± n  
or                     λ = n2 ,  n =  1, 2, 3,…      (11) 

Thus, the eigenvalues of the given SLBVP are given by (11).    The corresponding eigenfunction, 
upto a multiplicative constant, is  
  u(t) =  sin nt ,         (12) 
for n = 1, 2,3,…  
This completes the solution.  

Exercise.   Find the eigenvalues and eighenfunctions of each of the following SLBVP’s.  
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(i) 
2

2

dt
ud

 + λu = 0 ,  u(0) =  u(π/2) = 0 . 

(ii) 
2

2

dt
ud

+ λu = 0  ,   u(0) =  0, u(L) = 0 , L > 0  .  

(iii) u
tdt

du
t

dt
d λ+��

�
��

� = 0 ,  u(1) = 0 ,  u(eπ) = 0  

(iv) ,0u
1tdt

du
)1t(

dt
d

2
2 =

+
λ+��

�
��

� +  u(0) = 0 = u(1) .  

Theorem 20.1.  Prove that the eigenvalues of a SLBVP are discrete.  

Proof.  Let u1(t; λ) and u2(t; λ) be two linearly independent solutions (for fixed λ) of a SLBV 
problem consisting of a differential equation.  

 +
�
�
	



�
�

dt
du

)t(p
dt
d

{q(t) + λr(t)]u = 0 ,       (1) 

and the boundary conditions  
  u(a) = u(b) = 0 .        (2) 
Then any solution of differential equation (1) can be expressed as  
  u(t; λ) = Au1(t; λ) + Bu2(t; λ) ,     (3) 
the linear combination of u1 and u2 .  The constants A and B are determined by requiring u(t; λ), in 
(3), to satisfy the boundary conditions in (2).   Application of these boundary conditions leads to  
 A u1(a; λ) + B u2 (a; λ) = 0  
 A u1(b; λ) + B u2(b ; λ) = 0  ,       (4) 
or a matrix equation 

 


�

�
��
�

�

λλ
λλ

);b(u);b(u
);a(u);a(u

21

21



�

�
��
�

�

B
A

 = 


�

�
��
�

�

0
0

 .      (5) 

Thus, equations (4) can be solved for A and B only if the determinant of the matrix of coefficients 
in (5) vanishes.  Otherwise, the only solution is A = B = 0 , which yields the trivial solution               
u(t) = 0 .  The condition for a non-trivial solution of (4)  is therefore given by  

 
);b(u);b(u
);a(u);a(u

21

21

λλ
λλ

= u1(a,λ) u2 (b; λ) − u1(b; λ) u2(a; λ)  

          = 0 .       (6) 
If we consider u1 (t; λ) and u2(t; λ) to be analytic functions of λ, then the determinant itself is an 
analytic function of λ .  Therefore, the zeros of the determinant, by the theory of complex-valued 
functions, must be isolated (how).   
Since the zeros of the determinant correspond to allow solutions of the SLBVP, we conclude that 
the eigenvalues of (1) and (2) are discrete.  
This completes the proof.   

Definition 1.   Two functions u(t) and v(t) are said to be orthogonal w.r.t. a weight function w(t) 
on the interval a ≤ t ≤ b if  

  �
b

a
)t(w u(t)v(t) = 0  .  

Definition 2.  Let {φn(t)} be a sequence of functions on a ≤ t ≤ b .  Then these functions are called 
mutually orthogonal w.r.t. a weight function w(t) on a ≤ t ≤ b if  
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  �
b

a
)t(w φn(t) φm(t) dt = 0  ,   for n ≠ m .  

Illustration (1).   Two functions f(t) = sin t and g(t) = sin 5t are orthogonal w.r.t the weight 
function w(t) = 1 on the interval 0 ≤ t ≤ π ,  for  

  �
π

0
tsin  sin 5t dt =  � −

π

0
dt}t6cost4{cos

2
1

 

    = 
π

��

�
��

� −
04

t6sin
4

t4sin
2
1

 

    = 0  .  
(2) Consider the sequence {φn} of functions, where  

φ(t) = sin nt ,   n =  1, 2, 3,… 
on the interval 0 ≤ t ≤ π .  The set {φn} is an orthogonal system w.r.t. the weight function w(t) = 1 
on the interval 0 ≤ t ≤ π,  for m ≠ n ,  

  �
π

0
mtsin  sin nt dx  = 

π=

=
��

�
��

�

+
+−

−
− t

0tnm
t)nmsin(

nm
t)nmsin(

2
1

  

          =  0 . 

Theorem 20.2.  (Orthogonality of characteristic functions) :   
(1) Consider the Sturm-Liouville problem consisting of the differential equation  

  ��

�
��

�

dt
du

)t(p
dt
d

 + [q(t) + λ r(t)]u = 0  ,      (1) 

where p, q, r are real functions such that p has a continuous derivative, q and r are continuous, and 
p(t) > 0 and r(t) > 0  for all t ε [a,b] ; and λ  is a parameter independent of t; and  
(II)  the conditions  A1u(a) +   A2u′(a) = 0   
   B1 u(b) + B2 u′(b) = 0 ,     (2) 
where A1, A2, B1, B2 are real constants such that A1 and A2 are not both zero and B1 and B2 are not 
both zero.  
(III)  Let λm and λn be any two distinct characteristic values of this problem.  Let φm be a 
characteristic function corresponding to λm and let φn be a characteristic function corresponding to 
λn .  
 
Prove that the characteristic functions φm and φn are orthogonal with respect to the weight function 
r(t) on the interval a ≤ t ≤ b .  
 
Proof.  Since φm is a characteristic function corresponding to λm, the function φm satisfies the 
differential equation (1) with λ =  λm.  Thus 

  [ ])t(©)t(p
dt
d

mφ  + [q(t) + λm r(t)]φm(t) = 0 .    (3) 

Similarly  

  [ ])t(©)t(p
dt
d

nφ + [q(t) + λnr(t)]φn(t) = 0 .     (4) 

Multiplying both sides of (3) by φn(t) and both sides of (4) by φm(t) and then subtracting the 
results, we obtain  
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 φn(t) [ ])t(©)t(p
dt
d

mφ  − φm(t) [ ])t(©)t(p
dt
d

nφ  

   = (λn−λm) r(t) φn(t) φm(t) .      (5)  
This implies  

 [ ])}t(©)t()t()t(©){t(p
dt
d

nmnm φφ−φφ  = (λn−λm) r(t) φn(t)φm(t) .  (6) 

We now integrate both sides of this identity from a to b to obtain  

(λn−λm) �
b

a
)t(r φn(t) φm(t)dt = p(b)[φn(b)φ′m(b) − φm(b)φ′n(b)]  

    − p(a)[φn(a)φ′m(a) − φm(a)φ′n(a)] .  (7) 
Since φm and φn are characteristic functions of the problem, they satisfy the supplementary 
conditions of the problem.  That is,  
  A1φm(a) + A2 φ′m(a) = 0   
  B1φm(b) + B2φ′m(b) = 0   ,       (8) 
and  
  A1φn(a) + A2φ′n(a) = 0   
  B1φn(b) + B2φ′n(b) = 0  .       (9) 
Now we discuss all the possible cases :  

Case 1.  If A2 = 0 , B2 = 0 .  Then A1 ≠ 0 and B1 ≠ 0, since both of A1 and A2 are not zero and both 
of B1 and B2 are not zero.  Conditions (8) and (9) yields  
  φm(a) = 0 ,  φm(b) = 0 ,  φn(a) = 0 ,  φn(b) = 0  .    (10) 
From equations (7) and (10), we see that  

  (λn−λm) �
b

a
)t(r φn(t)φm(t)dt = 0  .      (11) 

Case II.  If A2 = 0  but B2 ≠ 0 .  Then A1 ≠ 0 .   Let  

  
2

1

B
B

 =  α .         (12) 

Then conditions (8) and (9) gives  
  φm(a) = 0 ,  φn(a) = 0  .       (13) 
and  
  α φm(b) +  φ′m(b) = 0 ,  αφn(b) + φ′(b) = 0  .     (14)  
Using results (13) and (14), the right hand side of (7) takes the form  
  p(b)[φn(b) {−αφm(b)} − φm(b) {−αφn(b)}]      
         = p(b) [−α φn(b)φm(b)+αφm(b)φn(b)]  
         = 0  ,        
Hence   

  (λn−λm) �
b

a
)t(r φn(t) φm(t) dt  = 0 .       (15) 

Case III.  If A2 ≠ 0 ,  B2 = 0 .  This case is similar to Case II.   

Case IV.  If A2 ≠ 0 , B2 ≠ 0 .  Let  
  α1 = A1/A2 ,   
  α2 = B1/B2 .        (16) 
Then conditions (8) and (9) takes the form  
  α1φm(a) +  φ′m(a) = 0  ,  
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  α2φm(b) + φ′m(b) = 0  ,    
  α1φn(a) + φ′n(a) = 0  ,  
  α2φn(b) + φ′n(b) = 0 .         (17) 
Using (17) the right hand side of (7) becomes  
  p(b)[φn(b) {−α2φm(b)} − φm(b) {−α2φn(b)}]  
   −p(a)[φn(a){−α1φm(a)}−φm(a){−α1φn(a)}]   
   = 0 . 

Hence  

  (λn−λm) �
b

a
)t(r φn(t)φm(t)dt = 0 .      (18) 

Thus in all possible cases, we conclude that  

  (λn−λm) �
b

a
)t(r φn(t) φm(t)dt = 0  .     (19) 

Since λm and λn are distinct eigenvalues, therefore,  

  �
b

a
)t(r φn(t) φm(t) dt  = 0 .        (20)  

This proves that eigenfunctions φm(t) and φn(t) are orthogonal w.r.t. the weight function r(t) on 
[a,b].   
 
Illustration.  Consider the already discussed SL-problem  

  
2

2

dt
ud

 + λu = 0         (1) 

  u(0)  = 0 , u(π) = 0  .        (2) 
We know that corresponding to each eigenvalue λn =  n2, this is an eigenfunction cn sin nt, cn being 
an arbitrary  non zero constant.  Let  
  φn(t) =  sin nt .        (3) 
Then {φn} is the sequence of eigenfunctions.  

Then by the theorem (20.2), the infinite set {φn} is an orthogonal system with respect to the weight 
function r(t), where  
  r(t) = 1    for all t ε [0,π] .      (4) 
That is  

  �
π

0
tsin sin mt dt = 0   for n ≠ m,  n, m ε N .     (5) 

Theorem 20.3.  Prove that the eigenvalues of a SLBV problem are real.  

Proof.  Let λn be an eigenvalue corresponding to the eigenfunction φn(t) of the given SL-BV 
problem.  Then, by definition,  

  +�
�

�
�
�

� φ
dt

d
)t(p

dt
d n [q(t) + λn r(t)] φn(t) = 0  ,     (1) 

and 
  A1φn(a) + A2φ′n(a) = 0  ,  
  B1φn(b) + B2φ′n(b) = 0  .       (2)  
We know that p(t), q(t) and r(t) are real valued functions of t over the interval [a,b].   So, taking the 
complex conjugate of equations (1) and (2), we obtain  
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  +�
�

�
�
�

� φ
dt

d
)t(p

dt
d n [q(t) + λn r(t)] φn = 0  ,     (3) 

and  
  A1φn(a) + A2φ′n(0) = 0  ,     
  B1φn(b) + B2φ′n(b) = 0 ,       (4)   
since A1, B1, A2, B2 are real constants.  

This shows that φn is also an eigenfunction, corresponding to an eigenvalue λn of the same 
SLBVP.  So, from theorem (20.2), it follows that  

  (λn−λn) �
b

a
)t(r φn(t) φn(t) dt = 0  ,  

or  

  (λn−λn) �
b

a
)t(r |φn(t)|2 dt = 0  .     (5) 

Since r(t) > 0 , and |φn(t)| ≠ 0 , being a non-trivial solution, so we must have,  
  λn − λn = 0 ,  
or  
  λn = λn .        (6) 
This shows that the eigenvalues are real.   
This completes the proof.  

Theorem 20.4.  Consider the SLBVP consisting of differential equation  

  +��
�

��

�

dt
du

)t(p
dt
d

[q(t) + λr(t)] u = 0  ,     (1) 

for t ε [a,b] and boundary conditions  
  u(a) = 0 , u(b) = 0  .       (2) 
Prove that there exists an infinite sequence of eigenvalues λ1, λ2,… λn…, of this problem with the 
properties  
  0 < λ1 < λ2 < …. < λn < ….  
and  
  λn →  +∞ ,  
and the eigenfunction φn(t), corresponding to eigenvalue λn, has precisely n zeros on the interval 
[a, b].   
 
Proof.  By hypothesis of a SLBVP, functions p(t), p′(t), q(t) and r(t) are continuous on [a,b] and  
  p(t) > 0 , r(t) > 0  ,  t ε [a, b].      (3) 
λ is a parameter which is independent of t.  Now, we extend the domain of definition of functions 
p(t), q(t), and r(t) from [a,b] to [a, ∞], by defining 
  p(t) = p(b),  
  q(t) = q(b) ,  
  r(t) = r(b) ,        (4) 
for all t > b .   

Now, on the extended interval a ≤ t < ∞, we have p(t) > 0 and r(t) > 0 , and p(t), p′(t), q(t), r(t) are 
continuous.  We transform the given SLBVP by the substitution 

  ξ = �
t

a )s(p
ds

 ,         (5) 
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which changes the independent variable t to a new independent variable ξ .  Equation (5) gives  

  
)t(p

1
dt
d =ξ

 .        (6) 

Now  

  
dt
d

.
d
du

dt
du ξ

ξ
=  

gives  

  p(t) 
ξ

=
d
du

dt
du

 ,        (7) 

and  

  
)t(p

1
d

ud
dt
du

)t(p
dt
d

2

2





�

�
�
�
�

�

ξ
=��

�
��

� .      (8) 

Accordingly, equation (1) becomes  

  )(p
d

ud
12

2

ξ+
ξ

[q1(ξ) + λr1(ξ)] u(ξ) = 0 ,     (9) 

where  
  p1(ξ) = p(t) ,  
  q1(ξ) = q(t) ,  
  r1(ξ) = r(t) .         (10) 

The boundary conditions (2) now becomes  
  u(ξ = 0) = 0 , 
  u(ξ  = c) = 0 .         (11) 
Here  

        c = �
b

a )s(p
ds

 .        (12) 

Now, ξ increases steadily from 0 to ∞ as t increases from a to ∞ .  Further  
  p1(ξ) > 0  ,   r1(ξ) > 0  ,       (13) 

using (5).  Moreover p1(ξ), q1(ξ) and r1(ξ) are continuous on the interval 0 ≤ ξ < ∞ .  

For λ fixed but arbitrary, let u(ξ, λ)  ≡/  0 be a solution of differential equation (9) with the property 
that  
  u(0, λ) = 0 .        (14) 
It is clear that for λ negative and sufficiently large numerically  
  u(ξ, λ)  ≠ 0   on 0 < ξ ≤ c .  
Indeed, λ may be chosen so that  
  p1(ξ) [q1(ξ) + λr1(ξ)] <  0 ,  on 0 < t ≤ c .  
Furthermore, it is clear that for λ positive and sufficiently large, the solution u(ξ, λ) will have a 
first zero following ξ = 0 .  
 
Now from Sturm comparison theorem, it follows that the zeros αn(λ), of u(ξ, λ), decreases steadily 
as λ increases and that αn(λ)  → 0 as λ → ∞ .  Then, let λ be chosen so that the first positive zero 
α1(λ) lies to the right of ξ =  c.  
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As λ increases, α1 decreases and for precisely one value of λ, say λ1, we have α1=  c.  The number 
λ1 is the first characteristic number of the system consisting of equations (9) and (11).  The 
corresponding solution u1(ξ, λ1) is the first characteristic function.  

As λ continues to increase, the zero α1 zeros on to the interval 0 < ξ < c and α2(λ), the second 
positive zero of u(ξ, λ) moves towards ξ =  c and coincides with c for  
  λ = λ2 > λ1 .         (15) 

Accordingly, λ2 is the second characteristic number and u2(ξ,λ2) is the corresponding characteristic 
function.  
 
Continuing this process, we get an infinite sequence of characteristic numbers 
  λ1 < λ2 < … < λn < …. to ∞       (16) 
and a corresponding infinite sequence of characteristic functions  
  u1(ξ, λ1) , u2(ξ, λ2) ,…., un(ξ, λn) , …  
for the system (9) and (11).  

Using the transformation (5), we get the desired result.  

Note : The readers are advised the following books for reading (for chapters 17-20).  

1. Ross S.L.     Differential Equations.  

2. Ince, E.L.      Ordinary Differential Equations.  

3. Birkhoff G. and Rota, G.C.  Ordinary Differential Equations.  

4. Hertman, P.    Differential Equations.  
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