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CHAPTER 1

Curves

1. Examples, Arclength Parametrization

We say a vector function f: (¢, b) — R3 is ek (k =0,1,2,...)if fand its first k derivatives, ', f’, ...,
£ | exist and are all continuous. We say f is smooth if f is ¥ for every positive integer k. A parametrized
curve is a @ (or smooth) map a: I — R3 for some interval I = (a,b) or [a,b] in R (possibly infinite). We
say e is regular if a’(t) # O forallz € I.

We can imagine a particle moving along the path e, with its position at time ¢ given by (7). As we

learned in vector calculus,

da .ot +h)—a(?)
/
_ 4y T el
o) =5, = pm h

is the velocity of the particle at time 7. The velocity vector o’ (¢) is tangent to the curve at ae(¢) and its length,
le’()]], is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is a parametrized line: Given points P and Q in
R3, weletv = @ = Q — Pandseta(t) = P +tv,t € R. Note that «(0) = P,a(1) = Q,
and for 0 < ¢ < 1, a(¢) is on the line segment P Q. We ask the reader to check in Exercise 8 that of
all paths from P to Q, the “straight line path” a gives the shortest. This is typical of problems we
shall consider in the future.

(b) Essentially by the very definition of the trigonometric functions cos and sin, we obtain a very natural

parametrization of a circle of radius a, as pictured in Figure 1.1(a):

at) = a(cost,sint) = (a cost,asint), 0<t<2m.

a coSt, asint)
(a cost, bsinrt)

t
b
|
P p— \\Raa

(a) (b)

FIGURE 1.1
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(¢) Now, if a,b > 0 and we apply the linear map
T:R?> - R2, T(x,y) = (ax,by),

we see that the unit circle x2+y? = 1 maps to the ellipse x2/a?+y?/b? = 1. Since T (cost,sint) =
(acost,bsint), the latter gives a natural parametrization of the ellipse, as shown in Figure 1.1(b).
(d) Consider the two cubic curves in R? illustrated in Figure 1.2. On the left is the cuspidal cubic

y=tx

Y2=x34x2

2=y

(a) (b)

FIGURE 1.2

y2 = x3, and on the right is the nodal cubic y?> = x3+x2. These can be parametrized, respectively,

by the functions
a) =23  and  a(r) = (2 - 1,12 - 1)).

(In the latter case, as the figure suggests, we see that the line y = fx intersects the curve when
(UC)2 = Xz(x +1),sox =0orx = t2—1)

FIGURE 1.3
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(e) Now consider the twisted cubic in R3, illustrated in Figure 1.3, given by

a(t) = (t,1%,13), teR.
Its projections in the xy-, xz-, and yz-coordinate planes are, respectively, y = x2,z = x3, and
z2 = y3 (the cuspidal cubic).
(f) Our next example is a classic called the cycloid: It is the trajectory of a dot on a rolling wheel
(circle). Consider the illustration in Figure 1.4. Assuming the wheel rolls without slipping, the

&

0

FIGURE 1.4

distance it travels along the ground is equal to the length of the circular arc subtended by the angle
through which it has turned. That is, if the radius of the circle is a and it has turned through angle
t, then the point of contact with the x-axis, Q, is at units to the right. The vector from the origin to

C 4
P a £>acost
PXGsint]

FIGURE 1.5

the point P can be expressed as the sum of the three vectors O—Q), Q—C), and FP) (see Figure 1.5):
0P =00 + 0C +CP
= (at,0) + (0,a) + (—asint, —acost),
and hence the function
a(t) = (at —asint,a —acost) = a(t —sint,1 —cost), teR

gives a parametrization of the cycloid.

(g) A (circular) helix is the screw-like path of a bug as it walks uphill on a right circular cylinder at a
constant slope or pitch. If the cylinder has radius a and the slope is b/a, we can imagine drawing a
line of that slope on a piece of paper 2ra units long, and then rolling the paper up into a cylinder.
The line gives one revolution of the helix, as we can see in Figure 1.6. If we take the axis of the
cylinder to be vertical, the projection of the helix in the horizontal plane is a circle of radius a, and
so we obtain the parametrization e (¢) = (a cost,a sint, bt).
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/g
/

2ma

2nh

FIGURE 1.6

Brief review of hyperbolic trigonometric functions. Just as the circle x?+ y? = 1 is parametrized
by (cos 6, sin #), the portion of the hyperbola x? — y2? = 1 lying to the right of the y-axis, as shown
in Figure 1.7, is parametrized by (cosh ¢, sinh z), where

el + et ] el —et
cosht = 5 and sinht = B —

and secht =
cosht cosht

By analogy with circular trigonometry, we set tanh ¢ = . The following

/(cosh t, sinh £)

FIGURE 1.7

formulas are easy to check:
cosh? ¢ —sinh?t = 1, tanh? ¢t + sech? ¢ = 1

sinh’(7) = cosh?, cosh’(t) = sinh¢, tanh’(r) = sech?r, sech’(1) = —tanht secht.
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(h) When a uniform and flexible chain hangs from two pegs, its weight is uniformly distributed along
its length. The shape it takes is called a catenary.! As we ask the reader to check in Exercise 9,
the catenary is the graph of f(x) = C cosh(x/C), for any constant C > 0. This curve will appear

FIGURE 1.8

numerous times in this course. \Y%

Example 2. One of the more interesting curves that arise “in nature” is the tractrix.>2 The traditional
story is this: A dog is at the end of a 1-unit leash and buries a bone at (0, 1) as his owner begins to walk
down the x-axis, starting at the origin. The dog tries to get back to the bone, so he always pulls the leash
taut as he is dragged along the tractrix by his owner. His pulling the leash taut means that the leash will be
tangent to the curve. When the master is at (¢, 0), let the dog’s position be (x(¢), y(¢)), and let the leash

¢(0,1)

(x,)

FIGURE 1.9

make angle 6(¢) with the positive x-axis. Then we have x(¢) =t 4+ cos 0(¢), y(t) = sin6(z), so

dy  y'(t) cos B(1)0’(t)

tanf(t) = — = = - .
dx x'(t) 1—sin8()0'(¢)

Therefore, 6'(t) = sinf(¢). Separating variables and integrating, we have [d6/sinf = [ dt, and so

t = —In(csc @ + cotf) + ¢ for some constant ¢. Since § = /2 when ¢t = 0, we see that ¢ = 0. Now,

1+ cos @ 2cos%(6/2) o
= = cot(0/2 te th t =Intan(6/2).
sin @ 25in(8/2) cos(6/2) cot(8/2), we can rewrite this as ntan(6/2)

Thus, we can parametrize the tractrix by

since csc 0 +cotf =

a(f) = (cos® + Intan(6/2),sin0), 7/2<6 <.

1Brom the Latin catena, chain.
2From the Latin trahere, tractus, to pull.
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Alternatively, since tan(6/2) = e’, we have

2e! 2
sin 6 = 25in(8/2) cos(9/2) = - :eﬂ = o= = sech
1— 2t —t _ ,t
cos 6 = cos2(0/2) —sin?(0/2) = —— = £ "¢ — _tanhy,

1 +e2t el 4et
and so we can parametrize the tractrix instead by

B() = (t —tanht,secht), t>0. \Y,
The fundamental concept underlying the geometry of curves is the arclength of a parametrized curve.

Definition. If «: [a, ] — R3 is a parametrized curve, then for any a < t < b, we define its arclength
t

from a to ¢ to be s(¢) = / llo’(u)||du. That is, the distance a particle travels—the arclength of its

a
trajectory —is the integral of its speed.

An alternative approach is to start with the following

Definition. Let a: [z, ] — R> be a (continuous) parametrized curve. Given a partition P = {a = o <
t1 < -+ <ty = b} of the interval [a, b], let

k
Lo, P) =) flee(ti) —ati-1)|l-
i=1

That is, £(et, P) is the length of the inscribed polygon with vertices at e(¢;),i = 0, ..., k, as indicated in

the length of this polygonal

Given this partition, P, of [a, b], .
path is £(e, P).

FIGURE 1.10

Figure 1.10. We define the arclength of « to be
length(at) = sup{{(e, P) : P a partition of [a, b]},
provided the set of polygonal lengths is bounded above.

Now, using this definition, we can prove that the distance a particle travels is the integral of its speed.
We will need to use the result of Exercise A.2.4.
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Proposition 1.1. Leta: [a, b] — R3 be a piecewise-C! parametrized curve. Then

b
length(er) :/ o’ (1) dt.

a

Proof. For any partition P of [a, b], we have

t; k t; b
/ o/(t)dtH <> / le’ ()| dt = / llee’(2) 1 dt,
ti—1 i=1Y%i-1 a

k

k
. P) =) lle) —ali-)ll =)

b
so length(a) < / e’ (¢)||dt. The same holds on any interval.

Now, for a fat < b, define s(t) to be the length of the curve a on the interval [a, t]. Then for # > 0 we
have
lec + 1) —a@] _se+h)—s@) 1
h - h “hJ;
since s(t + h) — s(¢) is the length of the curve e on the interval [¢,7 + h]. (See Exercise 8 for the first
inequality and the first paragraph for the second.) Now

h _ 1 t +h
lim 12D =@l ) = Ml—/ o' Go) .
h—0 t

llee’ )|,

h—o0t h +h

Therefore, by the squeeze principle,

s(t 4+ h)—s(t) _

lim o' ().
im S o0
A similar argument works for 2 < 0, and we conclude that s’(¢) = ||e/(¢)||. Therefore,

t
NGZ/HMWWW,aEISA
a

b
and, in particular, s(b) = length(a) = / llo ()| dt, as desired. I

a

If |le’(¢)|| = 1 for all z € [a,b],ie., o always has speed 1, then s(t) = ¢t — a. We say the curve « is
parametrized by arclength if s(t) = t for all ¢. In this event, we usually use the parameter s € [0, L] and

write a(s).

Example3.  (a) Leta(t) = (3(1+1)32, 31 —1)%2, %z),z € (=1, 1). Then we have o/(¢) =
G+ -1 -2, %), and ||e/(z)|| = 1 for all z. Thus, & always has speed 1.

(b) The standard parametrization of the circle of radius a is «(¢) = (acost,asint), t € [0,2x],
so a’(t) = (—asint,acost) and ||e’(z)|| = a. It is easy to see from the chain rule that if
we reparametrize the curve by B(s) = (acos(s/a),asin(s/a)), s € [0,2ma], then B'(s) =
(—sin(s/a),cos(s/a)) and ||B’(s)|| = 1 for all s. Thus, the curve B is parametrized by arc-

length. v
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An important observation from a theoretical standpoint is that any regular parametrized curve can be

t
reparametrized by arclength. For if « is regular, the arclength function s(¢) = / le’ (u)||du is an increas-
a

ing differentiable function (since s'(¢) = |la/(¢)|| > 0 for all ¢), and therefore has a differentiable inverse

function ¢ = ¢(s). Then we can consider the parametrization

B(s) = a(t(s)).

Note that the chain rule tells us that

B'(s) = o/ (t(5))t'(s) = &'(t(5)) /5" (t(5)) = e’ (t(5))/llee’ (2 (5)) |

is everywhere a unit vector; in other words, 8 moves with speed 1.

*1.

42,

*4,

*6.

EXERCISES 1.1

Parametrize the unit circle (less the point (—1, 0)) by the length ¢ indicated in Figure 1.11.

(x,y)

(-1.0)

FIGURE 1.11

Consider the helix a(t) = (acost,asint,bt). Calculate o’(¢), ||e/(?)]|, and reparametrize ¢ by arc-
length.

Leta(t) = (L cost + - sint, L cost, 2= cost — <= sin t). Calculate &/ (7), [|e¢/()]|, and reparam-

V3 V2©TT B V3 V2

etrize a by arclength.

Parametrize the graph y = f(x),a < x < b, and show that its arclength is given by the traditional
b / 2
length = / 1+ (f’(x)) dx.
a

a. Show that the arclength of the catenary «(¢) = (¢,cosh¢) for 0 < ¢ < b is sinh b.
b. Reparametrize the catenary by arclength. (Hint: Find the inverse of sinh by using the quadratic

formula

formula.)

Consider the curve a(f) = (e’, e, /2t). Calculate a’(¢), ||e(¢)||, and reparametrize & by arclength,
starting at f = 0.
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7.

#3.

10.

Find the arclength of the tractrix, given in Example 2, starting at (0, 1) and proceeding to an arbitrary
point.

Let P,Q € R3 and let a:[a,b] — R3 be any parametrized curve with e(a) = P, a(h) = Q. Let

v = Q — P. Prove that length(e) > ||v||, so that the line segment from P to Q gives the shortest
b

possible path. (Hint: Consider / o/(t) - vdt and use the Cauchy-Schwarz inequality u - v < |Ju]|||v]|.

a
Of course, with the alternative definition on p. 6, it’s even easier.)

Consider a uniform cable with density § hanging in equilibrium. As shown in Figure 1.12, the tension
forces T(x + Ax), —T(x), and the weight of the piece of cable lying over [x, x + Ax] all balance.
If the bottom of the cable is at x = 0, Ty is the magnitude of the tension there, and the cable is

;c X —i—# AXx
FIGURE 1.12

8
the graph y = f(x), show that /" (x) = ?—\/1 + f’(x)%. (Remember that tan = f’(x).) Letting

0

du
C = Ty/gé,show that f(x) = C cosh(x/C)+c for some constant c. (Hint: To integrate / _—,
V1+u?

make the substitution ¥ = sinh v.)
As shown in Figure 1.13, Freddy Flintstone wishes to drive his car with square wheels along a strange
road. How should you design the road so that his ride is perfectly smooth, i.e., so that the center of his
wheel travels in a horizontal line? (Hints: Start with a square with vertices at (£1, 1), with center

FIGURE 1.13

C at the origin. If a(s) = (x(s), y(s)) is an arclength parametrization of the road, starting at (0, —1),
consider the vector OC = OP + PQ + QC, where P = a(s) is the point of contact and Q is the
midpoint of the edge of the square. Use QP = sa’(s) and the fact that Q C is a unit vector orthogonal to
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y'(s)

@D). Express the fact that C moves horizontally to show that s = ———; you will need to differentiate
X'(s

unexpectedly. Now use the result of Exercise 4 to find y = f(x). Also see the hint for Exercise 9.)

(t.tsin(m/t)), t#0
(0,0), =0
{(o,Py) with Py = {0,1/N,2/2N —1),1/(N —1),...,1/2,2/3,1}.)

11. Show that the curve a(t) = has infinite length on [0, 1]. (Hint: Consider

12. Prove that no four distinct points on the twisted cubic (see Example 1(e)) lie on a plane.

13.  Consider the “spiral” a(¢) = r(¢)(cost,sint), where r is @' and 0 < r(¢) < 1 for all t > 0.

a. Show that if & has finite length on [0, o) and r is decreasing, then r(t) — 0 as t — oo.

b. Show thatif r(t) = 1/(¢ 4 1), then « has infinite length on [0, 00).

c. Ifr(t) = 1/(t + 1), does a have finite length on [0, c0)?

d. Characterize (in terms of the existence of improper integral(s)) the functions r for which & has
finite length on [0, 00).

e. Use the result of part d to show that the result of part a holds even without the hypothesis that r be
decreasing.

14. (a special case of a recent American Mathematical Monthly problem) Suppose a: [a,b] — R? is a
smooth parametrized plane curve (perhaps not arclength-parametrized). Prove that if the chord length
llee(s) — ee(2)|| depends only on |s — ¢|, then & must be a (subset of) a line or a circle. (How many
derivatives of & do you need to use?)

2. Local Theory: Frenet Frame

What distinguishes a circle or a helix from a line is their curvature, i.c., the tendency of the curve to
change direction. We shall now see that we can associate to each smooth (C?) arclength-parametrized curve
o a natural “moving frame” (an orthonormal basis for R® chosen at each point on the curve, adapted to the
geometry of the curve as much as possible).

We begin with a fact from vector calculus that will appear throughout this course.

Lemma 2.1. Suppose f,g: (a,b) — R3 are differentiable and satisfy f(¢) - g(t) = const for all t. Then
f'(t)-g(t) = —£(t) - g(¢). In particular,

|£(¢)|| = const if and only if f(r)-f(r) =0 forall¢.

Proof. Since a function is constant on an interval if and only if its derivative is zero everywhere on that
interval, we deduce from the product rule,

(t-g)'() =) g) +£1) g1,
that if f- g is constant, then f-g’ = —f - g. In particular, ||f|| is constant if and only if ||f|> = f-f is constant,
and this occurs if and only if f-f = 0. [

Remark. This result is intuitively clear. If a particle moves on a sphere centered at the origin, then
its velocity vector must be orthogonal to its position vector; any component in the direction of the position
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vector would move the particle off the sphere. Similarly, suppose f and g have constant length and a constant
angle between them. Then in order to maintain the constant angle, as f turns towards g, we see that g must
turn away from f at the same rate.

Using Lemma 2.1 repeatedly, we now construct the Frenet frame of suitable regular curves. We assume
throughout that the curve « is parametrized by arclength. Then, for starters, &’(s) is the unir tangent vector
to the curve, which we denote by T(s). Since T has constant length, T’(s) will be orthogonal to T(s).
Assuming T’ (s) # 0, define the principal normal vector N(s) = T'(s)/||T’(s)| and the curvature k(s) =
IT'(s)||. So far, we have

T'(s) = «(s)N(s).
If k(s) = 0, the principal normal vector is not defined. Assuming ¥ # 0, we continue. Define the binormal
vector B(s) = T(s) x N(s). Then {T(s), N(s), B(s)} form a right-handed orthonormal basis for R3.

Now, N’(s) must be a linear combination of T(s), N(s), and B(s). But we know from Lemma 2.1 that
N'(s)-N(s) = 0and N'(s) - T(s) = —T'(s) -N(s) = —«(s). We define the torsion t(s) = N'(s) -B(s). This
gives us

N'(s) = —«(s)T(s) + t(s)B(s).
Finally, B’(s) must be a linear combination of T(s), N(s), and B(s). Lemma 2.1 tells us that B'(s)-B(s) = 0,
B'(s) - T(s) = —T'(s) - B(s) = 0,and B'(s) - N(s) = —N'(s) - B(s) = —1(s). Thus,

B'(s) = —t(s)N(s).

In summary, we have:

Frenet formulas

T (s) = Kk (s)N(s)
N'(s) = —«(s)T(s) + t(s)B(s)
B'(s) = —7(5)N(s)

The skew-symmetry of these equations is made clearest when we state the Frenet formulas in matrix

form:
| | | | | | 0 —«(s) O
T'(s) N'(s) B'(s) | = | T(s) N(s) B(s) k(s) 0 —1(s)
| | | | | | 0 s) O

Indeed, note that the coefficient matrix appearing on the right is skew-symmetric. This is the case whenever
we differentiate an orthogonal matrix depending on a parameter (s in this case). (See Exercise A.1.4.)

Note that, by definition, the curvature, «, is always nonnegative; the torsion, t, however, has a sign, as
we shall now see.

Example 1. Consider the helix, given by its arclength parametrization (see Exercise 1.1.2) a(s) =
(a cos(s/c),asin(s/c), bs/c),where ¢ = v/a? + b2. Then we have

T(s) = %(—a sin(s/c),a cos(s/c), b)
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T (s) = i(—a cos(s/c), —a sin(s/c),O) - £ (— cos(s/c),—sin(s/c),O) .

c? c2
——
K(s) N(s)
Summarizing,
K(s) = Ca_z = azaﬁ and N(s) = (—cos(s/c),—sin(s/c),O).

Now we deal with B and the torsion:

B(s) = T(s) x N(s) = %(b sin(s/c), —b cos(s/c),a)
B'(s) = Ciz(b cos(s/c), b sin(s/c),O) = —Cb—zN(s),

. b

so we infer that t(s) = 2= P

Note that both the curvature and the torsion are constants. The torsion is positive when the helix is
“right-handed” (b > 0) and negative when the helix is “left-handed” (b < 0). It is interesting to observe
that, fixing a > 0, as b — 0, the helix becomes very tightly wound and almost planar, and T — 0; as
b — o0, the helix twists extremely slowly and looks more and more like a straight line on the cylinder and,
once again, T — 0. As the reader can check, the helix has the greatest torsion when b = a; why does this
seem plausible?

In Figure 2.1 we show the Frenet frames of the helix at some sample points. (In the latter two pictures,

BT
N
B
T _N
T l
B
N N

FIGURE 2.1

the perspective is misleading. T, N, B still form a right-handed frame: In the third, T is in front of N, and in
the last, B is pointing upwards and out of the page.) V

We stop for a moment to contemplate what happens with the Frenet formulas when we are dealing with
a non-arclength-parametrized, regular curve ec. As we did in Section 1, we can (theoretically) reparametrize
by arclength, obtaining B(s). Then we have a(¢) = B(s(¢)), so, by the chain rule,

() o' (1) = B'(s(1))s' (1) = v(O)T(s(2)).
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where v(t) = s/(¢) is the speed.? Similarly, by the chain rule, once we have the unit tangent vector as a

function of ¢, differentiating with respect to ¢, we have
(Tos)' (1) = T'(s(1))s' (1) = v(O)k (s(t))N(s(1)).
Using the more casual —but convenient— Leibniz notation for derivatives,

_dr 4 14t

dT _dTds _ o N
v O T T T v

dr — dsdr
Example 2. Let’s calculate the curvature of the tractrix (see Example 2 in Section 1). Using the first

parametrization, we have a’(6) = (—sin 6 + csc 6, cos #), and so

v(0) = ||’ (0)| = \/(— sin@ + csc 0)2 + cos2 0 = Vese26 — 1 = —cot .
(Note the negative sign because g < 0 < m.) Therefore,

1
T() = —m(— sinf + csc 0, cos 8) = —tan 6(cot 6 cos 8, cos §) = (—cos 8, —sin ).

Of course, looking at Figure 1.9, we should expect the formula for T. Then, to find the curvature, we
calculate
_dT % _ (sin 6, — cos 0)

T ds g_; —cotf

Since —tan @ > 0 and (sin 6, — cos 0) is a unit vector we conclude that

kN = (—tan 0)(sin B, —cos 0).
k(f) = —tan and N(#) = (sin 6, —cos 0).

Later on we will see an interesting geometric consequence of the equality of the curvature and the (absolute

value of) the slope. V
Example 3. Let’s calculate the “Frenet apparatus” for the parametrized curve
a(t) = 3t —13,3t2,3t +13).
We begin by calculating e’ and determining the unit tangent vector T and speed v:

o (1) = 3(1 —12,2t,1 + 1?), S0

v(t) = /(O] = 3y/(1 =122 + 202 + (1 + 22 = 3,21 + 122 =321 + 12 and

1 1 (1—=¢2 2t
(1—:2,21,1+12)=—( 1).

1
Tt = —F= T .94 . .o
® V21412 V2 \1+4+12" 1412

Now

_dr 4T 14t

T ds T ds T u()dt

B 1 L( —4t  2(1—1?) o)
T 3V2(1+12) V2 \ (1 +12)27 (1 +12)%

kN

30 is the Greek letter upsilon, not to be confused with v, the Greek letter nu.
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B 1 1 2 ( 2t 1-1? o)
3201+ V2 1+2\ 1421427 )
K N

Here we have factored out the length of the derivative vector and left ourselves with a unit vector in its

direction, which must be the principal normal N; the magnitude that is left must be the curvature x. In

2t 1 —1¢2
and — N@) = (‘1+—t271+—z2’0) :

summary, so far we have

)= ———
K (1) (ENEE
Next we find the binormal B by calculating the cross product

1 1—1¢? 21
B(t)=T@#)xN@t)=—|—- ,— 1.
(t) = T(t) x N(1) ﬁ( T )

And now, at long last, we calculate the torsion by differentiating B:

daB & 1 4B

—‘[N:—: = — —
ds
ds o v(t) dt
_ 1 L( 4t 2(t2 - 1) o)
C3V2(1412) V2 N1 +12)27 (1 +12)2
_ 1 L el
314122\ 1421 +1277)
T N
1
SOT(t):K(t):m.

Now we see that curvature enters naturally when we compute the acceleration of a moving particle.
Differentiating the formula (x) on p. 12, we obtain

(1) = V' (O)T(s(1)) + v(OT (s(1))s" (1)
= V' (1)T(s(1)) + v(1)*(k (s (1))N(s(1))).
Suppressing the variables for a moment, we can rewrite this equation as
(%) o’ = v'T + kv®N.

The tangential component of acceleration is the derivative of speed; the normal component (the “centripetal
acceleration” in the case of circular motion) is the product of the curvature of the path and the square of the
speed. Thus, from the physics of the motion we can recover the curvature of the path:

lloc” > "

Proposition 2.2. For any regular parametrized curve o, we have k = TE
o

Proof. Since o’ x a” = (VT) x (U'T +«kv?N) = kv3T xNand kv3 > 0, we obtain kv3 = |ja’ x a”|,
and so k = ||o’ x a||/v3, as desired. [

We next proceed to study various theoretical consequences of the Frenet formulas.

Proposition 2.3. A space curve is a line if and only if its curvature is everywhere 0.
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Proof. The general line is given by a(s) = sv + ¢ for some unit vector v and constant vector ¢. Then
a'(s) = T(s) = v is constant, so k = 0. Conversely, if k = 0, then T(s) = Tq is a constant vector,

N
and, integrating, we obtain & (s) = / T(u)du + «(0) = sTg + «(0). This is, once again, the parametric
0

equation of a line. [J

Example 4. Suppose all the tangent lines of a space curve pass through a fixed point. What can we
say about the curve? Without loss of generality, we take the fixed point to be the origin and the curve to be
arclength-parametrized by o. Then there is a scalar function A so that for every s we have a(s) = A(s)T(s).
Differentiating, we have

T(s) = o/(s) = V()T (s) + A(s)T'(s) = X' (s)T(s) + A(s)k (s)N(s).

Then (A'(s) — DT(s) + A(s)x(s)N(s) = 0, so, since T(s) and N(s) are linearly independent, we infer that
A(s) = s + ¢ for some constant ¢ and k (s) = 0. Therefore, the curve must be a line through the fixed point.
v

Somewhat more challenging is the following

Proposition 2.4. A space curve is planar if and only if its torsion is everywhere 0. The only planar
curves with nonzero constant curvature are (portions of) circles.

Proof. If a curve lies in a plane P, then T(s) and N(s) span the plane Py parallel to P and passing
through the origin. Therefore, B = T x N is a constant vector (the normal to Pg), and so B = —tN = 0,
from which we conclude that t = 0. Conversely, if ¢ = 0, the binormal vector B is a constant vector By.
Now, consider the function f(s) = a(s) - Bg; we have f/(s) = a'(s) - Bo = T(s) - B(s) = 0, and so
f(s) = c for some constant ¢. This means that « lies in the plane x - Bg = c.

We leave it to the reader to check in Exercise 2a. that a circle of radius a has constant curvature 1/a.
(This can also be deduced as a special case of the calculation in Example 1.) Now suppose a planar curve o

has constant curvature ko. Consider the auxiliary function B(s) = a(s) + —N(s). Then we have B'(s) =
Ko
o (s) + —( ko(s)T(s)) = T(s) — T(s) = 0. Therefore B is a constant function, say g(s) = P for all s.

Now we clalm that & is a (subset of a) circle centered at P, for ||a(s) — P|| = |Jee(s) — B(s)|| = 1/ko. O

We have already seen that a circular helix has constant curvature and torsion. We leave it to the reader
to check in Exercise 10 that these are the only curves with constant curvature and torsion. Somewhat more
interesting are the curves for which 7/k is a constant.

A generalized helix is a space curve with k # 0 all of whose tangent vectors make a constant angle with
a fixed direction. As shown in Figure 2.2, this curve lies on a generalized cylinder, formed by taking the
union of the lines (rulings) in that fixed direction through each point of the curve. We can now characterize
generalized helices by the following

Proposition 2.5. A curve is a generalized helix if and only if t/k is constant.

Proof. Suppose « is an arclength-parametrized generalized helix. Then there is a (constant) unit vector
A with the property that T - A = cos 6 for some constant 6. Differentiating, we obtain kN - A = 0, whence
N - A = 0. Differentiating yet again, we have

() (—«kT+7B)-A =
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\/

FIGURE 2.2

Now, note that A lies in the plane spanned by T and B, and thus B - A = +sinf. Thus, we infer from
equation () that t/x = = cot 6, which is indeed constant.

Conversely, if 7/k is constant, set t/k = cot f for some angle 8 € (0, 7). Set A(s) = cos 0T (s) +
sin B(s). Then A’(s) = (kcos — tsinB)N(s) = 0, so A(s) is a constant unit vector A, and T(s) - A =
cos 0 is constant, as desired. O

Example 5. In Example 3 we saw a curve a with k = 7, so from the proof of Proposition 2.5 we see
1
that the curve should make a constant angle 6 = /4 with the vector A = E(T + B) = (0,0,1) (as

should have been obvious from the formula for T alone). We verify this in Figure 2.3 by drawing « along
with the vertical cylinder built on the projection of & onto the xy-plane. V

~

<

N

FIGURE 2.3
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The Frenet formulas actually characterize the local picture of a space curve.

Proposition 2.6 (Local canonical form). Leta be a smooth ( @3 or better) arclength-parametrized curve.
If x(0) = 0, then for s near 0, we have

2 /
o(s) = (s - I%Os3 +.. ) T(0) + (%Os2 + %OS3 +.. ) N(0) + (OTTOS3 +. )B(O)'

(Here kg, t9, and KO denote, respectively, the values of k, t,and k" at 0, and lim .../ s3=0.)

s—0

Proof. Using Taylor’s Theorem, we write
a(s) = a(0) + 5o’ (0) + s> (0) + s> (0) + .

where lim ... /s> = 0. Now, a(0) = 0, a’(0) = T(0), and a”(O) = T/(0) = xoN(0). Differentiating

s—0

again, we have a”’(0) = (kN)'(0) = xjN(0) + ko(—«oT(0) + 7oB(0)). Substituting, we obtain

a(s) = sT(0) + %SZK()N(O) + és3 (—,3T(0) + kyN(0) + koToB(0)) +

2 /
K03 K()2 KO <K0103
= - — ... T — — N(O ... ) B(0),
<s 6s—|— )()+(2s+6 )()+ < )()
as required. O

We now introduce three fundamental planes at P = a(0):

(i) the osculating plane, spanned by T(0) and N(0),

(ii) the rectifying plane, spanned by T(0) and B(0), and

(iii) the normal plane, spanned by N(0) and B(0).

We see that, locally, the projections of & into these respective planes look like

(i) (. (ko/2u? + (k5 /6)u> +...)

(i) (u, (K010/6)u3 +...),and

(iii) (2, (ij_O) w4,

where hm ../u® = 0. Thus, the projections of & into these planes look locally as shown in Figure 2.4.

The osculatmg (“kissing”) plane is the plane that comes closest to containing & near P (see also Exercise

NEOZ V.

osculating plane rectifying plane normal plane

FIGURE 2.4
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25); the rectifying (“straightening”) plane is the one that comes closest to flattening the curve near P; the

normal plane is normal (perpendicular) to the curve at P. (Cf. Figure 1.3.)

1.

EXERCISES 1.2

Compute the curvature of the following arclength-parametrized curves:

a. als) = (% cos S, % cos s, sin s)

b. a(s) = (V1+s2,In(s + 1+ 52))

. afs) = (31 +9)32 L1 —9)32, %s),s e (=1,1)

2. Calculate the unit tangent vector, principal normal, and curvature of the following curves:

3.

fxg

*6.

10.

a. acircle of radius a: a(t) = (acost,asint)
b. a(t) = (¢t,cosht)
c. a(t) = (cos3t,sin®t),t € (0,7/2)

Calculate the Frenet apparatus (T, «, N, B, and t) of the following curves:

Y. a(s) = (21 +932,3(1 532, Ls),s e (-1,1)

2

b. a(t) = (3¢'(sint +cost), 3’ (sint —cost), ')

Y. a(t) = (V1+2,t,In(t + V1 +12))

a(t) = (e’ cost, e’ sint,e’)
a(t) = (cosht,sinht,t)
a(t) = (1,12/2, 11 + 12 + In(t + V1 +12))

a(t) = (t —sint cost,sin®¢,cos t),t € (0, )

@ - 0o &

£
(1 + f/2)3/2 ’

Use Proposition 2.2 and the second parametrization of the tractrix given in Example 2 of Section 1 to

Prove that the curvature of the plane curve y = f(x) is given by x =

recompute the curvature.
By differentiating the equation B = T x N, derive the equation B = —tN.

Suppose « is an arclength-parametrized space curve with the property that ||e(s)|| < |le(so)|| = R for
all s sufficiently close to sg. Prove that x(so) > 1/R. (Hint: Consider the function f(s) = |la(s)]|?.
What do you know about " (s9)?)

Let o be a regular (arclength-parametrized) curve with nonzero curvature. The normal line to « at et (s)
is the line through o (s) with direction vector N(s). Suppose all the normal lines to & pass through a

fixed point. What can you say about the curve?

a. Prove that if all the normal planes of a curve pass through a particular point, then the curve lies on

a sphere. (Hint: Apply Lemma 2.1.)
*b. Prove that if all the osculating planes of a curve pass through a particular point, then the curve is

planar.

Prove that if k = kg and T = t¢ are nonzero constants, then the curve is a (right) circular helix.
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*11.

12.

13.

14.

15.

16.

(Hint: Start by solving for N. The only solutions of the differential equation y” + k?y = 0 are
y = cycos(kt) + casin(kt).)

Remark. It is an amusing exercise to give a and b (in our formula for the circular helix) in terms
of ko and 7.

Proceed as in the derivation of Proposition 2.2 to show that
o - (Ol” x OLW)
T=——

” o X Ot”||2

Let o be a C* arclength-parametrized curve with k¥ # 0. Prove that e is a generalized helix if and only
ifa” - (& x &™) = 0. (Here ™ denotes the fourth derivative of e.)

Suppose kT # 0 at P. Of all the planes containing the tangent line to & at P, show that « lies locally
on both sides only of the osculating plane.

Let o be a regular curve with ¥ # 0 at P. Prove that the planar curve obtained by projecting e into its
osculating plane at P has the same curvature at P as c.

A closed, planar curve C is said to have constant breadth p if the distance between parallel tangent
lines to C is always w. (No, C needn’t be a circle. See Figure 2.5.) Assume for the rest of this problem
that the curve is arclength parametrized by a @2 function a: [0, L] — R? with k # 0. Tosay C is closed
means & (0) = (L) and the derivatives match as well.

(the Wankel engine design)

FIGURE 2.5

a. Let’s call two points with parallel tangent lines opposite. Prove that if C has constant breadth
W, then the chord joining opposite points is normal to the curve at both points. (Hint: If 8(s) is
opposite a(s), then B(s) = a(s) + A(s)T(s) + uN(s). First explain why the coefficient of N is u;
then show that A = 0.)

b. Prove that the sum of the reciprocals of the curvature at opposite points is equal to w. (Warning: If
«a is arclength-parametrized, f is quite unlikely to be. It might be helpful to introduce the notation
Tpg and Ng for the unit tangent vector and principal normal of 8. How are they related to T and
N?)

Let o and B be two regular curves defined on [a, b]. We say B is an involute of « if, for each ¢ € [a, b],
(1) B(2) lies on the tangent line to & at e(¢), and
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(i) the tangent vectors to & and B at ac(¢) and B(¢), respectively, are perpendicular.

Reciprocally, we also refer to « as an evolute of 8.

a. Suppose a is arclength-parametrized. Show that B is an involute of « if and only if B(s) =
a(s) + (¢ —s)T(s) for some constant ¢ (here T(s) = a’(s)). We will normally refer to the curve f
obtained with ¢ = 0 as the involute of «. If you were to wrap a string around the curve e, starting
at s = 0, the involute is the path the end of the string follows as you unwrap it, always pulling the
string taut, as illustrated in the case of a circle in Figure 2.6.

N

FIGURE 2.6

b. Show that the involute of a helix is a plane curve.
Show that the involute of a catenary is a tractrix. (Hint: You do not need an arclength parametriza-
tion!)

d. If @ is an arclength-parametrized plane curve, prove that the curve 8 given by

Bs) = as) + %N(s)

is the unique evolute of « lying in the plane of «. Prove, moreover, that this curve is regular if
«’ # 0. (Hint: Go back to the original definition.)

17. Find the involute of the cycloid ec(¢) = (¢ + sint¢,1 —cost),t € [—m, w], using ¢ = 0 as your starting
point. Give a geometric description of your answer.

18. Suppose « is a generalized helix with axis in direction A. Let 8 be the curve obtained by projecting o
onto a plane orthogonal to A. Prove that the principal normals of & and § are parallel at corresponding

points and calculate the curvature of 8 in terms of the curvature of «.

19. Let & be a curve parametrized by arclength with x, 7 # 0.
a. Suppose « lies on the surface of a sphere centered at the origin (i.e., || (s)|| = const for all s).

Prove that

/

T 1 /1Y
(%) —+(— (—)) =0.
K T K
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(Hint: Write « = AT 4+ uN + vB for some functions A, @, and v, differentiate, and use the fact
that {T, N, B} is a basis for R3.)

Prove the converse: If « satisfies the differential equation (%), then « lies on the surface of some
sphere. (Hint: Using the values of A, i, and v you obtained in part a, show that o« —(AT+ uN+vB)
is a constant vector, the candidate for the center of the sphere. If the nature of this argument puzzles

you, review the latter part of the proof of Proposition 2.4.)

20. Two distinct parametrized curves o and B are called Bertrand mates if for each ¢, the normal line to «
at a(¢) equals the normal line to B at 8(¢). An example is pictured in Figure 2.7. Suppose & and 8 are

21.

22.

23.

FIGURE 2.7

Bertrand mates.

a.

If o is arclength-parametrized, show that B(s) = a(s) + r(s)N(s) and r(s) = const. Thus,
corresponding points of « and B are a constant distance apart.

Show that, moreover, the angle between the tangent vectors to & and f at corresponding points
is constant. (Hint: If Ty and Tg are the unit tangent vectors to & and B respectively, consider
Te-Tg)

Suppose « is arclength-parametrized and k7 7% 0. Show that & has a Bertrand mate § if and only if
there are constants r and ¢ so that rk + ct = 1. (Hint for = Interpret the result of part b using
your formula for 8’ from part a.)

Given a, prove that if there is more than one curve B so that & and B are Bertrand mates, then there
are infinitely many such curves § and this occurs if and only if « is a circular helix.

(See Exercise 20.) Suppose « and B are Bertrand mates. Prove that the torsion of & and the torsion of

B at corresponding points have constant product.

Suppose Y is a 2 vector function on [a,b] with |Y| = 1 and Y, Y/, and Y” everywhere linearly
t

independent. For any nonzero constant ¢, define a(¢) = ¢ / (Y(u) xY (u))d u,t € [a,b]. Prove that

the curve & has constant torsion 1/c. (Hint: Show that B =a:|:Y.)

(See Exercise 20.) Suppose Y is a e? arclength-parametrized curve on the unit sphere. For any nonzero

constant ¢ and 0 < 8 < 7/2, define

a(t) =a (/Ot Y(s)ds + cot6 /Ot (Y(s) x Y'(s))ds) .

Show that the curve o has a Bertrand mate. (Hint: Show that N = £Y’.)
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Let o be an arclength-parametrized plane curve. We create a “parallel” curve f by taking 8 =
a + eN (for a fixed small positive value of ¢). Explain the terminology and express the curvature
of B in terms of ¢ and the curvature of «.

Now let & be an arclength-parametrized space curve. Show that we can obtain a “parallel” curve 8
by taking B = & + 8((COS 0)N + (sin Q)B) for an appropriate function 6. How many such parallel
curves are there?

Sketch such a parallel curve for a circular helix «.

25. Suppose « is an arclength-parametrized curve, P = «(0), and «(0) # 0. Use Proposition 2.6 to

26.

27.

establish the following:

*a.,

Let O = a(s) and R = a(t). Show that the plane spanned by P, Q, and R approaches the
osculating plane of & at P as s, — 0.
The osculating circle at P is the limiting position of the circle passing through P, O, and R as
s,t — 0. Prove that the osculating circle has center Z = P + (1 / K(O))N(O) and radius 1/x(0).
The osculating sphere at P is the limiting position of the sphere through P and three neighboring
points on the curve, as the latter points tend to P independently. Prove that the osculating sphere
has center

Z = P + (1/(0))N(0) + (1/7(0)(1/x)'(0))B(0)

and radius

\/(1/K(0))2 + (1/7(0)(1/k)'(0))2.

How is the result of part ¢ related to Exercise 19?7

Suppose B is a plane curve and Cj is the circle centered at §(s) with radius r(s). Assuming 8 and
r are differentiable functions, show that the circle Cs is contained inside the circle C; whenever
t > s if and only if ||B"(s)|| < r'(s) for all s.

Let « be arclength-parametrized plane curve and suppose « is a decreasing function. Prove that the
osculating circle at a(s) lies inside the osculating circle at a(z) whenever ¢ > s. (See Exercise 25
for the definition of the osculating circle.)

Suppose the front wheel of a bicycle follows the arclength-parametrized plane curve a. Determine the

path B of the rear wheel, 1 unit away, as shown in Figure 2.8. (Hint: If the front wheel is turned an

FIGURE 2.8

angle 6 from the axle of the bike, start by writing &« — $ in terms of 6, T, and N. Your goal should be
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a differential equation that & must satisfy, involving only k. Note that the path of the rear wheel will
obviously depend on the initial condition 6(0). In all but the simplest of cases, it may be impossible to
solve the differential equation explicitly.)

3. Some Global Results

3.1. Space Curves. The fundamental notion in geometry (see Section 1 of the Appendix) is that of
congruence: When do two figures differ merely by a rigid motion? If the curve a* is obtained from the
curve « by performing a rigid motion (composition of a translation and a rotation), then the Frenet frames
at corresponding points differ by that same rigid motion, and the twisting of the frames (which is what gives
curvature and torsion) should be the same. (Note that a reflection will not affect the curvature, but will
change the sign of the torsion.)

Theorem 3.1 (Fundamental Theorem of Curve Theory). Two space curves C and C* are congruent
(i.e., differ by a rigid motion) if and only if the corresponding arclength parametrizations e, a*: [0, L] — R3
have the property that k(s) = «k*(s) and t(s) = t*(s) forall s € [0, L].

Proof. Suppose a* = Woq for some rigid motion W: R3> — R3, so W(x) = Ax + b for some b €
R3 and some 3 x 3 orthogonal matrix 4 with detA > 0. Then a*(s) = Aa(s) + b, so |a*'(s)|| =
|Ae/(s)|| = 1, since A is orthogonal. Therefore, a* is likewise arclength-parametrized, and T*(s) =
AT(s). Differentiating again, x*(s)N*(s) = x(s)AN(s). Since A is orthogonal, AN(s) is a unit vector,
and so N*(s) = AN(s) and «*(s) = «(s). But then B*(s) = T*(s) x N*(s) = AT(s) x AN(s) =
A(T(s)xN(s)) = AB(s), inasmuch as orthogonal matrices map orthonormal bases to orthonormal bases and
det A > 0 insures that orientation is preserved as well (i.e., right-handed bases map to right-handed bases).
Last, B¥'(s) = —t*(s)N*(s) and B*'(s) = AB/(s) = —1(s)AN(s) = —1(s)N*(s), so t*(s) = ©(s), as
required.

Conversely, suppose k = k* and T = t*. We now define a rigid motion ¥ as follows. Let 4 be
the unique orthogonal matrix so that AT(0) = T*(0), AN(0) = N*(0), and AB(0) = B*(0), and let
b = a«*(0) — Ax(0). A also has positive determinant, since both orthonormal bases are right-handed. Set

& = Woa. We now claim that a*(s) = &(s) for all s € [0, L]. Note, by our argument in the first part of the
proof, that € = k = «* and T = v = t*. Consider

£(s) = T(s) - T*(s) + N(s) - N*(s) + B(s) - B*(s).
We now differentiate f, using the Frenet formulas.
F(s) = (T'(s) - T*(s) + T(s) - T*(s)) + (N'(s) - N*(s) + N(s) - N*'(s))
+ (B'(s) - B*(s) + B(s) - B*'(s))
= k(s)(N(s) - T*(s) + T(s) - N*(s)) — & (s)(T(s) - N*(5) + N(s) - T*(s))
+ 7(s)(B(s) - N*(5) + N(s) - B*(s)) — 7(s)(N(s) - B*(s) + B(s) - N*(s))
=0,

since the first two terms cancel and the last two terms cancel. By construction, f(0) = 3,s0 f(s) = 3 for
all s € [0, L]. Since each of the individual dot products can be at most 1, the only way the sum can be 3 for
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all s is for each to be 1 for all s, and this in turn can happen only when T(s) = T*(s), N(s) = N*(s), and
B(s) = B*(s) for all s € [0, L]. In particular, since &'(s) = T(s) = T*(s) = a*'(s) and &(0) = a*(0), it
follows that &(s) = a*(s) for all s € [0, L], as we wished to show. O

Remark. The latter half of this proof can be replaced by asserting the uniqueness of solutions of a sys-
tem of differential equations, as we will see in a moment. Also see Exercise A.3.1 for a matrix-computational

version of the proof we just did.
Example 1. We now see that the only curves with constant « and t are circular helices. V

Perhaps more interesting is the existence question: Given continuous functions «, t: [0, L] — R (with
everywhere positive), is there a space curve with those as its curvature and torsion? The answer is yes, and
this is an immediate consequence of the fundamental existence theorem for differential equations, Theorem
3.1 of the Appendix. That is, we let

| | | 0 —«x(s) O
F(s) = | T(s) N(s) B(s) and K(s) = | k(s) 0 —1(s)
| | | 0 () 0

Then integrating the linear system of ordinary differential equations F'(s) = F(s)K(s), F(0) = Fp, gives
us the Frenet frame everywhere along the curve, and we recover « by integrating T(s).

We turn now to the concept of fotal curvature of a closed space curve, which is the integral of its
curvature. That is, if &: [0, L] — R3 is an arclength-parametrized curve with a(0) = (L), its total

L
curvature is / k(s)ds. This quantity can be interpreted geometrically as follows: The Gauss map of « is

0
the map to the unit sphere, X, given by the unit tangent vector T: [0, L] — X; its image, I, is classically

—

- 3
- ~
I N
. .
.
. N
T : X
.
’ \\

’ \
/ \
/ \
y v

\

! \
i \
|
\

1
v
v
)
‘\//-\/

FIGURE 3.1

called the fangent indicatrix of a. Observe that—provided the Gauss map is one-to-one—the length of I" is

L L
the total curvature of &, since length(I") = / IT (s)||ds = / k(s)ds. More generally, this integral is
0 0

the length of I' “counting multiplicities.”
A preliminary question to ask is this: What curves I' in the unit sphere can be the Gauss map of some

S
closed space curve a? Since a(s) = «(0) + / T(u)du, we see that a necessary and sufficient condition
0

L
is that / T(s)ds = 0. (Note, however, that this depends on the arclength parametrization of the original
0
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curve and is not a parametrization-independent condition on the image curve I' C X.) We do, nevertheless,

have the following geometric consequence of this condition. For any (unit) vector A, we have

L L
0=A / T(s)ds = / (T(s)-A)ds,
0 0

and so the average value of T - A must be 0. In particular, the tangent indicatrix must cross the great circle
with normal vector A. That is, if the curve I is to be a tangent indicatrix, it must be “balanced” with respect
to every direction A. It is natural to ask for the shortest curve(s) with this property.

If& € 3, let ’;‘L denote the oriented great circle with normal vector . (By this we mean that we go
around the circle ’;‘L so that at x, the tangent vector T points so that x, T, & form a right-handed basis for
R3)

Proposition 3.2 (Crofton’s formula). Let I' be a piecewise-C! curve on the sphere. Then

1
lmwMU:Z/#Gﬂéﬂ@
p)
= 7 X (the average number of intersections of I" with all great circles).

(Here d & represents the usual element of surface area on X.)
Proof. We leave this to the reader in Exercise 11. [

Remark. Although we don’t stop to justify it here, the set of & for which #(I" N & 1) is infinite is a set
of measure zero, and so the integral makes sense.

Applying this to the case of the tangent indicatrix of a closed space curve, we deduce the following
classical result.

Theorem 3.3 (Fenchel). The total curvature of any closed space curve is at least 2, and equality holds
if and only if the curve is a (convex) planar curve.

Proof. Let I' be the tangent indicatrix of our space curve. If C is a closed plane curve, then I' is a
great circle on the sphere. As we shall see in the next section, convexity of the curve can be interpreted as

saying k > 0 everywhere, so the tangent indicatrix traverses the great circle exactly once and | kds = 2x
C
(cf. Theorem 3.5 in the next section).

To prove the converse, note that, by our earlier remarks, I" must cross EJ‘ for almost every & € ¥ and
hence must intersect it at least twice, and so it follows from Proposition 3.2 that | «ds = length(I") >

1 c
1(2) (4) = 2m. Now, we claim that if I" is a connected, closed curve in X of length < 27, then I’ lies in a

closed hemisphere. It will follow, then, that if I is a tangent indicatrix of length 27, it must be a great circle.
L

(For if T" lies in the hemisphere A - x > 0, / T(s) - Ads = 0 forces T- A = 0, so I is the great circle

A -x = 0.) It follows that the curve is planaroand the tangent indicatrix traverses the great circle precisely
one time, which means that k > 0 and the curve is convex. (See the next section for more details on this.)
To prove the claim, we proceed as follows. Suppose length(I") < 27. Choose P and Q in I" so that the
arcs I'} = PAQ and [, = QAP have the same length. Choose N bisecting the shorter great circle arc from P
to 0, as shown in Figure 3.2. For convenience, we rotate the picture so that N is the north pole of the sphere.
Suppose now that the curve I'; were to enter the southern hemisphere; let T'; denote the reflection of I'y
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FIGURE 3.2

across the north pole (following arcs of great circle through N). Now, I'y U T’y is a closed curve containing
a pair of antipodal points and therefore is longer than a great circle. (See Exercise 1.) Since I'; U 'y has
the same length as I', we see that length(I") > 2, which is a contradiction. Therefore I" indeed lies in the
northern hemisphere. [l

We now sketch the proof of a result that has led to many interesting questions in higher dimensions. We
say a simple (non-self-intersecting) closed* space curve is knotted if we cannot fill it in with a disk.

Theorem 3.4 (Fary-Milnor). If a simple closed space curve is knotted, then its total curvature is at least
4.

Sketch of proof. Suppose the total curvature of C is less than 4. Then the average number
#T N SJ‘) < 4. Since this is generically an even number > 2 (whenever the great circle isn’t tangent
to I'), there must be an open set of &’s for which we have #(I" N & 1) = 2. Choose one such, &,. This means
that the tangent vector to C is only perpendicular to & twice, so the function f(x) = x- &, has only two
critical points. That is, the planes perpendicular to &, will (by Rolle’s Theorem) intersect C either in a line
segment or in a single point (at the top and bottom); that is, by moving these planes from the bottom of C
to the top, we fill in a disk, so C is unknotted. [

3.2. Plane Curves. We conclude this chapter with some results on plane curves. Now we assign a
sign to the curvature: Given an arclength-parametrized curve a, (re)define N(s) so that {T(s),N(s)} is
a right-handed basis for R? (i.e., one turns counterclockwise from T(s) to N(s)), and then set k(s) =
T'(s) - N(s), from which it follows that T’(s) = «(s)N(s) (why?), as before. So k > 0 when T is twisting

counterclockwise and k < O when T is twisting clockwise. Although the total curvature / |k(s)|ds of a

(o
simple closed plane curve may be quite a bit larger than 27, it is intuitively plausible that the tangent vector
must make precisely one full rotation, either counterclockwise or clockwise, and thus we have

Theorem 3.5 (Hopf Umlaufsatz). If C is a simple closed plane curve, then | kds = +2m, the +

occurring when C is oriented counterclockwise and — when it’s oriented clockwise.

The crucial ingredient is to keep track of a continuous total angle through which the tangent vector has
turned. That is, we need the following

4To be more careful here, if a: [a, ] — R3 is a parametrization with e(a) = e(b), then a(r) = e(u) occurs only when

{t,u} ={a,b}.
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T
FIGURE 3.3

Lemma 3.6. Leta: [a, b] — R2 be a ', regular parametrized plane curve. Then there is a C! function
0:]a,b] — R so that T(¢) = (cos 0(t), sin H(I)) for allt € [a, b]. Moreover, for any two such functions, 6
and 0*, we have 6(b) — 0(a) = 6*(b) — 0*(a). The number (0(b) — 0(a))/2m is called the rotation index

ofe.

Proof. Consider the four open semicircles U; = {(x,y) € S! : x > 0}, U, = {(x,y) € S' :
x <0, Us={(x,y)eS':y>0},and Uy = {(x,y) € S' : y < 0}. Then the functions

V1a(x,y) = arctan(y/x) + 2nmw

Yo n(x,y) = arctan(y/x) + 2n + D
Y3n(x,y) = —arctan(x/y) + (2n + 3)n
Yan(x,y) = —arctan(x/y) + (2n — 3)7

are smooth maps V; ,: U; — R with the property that (cos(wi,n (x, ), sin(¥; n(x, y))) = (x, y) for every
i=1,2,3,4andn € Z.

Define 6(a) so that T(a) = (cos 0(a), sin 9((1)). Let S = {r € [a,b] : 0 is defined and @' on [a, 1]},
and let 7o = sup S. Suppose first that 9 < b. Choose i so that T(¢z9) € U;, and choose n € Z so that
Vin(T(t0)) = lim; ;5 6(¢). Because T is continuous at 7o, there is § > 0 so that T(¢) € U; for all # with
|t —to] < §. Then setting 6(¢) = ¥; »(T(¢)) forall to <t < to + 6 gives us a ! function 6 defined on
[0, 7o + 6/2], so we cannot have top < b. (Note that 6(¢) = v; ,(T(¢)) forall o — 6 <t < to. Why?) But
the same argument shows that when 7y = b, the function 6 is C! on all of [a, b].

Now, since T(b) = T(a), we know that 6(b) — 6(a) must be an integral multiple of 2r. Moreover,
for any other function 8* with the same properties, we have 0*(¢) = 0(t) + 2w n(t) for some integer n ().
Since # and 6* are both continuous, n must be a continuous function as well; since it takes on only integer
values, it must be a constant function. Therefore, 6*(b) — 0*(a) = 6(b) — 0(a), as required. [

Sketch of proof of Theorem 3.5. Note first that if T(s) = (cos B(s), sin G(S)), then T'(s) =
L

L
6’(s)(— sin O(s), cos 0(s)), so k(s) = 6’(s) and / k(s)ds = / 0'(s)ds = O(L) — 6(0) is 27 times the
0 0

rotation index of the closed curve .



28 CHAPTER 1. CURVES

Let A = {(s,t) : 0 < s <t < L}. Consider the secant map h: A — S defined by

T(s), s=t

h(s, 1) = {~T(0), (s.6) = (0.L) .
M, otherwise
llee(2) — ee(s) |

Then it follows from Proposition 2.6 (using Taylor’s Theorem to calculate e (7) = a(s) + (f —s)o’(s) +...)
that h is continuous. A more sophisticated version of the proof of Lemma 3.6 will establish (see Exercise
13) that there is a continuous function 8: A — R so that h(s,t) = (Cos é(s, t),sin é(s, t)) for all (s,2) € A.
It then follows from Lemma 3.6 that

/ kds = 0(L) — 0(0) = 6(L, L) —6(0,0) = (0, L) —6(0,0) +6(L,L) — 6(0,L).
¢ N1 N>
Rotating the curve as required, we assume that e (0) is the lowest point on the curve (i.e., the one whose
y-coordinate is smallest) and, then, that e (0) is the origin and T(0) = ey, as shown in Figure 3.4. (The

a(t)

h(s, )

o(s)

e (0) T(0)

FIGURE 3 .4

last may require reversing the orientation of the curve.) Now, N; is the angle through which the position
vector of the curve turns, starting at 0 and ending at rr; since the curve lies in the upper half-plane, we must
have N; = z. But N, is likewise the angle through which the negative of the position vector turns, so
N> = N; = &. With these assumptions, we see that the rotation index of the curve is 1. Allowing for the
possible change in orientation, the rotation index must therefore be +1, as required. [

Corollary 3.7. If C is a closed curve, for any point P € C there is a point Q € C where the unit
tangent vector is opposite that at P .

Proof. Let T(s) = (cos 0(s),sin 6(s)) for a €' function 6:[0, L] — R, as in Lemma 3.6. Say P =
a(sg), and let B(sg) = 6p. Since O(L) — 6(0) is an integer multiple of 27, there must be s1 € [0, L] with
either 6(s1) = 6g + mw or B(s1) = 6y — . Take Q = a(sy). O

Recall that one of the ways of characterizing a convex function f:R — R is that its graph lie on one
side of each of its tangent lines. So we make the following

Definition. The regular closed plane curve « is convex if it lies on one side of its tangent line at each
point.
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Proposition 3.8. A simple closed regular plane curve C is convex if and only if we can choose the

orientation of the curve so that k > 0 everywhere.

Remark. We leave it to the reader in Exercise 2 to give a non-simple closed curve for which this result

is false.

Proof. Assume, without loss of generality, that T(0) = (1,0) and the curve is oriented counterclock-
wise. Using the function 6 constructed in Lemma 3.6, the condition that ¥ > 0 is equivalent to the condition
that 6 is a nondecreasing function with 6(L) = 2.

Suppose first that 6 is nondecreasing and C is not convex. Then we can find a point P = «(sp) on the
curve and values s7, 55 so that e(s}) and «(s5) lie on opposite sides of the tangent line to C at P. Then,
by the maximum value theorem, there are values s; and s, so that «(sy) is the greatest distance “above”
the tangent line and a(s7) is the greatest distance “below.” Consider the unit tangent vectors T(sq), T(s1),
and T(sz). Since these vectors are either parallel or anti-parallel, some pair must be identical. Letting the
respective values of s be s* and s** with s* < s**, we have 0(s*) = 0(s**) (since 0 is nondecreasing and
O(L) = 2m, the values cannot differ by a multiple of 27), and therefore 6(s) = 0(s*) for all s € [s*, s™*].
This means that that portion of C between a(s*) and ac(s**) is a line segment parallel to the tangent line of
C at P; this is a contradiction.

Conversely, suppose C is convex and 6(s1) = 0(s2) for some s; < s5. By Corollary 3.7 there must be
s3 with T(s3) = —T(s1) = —T(s2). Since C is convex, the tangent line at two of a(s1), at(s2), and c(s3)
must be the same, say at et(s*) = P and a(s**) = Q. If PQ does not lie entirely in C, choose R € PQ,
R ¢ C. Since C is convex, the line through R perpendicular to <P_Q) must intersect C in at least two points,
say M and N, with N farther from % than M. Since M lies in the interior of AN P Q, all three vertices
of the triangle can never lie on the same side of any line through M . In particular, N, P, and Q cannot lie
on the same side of the tangent line to C at M . Thus, it must be that PQ C C,s0 0(s) = 0(s1) = 6(s2)
for all s € [s1, s2]. Therefore, 6 is nondecreasing, and we are done. [

Definition. A critical point of x is called a vertex of the curve C.

A closed curve must have at least two vertices: the maximum and minimum points of x. Every point of

a circle is a vertex. We conclude with the following
Proposition 3.9 (Four Vertex Theorem). A closed convex plane curve has at least four vertices.

Proof. Suppose that C has fewer than four vertices. As we see from Figure 3.5, either x must have
two critical points (maximum and minimum) or ¥ must have three critical points (maximum, minimum,
and inflection point). More precisely, suppose that « increases from P to Q and decreases from Q to P.
Without loss of generality, we may take P to be at the origin. The equation of <P_Q) is A-x = 0, where we

choose A so that «’(s) > 0 precisely when A - a(s) > 0. Then / k' (s)(A - a(s))ds > 0. Integrating by
C

parts, we have

/ K (s)(A - a(s))ds = —/ k(s)(A-T(s))ds :/ A-N'(s)ds = A-/ N'(s)ds = 0.
C C C C

From this contradiction, we infer that C must have at least four vertices. O
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FIGURE 3.5

3.3. The Isoperimetric Inequality. One of the classic questions in mathematics is the following:
Given a closed curve of length L, what shape will enclose the most area? A little experimentation will
most likely lead the reader to the

Theorem 3.10 (Isoperimetric Inequality). If a simple closed plane curve C has length L and encloses
area A, then
L? > 4r4,

and equality holds if and only if C is a circle.
Proof. There are a number of different proofs, but we give one (due to E. Schmidt, 1939) based on

Green’s Theorem, Theorem 2.6 of the Appendix, and—not surprisingly —relying heavily on the geometric-
arithmetic mean inequality and the Cauchy-Schwarz inequality (see Exercise A.1.2). We choose parallel

y
(x(8), y(s))
a(0)¢
o(s0)
(x(s), y(s))
X
El — EZ
C
R >
FIGURE 3.6

lines £; and ¢, tangent to, and enclosing, C, as pictured in Figure 3.6. We draw a circle C of radius R with
those same tangent lines and put the origin at its center, with the y-axis parallel to £;. We now parametrize
C by arclength by a(s) = (x(s), y(s)), s € [0, L], taking e(0) € £; and «(s¢9) € £». We then consider
«: [0, L] — R? given by

(x(s).—vVR2—x(5)2), 0<s<s0

a(s) = (¥(5).7(s)) = (x(s), VR2=x(5)?), so<s<L
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(@ needn’t be a parametrization of the circle C, since it may cover certain portions multiple times, but that’s
no problem.) Letting A denote the area enclosed by C and A = mR? that enclosed by C, we have (by
Exercise A.2.5)

L
A :/0 x(s)y'(s)ds

L L
A=naR?>=— /0 ()X (s)ds = — /0 V(s)x'(s)ds.

Adding these equations and applying the Cauchy-Schwarz inequality, we have
L

L
A+ 7R?> = /0 (x(s)y/(s) — i(s)x/(s))ds = /0 (x(s),?(s)) . (y/(s), —x/(s))ds

L
(%) 5/0 1(x (). TN (). =x(9)) llds = RL,

inasmuch as ||(y’(s), —x’(s))|| = ||[(x’(s), y'(s))|| = 1 since « is arclength-parametrized. We now recall
the arithmetic-geometric mean inequality:

b
vab < 4 -; for positive numbers a and b,

with equality holding if and only if ¢ = b. We therefore have
A+nR*> RL
VAVERE £ T <
so 4mA < L2.

Now suppose equality holds here. Then we must have A = 7R? and L = 2z R. It follows that the
curve C has the same breadth in all directions (since L now determines R). But equality must also hold
in (*), so the vectors a(s) = (x (s), ?(s)) and (y’ (s),—x’ (s)) must be everywhere parallel. Since the first
vector has length R and the second has length 1, we infer that

(x(5).7()) = R(y'(5), =x"(5)).

and so x(s) = Ry’(s). By our remark at the beginning of this paragraph, the same result will hold if
we rotate the axes 7/2; let y = yo be the line halfway between the enclosing horizontal lines £;. Now,
substituting y — yo for x and —x for y, so we have y(s) — yo = —Rx’(s), as well. Therefore, x(s)> +
(y(s) — yo)2 = R?(x'(5)®> + y'(s)?) = R?,and C is indeed a circle of radius R. [

EXERCISES 1.3

1. a. Prove that the shortest path between two points on the unit sphere is an arc of a great circle con-
necting them. (Hint: Without loss of generality, take one point to be (0,0, 1) and the other to be
(sinug, 0,cos ug). Let a(¢) = (sinu(z) cosv(t),sinu(t) sinv(t),cosu(t)),a <t < b, be an arbi-
trary curve with u(a) = 0, v(a) = 0,u(b) = up, v(b) = 0, calculate the arclength of &, and show
that it is smallest when v(¢) = 0 for all ¢.)
b. Prove that if P and Q are points on the unit sphere, then the shortest path between them has length
arccos(P - Q).
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Give a closed plane curve C with ¥ > 0 that is not convex.
Draw closed plane curves with rotation indices 0, 2, —2, and 3, respectively.
Suppose C is a simple closed plane curve with 0 < ¥ < ¢. Prove that length(C) > 2x/c.
Give an alternative proof of the latter part of Theorem 3.1 by considering instead the function
f(s) = IIT(s) = T*©)II* + IN(s) = N*(5)[* + [ B(s) — B* ()]
(See Exercise 1.2.15.) Prove that if C is a simple closed (convex) plane curve of constant breadth pu,
then length(C) = wu.

A convex plane curve with the origin in its interior can be determined by its tangent lines (cos 8)x —+
(sinf)y = p(0), called its support lines, as shown in Figure 3.7. The function p(6) is called the
support function. (Here 6 is the polar coordinate, and we assume p(6) > O for all 6 € [0, 27].)

FIGURE 3.7

a. Prove that the line given above is tangent to the curve at the point
a(0) = (p(@)cosh — p'(0)sin6, p(6)sin + p’(0) cos H).
b. Prove that the curvature of the curve at a(6) is 1/(p(0) + p”(0)).

2n
c. Prove that the length of « is given by L = / p(8)do.
0

2w

d. Prove that the area enclosed by « is given by A = 3 (p(@)2 — p'(@)z)dQ.

0
e. Use the answer to part ¢ to reprove the result of Exercise 6.

Let C be a @2 closed space curve, say parametrized by arclength by a: [0, L] — R>. A unit normal
field X on C is a C! vector-valued function with X(0) = X (L) and X(s) - T(s) = 0 and ||X(s)|| = 1 for
all s. We define the twist of X to be

1 L
tw(C,X) = g/o X'(s) - (T(s) x X(s))ds.

a. Show that if X and X* are two unit normal fields on C, then tw(C, X) and tw(C, X*) differ by an
integer. The fractional part of tw(C, X) (i.e., the twist mod 1) is called the toral twist of C. (Hint:
Write X(s) = cos 8(s)N(s) + sin 0(s)B(s).) 5

b. Prove that the total twist of C equals the fractional part of % /0 Tds.

c. Prove that if a closed curve lies on a sphere, then its total twist is 0. (Hint: Choose an obvious
candidate for X.)
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10.

11.

12.

Remark. W. Scherrer proved in 1940 that if the total twist of every closed curve on a surface is 0,
then that surface must be a (subset of a) plane or sphere.

(See Exercise 1.2.24.) Under what circumstances does a closed space curve have a parallel curve that is
also closed? (Hint: Exercise 8 should be relevant.)

(The Bishop Frame) Suppose « is an arclength-parametrized @2 curve. Suppose we have @' unit vector
fields Ny and N, = T x N; along « so that

T-N1 :T-N2:N1-N2:0;

i.e., T,Ny, N> will be a smoothly varying right-handed orthonormal frame as we move along the curve.
(To this point, the Frenet frame would work just fine if the curve were @3 with « # 0.) But now we
want to impose the extra condition that N - N = 0. We say the unit normal vector field Ny is parallel
along a; this means that the only change of N is in the direction of T. In this event, T, Ny, N5 is called
a Bishop frame for ac. A Bishop frame can be defined even when a Frenet frame cannot (e.g., when there
are points with k = 0).

a. Show that there are functions k1 and k, so that

T = k1N1 + kzNz
N, = kT
N, = —koT

b. Show that k? = k? + k3.

Show that if & is € with ¥ # 0, then we can take N; = (cos §)N + (sin 6)B, where 8’ = —t.
Check that k1 = kcos6 and ko, = —k sinf.

d. Show that & lies on the surface of a sphere if and only if there are constants A, i so that Ak; +
ks + 1 = 0; moreover, if & lies on a sphere of radius R, then A% + u? = R?. (Cf. Exercise
1.2.19)

e. What condition is required to define a Bishop frame globally on a closed curve? (See Exercise 8.)

How is this question related to Exercise 1.2.247

Prove Proposition 3.2 as follows. Let a: [0, L] — X be the arclength parametrization of I', and define
F:[0, L] x [0,27) — X by F(s,¢) = &, where £ is the great circle making angle ¢ with " at a(s).
Check that F takes on the value & precisely #(I" N & 1) times, so that F is a “multi-parametrization” of
> that gives us

L (27| 9F oF
/ #TCNED)dE = / / — x —H dds.
= o Jo as ¢
oF OF . .. . . . .
Compute that o X % = | sin ¢| (this is the hard part) and finish the proof. (Hints: As pictured in
s

Figure 3.8, show v(s, ¢) = cos ¢pT(s) + sin ¢ (a(s) x T(s)) is the tangent vector to the great circle SJ‘

F
and deduce that F(s, ¢) = a(s) x v(s, ¢). Show that % and o X a_v are both multiples of v.)
s

Generalize Theorem 3.5 to prove that if C is a piecewise-smooth plane curve with exterior angles ¢;,

L
j=1,...,4,then / kds + Z €j = £2m. (As shown in Figure 3.9, the exterior angle €; at ot(s;) is
C

Jj=1
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FIGURE 3.8

FIGURE 3.9

defined to be the angle between a’ (s;) = lim o'(s) and &/, (s;) = lim+ o’ (s), with the convention
S—8;
J

S—>S
J

that |¢;| < m.)

Complete the details of the proof of the indicated step in the proof of Theorem 3.5, as follows (following

H. Hopf’s original proof). Pick an interior point sy € A.

a.

Choose 0 (so) so that h(sg) = (cos 6 (so), sin 6 (so)). Use Lemma 3.6, slightly modified, to deter-
mine 6 uniquely as a function that is continuous on each ray 508 for every s € A.

Since a continuous function on a compact (closed and bounded) set A C R? is uniformly continu-
ous, given any g9 > 0, there is a number §o > 0 so that whenever s,s’ € A and ||s —s'|| < ¢, we
will have ||h(s) — h(s')|| < &o. In particular, show that there is §o so that whenever s,s’ € A and
s —s'|| < 8o, the angle between the vectors h(s) and h(s’) is less than 7.

Consider the triangle formed by two radii of the unit circle making angle 6. Give an upper bound
on 6 in terms of the chord length £. Using this, deduce that given ¢ > 0, there is 0 < § < §¢ so that
whenever ||s — §'|| < §, we have |8(s) — 0(s') + 27 n(s)| < & for some integer n(s).

Now choose s = s; € A arbitrary. Consider the function f(u) = 6 (so + u(s —sg)) — é(so +
u(s1 —sp)). Show that f is continuous and f(0) = 0, and deduce that | f(1)| < 7. Conclude that
n = 0in part ¢ and, thus, that 6 is continuous.



CHAPTER 2

Surfaces: Local Theory

1. Parametrized Surfaces and the First Fundamental Form

Let U be an open set in R2. A function f: U — R™ (for us, m = 1 and 3 will be most common) is called

of of
@l if f and its partial derivatives — and — are all continuous. We will ordinarily use (u, v) as coordinates
u v

in our parameter space, and (x, y, z) as coordinates in R3. Similarly, for any k > 2, we say f is ek if all its
partial derivatives of order up to k exist and are continuous. We say f is smooth if f is c* for every positive
integer k. We will henceforth assume all our functions are €* for k > 3. One of the crucial results for

0%f . 0%f
udv  dvou
Notation: We will often also use subscripts to indicate partial derivatives, as follows:

(and similarly for higher-order derivatives).

differential geometry is that if f is @2, then

f, <~ ;—i
f, <~ %
fo=@)0 o AL

Definition. A regular parametrization of a subset M C R3 is a (@) one-to-one function
xU—> M CR3 so that Xy XXy £ 0

for some open set U C R2.! A connected subset M C R3 is called a surface if each point has a neighbor-

hood that is regularly parametrized.

We might consider the curves on M obtained by fixing v = vg and varying u, called a u-curve, and
obtained by fixing ¥ = u¢ and varying v, called a v-curve; these are depicted in Figure 1.1. At the point
P = x(ug, vg), we see that x,,(ug, vg) is tangent to the u-curve and X, (1¢, Vo) is tangent to the v-curve.

We are requiring that these vectors span a plane, whose normal vector is given by X;, X Xy.

Example 1. We give some basic examples of parametrized surfaces. Note that our parameters do not
necessarily range over an open set of values.
(a) The graph of a function f:U — R, z = f(x,y), is parametrized by x(u,v) = (u,v, f(u,v)).
Note that x,, X Xy = (— f, — fv, 1) # 0, so this is always a regular parametrization.
(b) The helicoid, as shown in Figure 1.2, is the surface formed by drawing horizontal rays from the axis
1 For technical reasons with which we shall not concern ourselves in this course, we should also require that the inverse function
x~1:x(U) — U be continuous.
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FIGURE 1.1

FIGURE 1.2

of the helix a(t) = (cost, sint, bt) to points on the helix:
x(u,v) = (ucosv,usinv, bv), u>0,vekR.

Note that x,, X X, = (bsinv,—bcosv,u) # 0. The u-curves are rays and the v-curves are helices.
(c) The torus (surface of a doughnut) is formed by rotating a circle of radius » about a circle of radius
a > b lying in an orthogonal plane, as pictured in Figure 1.3. The regular parametrization is given

FIGURE 1.3
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by
x(u,v) = ((@ + bcosu) cos v, (a + b cosu)sinv, b sinu), 0<wu,v<2m.

Then x,, X X, = —b(a + b cos u)(cos U COS U, COS U Sin v, sin u), which is never 0.
(d) The standard parametrization of the unit sphere X is given by spherical coordinates (¢, ) < (u, v):

x(u,v) = (sinu cos v, sin u sin v, cos u), O<u<m 0<v<2m.

Since x;, X X, = sinu(sinu cos v, sin u sin v, cos #) = (sin u)x(u, v), the parametrization is regular
away from u = 0, r, which we’ve excluded anyhow because x fails to be one-to-one at such points.
The u-curves are the so-called lines of longitude and the v-curves are the lines of latitude on the
sphere.

(e) Another interesting parametrization of the sphere is given by stereographic projection. (Cf. Exercise
1.1.1.) We parametrize the unit sphere less the north pole (0, 0, 1) by the x y-plane, assigning to each

FIGURE 1.4

(u, v) the point (£ (0,0, 1)) where the line through (0, 0, 1) and (u, v, 0) intersects the unit sphere,
as pictured in Figure 1.4. We leave it to the reader to derive the following formula in Exercise 1:

2 2 2402 -1
X(u,v):( u v u-+4v ) v

w24+ v24+ 1 u2+ 02+ 1 u?+02+1
For our last examples, we give two general classes of surfaces that will appear throughout our work.
Example 2. Let I C R be an interval, and let «(u) = (0, f(u), g(u)),u € I,be aregular parametrized
plane curve? with f > 0. Then the surface of revolution obtained by rotating & about the z-axis is

parametrized by
x(u,v) = (f(u)cosv,f(u)sinv,g(u)), uel, 0<v<2m.

2Throughout, we assume regular parametrized curves to be one-to-one.
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Note that X, X X, = f(u)(—g’(u)cosv,—g’(u)sinv, f'(u)), so this is a regular parametrization. The
u-curves are often called profile curves or meridians; these are copies of a rotated an angle v around the
z-axis. The v-curves are circles, called parallels. V

Example 3. Let / C Rbe aninterval, leta: I — R3 be a regular parametrized curve, and let 8: I — R3
be an arbitrary smooth function with B(u) # 0 for all u € I. We define a parametrized surface by

x(u,v) =a()+vBW), uel, velk.

This is called a ruled surface with rulings B(u) and directrix ec. It is easy to check that x,, X X, = (e’ (1) +
vB’(u)) x B(u), which may or may not be everywhere nonzero.
As particular examples, we have the helicoid (see Figure 1.2) and the following (see Figure 1.5):

(1) Cylinder: Here B is a constant vector, and the surface is regular as long as « is one-to-one with
a #£B.

(2) Cone: Here we fix a point (say the origin) as the vertex, let & be a curve with o x &’ # 0, and let
B = —oa. Obviously, this fails to be a regular surface at the vertex (when v = 1), but x;, X X, =
(v—1)a(u) x o (1) is nonzero otherwise. (Note that another way to parametrize this surface would
be to take * = 0 and B* = a.)

(3) Tangent developable: Let e be a regular parametrized curve with nonzero curvature, and let 8 = a’;
that is, the rulings are the tangent lines of the curve . Then x,, X X, = —ve’(u) x &’ (u), so (at
least locally) this is a regular parametrized surface away from the directrix. \Y%

FIGURE 1.5

In calculus, we learn that, given a differentiable function f, the best linear approximation to the graph
y = f(x) “near” x = a is given by the tangent line y = f’(a)(x —a) + f(a), and similarly in higher
dimensions. In the case of a regular parametrized surface, it seems reasonable that the tangent plane at
P = x(uyp, vg) should contain the tangent vector to the u-curve a1 (1) = x(u, vg) at u = ug and the tangent
vector to the v-curve a2 (v) = x(ug, v) at v = vg. That is, the tangent plane should contain the vectors x,,
and x,,, each evaluated at (u¢, vg). Now, since X, X X, # 0 by hypothesis, the vectors x,, and x,, are linearly
independent and must therefore span a plane. We now make this an official

Definition. Let M be a regular parametrized surface, and let P € M. Then choose a regular parametriza-
tion x:U — M C R3 with P = x(ug,v9). We define the tangent plane of M at P to be the subspace
Tp M spanned by x,, and x,, (evaluated at (u¢, vg)).

Remark. The alert reader may wonder what happens if two people pick two different such local
parametrizations of M near P. Do they both provide the same plane Tp M ? This sort of question is very
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common in differential geometry, and is not one we intend to belabor in this introductory course. However,
to get a feel for how such arguments go, the reader may work Exercise 14.

There are two unit vectors orthogonal to the tangent plane 7p M. Given a regular parametrization X,
we know that x,, X X, is a nonzero vector orthogonal to the plane spanned by x,, and x,; we obtain the

corresponding unit vector by taking

Xy, X Xy
n—=-————.
[1X2 X Xy |

This is called the unit normal of the parametrized surface.

Example 4. We know from basic geometry and vector calculus that the unit normal of the unit sphere
centered at the origin should be the position vector itself. This is in fact what we discovered in Example
1(d. V

Example 5. Consider the helicoid given in Example 1(b). Then, as we saw, X, X X, =

(bsinv,—bcosv,u), and n = > (bsinv,—bcosv,u). As we move along a ruling v = vy, the

2
u
normal starts horizontal at u = 0 (where the surface becomes vertical) and rotates in the plane orthogonal

to the ruling, becoming more and more vertical as we move out the ruling. V

We saw in Chapter 1 that the geometry of a space curve is best understood by calculating (at least in
principle) with an arclength parametrization. It would be nice, analogously, if we could find a parametriza-
tion x(u, v) of a surface so that x,, and x,, form an orthonormal basis at each point. We’ll see later that this
can happen only very rarely. But it makes it natural to introduce what is classically called the first funda-
mental form,1p(U,V) = U-V,for U,V € Tp M. Working in a parametrization, we have the natural basis

{Xu, Xy}, and so we define

E =1p(Xy,Xy) = Xy - Xy
F =1p(Xy,Xy) =Xy - Xp = Xp - Xy = Ip(Xy,Xy)

G =1p(Xyp,Xp) =Xy - Xy,

and it is often convenient to put these in as entries of a (symmetric) matrix:

C_EF
P=lF G|
Then, given tangent vectors U = ax,, + bx, and V = c¢x,, + dx, € Tp M, we have

U-V=1pUV) = (axy + bxy) - (cXy + dxy) = E(ac) + F(ad + bc) + G(bd).

In particular, |[U||? = 1p(U,U) = Ea? + 2Fab + Gb2.

Suppose M and M* are surfaces. We say they are locally isometric if for each P € M there are a
regular parametrization x: U — M with x(ug, v9) = P and a regular parametrization x*: U — M * (using
the same domain U C R?) with the property that Ip = I whenever P = x(u,v) and P* = x*(u, v) for
some (u,v) € U. That is, the function f = x*ox~1:x(U) — x*(U) is a one-to-one correspondence that
preserves the first fundamental form and is therefore distance-preserving (see Exercise 2).
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FIGURE 1.6

Example 6. Parametrize a portion of the plane (say, a piece of paper) by x(u,v) = (u,v,0) and a
portion of a cylinder by x*(u,v) = (cosu,sinu,v). Then it is easy to calculate that E = E* = 1,
F = F* =0,and G = G* = 1, so these surfaces, pictured in Figure 1.6, are locally isometric. On the
other hand, if we let u vary from 0 to 27, the rectangle and the cylinder are not globally isometric because
points far away in the rectangle can become very close (or identical) in the cylinder. V

If e(t) = x(u(t),v(t)) is a curve on the parametrized surface M with a(¢9) = x(ug, vg) = P, then it
is an immediate consequence of the chain rule, Theorem 2.2 of the Appendix, that

o' (t0) = u'(to)xu (uo. Vo) + V'(10)Xy (U0, Vo).

(Customarily we will write simply x,,, the point (u¢, vg) at which it is evaluated being assumed.) That is,
if the tangent vector (u(Zg),v’(t9)) back in the “parameter space” is (a, b), then the tangent vector to e
at P is the corresponding linear combination ax, + bx,. In fancy terms, this is merely a consequence of
the linearity of the derivative of x. We say a parametrization x(u, v) is conformal if angles measured in the

FIGURE 1.7

uv-plane agree with corresponding angles in 7p M for all P. We leave it to the reader to check in Exercise
6 that this is equivalent to the conditions £ = G, F = 0.

Since
| |
E F Xy Xy Xy Xy
= = X X X X
F G Xy Xy Xy - Xy uoov R
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we have

. . 0
R Xy Xy Xy Xy Xy - Xy Xy Xy
EG — F* = det = det Xy Xy Xy-Xp 0
Xy Xy Xy X
v u v v 0 0 1

(1 1 17T Y

= det Xy Xp N Xy Xp N =|det|x, x, n ,
| | I

which is the square of the volume of the parallelepiped spanned by x,, X;, and n. Since n is a unit vector

orthogonal to the plane spanned by x,, and x,, this is, in turn, the square of the area of the parallelogram
spanned by x,, and x,. That is,

EG — F? = |xy x X |? > 0.

We remind the reader that we obtain the surface area of the parametrized surface x: U — M by calculating
the double integral

/||Xu Xxv||dudv=/ VEG — F2dudv.
U U

EXERCISES 2.1

1. Derive the formula given in Example 1(e) for the parametrization of the unit sphere.

#2. Suppose a(t) = x(u(t),v(r)),a <t < b, is a parametrized curve on a surface M . Show that

b
length () = / Vlaw (@), (1)) d1

b
= / \/E(u(t), v(O)) W' (1) + 2F (@), v(e)w' (' (1) + Gu(t), v(1) (V' (2))>dr.

Conclude that if « C M and a* C M™ are corresponding paths in locally isometric surfaces, then
length(er) = length(ac™).

3. Compute I (i.e., E, F,and G) for the following parametrized surfaces.
*a. the sphere of radius a: x(u, v) = a(sinu cos v, sin u sin v, cos u)
b. the torus: x(u,v) = ((@ + bcosu)cosv, (a + bcosu)sinv,bsinu) (0 < b < a)
the helicoid: x(u,v) = (¥ cosv, u sinv, bv)
*d. the catenoid: x(u, v) = a(coshu cos v, coshu sinv, u)

4. Find the surface area of the following parametrized surfaces.
*a. the torus: x(u,v) = ((a + bcosu)cosv,(a + bcosu) sinv,bsinu) (0 <b <a),0 <u,v <2z
b. a portion of the helicoid: x(u,v) = (ucosv,usinv,bv),1 <u <3,0 <v <2x
a zone of a sphere3: x(u, v) = a(sinu cosv,sinusinv,cosu),0 <ug <u <u; <m,
0<v<2m

3You should obtain the remarkable result that the surface area of the portion of a sphere between two parallel planes depends
only on the distance between the planes, not on where you locate them.
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*5.

*7.

*8.

10.

#11.

12.

13.
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Show that if all the normal lines to a surface pass through a fixed point, then the surface is (a portion of)
a sphere. (By the normal line to M at P we mean the line passing through P with direction vector the
unit normal at P.)

Check that the parametrization x(u, v) is conformal if and only if £ = G and F = 0. (Hint: For —,

choose two convenient pairs of orthogonal directions.)
Check that a parametrization preserves area and is conformal if and only if it is a local isometry.

Check that the parametrization of the unit sphere by stereographic projection (see Example 1(e)) is
conformal.

(Lambert’s cylindrical projection) Project the unit sphere (except for the north and south poles) radially
outward to the cylinder of radius 1 by sending (x, y,z) to (x/+/x2 + y2,y/+/x2 + y2,z). Check that
this map preserves area locally, but is neither a local isometry nor conformal. (Hint: Let x(u, v) be the

spherical coordinates parametrization of the sphere, and consider x* (1, v) = (cos v, sin v, cos u).)

Consider the hyperboloid of one sheet, M , given by the equation x% + y2 — z2 = 1.
a. Show that x(u,v) = (coshu cos v,coshu sinv,sinhu), u € R,0 < v < 2, gives a parametriza-
tion of M as a surface of revolution.
*b. Find two parametrizations of M as a ruled surface a(u) + vf(u).

1 u—
c. Show that x(u,v) = (uv Ho oMov Mty

, , ) gives a parametrization of M where both sets of
uv—1 uv—1 uv—-1
parameter curves are rulings.
Given a ruled surface x(u,v) = a(u) + vB(u) with &’ # 0 and ||B| = 1; suppose that &’ (), B(u),
and B’ (u) are linearly dependent for every u. Prove that locally one of the following must hold:
(i) B = const;

(ii) there is a function A so that ec(u) + A(u)B(u) = const;

(iii) there is a function A so that (¢ + AB)’(u) is a nonzero multiple of B(u) for every u.
Describe the surface in each of these cases. (Hint: There are ¢y, ¢, ¢3 (functions of u), never simulta-
neously 0, so that c1(u)e’ (1) + c2(u)B(u) + c3(u)B’(u) = 0 for all u. Consider separately the cases
c¢1(u) = 0 and c1(u) # 0. In the latter case, divide through.)

(The Mercator projection) Mercator developed his system for mapping the earth, as pictured in Figure
1.8, in 1569, about a century before the advent of calculus. We want a parametrization x(u, v) of the
sphere, u € R, v € (—m, ), so that the u-curves are the longitudes and so that the parametrization is
conformal. Letting (¢, 6) be the usual spherical coordinates, write ¢ = f(u) and 8 = v. Show that
conformality and symmetry about the equator will dictate f(u#) = 2arctan(e™ ™). Deduce that

x(u,v) = (sechu cos v, sech u sin v, tanh u).
(Cf. Example 2 in Section 1 of Chapter 1.)

A parametrization x(u, v) is called a Tschebyschev net if the opposite sides of any quadrilateral formed
by the coordinate curves have equal length.
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7

FIGURE 1.8

E G
Prove that this occurs if and only if — = — = 0. (Hint: Express the length of the u-curves,

ug < u < uj,as an integral and use thg fact thgt this length is independent of v.)

Prove that we can locally reparametrize by X(if, ) so as to obtain £ = G = 1, F = cos 0(i1, 7)
(so that the - and v-curves are parametrized by arclength and meet at angle ). (Hint: Choose u
as a function of u so that X; = x,, / (du/du) has unit length.)

14. Suppose x and y are two parametrizations of a surface M near P. Say x(ug,vo) = P = y(so, ).
Prove that Span(x,,X,) = Span(ys,y;) (Where the partial derivatives are all evaluated at the obvious
points). (Hint: f = x 1oy gives a @' map from an open set around (so, %) to an open set around

15.

(19, vo). Apply the chain rule to show y;,y; € Span(xy,Xy).)

(A programmable calculator, Maple, or Mathematica may be useful for parts of this problem.) A

catenoid, as pictured in Figure 1.9, is parametrized by

*a.

x(u,v) = (acoshucosv,acoshusinv,au), u€R, 0<v<2m (a>0fixed).

FIGURE 1.9

Compute the surface area of that portion of the catenoid given by |u| < 1/a. (Hint: cosh?u =
3(1 + cosh2u).)

Given the pair of parallel circles x? + y2 = R?, |z| = 1, for what values of R is there at least one
catenoid with the circles as boundary? (Hint: Graph f(¢) = ¢ cosh(1/1).)
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c. For the values of R in part b, compare the area of the catenoid(s) with 27R?, the area of the pair
of disks filling in the circles. For what values of R does the pair of disks have the least area?

d. (For extra credit) Show that as R — 00, the area of the inner catenoid is asymptotic to 27 R? and
the area of the outer catenoid is asymptotic to 47 R.

16. There are two obvious families of circles on a torus. Find a third family. (Hint: Look for a plane that
is tangent to the torus at two points. Using the parametrization of the torus, you should be able to find
equations (either parametric or cartesian) for the curve in which the bitangent plane intersects the torus.)

2. The Gauss Map and the Second Fundamental Form

Given a regular parametrized surface M , the function n: M — X that assigns to each point P € M the
unit normal n(P), as pictured in Figure 2.1, is called the Gauss map of M . As we shall see in this chapter,

n(P)

FIGURE 2.1

most of the geometric information about our surface M is encapsulated in the mapping n.

Example 1. A few basic examples are these.

(a) On a plane, the tangent plane never changes, so the Gauss map is a constant.

(b) On a cylinder, the tangent plane is constant along the rulings, so the Gauss map sends the entire
surface to an equator of the sphere.

(c) On a sphere centered at the origin, the Gauss map is merely the (normalized) position vector.

(d) On a saddle surface (as pictured in Figure 2.1), the Gauss map appears to “reverse orientation”: As
we move counterclockwise in a small circle around P, we see that the unit vector n turns clockwise
around n(P). \Y

Recall from the Appendix that for any function f on M (scalar- or vector-valued) and any tangent
vector V € Tp M , we can compute the directional derivative Dy f(P) by choosing a curve a: (—e, &) — M
with «(0) = P and &’(0) = V and computing ( fee)’(0).

To understand the shape of M at the point P, we might try to understand the curvature at P of various
curves in M. Perhaps the most obvious thing to try is various normal slices of M. That is, we slice M
with the plane through P spanned by n(P) and a unit vector V € Tp M. Various such normal slices are
shown for a saddle surface in Figure 2.2. Let a be the arclength-parametrized curve obtained by taking such
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FIGURE 2.2

a normal slice. We have a(0) = P and &’(0) = V. Then since the curve lies in the plane spanned by n(P)
and V, the principal normal of the curve at P must be =n(P) (+ if the curve is curving towards n, — if it’s
curving away). Since (nea(s)) - T(s) = O for all s near 0, applying Lemma 2.1 of Chapter 1 yet again, we

have:
) +«(P) =«kN-n(P) =T/ (0)-n(P) = —T(0) - (n°ar)’(0) = —Dyn(P)-V.
This leads us to study the directional derivative Dyn(P) more carefully.

Proposition 2.1. For any V € Tp M , the directional derivative Dyn(P) € Tp M . Moreover, the linear
map Sp:TpM — Tp M defined by
Sp(V) = —Dvn(P)
is a symmetric linear map; i.e., for any U,V € Tp M, we have
(%) Sp(U)-V=U-Sp(V)
Sp is called the shape operator at P .

Proof. For any curve a: (—e, &) — M with «(0) = P and &’(0) = V, we observe that nee has constant
length 1. Thus, by Lemma 2.1 of Chapter 1, Dyn(P) -n(P) = (nea)’(0) - (nee)(0) = 0, s0 Dyn(P) is in
the tangent plane to M at P. That Sp is a linear map is an immediate consequence of Proposition 2.3 of the
Appendix.

Symmetry is our first important application of the equality of mixed partial derivatives. First we verify
(%) when U = x,,, V = X,. Note thatn - X, = 0,500 = (n-Xp)y = Dy - Xp + N - Xyy. (Remember that

we’re writing ny, for Dy, n.) Thus,
Sp(xy) Xy = —=Dx,n(P) - Xy = =Ny - Xy = N Xyy

=ND-Xyy = Ny - Xy = _van(P) Xy = Sp(Xy) - Xy.
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Next, knowing this, we just write out general vectors U and V as linear combinations of x,, and x,: If
U = ax, + bxy and V = ¢x,, + dX,, then

Sp(U) -V = Sp(axy + bxy) - (cxy + dxXy)
(aSp(xu) + bSp (X,,)) - (exy + dxy)
=acSp(Xy) Xy +adSp(xy) - Xy + bcSp(Xy) - Xy + bdSp(Xy) - Xy

=acSp(xy) Xy +adSp(xy) - Xy + bcSp(Xy) - Xy + bdSp (Xy) - Xy
= (axy + bxy) - (cSp(xy) + dSp(xy)) =U-Sp(V),

as required. [
Proposition 2.2. If the shape operator Sp is O for all P € M , then M is a subset of a plane.

Proof. Since the directional derivative of the unit normal n is 0 in every direction at every point P, we
have n, = n, = 0 for any (local) parametrization x(u, v) of M. By Proposition 2.4 of the Appendix, it
follows that n is constant. (This is why we assume our surfaces are connected.) [

1
Example 2. Let M be a sphere of radius a centered at the origin. Then n = —x(u, v), so for any P,
a

1 1
we have Sp (xy) = —n,, = ——Xx, and Sp(Xy) = —ny, = ——Xy, so Sp is —1/a times the identity map on
a

the tangent plane Tp M. V

It does not seem an easy task to give the matrix of the shape operator with respect to the basis {X,, X, }.
But, in general, the proof of Proposition 2.1 suggests that we define the second fundamental form, as follows.
IfU,VeTpM,we set

Ip(U,V) = Sp(U)-V.

Note that the formula () on p. 45 shows that the curvature of the normal slice in direction V (with | V| = 1)
is, in our new notation, given by

4k =—Dyn(P)-V = Sp(V)-V =1Ip(V,V).

As we did at the end of the previous section, we wish to give a matrix representation when we’re working

with a parametrized surface. As we saw in the proof of Proposition 2.1, we have
g - IIP(Xu,Xu): _Dxun Xy = Xyu ‘N
m = Ilp(Xy,Xy)= _Dxun “Xy = Xpy - N = Xyp - N = Ip(Xy, Xy)
n = IIP(XU,XU): _van Xy = Xyyp oI

(By the way, this explains the presence of the minus sign in the original definition of the shape operator.)

{ m Xyy N Xyp - N
Mp = = .
m n Xyp N Xypy - N

If, as before, U = ax, + bx, and V = cx,, + dx,, then

‘We then write

Ip(U,V) = llp(axy, + bXy, cXy + dXy)
=acllp(Xy,Xy) + adllp(xy,Xy) + bcllp (Xy, Xy) + bd 1 p (x4, Xy)
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= l(ac) +m(bc + ad) + n(bd).

In the event that {x,,,X,} is an orthonormal basis for Tp M , we see that the matrix IIp represents the
shape operator Sp. But it is not difficult to check (see Exercise 2) that, in general, the matrix of the linear
map Sp with respect to the basis {x,,, X, } is given by

-1
_ E F { m
IPlHP:|:F Gi| |:m n:|

Remark. We proved in Proposition 2.1 that Sp is a symmetric linear map. This means that its matrix
representation with respect to an orthonormal basis (or, more generally, orthogonal basis with vectors of
equal length) will be symmetric: In this case the matrix Ip is a scalar multiple of the identity matrix and the
matrix product remains symmetric.

By the Spectral Theorem, Theorem 1.3 of the Appendix, Sp has two real eigenvalues, traditionally
denoted k1 (P), k> (P).

Definition. The eigenvalues of Sp are called the principal curvatures of M at P. Corresponding
eigenvectors are called principal directions. A curve in M is called a line of curvature if its tangent vector
at each point is a principal direction.

Recall that it also follows from the Spectral Theorem that the principal directions are orthogonal, so we can
always choose an orthonormal basis for 7p M consisting of principal directions. Having done so, we can
then easily determine the curvatures of normal slices in arbitrary directions, as follows.

Proposition 2.3 (Euler’s Formula). Let ey, e, be unit vectors in the principal directions at P with
corresponding principal curvatures k1 and k,. Suppose V = cos e + sin e, for some 6 € [0,27), as
pictured in Figure 2.3. Thenlp(V,V) = k; cos2 6 + ko sin? 6.

FIGURE 2.3

Proof. This is a straightforward computation: Since Sp(e;) = k;e; fori = 1,2, we have
Ip(V,V) = Sp(V)-V = Sp(cos B¢y + sinfey) - (cos feq + sinfey)
= (cos Okye; + sin Okze,) - (cos He; + sinfey) = ky cos? 6 + ks sin’ 6,
as required. [

On a sphere, all normal slices have the same (nonzero) curvature. On the other hand, if we look carefully
at Figure 2.2, we see that certain normal slices of a saddle surface are true lines. This leads us to make the
following
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Definition. If the normal slice in direction V has zero curvature, i.e., if IlIp (V, V) = 0, then we call V
an asymptotic direction.* A curve in M is called an asymptotic curve if its tangent vector at each point is an

asymptotic direction.
Example 3. If a surface M contains a line, that line is an asymptotic curve. For the normal slice in
the direction of the line contains the line (and perhaps other things far away), which, of course, has zero

curvature. V
Corollary 2.4. There is an asymptotic direction at P if and only if k1k, < 0.

Proof. k, = 0 if and only if e, is an asymptotic direction. Now suppose k» # 0. If V is a unit
asymptotic vector making angle # with ey, then we have kq cos? 64k, sin> = 0,and so tan? § = —ky/k»,
s0 k1ka < 0. Conversely, if k1ko < 0, take 6 with tanf = +./—k1/k>, and then V is an asymptotic

direction. [
Example 4. We consider the helicoid, as pictured in Figure 1.2. It is a ruled surface and so the rulings

are asymptotic curves. What is quite less obvious is that the family of helices on the surface are also
asymptotic curves. But, as we see in Figure 2.4, the normal slice tangent to the helix at P has an inflection
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FIGURE 2.4

point at P, and therefore the helix is an asymptotic curve. We ask the reader to check this by calculation in
Exercise 5. V
It is also an immediate consequence of Proposition 2.3 that the principal curvatures are the maximum
and minimum (signed) curvatures of the various normal slices. Assume k < k1. Then
kicos? 0 + kysin®0 = ki (1 —sin®0) + ko sin® 0 = ky + (kp — kq) sin? 0 < k;

(and, similarly, > k,). Moreover, as the Spectral Theorem tells us, the maximum and minimum occur at
right angles to one another. Looking back at Figure 2.2, where the slices are taken at angles in increments
of 7/8, we see that the normal slices that are “most curved” appear in the third and seventh frames; the

asymptotic directions appear in the second and fourth frames. (Cf. Exercise 8.)

40f course, V # 0 here. See Exercise 23 for an explanation of this terminology.
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Next we come to one of the most important concepts in the geometry of surfaces:

Definition. The product of the principal curvatures is called the Gaussian curvature: K = det Sp =
kik,. The average of the principal curvatures is called the mean curvature: H = % trSp = %(kl + k»).
We say M is a minimal surface if H = 0 and flat if K = 0.

Note that whereas the signs of the principal curvatures change if we reverse the direction of the unit normal
n, the Gaussian curvature K, being the product of both, is independent of the choice of unit normal. (And
the sign of the mean curvature depends on the choice.)

Example S. It follows from our comments in Example 1 that both a plane and a cylinder are flat surfaces:
In the former case, Sp = O for all P, and, in the latter, det Sp = 0 for all P since the shape operator is
singular. V

Example 6. Consider the saddle surface x(u, v) = (u, v, uv). We compute:

Xy = (1’09 U) Xyu = (0, 0,0)

Xy = (0,1, u) Xup = (0,0,1)
1

n=—————(-v.—u.1) x5, =(0,0,0),

V14 u? +0?

and so
1

E=14v>, F=uv, G=14u? and L=n=0m= —nu-—.
V14 u? +v?

Thus, with P = x(u, v), we have

14 0v? 1 0 1
IP = + v uv 2 and IIP — —= )
uv  1+u I+u?+02 |1 0
so the matrix of the shape operator with respect to the basis {x,, X, } is given by

—uv 1+u2i|

(I+u2+0v2)32 [ 1+0v2 —uv

1
Sp =1'Ip = [
(Note that this matrix is, in general, not symmetric.)

With a bit of calculation, we determine that the principal curvatures (eigenvalues) are

—uv + /(1 +u2)(1 +v2) —uv — /(1 +u2)(1 + v2)
kl = and kz = s
(1 + M2 + U2)3/2 (1 + M2 + U2)3/2

and K = det Sp = —1/(1 4 u? 4 v?)2. Note from the form of Ilp that the u- and v-curves are asymptotic

curves, as should be evident from the fact that these are lines. With a bit more work, we determine that the
principal directions, i.e., the eigenvectors of Sp, are the vectors

V14+u?x, +vV1+v2x,.

(It is worth checking that these vectors are, in fact, orthogonal.) The corresponding curves in the uv-plane

have tangent vectors (\/ 14+ u2, +£/1+ v2) and must therefore be solutions of the differential equation

dv :l:\/l—i-vz

du = Ttuz
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If we substitute v = sinhg, [ dv/~/1+v2 = [dgq = q = arcsinh v, so, separating variables, we obtain

dv / du
—— =4+ [ ———; i.e., arcsinhv = farcsinhu + c.
/ V1 + 02 V1 +u?
Since sinh(x + y) = sinh x cosh y + cosh x sinh y, we obtain
v = sinh(# arcsinh u + ¢) = £(cosh ¢)u + (sinhc)v1 + u?.

When ¢ = 0, we get v = Fu (as should be expected on geometric grounds). As ¢ varies through nonzero
values, we obtain a family of hyperbolas. Some typical lines of curvature on the saddle surface are indicated
in Figure 2.5. 'V

FIGURE 2.5

Definition. Fix P € M. We say P is an umbilic® if ky = ko. If ky = ko = 0, we say P is a planar
point. If K = 0 but P is not a planar point, we say P is a parabolic point. If K > 0, we say P is an elliptic
point, and if K < 0, we say P is a hyperbolic point.

Example 7. On the “outside” of a torus (see Figure 1.3), all the normal slices curve in the same direction,
so these are elliptic points. Now imagine laying a plane on top of a torus; it is tangent to the torus along
the “top circle,” and so the unit normal to the surface stays constant as we move around this curve. For
any point P on this circle and V tangent to the circle, we have Sp(V) = —Dyn = 0, so V is a principal
direction with corresponding principal curvature 0. Thus, these are parabolic points. On the other hand,
consider a point P on the innermost band of the torus. At such a point the surface looks saddle-like; that is,
with the unit normal as pictured in Figure 2.6, the horizontal circle (going around the inside of the torus) is a

fn\/\

FIGURE 2.6

line of curvature with positive principal curvature, and the vertical circle is a line of curvature with negative
principal curvature. Thus, the points on the inside of the torus are hyperbolic points. V

5From the Latin umbilicus, navel.



§2. THE GAUSS MAP AND THE SECOND FUNDAMENTAL FORM 51

Remark. Gauss’s original interpretation of Gaussian curvature was the following: Imagine a small
curvilinear rectangle P at P € M with sides /; and /5 along principal directions. Then, since the principal
directions are eigenvectors of the shape operator, the image of P under the Gauss map is nearly a small
curvilinear rectangle at n(P) € X with sides k141 and kphp. Thus, K = kqk; is the factor by which n
distorts signed area as it maps M to X. (Note that for a cylinder, the rectangle collapses to a line segment;
for a saddle surface, orientation is reversed by n and so the Gaussian curvature is negative.)

Let’s close this section by revisiting our discussion of the curvature of normal slices. Suppose « is an
arclength-parametrized curve lying on M with «(0) = P and &’(0) = V. Then the calculation in formula
(1) on p. 45 shows that

IIp(V,V) = kN n;

ie., [Ip(V,V) gives the component of the curvature vector kN of o normal to the surface M at P, which
we denote by k;, and call the normal curvature of o at P. What is remarkable about this formula is that it
shows that the normal curvature depends only on the direction of & at P and otherwise not on the curve.
(For the case of the normal slice, the normal curvature is, up to a sign, all the curvature.) We immediately
deduce the following

Proposition 2.5 (Meusnier’s Formula). Let o be a curve on M passing through P with unit tangent
vector V. Then

p(V,V) =k, = Kkcose,
where ¢ is the angle between the principal normal, N, of e and the surface normal, n, at P .
In particular, if & is an asymptotic curve, then its normal curvature is 0 at each point. This means that,

so long as k # 0, its principal normal is always orthogonal to the surface normal, i.e., always tangent to the
surface.

Example 8. Let’s now investigate a very interesting surface, called the pseudosphere, as shown in
Figure 2.7. It is the surface of revolution obtained by rotating the tractrix (see Example 2 of Chapter 1,

FIGURE 2.7

Section 1) about the x-axis, and so it is parametrized by
x(u,v) = (u — tanh u, sechu cos v, sech u sin v), u>0,vel02nr).

Note that the circles (of revolution) are lines of curvature: Either apply Exercise 15 or observe, directly, that
the only component of the surface normal that changes as we move around the circle is normal to the circle
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in the plane of the circle. Similarly, the various tractrices are lines of curvature: In the plane of one tractrix,
the surface normal and the curve normal agree.

Now, by Exercise 1.2.5, the curvature of the tractrix is x = 1/sinhu; since N = —n along this curve,
we have k; = k, = —1/sinhu. Now what about the circles? Here we have k = 1/sechu = coshu,
but this is not the normal curvature. The angle ¢ between N and n is the supplement of the angle 6 we
see in Figure 1.9 of Chapter 1 (to see why, see Figure 2.8). Thus, by Meusnier’s Formula, Proposition 2.5,

o/ N

FIGURE 2.8

we have ky = k, = kcos¢ = (coshu)(tanhu) = sinhu. Amazingly, then, we have K = kik, =
(—1/sinhu)(sinhu) = —-1. V

Example 9. Let’s now consider the case of a general surface of revolution, parametrized as in Example
2 of Section 1, by
x(u,v) = (f(u)cosv, f(u)sinv, g(u)),
where f/(u)? + g’(u)?> = 1. Recall that the u-curves are called meridians and the v-curves are called
parallels. Then
(f'(u)cosv, f'(u)sinv, g'(u))
(—f(u)sinv, f(u)cosv,0)
(—g’(u) cosv, —g'(u) sinv, 1’ (u))
Xuu = (f"(u) cosv, 1" (u)sinv, g’ (u))
(
(

Xy =

Xy

n

—f'(u) sinv, f'(u)cos v,O)
— f(u) cosv, — f(u) sinv,O),

Xuv =

Xpy =
and so we have

E=1, F=0, G=/fw? and L= f'g"w)—f"wegw), m=0, n=fu)g .
By Exercise 2.2.1,then k1 = f'(u)g”(u) — f"(u)g’(u) and ko, = g’(u)/f(u). Thus,

g _ 1"
S(u) fu)’
since from f’(u)? + g’(u)?> = 1 we deduce that f/(u) f"(u) + g’(u)g" (1) = 0, and so

g’ wg"w) — f"wg' w)? = —(f')? + &' W) f"(u) = = f" ().

K = klkz = (f/(u)g”(u) - f//(u)g/(u))
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Note, as we observed in the special case of Example 8, that on every surface of revolution, the meridians

and the parallels are lines of curvature. V

*1.

*35.

*6.

EXERCISES 2.2

Check that if there are no umbilic points and the parameter curves are lines of curvature, then F' =
m = 0 and we have the principal curvatures k; = £/E and k; = n/G. Conversely, prove that if
F = m = 0, then the parameter curves are lines of curvature.

a. Show that the matrix representing the linear map Sp: TpM — Tp M with respect to the basis

{Xu»xv}is
-1
E F £ m
p = .
p P |:F Gi| |:m n:|

(Hint: Write Sp(xy) = axy, + bx, and Sp(xy) = cx, + dXy, and use the definition of £, m, and
n to get a system of linear equations for a, b, ¢, and d.)

n —m?

EG — F%’

Compute the second fundamental form IIp of the following parametrized surfaces. Then calculate the

b. Deduce that K =

matrix of the shape operator, and determine H and K.
a. the cylinder: x(u,v) = (acosu,asinu, v)

*b. the torus: x(u,v) = ((a + bcosu)cosv, (@ + bcosu)sinv,bsinu) (0 < b < a)

c. the helicoid: x(u,v) = (4 cos v, u sinv, bv)

*d. the catenoid: x(u, v) = a(coshu cos v, coshu sinv, u)

e. the Mercator parametrization of the sphere: x(u, v) = (sechu cos v, sech u sin v, tanh u)
Enneper’s surface: x(u,v) = (u —u3/3 + uv?, v —v3/3 + u?v, u? — v?)

Find the principal curvatures, the principal directions, and asymptotic directions (when they exist) for
each of the surfaces in Exercise 3. Identify the lines of curvature and asymptotic curves when possible.

Prove by calculation that any one of the helices a () = (a cost,asint, bt) is an asymptotic curve on
the helicoid given in Example 1(b) of Section 1. Also, calculate how the surface normal n changes as
one moves along a ruling, and use this to explain why the rulings are asymptotic curves as well.

Calculate the first and second fundamental forms of the pseudosphere (see Example 8) and check our
computations of the principal curvatures and Gaussian curvature.

Show that a ruled surface has Gaussian curvature K < 0.

a. Prove that the principal directions bisect the asymptotic directions at a hyperbolic point. (Hint:
Euler’s Formula.)
b. Prove that if the asymptotic directions of M are orthogonal, then M is minimal. Prove the converse

assuming M has no planar points.

Let k,(6) denote the normal curvature in the direction making angle 6 with the first principal direction.
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10.

11.

12.

13.

#14.
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2w

1
a. Show that H = —/ kn(0)do.
2 0

1
b. Show that H = 2 (Kn(G) + Kkp (9 + %)) for any 6.
c. (More challenging) Show that, more generally, for any 6 and m > 3, we have

H=1 (K,,(e)+,c,,(e+2—”) +~.+K,,(e+w)).
m m m

Consider the ruled surface M given by x(u, v) = (vcosu, vsinu,uv), v > 0.

a. Describe this surface geometrically.

b. Find the first and second fundamental forms and the Gaussian curvature of M .

c. Check that the v-curves are lines of curvature.

d. Proceeding somewhat as in Example 6, show that the other lines of curvature are given by the
equation v+/1 + u? = ¢ for various constants ¢. Show that these curves are the intersection of M
with the spheres x2 + y2 + z2 = ¢2. (It might be fun to use Mathematica to see this explicitly.)

d ‘(¢
The curve a(t) = x(u(¢), v(¢)) may arise by writing d_v _ U/EZ;
U u

and solving a differential equation to
relate u and v either explicitly or implicitly.
a. Show that a is an asymptotic curve if and only if £(u')? 4+ 2mu’v’ + n(v’)®> = 0. Thus, if
{+ ZmZ—Z + n(g—Z)z = 0, then « is an asymptotic curve.
Eu' + Fv' Fu' + Gv’

b. Show that e is a line of curvature if and only if , , , ,
' +mv" mu’ + nv

= 0. Give the appropri-

ate condition in terms of dv/du.
c. Deduce that an alternative condition for & to be a line of curvature is that
(v/)2 —u'v’ (u/)2
E F G | =0.
£ m n

a. Apply Meusnier’s Formula to a latitude circle on a sphere of radius a to calculate the normal
curvature.

b. Prove that the curvature of any curve lying on the sphere of radius a satisfies k > 1/a.

Prove or give a counterexample: If M is a surface with Gaussian curvature K > 0, then the curvature
of any curve C C M is everywhere positive. (Remember that, by definition, ¥ > 0.)

Suppose that for every P € M, the shape operator Sp is some scalar multiple of the identity, i.e.,
Sp(V) =k(P)Vforall Ve TpM. (Here the scalar k(P) may well depend on the point P.)
a. Differentiate the equations

Dy,n = n, = —kxy
Dy,n = n, = —kxy

appropriately to determine k,, and k, and deduce that k must be constant.
b. We showed in Proposition 2.2 that M is planar when k = 0. Show that when k # 0, M is (a
portion of) a sphere.
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15.

16.

17.

18.

19.

20.

21.

a.

Prove that e is a line of curvature in M if and only if (nea)’(r) = —k(t)a’(¢), where k(t) is the
principal curvature at e (¢) in the direction a’(7). (More colloquially, differentiating along the curve
o, we just write n’ = —kao'.)

Suppose two surfaces M and M * intersect along a curve C. Suppose C is a line of curvature in M .
Prove that C is a line of curvature in M * if and only if the angle between M and M * is constant
along C. (In the proof of <=, be sure to include the case that M and M * intersect tangentially
along C.)

Prove or give a counterexample:

a.

If a curve is both an asymptotic curve and a line of curvature, then it must be planar. (Hint: Along
an asymptotic curve that is not a line, how is the Frenet frame related to the surface normal?)
If a curve is planar and an asymptotic curve, then it must be a line.

How is the Frenet frame along an asymptotic curve related to the geometry of the surface?
Suppose K(P) < 0. If C is an asymptotic curve with x(P) # 0, prove that its torsion satisfies
|[T(P)| = \/T(Pﬂ . (Hint: If we choose an orthonormal basis {U, V} for Tp (M) with U tangent
to C, what is the matrix for Sp? See the Remark on p. 47.)

Continuing Exercise 17, show that if K(P) < 0, then the two asymptotic curves have torsion of opposite

signs at P.

Prove that the only minimal ruled surface with no planar points is the helicoid. (Hint: Consider the

curves orthogonal to the rulings. Use Exercises 8b and 1.2.20.)

Suppose U C R3 is open and x: U — R3 is a smooth map (of rank 3) so that x,,, X, , and X, are always

orthogonal. Then the level surfaces u = const, v = const, w = const form a triply orthogonal system

of surfaces.

a.

Show that the spherical coordinate mapping x(u,v,w) = (usinv cosw,u sin v sinw, ¥ cos v)
(u>0,0<v<m,0<w < 2m) furnishes an example.

Prove that the curves of intersection of any pair of surfaces from different systems (e.g., v = const
and w = const) are lines of curvature in each of the respective surfaces. (Hint: Differentiate the
various equations X, - X, = 0, Xy - X = 0, Xy, + Xy, = 0 with respect to the missing variable. What
are the shape operators of the various surfaces?)

In this exercise we analyze the surfaces of revolution that are minimal. It will be convenient to work

with a meridian as a graph (y = h(u), z = u) when using the parametrization of surfaces of revolution

given in Example 9.

a.

Use Exercise 1.2.4 and Proposition 2.5 to show that the principal curvatures are

W 11
S d ky=— .
a+w23rz R e

Deduce that H = 0 if and only if 2(u)h” () = 1 + k' (u)?.

Solve the differential equation. (Hint: Either substitute z (1) = In /(1) or introduce w(u) = h'(u),
find dw/dh, and integrate by separating variables.) You should find that #(u) = % cosh(cu + b)
for some constants » and c.

ki =
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22. By choosing coordinates in R appropriately, we may arrange that P is the origin, the tangent plane
Tp M is the xy-plane, and the x- and y-axes are in the principal directions at P.
a. Show that in these coordinates M is locally the graph z = f(x,y) = %(qu2 +koy?) 4+ €(x, y),

. €(x,y)
where lim -3
x,y—0 x2 4 y?

f(x,y) = £(0,0) + fx(0,0)x + £,(0,0)y +
2 (frx(0,00x% + 2 £1,(0,0)xy + £3,(0,0)y%) + €(x, ),

where lim @ =0)
x,y—>0 X< + y2

b. Show that if P is an elliptic point, then a neighborhood of P in M N Tp M is just the origin itself.

= 0. (You may start with Taylor’s Theorem: If f is @2, we have

What happens in the case of a parabolic point?

c. (More challenging) Show that if P is a hyperbolic point, a neighborhood of P in M N Tp M is
a curve that crosses itself at P and whose tangent directions at P are the asymptotic directions.
(Hints: Work in coordinates (x,u) with y = ux. Show that in the xu-plane the curve has the
equation 0 = g(x,u) = %(kl + kou?) + h(x,u), where h(0,u) = 0 for all u, so it consists
of o (C1) curves, one passing through (0, \/T/kz) and the other through (0, —\/T/kz).
Show, moreover, that if two curves pass through the same point (0, u¢) in the xu-plane, then the
corresponding curves in the x y-plane are tangent at (0, 0).%)

23. Let P € M be a non-planar point, and if K > 0, choose the unit normal so that £,n > 0.

a. We define the Dupin indicatrix to be the conic in Tp M defined by the equation IIp(V,V) = 1.
Show that if P is an elliptic point, the Dupin indicatrix is an ellipse; if P is a hyperbolic point,
the Dupin indicatrix is a hyperbola; and if P is a parabolic point, the Dupin indicatrix is a pair of
parallel lines.

b. Show thatif P is a hyperbolic point, the asymptotes of the Dupin indicatrix are given by IIp (V,V) =
0,1i.e., the set of asymptotic directions.

c. Suppose M is represented locally near P as in Exercise 22. Show that for small positive values
of c, the intersection of M with the plane z = ¢ “looks like” the Dupin indicatrix. How can you

make this statement more precise?

24. Suppose the surface M is given near P as a level surface of a smooth function f:R3> — R with
Vf(P) # 0. Aline L C R3 is said to have (at least) k-point contact with M at P if, given any
linear parametrization & of L with a(0) = P, the function f = foa vanishes to order k — 1, i.e.,
£(0) = f/(0) = --- = f D (0) = 0. (Such a line is to be visualized as the limit of lines that intersect
M at P and at k — 1 other points that approach P .)

a. Show that L has 2-point contact with M at P if and only if L is tangentto M at P,ie.,L C TpM.

b. Show that L has 3-point contact with M at P if and only if L is an asymptotic direction at P.
(Hint: It may be helpful to follow the setup of Exercise 22.)

c. (Challenge) Assume P is a hyperbolic point. What does it mean for L to have 4-point contact with
M at P?

SHere we have “blown up” the origin in order to keep track of the different tangent directions. The blowing-up construction is
widely used in topology and algebraic geometry.
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3. The Codazzi and Gauss Equations and the Fundamental Theorem of Surface Theory

We now wish to proceed towards a deeper understanding of Gaussian curvature. We have to this point
considered only the normal components of the second derivatives Xy, Xyv, and Xy, . Now let’s consider

them in toto. Since {x,, Xy, n} gives a basis for R>, there are functions I}, T2, [\% =T }%,T,% =T},
l" u

wy»and I so that

Xuu = Dy Xu + Ty Xy + {n
() Xuv = UyfyXu + TyXo + mn
Xpy = DypXy + [yXy + nn.

(Note that X, = Xy dictates the symmetries I',5, = I'5,.) The functions Iy, are called Christoffel
symbols.

Example 1. Let’s compute the Christoffel symbols for the usual parametrization of the sphere (see
Example 1(d) on p. 37). By straightforward calculation we obtain

X, = (COs U cOs v, COs U Sin v, — Sin u)
Xy = (—sinu sin v, sinu cos v, 0)
Xyy = (—sinu cos v, —sinu sinv, —cosu) = —x(u, v)
Xyy = (—cosu sinv, cosu cos v, 0)
Xyy = (—sinu cos v, —sinu sin v, 0) = —sinu(cos v, sin v, 0).

(Note that the u-curves are great circles, parametrized by arclength, so it is no surprise that the acceleration
vector Xy, is inward-pointing of length 1. The v-curves are latitude circles of radius sin u, so, similarly, the
acceleration vector Xy, points inwards towards the center of the respective circle.)

n

{sinucosu

FIGURE 3.1

Since Xy, lies entirely in the direction of n, we have I'}};, = I',;;,, = 0. Now, by inspection, X, =

cotuxy,so ')t = 0and I',;, = cotu. Last, as we can see in Figure 3.1, we have x,, = —sinu cos ux, —
2

sin“un,so '}y = —sinucosu and ')}, =0. V
Now, dotting the equations in (1) with x;, and x,, gives
Xyy Xy =L E+ T, F

Xyy Xy =L, F+T,,G

Xyy Xy = Ly E+ T F
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Xuv . XU = Ful,lvF + FMU'UG

Xpp Xy = [y E + T F
Xpy - Xy = [y F + T,0G.

Now observe that

Xyu - Xy = %(Xu “Xu)u = §Eu
Xyy - Xy = %(Xu Xy)y = %Ev
Xy * Xy = %(Xv “Xp)u = %Gu
Xy - Xy = (Xy * Xp)y — Xy " Xyp = Fy %Ev
Xpp - Xy = (Xy *Xp)y — Xyy - Xy = Fv_%Gu
Xpv * Xy = %(XU “Xp)y = %Gv
Thus, we can rewrite our equations as follows:
— - - - — — - — _._1 —
E F||Lh|_ 1 Ey . Lyw | _|E F 1 Ey
| F G ||Tn | | Fu—3Ew T | |F G| | Fu—3E
— - - -— — — __1 —
@ E F||T|_ %Ev . Lyy | _|E F %Ev
_F G_ _I‘u'j)_ 5Gu _Fu”v_ _F G_ 5Gu
— — — — — _1 —
E F||T|_| Fo—5Gu . Lyy | _|E F Fy — 3Gy
| F G ||| | 36 Th | |LF G| | 36w

What is quite remarkable about these formulas is that the Christoffel symbols, which tell us about the
tangential component of the second derivatives Xee , can be computed just from knowing E, F,and G, i.e.,

the first fundamental form.

Example 2. Let’s now recompute the Christoffel symbols of the unit sphere and compare our answers

with Example 1. Since £ =1, F =0,and G = sin?

[ Tu
Loy
v

B Loy
u
Ly
v

| Loy

B u
FUU

Thus, the only nonzero Christoffel symbols are I',, = I')}, = cotu and I'}}§

\Y%

v

1
0

1
0

1
0

0

CSC2 u

0

2

cSsC™u

0

2

cSsC™u

u, we have

|

—sinu cosu
0

sin u cos u

|

|

0
cotu

|

|

—sinu cos u
0

} |

—sinu cos u, as before.

By Exercise 2.2.2, the matrix of the shape operator Sp with respect to the basis {X,,, X, } is

a ¢

b d

o)l

E F
F G

I

L m
m n

|

1
~ EG — F2

|

LG —mF
—LF +mE

mG —nF
—-mF +nE

} |
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Note that these coefficients tell us the derivatives of n with respect to u and v:

n, = Dy,n=-Sp (xy) = —(axy + bxy)

(Tt n, = Dy,n = —Sp(Xy) = —(cXy + dXy).

We now differentiate the equations (§) again and use equality of mixed partial derivatives. To start, we
have

Xuuv = (Fui)vxu + Fuuuxuv + (Fuvu)vxv + Fuvuxvv + {yn + {n,
= (D) vxu + Tyo (Tao Xy + T xe + mm) + (T, vXe + Do (TyoXu + Ty Xy + nm)
+ Lyn — L(cxy + dxy)
= ((Fuuu)v + Fuuu 1—‘uuv + Fulit erf) - ZC)Xu + ((Fulit)v + Furft l—‘uvv + Fuvu 1—‘vvv - Zd)xv

+ (Tgym + Typyn + €y)n,
and, similarly,

Xuvu = ((Dfe)u + Do Ty + T Dot — ma)xy + (T0)u + Ty Ty + T Tty — mb)x,,

uv- uu

+ (£T,y + mT,), + my)n.
Since Xyy = Xyyu, We compare the indicated components and obtain:
(Xu): (Furft)v + Fuvurvrf) —Le = (Fuuv)u + 1—‘uvvl—‘uuv —ma
(<>) (XU): (Fulit)v + Fum Fu% + l—‘uvu Fv% —td = (Fuvv)u + Fu% Fu1;4 + Fuvvru% —mb
(n): by +mD}y, +nlp, =my + L0 +mI).

Analogously, comparing the indicated components of X,y = Xyyy, We find:

(xy): Ty, + T T +T 2T —me =T K ), +TEXTYE + T 2T  —na

uv/v UV UL UV~ VL vv/U VU UU vV UV
(xy): o) + 0y —md = (T))u + T, —nb

(n): my +ml )} +nl) =ny, + LT} +mDl}.

The two equations coming from the normal component give us the

Codazzi equations

€y —my = LTy + m(T,5 — ) —nT,),

my —ny = LTy + m(T), — T,5y) —nT,).

n —m?
Using K = ——"_
sing 63

X, components yield the

and the formulas above for a, b, ¢, and d, the four equations involving the x,, and
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Gauss equations

EK = (1)), = (T,h), + T T,h + DAY — LAT,E — (1Y)
FK = (T3), — (Ti), + Tup Tl — T Ty
FK = (T3), = (Ty), + Ty Ty — Ty Tt
GK = (T2), — (Th), + TA % + AT — (DY) — Tk

For example, to derive the first, we use the equation (<>) above:

(Fuvu)v - (Fuvv)u + 1_‘uuu 1—‘uvv + 1—‘uvu 1_‘vvv - Fuuvrulit - (Fuvv)2 =4{d —mb
— 1 (
~ EG-—F?

In an orthogonal parametrization (F = 0), we leave it to the reader to check in Exercise 3 that

E(ln —m?)

G _F? = EK.

{(—mF 4+ nE) +m(F —mE)) =

1 E, Gy
) K=—7ic ((m)v+(¢T—G)u)'

One of the crowning results of local differential geometry is the following

Theorem 3.1 (Gauss’s Theorema Egregium). The Gaussian curvature is determined by only the first
fundamental form 1. That is, K can be computed from just E, F, G, and their first and second partial

derivatives.

Proof. From any of the Gauss equations, we see that K can be computed by knowing any one of £,
F, and G, together with the Christoffel symbols and their derivatives. But the equations () show that the
Christoffel symbols (and hence any of their derivatives) can be calculated in terms of E, F', and G and their

partial derivatives. [l

Corollary 3.2. If two surfaces are locally isometric, their Gaussian curvatures at corresponding points

are equal.

For example, the plane and cylinder are locally isometric, and hence the cylinder (as we well know)
is flat. We now conclude that since the Gaussian curvature of a sphere is nonzero, a sphere cannot be
locally isometric to a plane. Thus, there is no way to map the earth “faithfully” (preserving distance)—even
locally—on a piece of paper. In some sense, the Mercator projection (see Exercise 2.1.12) is the best we can
do, for, although it distorts distances, it does preserve angles.

The Codazzi and Gauss equations are rather opaque, to say the least. We obtained the convenient
equation () for the Gaussian curvature from the Gauss equations. To give a bit more insight into the

meaning of the Codazzi equations, we have the following

Lemma 3.3. Suppose x is a parametrization for which the u- and v-curves are lines of curvature, with

respective principal curvatures k1 and k,. Then we have

E, Gy
() (kp)y = ke —ki) and (ko) = 5~ (k1 —k2).
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Proof. By Exercise 2.2.1,£ = k1 E,n = k,G,and F = m = 0. By the first Codazzi equation and the
equations (I) on p. 58, we have

(ki)wE + k1Ey =y, = ki ET )\, —koGT,}, = 2 Ey(ky + k2),
and so

Ey
ki1)y = == (ko — k1).
(k)y = 57 (k2 — k1)
The other formula follows similarly from the second Codazzi equation. [l

Let’s now apply the Codazzi equations to prove a rather striking result about the general surface with
K = 0 everywhere.

Proposition 3.4. Suppose M is a flat surface with no planar points. Then M is a ruled surface whose
tangent plane is constant along the rulings.

Proof. Since M has no planar points, we can choose k; = 0 and k, # 0 everywhere. Then by Theorem
3.3 of the Appendix, there is a local parametrization of M so that the u-curves are the first lines of curvature
and the v-curves are the second lines of curvature. This means first of all that F = m = 0. (See Exercise
2.2.1.) Now, since k; = 0, for any P € M we have Sp(x,) = 0, and so n, = 0 everywhere and n is
constant along the u-curves. We also observe that £ = TI(x,,Xxy,) = —Sp(xy) - X, = 0.

We now want to show that the u-curves are in fact lines. Since k1 = 0 everywhere, (k1), = 0 and,
since kp # k1, we infer from Lemma 3.3 that £, = 0. From the equations (%) it now follows that I',}, = 0.
Thus,

is just a multiple of x,,. Thus, the tangent vector Xx,, never changes direction as we move along the u-curves,
and this means that the u-curves must be lines. In conclusion, we have a ruled surface whose tangent plane
is constant along rulings. [

Remark. Flat ruled surfaces are often called developable. (See Exercise 10 and Exercise 2.1.11.) The
terminology comes from the fact that they can be rolled out—or “developed” —onto a plane.

Next we prove a striking global result about compact surfaces. (Recall that a subset of R3 is compact
if it is closed and bounded. The salient feature of compact sets is the maximum value theorem: A contin-
uous real-valued function on a compact set achieves its maximum and minimum values.) We begin with a
straightforward

Proposition 3.5. Suppose M C R3 is a compact surface. Then there is a point P € M with K(P) > 0.

Proof. Because M is compact, the continuous function f(x) = ||x| achieves its maximum at some
point of M, and so there is a point P € M farthest from the origin (which may or may not be inside M),
as indicated in Figure 3.2. Let f(P) = R. As Exercise 1.2.7 shows, the curvature of any curve « C M
at P is at least 1/R, so—if we choose the unit normal n to be inward-pointing—every normal curvature of
M at P is at least 1/R. It follows that K(P) > 1/R? > 0. (That is, M is at least as curved at P as the
circumscribed sphere of radius R tangentto M at P.) [
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FIGURE 3.2

The reader is asked in Exercise 18 to find surfaces of revolution of constant curvature. There are,
interestingly, many nonobvious examples. However, if we restrict ourselves to smooth surfaces, we have the
following beautiful

Theorem 3.6 (Licbmann). If M is a smooth, compact surface of constant Gaussian curvature K, then
K > 0 and M must be a sphere of radius 1/+/K.

We will need the following

Lemma 3.7 (Hilbert). Suppose P is not an umbilic point and k1(P) > k,(P). Suppose k1 has a local
maximum at P and k, has a local minimum at P. Then K(P) < 0.

Proof. We work in a “principal” coordinate parametrization’ near P, so that the u-curves are lines of
curvature with principal curvature k and the v-curves are lines of curvature with principal curvature &, .
Since k1 # ko and (k1)y = (k2)y = 0 at P, it follows from Lemma 3.3 that £, = G, =0 at P.

Differentiating the equations (x), and remembering that (k1),, = (k2)y = 0 at P as well, we have at P:

E

(k1)vy = 2;; (ko —k1) <0 (because k; has a local maximum at P)
G

k2)uu = 2uGu (k1 —k2) =0 (because k, has a local minimum at P),

and so Eyy > 0 and Gy, > 0 at P. Using the equation () for the Gaussian curvature on p. 60, we see that
—2KEG = Eyy + Gyy +a(u,v)Ey + b(u,v)Gy,
for some functions a(u, v) and b(u, v). So we conclude that K(P) < 0, as desired. [

Proof of Theorem 3.6. By Proposition 3.5, there is a point where M is positively curved, and since the
Gaussian curvature is constant, we must have K > 0. If every point is umbilic, then by Exercise 2.2.14, we
know that M is a sphere. If there is some non-umbilic point, the larger principal curvature, k1, achieves its
maximum value at some point P because M is compact. Then, since K = k;k, is constant, the function
ko = K/kqi must achieve its minimum at P. Since P is necessarily a non-umbilic point (why?), it follows
from Lemma 3.7 that K(P) < 0, which is a contradiction. [

7Since locally there are no umbilic points, the existence of such a parametrization is an immediate consequence of Theorem
3.3 of the Appendix.
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Remark. H. Hopf proved a stronger result, which requires techniques from complex analysis: If M is a
compact surface topologically equivalent to a sphere and having constant mean curvature, then M must be
a sphere.

We conclude this section with the analogue of Theorem 3.1 of Chapter 1.

Theorem 3.8 (Fundamental Theorem of Surface Theory). Uniqueness: Two parametrized surfaces
x,x*: U — R3 are congruent (i.e., differ by a rigid motion) if and only if I = I* and Il = +II*. Ex-
istence: Moreover, given differentiable functions E, F,G,{,m,andn with E > 0 and EG — F 2> 0and
satisfying the Codazzi and Gauss equations, there exists (locally) a parametrized surface x(u, v) with the
respective I and 11.

Proof. The existence statement requires some theorems from partial differential equations beyond our
reach at this stage. The uniqueness statement, however, is much like the proof of Theorem 3.1 of Chapter
1. (The main technical difference is that we no longer are lucky enough to be working with an orthonormal
basis at each point, as we were with the Frenet frame.)

First, suppose x* = Wox for some rigid motion ¥: R3 — R3 (ie., ¥(x) = Ax + b for some b € R3
and some 3 x 3 orthogonal matrix A). Since a translation doesn’t change partial derivatives, we may assume
that b = 0. Now, since orthogonal matrices preserve length and dot product, we have E* = ||x}|? =
|Axy||? = ||xu||> = E,etc.,sol = I*. If det A > 0, then n* = An, whereas if det A < 0, then n* = —An.
Thus, £* = x;;,, - n* = AXy, - (£ An) = £, the positive sign holding when det A > 0 and the negative
when det A < 0. Thus, II* =1l ifdet A > 0 and II* = —ITifdet 4 < 0.

Conversely, suppose I = I* and II = +II*. By composing x* with a reflection, if necessary, we may
assume that II = IT*. Now we need the following

Lemma 3.9. Suppose a and o* are smooth functions on [0, b], viv2v3 and v] V5 V3 are smoothly varying

bases for R3, also defined on [0, b], so that

Vi) vi () =vi (@) -vi () =gij(t). i.j =123,

3 3
o) =) pivit)  and  «¥(@) =) pi(V (D),

3 3
Vi) =Y qijvit) and V()= qyvi(@). j=12.3
i=1 i=1
(Note that the coefficient functions p; and q;;j are the same for both the starred and unstarred equations.)
If (0) = a™(0) and v; (0) = v/ (0),i = 1,2,3, then a(t) = a*(¢) and v;(¢t) = v} (¢) forallt € [0,b],
i =1,2,3.

Fix a point ug € U. By composing x* with a rigid motion, we may assume that ar up we have x = x*,
Xy = X, Xy = X;;, and n = n* (why?). Choose an arbitrary u; € U, and join ug to u; by a path u(z),
t € [0,b], and apply the lemma with & = Xou, v; = X,°u, v = X,°u, v3 = nou, p; = u;, and the g;;
prescribed by the equations (1) and (7). Since I = I* and Il = II*, the same equations hold for ™ = x*ou,
and so x(u;) = x*(uy) as desired. That is, the two parametrized surfaces are identical. [
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Proof of Lemma 3.9. Introduce the matrix function of ¢
| | |
M(@t) = | vi(t) va(t) v3() |,
| | |

and analogously for M *(¢). Then the displayed equations in the statement of the Lemma can be written as
M'(t)y=M@)Q(t) and  M*(t) = M*(1)Q(1).
On the other hand, we have M(¢)"M(t) = G(t). Since the v;(t) form a basis for R3 for each ¢, we
know the matrix G is invertible. Now, differentiating the equation G(¢)G~!(t) = I yields (G™!)'(¢t) =
—G~Y(t)G'(t)G™ (1), and differentiating the equation G(¢) = M (t)" M(¢) yields G'(t) = M'(t)"M(t) +
M@)™M'(t) = Q(t)'G(t) + G(t)Q(t). Now consider
(M*GTIMT) (1) = M*' ()G ™' M@)T + M*(1)(G™H ()M + M*()G(@) ' M'(t)T
= M* (OGO MO)" + M*(1)(-G1)T'G'OGH) T )M@)
+M*O)GO)TOOTM@)T
= M* (OGO M@)" - M* ()G QWM = M* () Q()G() T M)
+ M*)G@t) Q@)™ M) = O.
Since M(0) = M*(0), we have M*(0)G(0)"'M(©0)" = M©O)M0)"'M©0)"'M@©0)" = I, and so
M*()G(t)"'M(@t)" = I for all ¢t € [0,b]. It follows that M*(t) = M(t) for all t € [0,b], and so

o™ (t) —a'(t) = 0 for all ¢ as well. Since a*(0) = «(0), it follows that e™(¢) = a(¢) for all z € [0, b], as
we wished to establish. [

EXERCISES 2.3

1. Calculate the Christoffel symbols for a cone, x(u, v) = (u cos v, u sin v, u), both directly and by using
the formulas ().

2. Calculate the Christoffel symbols for the following parametrized surfaces. Then check in each case that
the Codazzi equations and the first Gauss equation hold.
a. the plane, parametrized by polar coordinates: x(u, v) = (4 cos v, u sin v, 0)
b. ahelicoid: x(u,v) = (1 cosv,usinv, v)
#c. acone: x(u,v) = (ucosv,usinv,cu),c # 0
#xd. a surface of revolution: x(u, v) = (f(u)cosv, f(u)sinv, g(u)), with f'(u)? + g'(u)*> =1

3. Use the first Gauss equation to derive the formula (x) given on p. 60 for Gaussian curvature.
4. Check the Gaussian curvature of the sphere using the formula (x) on p. 60.

5. Check that for a parametrized surface with £ = G = A(u,v) and F = 0, the Gaussian curvature is

_ 1, ) Pf  0%f . _
givenby K = ——V~“(InA). (Here V- f = —— 4+ —= is the Laplacian of f.)
21 uz 2

6. Prove there is no compact minimal surface M C R3.
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7. Decide whether there is a parametrized surface x(u, v) with

10.

11.

12.

13.

14.

15.

a. FE=G=1,F=0,{=1=-n,m=0
b E=G=1,F=0{=e*=n,m=0
c. E=1,F=0,G=cos?u,{ =cos?u,m=0,n=1

a. Modify the proof of Theorem 3.6 to prove that a smooth, compact surface with K > 0 and constant
mean curvature is a sphere.
b. Give an example to show that the result of Lemma 3.7 fails if we assume k; has a local minimum

and k, has a local maximum at P.

Give examples of (locally) non-congruent parametrized surfaces x and x* with
a. I=T1*

b. II = II* (Hint: Try reparametrizing some of our simplest surfaces.)

Let x(u,v) = a(u) + vB(u) be a parametrization of a ruled surface. Prove that the tangent plane
is constant along rulings (i.e., the surface is flat) if and only if &’(u), B(u), and B’(u) are linearly
dependent for every u. (Hint: When is Sp (x,) = 0? Alternatively, consider x,, X X,, and apply Exercise
A2.1)

Prove that « is a line of curvature in M if and only if the ruled surface formed by the surface normals
along « is flat. (Hint: See Exercise 10.)

Show that the Gaussian curvature of the parametrized surfaces

x(u,v) = (ucosv,usinv,v)

y(u,v) = (ucosv,usinv,Inu)

is the same for each (u,v), and yet the first fundamental forms Iy and Iy do not agree. (Thus, the
converse of Corollary 3.2 is false.)

Suppose that through each point of a surface M there is a planar asymptotic curve with nonzero curva-
ture. Prove that M must be a (subset of a) plane. (Hint: Apply Proposition 3.4.)

Suppose that the surface M is doubly ruled by orthogonal lines (i.e., through each point of M there pass
two orthogonal lines).

a. Using the Gauss equations, prove that K = 0.

b. Now deduce that M must be a plane.

(Hint: As usual, assume that, locally, the families of lines are u- and v-curves.)

Suppose M is a surface with no umbilic points and one constant principal curvature k1 7 0. Prove that
M is (a subset of) a tube of radius r = 1/|k;| about a curve. That is, there is a curve « so that M is
(a subset of) the union of circles of radius r in each normal plane, centered along the curve. (Hints: As
usual, work with a parametrization where the u-curves are lines of curvature with principal curvature
k1 and the v-curves are lines of curvature with principal curvature k,. Use Lemma 3.3 to show that the
u-curves have curvature |k| and are planar. Then define ¢ appropriately and check that it is a regular

curve.)



66 CHAPTER 2. SURFACES: LOCAL THEORY

16. If M is a surface with both principal curvatures constant, prove that M is (a subset of) either a sphere,
a plane, or a right circular cylinder. (Hint: See Exercise 2.2.14, Proposition 3.4, and Exercise 15.)

17. Consider the parametrized surfaces

x(u,v) = (—coshu sin v, coshu cos v, u) (a catenoid)

y(u,v) = (ucosv,usinv, v) (a helicoid).

a. Compute the first and second fundamental forms of both surfaces, and check that both surfaces are
minimal.

b. Find the asymptotic curves on both surfaces.
Show that we can locally reparametrize the helicoid in such a way as to make the first fundamental
forms of the two surfaces agree; this means that the two surfaces are locally isometric. (Hint: See
p. 39. Replace u with sinh u in the parametrization of the helicoid. Why is this legitimate?)

d. Why are they not globally isometric?
(for the student who’s seen a bit of complex variables) As a hint to what’s going on here, let
z =u+ivand Z = x + iy, and check that, continuing to use the substitution from part c,
Z = (siniz,cosiz,z). Understand now how one can obtain a one-parameter family of isometric

surfaces interpolating between the helicoid and the catenoid.

18. Find all the surfaces of revolution of constant curvature

a. K=0
b. K=1
c. K=-1

(Hint: There are more than you might suspect. But your answers will involve integrals you cannot

express in terms of elementary functions.)

4. Covariant Differentiation, Parallel Translation, and Geodesics

Now we turn to the “intrinsic” geometry of a surface, i.e., the geometry that can be observed by an
inhabitant (for example, a very thin ant) of the surface, who can only perceive what happens along (or, say,
tangential to) the surface. Anyone who has studied Euclidean geometry knows how important the notion of
parallelism is (and classical non-Euclidean geometry arises when one removes Euclid’s parallel postulate,
which stipulates that given any line L in the plane and any point P not lying on L, there is a unique line
through P parallel to L). It seems quite intuitive to say that, working just in R3, two vectors V (thought of
as being “tangent at P”’) and W (thought of as being “tangent at Q) are parallel provided that we obtain W
when we move V “parallel to itself” from P to Q; in other words, if W = V. But what would an inhabitant
of the sphere say? How should he compare a tangent vector at one point of the sphere to a tangent vector
at another and determine if they’re “parallel”? (See Figure 4.1.) Perhaps a better question is this: Given
a curve a on the surface and a vector field X defined along e, should we say X is parallel if it has zero
derivative along o ?

We already know how an inhabitant differentiates a scalar function f: M — R, by considering the
directional derivative Dy f for any tangent vector V € Tp M . We now begin with a
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Are V and W parallel?

FIGURE 4.1

Definition. We say a function X: M — R3 is a vector field on M if
(1) X(P) € Tp M forevery P € M, and

(2) for any parametrization x: U — M, the function Xox: U — R3 is (continuously) differentiable.

Now, we can differentiate a vector field X on M in the customary fashion: If V € Tp M, we choose a
curve a with «(0) = P and &’(0) = V and set DyX = (Xea)’(0). (As usual, the chain rule tells us this is
well-defined.) But the inhabitant of the surface can only see that portion of this vector lying in the tangent
plane. This brings us to the

Definition. Given a vector field X and V € Tp M, we define the covariant derivative
VvX = (DvX) I'= the projection of DyX onto Tp M
= DVX - (Dvx : n)n.

Given a curve o in M, we say the vector field X is covariant constant or parallel along & if V()X = 0
for all ¢. (This means that D)X = (Xoa)’(¢) is a multiple of the normal vector n(a(z)).)

Example 1. Let M be a sphere and let a be a great circle in M. The derivative of the unit tangent
vector of & points towards the center of the circle, which is in this case the center of the sphere, and thus is
completely normal to the sphere. Therefore, the unit tangent vector field of « is parallel along . Observe
that the constant vector field (0, 0, 1) is parallel along the equator z = 0 of a sphere centered at the origin.
Is this true of any other constant vector field? V

Example 2. A fundamental example requires that we revisit the Christoffel symbols. Given a parametrized
surface x: U — M, we have

Vi, Xu = ()l = T2 x, 4+ T2 %y
Vi, Xu = (xuv)|| =T oXu + [, Xy = Vy, Xy, and
Vi, Xo = (X)) = T x, + T 0x,. ¥

The first result we prove is the following

Proposition 4.1. Let I be an interval in R with O € I. Given a curve a: I — M with a(0) = P and
Xo € Tp M, there is a unique parallel vector field X defined along o« with X(P) = Xp.
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Proof. Assuming « lies in a parametrized portion x: U — M, set a(t) = x(u(t),v(¢)) and write
X(e(2)) = a(t)xy, (u(@),v(t)) + b(t)xy (u(t),v(t)). Then a’(t) = u’(t)xy, + v'(t)x, (Where the the cum-
bersome argument (u(¢), v(¢)) is understood). So, by the product rule and chain rule, we have

VariX = ((%ea0)' = (5@ 0m 0000 + DO, (00, 00) |
a
dt
= @ (% + b (0% + a(O) (4 (% + V' (%) + (@) (' (1) + 0/ (O)x00)!
= a'(xy + b'(O)xy + a(0) (' ()T Xy + T, %) + 0" @)Ly % + T%0))

+ b () (' (1) (T xu + Toxy) + 0 (@) (TyoXu + Tyxv))
= (a'(t) + a(O)(T,A' (1) + T4 (1) + b()(T (1) + T 140" (1)),

+ (b'(t) + a(t)(T 5’ (1) + T, 0" (1) + b(t)(Tu' (1) + T v (1)) Xy.

I I
— (% + D (%0 + alt) ( e (0(0). v(r))) +b(0) (%x W), v(t)))

Thus, to say X is parallel along the curve « is to say that a(¢) and b(¢) are solutions of the linear system of

first order differential equations
@) a'(t) +a(t)(Typu' (@) + T0" (@) + b(O)([Tyu' (@) + T50'(0) = 0
b'(1) + a(®)(Typu' @) + T, 0" (@) + b(O)(Typu' (@) + Ty 0'(0) = 0.

By Theorem 3.2 of the Appendix, this system has a unique solution on [0, 1] once we specify a(0) and b(0),
and hence we obtain a unique parallel vector field X with X(P) = Xp. O

Definition. If 0 = «(1), we refer to X(Q) as the parallel translate of X¢o along &, or the result of
parallel translation along «.

Remark. The system of differential equations (&) that defines parallel translation shows that it is “in-
trinsic,” i.e., depends only on the first fundamental form of M, despite our original extrinsic definition. In
particular, parallel translation in locally isometric surfaces will be identical.

Example 3. Fix a latitude circle u = ug (4g # 0, ) on the unit sphere (see Example 1(d) on p. 37) and
let’s calculate the effect of parallel-translating the vector Xo = X, starting at the point P given by u = uy,
v = 0, once around the circle, counterclockwise. We parametrize the curve by u(t) = ug, v(t) = ¢,
0 <t < 2x. Using our computation of the Christoffel symbols of the sphere in Example 1 or 2 of Section
3, we obtain from (&) the differential equations

a'(t) = sinug cosugh(t), a(0) =0
b'(t) = —cotugal(t), b(0) = 1.
We solve this system by differentiating the second equation again and substituting the first:
b"(t) = —cotuga’(t) = —cos? uoh(1), b(0) = 1.

Recalling that every solution of the differential equation y”(¢) + k2y(t) = 0 is of the form y(t) =
cycos(kt) + cpsin(kt), c1,cr € R, we see that the solution is

a(t) = sinug sin ((cos ug)r), b(r) = cos ((cos ug)r).
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Note that | X(a(?))||?> = Ea(t)?> +2Fa(t)b(t) + Gb(t)? = sin® uq for all z. That is, the original vector X,
rotates as we parallel translate it around the latitude circle, and its length is preserved. As we see in Figure
4.2, the vector rotates clockwise as we proceed around the latitude circle (in the upper hemisphere). But this

FIGURE 4.2

makes sense: If we just take the covariant derivative of the tangent vector to the circle, it points upwards
(cf. Figure 3.1), so the vector field must rotate clockwise to counteract that effect in order to remain parallel.

Since b(2r) = cos(2m cos ug), we see that the vector turns through an angle of —27 cosug. V

Example 4 (Foucault pendulum). Foucault observed in 1851 that the swing plane of a pendulum located
on the latitude circle u = ug precesses with a period of 7 = 24/ cos up hours. We can use the result of
Example 3 to explain this. We imagine the earth as fixed and “transport” the swinging pendulum once around
the circle in 24 hours. If we make the pendulum very long and the swing rather short, the motion will be
“essentially” tangential to the surface of the earth. If we move slowly around the circle, the forces will be
“essentially” normal to the sphere: In particular, letting R denote the radius of the earth (approximately
3960 mi), the tangential component of the centripetal acceleration is (cf. Figure 3.1)

_ 27\> 27%R 5 2
(Rsinug)cosug | — ) < ~ 135.7 mi/hr* & 0.0553 ft/sec” =~ 0.17%g.
24 242
Thus, the “swing vector field” is, for all practical purposes, parallel along the curve. Therefore, it turns

2

= hours to
(2w cosug)/24  cosug

through an angle of 27 cos ug in one trip around the circle, so it takes

return to its original swing plane. 'V
Our experience in Example 3 suggests the following

Proposition 4.2. Parallel translation preserves lengths and angles. That is, it X and Y are parallel vector
fields along a curve & from P to Q, then || X(P)|| = ||X(Q)|| and the angle between X(P) and Y (P) equals
the angle between X(Q) and Y(Q) (assuming these are nonzero vectors).

Proof. Consider f(t) = X(a(2)) - Y(ex(?)). Then
1) = (Xea)' (1) - (Yea) (1) + (Xea)(t) - (Your)' (1)
(2

(1)
=De)X Y+ X Dy)Y = Vo XY + X VynY = 0.
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Note that equality (1) holds because X and Y are tangent to M and hence their dot product with any vector
normal to the surface is 0. Equality (2) holds because X and Y are assumed parallel along . It follows that
the dot product X - Y remains constant along . Taking Y = X, we infer that ||X|| (and similarly ||Y]|) is
constant. Knowing that, using the famous formula cos § = X - Y/|X]|||Y| for the angle 6 between X and
Y, we infer that the angle remains constant. [J

Now we change gears somewhat. We saw in Exercise 1.1.8 that the shortest path joining two points
in R3 is a line segment and in Exercise 1.3.1 that the shortest path joining two points on the unit sphere
is a great circle. One characterization of the line segment is that it never changes direction, so that its unit
tangent vector is parallel (so no distance is wasted by turning). (What about the sphere?) It seems plausible
that the mythical inhabitant of our general surface M might try to travel from one point to another in M,
staying in M , by similarly not turning; that is, so that his unit tangent vector field is parallel along his path.
Physically, this means that if he travels at constant speed, any acceleration should be normal to the surface.
This leads us to the following

Definition. We say a parametrized curve « in a surface M is a geodesic if its tangent vector is parallel
along the curve, i.e., if Vora' = 0.

Recall that since parallel translation preserves lengths, e must have constant speed, although it may not
be arclength-parametrized. In general, we refer to an unparametrized curve as a geodesic if its arclength
parametrization is in fact a geodesic.

In general, given any arclength-parametrized curve o« lying on M, we defined its normal curvature at
the end of Section 2. Instead of using the Frenet frame, it is natural to consider the Darboux frame for o,
which takes into account the fact that & lies on the surface M . (Both are illustrated in Figure 4.3.) We take

The Frenet and Darboux frames

FIGURE 4.3

the right-handed orthonormal basis {T,n x T, n}; note that the first two vectors give a basis for Tp M. We
can decompose the curvature vector

¥N=(kN-mxT))mxT)+ («N-n)n.
Kg ken
As we saw before, k, gives the normal component of the curvature vector; kg gives the tangential com-
ponent of the curvature vector and is called the geodesic curvature. This terminology arises from the fact
that « is a geodesic if and only if its geodesic curvature vanishes. (When « = 0, the principal normal is
not defined, and we really should write &” in the place of ¥N. If the acceleration vanishes at a point, then
certainly its normal and tangential components are both 0.)

Example 5. We saw in Example 1 that every great circle on a sphere is a geodesic. Are there others?
Let & be a geodesic on a sphere centered at the origin. Since kg = 0, the acceleration vector &’ (s) must be
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a multiple of e(s) for every s, and so &’/ x & = 0. Therefore &’ X & = A is a constant vector, so « lies in
the plane passing through the origin with normal vector A. That is, « is a great circle. V

Using the equations (&), let’s now give the equations for the curve e (¢) = x(u(t), v(¢)) to be a geodesic.
Since X = /(1) = u/(¢)xy + v'(¢)Xxy, we have a(t) = u/(z) and b(¢t) = v’(t), and the resulting equations
are

w”(t) + T2 ()% + 205/ (' (1) + T2V ()2 =0

(**) " / 2 / / / 2
v'(t) + T, u' (1) + 20, u' (H)v' (1) + T v (1) = 0.

The following result is a consequence of basic results on differential equations (see Theorem 3.1 of the
Appendix).

Proposition 4.3. Givenapoint P € M andV € Tp M,V # 0, there exist ¢ > 0 and a unique geodesic
o:(—&,6) > M witha(0) = P anda’(0) = V.

Example 6. We now use the equations (déb) to solve for geodesics analytically in a few examples.

(a) Let x(u,v) = (u, v) be the obvious parametrization of the plane. Then all the Christoffel symbols
vanish and the geodesics are the solutions of

u’'(t) =v"() =0,

so we get the lines a(t) = (u(t),v(t)) = (a1t + b1,axt + b3), as expected. Note that & does in
fact have constant speed.

(b) Using the standard spherical coordinate parametrization of the sphere, we obtain (see Example 1 or
2 of Section 3) the equations

(*) u”(t) — sinu(t) cosu(t)v'(t)?> = 0 = v (¢) + 2cotu(t)u’ (t)v'(¢).

Well, one obvious set of solutions is to take u(f) = ¢, v(t) = v (and these, indeed, give the
great circles through the north pole). Integrating the second equation in (%) we obtain Inv’(f) =
—2Insinu(t) + const, so

v = sin® u(t)

for some constant c¢. Substituting this in the first equation in () we find that

c2cosu(t) B

sin® u(¢)

u//(t)

El

multiplying both sides by u’(¢) (the “energy trick” from physics) and integrating, we get

c? c?
u/(t)z = C2 -3 and so u/(l) =+ C2 -~ 3
sin” u(?) sin” u(7)

for some constant C. Switching to Leibniz notation for obvious reasons, we obtain

dv V() cescu . . :
— = = ;  thus, separating variables gives
du  u'(t) C2—c2csc?u

c csc? udu c csc? udu
dv ==

C2—c2%cscu J(CZ =) = c2col?u
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Now we make the substitution ¢ cotu = v/C2 — ¢2 sin w; then we have
_ ccsc?udu

B V(C2 —c2) —c2cot2u
and so, at long last, we have w = £v + a for some constant a. Thus,

ceotu = VC2 —c2sinw = VC?% —¢2sin(+v +a) = vVC2 — c2(sina cos v =+ cosa sinv),

and so, finally, we have the equation

dv = Fdw,

ccosu +vVC2 —c2sinu(Acosv + Bsinv) =0,

which we should recognize as the equation of a great circle! (Here’s a hint: This curve lies on the
plane v/C2 — ¢2(Ax + By) +cz = 0.) \Y

We can now give a beautiful geometric description of the geodesics on a surface of revolution.
Proposition 4.4 (Clairaut’s relation). The geodesics on a surface of revolution satisfy the equation
<) r cos ¢ = const,

where r is the distance from the axis of revolution and ¢ is the angle between the geodesic and the parallel.
Conversely, any (constant speed) curve satistying (<) that is not a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in Example 9 of Section 2, wehave £ =1, F = 0,
G=fw?T2 =T2 = f'(w/fu),TY = —f(u)f'(u),and all other Christoffel symbols are 0 (see
Exercise 2.3.2d.). Then the system (dvdb) of differential equations becomes

(f1) u' — ff (V) =0
(2) v+ %u/v/ = 0.

Rewriting the equation (f,) and integrating, we obtain

V') 2 @)’ (1)

V(1) Su(@))
Inv'(f) = —21In f(u(t)) + const
(1) = —
T T

so along a geodesic the quantity f(u)?>v’ = Gv’ is constant. We recognize this as the dot product of the
tangent vector of our geodesic with the vector x,,, and so we infer that ||xy|| cos¢ = r cos¢ is constant.
(Recall that, by Proposition 4.2, the tangent vector of the geodesic has constant length.)

To this point we have seen that the equation (T, ) is equivalent to the condition r cos ¢ = const, provided
we assume |’ ||? = u’? + Gv’? is constant as well. But if

u'(1)? + Gv' ()2 = u'(1)* + f(u(t))®v'(t)* = const,

we differentiate and obtain

u' (O (1) + @) (O" () + fu@) f @) v’ )? = 0;
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substituting for v”(¢) using (t,), we find

W () (" (1) = f @) f @O (0)?) = 0.

In other words, provided u'(t) # 0, a constant-speed curve satisfying (f,) satisfies (f;) as well. (See
Exercise 6 for the case of the parallels.) [

Remark. We can give a simple physical interpretation of Clairaut’s relation. Imagine a particle with
mass 1 constrained to move along a surface. If no external forces are acting, then the particle moves along
a geodesic and, moreover, angular momentum is conserved (because there are no torques). In the case
of our surface of revolution, the vertical component of the angular momentum L. = « X o’ is—surprise,
surprise! — f 2v’, which we’ve shown is constant. Perhaps some forces normal to the surface are required
to keep the particle on the surface; then the particle still moves along a geodesic (why?). Moreover, since
(¢ xm) - (0,0,1) = 0, the resulting torques still have no vertical component.

Returning to our original motivation for geodesics, we now consider the following scenario. Choose
P € M arbitrary and a geodesic y through P, and draw a curve Cyp through P orthogonal to y. We now
choose a parametrization x(u, v) so that x(0,0) = P, the u-curves are geodesics orthogonal to Cy, and the
v-curves are the orthogonal trajectories of the u-curves, as pictured in Figure 4.4. (It follows from Theorem

FIGURE 4 .4

3.3 of the Appendix that we can do this on some neighborhood of P.)
In this parametrization we have F' = 0 and E = E(u) (see Exercise 13). Now, if a(r) = x(u(¢), v(¢)),
a <t < b,is any path from P = x(0,0) to O = x(up, 0), we have

b b
length () :/ \/E(u(t))u’(l)z + Gu(t),v())v'(t)2dt z/ VE@u@®))'(t)|dt
> /uo VE)du,
0

which is the length of the geodesic arc y from P to Q. Thus, we have deduced the following.

Proposition 4.5. For any point Q on y contained in this parametrization, any path from P to Q con-
tained in this parametrization is at least as long as the length of the geodesic segment. More colloquially,
geodesics are locally distance-minimizing.

Example 7. Why is Proposition 4.5 a local statement? Well, consider a great circle on a sphere, as
shown in Figure 4.5. If we go more than halfway around, we obviously have not taken the shortest path.
\Y%
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short
SR

FIGURE 4.5

Remark. It turns out that any surface can be endowed with a metric (or distance measure) by defining
the distance between any two points to be the infimum (usually, the minimum) of the lengths of all piecewise-
@' paths joining them. (Although the distance measure is different from the Euclidean distance as the
surface sits in R3, the topology —notion of “neighborhood” —induced by this metric structure is the induced
topology that the surface inherits as a subspace of R3.) It is a consequence of the Hopf-Rinow Theorem (see
M. doCarmo, Differential Geometry of Curves and Surfaces, Prentice Hall, 1976, p. 333, or M. Spivak, A
Comprehensive Introduction to Differential Geometry, third edition, volume 1, Publish or Perish, Inc., 1999,
p- 342) that in a surface in which every parametrized geodesic is defined for all time (a “complete” surface),
every two points are in fact joined by a geodesic of least length. The proof of this result is quite tantalizing:
To find the shortest path from P to Q, one walks around the “geodesic circle” of points a small distance
from P and finds the point R on it closest to (; one then proves that the unique geodesic emanating from
P that passes through R must eventually pass through Q, and there can be no shorter path.

We referred earlier to two surfaces M and M * as being globally isometric (e.g., in Example 6 in Section
1). We can now give the official definition: There should be a function f: M — M * that establishes a one-
to-one correspondence and preserves distance—for any P, Q € M, the distance between P and Q in M
should be equal to the distance between f(P)and f(Q)in M*.

EXERCISES 24

1. Determine the result of parallel translating the vector (0,0, 1) once around the circle x? + y? = a?,

z = 0, on the right circular cylinder x2 + y2 = a?.

2. Prove that k2 = Kéz, + k2.

3. Suppose « is a non-arclength-parametrized curve. Using the formula (xx*) on p. 14, prove that the
velocity vector of a is parallel along e if and only if kg = 0 and v" = 0.

*4. Find the geodesic curvature kg of a latitude circle u = uo on the unit sphere (see Example 1(d) on
p. 37)
a. directly
b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex angle 2¢ parametrized by

x(u,v) = (utangpcosv,utan¢sinv,u), 0<u <wup, 0 <v <2x.
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*9.
10.

11.

12.

#13.

14.

15.

Find the geodesic curvature kg of the circle u = uq by using trigonometric considerations. Check that
your answer agrees with the curvature of the circle you get by unrolling the cone to form a “pacman”
figure, as shown in Figure 4.6. (For a proof that these curvatures should agree, see Exercise 3.1.7.)

FIGURE 4.6

Check that the parallel ¥ = u is a geodesic on the surface of revolution parametrized as in Proposition
4.4 if and only if f'(ug) = 0. Give a geometric interpretation of and explanation for this result.

Use the equations (&), as in Example 3, to determine through what angle a vector turns when it is
parallel-translated once around the circle ¥ = ug on the cone x(u,v) = (ucosv,usinv,cu),c # 0.
(See Exercise 2.3.2c.)

a. Prove that if the surfaces M and M * are tangent along the curve C, parallel translation along C is
the same in both surfaces.

b. Use the result of part a to determine the effect of parallel translation around the latitude circle u =
U on the unit sphere (once again, see Example 1(d) on p. 37), using only geometry, trigonometry,
and Figure 4.6. (Note the Remark on p. 68.)

What curves lying on a sphere have constant geodesic curvature?

Use the equations (ddb) to find the geodesics on parametrized surface x(u, v) = (e¥ cos v, e sinv, 0).
(Hint: Aim for dv/du. Use the second equation in (&) and the fact that geodesics must have constant
speed.)

Use the equations (&) to find the geodesics on the plane parametrized by polar coordinates. (Hint:
Examine Example 6(b).)

Prove or give a counterexample:
a. A curve is both an asymptotic curve and a geodesic if and only if it is a line.
b. If acurve is both a geodesic and a line of curvature, then it must be planar.

a. Suppose FF = 0 and the u-curves are geodesics. Use the equations (déh) to prove that E is a
function of u only.
b. Suppose F = 0 and the u- and v-curves are geodesics. Prove that the surface is flat.

Suppose F = 0 and the u-curves are geodesics. Prove that the length of the u-curve from u = ug to
u = u is independent of v. (See Figure 4.7.)

a. Prove that an arclength-parametrized curve & on a surface M with k 7 0 is a geodesic if and only
ifn = £N.
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FIGURE 4.7

b. Leta be a space curve, and let M be the ruled surface generated by its binormals. Prove that the

curve is a geodesic on M .

16. a. Suppose a geodesic is planar and has k # 0 at P. Prove that its tangent vector at P must be a
principal direction. (Hint: Use Exercise 15.)
b. Prove that if every geodesic of a (connected) surface is planar, then the surface is contained in a

plane or a sphere.

17. Show that the geodesic curvature at P of a curve C in M is equal (in absolute value) to the curvature at

P of the projection of C into Tp M .

*18. Use Clairaut’s relation, Proposition 4.4, to analyze the geodesics on each of the surfaces pictured in
Figure 4.8. In particular, other than the meridians, in each case which geodesics are unbounded (i.e., go
off to infinity)?

o
A
Y

FIGURE 4.8

19. Check using Clairaut’s relation, Proposition 4.4, that great circles are geodesics on a sphere. (Hint: The
result of Exercise A.1.3 may be useful.)

20. Let M be asurface and P € M. Wesay U,V € Tp M are conjugate if l1p (U, V) = 0.

a. Let C C M be a curve (with the property that its tangent vector is never a principal direction with
principal curvature 0). Define the envelope M * of the tangent planes to M along C to be the ruled
surface whose generator at P € C is the limiting position as Q — P of the intersection line of the
tangent planes to M at P and Q. Prove that the generator at P is conjugate to the tangent line to
CatP.

b. Prove that if C is nowhere tangent to an asymptotic direction, then M ™* is smooth (at least near C).
Prove, moreover, that M * is tangent to M along C and is a developable (flat ruled) surface.
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21.

22.

23.

*24.

25.

26.

27.

c. Apply part b to give a geometric way of computing parallel translation. In particular, do this for a
latitude circle on the sphere. (Cf. Exercise 8.)

Suppose that on a surface M the parallel translation of a vector from one point to another is independent
of the path chosen. Prove that M must be flat. (Hint: Fix an orthonormal basis e{, eJ for 7p M and
define vector fields e, e; by parallel translating. Choose coordinates so that the u-curves are always
tangent to e; and the v-curves are always tangent to e, . See Exercise 13.)

Use the Clairaut relation, Proposition 4.4, to describe the geodesics on the torus as parametrized in

Example 1(c) of Section 1. (Start with a geodesic starting at and making angle ¢o with the outer
Z:LZ and cos ¢g > %.

Which geodesics never cross the outer parallel at all? Also, remember that through each point there is a

parallel. Your description should distinguish between the cases 0 < cos ¢g <

unique geodesic in each direction.)

Use the proof of the Clairaut relation, Proposition 4.4, to show that a unit-speed geodesic on a surface
of revolution is given in terms of the standard parametrization in Example 9 of Section 2 by

-+ const.

v = c/ du
) rwIwr =2

Now deduce that in the case of a non-arclength parametrization we obtain

[Tt wp
) Fw? —e

du + const.

Use Exercise 23 to give equations of the geodesics on the pseudosphere (see Example 8 of Section 2).
Deduce, in particular, that the only geodesics that are unbounded are the meridians.

Use Exercise 23 to show that any geodesic on the paraboloid z = x? + y? that is not a meridian
intersects every meridian. (Hint: Show that it cannot approach a meridian asymptotically.)

Let M be the hyperboloid x2 + y? — z2 = 1, and let C be the circle x> + y2 =1,z = 0.

a. Use Clairaut’s relation, Proposition 4.4, to show that, with the exception of the circle C, every
geodesic on M is unbounded.

b. Show that there are geodesics that approach the circle C asymptotically. (Hint: Use Exercise 23.)

Let C be a parallel (with u = ug) in a surface of revolution M. Suppose a geodesic y approaches C

asymptotically.

a. Use Clairaut’s relation, Proposition 4.4, to show that y must approach “from above” (i.e., with
r>ro = f(uo)).

b. Use Exercise 23 to show that C must itself be a geodesic. (Hint: Consider the Taylor expansion
fu) = f(uo) + f'(uo)(u —uo) + % f"(uo)u —ug)? +....)

c. Give an alternative argument for the result of part b by using the fact that the metric discussed in
the Remark on p. 74 is a continuous function of the pair of points. You will also need to use the
fact that when points are sufficiently close, there is a unique shortest geodesic joining them.
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28.
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Consider the surface z = f(u,v). A curve e whose tangent vector at each point P = (u, v, f(u,v))

projects to a scalar multiple of V f(u, v) is a curve of steepest ascent (why?). Suppose such a curve o

is also a geodesic.

a.

Prove that the projection of & into the uv-plane is, suitably reparametrized, a geodesic in the uv-
plane. (Hint: What is the projection of a”’?)

Deduce that « is also a line of curvature. (Hint: See Exercise 16 when e is not a line. The case of
a line can be deduced from the computation in part c.)

Show that if all the curves of steepest ascent are geodesics, then f satisfies the partial differential
equation

fufv(fvv - fuu) + fuv(fu2 - fvz) =0.

(Hint: When are the integral curves of V f lines?)

Show that if all the curves of steepest ascent are geodesics, the level curves of f are parallel (see
Exercise 1.2.24). (Hint: Show that ||V f|| is constant along level curves.)

Give a characterization of the surfaces with the property that all curves of steepest ascent are
geodesics.



CHAPTER 3

Surfaces: Further Topics

The first section is required reading, but the remaining sections of this chapter are independent of one
another.

1. Holonomy and the Gauss-Bonnet Theorem

Let’s now pursue the discussion of parallel translation that we began in Chapter 2. Let M be a surface
and «a a closed curve in M. We begin by fixing a smoothly-varying orthonormal basis e}, e> (a so-called
framing) for the tangent planes of M in an open set of M containing «, as shown in Figure 1.1 below. Now

FIGURE 1.1

we make the following

Definition. Let a be a closed curve in a surface M . The angle through which a vector turns relative to
the given framing as we parallel translate it once around the curve « is called the holonomy' around «.

For example, if we take a framing around « by using the unit tangent vectors to « as our vectors ej, then, by
the definition of a geodesic, there there will be zero holonomy around a closed geodesic (why?). For another
example, if we use the framing on (most of) the sphere given by the tangents to the lines of longitude and
lines of latitude, the computation in Example 3 of Section 4 of Chapter 2 shows that the holonomy around a
latitude circle u = ug of the unit sphere is —2m cos uyp.

To make this more precise, for ease of understanding, let’s work in an orthogonal parametrization? and

define a framing by setting
Xy Xy

and e, = .
VE T /G

Since (much as in the case of curves) e; and e, give an orthonormal basis for the tangent space of our

€ =

surface at each point, all the intrinsic curvature information (such as given by the Christoffel symbols)

Lfrom holo-+-nomy, the study of the whole
2 As usual, away from umbilic points, we can apply Theorem 3.3 of the Appendix to obtain a parametrization where the u- and
v-curves are lines of curvature.

79
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is encapsulated in knowing how e; twists towards e, as we move around the surface. In particular, if

a(t) =x(u(),v(t)),a <t < b,is a parametrized curve, we can set

d
$12(1) = E(el(u(l),v(t))) -e2(u(1). v(1)),

which we may write more casually as €} (¢) - e3(¢), with the understanding that everything must be done in
terms of the parametrization. We emphasize that ¢p;, depends in an essential way on the parametrized curve
o. Perhaps it’s better, then, to write

$12 = Vorer - €.
Note, moreover, that the proof of Proposition 4.2 of Chapter 2 shows that Vy-e;-e; = —¢12 and Vyreq-€; =
Va/ez -ep = 0. (Why?)

Remark. Although the notation seems cumbersome, it reminds us that ¢, is measuring how ey twists
towards e, as we move along the curve . This notation will fit in a more general context in Section 3.

Let’s now derive an explicit formula for the function ¢5.

Proposition 1.1. In an orthogonal parametrization with ¢, = X,/ E and ey = x,/~/G, we have

12 = : (—Evu’ + Gy').
2WVEG "

Proof. The key point is to take full advantage of the orthogonality of x;,, and x,,.

b1p = d (Xu ) Xy
2T a\VE) VG
= ! (quu/ + Xuvv/) * Xv

VEG

(since the term that would arise from differentiating +/ E will involve x,, - x, = 0)

= (T xu 4+ Thxo)u’ + (Tloxu + T xy)v') - Xy

-4

= — ([ + o) = —Eyu’' + Gyv'),

;(
2VEG

5

by the formulas (f) on p. 58. O

Suppose now that « is a closed curve and we are interested in the holonomy around «. If e; happens
to be parallel along o, then the holonomy will, of course, be 0. If not, let’s consider X(#) to be the parallel
translation of ey along o (¢) and write X(¢) = cos ¥ (¢)e; + sin ¥ (¢)e;, taking 1 (0) = 0. Then X is parallel
along « if and only if

0 = Vg X = Vg (cosye; + sinyrey)
= cos Y Vyre1 + sin iy Vyres + (—sinyre; + cosyer)y’
= cos Y¢i2€x —sin Yize1 + (—sinye; + cos yex)y’
= (¢12 + ¥')(—sinyer + cos Yey).

Thus, X is parallel along e if and only if ¥'(t) = —¢$12(¢). We therefore conclude:
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b
Proposition 1.2. The holonomy around the closed curve C equals Ay = — / d12(t)dt.
a

Remark. Note that the angle v is measured from e; in the direction of e;. Whether the vector turns
counterclockwise or clockwise from our external viewpoint depends on the orientation of the framing.

Example 1. Back to our example of the latitude circle u = u on the unit sphere. Then ¢; = x,, and
e; = (1/sinu)x,. If we parametrize the curve by taking v = 7,0 < ¢t < 27, then we have (see Example 1
of Chapter 2, Section 3)

Vo€l = Vyrxy = (xuv)|| = cotUpX, = COSUpes,
and so ¢12 = cosug. Therefore, the holonomy around the latitude circle (oriented counterclockwise) is

2w
Ay = — / cosugdt = —2m cos Ug, confirming our previous results.
0

Note that if we wish to parametrize the curve by arclength (as will be important shortly), we take
s = (sinug)v,0 < s < 27 sinugy. Then, with respect to this parametrization, we have ¢1,2(s) = cotug.
(Why?)
2

For completeness, we can use Proposition 1.1 to calculate ¢y, as well: With £ = 1, G = sin“u,

U = ug,and v(s) = s/ sinug, we have ¢, = (2 sin # cos U -

2sinug sinug

) = cotug, as before. V
Suppose now that & is an arclength-parametrized curve and let’s write ac(s) = x(u(s), v(s)) and T(s) =
a'(s) = cos O(s)e; +sin O(s)ez, s € [0, L], for a @' function O(s) (cf. Lemma 3.6 of Chapter 1), as indicated

in Figure 1.2. A formula fundamental for the rest of our work is the following:

FIGURE 1.2

Proposition 1.3. When « is an arclength-parametrized curve, the geodesic curvature of a is given by

Kg(s) = Pr12(s) + 0'(s) =

2\/1E_G(_Evu,(S) + GuV'(s)) + 0'(s).
Proof. Recall that kg = kN-(m x T) = T’ - (n x T). Now, since T = cosfe; + sinfe;,n x T =
—sinfe; + cos fe, (why?), and so
kg = V1T - (—sinfe; + cos fe,)
= Vr(cos fe; + sinfey) - (—sin feq + cos fey)
= (cos OVre; + sin@Vres) - (—sin ey + cos fez) + ((—sin §)0’(—sin 6) + (cos )6’ (cos 6))
= (cos? 0 + sin® 0)(¢p12 + 0') = ¢p12 + 0,

as required. Now the result follows by applying Proposition 1.1 when « is arclength-parametrized. [
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Remark. The first equality in Proposition 1.3 should not be surprising in the least. Curvature of a
plane curve measures the rate at which its unit tangent vector turns relative to a fixed reference direction.
Similarly, the geodesic curvature of a curve in a surface measures the rate at which its unit tangent vector
turns relative to a parallel vector field along the curve; 8’ measures its turning relative to e;, which is itself
turning at a rate given by ¢, so the geodesic curvature is the sum of those two rates.

Now suppose that « is a closed curve bounding a region R C M . We denote the boundary of R by dR.
Then by Green’s Theorem (see Theorem 2.6 of the Appendix), we have

/OL P12(s)ds = /OL 2\/1E_G(—Evu’(s) + Gyv'(s))ds = /BR NIE_G(—Evdu + Gy dv)
// ( NE (2jg_c) ) dudv
[ ses (o). + (). ) Euar

—/ KdA
R

by the formula (x) for Gaussian curvature on p. 60. (Recall from the end of Section 1 of Chapter 2 that the
element of surface area on a parametrized surface is given by d4 = ||x,, X Xy ||dudv = VEG — F2dudv.)
We now see that Gaussian curvature and holonomy are intimately related:

()

Corollary 1.4. When R is a region with smooth boundary lying in an orthogonal parametrization, the
holonomy around dR is Ay = [[p KdA.

Proof. This follows immediately from Proposition 1.2 and the formula (7) above. [

We conclude further from Proposition 1.3 that

/ Kgds=/ ¢12d5+9(L)—9(0),
oR oR T

so the total angle through which the tangent vector to dR turns is given by

A9:/ Kgds+/ KdA.
oR R

Now, when R is simply connected (i.e., can be continuously deformed to a point), it is not too surprising
that A6 = 2x. Intuitively, as we shrink the curve to a point, €; becomes almost constant along the curve,
but the tangent vector must make one full rotation (as a consequence of the Hopf Umlaufsatz, Theorem 3.5
of Chapter 1). Since Af is an integral multiple of 27 that varies continuously as we deform the curve, it
must stay equal to 2z throughout.

Corollary 1.5. If R is a simply connected region whose boundary curve is a geodesic, then ffR KdA =
AO =2m.

Example 2. We take R to be the upper hemisphere and use the usual spherical coordinates parametriza-
tion. Then the unit tangent vector along dR is e, everywhere, so A6 = 0, in contradiction with Corollary
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1.5. Alternatively, C = 0R is a geodesic, so there should be zero holonomy around C (computed with
respect to this framing).

How do we resolve this paradox? Well, although we’ve been sloppy about this point, the spherical
coordinates parametrization actually fails at the north pole (since x, = 0). Indeed, there is no framing of
the upper hemisphere with e, everywhere tangent to the equator. However, the reader can rest assured that
there is some orthogonal parametrization of the upper hemisphere, e.g., by stereographic projection from
the south pole (cf. Example 1(e) in Section 1 of Chapter 2). V

Remark. In more advanced courses, the holonomy around the closed curve « is interpreted as a rota-
tion of the tangent plane of M at a(0). That is, what matters is Ay (mod 2x), i.e., the change in angle
disregarding multiples of 2. This quantity does not depend on the choice of framing e, e;.

We now set to work on one of the crowning results of surface theory.

Theorem 1.6 (Local Gauss-Bonnet). Suppose R is a simply connected region with piecewise smooth

boundary in a parametrized surface. If C = 0R has exterior angles€;, j = 1,...,{, then
)2
/ Kgds + // KdA+) e =2m.
OR R =1

FIGURE 1.3

Note, as we indicate in Figure 1.3, that we measure exterior angles so that |¢;| < & for all ;.

Proof. If dR is smooth, then from our earlier discussion we infer that

/ KgdS-l-// KdA = AO =27
OR R

But when dR has corners, the unit tangent vector turns /ess by the amount Zf=1 €j, so the result follows.
(Technically, what we need is the correction of the Hopf Umlaufsatz when the curve has corners. See
Exercise 1.3.12.) O

Corollary 1.7. For a geodesic triangle (i.e., a region whose boundary consists of three geodesic seg-
ments) R with interior angles t1, (5, L3, we have /]R KdA = (11 + 1 + 13) — 7, the angle excess.

Proof. Since the boundary consists of geodesic segments, the geodesic curvature integral drops out, and

3 3 3
// KdAzZn—Zej :27T—Z(7T—Lj) = th—zr,
R j=1 j=1 j=1

we are left with

as required. [
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Remark. It is worthwhile to consider the three special cases K = 0, K = 1, K = —1, as pictured in
Figure 1.4. When M is flat, the sum of the angles of a triangle is , as in the Euclidean case. When M

y (B >

FIGURE 1.4

is positively curved, it takes more than 7 for the triangle to close up, and when M is negatively curved, it
takes less. Intuitively, this is because geodesics seem to “bow out” when K > 0 and “bow in” when K < 0
(cf. Exercise 3.2.17).

Example 3. Let’s consider Theorem 1.6 in the case of a spherical cap, as shown in Figure 1.5. Using
the usual spherical coordinates parametrization, we have 0 < u < u¢. By Proposition 1.3 and Example 1,

Loy
—

FIGURE 1.5

since 6 = 7/2 along the v-curve, we have kg = ¢12(s) = cotug (cf. also Exercise 2.4.4). Therefore, we

// KdA = 271—/ Kgds = 2m (1 — cosuy),
R dR

which checks, of course, since K = 1 and the area of this cap is indeed

have

2 Uuo
/ / sinududv = 2m(1 — cos ug). v
o Jo

Remark. Notice that the sign of kg depends on both the orientation of & and the orientation of the
surface. If we rescale the surface by a factor of c, then the integral faR kgds does not change, as the
arclength changes by a factor of ¢ and the geodesic curvature by a factor of 1/¢. Similarly, the integral
ffR KdA does not change when we rescale the surface: Area changes by a factor of ¢ and Gaussian
curvature changes by a factor of 1/c2.
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=

FIGURE 1.6

We now come to one of the crowning results of modern-day mathematics, one which has led to much
subsequent research and generalization. We say a surface M C R? is oriented if we have chosen a con-
tinuous unit normal field defined everywhere on M. We now consider a compact, oriented surface with
piecewise-smooth boundary, as pictured in Figure 1.6. T. Rad6 proved in 1925 that any such surface M can

m
be triangulated. That is, we may write M = | J A, where
A=1
(i) A, is the image of a triangle under an (orientation-preserving) orthogonal parametrization;

(i) A N Ay is either empty, a single vertex, or a single edge;

(iii) when A, N A, consists of a single edge, the orientations of the edge are opposite in A and
Ay and

(iv) at most one edge of A} is contained in the boundary of M .

‘We now make a standard

Definition. Given a triangulation J of a surface M with V' vertices, E edges, and F faces, we define
the Euler characteristic y(M,T) =V — E + F.

Example 4. We can triangulate a disk as shown in Figure 1.7, obtaining y = 1. Without being so

V-E+F =5-84+4 =1 V-E+F =9-18+10 =1

FIGURE 1.7

pedantic as to require that each A be the image of a triangle under an orthogonal parametrization, we might
just think of the disk as a single triangle with its edges puffed out; then we would have y =V — F + F =
3—3+1=1,as well. We leave it to the reader to triangulate a sphere and check that y(X,7) =2. V

Remark. It’s important to note that by choosing the orientations on the “triangles” Aj compatibly,
we get an orientation on the boundary of M. That is, a choice of n on M determines which direction we
proceed on dM . This is precisely the case any time one deals with Green’s Theorem (or its generalization
to oriented surfaces, Stokes’s Theorem). Nevertheless, following up on the Remark on p. 84, the sign of kg
on dM is independent of the choice of orientation on M , for, if we change n to —n, the orientation on dM

switches and n x T stays the same.
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The beautiful result to which we’ve been headed is now the following

Theorem 1.8 (Global Gauss-Bonnet). Let M be a compact, oriented surface with piecewise-smooth

boundary, equipped with a triangulation T as above. If e, ,k = 1, ..., {, are the exterior angles of M , then
14
/ Kgds + // KdA+ ) e =2mx(M, 7).
wm M k=1

Proof. As we illustrate in Figure 1.8, we will distinguish vertices on the boundary and in the interior,
denoting the respective total numbers by V3 and V;. Similarly, we distinguish among edges on the boundary,
edges in the interior, and edges that join a boundary vertex to an interior vertex; we denote the respective

boundary edges

. . boundary vertex
interior edge

interior/boundary edges

FIGURE 1.8

numbers of these by E, Ej, and E;;. Now observe that

// KdA = Z/ KdA
R a=1774x

since all the orientations are compatible, and

m
Keds = / Kods

because the line integrals over interior and interior/boundary edges cancel in pairs (recall that kg changes
sign when we reverse the orientation of the curve). Let €3, j = 1,2, 3, denote the exterior angles of the
“triangle” Aj . Then, applying Theorem 1.6 to A, we have

3
/ Kgds + // KdA+Y € =2,
BAA Ay j=1
and now, summing over the triangles, we obtain

m 3
/ Kgds+// KdA+ > e;; =2wm =2nF.
oM M

A=1j=1
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Now we must do some careful accounting: Letting ¢3; denote the respective interior angles of triangle A,

we have

(+) D e = ) (w—uy) =nQE; + Ep) = 21V;
interior interior
vertices vertices

inasmuch as each interior edge contributes two interior vertices, whereas each interior/boundary edge con-

tributes just one, and the interior angles at each interior vertex sum to 2. Next,

L
(%) Z €) =7rE,-b+Zek.
k=1

boundary
vertices

To see this, we reason as follows. Given a boundary vertex v, denote by a superscript (v) the relevant angle
or number for which the vertex v is involved. Note first of all that any boundary vertex v is contained in
Ei(z) + 1 faces. Moreover, for a fixed boundary vertex v,

Z ) 7, v a smooth boundary vertex
L= .
A . .

/ T — €, v acorner of IM with exterior angle ¢

Thus,

Z € = Z (r =) = Z n(Ei(Z)-l—l)—( Z Ly + Z L;U-)

boundary boundary boundary v smooth U corner
vertices vertices v vertices v

L
=nk;p+ Z €k -
k=1

Adding equations (x) and () yields

)2
ZE)U-: Z €r; + Z E)tjzzﬂ(Ei-l-Eib—Vi)-i-ZGk.
AJj

interior boundary k=1
vertices vertices

At long last, therefore, our reckoning concludes:

)2
/ Kgds+// KdA—i—Zék:ZJT(F—(Ei-i-Eib)-l-Vi)
oM M

k=1
=2n(F — (Ei + Ejp + Ep) + (Vi + Vp)) =22(V — E + F)

=2mx(M,7T).
(Note that because the boundary curve dM is closed, we have Vj, = Ep.) O
We now derive some interesting conclusions:

Corollary 1.9. The Euler characteristic y(M,T) does not depend on the triangulation T of M .

Proof. The left-hand side of the equality in Theorem 1.8 has nothing whatsoever to do with the trian-
gulation. O
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It is therefore legitimate to denote the Euler characteristic by y(M), with no reference to the triangulation.
It is proved in a course in algebraic topology that the Euler characteristic is a “topological invariant”; i.e., if
we deform the surface M in a bijective, continuous manner (so as to obtain a homeomorphic surface), the
Euler characteristic does not change. We therefore deduce:

Corollary 1.10. The quantity

L
/ Kgds+// KdA+) ¢
oM M k=1

is a topological invariant, i.e., does not change as we deform the surface M .

In particular, in the event that M = @ (so many people refer to the surface M as a closed surface), we
have

Corollary 1.11. When M is a compact, oriented surface without boundary, we have

//M KdA =2ny(M).

It is very interesting that the fotal curvature does not change as we deform the surface, for example, as shown
in Figure 1.9. In a topology course, one proves that any compact, oriented surface without boundary must

N

[y KdA = 4n

FIGURE 1.9

have the topological type of a sphere or of a g-holed torus for some positive integer g. Thus (cf. Exercise
4), the possible Euler characteristics of such a surface are 2,0, —2, —4, ...; moreover, the integral ffM KdA
determines the topological type of the surface.

We conclude this section with a few applications of the Gauss-Bonnet Theorem.

Example 5. Suppose M is a surface of nonpositive Gaussian curvature. Then there cannot be a geodesic
2-gon R on M that bounds a simply connected region. For if there were, by Theorem 1.6 we would have

02// KdA =2n — (1 + €2) > 0,
R

which is a contradiction. (Note that the exterior angles must be strictly less than 7 because there is a unique
(smooth) geodesic with a given tangent direction.) V

Example 6. Suppose M is topologically equivalent to a cylinder and its Gaussian curvature is negative.
Then there is at most one simple closed geodesic in M. Note, first, as indicated in Figure 1.10, that if
there is a simple closed geodesic a, either it must separate M into two unbounded pieces or else it bounds
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o must be like one of these

FIGURE 1.10

a disk R, in which case we would have 0 > ([ KdA = 27xx(R) = 2w, which is a contradiction. On
the other hand, suppose there were two. If they don’t intersect, then they bound a cylinder R and we get
0> [[r KdA = 2mx(R) = 0, which is a contradiction. If they do intersect, then we we have a geodesic
2-gon bounding a simply connected region, which cannot happen by Example 5. V

EXERCISES 3.1

1. Compute the holonomy around the parallel ¥ = u¢ (and indicate which direction the rotation occurs
from the viewpoint of an observer away from the surface down the x-axis) on
*a. the torus x(u,v) = ((a + bcosu)cosv, (a + bcosu)sinv, b sin u)
b. the paraboloid x(u,v) = (u cos v, u sinv, u?)
c. the catenoid x(u, v) = (cosh u cos v, cosh u sin v, u)

*2. Determine whether there can be a (smooth) closed geodesic on a surface when

a. K>0
b. K=0
c. K<0

If the closed geodesic can bound a simply connected region, give an example.

3. Calculate the Gaussian curvature of a torus (as parametrized in Example 1(c) of Section 1 of Chapter 2)
and verify Corollary 1.11.

4. a. Triangulate a cylinder, a sphere, a torus, and a two-holed torus; verify that y = 0, 2, 0, and —2,
respectively. Pay particular attention to condition (ii) in the definition of triangulation.
b. Prove by induction that a g-holed torus has y =2 — 2g.

5. Suppose M is a compact, oriented surface without boundary that is not of the topological type of a
sphere. Prove that there are points in M where Gaussian curvature is positive, zero, and negative.

6. Let M be a surface with K > 0 that is topologically a cylinder. Prove that there cannot be two disjoint
simple closed geodesics both going around the neck of the surface.

7. Suppose M and M™* are locally isometric and compatibly oriented. Use Proposition 1.3 to prove that if
a and o™ are corresponding arclength-parametrized curves, then their geodesic curvatures are equal at
corresponding points.
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8.

10.

11.

12.

13.
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Consider the paraboloid M parametrized by x(u,v) = (ucosv,usinv,u?),0 < u,0 < v < 2.
Denote by M, that portion of the paraboloid defined by 0 < u < r.

a.
b.
c.

d.

c.

Calculate the geodesic curvature of the boundary circle and compute / kgds.
Calculate y(M,). OMr
Use the Gauss-Bonnet Theorem to compute / / KdA. Find the limit as r — oo. (This is the
total curvature of the paraboloid.) r
Calculate K directly (however you wish) and compute / / K dA explicitly.
M

Explain the relation between the total curvature and the image of the Gauss map of M.

Consider the pseudosphere (with boundary) M parametrized as in Example 8 of Chapter 2, Section 2,
but here we take u > 0. Denote by M, that portion defined by 0 < u < r. (Note that we are including

the boundary circle u = 0.)

a.

d.

c.

Calculate the geodesic curvature of the circle ¥ = uo and compute / kgds. Watch out for the
r

orientations of the two circles.
Calculate y(M,).
Use the Gauss-Bonnet Theorem to compute / KdA. Find the limit as r — oo. (This is the
total curvature of the pseudosphere.) M
Calculate the area of M, directly, and use this to deduce the value of / / KdA.
M

Explain the relation between the total curvature and the image of the Gauss map of M.

Give a different version of the accounting to prove Theorem 1.8 as follows.

a.
b.
c.

b.

Show that 3F = 2(E; + E;p) + Ep, and conclude that 3F = 2FE — V.

Show that Zinterior vertices tAj = 27{Vl and Zboundary vertices tAj = 70 Vb - Z €k-
Conclude that } ) ;€3 =37F — ), ;13 = 2n(E —V) + )_ €, and complete the proof of the

theorem.

Use Corollary 1.4 to prove that M is flat if and only if the holonomy around all (“small”) closed
curves that bound a region in M is zero.
Show that even on a flat surface, holonomy can be nontrivial around certain curves.

Reprove the result of part a of Exercise 2.3.14 by considering the holonomy around a (sufficiently small)
quadrilateral formed by four of the lines. Does the result hold if there are two families of geodesics in

M always intersecting at right angles?

In this exercise we explore what happens when we try to apply the Gauss-Bonnet Theorem to the
simplest non-smooth surface, a right circular cone. Let R denote the surface given in Exercise 2.4.5 and

dR its boundary curve.

a.

Show that if we make R by gluing the edges of a circular sector (“pacman”) of central angle 8,

as indicated in Figure 1.11, then kegds = 2w sing = B. We call B the cone angle of R at its
OR
vertex.

Show that Theorem 1.6 holds for R if we add 2z — 8 to [ r KdA.
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FIGURE 1.11

c. Show that we obtain the same result by “smoothing” the cone point, as pictured in Figure 1.12.
(Hint: Interpret [ g K dA as the area of the image of the Gauss map.)

X7

FIGURE 1.12

Remark. It is not hard to give an explicit > such smoothing. For example, construct a > convex
function f on [0, 1] with £(0) = f/(0) =0, f(1) = f’(1) = 1,and f”(1) = 0.

14.  Suppose « is a closed space curve with ¥ # 0. Assume that the normal indicatrix (i.e., the curve traced
out on the unit sphere by the principal normal) is a simple closed curve in the unit sphere. Prove then
that it divides the unit sphere into two regions of equal area. (Hint: Apply the Gauss-Bonnet Theorem
to one of those regions.)

15. Suppose M C R3 is a compact, oriented surface with no boundary with K > 0. It follows that M is
topologically a sphere (why?). Prove that M is convex; i.e., for each P € M, M lies on only one side
of the tangent plane Tp M. (Hint: Use the Gauss-Bonnet Theorem and Gauss’s original interpretation
of curvature indicated in the remark on p. 51 to show the Gauss map must be one-to-one (except perhaps
on a subset with no area). Then look at the end of the proof of Theorem 3.4 of Chapter 1.)

2. An Introduction to Hyperbolic Geometry

Hilbert proved in 1901 that there is no surface (without boundary) in R* with constant negative curvature
with the property that it is a closed subset of R3 (i.e., every Cauchy sequence of points in the surface
converges to a point of the surface). The pseudosphere fails the latter condition. Nevertheless, it is possible
to give a definition of an “abstract surface” (not sitting inside R3) together with a first fundamental form.
As we know, this will be all we need to calculate Christoffel symbols, curvature (Theorem 3.1 of Chapter
2), geodesics, and so on.

Definition. The hyperbolic plane H is defined to be the half-plane {(x,v) € R? : v > 0}, equipped
with the first fundamental form I givenby E = G = 1/v2, F = 0.
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Now, using the formulas (i) on p. 58, we find that

E E, 1
T = 35 = =26 =%

E 1 G
Iy =-—"2=—- Ly =-==0
"o 2FE v 26

Gu Gv l
Fu:——:O v:—:——.
Y 26

Using the formula () for Gaussian curvature on p. 60, we find
2

1 Ey Gu w22, v 2
K=—T5c ((m)Jr (¢E—)u) =_7(_F'” ) =7 ek

Thus, the hyperbolic plane has constant curvature —1. Note that it is a consequence of Corollary 1.7 that the

area of a geodesic triangle in H is equal to 7 — (¢1 + t2 + (3).
What are the geodesics in this surface? Using the equations (deés) on p. 71, we obtain the equations

2 1
u// _ _ulvl — U// + _(u/2 _ U/2) =0.
v v

Obviously, the vertical rays u = const give us solutions (with v(¢) = c1e°?"). Next we seek geodesics with
/

d
u’ # 0, so we start with a&v_ U—, and apply the chain rule judiciously:
U u

d?v d (v’) u' v —u

du? ~ du

u/

This means we are left with the differential equation

du? du) — du\ du)

and integrating this twice gives us the solutions
u? +v? =au +b.

That is, the geodesics in H are the vertical rays and the semicircles centered on the u-axis, as pictured
in Figure 2.1. Note that any semicircle centered on the u-axis intersects each vertical line at most one
time. It now follows that any two points P, Q € H are joined by a unique geodesic. If P and Q lie on
a vertical line, then the vertical ray through them is the unique geodesic joining them. If P and Q do not
lie on a vertical line, let C be the intersection of the perpendicular bisector of PQ and the u-axis; then the
semicircle centered at C is the unique geodesic joining P and Q.

Example 1. Given P, Q € H, we would like to find a formula for the (geodesic) distance d (P, Q)
between them. Let’s start with P = (ug,a) and O = (up,b), with 0 < a < b. Parametrizing the line
segment from P to Q by u = ug,v =t,a <t < b,we have

b b
d(P, Q) :/ JEW©)? + G/ (102d: :/ %zlné.

a
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FIGURE 2.1

Note that, fixing Q and letting P approach the u-axis, d(P, Q) — oo; thus, it is reasonable to think of
points on the u-axis as “virtual” points at infinity.

In general, we parametrize the arc of a semicircle (ug + r cost,rsint), 8 <t < 6, going from P to

FIGURE 2.2

0, as shown in Figure 2.2. Then we have

/92 rdt /92 dt
g, Isint g, sint

2cos(61/2) [ 2cos(62/2)
"\ 25in(61/2) / 2sin(62/2)

0>
d(P,Q) = /0 \/Eu’(z)Z + Gv/(t)2dt

1+cosB; [/ 1+ cosb,
= |In - -
sin 01 sin 6,
AP JAQ
=|h|—/—
BP/ BQ

where the lengths in the final formula are Euclidean. (See Exercise 12 for the connection with cross ratio.)
v

El

It follows from the first part of Example 1 that the curves v = a and v = b are a constant distance apart
(measured along geodesics orthogonal to both), like parallel lines in Euclidean geometry. These curves are
classically called horocycles. As we see in Figure 2.3, these curves are the curves orthogonal to the family
of the “vertical geodesics.” If, instead, we consider all the geodesics passing through a given point Q “at
infinity” on v = 0, as we ask the reader to check in Exercise 5, the orthogonal trajectories will be curves in
H represented by circles tangent to the u-axis at Q.

Example 2. Let’s calculate the geodesic curvature of the horocycle v = a. We start by parametrizing

the curve by a(¢) = (¢,a). Then &’ (¢) = (1,0). Note that v(z) = |le/(¢)|| = vV E(1)2 + G(0)2 = 1/a. By
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FIGURE 2.3

Proposition 1.1,
1 _ 1
pro= ——Qa 1) = —.
2./ a
a?
(Here e; = v(1,0) and e = v(0, 1) at the point (1, v) € H. Why?) To calculate the geodesic curvature,
we wish to apply Proposition 1.3, which requires differentiation with respect to arclength, so we’ll use the

chain rule as in Chapter 1, multiplying the ¢-derivative by 1/v(¢) = a. Note, also, that &’ makes the constant
angle 6 = 0 with e, so 8’ = 0. Thus,

1 1
—¢n2=a-— =1,
a

=00

as required. V

We ask the reader to do the analogous calculations for the circles tangent to the u-axis in Exercise 6.
Moreover, as we ask the reader to check in Exercise 7, every curve in H of constant geodesic curvature
kg = 1 is a horocycle.

The isometries of the Euclidean plane form a group, the Euclidean group E(2); the isometries of the
sphere likewise form a group, the orthogonal group O(3). Each of these is a 3-dimensional Lie group.
Intuitively, there are three degrees of freedom because we must specify where a point P goes (two degrees
of freedom) and where a single unit tangent vector at that point P goes (one more degree of freedom). We
might likewise expect the isometries of H to form a 3-dimensional group. And indeed it is. We deal with
just the orientation-preserving isometries here.

We consider H C C by letting (1, v) correspond to z = u + i v, and we consider the collection of linear

fractional transformations

b
T(z):az+ , a,b,c,d eR, ad—bc=1.
cz+d

We must now check several things:

(i) Composition of functions corresponds to multiplication of the 2 x 2 matrices [a Zi| with
determinant 1, so we obtain a group. ¢
(i) T maps H bijectively to H.
(iii) T is an isometry of H.
We leave it to the reader to check the first two in Exercise 8, and we check the third here. Given the point
z = u + iv, we want to compute the lengths of the vectors T, and T, at the image point 7(z) = x + iy
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and see that the two vectors are orthogonal. Note that

az+b _(az+b)(cZ+d) _ (a(u+iv) +b)(c(u—iv)+d)

cz4+d lcz + d|? lcz + d|?
(ac? + v?) + (ad + bc)u) +i((ad — be)v)
N lcz +d|? '
soy = m Now we have3
. _ (cz4+d)a—(az + b)c 1
= — = T/ = = R
Xu iy = —ixo ¥y =T') (cz+d)? (cz+d)?
so we have
2 2
. ox24y2 1 1 1 1
E=%*_"u _ __ 71 2:_'—:—:E,
32 y2| )] V2 ez +dF 12
2 2
and, similarly, G = @ = G. On the other hand,
y

F= XuYu ‘zxv)’v _ Xu(—xyp) ‘zi‘ Xy (xy) —0=F,
y y

as desired.

Now, as we verify in Exercise 12 or in Exercise 14, linear fractional transformations carry lines and
circles in C to either lines or circles. Since our particular linear fractional transformations preserve the real
axis (U{oo}) and preserve angles as well, it follows that vertical lines and semicircles centered on the real
axis map to one another. Thus, our isometries do in fact map geodesics to geodesics (how comforting!).

If we think of H as modeling non-Euclidean geometry, with lines in our geometry being the geodesics,
note that given any line ¢ and point P ¢ £, there are infinitely many lines passing through P “parallel”
to (i.e., not intersecting) £. As we see in Figure 2.4, there are two special lines through P that “meet £ at

FIGURE 2.4

infinity”; the rest are often called ultraparallels.

We conclude with an interesting application. As we saw in the previous section, the Gauss-Bonnet
Theorem gives a deep relation between the total curvature of a surface and its topological structure (Euler
characteristic). We know that if a compact surface M is topologically equivalent to a sphere, then its total
curvature must be that of a round sphere, namely 4. If M is topologically equivalent to a torus, then (as
the reader checked in Exercise 3.1.3) its total curvature must be 0. We know that there is no way of making

3These are the Cauchy-Riemann equations from basic complex analysis.
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FIGURE 2.5

the torus in R? in such a way that it has constant Gaussian curvature K = 0 (why?), but we can construct a

flat torus in R* by taking
x(u,v) = (cosu,sinu,cos v, sinv), 0<wu,v <2m.

(We take a piece of paper and identify opposite edges, as indicated in Figure 2.5; this can be rolled into a
cylinder in R but into a torus only in R*.) So what happens with a 2-holed torus? In that case, y(M) = —2,
so the total curvature should be —4, and we can reasonably ask if there’s a 2-holed torus with constant

negative curvature. Note that we can obtain a 2-holed torus by identifying pairs of edges on an octagon, as

FIGURE 2.6

shown in Figure 2.6.

This leads us to wonder whether we might have regular n-gons R in H. By the Gauss-Bonnet formula,
we would have area(R) = (n—2)w —)_ (;,so it’s obviously necessary that ) " ¢; < (n—2)s. This shouldn’t
be difficult so long as n > 3. First, let’s convince ourselves that, given any point P € H,0 < o < m, and
0 < B < (r —a)/2, we can construct an isosceles triangle with vertex angle o at P and base angle 8. We

~

& S
~

FIGURE 2.7

draw two geodesics emanating from P with angle o between them, as shown in Figure 2.7. Proceeding a
geodesic distance r on each of them to points Q and R, we then obtain an isosceles triangle A PQR with
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vertex angle . Now, the base angle of that triangle approaches (7 — «)/2 as r — 0% and approaches 0
as r — oo. It follows (presuming that the angle varies continuously with r) that for some r, we obtain the
desired base angle . Let’s now apply this construction with @ = 27 /n and B = n/n,n > 5. Repeating
the construction n times (dividing the angle at P into n angles of 277/n each), we obtain a regular n-gon
with the property that ) «; = 2, as shown (approximately?) in Figure 2.8 for the case n = 8. The point

FIGURE 2.8

is that because the interior angles add up to 277, when we identify edges as in Figure 2.6, we will obtain a
smooth 2-holed torus with constant curvature K = —1. The analogous construction works for the g-holed
torus, constructing a regular 4g-gon whose interior angles sum to 2.

EXERCISES 3.2

—

Find the geodesic joining P and Q in H and calculate d (P, Q).
a. P=(4,3),0=(-3,4

*», P =(1,2),0 =(0,1)

c. P=(10,15),0 = (2,19)

2. Suppose there is a geodesic perpendicular to two geodesics in H. What can you prove about the latter
two?

3. Prove the angle-angle-angle congruence theorem for hyperbolic triangles: If /A ~ LA', /B ~ /B’,
and ZC =~ /C’,then AABC =~ AA’B'C’. (Hint: Use an isometry to move A’ to A, B’ along the
geodesic from A to B, and C’ along the geodesic from A to C.)

4. a. Verify Local Gauss-Bonnet, Theorem 1.6, for the region R bounded by u = A,u = B, v = a,
andv = b.
b. Verify Local Gauss-Bonnet for the region R bounded by the segment v = a, A < u < B, and the
geodesic joining the two endpoints.
c. Use Local Gauss-Bonnet (and the analysis of part b) to deduce the result of Example 2.
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10.
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Show that the circles tangent to the u-axis at the origin are the orthogonal trajectories of the family
of geodesics u? — 2cu + v2 = 0, ¢ € R (together with the positive v-axis). (Hint: Remember that

orthogonal lines have slopes that are negative reciprocals. Eliminate ¢ to obtain the differential equation

dv 2uv

= ———, and solve this “homogeneous” differential equation by substituting v = uz and getting
Us — v

U
a separable differential equation for # and z.)
a. Prove that circles tangent to the u-axis have kg = 1.
b. Prove that the horocycles u? +v?—2av = 0 and u?+v?—2bv = 0 are a constant geodesic distance
apart. (Hint: Consider the intersections of the two horocycles with a geodesic u? — 2cu + v?> =0
orthogonal to them both.)

Prove that every curve in H of constant geodesic curvature kg = 1 is either a horizontal line (as in

Example 2) or a circle tangent to the u-axis. (Hints: Assume we start with an arclength parametrization
/

(u(s),v(s)), and use Proposition 1.3 to show that we have 1 = il + 6’ and u’? + v'? = v2. Obtain the
v

d?v dv\2\3/? dv\2
(1 ()
du? du du
and solve this by substituting z = dv/du and getting a separable differential equation for dz/dv.)

b
Let Ty po.q(2) = az::__d,a,b,c,d € R, with ad — be = 1.

cz
a. Supposed’,b’,c¢’,d’ € Rand a’d’ — b’¢c’ = 1. Check that

differential equation

Ta’,b/,c’,d’oTa,b,c,d = Ta/a+b’c,a/b—l—b/d,c/a—i—d/c,c’b-l—d’d and
(@a+bcyc'b+d'd)y—(a'b+bd)c'a+dc)=1.

Show, moreover, that Ty _p .4 = Ta_,bl,c,d' (Note that T p g = T_4,—p,—c,—a- The reader
who’s taken group theory will recognize that we’re defining an isomorphism between the group of
linear fractional transformations and the group SL(2,R)/{=£1} of 2 x 2 matrices with determinant
1, identifying a matrix and its additive inverse.)

b. LetT =T, p ¢ q- Provethatif z = u +ivand v > 0, then T(z) = x + iy with y > 0. Deduce
that 7" maps H to itself bijectively.

Show that reflection across the geodesic u = 0 is given by r(z) = —Zz. Use this to determine the form
of the reflection across a general geodesic.

The geodesic circle of radius R centered at P is the set of points O so that d(P, Q) = R. Prove that
geodesic circles in H are Euclidean circles. One way to proceed is as follows: The geodesic circle
centered at P = (0, 1) with radius R = Ina must pass through (0, @) and (0, 1/a), and hence ought to
be a Euclidean circle centered at (0, %(a + 1/a)). Check that all the points on this circle are in fact a
hyperbolic distance R away from P . (Hint: It is probably easiest to work with the cartesian equation of
the circle. Find the equation of the geodesic through P and an arbitrary point of the circle.)

What is the geodesic curvature of a geodesic circle of radius R in H? (See Exercise 10.)
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12. Recall (see, for example, p. 298 and pp. 3501 of Shifrin’s Abstract Algebra: A Geometric Approach)

13.

14.

that the cross ratio of four numbers A, B, P, O € C U {00} is defined to be

0—-A4,0-B

[A:B:P:Q]:P_A > §

Show that A, B, P, and Q lie on a line or circle if and only if their cross ratio is a real number.
Prove that if S is a linear fractional transformation with S(4) = 0, S(B) = oo, and S(P) = 1,
then S(Q) = [A: B : P : Q]. Use this to deduce that for any linear fractional transformation 7,
we have [T(A) : T(B): T(P):T(Q)]=[A:B:P:Q].
Prove that linear fractional transformations map lines and circles to either lines or circles. (For
which such transformations do lines necessarily map to lines?)
Show that if A, B, P,and Q lie on a line or circle, then

AQ /BQ

|[A:B:P:Q]|=E 3P

Conclude that d(P, Q) = |In[A: B : P : Q]|, where A, B, P,and Q are as illustrated in Figure
2.2.
Check that if T is a linear fractional transformation carrying 4 to 0, B to 0o, P to P/, and Q to

Q' ,thend(P, Q) =d(P’, Q).

Let O be any point not lying on a circle C and let P and Q be points on the circle C so that
O, P, and Q are collinear. Let T be the point on € so that OT is tangent to . Prove that
(OP)(0Q) = (OT)>.

Define inversion in the circle of radius R centered at O by sending a point P to the point P’ on
the ray OP with (OP)(OP’) = R?. Show that an inversion in a circle centered at the origin maps
a circle € centered on the u-axis and not passing through O to another circle ¢’ centered on the
u-axis. (Hint: For any P € @, let Q be the other point on € collinear with O and P, and let Q’ be
the image of Q under inversion. Use the result of part a to show that OP/OQ’ is constant. If C
is the center of €, let C’ be the point on the u-axis so that C’Q’||CP. Show that Q' traces out a
circle € centered at C’.)

Show that inversion in the circle of radius R centered at O maps vertical lines to circles centered
on the u-axis and passing through O and vice-versa.

Prove that every (orientation-preserving) isometry of H can be written as the composition of linear
fractional transformations of the form

1
Ti(z)=z+b forsomebeR, Tr(z)=-—-, and T3(z) =cz forsomec > 0.
z

(Hint: It’s probably easiest to work with matrices. Show that you have matrices of the form

0 1 -1 1 0
“ , b s 0 , and therefore , and that any matrix of determinant 1 can be
0 1/a 01 1 0 b 1

obtained as a product of such.)

Prove that T, maps circles centered on the u-axis and vertical lines to circles centered on the u-axis
and vertical lines (not necessarily respectively). Either do this algebraically or use Exercise 13.
Use the results of parts a and b to prove that isometries of H map geodesics to geodesics.
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15.

16.

17.
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We say a linear fractional transformation 7" = T, j . 4 is elliptic if it has one fixed point, parabolic if it

has one fixed point at infinity, and hyperbolic if it has two fixed points at infinity.

a. Show that T is elliptic if |a + d| < 2, parabolic if |a + d| = 2, and hyperbolic if |a + d| > 2.

b. Describe the three types of isometries geometrically. (Hint: In particular, what is the relation
between horocycles and parabolic linear fractional transformations?)

Suppose AABC is a hyperbolic right triangle with “hypotenuse” c¢. Use Figure 2.9 to prove the follow-
ing:

coshc¢ = cosha coshb.

sinhc¢’ tanhc¢’
(The last is the hyperbolic Pythagorean Theorem.) (Hint: Start by showing, for example, that coshb =

A
R7C]

FIGURE 2.9

csch, coshe = (1 —cosycost)/(sinysint), and cost — cosyy = sintcotf. You will need two

equations trigonometrically relating R and r.)

Given a point P on a surface M, we define the geodesic circle of radius R centered at P to be the locus
of points whose (geodesic) distance from P is R. Let C(R) denote its circumference.
a. Show that on the unit sphere
. 2rR—-C(R) 1
lim ———— = -.
b. Show that the geodesic curvature kg of a spherical geodesic circle of radius R is
cotR ~ %(I—RTz-i-...).

The Poincaré disk is defined to be the “abstract surface” D = {(u,v) : u? + vZ < 1} with the first

4 4r?
fundamental form given, in polar coordinates (r,0),by E = ——, F = 0,G = ———— . This
g p (r.0). by a= 272 d=r2)72
is called the hyperbolic metric on .

c. Check that in D the geodesics through the origin are Euclidean line segments; conclude that the

Euclidean circle of radius r centered at the origin is a hyperbolic circle of radius R = In ( 1 i_ :),
and so r = tanh B (Remark: Other geodesics are semicircles orthogonal to the unit circle, the
“virtual boundary” of ID. This should make sense since there is a linear fractional transformation
mapping H to D; by Exercise 12c, it will map semicircles orthogonal to the u-axis to semicircles
orthogonal to the unit circle.)

d. Check that the circumference of the hyperbolic circle is 2z sinh R ~

2n(R+%3+...), and so
2R—-C(R) 1

lim ——
R—0+ 7R3 3
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e. Compute (using a double integral) that the area of a disk of hyperbolic radius R is 47 sinh? % ~
TR?*(1 + If—; + ...). Use the Gauss-Bonnet Theorem to deduce that the geodesic curvature kg of
the hyperbolic circle of radius R is coth R =~ %(1 + RT2 +...).

18. Here we give another model for hyperbolic geometry, called the Klein-Beltrami model. Consider the fol-
Start with the open unit disk,
{x% + x% <1, x3 = O}, vertically project to the southern hemisphere of the unit sphere, and then

lowing parametrization of the hyperbolic disk:

stereographically project (from the north pole) back to the unit disk.
a. Show that this mapping is given in polar coordinates by

R
x(R,0) = (r,0) = (—9) .
1+ +1—R2
Compute that the first fundamental form of the Poincaré metric on D (see Exercise 17) is given
1 . R?

in (R, 0) coordinates by E = T F=06= — .

(Hint: Compute carefully and

economically!)

b. Compute the distance from (0, 0) to (a, 0); compare with the formula for distance in the Poincaré
model.

c. Changing now to Euclidean coordinates (u, v), show that

5 1—v? A U A 1 —u?
E_(l—uz—vz)z’ F_(l—uz—vz)z’ G_(l—uz—vz)z’
whence you derive
2u

Fu”u:l—uZ—UZ’ Fyu =0,

u __ v v o__ u

1_‘u”_l—uz—vz’ I"“’_l—uz—vz’

2v
u _ vo_
Fow =0 =100

d. Use part b to show that the geodesics of the disk using the first fundamental form I are chords of
the circle u? +v? = 1. (Hint: Show (by using the chain rule) that the equations for a geodesic give
d?v/du® = 0.) Discuss the advantages and disadvantages of this model (compared to Poincaré’s).

e. Check your answer in part ¢ by proving (geometrically?) that chords of the circle map by x to
geodesics in the hyperbolic disk. (See Exercise 2.1.8.)

3. Surface Theory with Differential Forms

We’ve seen that it can be quite awkward to work with coordinates to study surfaces. (For example, the
Codazzi and Gauss Equations in Section 3 of Chapter 2 are far from beautiful.) For those who’ve learned
about differential forms, we can given a quick and elegant treatment that is conceptually quite clean.

We start (much like the situation with curves) with a moving frame €1, e;, e3 on (an open subset of) our
(oriented) surface M . Here e; are vector fields defined on M with the properties that

(i) {e1,ey,e3} gives an orthonormal basis for R3 at each point (so the matrix with those respective
column vectors is an orthogonal matrix);
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(ii) {e1, ey} is a basis for the tangent space of M and e3 = n.

How do we know such a moving frame exists? If x: U — M is a parametrized surface, we can start with
our usual vectors Xy, X, and apply the Gram-Schmidt process to obtain an orthonormal basis. Or, if M
is a surface containing no umbilic points, then we can choose e; and e; to be unit vectors pointing in the
principal directions; this approach was tacit in many of our proofs earlier.

If x: M — R3 is the inclusion map (which we may choose, in a computational setting, to consider as
the parametrization mapping U — R?), then we define 1-forms w1, w, on M by

dx = wie; + wzey;

ie.,forany V€ TpM,we have V = w1(V)e; + wa(V)ez, so wy (V) = 1(V,ey) for o = 1,2. So far, wq
and w; keep track of how our point moves around on M . Next we want to see how the frame itself twists,

so we define 1-forms w;;,i,j = 1,2,3, by

3
dei = Z wjj€;.
j=1

Note that since e; - ¢; = const for any i, j = 1,2, 3, we have

3 3
0=d(e -ej):dei~ej —I—ei~dej = (Zwikek)-ej —i—(Za)jkek)-ei
k=1 k=1

= wjj + wji,
so wj; = —w;j foralli, j = 1,2,3. (In particular, since e; is always a unit vector, w;; = 0 for all i.) If
Ve TpM,w;;(V) tells us how fast e; is twisting towards e; at P as we move with velocity V.
Note, in particular, that the shape operator is embodied in the equation

des = w31e] + w3zer = —(a)13e1 + a)23e2).
Then for any V € Tp M we have w13(V) = II(V, e1) and w,3(V) = II(V, e3). Indeed, when we write
w13 = h1101 + hpw2
w23 = ha1w1 + haows

for appropriate coefficient functions /4g, we see that the matrix of the shape operator Sp with respect to the
basis {e;, ey} for Tp M is nothing but [haﬂ].
Most of our results will come from the following

Theorem 3.1 (Structure Equations).

dw1 = w12 Awy and dwy = w1 A w12, and

3
da)ljzza)lk/\a)kj f()ra]li,j =192,3'
k=1

Proof. From the properties of the exterior derivative, we have

3 3
0 =d(dx) = dwie; + dwrer — w1 A (Za)ljej) —wy A (Za)zjej)
j=1 j=1
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= (da)l — w7y N 6021)81 + (da)2 — w1 N 6012)62 — (601 ANw13 + war A a)23)e3,
so from the fact that {e;, e, e3} is a basis for R3 we infer that
da)1 =Wy ANWp1 = —Wyr \NW12 = W12 N\ W7 and da)z = w1 N\ w12.

Similarly, we obtain
3

0=d(de;) = d( i a)ikek) = Z (dwikek — Wik A Zwkjej)

k=1 =1 j=1

3 3 3
= Z da),-jej —
j=1

bl

3
Z ( Z Wik /\C()kj)ej = Z (dCl)ij — Z Wik N C()kj)ej,
i=1 k=1 ji=1 k=1

3
sodw;j — ) wjx Awgj =0foralli,j. O
k=1

We also have the following additional consequence of the proof:
Proposition 3.2. The shape operator is symmetric, i.e., h12 = h21.

Proof. From the e3 component of the equation d(dx) = 0 in the proof of Theorem 3.1 we have
0=w1 Aw13 + w2 Aw2z = w1 A (h1101 + h12w2) + @2 A (h2101 + hawz) = (h12 — ha1)o1 A @2,
SO h12 _h21 =0. O

Recall that V is a principal direction if de3(V) is a scalar multiple of V. So e; and e are principal
directions if and only if 71, = 0 and we have w13 = k1w and w3 = kowz, where k1 and k5 are, as usual,
the principal curvatures.

It is important to understand how our battery of forms changes if we change our moving frame by
rotating ey, e, through some angle 6 (which may be a function).

Lemma 3.3. Suppose €; = cos e + sin e, and €, = — sin 6e; + cos Oe, for some function 6. Then
we have

w1 = cos Ow1 + sin Bw,
Wy = —sinfw; + cos Bw,
w1y = w12 + dO
w13 = cos Qw13 + sin Bwo3
w3 = —sinBwi3 + cos Ows3
Note, in particular, that w1 A @3 = w1 A wp and W13 A W23 = W13 A W33.
Proof. We leave this to the reader in Exercise 1. [

It is often convenient when we study curves in surfaces (as we did in Sections 3 and 4 of Chapter 2)
to use the Darboux frame, a moving frame for the surface adapted so that e; is tangent to the curve. (See
Exercise 3.) For example, a is a geodesic if and only if in terms of the Darboux frame we have w1, = 0 as
a 1-form on «.

Let’s now examine the structure equations more carefully.
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Gauss equation: dwir = —w13 A w23
Codazzi equations: dwiz = w12 A W23
dwi3 = —w12 A 013

Example 1. To illustrate the power of the moving frame approach, we reprove Proposition 3.4 of Chap-
ter 2: Suppose K = 0 and M has no planar points. Then we claim that M is ruled and the tangent plane
of M is constant along the rulings. We work in a principal moving frame with k; = 0, so wj3 = 0.
Therefore, by the first Codazzi equation, dwiz = 0 = w12 A w23 = w12 A kaws. Since ky # 0, we
must have w2 A wy = 0, and so w12 = fw, for some function f. Therefore, wiz(e;) = 0, and so
dei(e1) = wiz(er)ex + wis(er)es = 0. It follows that e stays constant as we move in the e; direction, so
following the e; direction gives us a line. Moreover, dez(e;) = 0 (since k1 = 0), so the tangent plane to
M is constant along that line. V

The Gauss equation is particularly interesting. First, note that
w13 A 23 = (h1101 + h12w2) A (h1201 + haowy) = (hi1hay — h3,)w1 A wy = KdA,
where K = det [haﬂ] = det Sp is the Gaussian curvature. So, the Gauss equation really reads:
(*) dwia = —KdA.

(How elegant!) Note, moreover, that, by Lemma 3.3, for any two moving frames ey, e;, e3 and €;, €3, €3, we
have dw1, = dw1, (which is good, since the right-hand side of (x) doesn’t depend on the frame field). Next,
we observe that, because of the first equations in Theorem 3.1, w1, can be computed just from knowing w;
and w,, hence depends just on the first fundamental form of the surface. (If we write w1, = Pw; + Qws,
then the first equation determines P and the second determines Q.) We therefore arrive at a new proof of
Gauss’s Theorema Egregium, Theorem 3.1 of Chapter 2.

The 1-form w15 is called the connection form and measures the tangential twist of e;. Just as we saw in
Section 1, then, Vye; is the tangential component of Dye; = de;(V) = wi12(V)ez + w13(V)es, which is,
of course, w12(V)e,. In particular, w5 (e ) recovers the geodesic curvature of the e;-curve.

Example 2. Let’s go back to our usual parametrization of the unit sphere,

x(u,v) = (sinu cos v, sinu sinv, cos u), O<u<m, O0<v<22m.
Then we have

dx = xydu + Xy dv = (cos u cos v, cos u sinv, —sinu) du + (—sinv, cos v, 0) (sinudv).

€] €2

Note that e; = x,, and e, = x,,/+/ G, as we might expect. So this gives us
w1 = du and wy = sinudv.

Next, dwq = 0 and dw, = cosudu A dv = du A (cosudv), so we see from the first structure equations
that wio = cosudv. It is hard to miss the similarity this bears to the discussion of ¢15 and Example 1
in Section 1. Now we have dwj, = —sinudu A dv = —w1 A wy, so, indeed, the sphere has Gaussian
curvature K = 1.
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Let’s now compute the geodesic curvature kg of the latitude circle u = uo. We obtain a Darboux frame
by taking €, = e, and €; = —e;. Now, w12 = —w31 = w2 (this also follows from Lemma 3.3). Then
kg = w12(€1) = wiz(ez). Now note that w12 = cosudv = cotuw,,so kg = cotug. V

To illustrate the power of the differential forms approach, we give a proof of the following result (see
Exercise 2.3.15).

Proposition 3.4. Suppose M has no umbilic points and k1 is constant. Then M is (a subset of) a tube
of radius r = 1/|ky| about a regular curve o.

Proof. Choose a principal moving frame e}, e;. We have w13 = k1w and wy3 = kpw;. Differentiating
the first, since k1 is constant, we get w12 Awz3 = k1wi12 Awz,80 w12 A(ka—k1)wz = 0. Since ko —kq # 0,
we infer that w1, = Aw, for some scalar function A. Now let €; = ej, €;, €3 be the Frenet frame of the
e-curve and apply Exercise 3. Since wjp = 0 and w13 # 0 when restricted to an eq-curve, we infer that
cos = 0and 6 = +£m/2 all along the curve. Then w>3 = Tw; = 0 on the e;-curve, so T = 0 and the
curve is planar. But then kw; = w12 = w13 = +kiwi, so k = |kq]| is constant and the e;-curves are
circles.

1
Now consider &« = x + k—e3. Then
1

1 1 k
do = dx + Ede3 = wie; + wrey + k—l(—kla)lel — kowrer) = (1 — ﬁ)a)zez,

so « is constant along the ej-curves and do # 0, which means that the image of « is a regular curve, the

center of the tube, as desired. [

From the Gauss equation and Stokes’s Theorem, the Gauss-Bonnet formula follows immediately for an
oriented surface M with (piecewise smooth) boundary dM on which we can globally define a moving frame.
That is, we can reprove the Local Gauss-Bonnet formula, Theorem 1.6, quite effortlessly.

Proof. We start with an arbitrary moving frame ey, e;, e3 and take a Darboux frame €y, €,, €3 along
dM . We write €1 = cos fe; + sinfe, and €; = —sinfe; + cos fe, (where 6 is smoothly chosen along
the smooth pieces of M and the exterior angle €; at P; gives the “jump” of 6 as we cross P;). Then, by
Stokes’s Theorem and Lemma 3.3, we have

R R R

(See Exercise 2.) [

EXERCISES 3.3

1. Prove Lemma 3.3.

2. Leteq, ez, e3 be the Darboux frame along a curve a. Show that as a 1-form on &, w12 = kgw;. Use
this result to reprove the result of Exercise 3.1.7.

3. Suppose « is a curve lying in the surface M. Let e, e;, e3 be the Darboux frame along « (ie., a
moving frame for the surface with e; tangent to &), and let €; = e, €, €3 be the Frenet frame. Then,
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by analogy with Lemma 3.3, €, €3 are obtained from e;, e3 by rotating through some angle 6. Show
that, as 1-forms on o, we have:

w1y = kwy = cos Bwia + sin Bwq3
w13 =0 = —sinBwis + cos w3

W3 = TW1 = wa3 + dO.

Use Exercise 3 to prove Meusnier’s Theorem (Proposition 2.5 of Chapter 2).

Use Exercise 3 to prove that if C C M is a line of curvature and the osculating plane of C makes a
constant angle with the tangent plane of M, then C is planar.

Use moving frames to redo Exercise 2.2.14. (Hint: Use the Codazzi equations to show that dk A w; =
dk ANwy = 0.

Use moving frames to redo Exercise 2.2.15.

Use moving frames to compute the Gaussian curvature of the torus, parametrized as in Example 1(c) of
Chapter 2.

The vectors 1 = v(1,0) and e; = v(0, 1) give a moving frame at (1, v) € H. Set w1 = du/v and
wy =dv/v.

a. Check that for any V € T(, ,,)H, 01 (V) = I(V,e1) and w2 (V) = 1(V, e2).

b. Compute wi and dwi, and verify that K = —1.

Use moving frames to redo
a. Exercise 3.1.8
b. Exercise 3.1.9

a. Use moving frames to reprove the result of Exercise 2.3.14.
b. Use moving frames to reprove the result of Exercise 2.4.13. That is, prove that if there are two
families of geodesics in M that are everywhere orthogonal, then M is flat.

°

Suppose there are two families of geodesics in M making a constant angle 6. Prove or disprove:
M is flat.

Recall that locally any 1-form ¢ with d¢ = 0 can be written in the form ¢ = df for some function f.

a. Prove that if a surface M is flat, then locally we can find a moving frame e;,e, on M so that
w12 = 0. (Hint: Start with an arbitrary moving frame.)

b. Deduce that if M is flat, locally we can find a parametrization x of M with E = G = 1 and
F = 0. (That is, locally M is isometric to a plane.)

(The Bicklund transform) Suppose M and M are two surfaces in R3 and f: M — M is a smooth
bijective function with the properties that
(i) the line from P to f(P) is tangent to M at P and tangent to M at f(P);
(i) the distance between P and f(P) is a constant r, independent of P;
(iii) the angle between n(P) and n( f(P)) is a constant 6, independent of P.
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Prove that both M and M have constant curvature K = —(sin? 6)/r2. (Hints: Write P = f(P), and
—

let e;, ez, e3 (resp. €1, €>,€3) be moving frames at P (resp. ?) with €, = ej in the direction of P P.
Let x and X = fox be local parametrizations. How else are x and X related?)

4. Calculus of Variations and Surfaces of Constant Mean Curvature

Every student of calculus is familiar with the necessary condition for a differentiable function f:R”"” —
R to have a local extreme point (minimum or maximum) at P: We must have V f(P) = 0. Phrased slightly
differently, for every vector V, the directional derivative

. f(P+eV)—f(P)
im

Dyf(P)=1
e—0 &
should vanish. Moreover, if we are given a constraint set M = {x € R"” : g1(x) = 0,g22(x) =
0,...,gr(x) = 0}, the method of Lagrange multipliers tells us that at a constrained extreme point P we

must have

k
Vf(P)=> 1iVgi(P)
i=1
for some scalars A1, ..., Ar. (There is also a nondegeneracy hypothesis here that Vg1 (P), ..., Vgr(P) be
linearly independent.)

Suppose we are given a regular parametrized surface x: U — R3 and want to find—without the benefit
of the analysis of Section 4 of Chapter 2—a geodesic from P = x(ug,vg) to Q@ = x(u1,v1). Among all
paths ae: [0, 1] > M with «(0) = P and e(1) = Q, we wish to find the shortest. That is, we want to choose
the path a(¢) = x(u(t), v(¢)) so as to minimize the integral

1 1
/0 lloe’ (1) |t 2/0 \/E(u(t),v(l))(u’(l))2 + 2F (u(), v ()" (1) + Gu(t), v(1))(v' (1)) d1

subject to the constraints that (#(0), v(0)) = (ug,vo) and (u(1),v(1)) = (u1,v1), as indicated in Figure
4.1. Now we’re doing a minimization problem in the space of all (C!) curves (u(¢), v(¢)) with ((0), v(0)) =

(uqvy)

FIGURE 4.1

(10, v9) and (u(1),v(1)) = (u1,v1). Even though we’re now working in an infinite-dimensional setting,
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we should not panic. In classical terminology, we have a functional F defined on the space X of C! curves
w: [0,1] = R3,ie.,

1
) Flu) = /0 Fltou(). (@),

For example, in the case of the arclength problem, we have

£t (@), v(). @ (1) (1) =
VEQ@®), v@0) @ (0% + 2Fu(t), o) (00'(0) + Gu(e), v(e) (' (1)),

To say that a particular curve u* is a local extreme point (with fixed endpoints) of the functional F given
in (x) is to say that for any variation &: [0, 1] — R? with £(0) = &(1) = 0, the directional derivative

F(u* +¢eé§)— F(u*) d

~ = F(u* + ¢§)

e=0

Dg F(u*) = 1i
) = lin,

should vanish. This leads us to the

Theorem 4.1 (Euler-Lagrange Equations). Ifu* is a local extreme point of the functional F given above

af _d (of
du dz(ﬁ)’

evaluating these both at (t,u*(t),u*'(¢)), forall0 <t < 1.

in (%), then at u* we have

Proof. Let £:]0,1] — R2 be a ! curve with £(0) = £(1) = 0. Then, using the fact that we can pull
the derivative under the integral sign (see Exercise 1) and then the chain rule, we have

% Ly W)= e o o/ S0 (0) + £ (0, u™ (1) + 68" (1)) ds
1
:/ ai F(t,u*(t) + ek (1), 0™ () + &' (t))dt
0 0€|g=0
af

boof * */ * */ !
=/ (a—(t,u 0. u(©) - &) + 3 5. u* (@) u (t))~E(t))dt
0 u u

and so, integrating by parts, we have

:/0 (% g()__(a—f) g(z))dt+—f S(f)]

=], Gom it (5)) g0

Now, applying Exercise 2, since this holds for all C! & with £(0) = £(1) = 0, we infer that

of _d(f\_,
ou dt\ow)

as desired. O
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Of course, the Euler-Lagrange equations really give a system of differential equations:

of _d (df
%_E(W)
of _d (df
%_E(W)'

Example 1. Recall that for the unit sphere in the usual parametrization we have £ = 1, F = 0, and

()

G = sin? u. To find the shortest path from (¢, vg) = (1. vo) to the point (u1,v;) = (11, vg), we want to
minimize the functional

1
F(u,v) = /0 \/(u’(t))2 + sin? u(¢)(v'(¢))2dt.

Assuming our critical path u* is parametrized at constant speed, the equations (&) give us v'(¢) = const
and u”(¢t) = sinu(t) cos u(t)v’(t)?. (Cf. Example 6(b) in Section 4 of Chapter 2.) V

We now come to two problems that interest us here: What is the surface of least area with a given
boundary curve? And what is the surface of least area containing a given volume? For this we must
consider parametrized surfaces and hence functionals defined on functions of two variables. In particular,
for functions x: D — R3 defined on a given domain D C R2, we consider

F(x) = // Ixy X Xy ||dudv.
D

We seek a function x* so that, for all variations &: D — R3 with E=00ndD,

F(u* +¢§) — F(u*) d
e de
f(z) - (¢)

d
Now we compute: Recalling that m ()| = ———— and setting x = x* + ¢, we have

£

d
Je 0||Xu xxvll=W((Eﬂx:JrXZXEv)-(XZXXD)
E= u v

F(u* +¢§) =0.
=0

Dg F(u®) = 1i
P = lin

= (&, XXy +x, x§,)-n.
Next we observe that
(8, xxy) = ((§ xxp)-n), —(§ xx5,) -n— (& xx3) 0y
(% x &)= ((x x &) -m), — (x5, X &) 'm— (x X §) -y,
and so, adding these equations, we obtain
(8 xxy + x5 x &) n = ((§ xx3) -m), + (x5 x &) -m), — ((§ xxp) - my + (x5, x §) - my)
= ((¢ xxp) -m), — (& xx3) -m) — ((§ xx3) My + (x;; X §) - my)
= ((Exxp)-n) —((§ xx5)-m), —&- (x5 xny +ny XXy).
At the last step, we’ve used the identity (U x V) -W = (W x U) -V = (V x W) - U. The appropriate

way to integrate by parts in the two-dimensional setting is to apply Green’s Theorem, Theorem 2.6 of the
Appendix, and so we let P = (§ xx}}) -nand Q = (§ x x;) - n and obtain

//D(gu x Xy + X x &) -ndudv
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N //p (((S xxy) -n), — ((§ xx3) _n)v)dudv a //DS - (x} x my 4+ ny x x5 ) dudv
Qu Py
:/BD(:;XX;).ndu+(gxx;).ndv_//l)g.(xzxnu+nvxxz)dudv_
P

0
Since & = 0 on dD, the line integral vanishes. Using the equations () on p. 59, we find that X}, x n,, =

* * * __ * * :
a(x;, X X,) and n, x x;; = d(X; X X};), so, at long last, we obtain

// 1%y X xy||dudv = // (&, xx) +x, x &) -ndudv
e=0JJD D

= —// £ - (x) xny +ny X x55)dudv
D

_ —//D(a +d)E - (x5 x xE)dudy = —//D 2HE -ndA,

We conclude from this, using a two-dimensional analogue of Exercise 2, the following

a4
de

since H = %trSp.

Theorem 4.2. Among all (parametrized) surfaces with a given boundary curve, the one of least area is

minimal, i.e., has H = 0.

This result, indeed, is the origin of the terminology.

Next, suppose we wish to characterize those closed surfaces (compact surfaces with no boundary) of
least area containing a given volume V. To make a parametrized surface closed, we require that x(u, v) = Xg
for all (u,v) € dD. But how do we express the volume constraint in terms of x? The answer comes from
the Divergence Theorem and is the three-dimensional analogue of the result of Exercise A.2.5: The volume

enclosed by the parametrized surface x is given by

vol(V) = %//DxndA.

Thus, the method of Lagrange multipliers suggests that for a surface of least area there must be a constant A
so that / / (2H —A)&é -nd A = 0 for all variations & with & = 0 on dD. Once again, using a two-dimensional
D

analogue of Exercise 2, we see that 2H — A = 0 and hence H must be constant. (Also see Exercise 6.) We

conclude:

Theorem 4.3. Among all (parametrized) surfaces containing a fixed volume, the one of least area has
constant mean curvature.

In particular, a soap bubble should have constant mean curvature. A nontrivial theorem of Alexandrov,
analogous to Theorem 3.6 of Chapter 2, states that a smooth, compact surface of constant mean curvature
must be a sphere. So soap bubbles should be spheres. How do you explain “double bubbles”?

Example 2. If we ask which surfaces of revolution have constant mean curvature Hy, the statement of
Exercise 2.2.21a. leads us to the differential equation
h" 1
(1 + 1232 h(1 + W2)1/2

= 2H,.
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(Here the surface is obtained by rotating the graph of 4 about the coordinate axis.) We can rewrite this

equation as follows:

—hh" 4 (1 +h/2)

(e 2ok =0

and, multiplying through by /',

,—hh" + (1 + 1'?)

[
(1 T h/2)3/2 +2Hohh' =0

h ! 1,
(W) + 2Ho(5h%) =0
h

—— + Hoh? = const.
® VTR

We now show that such functions have a wonderful geometric characterization, as suggested in Figure
4.2, Starting with an ellipse with semimajor axis @ and semiminor axis b, we consider the locus of one

FIGURE 4.2

focus as we roll the ellipse along the x-axis. By definition of an ellipse, we have ||m)|| + ||@|| = 2a,
and by Exercise 7, we have yy, = b? (see Figure 4.3). On the other hand, we deduce from Exercise 8
that @) is normal to the curve, and that, therefore, y = ||@|| cos ¢. Since the “reflectivity” property
of the ellipse tells us that ZF1 QP; =~ £ZF>,QP,, we have y, = ||@|| cos ¢. Since cos¢ = dx/ds and

FIGURE 4.3

ds/dx = /1 + (dy/dx)?, we have
b? dx

y+—=y+yr=2acos¢ =2a—
y ds
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and so

dx 2ay
e 2— B 2: 2—— 2:
0=y 2ayds+b y 1+y/2+b 0.

Setting Hy = —1/2a, we see that this matches the equation () above. V

#.

42

EXERCISES 34

! ad
Suppose g:[0,1] x (—1,1) — R is continuous and let G(¢) = / g(t,e)dt. Prove that if a—g is
0 &

1 ) 1
continuous, then G’(0) = / a—g(t,O)dt. (Hint: Consider h(e) = / / a—g(t,u)dta’u.)
0 de o Jo de

1
*a. Suppose f is a continuous function on [0, 1] and / f(@®)E()dt = 0 for all continuous functions

0
& on [0, 1]. Prove that f = 0. (Hint: Take § = f.)
1

b. Suppose f is a continuous function on [0, 1] and f(@®)E()dt = 0 for all continuous functions
0
& on [0, 1] with £(0) = £(1) = 0. Prove that f = 0. (Hint: Take § = v f for an appropriate
continuous function ¥.)
c. Deduce the same result for ! functions &.
d. Deduce the same result for vector-valued functions f and &.

Use the Euler-Lagrange equations to show that the shortest path joining two points in the Euclidean
plane is a line segment.

b
Use the functional F(u) = / 2u(t)/ 1+ (u/(t))?dt to determine the surface of revolution of least

area with two parallel circlesa(perhaps of different radii) as boundary. (Hint: You should end up with

the same differential equation as in Exercise 2.2.21.)

Prove the analogue of Theorem 4.3 for curves. That is, show that of all closed plane curves enclosing
a given area, the circle has the least perimeter. (Cf. Theorem 3.10 of Chapter 1. Hint: Start with
Exercise A.2.5. Show that the constrained Euler-Lagrange equations imply that the extremizing curve
has constant curvature. Proposition 2.2 of Chapter 1 will help.)

1
Interpreting the integral / f(t)g(t)dt as an in{ler product (dot product) { f, g) on the vector space

0
of continuous functions on [0, 1], prove that if / f(t)g(t)dt = 0 for all continuous functions g with
1 0
/ g(t)dt = 0,then f must be constant. (Hint: Write f = (f. 1)1 + f~+, where (f+,1) = 0.)
0

Prove the pedal property of the ellipse: The product of the distances from the foci to the tangent line of
the ellipse at any point is a constant (in fact, the square of the semiminor axis).

The arclength-parametrized curve a(s) rolls without slipping along the x-axis, starting at the point
a(0) = 0. A point F is fixed relative to the curve. Let B(s) be the curve that F traces out. As
indicated in Figure 4.4, let 6(s) be the angle a’(s) makes with the positive x-axis. Denote by Ry =
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Q FV
0
/ o'
FIGURE 4 .4

cosf —sinf
. the matrix that gives rotation of the plane through angle 6.
sinf  cosf

a. Show that B(s) = (5,0) + R_g(5)(F — a(s)).
b. Show that B’(s) - R_g(s)(F — a(s)) = 0. That is, as F moves, instantaneously it rotates about the
contact point on the x-axis. (Cf. Exercise A.1.4.)

9. Find the path followed by the focus of the parabola y = x2/2 as the parabola rolls along the x-axis.
The focus is originally at (0, 1/2). (Hint: See Example 2.)

10. Generalizing Exercise 8, prove that the result remains true if & rolls without slipping along another
smooth curve. (Hint: Parametrize the other curve by y(s), where s is arclength of . Note that if the
rolling starts at e(0) = p(0), then the fact that the curve rolls without slipping tells us that s is likewise
the arclength of y.)



APPENDIX

Review of Linear Algebra and Calculus

1. Linear Algebra Review

Recall that the set {vy,..., vy} of vectors in R” gives a basis for a subspace V of R” if and only if
every vector v € V' can be written uniquely as a linear combination v = c¢;vy + - -+ 4+ cxVg. In particular,
Vi,...,V, will form a basis for R” if and only if the n x n matrix

. |
A=|vy vy -+ vy

is invertible, and are said to be positively oriented if the determinant det A is positive. In particular, given
two linearly independent vectors v,w € R3, the set {v, w, v x w} always gives a positively- oriented basis
for R3.

We say ey, ...,e; € R" form an orthonormal setin R" if ¢; -e; = O foralli # j and ||e;|| = 1 for all
i =1,...,k. Then we have the following
Proposition 1.1. If {e;,...,e,} is an orthonormal set of vectors in R", then they form a basis for R"

and, given any v € R", we have v = i (v-e)e;.
i=1

We say an n x n matrix A is orthogonal if ATA = I. It is easy to check that the column vectors of
A form an orthonormal basis for R” (and the same for the row vectors). Moreover, from the basic formula
Ax-y = x- A"y we deduce thatif ey, . .., e, form an orthonormal set of vectors in R” and A is an orthogonal
n X n matrix, then Aey, ..., Ae; are likewise an orthonormal set of vectors.

An important issue for differential geometry is to identify the isometries of R3 (although the same
argument will work in any dimension). Recall that an isometry of R? is a function f: R3 — R3 so that for
any X,y € R3, we have ||f(x) — f(y)|| = ||x — y||. We now prove the

Theorem 1.2. Any isometry f of R? can be written in the form f(x) = Ax + ¢ for some orthogonal 3 x 3
matrix A and some vector ¢ € R3.

Proof. Let f(0) = c, and replace f with the function f — c¢. It too is an isometry (why?) and fixes the
origin. Then |f(x)| = [f(x) —£(0)|| = ||x — 0| = ||x]|, so that f preserves lengths of vectors. Using this
fact, we prove that f(x) - f(y) = x - y for all x,y € R3. We have

Ifx) — @) 1* = Ix—ylI> = x—y) - (x—y) = [x]> —2x-y + [ly|*:
on the other hand, in a similar fashion,

IEx) — £WII* = IFII* — 2£(x) - £(¥) + IEW)[1Z = [1x]1> — 260 - £() + ylI*-

114
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We conclude that f(x) - f(y) = x -y, as desired.
We next prove that f must be a linear function. Let {e;, e,, e3} be the standard orthonormal basis for
R3, and let f(ej;) = v;, j = 1,2,3. It follows from what we’ve already proved that {vi, v2, v3} is also an
3 3
orthonormal basis. Given an arbitrary vector x € R3, write x = )_ x;e; and f(x) = Y_ y;v;. Then it

i=1 j=1
follows from Proposition 1.1 that

vi =f(x) v, =x-¢ =x;,

so f is in fact linear. The matrix A representing f with respect to the standard basis has as its j ™ column the

vector v; . Therefore, by our earlier remarks, A is an orthogonal matrix, as required. [J

Indeed, recall that if T:R" — R” is a linear map and B = {vy,...,V,} is a basis for R”, then the
matrix for T with respect to the basis B is the matrix whose j™ column consists of the coefficients of T(vj)
with respect to the basis B. That is, it is the matrix

n
A= [aij], where T(vj) = ZaijVi-
i=1
Recall that if A is an n x n matrix (or 7:R" — R” is a linear map), a nonzero vector X is called an
eigenvector if Ax = Ax (T'(x) = Ax, resp.) for some scalar A, called the associated eigenvalue.

Theorem 1.3. A symmetric 2 x 2 matrix A = |:Z

two real eigenvalues A1 and A,, and, provided A1 # A, the corresponding eigenvectors vi and v, are

b:| (or symmetric linear map T:R? — R?) has
Cc

orthogonal.
Proof. Consider the function
f:IR2 - R, f(x)=Ax-x= axl2 + 2bx1x5 +cx%.

By the maximum value theorem, f has a minimum and a maximum subject to the constraint g(x) =
x% + x% = 1. Say these occur, respectively, at vi and v,. By the method of Lagrange multipliers, we infer
that there are scalars A; so that V f(v;) = A;Vg(v;),i = 1,2. By Exercise 5, this means Av; = A;v;, and
so the Lagrange multipliers are actually the associated eigenvalues. Now

A1(vy-v2) = Avy - Vo = vy - Avy = Aa(Vy - V).
It follows that if A; # A5, we must have vy - v, = 0, as desired. [

We recall that, in practice, we find the eigenvalues by solving for the roots of the characteristic polyno-

mial p(t) = det(A —t1). In the case of a symmetric 2 x 2 matrix A = |:Z b:| , we obtain the polynomial
c

p(t) = t2 — (a + ¢)t + (ac — b?), whose roots are

A =%((a+c)—\/(a—c)2+4b2) and Azzé((a—i-c)—i-\/(a—c)2+4b2).
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EXERCISES A.1

#51. Suppose {vi,v,} gives a basis for RZ. Given vectors X,y € R2, prove that x = y if and only if
X-Vi=y-v;j,i =1,2.

*2. The geometric-arithmetic mean inequality states that

b
vab < 4 -; for positive numbers a and b,
with equality holding if and only if @ = b. Give a one-line proof using the Cauchy-Schwarz inequality:
[a-v| < |lall|v] for vectors u and v € R",

with equality holding if and only if one is a scalar multiple of the other.
3. Letw,x,y,z € R3. Prove that

(Wxx)-(yxz) =(W-y)(x-2) - (W-z)(xy).
(Hint: Both sides are linear in each of the four variables, so it suffices to check the result on basis

vectors.)

#4. Suppose A(t) is a differentiable family of 3 x 3 orthogonal matrices. Prove that A(z) ™1 A’(¢) is always
skew-symmetric.

5. IfA = [Z b:| is a symmetric 2 X 2 matrix, set f(x) = Ax - x and check that V f(x) = 24x.
¢

2. Calculus Review

Recall that a function f: U — R defined on an open subset U C R” is ek (k =0,1,2,...,00) if

all its partial derivatives of order < k exist and are continuous on U. We will use the notation 3 and f
u

92 d (0
avg; — %<_f) is the same as fy, and so

interchangeably, and similarly with higher order derivatives: 3
u

on.

One of the extremely important results for differential geometry is the following
02 f 02 f
uov . dvdu (or fuv = fou)-

The same results apply to vector-valued functions, working with component functions separately.

If /:U — Ris @' we can form its gradient by taking the vector V f = (fxl,fX2, cee, fx,,) of its
partial derivatives. One of the most fundamental formulas in differential calculus is the chain rule:

Theorem 2.1. If f isa @2 function, then

Theorem 2.2. Suppose f:R" — R and a: R — R” are differentiable. Then (foa) (1) = V f(a(2)) -
o (1).

In particular, if (0) = P and &’(0) = V € R”, then (fea)’(0) = V f(P) - V. This is somewhat
surprising, as the rate of change of f along & at P depends only on the tangent vector and on nothing more
subtle about the curve.
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Proposition 2.3. Dy f(P) = V f(P) - V. Thus, the directional derivative is a linear function of V.

Proof. If we take a(t) = P + tV, then by definition of the directional derivative, Dy f(P) =
(fea)'(0) =V f(P)-V. O
Another important consequence of the chain rule, essential throughout differential geometry, is the following

Proposition 2.4. Suppose S C R” is a subset with the property that any pair of points of S can be
joined by a ! curve. Then a C! function f:S — R with V f = 0 everywhere is a constant function.

Proof. Fix P € § and let Q € S be arbitrary. Choose a ! curve & with a(0) = Pand (1) = Q.
Then (fea) (t) = V f(a(t)) - o’(t) = 0 for all ¢. It is a consequence of the Mean Value Theorem in
introductory calculus that a function g:[0,1] — R that is continuous on [0, 1] and has zero derivative
throughout the interval must be a constant. Therefore, f(Q) = (fea)(1) = (fea)(0) = f(P). It follows
that f must be constant on S. [

We will also have plenty of occasion to use the vector version of the product rule:

Proposition 2.5. Suppose f, g: R — R? are differentiable. Then we have

(f-g) () =f(@)-g(t)+£(t)-g () and
(fxg)(t) =1()xg)+fr) xg().

Last, from vector integral calculus, we recall the analogue of the Fundamental Theorem of Calculus in
R2:

Theorem 2.6 (Green’s Theorem). Let R C R? be a region, and let dR denote its boundary curve,
oriented counterclockwise (i.e., so that the region is to its “left”). Suppose P and Q are el functions

throughout R. Then
d aP
/ P@u.v)du + Q(u,v)dv = // (—Q - —) dudv.
R R ou av

OR

FIGURE 2.1

Proof. We give the proof here just for the case where R is a rectangle. Take R = [a,b] X [c,d], as
shown in Figure 2.1. Now we merely calculate, using the Fundamental Theorem of Calculus appropriately:

/L(g—g—z—i)dudv:/cd(abg—gdu)dv—/ab(cd%_idv)du
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b

d
=/ (Q(b,v)—Q(a,v))dv—/ (P(u,d)—P(u,c))du

b d b d
=/ P(u,c)du—l—/ Q(b,v)dv—/ P(u,d)du—/ O(a,v)dv
=/ P(u,v)du + Q(u,v)dv,

R

as required. [

EXERCISES A .2

#1. Suppose f: (a,b) — R” is @' and nowhere zero. Prove that f/|/f|| is constant if and only if f(r) =
A(t)f(z) for some continuous scalar function A. (Hint: Set g = f/|/f| and differentiate. Why must

g -g=07)

2. Suppose a:(a,b) — R3 is twice-differentiable and A is a nowhere-zero twice differentiable scalar
function. Prove that e, &', and &’ are everywhere linearly independent if and only if Ae, (Aer)’, and

(Ae)” are everywhere linearly independent.

3. Letf,g:R — R3 be @' vector functions with the property that f(0) and y(0) are linearly independent.
Suppose

f'(t) = a(Of(t) + b(1)g(1)
g () = cf(t) —a(g()

for some continuous functions a, b, and c. Prove that the parallelogram spanned by f(¢) and g(¢) lies in

a fixed plane and has constant area.

#:4. Prove that for any continuous vector-valued function f: [a, b] — R3, we have

b b
/ £y di| < / 16) i

#5. Let RC R%bea region. Prove that

1
area(R) :/ udv = —/ vdu = —/ —vdu + udv.
AR 9R 2 Jor

3. Differential Equations

Theorem 3.1 (Fundamental Theorem of ODE’s). Suppose U C R”" is open and I C R is an open
interval containing 0. Suppose xg € U. Iff:U x I — R" is continuous and Lipschitz in X (this means
that there is a constant C so that ||f(x,t) —f(y,?)|| < C|x —y| forallx,y € U and all t € I), then the
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differential equation

dx
I =f(x,1), x(0) =xp

has a unique solution x = x(¢,Xg) defined for all ¢t in some interval I’ C I. Moreover, If f is ek , then X is
€ as a function of both ¢ and the initial condition Xo (defined for t in some interval and Xq in some open
set).

Of special interest to us will be linear differential equations.

Theorem 3.2. Suppose A(t) is a continuous n x n matrix function on an interval I . Then the differential

equation

dx
= A@)x(t), xo = xo,

has a unique solution on the entire original interval I .

For proofs of these, and related, theorems in differential equations, we refer the reader to any standard
differential equations text (e.g., Hirsch-Smale or Birkhoff-Rota).

Theorem 33. Let k > 1. Given two CX vector fields X and Y that are linearly independent on a
neighborhood U of 0 € R?, locally we can choose €* coordinates (u,v) on U’ C U so that X is tangent to
the u-curves (i.e., the curves v = const) and Y is tangent to the v-curves (i.e., the curves u = const).

Proof. We make a linear change of coordinates so that X(0) and Y (0) are the unit standard basis vectors.
Let x(z, Xg) be the solution of the differential equation dx/dt = X, x(0) = x¢, given by Theorem 3.1. On
a neighborhood of 0, each point (x, y) can be written as

(x.y) = x(z.(0,v))

for some unique ¢ and v, as illustrated in Figure 3.1. If we define the function f(¢,v) = x(z, (0,v)) =

coordinates (u,v)

x(1,(0.v))

Jwo)

X(0)

FIGURE 3.1

(x(t,v), y(t,v)), we note that f; = X(f(¢, v)) and £, (0,0) = (0, 1), so the derivative matrix Df(0, 0) is the
identity matrix. It follows from the Inverse Function Theorem that (locally) we can solve for (¢,v) as a ek
function of (x, y). Note that the level curves of v have tangent vector X, as desired.

Now we repeat this procedure with the vector field Y. Let y(s,yo) be the solution of the differential
equation dy/ds = Y and write

(x.y) = y(s. (u,0))
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for some unique s and u. We similarly obtain (s, u) locally as a ¥ function of (x, y). We claim that (u, v)
give the desired coordinates. We only need to check that on a suitable neighborhood of the origin they
are independent; but from our earlier discussion we have vy = 0, v, = 1 at the origin, and, analogously,
ux = 1 and u, = 0, as well. Thus, the derivative matrix of (u,v) is the identity at the origin and the

functions therefore give a local parametrization. [J

EXERCISES A3

1. Suppose M(s) is a differentiable 3 x 3 matrix function of s, K(s) is a skew-symmetric 3 x 3 matrix
function of s, and
M'(s) = M(s)K(s), M(0)=O0.
Show that M (s) = O for all s by showing that the trace of (M "M )’(s) is identically 0.

2. (Gronwall inequality and consequences)
a. Suppose f:[a,b] — R is differentiable, nonnegative, and f(a) = ¢ > 0. Suppose g:[a,b] — R
is continuous and f’(¢) < g(¢) f(¢) for all . Prove that

t
f(t) <cexp (/ g(u)du) forall ¢.

b. Conclude that if f(a) = 0, then f(¢) = 0 for all z.
Suppose now v: [a,b] — R” is a differentiable vector function, and M (¢) is a continuous n X n
matrix function for ¢ € [a,b), and v/(t) = M(t)v(z). Apply the result of part b to conclude that if
v(a) = 0, then v(¢) = 0 for all . Deduce uniqueness of solutions to linear first order differential
equations for vector functions. (Hint: Let f(t) = ||v(¢)||? and g(t) = 2n max{|m;; (¢)|}.)

d. Use part c to deduce uniqueness of solutions to linear n™ order differential equations. (Hint: Intro-

duce new variables corresponding to higher derivatives.)
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ANSWERS TO SELECTED EXERCISES

@) = ({57 737).
We parametrize the curve by a(t) = (¢, f(t)), a < t < b, and so length(e) =
Ja Il @l de = [ YT+ (F70)? dr.

B(s) = (3(V52 T4 +9). L5+ 4—5). V2In((V52 + 4+ 5)/2)).

C.k =

2ﬁd1—s2
a.TZ%(m,—Vl—S,ﬁ),K=m, =1/\/_(V - \/1+SO) B =
%(—m,vl—s,ﬂ),r=ﬁ;c T_J—F(IVl"i_t 1)K= =
2 _ 1 /
1/2(1 +¢t%),N = VFﬂ?(l,(),——t),B vﬁi?‘( t,N1+ 12,

k = 1/sinh ¢t (which we see, once again, is the absolute value of the slope).

B =(TxN)Y=TXxN+TxN = &kN)xN+Tx (—«T + tB) = (T xB) = t(—N),
as required.

b. If all the osculating planes pass through the origin, then there are scalar functions A and
wu so that 0 = o + AT + uN. Differentiating and using the Frenet formulas, we obtain
0 =T+ kAN + A'T + u(—«T + tB) + u'N; collecting terms, we have 0 = (1 + 1’ —
k)T + (kA + /)N + puB. Since {T,N, B} is a basis for R?, we infer, in particular, that
ut = 0. (We could also just have taken the dot product of the entire expression with B.)
1 (s) = 0leads to a contradiction, so we must have ¢ = 0 and so the curve is planar.

We have o’ x & = kv3B,so o’ x o’ = (o xoc”)’ = (kv3B) = (kv3)'B + (kv3)(=7uN),
so (o' x a’”) - a” = —k?7v8. Therefore, 1 = o’ - (" x a’’)/(k*v®), and inserting the
formula of Proposition 2.2 gives the result.

a. Consider the unit normal Ay ; to the plane through P = 0, O = a(s), and R = a(?).
Choosing coordinates so that T(0) = (1,0,0), N(0) = (0,1,0), and B(0) = (0,0, 1), we
apply Proposition 2.6 to obtain

als) Xa(t) =
st(s —1t) 5 , 3
7(—/(010“ + ..., 2koTo(s + 1) + ..., —6ko + 2k, (s + 1) — Ky st +) ,
t
s0 Ay = M — A = (0,0,—1) as s, — 0. Thus, the plane through P with
llee(s) x ()]

normal A is the osculating plane.
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1.2.25

1.34

213
214
2.1.5

2.1.7

2.18

2.1.10
2.1.15
221

223

225

SELECTED ANSWERS

a. cont. Alternatively, let the equation of the plane through P, O, and R be A, -x = 0
(where we choose A ; to vary continuously with length 1). We want to determine A =
limg ;0 Ay, . For fixed s and ¢, consider the function F;(4) = Ay, -a(u). Then F;(0) =
Fs ¢ (s) = F; () = 0, so, by the mean value theorem, there are &1 and &, so that Fs/,t (¢1) =
Fy,(§2) = 0, hence 7 so that F’;(n) = 0. Now Fy,(0) = Ay, - T(0) and F{,(0) =
As - koN(0). Since §; — Oand n — O as s, — 0, we obtain A - T(0) = A-N(0) =0, so
A = +B(0), as desired.

Let L = length(C). Then by Theorem 3.5 we have 27w = fOL k(s)ds < fOL cds =cL,so
L >2n/c.

a.FE=a2F=0,G=d?sin’u;d. E=G =a?cosh’>u, F =0
a. 47%ab

Say all the normal lines pass through the origin. Then there is a function A so that x = An.
Differentiating, we have x,, = An, + Ayn and X, = An, + Ayn. Dotting with n, we
get 0 = A, = Ay. Therefore, A is a constant and so ||x|| = const. Alternatively, from the
statement X = An we proceed as follows. Since n-x,, = n-x,, = 0, we have x-x,, = x-x, = 0.
Therefore, (X - X), = (X-X)p = 0,50 ||x||? is constant.

For x to be conformal, we must have £ = G and F = 0; for it to preserve area we must have
1=+VvEG—-F?s0FE =G = 1and F = 0, which characterizes a local isometry with the
plane. The converse is immediate.

We check that £ = G = 4/(1 + u? 4+ v?)? and F = 0, so the result follows from Exercise
6.

b. One of these is: x(u, v) = (cosu + v sinu,sinu — v cosu, v).
a.If a cosh(1/a) = R, the area is 27 (a + RV R? — a?).

If u- and v-curves are lines of curvature, then ¥ = 0 (because principal directions are or-
thogonal away from umbilic points) and m = Sp(xy) - Xy = k1Xy - X, = 0. Moreover, if
Sp(xy) = k1xy, and Sp (xy) = kX, we dot with x,, and x,,, respectively, to obtain £ = Ek
and n = Gk,. Conversely, setting Sp (X)) = axy, + bxy, we infer that if F = m = 0, then
0=Sp(xy) Xy = Fa + Gb = Gb, and so b = 0. Therefore, x,, (and, similarly, x,) is an
eigenvector of Sp.

1/b 0
b. £{ = b,m = 0,n = cosu(a + bcosu), Sp = / ,
0 cosu/(a+ bcosu)
_ 141 S _ S . _ _ _ _
H = 30 + svbesu) K = s@ibeomys & ¢ = —aom = 0.n =a Sp =
—(1 h? 0
(1/a) sech®u , | H =0.K =—(1/a)?sech*u.
0 (1/a) sech” u

We know from Example 1 of Chapter 1, Section 2 that the principal normal of the helix points
along the ruling and is therefore orthogonal to n. As we move along a ruling, n twists in a
plane orthogonal to the ruling, so its directional derivative in the direction of the ruling is
orthogonal to the ruling.
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2.2.6
232
244

249

24.18

24.24
3.1.1
3.1.2
321
3.2.11
3.34

3.3.8

34.2

349
All

Al.2

A24

E =tanh?u, F = 0,G = sech’?u, —¢ = sechutanhu = n,m =0

d.T) =T} = ff(w)/f(u), T} = —f(u)f'(u),all others 0.

kg = cotug; we can also deduce this from Figure 3.1, as the curvature vector kN =
(1/ sin u)N has tangential component —(1/ sinug) cos uoX,, = cotug(n x T).

Only circles. By Exercise 2 such a curve will also have constant curvature, and by Meusnier’s
Formula, Proposition 2.5, the angle ¢ between N and n = « is constant. Differentiating
a - N = cos ¢ = const yields 7(« - B) = 0. Either t = 0, in which case the curve is planar,
orelse -B = 0,in whichcase « = £N,sot =N -B = 4+a’'-B = +£T-B = 0. (In the
latter case, the curve is a great circle.)

a. Obviously, the meridians are geodesics and the central circle r = rg is the only parallel
that is a geodesic. Observe that if we have some other geodesic, then r cos ¢ = ¢ and ¢ < ry.
The geodesic with r cos ¢ = ¢ will cross the central circle and then either approach one of
the parallels » = ¢ asymptotically or hit one of the parallels r = ¢ tangentially and bounce
back and forth between those two parallels. In either event, such a geodesic is bounded. (In
fact, if a geodesic approaches a parallel asymptotically, that parallel must be a geodesic; see
Exercise 27.)

The geodesics are of the form cosh? u + (v + 01)2 = c% for constants ¢y and c».

a. 27 sinug

a. yes, yes, b. yes, yes, c. yes, no.

b. The semicircle centered at (2, 0) of radius +/5; d(P, Q) = In ((3 + f5)/2) ~ 0.962.
kg = coth R

We have k, = II(e1,e1) = —dez(e1)-e; = wiz(er). Since es = sin He, + cos Hes, the cal-
culations of Exercise 3 show that w3 = sin w12 +cos fw13,50 wi3(e;) = sinbwiz(er) =
Kk sin 8. Here 0 is the angle between e3 and €3, so this agrees with our previous result.

We have w; = bdu and wr, = (a + bcosu)dv, so wip, = —sinudv and dwi; =

dund cos U N X cos u
—cosudundv=—|———|wg Awz,50 K = ————.
b(a + bcosu) ! 2 b(a + bcosu)

a. Taking £ = f gives us fol f(t)?dt = 0. Since f(t)?> > 0forall ¢, if f(ty) # 0, we have
an interval [tg — 8,9 + 8] on which f(¢)%> > f(t9)?/2, and so fol f()?dt > f(tg)*s > 0.

y = %Cosh(2x)

Consider z = x —y. Then we know that z-v; = 0,i = 1,2. Since {vy, v} is a basis
for R?, there are scalars @ and b so that z = avy + bv,. Thenz-z = z - (avy + bvy) =
a(z-vy) + b(z-vy) =0,s0z = 0, as desired.

Hint: Take u = (\/a, v/b) and v = (vb, /a).

Letv = f: f(t) dt. Note that the result is obvious if v = 0. We have ||v||?> = V-fab f(t)dt =
[P -t@yde < [PIVIIE@) I de = VIl f2 [£()]] dt (using the Cauchy-Schwarz inequality
u-v < |lujl [v]), so,if v # 0, we have ||v|| < fab |I£(7)|| dt, as needed.
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angle excess, 83 developable, see ruled surface, developable
arclength, 6 directrix, 38
asymptotic curve, 48, 51, 55 Dupin indicatrix, 56

asymptotic direction, 48, 53, 56
eigenvalue, 115

Bicklund, 106 eigenvector, 115

Bertrand mates, 21 elliptic point, 50
binormal vector, 11 Euler characteristic, 85
Bishop frame, 33 exterior angle, 33, 83

ek 1.35.116 first fundamental form, 39

flat, 49, 60, 61, 65,77, 84, 90, 104
Foucault pendulum, 69

Frenet formulas, 11

Frenet frame, 11

functional, 108

catenary, 5

catenoid, 43, 66
Cauchy-Schwarz inequality, 116
chain rule, 116

characteristic polynomial, 115

Christoffel symbols, 57 Gauss equation, 60, 63, 104
Clairaut’s relation, 72, 76, 77 Gauss map, 24, 44
Codazzi equations, 59, 63, 104 Gauss-Bonnet formula, 83, 86, 96, 105
compact, 61 Gauss-Bonnet Theorem, 95
cone angle, 90 global, 86
conformal, 40 local, 83
connection form, 104 Gaussian curvature, 49, 51, 53, 57, 60, 82, 104
convex, 28 constant, 62, 92
covariant constant, 67 generalized helix, 15
covariant derivative, 67 geodesic, 70
Crofton’s formula, 25, 33 geodesic curvature, 70
cross ratio, 99 globally isometric, 74
cubic gradient, 116

cuspidal, 2 Gronwall inequality, 120

nodal, 2

twisted, 3 h,93
curvature, 11 H, 49
curve, simple closed, 26 helicoid, 35, 48, 55, 66
cycloid, 3 helix, 3
cylindrical projection, 42 holonomy, 79, 82

hyperbolic plane, 91

Darboux frame, 70, 103, 105 Klein-Beltrami model, 101
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Poincaré model, 100
hyperbolic point, 50

inversion, 99
involute, 19
isometry, 114

K, 49
k-point contact, 56
knot, 26

Laplacian, 64
line of curvature, 47

linear fractional transformation, 94

locally isometric, 39

mean curvature, 49
meridian, 38, 52
metric, 74

Meusnier’s Formula, 51

minimal surface, 49, 55, 64, 110

moving frame, 101

normal curvature, 51
normal field, 32
normal plane, 17

oriented, 85
orthogonal, 114
orthonormal, 114
osculating circle, 22
osculating plane, 17, 22
osculating sphere, 22

parabolic point, 50
parallel, 38, 52,67, 75,95
parallel translate, 68
parametrization

regular, 1, 35
parametrized by arclength, 7
parametrized curve, 1
pedal property, 112
planar point, 50
Poincaré disk, 100
positively oriented, 114
principal curvature, 47

constant, 65, 66
principal direction, 47, 53

principal normal vector, 11
profile curve, 38
pseudosphere, 51

rectifying plane, 17

reflection, 98

regular, 1

regular parametrization, 35

rotation index, 27

ruled surface, 38
developable, 42, 61, 65,76

ruling, 38

second fundamental form, 46, 53

shape operator, 45, 53
smooth, 1, 35

spherical coordinates, 37
stereographic projection, 37
support line, 32

surface, 35

surface area, 41

surface of revolution, 37
symmetric, 45

tangent indicatrix, 24
tangent plane, 38

Theorema Egregium, 60, 104
torsion, 11

torus, 36

total curvature, 24, 88

total twist, 32

tractrix, 5, 13

triply orthogonal system, 55
Tschebyschev net, 42

twist, 32

u-, v-curves, 35
ultraparallels, 95
umbilic, 50

unit normal, 39

unit tangent vector, 11

variation, 108
vector field, 67
velocity, 1
vertex, 29

zone, 41
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