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Lecture 1 8 October 2015

Administrative Stuff

There are some Lecture Notes online. They have some stuff that we won’t
cover. The best book is Spivak.

Manifolds and Vector Spaces

Smooth Manifolds

Definition 1. If U Ă Rm and δ : U Ñ R, we say that δ is smooth or C8 if has
continuous partial derivatives of all orders.

Definition 2. A topological space X is called second countable if there exists
a countable collection B of open subsets of X such that any open subset of X
may be written as the union of sets of B.

Definition 3. A Hausdorff, second countable topological space X is called
a topological manifold of dimension d if each point has an open neighbor-
hood (nbhd) homeomorphic to an open subset U of Rd by a homeomorphism
φ : U „ φpUq Ă Rd.

The pair pU, φq of a homeomorphism and open subset of M is called a chart:
given open subsets U and V of X with U X V ‰ H, and charts pU, φUq and
pV, φVq, with φU : U Ñ φpUq Ă Rd and φV : V Ñ φpVq Ă Rd, we have a
homeomorphism φVU “ φV ˝ φ´1

U : φUpU XVq Ñ φVpU XVq of open subsets
of Rd.

Given a chart pU, φUq and a point p P U, we call U a coordinate neighbor-
hood of p and we call the functions xi : U Ñ R given by πi ˝ φU (where πi is
the projection onto the i-th coordinate) coordinates of U.

Definition 4. A smooth structure on a topological manifold is a collection A
of charts pUα, φαq for α P A, such that

(i) tUα | α P Au is an open cover of M;

(ii) for any α, β P A such that Uα XUβ ‰ H, the transition function φβα “

φβ ˝ φ´1
α is smooth. The charts φα and φβ are said to be compatible;

(iii) the collection of charts φα is maximal with respect to (ii). In particular,
this means that if a chart φ is compatible with all the φα, then it’s already
in the collection.

Remark 5. Since φαβ “ φ´1
βα : φβpUα XUβq Ñ φαpUα XUβq, both φβα and φαβ

are in fact diffeomorphisms (since by assumption, they are smooth).

This remark shows that item (ii) in Definition 4 implies that transition func-
tions are diffeomorphisms.

For notation, we sometimes write Uαβ “ Uα XUβ.
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Definition 6. A collection of charts tpUα, φαq | α P Au satisfying items (i) and
(ii) in Definition 4 is called an atlas.

Claim 7. Any atlas A is contained in a unique maximal atlas and so defines a
unique smooth structure on the manifold.

Proof. If A “ tpUα, φαq | α P Au is an atlas, we define a new atlas A˚ of all
charts on M compatible with every chart in A. To be compatible with every
chart in Ameans that if pU, φq P A˚, φUUα “ φ ˝ φ´1

α is smooth for all α P A.
We should justify that A˚ is an atlas. This involves checking conditions (i)

and (ii) in Definition 4.
Clearly (i) is satisfied, because A˚ contains A and A covers M.
For (ii), we suppose pU, φUq and pV, φVq are elements of A˚. We show that

the homeomorphism φVU is smooth. It suffices to show that φVU is smooth
in a neighborhood of each point φαppq for φα P A. To that end, consider the
neighborhood φUpUα XU XVq of φαppq in φUpU XVq. It suffices to show that
φVU is smooth when restricted to this neighborhood; that is, we want to show
that

φVU |φUpUXVXUαq
: φUpU XV XUαq Ñ φVpU XV XUαq

is smooth. Let W “ UXVXUα. φVU |φUpWq can be realized as the composition
of two smooth transition functions as follows:

φVU |φUpWq“ φV ˝ φ´1
α ˝ φα ˝ φ´1

U |φUpWq“ pφV ˝ φ´1
α q |φαpWq ˝pφα ˝ φ´1

U q |φUpWq

φUpWq φVpWq

φαpWq
φUαU |φUpWq

φVU |φUpWq

φVUα |φαpWq

Since each of φUαU and φVUα is smooth by assumption, then so is their compos-
ite and so φVU is smooth at φαppq. Therefore, it is smooth.

Now finally, we need to justify that A˚ is maximal. Clearly any atlas con-
taining Amust consist of elements of A˚. So A˚ is maximal and unique.

Definition 8. A topological manifold M with a smooth structure is called a
smooth manifold of dimension d. Sometimes we use Md to denote dimension
d.

Remark 9. We can also talk about Ck manifolds for k ą 0. But this course is
about smooth manifolds.

Example 10.

(i) Rd with the chart consisting of one element, the identity, is a smooth
manifold.

(ii) Sd Ď Rd`1 is clearly a Hausdorff, second-countable topological space.
Let U`i “ t~x P Sd | xi ą 0u and let U´i “ t~x P Sd | xi ă 0u. We have
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charts φi : U`i Ñ Rd and ψi : U´i Ñ Rd given by just forgetting the i-th
coordinate. Note that φ2 ˝ φ´1

1 (and ψ2 ˝ φ´1
1 ) are both maps defined by

py2, . . . , yd`1q Ñ
´
b

1´ y2
2 ´ . . .´ y2

d`1 , y3, . . . , yd`1

¯

.

This is smooth on an appropriate subset of

φ1pU`1 q “
!

py2, . . . , yd`1q | y2
2 ` . . .` y2

d`1 ă 1
)

given by y2 ą 0 (resp. y2 ă 0q. The reason that y2 ą 0 is the appropriate
subset is because U`1 XU`2 “ t~x P Sd | x1 ą 0 and x2 ą 0u, and we want
φ´1

1 py2, . . . , yd`1q to be in U`2 so that it’s in the domain of φ2.

From this it follows that Sd is a smooth manifold. We should be careful
to note that each ~x P Sd has some xi ‰ 0, so lies in one of the sets U`i or
U´i .

(iii) Similarly the real projective space RPd “ Sd{t˘1u identifying antipodal
points is a smooth manifold.

Lecture 2 10 October 2015

Example 11. Further examples. Continued from last time.

(iv) Consider the equivalence relation on R2 given by ~x „ ~y if and only if
x1 ´ y1 P Z, x2 ´ y2 P Z. Let T denote the quotient topological space the
2-dimensional torus. Any unit square Q in R2 with vertices at pa, bq, pa`
1, bq, pa, b`1q, and pa`1, b`1q determines a homeomorphism π : int Q „ UpQq Ă
T, with UpQq “ πpint Qq open in T. The inverse is a chart. Given two dif-
ferent unit squares Q1, Q2, we get the coordinate transform φ21 which is
locally (but not globally) just given by translation. This gives a smooth
structure on T. Similarly define the n-torus Tn “ Rn{Zn as a smooth
manifold.

Definition 12. Let Mm, Nn be smooth manifolds with given smooth structures.
A continuous map f : M Ñ N is smooth if for each p P M, there are charts
pU, φUq, pV, ψVqwith p P U, f ppq P V, such that f “ ψV ˝ f ˝ φ´1

U is smooth.

p f ppq

U X f´1pVq V

φUpU X f´1pVqq ψVpVq

P P

f

φU ψV

f

Note that since the coordinate transforms for different charts are diffeo-
morphisms, this implies that the condition that f is smooth holds for all charts
pU1, φU1q, pV1, ψV1qwith p P U1, f ppq P V1.
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Definition 13. A smooth function f on an open U Ď M is just a smooth map
f : U Ñ R where R has its natural structure.

Definition 14. A homeomorphism f : M Ñ N of smooth manifolds is called a
diffeomorphism if both f and f´1 are smooth maps.

Tangent Spaces

Definition 15. Suppose p P M. Smooth functions f , g defined on open neigh-
borhoods of p are said to have the same germ if they agree on some open neigh-
borhood. More precisely, a germ is an equivalence class on the set tpU, f q | p P
U, f : U Ñ Ru under the relation „ where pU, f q „ pV, gq if and only if there is
an open W Ď U XV such that f |W “ g|W .

Denote the set of germs of smooth functions at p by Ap “ AM,p. We can
add, subtract, multiply germs without problems. Hence, Ap is a ring. There is
a natural inclusion R Ap of constant germs. So Ap is an R-module. This
is the ring of germs at p.

A germ has a well-defined value at p. We set Fp Ă Ap to be the ideal of
germs vanishing at p. We can also say that this is the kernel of the evaluation
map Fp “ kerp f ÞÑ f ppqq. This is the unique maximal ideal of Ap (and so Ap
is a local ring) because any germ which doesn’t vanish at p has an inverse in
Ap (after an appropriate shrinking of the neighborhood of p) and so cannot lie
in any maximal ideal.

Definition 16. A tangent vector v at p P M is a linear derivation of the algebra
Ap. In particular, this means that vp f gq “ f ppqvpgq ` vp f qgppq for all f , g P Ap.

Definition 17. The tangent vectors form an R-vector space: given tangent vec-
tors v, w and λ P R, we define pv` wqp f q “ vp f q ` wp f q and λvp f q “ vpλ f q.
The tangent space to M at p is this vector space, denoted by Mp or Tp M or
pTMqp.

If c denotes the constant germ at p for c P R, then for any tangent vector
v, vpcq “ cvp1q. What’s vp1q? Well, vp1q “ vp1 ¨ 1q “ vp1q ` vp1q “ 2vp1q, so
vpcq “ 0 for all c P R.

Let M be a manifold and let p P M. Let A0 “ ARd ,~0 denote the germs of

smooth functions at ~0 in Rd and pU, φq be a chart with p P U and φppq “ 0.
By definition of smooth functions on an open subset of M, we have an isomor-
phism of R-algebras φ˚ : A0

„ Ap given locally at p by f ÞÑ δ “ f ˝ φ. The
inverse of φ˚ is given locally by f ÞÑ f “ f ˝ φ´1.

A tangent vector v at p P M determines a tangent vector φ˚pvq at zero in
Rd.

φ˚pvq
´

f
¯

“ v
´

f ˝ φ
¯

So the chart φ determines an identification φ˚ : Tp M Ñ T~0Rd.
Therefore, to understand the tangent space, it suffices to understand the

tangent space T~0Rd. This is just the linear derivations of A
Rd ,~0 If Rd has stan-

dard coordinates r1, . . . , rd, then B{Br1

ˇ

ˇ

~0, . . . , B{Brd

ˇ

ˇ

~0 are linear derivations of A0.
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More tangent spaces

If Rd has standard coordinates r1, . . . , rd, then B{Br1

ˇ

ˇ

~0, . . . , B{Brd

ˇ

ˇ

~0 are linear deriva-
tions on A~0.

Let pU, φq be a chart with p P U. Denoting φ : U Ñ Rd on M by φ “

px1, . . . , xdq, set B{Bxi

ˇ

ˇ

p to be the linear derivation on Ap defined by

f ÞÑ
Bp f ˝ φ´1q

Bri
p~0q

Note that
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
pxjq “ δij.

Claim 18. The linear derivations

B{Br1

ˇ

ˇ

~0, . . . , B{Brd

ˇ

ˇ

~0

form a basis for T~0Rd and so dim Tp M “ d with basis

B

Bx1

ˇ

ˇ

ˇ

ˇ

p
, . . . ,

B

Bxd

ˇ

ˇ

ˇ

ˇ

p

Proof. Since
˜

ÿ

i

ai
B

Bri

ˇ

ˇ

ˇ

ˇ

~0

¸

prjq “ aj,

it is clear they are linearly independent.
Now we need to show spanning. Given a linear derivation v : A~0 Ñ R, set

ai “ vpriq and

r0 “
ÿ

i

ai
B

Bri

ˇ

ˇ

ˇ

ˇ

~0
.

Given any smooth germ pV, f q in A~0 represented by a smooth function f on
V Q ~0, a standard result from analysis says that we can, on some Bp~0, εq Ă V,
write f as

f p~rq “ f p~0q `
ÿ

i

ri
B f
Bri
p~0q `

ÿ

i,j

rirjgijp~rq

for some smooth functions gij on Bp~0, εq. Hence

vp f q “ 0`
ÿ

ai
B f
Bri
p~0q ` 0 “ r0p f q

for all germs f . Hence, v “ r0 and so the B{Bri span as well.
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Remark 19. Above proof shows that for any tangent vector v at p on M,

v “
d
ÿ

i“1

vpxiq
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
.

In particular, given local coordinate charts at p, φ “ px1, . . . , xdq and ψ “

py1, . . . , ydq, then

B

Byj

ˇ

ˇ

ˇ

ˇ

p
“

d
ÿ

i“1

Bxi
Byj

ˇ

ˇ

ˇ

ˇ

p

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

Where
Bxi
Byj

ˇ

ˇ

ˇ

ˇ

p
“

B

Byj

ˇ

ˇ

ˇ

ˇ

p
pxiq.

Applying this to a germ at p, this is a just local version of the chain rule.

Remark 20. There’s a dangerous bend here! Even if y1 “ x1, it’s not in general
true that

B

Bx1

ˇ

ˇ

ˇ

ˇ

p
“

B

By1

ˇ

ˇ

ˇ

ˇ

p

It depends on the charts!

Let F “ φ ˝ ψ´1 be a local coordinate transform and let the coordinates on
im ψ be s1, . . . , sd,

Bxi
Byj

ˇ

ˇ

ˇ

ˇ

p
“

B

Byj

ˇ

ˇ

ˇ

ˇ

p
pxiq “

Bpxi ˝ ψ´1q

Bsj
p~0q,

where xi “ ri ˝ φ. This implies that

Bxi
Byj

“
Bri ˝ F
Bsj

p~0q “
BFi
Bsj
p~0q.

Where Fi is the i-th coordinate of the transition function F. Therefore, the ma-
trix

˜

Bxi
Byj

ˇ

ˇ

ˇ

ˇ

p

¸

1ďi,jďd

is just the Jacobian matrix of the coordinate transformation F, evaluated at~0.

Example 21. Let M “ Rd, the tangent space of p P M has natural basis
#

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

+

1ďiďd

,

and so there exists a natural identification

Tp M „ T~0Rd „
Rd

which identifies
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
Ø

B

Bri

ˇ

ˇ

ˇ

ˇ

~0
Ø ei
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Maps between smooth manifolds

Given a map f : M Ñ N of smooth manifolds with f ppq “ q, we have an
induced map f ˚ : AN,q Ñ AM,p via h ÞÑ h ˝ f .

Definition 22. The derivative or differential of f is

dp f “ pd f qp : Tp M Ñ TqN

for v P Tp M, we define
pdp f qpvqphq “ vph ˝ f q

for all h P AN,q.

Claim 23. The chain rule is now easy. If g : N Ñ X is a smooth map of mani-
folds with gpqq “ r, then

dppg ˝ f q “ dqg ˝ dp f : Tp M Ñ TrX

Proof. For v P Tp M, h P AX,r, we compute the left hand side:

dppg ˝ f qpvqphq “ vph ˝ g ˝ f q

and the right hand side:

pdqpgq ˝ dp f qpvqphq “ pdp f qpvqph ˝ gq “ vph ˝ g ˝ f q

Hey look, they’re equal!

Example 24. If f : Rn Ñ Rm and we write f “ p f1, . . . , fmq, then

dp f : TpRn Ñ Tf ppqR
m.

We give TpRn the basis
B

Bx1

ˇ

ˇ

ˇ

ˇ

p
, . . . ,

B

Bxn

ˇ

ˇ

ˇ

ˇ

p

and give Tf ppqR
m the basis

B

By1

ˇ

ˇ

ˇ

ˇ

f ppq
, . . . ,

B

Bym

ˇ

ˇ

ˇ

ˇ

f ppq
,

then dp f corresponds to the map Rn Ñ Rm given by the Jacobian matrix of f ,
since

pd f qp

˜

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

¸

pyiq “
B

Bxj

ˇ

ˇ

ˇ

ˇ

p
pyi ˝ f q “

B fi
Bxj

ˇ

ˇ

ˇ

ˇ

p

This then implies that

pd f qp

˜

B

Bx1

ˇ

ˇ

ˇ

ˇ

p

¸

“

m
ÿ

i“1

B fi
Bxj

ˇ

ˇ

ˇ

ˇ

p

B

Byi

ˇ

ˇ

ˇ

ˇ

f ppq
.
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More generally, given any coordinate chart φ “ px1, . . . , xdq : U Ñ Rd, we
can define

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

by
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
p f q “

Bp f ˝ φ´1q

Bri

ˇ

ˇ

ˇ

ˇ

φppq

at all p P U where f P Ap.
If φppq “ ~c P Rd, we may translate by ~c, taking the chart ψ “ py1, . . . , ydq

with yi “ xi ´ ci.
Thus for f P Ap, the previous definition implies that

B f
Byi

ˇ

ˇ

ˇ

ˇ

p
“
Bp f ˝ ψ´1q

Bri

ˇ

ˇ

ˇ

ˇ

~0
“
Bp f ˝ φ´1q

Bri

ˇ

ˇ

ˇ

ˇ

~c
“

B

Bxi

ˇ

ˇ

ˇ

ˇ

p
.

Thus any coordinate system φ gives rise to tangent vectors B{Bxi for all p P U.
Moreover, if f is a smooth function on U, then

B f
Bxi

“
Bp f ˝ φ´1q

Bri
pφppqq

is the composition of two smooth functions on U, with

B f
Bxi
ppq “

B

Bxi

ˇ

ˇ

ˇ

ˇ

p
p f q

for all p.

Lecture 4 15 October 2015

A different way to think about tangent spaces

Definition 25. A smooth curve on M is a smooth map σ : pa, bq Ñ M. For
t P pa, bq, the tangent to the curve at σptq is

pdσqt

ˆ

d
dr

ˇ

ˇ

ˇ

ˇ

t

˙

P TσptqM.

We denote this 9σptq.

Example 26. If σ : pa, bq Ñ Rn, and Rn has coordinates x1, . . . , xn, say σptq “
pσ1ptq, . . . , σnptqq, then

pdσqt

ˆ

d
dr

ˇ

ˇ

ˇ

ˇ

t

˙

pxiq “
d
dr

ˇ

ˇ

ˇ

ˇ

t
σi “

dσi
dr

ˇ

ˇ

ˇ

ˇ

t
“ 9σiptq.

Therefore,

9σptq “
ÿ

i

9σiptq
B

Bxi

ˇ

ˇ

ˇ

ˇ

σptq

9



That is, in terms of natural identifications of TpRn with Rn with basis

B

Bx1

ˇ

ˇ

ˇ

ˇ

σptq
, . . . ,

B

Bxn

ˇ

ˇ

ˇ

ˇ

σptq
,

we have that 9σptq corresponds to p 9σ1ptq, . . . , 9σnptqq.

We say that a smooth curve σ : p´ε, εq Ñ M with σp0q “ p defines a tangent
vector 9σp0q P Tp M. Informally, if σ is a germ of a smooth curve (i.e. has a small
domain like p´ε, εq), we call it a short curve.

If φ is a chart around p with φppq “ 0, then two such curves σ1, σ2 define
the same tangent vector if and only if φ ˝ σ1 and φ ˝ σ2 have the same tangent
vector at~0 P Rn. We say that two short curves are equivalent if they define the
same tangent vector.

Conversely, given a tangent vector

v “
ÿ

ai
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
P Tp M

with a coordinate chart φ “ px1, . . . , xnq such that φppq “~0, then

φ˚v “
ÿ

ai
B

Bri

ˇ

ˇ

ˇ

ˇ

~0

By a linear change of coordinates, we may assume this is just B{Br1

ˇ

ˇ

~0, that is,
v “ B{Bx1

ˇ

ˇ

p.

Set σprq “ φ´1pr, 0, 0, . . . , 0q “ φ´1 ˝ i1, where i1 is inclusion into the first
coordinate. Then compute

9σp0qphq “ pdσq0

ˆ

d
dr

ˇ

ˇ

ˇ

ˇ

0

˙

phq

“
d
dr

ˇ

ˇ

ˇ

ˇ

0

´

h ˝ φ´1 ˝ i1
¯

“
B

Br1

ˇ

ˇ

ˇ

ˇ

~0

´

h ˝ φ´1
¯

“
B

Bx1

ˇ

ˇ

ˇ

ˇ

p
phq “ vphq

Therefore, we can represent v P Tp M by an equivalence class of germs of
smooth curves σ : p´ε, εq Ñ M with σp0q “ p.

Vector Fields

Definition 27. Let M be a smooth manifold. The tangent bundle of M is

TM “
ğ

pPM

Tp M,

with a natural projection π : TM Ñ M.

Claim 28. TM is naturally a smooth manifold of dimension 2n, where n is the
dimension of M.
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Proof Sketch. For any chart φ “ px1, . . . , xnq : U Ñ Rn, Tp M has basis

B

Bx1

ˇ

ˇ

ˇ

ˇ

p
, . . . ,

B

Bxn

ˇ

ˇ

ˇ

ˇ

p

for any p P U. We can then identify π´1pUqwith U ˆRn via a map rφ.
Given p P U and

v “
ÿ

ai
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
P Tp M,

define the image of pp, vq under rφ to be pp, a1, . . . , anq.
But this looks chart-dependent, so what happens if we take another chart?

Given ψ “ py1, . . . , ynq on U, we can do the same. We write in these coordinates

v “
ÿ

bj
B

Byj

ˇ

ˇ

ˇ

ˇ

p

and the image of pp, vq under rψ is pp, b1, . . . , bnq.
The map rψ ˝ rψ´1 is determined by

ai “
ÿ

j

Bxi
Byj

ˇ

ˇ

ˇ

ˇ

p
bj,

where as in last lecture,
´

Bxi
Byj

¯

corresponds to the Jacobian matrix of the coor-
dinate transform.

We claimed that TM was a smooth manifold, so we should say what the
topology on it is. The natural topology on π´1pUq is given by identification
with U ˆRn. We define a topology on TM whereby W Ă TM is open if and
only if W X π´1pUq is open for all charts patches pU, φq of M.

We can also define a smooth atlas on TM by taking charts
`

π´1pUq, pφ ˆ
idq ˝ rφ

˘

for chart pU, φq. We justify the coordinate transforms being smooth
with the Jacobian matrix stuff from above.

The fact that rψ ˝ rφ´1 is linear on the fibers (given by the Jacobian matrix
acting on Rn) is the statement that TM is a vector bundle (which we’ll talk
about later).

Exercise 29. A smooth map f : M Ñ N induces a smooth map d f : TM Ñ TN.

Definition 30. A vector field X on M is given by a smooth section X : M Ñ

TM. (X being a smooth section means that π ˝ X “ idM). This says

X : M Ñ
ğ

pPM

Tp M

with property that, for any coordinate chart φ “ px1, . . . , xnq : U Ñ Rn, writing

Xp :“ XpPq “
ÿ

i

aippq
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
,

the ai are smooth functions on U (equivalently, Xpxiq is smooth for all i).

11



Definition 31. Vector fields Xp1q, . . . , Xpnq on M are independent if Xp1qppq, . . . , Xpnqppq
form a basis for Tp M for any p P M.

Theorem 32. Suppose M is a smooth manifold of dimension n on which there
exist n independent vector fields Xp1q, . . . , Xpnq. Then TM is isomorphic to
MˆRn as a vector bundle (there is a diffeomorphism TM Ñ MˆRn and for
any p P M, the restriction to Tp M is an isomorphism Tp M „

Rnq.

Proof. An element of TM is given by some v P Tp M. Write

v “
ÿ

i

aiXpiqppq,

and define a map Ψ : TM Ñ MˆRn by

Ψ : pP, vq ÞÑ pP, a1, . . . , anq

with obvious inverse.
A mechanical check verifies that for a coordinate chart φ “ px1, . . . , xnq : U Ñ

R, the corresponding map

U ˆRn „ π´1pUq
Ψ|U
ÝÝÑ U ˆRn

is a diffeomorphism of smooth manifolds and an isomorphism on fibers Rn.

Example 33. TS1 is isomorphic to S1 ˆR because there is a nowhere vanish-
ing vector field B{Bθ . But TS2 is not isomorphic to S2 ˆR2 by the Hairy Ball
Theorem.
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Let’s begin with a little lemma that’s often useful in calculating derivatives
of maps. This is really just reinterpreting something we already know from
calculus in the language of tangent spaces.

Lemma 34. Suppose ψ : U Ñ Rm is smooth, and

v “
n
ÿ

i“1

hi
B

Bxi

ˇ

ˇ

ˇ

ˇ

~a
P T~apUq – Rn,

then if κ : Tψp~aqR
m Ñ Rm gives Tψp~aqR

m the canonical identification with Rm

with the basis
"

B

By1
, . . . ,

B

Byn

*

,

we have

κpd~aψpvqq “
d
dt

ˇ

ˇ

ˇ

ˇ

0
ψp~a` t~hq (1)

12



Proof. Set γ : p´ε, εq Ñ U given by γptq “~a` t~h.

9γp0qpxiq “ d0γ

ˆ

d
dt

ˇ

ˇ

ˇ

ˇ

0

˙

xi “
B

Bt

ˇ

ˇ

ˇ

ˇ

0
p~a` t~hqi “ hi

Therefore, 9γp0q “ v.

d~aψpvqpyjq “ d~aψd0γ

ˆ

d
dt

ˇ

ˇ

ˇ

ˇ

0

˙

pyjq

But now the chain rule is staring us in the face. So this becomes

d0pψ ˝ γq

ˆ

d
dt

ˇ

ˇ

ˇ

ˇ

0

˙

pyjq.

Now using the definition of derivative,

d
dt

ˇ

ˇ

ˇ

ˇ

0
ψp~a` t~hqj

To show that this lemma is useful, consider the following example.

Example 35. Let ψ : MnˆnpRq Ñ MnˆnpRq given by ψpAq “ AAT , where AT

is the transpose and~a “ I. Then for H P MnˆnpRq, the right hand side of (1) is

d
dt

ˇ

ˇ

ˇ

ˇ

0
pI ` tHq pI ` tHqT “ H ` HT “ κdIψ

˜

ÿ

p,q
Hpq

d
dxpq

¸

.

Vector Fields

Recall that if φ “ px1, . . . , xnq : U Ñ Rn is a coordinate chart, then for f smooth
on U,

B f
Bxi

“
B

Bxi
p f q “

Bp f ˝ φ´1q

Bri
˝ φ

is smooth on U.

Definition 36. Given now X : M Ñ TM a smooth vector field and f : M Ñ R

a smooth function, we can define the function Xp f q : M Ñ R by Xp f qppq “
Xpp f q.

So there are two ways to think about X. Either as a map M Ñ TM, or as a
map C8pMq Ñ C8pMq.

If locally for some chart pU, φq, with φ “ px1, . . . , xnq,

X “
ÿ

i

Xi
B

Bxi

with Xi smooth, then

Xp f q “
ÿ

i

Xi
B f
Bxi

(2)

13



is also smooth.
For X, Y smooth vector fields on M, we might hope that XY is a vector field

by pXYqp f q “ XpYp f qq is a vector field. But it’s not, because looking at (2) and
multiplying it out or something,

pXYqp f gq “ Xp f qYpgq ` XpgqYp f q ` f pXYqpgq ` gpXYqp f q

contains terms Xp f qYpgq ` XpgqYp f qwhich are extra. We want XY to obey the
Leibniz rule so that it’s a tangent vector, but this clearly does not! Instead, we
can get around this by using the Lie bracket which will cause the mixed terms
to cancel. This is to say,

rX, Ysp f q “ XpYp f qq ´YpXp f qq

is a vector field. In particular, the Lie bracket is a bilinear form on vector fields.
Locally in a coordinate chart pU, φq, there are local vector fields B{Bxi : U Ñ

TU. Note that
”

B{Bxi ,
B{Bxj

ı

“ 0, so mixed partials commute.

Exercise 37. Properties of the Lie Bracket (check these!)

(a) rY, Xs “ ´rX, Ys;

(b) r f X, gYs “ f grX, Ys ` f ¨ pXpgqqY´ g ¨ pYp f qqX for all smooth f , g;

(c) rX, rY, Zss ` rY, rX, Zss ` rZ, rX, Yss “ 0, (Jacobi Identity).

For (c), we need only check for X “ f B{Bxi , Y “ gB{Bxj , Z “ hB{Bxk
. Use (b) and

the vanishing of the bracket for fields of the form B{Bxi .

Definition 38. A real vector space (perhaps infinite-dimensional) equipped
with a bracket r´,´s which is bilinear, antisymmetric, and satisfies the Jacobi
identity is called a Lie algebra.

The case we’re interested in is the space of smooth vector fields on M, which
we denote ΘpMq.

Given a diffeomorphism of manifolds F : M Ñ N and a smooth vector field
X on M, we have a vector field F̊ X on N defined by pF̊ Xqphq “ Xph ˝ Fq ˝ F´1.
For a particular point p P M,

pF̊ XqFppqphq “ Xpph ˝ Fq ˝ F´1 “ ppdpFqpXpqqphq.

Exercise 39. On the first example sheet, show that

F̊ rX, Ys “ rF̊ X, F̊ Ys

Recall that a smooth curve σ : pa, bq Ñ M determines a tangent vector

9σptq “ dtσ

ˆ

d
dr

ˇ

ˇ

ˇ

ˇ

t

˙

P TσptqM.

9σptqp f q “
ˆ

dtσ

ˆ

d
dr

ˇ

ˇ

ˇ

ˇ

t

˙˙

p f q “ p f ˝ σq1ptq

14



Definition 40. If X is a smooth vector field on M, a smooth curve σ : pa, bq Ñ M
is called an integral curve for X if 9σptq “ Xpσptqq for all t P pa, bq.

Theorem 41. Given a smooth vector field X on M, and p P M, then exist a, b P
RY t˘8u depending on p and a smooth curve γ : pa, bq Ñ M such that

(i) 0 P pa, bq and γp0q “ p;

(ii) γ is an integral curve of X;

(iii) if µ : pc, dq Ñ M is a smooth curve satisfying (i) and (ii), then pc, dq Ď pa, bq
and µ “ γ|pc,dq.

Proof. To see this, work in local coordinates and reduce to a question about
differential equations in Rn. We want dγ

´

d{dr
ˇ

ˇ

t

¯

“ Xpγptqq for t P pa, bq. We
may assume that 0 P pa, bq and γp0q “ p. Choose coordinates x1, . . . , xd around
p (that is, a chart φ : U Ñ Rd). In these coordinates, write

X|U “
d
ÿ

i“1

fi
B

Bxi

for some fi smooth functions on U.
Moreover, if γptq P U, then

dtγ

ˆ

B

Br

ˇ

ˇ

ˇ

ˇ

t

˙

“

d
ÿ

i“1

dpxi ˝ γq

dr

ˇ

ˇ

ˇ

ˇ

t

B

Bxi

ˇ

ˇ

ˇ

ˇ

γptq
,

since for any tangent vector v,

v “
ÿ

vpxiq
B

Bxi

ˇ

ˇ

ˇ

ˇ

p
.

So if γi “ xi ˝ γ, we wish to solve the first order system of ODE’s

dγi
dt
“ fipγptqq “ fi ˝ φ´1pγ1ptq, . . . , γdptqq “ gipγ1ptq, . . . , γdptqq.

For gi “ fi ˝ φ´1. The standard theory of ODE’s implies that there is a solution.

Remark 42. If we also vary p, and set φtppq “ γpptq, where γpptq is just the
integral curve we discovered for X through p, we obtain what’s called a local
flow. A local flow is an open U Q p, for ε ą 0 and diffeomorphisms φt : U Ñ

φtpUq Ď M for |t| ă ε such that γpptq is smooth in both t and p.
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Submanifolds

Definition 43. Suppose that F : M Ñ N is a smooth map of manifolds. We
have several concepts:

15



(i) F is an immersion if pdFqp “ dpF is an injection for each p P M;

(ii) pM, Fq is a submanifold of N if F is an injective immersion;

(iii) F is an embedding if pM, Fq is a submanifold of N and F is a homeomor-
pism onto its image (with the subspace topology).

Example 44. Note that an immersion may not have a manifold as its image.
For example, the embedding of the real line in R2 as the nodal cubic.

An example of a submanifold that is not an immersion is as follows: a line
with irrational slope in R2 gives rise to a submanifold of the torus T “ R2{Z2

whose image is dense in T, and therefore not an embedded submanifold.

From now on, I’ll take the word “submanifold” to mean “embedded sub-
manifold.” Usually we identify M with its image in N and take F to be the
inclusion map.

Definition 45. Given a smooth map F : M Ñ N of manifolds, a point q P N
is called a regular value if, for any p P M such that Fppq “ q, we have
dpF : Tp M Ñ TqN is surjective.

Theorem 46. If F : M Ñ N is smooth, q is a regular value in FpMq, then the
fiber F´1pqq is an embedded submanifold of M of dimension dim M´ dim N,
and for any point p P F´1pqq,

TppF´1pqqq “ kerpdpF : Tp M Ñ TqNq.

Proof. This is easily seen as just an application (in local coordinates) of the in-
verse/implicit function theorem – see the part II course or Warner, Theorem
1.38.

Example 47. The group GLpn, Rq is an open submanifold of MnˆnpRq “ Rn2
.

The symmetric n ˆ n matrices S may be identified with Rnpn`1q{2. Define
ψ : GLpn, Rq Ñ S by A ÞÑ AAT . Note that ψ´1pIq “ Opnq is the orthogonal
group (A P Opnq ðñ AAT “ Iq. Since A P Opnq if and only if its columns are
orthogonal, we see that Opnq is compact.

For any A in GLpn, Rq, we can define a linear map RA : MnˆnpRq Ñ MnˆnpRq

given by right multiplication by A, inducing a diffeomorphism RA : GLpn, Rq Ñ

GLpn, Rq. Observe that for A P Opnq, the ψ ˝ RA “ ψ. The extended version of
the chain rule implies that when A P Opnq, dAψ ˝ RA “ dIψ, and hence dψ has
the same rank at all points of Opnq.

But dIψpHq for H P MnˆnpRq was identified as H ` HT , and a general
symmetric matrix is of this form, so the map dIψ is surjective. This implies by
the previous theorem that Opnq is an embedded submanifold of GLpn, Rq of
dimension npn´1q{2.

Since A P Opnq has detpAq “ ˘1, then Opnq has two connected components.
SOpnq is the component with detpAq “ `1, containing the identity.

Now, the tangent space of Opnq at the identity is just

kerpdIψ : TIGLpn, Rq Ñ TψpIq“ISq.
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But dIψ is the map H ÞÑ H ` HT , so TIOpnq “ tH P MnˆnpRq | H ` HT “ 0u.

If now M N is an embedded submanifold, then Tp M TpN in a
natural way: v P Tp M acts onAppNq by f ÞÑ vp f |Mq. Furthermore, TM TN
as an embedded submanifold (easiest to see by quoting example sheet 1, ques-
tion 9).

Definition 48. Given a smooth manifold N, an r-dimensional distribution D
is a choice of r-dimensional subspaces Dppq of TpN for each p P N. Such a
distribution is a smooth distribution if for each point p P N, there is an open
neighborhood U Q p and smooth vector fields X1, . . . , Xr on U spanning Dppq.

Definition 49. A smooth distribution is called involutive or completely inte-
grable if for all smooth vector fields X, Y belonging toD, (i.e. Xpqq, Ypqq P Dpqq
for all q), the Lie bracket rX, Ys also belongs to D.

Definition 50. A local integrable submanifold M of D through p is a local
embedded submanifold, (M U Q p) with Tq M “ Dpqq Ď TqN for all
q P M. If D is r-dimensional, it must be the case that M is also r-dimensional.

Remark 51. If there is a local integrable submanifold through each point N,
then it’s easy to check that if D satisfies Dpqq “ im

`

Tq M Ñ TqU
˘

, then it is an
involution.

The following (in red) is possibly wrong, or at least misleading.
Given an embedded submanifold M Ď N, there are local coordinates x1, . . . , xn

on N such that M is given by xm`1, . . . , xn “ 0 and x1, . . . , xm are local coordi-
nates on M. Then

B

Bx1
, . . . ,

B

Bxm

is a local involutive distribution.

Theorem 52 (Frobenius Corrected). The converse of this statement is also true!
If X1, . . . , Xm is an involutive distribution, then locally there is a submanifold
M Ď N and x1, . . . , xn on N such that M is given by xm`1, . . . , xn “ 0 and
x1, . . . , xm are coordinates on M, with Xi “

B{Bxi for 1 ď i ď m.

I won’t prove it because it takes up four pages in Warner’s book (pg. 42-
46). The proof proceeds by induction on the dimension of the distribution, and
depends heavily on the involutive property.

Remark 53 (Final word on conditions for involutive distributions). D is an
involution ðñ there are local integrable manifolds pM Ă U Ă Nq such that
Tq M “ Dpqq.

Remark 54. A (hard!) theorem of Whitney says that any smooth manifold of
dimension m may be embedded in R2m. In the compact case, there is an easy
proof that it embeds in RN for some large N. (The proof is in Thomas & Barden
Section 1.4).
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Lie Groups

Definition 55. A group G is called a Lie groups if it is also a smooth manifold
and the group operations µ : G ˆ G Ñ G and i : G Ñ G are smooth maps. (It
suffices to requires that the map Gˆ G Ñ G : pg, hq ÞÑ gh´1 is smooth.)
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Example 56. Some examples of Lie groups.

(1) The matrix groups GLpn, Rq, Opnq, SLpnq.

(2) The n-torus Tn “ Rn{Zn is a Lie group, with group operation inherited
from addition on R. It’s abelian.

(3) pR3, ¨q with pa1, a2, a3q ¨ pb1, b2, b3q “ pa1 ` b1, a2 ` b2 ` a1b3, a3 ` b3q. This
can be identified with the subgroup of GLp3, Rq consisting of matrices of
the form

»

–

1 a1 a2
0 1 a3
0 0 1

fi

fl

So some manifolds may be Lie groups in two different ways.

Recall that tangent space at I to GLpn, Rq Ă Rn2
is identified with the nˆ n

matrices MnˆnpRq “ Rn2
. Opnq is an embedded submanifold of GLpn, Rq of

dimension npn´1q{2; the tangent space TIOpnq at the identity is identified as a
subspace of nˆ n matrices which are antisymmetric.

Remark 57.

(1) The projection A ÞÑ 1
2 pA´ ATq yields a chart on some neighborhood of

I P SOpnq to an open neighborhood of~0 in the Lie algebra TISOpnq.

(2) If H is an antisymmetric matrix, we can define a curve σ on Opnq by
σptq “ expptHq “ I ` tH ` 1{2t2H2 ` 1{3!t3H3 ` . . .. This is absolutely
convergent with σptq P Opnq and 9σptq “ σptqH.

(3) Similar arguments work for other subgroups of GLpn, Rq.

Construction of left-invariant vector fields

Suppose that G is a Lie group and e P G. We denote by g the tangent space TeG.
Denote multiplication L : GˆG Ñ G, and for a given g P G, the left-translation
diffeomorphism Lg : G Ñ G is given by h ÞÑ gh.

A note on notation: sometimes we’ve used dpF and sometimes dFp. In this
section, we’ll be very careful to use dpF because otherwise there’s a risk of
becoming confused.

For � P g, define X “ Xp�q : G Ñ TG by Xp�qpgq “ pdeLgqp�q P TgG.
Clearly Xp�q ‰ 0 at any given point g P G for � ‰ 0, since deLg is an isomor-
phism.
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Claim 58. Xp�q is a smooth vector field on G.

Proof. Take charts φe “ px1, . . . , xnq : U1e Ñ Rn, and φg “ py1, . . . , ynq : U1g Ñ
Rn, with say φepeq “ 0, U1g “ gU1e “ LgpU1eq, and finally φg “ φe ˝ L´1

g “

φe ˝ Lg´1 .
Why have we put primes on U1e and U1g? Well, we can find smaller open

neighborhoods Ue Ă U1e and Ug Ă U1g such that UgˆUe Ă pU1gˆU1eqX L´1pU1gq
in the product manifold GˆG. In particular, this means that L : UgˆUe Ñ U1g.

Ug ˆUe U1g

R2n Ą Vg ˆVe V1g Ă Rn

L

φgˆφe

F

where Fp~r,~sq “ pF1, . . . , Fnq and given a P Ug, deLa : TeG Ñ TaG is given by the
Jacobian matrix

˜

BFi
Bsj

¸

pφgpaq, 0q.

This is basically just saying that

d
dxj

ˇ

ˇ

ˇ

ˇ

e
ÞÝÑ

ÿ

i

dFi
dsj
pφgpaq, 0q

d
dyi

ˇ

ˇ

ˇ

ˇ

a
.

Since the entries are smooth functions on Ug (since Fp~r,~sq smooth in~r), it fol-
lows that for a fixed � “

ř

aj
d{dxj

ˇ

ˇ

e some tangent vector, Xp�qpaq “ pdeLaqp�q
defines a smooth vector field on Ug.

Definition 59. A vector field X is left-invariant if pLgq˚X “ X for all g P G.

Proposition 60. If X is left invariant, then X “ Xp�q where � “ Xpeq.

Proof. First let X be a left-invariant vector field. Recall that for any diffeomor-
phism F : M Ñ N of smooth manifolds and X a smooth vector field on M,
we defined a vector field F̊ X by pF̊ XqpFppqq “ pdpFqpXppqq. For h smooth,
pF̊ Xqphq “ Xph ˝ Fq ˝ F´1.

Apply this to F “ Lg : Gˆ G Ñ G. So

ppLgq˚Xqpgq “ deLgpXpeqq “ Xp�qpgq,

where � “ Xpeq.
It remains to show that any vector field of the form Xp�q is left-invariant.

This is just a simple calculation.
´

pLgq˚Xp�q
¯

pgaq “ daLgXp�qpaq “ pdaLgqpdeLaqp�q “ pdeLgaqp�q “ Xp�qpgaq

Definition 61. In general, for a diffeomorphism F : M toM, we say that a vector
field X is invariant under F if F̊ X “ X.
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Following the previous proposition, g “ TeG may be embedded as the
space of left-invariant vector fields in the space ΘpGq of all smooth vector fields
via � ÞÑ Xp�q. We know that there’s a bracket operation on ΘpGq. The hope is
that this induces a bracket operation on g, thereby making it a Lie algebra.

Proposition 62. The bracket operation on ΘpGq induces a bracket operation on
g, thereby making g into a Lie algebra (the Lie algebra of G).

Proof. We have to show that the bracket of two left-invariant vector fields is left
invariant. By a question on example sheet 1,

rpLgq˚X, pLgq ˚Ys “ pLgq˚rX, Ys.

Because X, Y are left-invariant, then

rX, Ys “ rpLgq˚X, pLgq ˚Ys “ pLgq˚rX, Ys.

So the Lie bracket of two left-invariant vector fields is also left-invariant.

To sum it all up, for � P g, we have a left-invariant vector field Xp�q and a

curve θ : p´ε, εq Ñ G with θp0q “ e and 9θptq “ Xp�qpθptqq for all t P p´ε, εq

Lemma 63. For s, t such that |s|, |t| ă ε{2, we have that θps` tq “ θpsqθptq (mul-
tiplication in the Lie group G).
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Last time, we defined for � P g a left-invariant vector field Xp�q and a curve

θ : p´ε, εq Ñ G such that θp0q “ ε, 9θptq “ Xp�qpθptqq for all t P p´ε, εq.

Lemma 64. For s, t with |s|, |t| ă ε{2, we have that θps` tq “ θpsqθptq.

Proof. For fixed s, we show that the curves θps` tq and θpsqθptq are solutions to
the differential equation φ : p´ε{2, ε{2q Ñ G with φp0q “ θpsq, 9φptq “ Xp�qpθptqq
and so we must have equality. We show that both θps ` tq and θpsqθptq are
solutions to the same differential equation, which by uniqueness of solutions
must give us that they are equal.

(a) φptq “ θps` tq is a composition locally of maps R Ñ R
θ
ÝÑ G, where the

first map is t ÞÑ s` t. Therefore,

9φptq “ pdtφq

ˆ

B

Br

˙

“ pds`tθq

ˆ

B

Br

˙

“ 9θps` tq “ Xp�qpφptqq “ θps` tq.
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(b) Let g “ θpsq. Set φptq “ gθptq “ Lgθptq. Then we use the chain rule:

9φptq “ dtpLg ˝ θq

ˆ

B

Br

˙

“ pdθptqLgqpdtθq

ˆ

B

Br

˙

“ pdθptqLgq 9θptq

“ pdθptqLgqXp�qpθptqq

“ Xp�q
`

Lgθptq
˘

by left-invariance of Xp�q
“ Xp�qpgθptqq “ Xp�qpφptqq

This enables us to define a 1-parameter subroup as a homomorphism of Lie
groups ψ : R Ñ G such that 9ψptq “ Xp�qpψptqq for all t P R by recipe.

For given t, choose N such that t{N P p´ε, εq and define ψptq :“ θ
`t{N

˘N .
Let’s check that this is well-defined. If M is another such integer,

`

θ
`t{MN

˘˘N
“ θ

`t{M
˘

and so
θ
`t{N

˘N
“
`

θ
`t{MN

˘˘MN
“ θ

`t{M
˘M .

Example 65. For G “ GLpN, Rq Ă MnˆnpRq, with tangent space at I being
MnˆnpRq “ Rn2

, then for any A P MnˆnpRq corresponding to the tangent
vector

ÿ

aij
B

Bxij
,

the corresponding 1-parameter subgroup ψ is just

ψptq “ expptAq “ I ` tA` 1
2! ptAq2 ` 1

3! ptAq3 ` . . .

A standard check shows that

9ψptq “ ψptqA “ LψptqA “ deLψptqA “ XpAqpψptqq,

which is as required to define a one-parameter subgroup.

Remark 66. In general, given a 1-parameter subgroup ψptq “ ψp�, tq defined
by� P TeG, we one can show that ψp�, tq “ ψpt�, 1q. In this way we can define
in general a map exp : TeG Ñ G such that � ÞÑ ψp�, 1q. This is a smooth map
and a local diffeomorphism.

Example 67. G “ GLpn, Rq Ă MnˆnpRq. We have TeG – MnˆnpRq with the
basis B{Bxpq . Suppose

� “
ÿ

apq
B

Bxpq

ˇ

ˇ

ˇ

ˇ

e
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corresponds to some matrix A P MnˆnpRq. Then if g “ pxrpq (so gpqpeq “ δpq)

Xp�qpgq “ deLgp�q “ Lgp�q “
ÿ

xrpapq
B

Bxrq

ˇ

ˇ

ˇ

ˇ

g

Given also

η “
ÿ

bij
B

Bxij

ˇ

ˇ

ˇ

ˇ

e

corresponding to a matrix B P MnˆnpRq, then

Xpηqpgq “ deLgpηq “ Lgpηq “
ÿ

xkibij
B

Bxkj

ˇ

ˇ

ˇ

ˇ

g

Now we can work out explicitly what the Lie bracket of these vector fields is.

rXp�q, Xpηqse “
ÿ

p,q,k,i,j

δrpapqδrkδqibij
B

Bxkj
´

ÿ

p,q,k,i,j

δrpbpqδrkδqiaij
B

Bxkj

“
ÿ

i,j,k

akibij
B

Bxkj
´
ÿ

i,j,k

bkiaij
B

Bxkj

“
ÿ

k,j

rA, Bskj
B

Bxkj
,

where rA, Bs “ AB´ BA P MnˆnpRq. So the Lie algebra of left-invariant vector
fields on G is just the Lie algebra of nˆ n matrices under the natural bracket.

Remark 68. If G Ď GLpn, Rq is a Lie subgroup of GLpn, Rq, then for a tan-
gent vector � P TeG Ď MnˆnpRq there is a left-invariant vector field Xp�q on
GLpn, Rq restricting to a left-invariant vector field Xp�q|G on G. And moreover

rXp�q|G, Xpηq|Gs “ rXp�q, Xpηqs|G,

so the induced bracket on TeG is just the restriction of the natural bracket on
MnˆnpRq.

Example 69. If G “ SOpnq, then g is just the antisymmetric matrices and the
Lie bracket on SOpnq is just given by rA, Bs “ AB´ BA.

Forms and Tensors on Manifolds

Differential Forms

In many ways, vector fields are important objects to study on manifolds, but
differential forms are quite possibly even more important.

Given a smooth manifold M and U Ď M open, a smooth function f : U Ñ

R gives rise to the differential d f : TU Ñ TR consisting of the linear forms
dp f : TpU Ñ R for p P U. Here, we identify Tf ppqR with RB{Br via v ÞÑ vprq.

Given g : U Ñ R smooth, we have the family of linear forms gppqdp f : TpU Ñ

R. Note that dpp f gq “ f ppqdpg` gppqdp f .
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If we have coordinates for U given by x1, . . . , xn, then we have

pdp f q

˜

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

¸

prq “
B

Bxj

ˇ

ˇ

ˇ

ˇ

p
pr ˝ f q “

B f
Bxj

ˇ

ˇ

ˇ

ˇ

p

for all p P U. So therefore,

dp f “
n
ÿ

j“1

B f
Bxj
ppqdpxj.

In particular,

pdpxiq

˜

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

¸

“

˜

Bxi
Bxj

¸

p

“ δij

So dpx1, . . . , dpxn gives a basis of the dual space T˚p M dual to the basis B{Bx1

ˇ

ˇ

p, . . . , B{Bxn

ˇ

ˇ

p
of Tp M.
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Last time someone asked me what facts we were using when we computed
the Lie bracket of matrices, and I forgot to mention some details. We defined
the composition of vector fields X, Y as XYphq “ XpYphqq. If X “ B{Bxi and
Y “ B{Bxj , then XYphq “ B2h{BxiBxj “ YXphq, so in this case rX, Ys “ 0.

Okay, so last time we were talking about differential forms. Let’s make this
definition formal.

Definition 70. A smooth 1-form on M is a map ω : M Ñ
Ů

pPM T˚p M with
ωppq P T˚p M for all p, which can locally be written in the form

ř

i fidgi with
fi, gi (locally) smooth. Equivalently, for any coordinate system x1, . . . , xn on
U Ď M, it may be written as

ř

i fidxi with fi smooth functions.
We denote the collection of smooth 1-forms on M by Ω1pMq

When we talked about vector fields, we were using the tangent bundle.
The definition above uses something that looks very similar, which we call the
cotangent bundle.

Definition 71. The cotangent bundle on M is the set T˚M “
Ů

pPM T˚p M, with
π : T˚M Ñ M the projection map.

Just as for the tangent bundle, T˚M is naturally a smooth manifold of di-
mension 2n. How do we see this? Given a chart with φpx1, . . . , xnq : U Ñ Rn,
T˚p M has basis dpx1, . . . , dpxn for all p P U. We then identify π´1pUq “ TU
with U ˆRn via the map

ωp “
ÿ

i

aidpxi ÞÑ pp; a1, . . . , anq.
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In this case, if
ř

k akdxk “
ř

j bjdyj, then

ai “

˜

ÿ

k

akdxk

¸

B

Bxi

ˇ

ˇ

ˇ

ˇ

p
“
ÿ

j

bjdpyj

˜

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

¸

“
ÿ

j

ˆ

Byj

Bxi

˙

p
bj.

The matrix here
´

Byj{Bxi

¯

p
is the inverse transpose of the one we had for the

tangent bundle we saw in Claim 28.
Warning: this is backwards from the way that you transform coordinates

for tangent vectors!
We can also say that the projection π : T˚M Ñ M is smooth, and by con-

struction the fiber over p is the cotangent space at p. In equations, this reads
π´1ppq “ T˚p M.

Our definition of a smooth 1-form ω could therefore have been a smooth
section ω : M Ñ T˚M such that π ˝ω “ idM.

Vector Bundles

Now that we’ve seen how both the tangent bundle TM and the cotangent bun-
dle T˚M are smooth manifolds of dimension 2n, we should set up the language
of general vector bundles. Note that I’ll probably stop saying “smooth” soon,
but you should know that we’re working in categories of smooth maps.

Definition 72. Let B be a smooth manifold. A manifold E together with a
surjective smooth map π : E Ñ B is called a vector bundle of rank k over B if
the following conditions hold.

(i) There is a k-dimensional real vector space F such that for any p P B, the
fiber Ep “ π´1ppq is a vector space isomorphic to F.

(ii) Any point p P B has a neighborhood U such that there is a diffeomor-
phism ΦU : π´1pUq Ñ U ˆ F such that the diagram below commutes:

π´1pUq U ˆ F

U U

ΦU

π pr

„

Here, pr is projection onto the first factor U ˆ F Ñ U. ΦU is called a
trivialization of E.

(iii) ΦU|Eq Ñ F is an isomorphism on vector spaces for all q P U.

B is called the base space and E is the total space of the bundle. If k “ 1, we
call it a line bundle.

Definition 73. A smooth map s : B Ñ E such that π ˝ s “ idB is called a section
of E. Denote the sections of E by ΓpEq or ΩpEq.

Example 74. ΓpT˚Mq “ Ω1pMq.
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If we have two trivializations ΦV : π´1pVq Ñ V ˆ F and ΦU : π´1pUq Ñ
U ˆ F, then we compute the diffeomorphism

ΦV ˝Φ´1
U : pU XVq ˆ F Ñ pU XVq ˆ F.

For p P U XV, we have an isomorphism of vector spaces fVUppq : F Ñ F.
Choosing a basis for F identifies GLpFqwith GLpk, Rq and then the fVU can

be thought of as matrices fVU : U X V Ñ GLpk, Rq, whose entries are smooth
functions on U XV. These functions fVU are called transition functions.

Fact 75. There are some pretty obvious properties satisfied by these fVU .

(i) fUU “ id is the identity matrix;

(ii) fVU “ f´1
UV on U XV;

(iii) fWV ˝ fVU “ fWU on U XV XW.

Definition 76. Now given vector bundles E1, E2 over the same base space B, a
smooth map F : E1 Ñ E2 such that π2 ˝ F “ π1

E1 E2

B
π1

F

π2

is called a morphism of vector bundles if the induced maps on fibers are linear
maps of vector spaces. Morphisms with inverses are isomorphisms, and a sub-
bundle is defined in the obvious way.

So we’ve seen that if we have a fiber bundle, then we have transition func-
tions fij. Now what if we have an open cover of a manifold with transition
functions as in Fact 75? It turns out we can construct a fiber bundle that these
come from. This is what we sketch below.

Theorem 77. Suppose B is a smooth manifold with an open ocver U “ tUi |

i P Iu,
Ť

i Ui “ B, and smooth functions fij : Ui XUj Ñ GLpk, Rq such that

1. fii “ Ik;

2. f jippq “ fijppq´1 for all p P Ui XUj;

3. fkjppq f jippq “ fkippq for all p P Ui XUj XUk. (matrix multiplication)

Then there exists a rank k vector bundle (unique up to isomorphism) π : E Ñ B
for which U is a trivializing cover of B and the transition functions are the fij.

Proof sketch. (See Darling Chapter 6 for full details.)
As a topological space, set E “

Ů

iPI Ui ˆRk{ „, where„ is the equivalence
relation pp,~aq „ pq,~bq ðñ p “ q and~a “ fijpqq~b.

Define π : E Ñ B by the projection onto the first factor.
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To put a manifold structure on E, we notice that for each j, the inclusion

Uj ˆRk
ğ

iPI

Ui ˆRk Ñ π´1pUjq

is a homeomorphism. This gives the trivializations required with transition
functions fij defining smooth maps pUi XUjq ˆRk Ñ pUi XUjq ˆRk.

Hence, E is a smooth manifold with fibers Ep isomorphic to Rk, and the
above maps restrict vector space isomorphisms on the fibers via the fijppq.

If however two vector bundles π1 : E1 Ñ B and π2 : E2 Ñ B have the same
trivializing cover and the same transition functions, then we can define a vec-
tor bundle isomorphism between them. The point is that we know the isomor-
phism F locally, and then by the definition of the equivalence relation „ they
should be compatible.

Locally, this isomorphism F is given by the diagram

π´1
1 pUiq π´1

2 pUiq

Ui ˆRk Ui ˆRk

F

Φ Ψ

id

Why doesn’t this depend on the choice of coordinates? It doeesn’t depend on
the Ui we choose here because the transition functions are the same. Hence,
this is a well-defined isomorphism.

Lecture 10 29 October 2015

Last time, we wrote down a map Uj ˆRk „ π´1pUjq, but this requires a
bit of interpretation. To clarify, I meant that for each j, the inclusion Uj ˆ

Rk Ů

i Ui ˆ Rk induces a homeomorphism Uj ˆRk „ π´1pUjq.
This should take care of all of the boring stuff about vector bundles, so now

let’s see some examples.

Example 78.

(1) The trivial bundle E “ MˆRk Ñ M with ΓpEq “ C8pMqk.

(2) The tangent and cotangent bundles are examples of vector bundles MTM Ñ

M and T˚M Ñ M, with ΓpMq “ ΘpMq and ΓpT˚Mq “ Ω1pMq.

(3) The tautological bundle or Hopf bundle on CPn is a complex line bun-
dle, that is, a bundle of rank 1 over C. This means that it’s a rank 2 bun-
dle over R. Each point of CPn corresponds to a line through the origin
in Cn`1 and hence to an equivalence class of points in Cn`1zt0u where
~x „ ~y ðñ Dλ P C˚ s.t. ~x “ λ~y. So points of CPn are represented by
homogeneous coordinates px0 : x1 : . . . : xnqwith xi not all zero, and only
the ratios matter.
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CPn has an open cover by open sets Ui – Cn where Ui “ t~x | xi ‰ 0u and
the chart on this open set Ui is given by

px0 : x1 : . . . : xnq ÞÑ

ˆ

x0

xi
, . . . ,

xi´1

xi
,

xi`1

xi
, . . . ,

xn

xi

˙

note that we omit the i-th coordinate.

Define the tautological bundle or Hopf bundle E Ñ CPn to have fiber Ep

being the line in Cn`1 corresponding to a point P P CPn,
´

E “
Ů

pPCPn Ep

¯

.

This is in fact a sub-bundle of the trivial bundle CPn ˆCn`1.

Let’s try to understand the trivializations and the transition functions on
this bundle. For simplicity, let’s take the case n “ 1. There are here two
open sets, U0 and U1, with charts

U0
„

C U1
„

C

p1 : zq ÞÑ z pζ : 1q ÞÑ ζ

We also have a coordinate transformation U0 Ñ U1 given by z ÞÑ 1{z “ ζ.
There is an obvious trivialization of E “

Ů

pPCP1 Ep over U0 given by

Ep1 : zq Q pw, wzq ÞÝÑ pp1 : zq, wq P U0 ˆC

and over U1,

Epζ : 1q Q pvζ, vq ÞÝÑ ppζ : 1q, vq P U1 ˆC

So pw, wzq “ pvζ, vq ðñ v “ wz, where ζ “ 1{z. Therefore, the transition
functions are the 1ˆ 1 matrices f10 “ z and f01 “ ζ.

Another choice of trivialization is given by Φ0 on U0,

Ep1 : zq Q pw, wzq Φ0
ÞÝÝÑ

ˆ

p1 : zq, w
b

1` |z|2
˙

P U0 ˆC

Let’s set t “ w
a

1` |z|2. This has the property |t| “ 1 if and only if the
corresponding point pw, wzq lies on the appropriate unit sphere S3 Ď C2.

We also have a similar trivialization Φ1 on U1 given by

Epζ : 1q Q pvζ, vq Φ1
ÞÝÝÑ

ˆ

pζ : 1q, v
b

1` |ζ|2
˙

P U1 ˆC,

and we call s “ v
a

1` |ζ|2.

There is a transition function

Φ1 ˝Φ´1
0 pp1 : zq, tq “ Φ1

˜

t
a

1` |z|2
,

tz
a

1` |z|2

¸

“ Φ1

˜

t|ζ|
a

1` |ζ|2
,

t|ζ|{ζ
a

1` |ζ|2

¸

“

´

pζ : 1q, |ζ|{ζ t
¯
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and the transition function is gven by s “ z{|z|t. So the transition function
ρ10 is just multiplication by z{|z| P Up1q. This means that E is what we call
a unitary bundle over CP1 “ S2.

So E is a smooth rank 1 complex vector bundle over CP1 “ S2. Finally,
note that

|w|2 ` |wz|2 “ |t|2,

|vζ|2 ` |v|2 “ |s|2,

so lengths on trivializations corresponds to taking a standard (Hermitian)
length of vectors in C2.

Definition 79. If the transition functions of a vector bundle with respect to
some trivialization all lie in a subgroup G Ă GLpk, Rq, we say that the structure
group of E is G.

Example 80.

(1) Let G “ GL`pk, Rq be the matrices with positive determinant. A vector
bundle with structure group E is called orientable. If the tangent space
of a manifold M is orientable, then M is an orientable manifold.

(2) If G “ Opkq “ tmatrices preserving the standard inner product on Rku,
this means that we have a well-defined family of inner products on the
fibers vary smoothly over the base. This is just the concept of a metric on
E in Riemannian geometry.

On the Hopf bundle, this metric corresponds to the standard one on C2.
Example sheet 2, question 9 says that we can always find such a metric.

New Bundles from Old

Given vector bundles E and E1 on M, of ranks k and `, respectively, we can al-
ways find a common trivializing cover U “ tUiu. We can define the (Whitney)
sum E‘ E1 Ñ M by

ğ

pPM

Ep ‘ E1p
rπ
ÝÑ M.

Given U P U and trivializations ΦU : π´1pUq Ñ U ˆ F and Φ1 : pπ1q´1pUq Ñ
Uˆ F1, we have a natural structure on rπ´1pUq, namely Uˆ pF‘ F1q. The iden-
tification is given by

Ep ‘ E1p Q psp, s1pq ÞÝÑ pp, pΦUpspq, Φ1Ups
1
pqqq P U ˆ pF‘ F1q

If ΦU and Φ1U are determined by frames (a collection of smooth sections over
U) s1, . . . , sk and σ1, . . . , σ`, then rΦU is determined by the frame

ps1, 0q, ps2, 0q, . . . , psk, 0q, p0, σ1q, . . . , p0, σnq.

As for the tangent bundle, this determines a topological space structure on
E ‘ E1 Namely a subset is open if and only if all its intersections with such
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subsets rπ´1pUq are open, where rπ´1pUq has been identified as this product
U ˆ pF‘ F1q. There are natural charts on E‘ E1.

With U as above, with transition functions t fiju on E and tgiju on E1 then
the vector bundle E‘ E1 has transition functions given by the block diagonal
matrices fij ‘ gij : Ui XUj Ñ GLpk` `, Rq.

«

fij 0
0 gij

ff

Recall from Theorem 77 last time that this in any case determines the bundle
up to isomorphism.

Lecture 11 31 October 2015

Last time we defined the Whitney sum of two vector bundles. There are many
other operations on vector bundles that are analogous to those on vector spaces.

In a similar way to the dual space of a vector space, we can define the dual

bundle E˚ Ñ M with transition functions
´

f T
ij

¯´1
: Ui XUj Ñ GLpn, Rq.

In the case of a line bundle, this is just a nowhere vanishing function 1{fij
.

Note that a metric on E gives rise to an isomorphism E „ E˚; this is on
example sheet 2 as question 9. But this isomorphism isn’t natural – it depends
on the choice of metric.

Similarly, there is a tensor product of two bundles Eb E1 Ñ M with transi-
tion functions given by fij b f 1ij : Ui XUj Ñ GLpk`, Rq “ GLpRk bR`q.

There is also a bundle HompE, E1q such that for each p P B, we have that

Ep E1p

F F1

Φp Φ1p

The bundle HompE, E1q is isomorphic to E˚ b E1.
There is also an exterior power bundle

Źr E Ñ M for 0 ď r ď k with
transition functions

Ź

fij : UiXUj Ñ GL
``n

r
˘

, R
˘

. To be more precise, if α : F Ñ
F, then

αb αb ¨ ¨ ¨ b α : Fb Fb ¨ ¨ ¨ b F Fb Fb ¨ ¨ ¨ b F

Źr α :
Źr F

Źr F

Definition 81. A (mixed) tensor of type pr, sq on a manifold M is a smooth
section of the bundle

TMb ¨ ¨ ¨ b TM
looooooooomooooooooon

r

b T˚Mb T˚Mb ¨ ¨ ¨ b T˚M
loooooooooooooooomoooooooooooooooon

s
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It has r contravariant factors and s covariant factors.
If we have local coordinates x1, . . . , xn on U Ď M, then teh tensor can locally

be written in the form
ÿ

i1,...,ir

ÿ

j1,...,js

Ti1,i2,...,ir
j1,j2,...,js

B

Bxi1
b ¨ ¨ ¨ b

B

Bxir
b dxj1 b ¨ ¨ ¨ b dxjs

Remark 82. If one employs the Einstein summation convention, one would
write coordinates as x1, . . . , xn, and the sum is over all repeated indices with
one up and one down. For example aibi “

ř

i aibi.

Interlude – a little multilinear algebra

You may not think you need this, but you probably do.

Definition 83. Recall that given vector spaces V1, . . . , Vr, the tensor product
of V1, . . . , Vr is the universal multilinear object, meaning that there is a map
b : V1 ˆV2 ˆ ¨ ¨ ¨ ˆVr Ñ V1 bV2 b ¨ ¨ ¨ bVr such that, given a multilinear form
f : V1 ˆ V2 ˆ ¨ ¨ ¨ ˆ Vr Ñ R, then there is a unique map g : V1 b V2 b ¨ ¨ ¨ b Vr
such that f “ g ˝ b.

śr
i“1 Vi R

Âr
i“1 Vi

b

f

g

Definition 84. A perfect pairing between finite dimensional vector spaces V,
W is a bilinear map p´,´q : V ˆW Ñ R for which

w P Wzt0u ùñ D v s.t. pv, wq ‰ 0

v P Vzt0u ùñ Dw s.t. pv, wq ‰ 0

Therefore, a perfect pairing induces isomorphisms V Ñ W˚ and W Ñ V˚.

Example 85. There is a natural perfect pairing

pV˚1 bV˚2 b ¨ ¨ ¨ bV˚r q ˆ pV1 bV2 b ¨ ¨ ¨Vrq Ñ R

given (on the elementary tensors) by

pv˚1 b ¨ ¨ ¨ b v˚r qpv1 b ¨ ¨ ¨ b vrq “ v˚1 pv1qv˚2 pv2q ¨ ¨ ¨ v˚r pvrq

and extended linearly to the whole space.
This gives a natural isomorphism V˚1 b ¨ ¨ ¨ bV˚r

„
pV1 b ¨ ¨ ¨ bVrq

˚.
So for a fixed vector space V, we may identify the multilinear forms on V

with V˚ b ¨ ¨ ¨ bV˚.
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Definition 86. The exterior power ΛrV is a quotient subspace of Vbr that is
universal among all alternating multilinear forms f : Vr Ñ R.

Vr R

Źr V

f

D ! linear map

We denote the image of v1 b ¨ ¨ ¨ b vr in
Źr V by v1 ^ ¨ ¨ ¨ ^ vr.

We can identify the alternating forms on V, Altr
pVq, with

`
Źr V

˘˚. Now
Altr

pVq pV˚qbr Ñ
Źr V˚ is an isomorphisms, whose image is deter-

mined by

f1 ^ . . .^ fr ÞÑ
1
r!

ÿ

πPSr

sgnpπq fπp1q b ¨ ¨ ¨ b fπprq

We call this the logical convention.

Definition 87. Unfortunately, most books do not adopt this convention. So, to
be consistent with all of the books, we’ll therefore define

p f1 ^ . . .^ frqpv1, . . . , vrq :“ det
´

“

fipvjq
‰r

i,j“1

¯

This differs from the usual definition because we drop the factor of 1{r!. Under
this definition, we identify f1 ^ . . .^ fr with

ÿ

πPSr

sgnpπq fπp1q b ¨ ¨ ¨ b fπprq

and f1 ^ f2 Ø f1 b f2 ´ f2 b f1.

Remark 88 (WARNING!). The composite of this map with projection is not the
identity, but instead multiplication by r! (r factorial).

ľ

rV˚ Ñ Altr
pVq pV˚qr Ñ

ľ

rV˚

With this identification of
Źr V˚ with Altr

pVq, the natural map
ľ

pV˚ ˆ
ľ

qV˚ ^
ÝÑ

ľ

p`qV˚

induces a wedge product on alternating forms

Altr
pVq ˆAltq

pVq Ñ Altp`q
pVq

p f , gq ÞÝÑ f ^ g

where

p f ^ gqpv1, . . . , vp`qq

“
1

p!q!

ÿ

πPSp`q

sgnpπq f pvπp1q, . . . , vπppqqgpvπpp`1q, . . . , vπpp`qqq. (3)
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Remark 89. Above in (3) we use the convention given in Definition 87. The
“logical identification” would have a factor of 1{pp`qq!.

Definition 90. In defining f ^ g in (3), we form an algebra of alternating forms

AltpVq :“
à

rě0
Altr

pVq

where dim Altr
pVq “

`n
r
˘

, for n “ dim V.

Differential forms on manifolds

Now after that interlude, we can go back to doing geometry.

Definition 91. A (smooth) r-form ω on a manifold M is a smooth section of
Źr T˚M for some r, 0 ď r ď dim M.

Using the identification above, we may alternatively regard this as a family
of alternating forms on tangent spaces. If x1, . . . , xn are local coordinates on
U Ď M, then we write

ω “
ÿ

i1ăi2ă...ăir

fi1,...,ir dxi1 ^ . . .^ dxir

locally and uniquely since dx1, . . . , dxn are a basis for T˚M at each point of U.
By convention, the zero-forms on a manifold are just the smooth functions.

By convention,
Ź0 E is just the trivial bundle Mˆ R.

Denote the space of smooth r-forms on M by Ωr :“ ΩrpMq “ Γp
Źr T˚Mq.

r is called the degree of the form, and Ω0pMq “ C8pMq.
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Theorem 92 (Orientations). Let M be an n-dimensional manifold. Then the
following are equivalent:

(a) there is a nowhere vanishing smooth differential n-form ω on M;

(b)
Źn T˚M – MˆR;

(c) there is a family of charts tpUα, φαq | α P Au in the differential structure
on M such that the Uα cover M and the Jacobian matrices

”

Byj{Bxippq
ı

for
the change in coordinates have positive determinant for p P Uα XUβ for
each α, β.

Proof sketch. paq ðñ pbq is easy, and is similar to the criterion for the paral-
lelizability of manifolds.
paq ùñ pcq: Given two charts px1, . . . , xnq and py1, . . . , ynqwe have

dx1 ^ . . .^ dxn “ det

«

Bxi
Byj

ff

dy1 ^ . . .^ yn
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on the overlap. Now cover M by such (connected) coordinate charts pU, φq

with φ “ px1, . . . , xnq, choosing the order of coordinates so that on U,

ω “ f dx1 ^ . . .^ dxn

with f ppq ą 0 for all p P U.
pcq ùñ paq. For this, we need the next theorem.

This theorem will be the first time we’ve used the condition that manifolds
are second countable in this course.

Theorem 93 (Partitions of Unity exist). For any open cover U “ tUα | α P Au
of M, there is a countable collection of functions ρi P C8pMq for i P N, such
that

(i) for any i the support supppρiq :“ closure of tx P M : ρipxq ‰ 0u is com-
pact and contained in Uα for some α P A;

(ii) the collection is locally finite: each p P M has an open neighborhood
Wppq such that ρi is identically zero on Wppq except for finitely many i;

(iii) ρi ě 0 on M for all i, and for each p P M,
ÿ

i

ρippq “ 1.

Definition 94. The collection tρi | i P Nu as in Theorem 93 is called a partition
of unity subordinate to tUα | α P Au.

The proof of the existence of partitions of unity comes down to standard
general topology and the existence of smooth bump functions. This proof is in
Warner, Theorem 1.1 or Bott & Tu, Theorem 1.5.2 or Spivak Chapter 2.

Now we can return to the proof of Theorem 92.

Proof of Theorem 92, continued. pcq ùñ paq. Given a family of coordinate neigh-
borhoods as in (c), U “ tUα | α P Au, choose a partition of unity suboordi-
nate to U . For each i, we set ωi “ dxpαq1 ^ . . . ^ dxpαqn where α “ αpiq with
supppρiq Ď Uαpiq, and order the coordinates choses so that the Jacobian matri-
ces have positive determinant. Then ρiωi is a well-defined smooth n-form on
M. Define

ω “
ÿ

i

ρiωi.

This is the required nowhere vanishing global form, because the Jacobian con-
dition rules out any possible cancellations.

Definition 95. A connected manifold M satisfying one of the above conditions
is called orientable. If M is orientable, there are two possible global choices of
sign, which are called orientations.

Example 96. RPn “ Sn{t˘1u is orientable for n odd (on example sheet 2) and
non-orientable for n even (Spivak pages 87-88).
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Exterior Differentiation

The approach we take here is the sheaf-theoretic version of the definition of
exterior derivative, which is different to most books. We’ll also take the sheaf-
theoretic definition of connections, later.

Theorem 97. Given M, r ě 0, there exists a unique linear operator d : ΩrpUq Ñ
Ωr`1pUq for all U Ď M open, such that for open V Ď U,

ΩrpUq Ωr`1pUq

ΩrpVq Ωr`1pVq

d

d

commutes. Furthermore,

(i) if f P Ω0pUq, then d f is the 1-form defined previously;

(ii) dpω^ ηq “ dω^ η` p´1qdeg ωω^ dη for any forms ω, η on open U Ď M;

(iii) dpdωq “ 0 for any form ω on an open subset U of M.

Proof. In local coordinates on some chart U, the three conditions above mean
that we must have, if d exists,

dp f dxi1 ^ . . .^ dxirq “ d f ^ dxi1 ^ dxi2 ^ . . .^ dxir

“
ÿ

j

˜

B f
Bxj

¸

dxj ^ dxi1 ^ . . .^ dxir

So we define d this way locally, and extend linearly to all of ΩrpUq. The condi-
tions (i), (ii), and (iii) follow from this recipe by direct calculation. For example,

d2p f dxi1 ^ . . .^ dxirq “ d

¨

˝

ÿ

j

˜

B f
Bxj

¸

dxj ^ dxi1 ^ . . .^ dxir

˛

‚

“
ÿ

j

d

˜

B f
Bxj

¸

dxj ^ dxi1 ^ . . .^ dxir

“
ÿ

j,k

˜

B2 f
BxjBxk

¸

dxj ^ dxk ^ dxi1 ^ . . .^ dxir

Now because the second derivative is symmetric, terms cancel.
If d exists, then it has to be given locally by the above formula, and that

pdωqp depends only on the value of ω locally.
To show existence, we need to prove that the above recipe doesn’t depend

on the choice of local coordinates. Suppose d1 is defined with respect to other
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local coordinates, y1, . . . , yn. Then by the above, d1 also satisfies (i), (ii), and
(iii). So let’s consider

d1p f dxi1 ^ . . .^ dxinq “ d1 f ^ dxi1 ^ . . .^ dxir

`

r
ÿ

j“1

p´1qj´1 f dxi1 ^ . . .^ d1pdxijq ^ . . .^ dxin (4)

But d1 f “ d f and since xk is a function on U, we have that dxk “ d1xk. The def-
inition of d f is just the old definition of d f we had before. Therefore, d1pdxkq “

d1pd1xkq “ 0. Hence, the terms on the second line in (4) vanish and therefore,

d1p f dxi1 ^ . . .^ dxirq “ d f ^ dxi1 ^ . . .^ dxir

De Rahm Cohomology

Definition 98. ω P ΩrpMq is closed if dω “ 0, and exact if ω “ dη for some
η P Ωr´1pMq.

The quotient space

Hr
DRpMq :“

closed r-forms on M
exact r-forms on M

“
ker dL

im d

is the r-th de Rahm cohomology group of M.

Lecture 13 5 November 2015

Last time we introduced de Rahm cohomology.

Definition 99. Any smooth map F : M Ñ N of smooth manifolds induces a
map

F˚ :“ pdpFq˚ : T˚FppqM Ñ T˚p M

for all p P M. For α P T˚FppqM and v P Tp M,

F˚pαqpvq “ αpdpFpvqq

This is called the pullback of F. Notice for any g : N Ñ R,

F˚pdgqpvq “ dgpdpFpvqq “ pdpFqpvqpgq “ vpg ˝ Fq “ vpF˚gq “ dpF˚gqpvq

This defines a pullback map F˚ : ΩrpNq Ñ ΩrpMq given by

pF˚ωqppv1, . . . , vrq “ ωFppqpdpFpv1q, . . . , dpFpvrqq

for some tangent vectors vi P Tp M.

Given this definition, what’s the pullback of the wedge of two forms ω and
η in ΩpNq? Well, the definition above implies that

F˚pω^ ηq “ pF˚ωq ^ pF˚ηq
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because it is true pointwise. This also includes the case when ω is a 0-form,
that is, a smooth function.

The fact that F˚ω is smooth (that is, in ΩrpNq) when ω is smooth follows
from a local calculation. For any local coordinate system x1, . . . , xn on U Ď N,

F˚pgdxi1 ^ . . .^ dxirq “ F˚pgqdhi1 ^ . . .^ dhir

where hij “ F˚pxijq “ xij ˝ F are smooth functions on F´1U Ď M and hence the
above form is locally smooth on M. Linearity implies that F˚ω P ΩrpMq for
any ω.

Fact 100.

(a) Following from the definition, we also observe that for F : M Ñ N and
G : P Ñ M, pF ˝ Gq˚ “ G˚ ˝ F˚ by the chain rule.

(b) F˚dω “ dpF˚ωq follows straight from calculations with the definition of
exterior derivative.

(c) From item (b), we can see that the pullback of a closed form is closed, and
the pullback of an exact form is exact.

Therefore, by item (c) above, any smooth map F : M Ñ N induces a linear
map F˚ : Hr

DRpNq Ñ Hr
DRpMq. If F is a diffeomorphism with inverse G, then

F˚ on de Rahm cohomology is an isomorphism with inverse G˚.

Remark 101. This is kind of a weak statement. de Rahm Cohommology is a
topological invariant, not just a smooth invariant.

Lemma 102 (Poincaré Lemma). HkpDq “ 0 for any k ą 0 and open ball D in
Rn.

Proof Sketch. One constructs linear maps hk : ΩkpDq Ñ Ωk´1pDq such that

hk`1 ˝ d` d ˝ hk “ idΩkpDq.

(See Warner pg 155-156 for the construction). Then given ω P ΩrpDq closed,
apply the identity to see that

ω “ hk`1pdωq ` dphkωq “ hk`1p0q ` dphkωq

and therefore ω is exact. Therefore, Hk
DRpDq “ 0.

Exercise 103. For any connected manifold M, H0
DRpMq “ R is just the constant

function.

Integration on Manifolds

Let M be an n-dimensional oriented manifold. Let ω P ΩnpMq such that the
support of ω

supppωq :“ closure of tp P M | ωp ‰ 0u
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is compact. We say ω is compactly supported. If M is itself compact, then this
is a silly consideration because supppωq is closed anyway, and hence compact.

Suppose we have a coordinate chart φ “ px1, . . . , xnq : U Ñ Rn with U con-
nected and φpUq is bounded. Let ω P ΩnpUq. Since ΩnT˚M is 1 dimensional
and generated over U by dx1 ^ . . .^ dxn, we can write ω “ f dx1 ^ . . .^ dxn
on U with f smooth on U. Without loss of generality, assume f ˝ φ´1 extends
continuously to φpUq Ď Rn. Assume that the order of the coordinates has been
chosen such that dx1 ^ . . .^ dxn is in the given orientation.

Definition 104. We define
ż

U
ω “

ż

U
f dx1 ^ . . .^ dxn :“

ż

φpUq
p f ˝ φ´1q dr1 ^ dr2 ^ . . .^ drn

where the rightmost integral is as in ordinary multivariable calculus.

Claim 105. This definition doesn’t depend on the choice of chart.

Proof. Suppose ψ “ py1, . . . , ynq on U is a chart in the same orientation. Then

f dx1 ^ . . .^ dxn “ f det

˜

Bxi
Bxj

¸

dy1 ^ . . .^ dyn,

where because φ, ψ are in the same orientation, det
´

Bxi{Byj

¯

ą 0. Recall that

˜

Bxi
Byj

¸

“ J ˝ ψ

where J is the Jacobian matrix of the coordinate transformation

F “ φ ˝ ψ´1 : V “ ψpUq Ñ φpUq “ FpVq.

Change of variable formula for multivariable calculus says that
ż

FpVq
hdr1 ^ . . .^ drn “

ż

V
ph ˝ Fq|det J|ds1 ^ ¨ ¨ ¨ ^ dsn,

where si are the coordinates on ψpUq Ď Rn. When h “ f ˝ φ´1, we see that
ż

φpUq
f dx1 ^ . . .^ dxn “

ż

φpUq
p f ˝ φ´1qdr1 ^ . . .^ drn

“

ż

ψpUq
p f ˝ ψ´1q|det J|ds1 ^ . . .^ dsn

“

ż

ψpUq
p f ˝ ψ´1qdet Jds1 ^ . . .^ dsn

“

ż

ψpUq
f det

˜

Bxi
Byj

¸

dy1 ^ . . .^ dyn

Therefore,
ş

U ω is well-defined.
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We can make our integrations more general. Given supppωq compact, there
is a finite collection φi : Ui Ñ Rn of bounded coordinate charts pi “ 1, . . . , rq
such that supppωq Ď

Ťr
i“1 Ui. We set

Ai “

ż

Ui

ω for i “ 1, . . . , r,

Aij “

ż

UiXUj

ω for i ă j, and

Aijk “

ż

UiXUjXUk

for i ă j ă k.

These are all well-defined by the previous claim. Define

ż

M
ω “

r
ÿ

i“1

Ai ´
ÿ

iăj

Aij `
ÿ

iăjăk

Aijk ` . . .` p´1qr`1 A1,2,...,n

Lemma 106. This is independent of the choice of scharts. That is, if we have
another collection of charts ψj : Vj Ñ Rn of charts with j “ 1, . . . , s and with
supppωq Ď

Ť

j Vj, set Bi, Bij, Bijk similarly to the above. Then

r
ÿ

i“1

Ai ´
ÿ

iăj

Aij `
ÿ

iăjăk

Aijk ` . . . “
r
ÿ

i“1

Bi ´
ÿ

iăj

Bij `
ÿ

iăjăk

Bijk`

Lecture 14 7 November 2015

Last time we defined integration on manifolds. There were a few hiccups with
the last lecture so let’s make some clarifications.

Remark 107. Clarification of the definition of
ş

M ω.

(1) One can assume that f ˝ φ´1 extends continuously to the closure of φpUq
by shrinking U if required.

(2) Recall ω “ f dx1 ^ . . .^ dxn “ ∆dy1 ^ . . .^ dyn, where ∆ is the determi-
nant of the Jacobian. The left hand side of the change of variable formula
is
ş

U ω in the xi coordinates,
ż

U
f dx1 ^ . . .^ dxn

and the right hand side is
ş

U ω in the yj coordinates,
ż

U
f ∆dy1 ^ . . .^ dyn.

Theorem 108 (Stokes’s Theorem without proof). Suppose η P Ωn´1pMq has
compact support. Then

ż

M
dη “ 0.
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Fact 109. Stokes’s Theorem produces a perfect pairing between HrpM, Rq ˆ

Hr
DRpM, Rq Ñ R by means of “integrating over cycles.” Here HrpM, Rq is sin-

gular homology.

Corollary 110 (Integration by Parts). Suppose α, β are compactly supported
forms on M, with deg α` deg β “ dim M´ 1. Then

ż

M
α^ dβ “ p´1qdeg α`1

ż

M
pdαq ^ β

Corollary 111. If M is a compact, orientable n-manifold, then Hn
DRpMq ‰ 0.

Proof. Choose an orientation ω P ΩnpMq. Then
ş

M ω ą 0. But ω is clearly
closed, but not exact by Stokes. Hence, Hn

DRpMq ‰ 0.

Lie Derivatives

These won’t play a major part in this course, but they do have an important
relation with connections, which will be the major topic of this course after this
lecture.

Definition 112. Given a vector field X on a manifold M and p P M, and an
open neighborhood U Q p, a flow on U is a collection of functions φt : U Ñ

φtpUq for |t| ă ε such that

(i) φ : p´ε, εq ˆU Ñ M defined by φpt, qq “ φtpqq is smooth;

(ii) if |s|, |t|, |t` s| ă ε and φtpqq P U, then φs`tpqq “ φspφtpqqq;

(iii) if q P U, then Xpqq is the tangent vector at t “ 0 of the curve t ÞÑ φtpqq.

So if f : U Ñ R is a smooth function on an appropriate neighborhood of
U Q p, by assumption γ : t Ñ φtppq is an integral curve for X with γp0q “ p.
Furthermore, Xppq “ 9γp0q “ d0γ

´

d{dr

¯

. Therefore,

Xp f qppq “ Xppqp f q “ d0γ

ˆ

d
dr

˙

f “ p f ˝ γq1p0q

This map f ˝ γ is now a function R Ñ R, so we can write out the derivative in
terms of limits.

Xp f qppq “ p f ˝ γq1p0q

“ lim
hÑ0

p f ˝ γqphq ´ p f ˝ γqp0q
h

“ lim
hÑ0

f pφhppqq ´ f ppq
h

“ lim
hÑ0

φ˚h p f qppq ´ f ppq
h

Locally, we therefore have that

Xp f q “ lim
hÑ0

φ˚h p f q ´ f
h

This is the Lie Derivative on functions.
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Definition 113. The Lie Derivative of f : M Ñ R is LXp f q “ Xp f q P C8pUq

Now we can extend the definition of the Lie derivative to forms. For F : N Ñ

M smooth and ω P
Źr T˚M a smooth r-for, last time we defined F˚ω induced

pointwise from maps dpF : TpN Ñ Tf ppqM. Namely,

F˚pωqppq “ pdpFq˚pωFppqq,

which we’ll also denote by F˚pωFppqq.

Definition 114. If ω is an r-form on M, we define the Lie Derivative with
respect to X by

LXpωq “ lim
hÑ0

φ˚h pωq ´ω

h
,

or pointwise by

LXpωqppq “ lim
hÑ0

φ˚h pωqppq ´ωppq
h

Fact 115. Some facts regarding Lie derivatives.

(a) If ω, η are smooth forms, then

pφ˚h pω^ ηq ´ω^ ηqp “ pφ
˚
h pωq ^ φ˚h pηq ´ω^ ηqp

“ φ˚h pωφhppqq ^
´

φ˚h ηφhppq ´ ηp

¯

`

´

φ˚h ωφhppq ´ωp

¯

^ ηp

This implies that LX is a derivation:

LXpω^ ηq “ LXpωq ^ η `ω^LXpηq.

(b) For any smooth map φ, we saw that φ˚pdωq “ dpφ˚ωq. Hence,

LXpdωqp “ lim
hÑ0

1
h

´

pφ˚h qpdωqφhppq ´ dωp

¯

“ lim
hÑ0

1
h

d
´

φ˚h ωφhppq ´ωp

¯

“ dLXω

(c) If X “
ř

i Xi
B{Bxi in local coordinates and ω “ f dxi1 ^ . . .^ dxir , then (a)

implies that

LXω “ pX f qdx1 ^ . . .^ dxr ` f
r
ÿ

j“1

dxi1 ^ . . .^ dxij´1 ^ dXij ^ . . .^ dxir

sine LXpdxjq “ dpLXpxjqq “ dpXpxjqq “ dXj.

Suppose now φ : U Ñ V is a diffeomorphism and Y is a vector field on V.
We can define φ˚pYq :“ pφ´1q˚Y, which produces a vector field on M.
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Definition 116. Thus for Y a vector field on M, we can define a Lie derivative
of a vector field Y by

LXpYqppq “ lim
hÑ0

pφhq˚pYqppq ´Yppq
h

“ lim
hÑ0

pφ´hq˚Yφhppq ´Yp

h

Therefore,

LXpYq “ lim
hÑ0

pφ´hq˚Y´Y
h

Remark 117. Setting k “ ´h, this is also

lim
kÑ0

1
k

´

Yp ´ pφkq˚Yφkppq

¯

ùñ LXpYq “ lim
kÑ0

1
k
pY´ pφkq˚Yq

Example sheet 2, question 11 asks you to prove that LXpYq “ rX, Ys.

Remark 118.

(1) LX defines an operator on all tensors of a given type in exactly the same
way.

(2) pLXTqp depends on X in a neighborhood of p and not just on Xppq. (Con-
trast this with connections when we talk about them next time.)

(3) In general, pL f XTqp ‰ f ppqpLXTqp.

Lecture 15 10 November 2015

Connections on Vector Bundles

This is really the crux of the course. Here we’re going to talk about connections
on arbitrary vector bundles, and later we’re going to specialize to connections
on the tangent bundle. Even later, we’ll introduce metrics into the equation
and then there’s a canonical connection called the Levi-Civita connection.

We start with vector bundle valued forms.

Definition 119. Suppose π : E Ñ M is a smooth rank k vector bundle over M.
An E-valued q-form is a smooth section of the vector bundle Eb

Źq T˚M “

Eb p
Ź

TMq˚ “ Hom
`
Źq TM, E

˘

.
Denote such forms as ΩqpM, Eq.

Definition 120. If U Ď M is an open subset for which E|U “ π´1pUq – UˆRk,
then we have a frame of smooth sections e1, . . . , ek of E|U which form a basis
for the fiber Ep for all p P U.
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Therefore,
E|U b

ŹqT˚M|U –
`
ŹqT˚M|U

˘k ,

and sections of ΩqpU, Eqmay be written in the form ω1e1` . . .`ωkek P ΩkpUq.
If moreover U is a coordinate neighborhood in M with coordinates x1, . . . , xn,

each ωi is of the form ωi “
ř

I f Idxi1 ^ . . .^ dxiq and so an element of ΩqpU, Eq
may be written as

ř

IĎt1,...,nu
#I“q,1ďjďk

f I,jdxi1 ^ . . .^ dxiq b ej

This shows that the bundle pEb
Źq T˚Mq|U is trivial, isomorphic to UˆR

kpnqq.
Similarly, we have smooth sections of ΩqpEndpEqq of

HompE, Eq b
ŹqT˚M,

where EndpEq :“ HompE, Eq. And if E|U is trivial, the sections of this bundle
over U may be regarded as matrix-valued q-forms.

Definition 121. If e1, . . . , ek is a local frame for E over U, we have the dual frame
ε1, . . . , εk for E˚ over U and any element of ΩqpU, EndpEqq may be written in
the form

ÿ

i,j

ωij b εi b ej

with ωij P ΩqpUq.

Fact 122. Given finite dimensional vector spaces V and W, there is a natural
identification HompV, Vq bW Ñ HompV, V bWq. In particular, this identifies
the vector bundles

HompE, Eq b
ľq

T˚M „ Hom
´

E, Eb
ľq

T˚M
¯

Definition 123. Given a vector valued forms σ1 P ΩppM, Eq, σ2 P ΩqpM, E1q,
we can define a product σ1^σ2 P Ωp`qpM, Eb E1q. On forms, this is just taking
the wedge product, and on the bundle part it’s just tensoring.

Locally, with respect to a trivialization e1, . . . , ek of E and e11, . . . , e1` of E1, this
is defined by

pω1 b eiq ^ pω2 b e1jq ÞÑ pω1 ^ω2qe1 b e1j,

and extending linearly. Morally, we should check that this definition makes
global sense (i.e. agrees on overlaps of trivialization chosen).

Definition 124. When E1 “ E˚, we have a natural map E b E˚ to the trivial
bundle given locally by ei b ε j ÞÑ ε jpeiq. If we identify E b E˚ “ HompE, Eq,
then this is just given by the trace map.

This defines a product on E-valued p-forms and E˚-valued q-forms via the
composition

ΩppM, Eq ˆΩqpM, E˚q ^ Ωp`qpM, Eb E˚q tr Ωp`qpMq

This is usually just denoted by ^.
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Definition 125. Similarly, we have a product

ΩppM, EndpEqq ˆΩqpM, EndpEqq ^ Ωp`qpM, EndpEqq.

This is just multiplying these matrices, but using the wedge product instead of
multiplication.

Definition 126. Of particular importance is the product

ΩppM, EndpEqq ˆΩqpM, Eq Ωp`qpM, Eq

given locally by
¨

˝

ÿ

i

ωi b θi,
ÿ

j

ηj b sj

˛

‚ ÞÑ
ÿ

i,j

ωi ^ ηj b pθipsjqq

This is usually just denoted by ^.

Example 127. When we define the curvatureR, it is an element of Ω2pM, EndpEqq
and we have an induced map

ΩqpEq Ωq`2pEq
σ ÞÝÑ R^ σ

Connections

Connections enable us to differentiate sections of a vector bundle of rank r.

Definition 128. A linear connection on the vector bundle E over M is given by,
for any open U Ď M, a mapD “ DpUq : ΓpE, Uq Ñ Ω1pU, Eq “ ΓpU, EbT˚Mq,
such that

(i) if U Ě V and σ P ΓpU, Eq, then Dpσ|Vq “ pDσq|V ;

(ii) Dp f σq “ fDpσq ` d f b σ;

(iii) Dpσ1 ` σ2q “ Dσ1 `Dσ2. Where f is a smooth function on M.

Remark 129. This definition of the connection differs form almost every book
on differential geometry. It’s the sheaf-theoretical definition of connections.
Most books define it to be a global map ΓpEq Ñ Ω1pM, Eq satisfying Defini-
tion 128(ii) and Definition 128(iii).

While in some cases we’ve taken the standard notation to agree with the
books, defining this thing globally is just wrong. Many books require some
illegal finesse to discuss global-to-local property.

Our definition avoids this problem because if we know DpUαq for some
open cover tUα | α P Au of M, then Definition 128(i) guarantees that we have a
well-defined global map.
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Definition 130. For a given p P M and α P Tp M, we can define a map

Dα : ΓpU, Eq Ñ Ep

for any neighborhood U Q p by

Dαpσq “ pDσqpαq.

This is the covariant derivative along α.
Moreover, if X is a smooth vector field on U Ď M, then define the covariant

derivative along X by

DXpσq “ pDσqpXq P ΓpU, Eq

Note that DXpσqppq P Ep only depends on locally on σ and Xp.

Fact 131. From the properties of D, we see that

DXpσ1 ` σ2q “ DXσ1 `DXσ1

DXp f σq “ fDXσ` Xp f qσ

D f X`gYpσq “ fDXσ` gDYσ

Contrast the covariant derivative with the Lie derivative, on say E “ TM.
Recall that

L f X`gYpZq ‰ fLXZ` gLYZ

in general.

Lecture 16 12 November 2015

Last time we introduced the essential topic of connections on vector bundles
in a sheaf-theoretic way. What dos this look like in local coordinates? This
lecture is somewhat of a tangent (no pun intended) wherein we explore the
alternative definition of connections that is found in most books, and compare
to our definition.

Suppose now that te1, . . . , eru is a local frame for E over U Ď M; let us set

Dej “
ÿ

j

θkjek P Ω1pU, Eq,

where the juxtaposition θkj b ek. We also often write θk
j “ θkj.

The matrix θe “
“

θij
‰

1ďi,jďk of local 1-forms is called the connection matrix.
If U also a coordinate neighborhood with coordinates x1, . . . , xn, we can

write entries of the connection matrix in terms of dx1, . . . , dxn, say

θk
j “

n
ÿ

i“1

Γk
ijdxi
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with Γk
ij smooth functions on U. Then setting

Di “ DB{Bxi

(this is DX where X is the vector field X “ B{Bxi ). Then we have

Diej “

r
ÿ

k“1

Γk
ijek.

(Note that in some books, the indices i and j may be transposed.)
What happens when we change coordinates? If we change the chart, then

θk
j and Γk

ij will also change. Suppose for instance we have another frame
e11, . . . , e1r and the transition functions between the two trivializations is given
by an rˆ r matrix of smooth functions ψ “

“

ψij
‰

1ďi,jďr. This means that with

respect to the te1iu-basis
e1j “

ÿ

k

ψkjek.

Therefore,

De1j “ D

˜

ÿ

k

ψkjek

¸

“
ÿ

k

dψkjek `
ÿ

k,`

ψkjθ`ke`

We can rewrite this in terms of the te1iu-basis by applying ψ´1:

“
ÿ

p

¨

˝

ÿ

k

dψkjpψ
´1qpk `

ÿ

k,`

ψkjθ`kpψ
´1qp`

˛

‚e1p

These terms in parentheses are the coordinates of θe1 , so

pθe1qpj “

¨

˝

ÿ

k

dψkjpψ
´1qpk `

ÿ

k,`

ψkjθ`kpψ
´1qp`

˛

‚

So we are left with the important equation

θe1 “ ψ´1dψ` ψ´1θeψ

Exercise 132. We could also change coordinate systems on U, say to y1, . . . , yn
and find expressions for pΓ1qkij in terms of Γk

ij. Check that

pΓ1qkpj “ pψ
´1qik

Bψkj

Byp
` pψ´1qijΓk

q`ψ`j

ˆ

Bxq

Byp

˙

,

where we have assumed the summation convention in the expression above.

Definition 133. We say that a section σ P ΓpU, Eq is horizontal at p P U with
respect to the connection if and only if Dασ “ 0 for all α P Tp M, if and only if
pDσqp “ 0.
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What does this really mean? Given a local trivialization σ “
ř

j f jej as
above,

D

¨

˝

ÿ

j

f jej

˛

‚“

r
ÿ

j“1

˜

d f j b ej `

r
ÿ

k“1

f jθkjek

¸

“

r
ÿ

k“1

¨

˝d fk `

r
ÿ

j“1

θkj f j

˛

‚ek

This is an equation at p. So Dpσq “ 0 at p if and only if the coefficients vanish,

d fk `

r
ÿ

j“1

θj f j “ 0,

at p for all k.
If moreover we have coordinates x1, . . . , xn on U, we may rewrite this con-

dition as
d fk `

ÿ

i,j

f jΓk
ijdxi “ 0

for k “ 1, . . . , r. Plugging in xi to this equation, we get the condition

B fk
Bxi

`
ÿ

j

Γk
ij f j “ 0

at p for all k “ 1, . . . , r and all i “ 1, . . . , n.

Under the above trivialization given by the frame e1, . . . , er and coordinates
x1, . . . , xn on U, we have coordinates on E|U – UˆR given by px1, . . . , xn; a1, . . . , arq.
The tangent space TqE for q P E|U has dimension r` n and basis

B

Bx1
, . . . ,

B

Bxn
,
B

Ba1
, . . . ,

B

Bar
.

Let σ be the section of E given by σp~xq “ p~x; f1p~xq, . . . , frp~xqq. The tangent
space to σpUq at σppq is generated by tangent vectors of the form

pdσq

ˆ

B

Bxi

˙

,

where

pdσq

ˆ

B

Bxi

˙

pxkq “
B

Bxi
pxk ˝ σq “ fik

and

pdσq

ˆ

B

Bxi

˙

pajq “
B

Bxi
paj ˝ σq “

B f j

Bxi

ˇ

ˇ

ˇ

ˇ

p
.

This means that

dσ

ˆ

B

Bxi

˙

“
B

Bxi

ˇ

ˇ

ˇ

ˇ

σppq
`
ÿ

j

B f j

Bxi
ppq

B

Baj

ˇ

ˇ

ˇ

ˇ

σppq
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What does this all have to do with what we did before? Let’s evaluate the
form

¨

˝dak `
ÿ

i,j

Γk
ijajdxi

˛

‚

on the vector
¨

˝

B

Bx`

ˇ

ˇ

ˇ

ˇ

σppq
`
ÿ

j

B f j

Bx`
ppq

B

Baj

ˇ

ˇ

ˇ

ˇ

σppq

˛

‚,

then
¨

˝dak `
ÿ

i,j

Γk
ijajdxi

˛

‚

¨

˝

B

Bx`

ˇ

ˇ

ˇ

ˇ

σppq
`
ÿ

j

B f j

Bx`
ppq

B

Baj

ˇ

ˇ

ˇ

ˇ

σppq

˛

‚“

¨

˝

B fk
Bx`

`
ÿ

j

Γk
ij f j

˛

‚

p

And if σ is horizontal at p, then this is zero.

Definition 134. Note that the forms

dak `
ÿ

i,j

Γk
ijajdxi

on TσppqE for k “ 1, . . . , r are linearly independent, and when σ is horizontal at
p they also span. So the tangent space to σpUq at σppq is cut out precisely by
these forms. We then say that the tangent space at σppq of σpUq is horizontal
with respect to the connection.

Definition 135. This yields an alternative description of the connection as a
family Sq Ď TqE of n-dimensional subspaces (what we previously called a
distribution), called the horizontal subspaces; the corresponding sub-bundle
generated by this distribution is called a horizontal bundle.

In terms of any local trivialization of π´1pUq with coordinates x1, . . . , xn,
a1, . . . , ar as above, Sq is defined by forms of the type

dak `
ÿ

i,j

Γk
ijajdxi “ dak `

ÿ

j

θkjaj

and is independent of the trivialization.
Reversing the argument gives a connection in the sense we’ve defined it in

the previous lecture (Definition 128).

Definition 136. A local section σ : U Ñ E is horizontal/parallel/covariantly
constant if it is horizontal at all points p of U.

Example 137. The standard connection on TRn is given by

D
ˆ

B

Bxi

˙

“ 0

for all i. If σ “
ř

fi
B{Bxi , then

Dσ “
ÿ

i

d fi b
B

Bxi
“ 0 ðñ d fi “ 0 for all i ðñ fi constant for all i
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Lemma 138. Given a vector bundle E over M, there is a connection on E.

Proof. Locally, E|U – U ˆRr is trivial, where r is the rank of the bundle E.
There is a connection ∇ on U ˆRr such that ∇pekq “ 0 for all k, where teiu

defines a frame on U.
Now choose an open cover U “ tUj | j P Ju of M consisting of such open

sets, and a partition of unity tρi | i P Iu subordinate to U (which means that for
each i P I, supppρiq Ď Ujpiq for some j P J). Then define the connection on E by

D “
ÿ

iPI

ρi∇jpiq,

where ∇jpiq is the connection on E|U .

Homomorphisms of bundles

Recall that a homomorphism of vector bundles over M is a smooth map Ψ : E Ñ
F with maps on fibers Ψp : Ep Ñ Fp for each p, commuting with the maps
E Ñ M and F Ñ M.

E F

M

Ψ

So if U Ď M, we have an induced map Ψ˚ “ ΨpUq : ΓpU, Eq Ñ ΓpU, Fq
given by Ψ˚pσq “ Ψ ˝ σ. Note that

Ψ˚p f σ` gτq “ f Ψ˚pσq ` gΨ˚pτq (5)

for all smooth f , g P Ω0pUq.
I think I messed up the difference between capital and lowercase ψ in the

following. I got confused by the lecturer’s handwriting! The point is that ψpUq
is the local map ΓpU, Eq Ñ ΓpU, Fq, while Ψ is the map of bundles globally
E Ñ F.

Conversely, suppose we have maps ψpUq : ΓpU, Eq Ñ ΓpU, Fq compatible
with restrictions (as in sheaf morphisms) such that (5) holds

ψpUqp f σ` gτq “ f ΨpUqpσq ` gψpUqpτq

for all σ, τ P ΓpU, Eq and f , g P Ω0pUq.
We have a well-defined map Ψ : E Ñ F given for any section s P ΓpU, Eq,

U Q p, by Ψpsppqq “ ψpsqppq.
What does this look like locally? In any open neighborhood of p, we choose

a frame e1, . . . , er of E|U (that is, e1pqq, . . . , erpqq a basis for Eq for all q P U) and
then any section s of E|U is of the form s “

ř

i fiei for some fi P Ω0pUq. Then
(5) implies that

ψpsq “
ÿ

i

fisi,
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where s “ ψpUqpeiq P ΓpU, Fq. So when evaluating at p, we get

ψpsqppq “
ÿ

i

fippqsippq,

and any element of Ep is of the form
ř

i λieippq, and so define

Ψ

˜

ÿ

i

λieippq

¸

:“
ÿ

i

λisippq.

This is well-defined by the compatibility conditions we imposed. Hence, Ψ
gives a homomorphism of vector bundles, and moreover for any section σ P

ΓpV, Eq, V open in M,

Ψ˚pσqppq “ Ψpσppqq “ ψpσqppq

for all p P V. This implies that Ψ˚ “ ψ over any open set.

Lemma 139. Suppose D1,D2 are connections on a vector bundle E over M,
then pD1 ´ D2q corresponds to an element of Ω1pEndpEqq – ΓpHompE, E b
T˚Mqq. Essentially, we can take any connection, add a 1-form over EndpEq,
and get another connection.

Remark 140. For bundles E, F, HompE, Eb Fq – E˚ b Eb F – HompE, Eq b F.

Proof of Lemma 139. Just note that for any open set U and sections σ, τ P ΓpU, Eq
and f , g P Ω0pUq, compute

pD1 ´D2qp f σ` gτq “ f pD1 ´D2qpσq ` gpD1 ´D2qpτq

Hence, the result follows from the discussion above.

Following this lemma, we can see that the connections on a vector bundle
are an infinite dimensional affine space (meaning that we have a vector space
without an origin) over the vector field Ω1pEndpEqq. The automorphism group
of the vector bundle acts in a natural way on this affine space of connections.

Covariant Exterior Derivative

Definition 141. Given a connection D : Ω0pEq Ñ Ω1pEq (this is really short-
hand for DpUq on sections over U for all open U, compatible with restrictions).
We can define a covariant exterior derivative D “ dE : ΩppEq Ñ Ωp`1pEq, sat-
isfying the Liebniz rule, that is, for any E-valued form µ and every differential
form ω,

dEpµ^ωq “ dEµ^ω` p´1qdeg µµ^ dω

dEpω^ µq “ dω^ µ` p´1qdeg ωω^ dEµ

Lemma 142. Given a connection D on a vector bundle E, there is a unique
covariant derivative dE such that dEpσq “ Dσ for all σ P Ω0pEq.

49



Proof. Suppose that we have a local frame s1, . . . , sr for E. Then for σ “
ř

i fisi,

Dσ “
ÿ

i

d fi b si `
ÿ

i

fiDsi “
ÿ

i,k

fiθkisk

We extend this as follows. There’s really only one choice, since we have the
Leibniz rule. Given

ř

i ωi b si P ΩppU, Eq , we set

dE

˜

ÿ

i

ωi b si

¸

“
ÿ

i

´

dωi b si ` p´1qpωi ^ dEs
¯

,

where dEpsiq “ Dsi “
ř

k θkisk. Therefore,

dE

˜

ÿ

i

ωi b si

¸

“
ÿ

i

dωi b si ` p´1qp
ÿ

i,k

ωi ^ θkisk.

Given a change of frame s1j “
ř

ψijsi, one checks easily that this definition
doesn’t depend on the choice of frame.

We’re forced by the Leibniz rule to make this definition the way that we
did, and so dE is defined uniquely over such an open set U. In particular,
these patch together to give a well-defined and unique map dE : ΩppU, Eq Ñ
Ωp`1pU, Eq for any open U, including U “ M.

Definition 143. Consider now the map R “ dE ˝ dE “ D2 : Ω0pEq Ñ Ω2pEq.
This is called the curvature operator.

Note that

D2p f σq “ Dpd f b σ` f Dσq “ d2 f b σ´ d f ^Dσ` d f ^Dσ` f D2σ “ f D2σ.

So even though D doesn’t correspond to a homomorphism of vector bundles,
R in fact does. Our previous discussion shows that R P ΓpHompE,

Ź2 T˚Mb

Eqq, but we can in fact identify the bundle HompE,
Ź2 T˚MbEqqwith

Ź2 T˚Mb

HompE, Eq, and henceR corresponds to an element

R P Γ
´

ľ2
T˚MbHompE, Eq

¯

whereRpσq “ R^ σ, that is,

RpσqpX, Yqσ “ RpX, Yqσ P ΓpEq

for all σ P ΓpEq.
Usually we denoteR also by R, that is, we identify

HompE,
ľ2

T˚Mb Eq –
ľ2

T˚MbHompE, Eq

Definition 144. Ω2pEndpEqq :“ Γp
Ź2 T˚MbHompE, Eqq.

50



Lecture 18 17 November 2015

Last time we defined the curvature by setting D2 “ R P ΓpHompE, Λ2T˚Mb

Eqq – Ω2pEndpEqq. This curvatureR corresponds to R P Ω2pEndpEqq by

RpσqpX, Yq “ RpX, Yqσ

for all vector fields X, Y. With respect to a trivialization e1, . . . , ek of E, it’s given
by a matrix of 2-forms Θe, namely

D2

˜

ÿ

i

fiei

¸

“
ÿ

i

fiD2peiq

where

D2peiq “ Dp
ÿ

k

θkiekq

“
ÿ

k

dθkiek ´
ÿ

k,j

θki ^ θjkej

“
ÿ

k

dθkiek `
ÿ

k,j

θjk ^ θkiej

Therefore,
D2peiq “

ÿ

Θkiek

where Θe “ dθe ` θe ^ θe is a matrix of 2-forms.
If e1j “

ř

ψijei is another frame, the curvature matrix changes as follows:

D2e1j “ D2

˜

ÿ

i

ψijei

¸

“
ÿ

i

ψijD2peiq

“
ÿ

i,k

ψijΘkiek

“
ÿ

i,k,`

ψijΘkipψ
´1q`ke1`

Therefore,
pΘe1q`j “

ÿ

i,k

pψ´1q`kΘkiψij

but again this looks much neater when we write this as a matrix:

Θe1 “ ψ´1Θeψ.

Definition 145. A connection is called flat if it’s curvature is zero.
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For example, if E “ M ˆRr is the trivial bundle with trivializing frame
e1, . . . , er such that eippq “ pp, eiq, then we can define a flat connection on E by
specifying that the ei are parallel, that is, Dpeiq “ 0 for all i “ 1, . . . , r.

Exercise 146 (Example Sheet 3, Question 7). If a vector bundle E admits a flat
connection, then there is a choice of local trivializations so that the transition
functions are constant: ψβαppq “ hβα for all p P Uα X Uβ. Moreover, if M
is simply connected, then the vector bundle is isomorphic to a trivial bundle
(trivialized by a parallel frame).

With respect to a local frame e1, . . . , er for E, R P Ω2pEndpEqq corresponds
to a matrix Θe of 2-forms, and

Rpeiq “
ÿ

Θkiek “
ÿ

Θk
i ek,

where Θki “ Θk
i .

Therefore, R “
ř

Θk
i εi b ek, where ε1, . . . , εr are the dual frame for E˚.

Given a local coordinate system x1, . . . , xn, we have that

R
ˆ

B

Bxp
,
B

Bxq

˙

ei “
ÿ

k

Θk
i

ˆ

B

Bxp
,
B

Bxq

˙

ek

Therefore,

R
ˆ

B

Bxp
,
B

Bxq

˙

ei “
ÿ

k

Rk
ipqek,

where the coefficients are given by Rk
ipq “ Θk

i

´

B{Bxp , B{Bxq

¯

.
So

Rpeiq “
ÿ

k“1,...,r
păq

Rk
ipqdxp ^ dxq b ek

“
ÿ

k“1,...,r
păq

Rk
ipqdxp b dxq b ek

where Rk
iqp “ ´Rk

ipq.

Exercise 147 (Example Sheet 3, Question 4). If σ is a section of E, then

RpX, Yqσ “ RpσqpX, Yq “ DXDYσ´DYDXσ´DrX,Ysσ

In essence, the curvature measures the failure of DX and DY to commute.

From now on, denote the curvature map also by R rather than R. This is a
consequence of identifying HompE,

Ź2 T˚Mb Eqwith
Ź2 T˚MbHompE, Eq.

Proposition 148 (General Bianchi Identity, coordinate version). Having chosen
a local trivialization e1, . . . , er for E over U, recall that

D2peiq “ Rpeiq “
ÿ

k

Θkiek,

52



with Θki “ Θk
i . This matrix is given by Θe “ pΘkiq, given by

Θe “ dθe ` θe ^ θe,

where θ is the connection matrix. Then,

dΘ “ dθ ^ θ ´ θ ^ dθ

“ dθ ^ θ ` θ ^ θ ^ θ ´ θ ^ dθ ´ θ ^ θ ^ θ

“ Θ^ θ ´ θ ^Θ

Consequently,
dΘki “

ÿ

j

´

Θkj ^ θji ´ θkj ^Θji

¯

A coordinate free version of the Bianchi identity is on Example Sheet 3,
Question 5.

Orthogonal Connections

Suppose we have an orthogonal structure on a vector bundle E over M of rank
r in which all the transition functions lie in Oprq. In this case, the standard
inner product on Rr yields a well-defined inner product x , yp on fibers Ep
of E varying smoothly with p. More abstractly, this is a smooth section of
E˚ b E˚ which induces the inner product on each fiber. This smooth section is
symmetric and positive definite.

We call such a section of E˚ b E˚ a smooth metric on E, denoted by x , y.
Conversely, if we have a smooth metric on E, then we may reduce the struc-

ture group to Oprq. Locally, we can apply Gram-Schmidt orthonormalization
to any given frame.

Lemma 149. Metrics always exist on any given vector bundle E.

Less of a proof and more of some words that vaguely justify why. Clearly, they exist
locally, and then we can use a partition of unity to get a global metric.

Definition 150. A connection D on E is orthogonal with respect to a given
metric x , y on E if

dxs1, s2y “ xDs1, s2y ` xs1, Ds2y

for all s1, s2 P ΓpEq. And for any vector field X,

Xxs1, s2y “ xDXs1, s2y ` xs1, DXs2y.

Proposition 151. An orthogonal connection has a skew-symmetric connection
matrix θe and skew-symmetric curvature matrix Θe with respect to any or-
thonormal frame.
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Recall that a connection D is orthogonal with respect to a metric x , y on E if

dxs1, s2y “ xDs1, s2y ` xs1, Ds2y

for all s1, s2 P ΓpEq.
For a vector field X, this means that

Xxs1, s2y “ xDXs1, s2y ` xs1, DXs2y.

Proposition 152. An orthogonal connection has a skew-symmmetric connec-
tion matrix θe and skew-symmetric Θe with respect to any orthonormal frame.

Proof. Suppose that e1, . . . , en is a local orthonormal frame and

Dei “
ÿ

k

θkiek.

Then

0 “ dxei, ejy

“

C

ÿ

k

θkiek, ej

G

`

C

i,
ÿ

`

θ`je`

G

“ θji ` θij.

Hence θ is skew-symmetric. Now given Θe “ dθe ` θe ^ θe, we know that

Θik “ dθij `
ÿ

j

θij ^ θjk

Θki “ dθki `
ÿ

j

θkj ^ θji

“ ´dθik ´
ÿ

j

θij ^ θjk “ ´Θik

Connections on the Tangent Bundle

Koszul Connections

In this chapter, we now specialize to the case of connections ∇ on the tangent
bundle, called Koszul Connections. For notational convenience, we set

∇i “ ∇B{Bxi

with respect to a local coordinate system x1, . . . , xn. Therefore,

∇i

˜

B

Bxj

¸

“

n
ÿ

k“1

Γk
ij
B

Bxk
,
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and the Γk
ij are called the Christoffel Symbols.

The curvature R P Ω2pEndpTMqq determines, for X, Y, Z vector fields, a
vector field RpX, YqZ where

RpX, YqZ “ ´RpX, YqZ.

As a tensor, we can write R with respect to local coordinates x1, . . . , xn as

R “
ÿ

i,p,q,k

Rk
ipq dxp b dxq b dxi b

B

Bxk

Note that Rk
ipq “ ´Rk

iqp.

Remark 153 (WARNING!). You won’t find consistency between any two books
with how the coordinates of the curvature tensor are written. Sometimes what
we write as Rk

ipq is Rk
piq in books or something even weirder.

This definition of R in local coordinates in particular means that

R
ˆ

B

Bxp
,
B

Bxq

˙ˆ

B

Bxi

˙

“
ÿ

k

Rk
ipq

B

Bxk

Definition 154. Let γ : ra, bs Ñ M be a smooth curve. A vector field V along γ

is a smooth function V on ra, bswith Vt “ Vptq P TγptqM. Locally we can write

Vt “
ÿ

i

viptq
B

Bxi

ˇ

ˇ

ˇ

ˇ

γptq

for smooth functions vi on ra, bs.

Suppose now V is a smooth vector field in a neighborhood of γpra, bsq. Then

t ÞÑ ∇ 9γV

is a vector field along γ. This vector field is called the covariant derivative of V
along γ, written DV

dt ; this may however be generalized for any smooth vector
field V along γ.

Proposition 155. There is a unique operation V ÞÑ DV
dt from smooth vector

fields along γ to smooth vector fields along γ such that

(a) DpV`Wq
dt “ DV

dt `
DW
dt ;

(b) Dp f Vq
dt “

´

d f{dt

¯

V ` f DV
dT for f : ra, bs Ñ R smooth;

(c) If Vs “ Yγpsq for some smooth vector field Y defined on a neighborhood
of γptq, then DV

dt psq “ ∇ 9γpsqY.
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Proof. If x1, . . . , xn is a local coordinate system around p “ γpt0q, then for t
sufficiently close to t0, we may write

Vptq “
n
ÿ

j“1

vjptq
B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq
.

Then using (a),

DV
dt

“

n
ÿ

j“1

D
dt

˜

vjptq
B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq

¸

by (a)

“

n
ÿ

j“1

˜

dvj

dt
B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq
` vjptq

D
dt
B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq

¸

by (b)

“

n
ÿ

j“1

˜

dvj

dt
B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq
` vjptq∇ 9γptq

B

Bxj

¸

by (c)

Now as
9γptq “

ÿ

i

dγi
dt

B

Bxi

ˇ

ˇ

ˇ

ˇ

γptq

where γiptq “ xipγptqq, this is just

DV
dt

“

n
ÿ

j“1

˜

dvj

dt
B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq
` vjptq

n
ÿ

i“1

dγi
dt
∇B{Bxi|γptq

B

Bxj

¸

“

n
ÿ

k“1

¨

˝

dvk
dt
`

n
ÿ

i,j“1

Γk
ijpγptqq

dγi
dt

vjptq

˛

‚

B

Bxk

ˇ

ˇ

ˇ

ˇ

γptq

So there is at most one such operation, and it’s easy, if tedious, to check that
the above formula has the required properties.

Remark 156. This yields a value for DV
dt , even at points where 9γp0q “ 0. For

example, if γ is a constant curve, then a vector field along γ is just a curve in the
corresponding tangent space Tp M. Moreover, in the case where γ is constant,
then DV

dt is the usual derivative of a vector-valued function.

Definition 157. A vector field V along γ is parallel along γ with respect to ∇
if DV

dt “ 0 along γ.

This definition makes sense, because when M “ Rn and∇ is the directional
derivative

∇
˜

ÿ

i

fiei

¸

“
ÿ

i

d fi ei

ùñ ∇p f1, . . . , fnq “ pd f1, . . . , d fnq

ùñ ∇Xp f1, . . . , fnq “ pXp f1q, . . . , Xp fnqq

we obtain the standard picture of a parallel vector field along γ, since the equa-
tions reduce down to dvk

dt “ 0 for all k.
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Remark 158. In general, given a curve γ : ra, bs Ñ M and a vector Va P TγpaqM,
there is a unique vector field along γ which is parallel along γ. This is because
the linear ODEs

n
ÿ

k“1

¨

˝

dvk
dt
`

n
ÿ

i,j“1

Γk
ijpγptqq

dγi
dt

vjptq

˛

‚

B

Bxk

ˇ

ˇ

ˇ

ˇ

γptq
“ 0 (6)

have unique solutions vk defined on ra, bs with initial data Vpγpaqq “ Va, and
the required vector field is then

V “

n
ÿ

j“1

vjptq
B

Bxj

ˇ

ˇ

ˇ

ˇ

γptq
.

Definition 159. We say that the vector Vt P TγptqM is said to be obtained from
Va by parallel transport or parallel translation along γ.

Clearly from the equations (6), the map τt : TγpaqM Ñ TγptqM is a line map;
it has inverse given by parallel transport along the reversed curve and so is an
isomorphisms of vector spaces.

This gives us a way to connect tangent spaces at different points. Parallel
translation is determined in terms of∇, but we can reverse the process as well.
This will let us define parallel connections on any tensor bundle, not just the
tangent bundle.

Lecture 20 21 November 2015

Recall that given a connection ∇ on TM and a curve γ : ra, bs Ñ M, we have a
parallel translation map τt : TγpaqM Ñ TγptqM.

Proposition 160. Let γ : r0, 1s Ñ M be a curve with γp0q “ p and 9γp0q “ Xp.
Then for any vector field Y defined locally at p,

∇XpY “ lim
hÑ0

1
h

´

τ´1
h Yγphq ´Yp

¯

Proof. Let V1, . . . , Vn be parallel vector fields along γ which are independent at
γp0q, and hence at all points γptq. Set

Ypγptqq “
n
ÿ

i“1

αiptqViptq.
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Therefore,

lim
hÑ0

1
h

´

τ´1
h Yγphq ´Yp

¯

“ lim
hÑ0

˜

n
ÿ

i“1

αiphqτ´1
h Viphq ´ αip0qVip0q

¸

“ lim
hÑ0

1
h

˜

n
ÿ

i“1

pαiphq ´ αip0qqVip0q

¸

“

n
ÿ

i“1

dαi
dt

ˇ

ˇ

ˇ

ˇ

0
Vip0q

“
D
dt

ˇ

ˇ

ˇ

ˇ

t“0

n
ÿ

i“1

αiptqViptq

“ ∇XpY by property (c)

Remark 161. Let Tk
` pMq denote the tensor bundle

Tk
` pMq :“ TMb ¨ ¨ ¨ b TM

looooooooomooooooooon

k

b T˚Mb ¨ ¨ ¨ b T˚M
loooooooooomoooooooooon

`

.

Parallel translation τt : Tγp0qM
„ TγptqM induces isomorphisms that we call

Tk
` τt : pTk

` qγp0q Ñ pTk
` qγptq. For any tensor A P ΓpTk

` pMqq, we can define

∇Xp A “ lim
hÑ0

1
h

´

Tk
` pτ

´1
h qApγphqq ´ Appq

¯

where Xp “ 9γp0q. Note that Tk
` pτ

´1
h q “ Tk

` pτhq
´1.

We need to check this is a connection on the tensor bundle Tk
` M. Most

conditions here are clear, for example

∇Xpp f Aq “ lim
hÑ0

1
h

”

f pγphqq
´

Tk
` τ´1

h Apγphqq ´ Appq
¯

` p f pγphqq ´ f pγp0qqqAppq
ı

“ f ppq∇Xp A` Xpp f qAppq

where p f ˝ γq1p0q “ dγp0q f p 9γp0qq “ Xpp f q.
But it’s less clear in general that the definition is independent of the choice

of γ with 9γp0q “ Xp, and moreover that

∇ f X`gY A “ f∇X A` g∇Y A,

but in the cases we’re interested in, this will follow by the formula derived
below, and in general by an inductive extension of this argument (see example
sheet 3, question 9).

Example 162. How does this connection act on various tensors?

(1) For A P C8pUq,

∇Xp A “
dpA ˝ γq

dt
p0q “ Xp A.
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(2) Suppose A P EndpTMq. For a given local vector field Y, we have

∇XppqpApYqq “ p∇Xp AqY` Ap∇XpYq.

Example sheet 2, question 2, is the case of an arbitrary vector bundle E.

Proof. Given γ with 9γp0q “ Xp, we can write down linearly independent
parallel vector fields V1, . . . , Vn along γ, and linearly independent dual
1-forms φ1, . . . , φn along γ. Note that φi and φi b Vj are parallel for all
i, j, since they are just given by parallel translation (c.f. example sheet 3,
question 8). Set

Apγptqq “
n
ÿ

i“1

Aijptqφi bVj.

So if we have a vector field

Ypγptqq “
ÿ

k

YkptqVk,

say, then we have

∇XppAYq “
ÿ

i,j

d
dt

`

AijptqYiptq
˘

ˇ

ˇ

ˇ

ˇ

0
Vjp0q

“
ÿ

i,j

ˆ

dAij

dt

ˇ

ˇ

ˇ

ˇ

0
Yip0q ` Aijp0q

dYi
dt

ˇ

ˇ

ˇ

ˇ

0

˙

Vjp0q

“ p∇Xp AqY` Ap∇XpYq

(3) Suppose A P ΓpT˚Mb T˚Mq. This is the sort of thing we’ll have when
we have a metric. Then

p∇Xp AqpY, Zq “ XppApY, Zqq ´ Ap∇XppYq, Zq ´ ApY,∇Xp Zq.

The proof is exactly the same as before – we write it down in terms of
parallel bases and then compute.

Proof. With notation as above, we write

Apγptqq “
ÿ

i,j

Aijptqφiptq b φjptq

Ypγptqq “
ÿ

j

YjptqVjptq

Zpγptqq “
ÿ

k

ZkptqVkptq

Therefore,

XppApY, Zqq “ ∇XppApY, Zqq

“
ÿ

i,j

d
dt

`

AijYiZj
˘

ˇ

ˇ

ˇ

ˇ

t“0

“ p∇Xp AqpY, Zq ` Ap∇XpY, Zq ` ApY,∇Xp Zq
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(4) This generalizes to A P Ω2pEndpTMqq Ď ΓpT˚M b T˚M b EndpTMqq.
Setting

Aptq “
ÿ

i,j

Aijptqφiptq bVjptq

with Aijptq now 2-forms, a similar argument implies

∇XppApY, Zqq “ p∇Xp AqpY, Zq ` Ap∇XpY, Zq ` ApY,∇Xp Zq (7)

as sections of EndpTMq. We’re particularly interested in this case because
of curvature. In particular, given a connection ∇ on the tangent bundle,
the formula (7) defines a connection ∇ on Ω2pEndpTMqq (the fact that it
is a connection is an easy exercise).

For the curvature R P Ω2pEndpTMqq, this gives the formula for p∇XRqpY, Zq,
which is needed in the proof of the second Bianchi identity.

Torsion Free Connections

Definition 163. Given a Koszul connection ∇ on TM, define for vector fields
X, Y a new vector field

TpX, Yq “ ∇XY´∇YX´ rX, Ys

called thetorsion T of the connection ∇.

Remark 164. It’s easy to check that T is bilinear over smooth functions:

Tp f X, Yq “ f TpX, Yq “ TpX, f Yq.

And so TpX, Yqp depends only on Xp, Yp and hence it defines a tensor in
ΓpT˚Mb T˚Mb TMq.

If ∇ has Christoffel symbols Γk
ij with respect to a given local coordinate

system, then

T

˜

B

Bxi
,
B

Bxj

¸

“
ÿ

k

´

Γk
ij ´ Γk

ji

¯

B

Bxk
.

So T has components Tk
ij “ pΓ

k
ij ´ Γk

jiq.

Lecture 21 24 November 2015

Recall that last time we defined the Torsion tensor T by

TpX, Yq “ ∇XY´∇YX´ rX, Ys

with respect to a given coordinate system, T has coordinates

Tk
ij “

´

Γk
ij ´ Γk

ji

¯

Definition 165. A connection is called symmetric or torsion free if T “ 0.
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Proposition 166. For p P M, the torsion tensor T of a connection ∇ vanishes
at p if and only if there is a coordinate system around p with Γk

ijppq “ 0 for all
i, j, k.

Proof. pðùq. Clearly we have Tppq “ 0 independent of the coordinate system.
pùñq. Suppose we have local coordinates x1, . . . , xn and that

Γk
ijppq “ Γk

jippq

for all i, j, k.
Define a new coordinate system y1, . . . , yn by

yk “ pxk ´ xkppqq `
1
2

n
ÿ

i,j“1

Γk
ijppqpxi ´ xippqqpxj ´ xjppqq.

Using the symmetry of ∇, we compute

Byk
Bx`

“ δk` `

n
ÿ

i“1

Γk
i`ppqpxi ´ xippqq

with ByK{Bx`ppq “ δk`.
This shows that in a neighborhood of p, y1, . . . , yn is also a coordinate sys-

tem around p and moreover that

B2yk
BxiBx`

ppq “ Γk
i`ppq (8)

What are the Christoffel symbols with respect to the new coordinate sys-
tem? Call them Γ1.

ÿ

k

`

Γ1
˘k

ij
B

Byk
“ ∇B{Byi

˜

B

Byj

¸

“ ∇B{Byi

˜

ÿ

`

Bx`
Byj

B

Bx`

¸

“
ÿ

`

Bx`
ByiByj

B

Bx`
`
ÿ

`,r

Bx`
Byj

Bxr

Byi
∇B{Bxr

ˆ

B

Bx`

˙

“
ÿ

`

Bx`
ByiByj

B

Bx`
`
ÿ

`,r

Bx`
Byj

Bxr

Byi

ÿ

s
Γs

r`
B

Bxs

Now evaluate this whole thing on yk to get

pΓ1qkijppq “
B2xk
ByiByj

ppq ` Γk
ijppq (9)

using Byk{Bx`ppq “ δk`.
Now in a neighborhood of p,

ÿ

`

Byk
Bx`

Bx`
Byj

“ δkj
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Operate by B{Bxi to get (the right term is derived from throwing in an extra
chain rule)

ÿ

`

B2yk
BxiBx`

Bx`
Byj

`
ÿ

`,r

Byk
Bx`

Byr

Bxi

B2x`
ByrByj

This then implies, using (8), that

Γk
ijppq `

B2xk
ByiByj

ppq “ 0

Hence, we deduce from (9) that

`

Γ1
˘k

ij ppq “ 0,

which is what we wanted to show.

Proposition 167 (Bianchi’s Identities for Torsion-free Koszul Connections).

(i) 1st Bianchi Identity RpX, YqZ` RpY, ZqX` RpZ, XqY “ 0

(ii) 2nd Bianchi Identity p∇XRqpY, Zq ` p∇YRqpZ, Xq ` p∇ZRqpX, Yq “ 0

In coordinates, this can be written as

Rh
ijk;` ` Rh

ik`;j ` Rh
i`j;k

for all i, j, k` where

´

∇B{Bx`R
¯

˜

B

Bxj
,
B

Bxk

¸

ˆ

B

Bxi

˙

“
ÿ

h

Rh
ijk;`

B

Bxh

Proof.

(i) Use Example sheet 3 question 4:

RpX, YqZ “ ∇X∇YZ´∇Y∇XZ´∇rX,YsZ

It suffices to verify the identity for coordinate vector fields B{Bxi , and so
we may assume that the Lie brackets vanish. Then it’s clear that the cyclic
sum vanishes using the symmetry of the connection.

So RpX, YqZ “ ∇X∇YZ ´∇Y∇XZ. Now take the cyclic sum and use
symmetry ∇YZ “ ∇ZY; everything cancels.

(ii) Again, since everything in sight is a tensor (and therefore linear with
respect to multiplication by smooth functions in all variables), we only
need check this pointwise in local coordinates. Suppose given p, we can
choose coordinates x1, . . . , xn so that the Christoffel symbols vanish at p
(using the symmetry of ∇).
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Thus using the formula for the covariant derivative of the curvature from
last time,

´

∇B{Bxi
R
¯

˜

B

Bxj
,
B

Bxk

¸

p

“ ∇B{Bxi

˜

R

˜

B

Bxj
,
B

Bxk

¸¸

p

´ R

˜

∇B{Bxi

˜

B

Bxj

¸

,
B

Bxk

¸

p

´ R

˜

B

Bxj
,∇B{Bxi

ˆ

B

Bxk

˙

¸

p

But ∇B{Bxa

`

B{Bxb

˘

“ 0 by our choice of coordinates. Therefore,

´

∇B{Bxi
R
¯

˜

B

Bxj
,
B

Bxk

¸

p

“ ∇B{Bxi

˜

R

˜

B

Bxj
,
B

Bxk

¸¸

p

ˆ

B

Bx`

˙

“ ∇B{Bxi

˜

ÿ

h

Rh
`jk

B

Bxh

¸

p

´ R

˜

B

Bxj
,
B

Bxk

¸

ˆ

∇B{Bxi

ˆ

B

Bx`

˙˙

p

Again, the second term vanishes because∇B{Bxa

`

B{Bxb

˘

“ 0 by our choice
of coordinates, so we get

´

∇B{Bxi
R
¯

˜

B

Bxj
,
B

Bxk

¸

p

“
ÿ

h

B

Bxi

˜

Rh
`jk

B

Bxh

ˇ

ˇ

ˇ

ˇ

p

¸

Thus, with respect to the given coordinates x1, . . . , xn, it remains to prove
that

B

Bxi
Rm

`jk `
B

Bxj
Rm

`ki `
B

Bxk
Rm

`ij “ 0

To that end, given the connection matrix θe is assumes zero at p, the gen-
eral Bianchi identity we proved is

dΘ “ Θ^ θ ´ θ ^Θ

with dΘm
` “ 0 at p for all m, `. Now,

Θm
` “

ÿ

jăk

Rm
`jkdxj ^ dxk

“
1
2

ÿ

i,j

Rm
`jkdxj ^ dxk

Therefore,

dΘm
` “

1
2

ÿ

i,j,k

B

Bxi
Rm

`jkdxi ^ dxj ^ dxk “ 0

at p for all m, `. This implies the statement required because this is valid
for all p.
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Remark 168. There is a coordinate-free approach to these identities on Exam-
ples Sheet 3, Question 5. A connection ∇ on TM induces covariant exterior
derivative dEnd : Ω2pEnd TMq Ñ Ω3pEnd TMq. The curvature tensor R of ∇
lies in Ω2pEnd TMq. The coordinate-free form of the second Bianchi identity
says that

dEndpRq “ 0

Lecture 22 26 November 2015

Riemannian Manifolds

Definition 169. A Riemannian manifold is a smooth manifold M equipped
with a Riemannian metric, that is, a metric g “ x , y on TM. Note that g is
therefore a symmetric tensor in ΓpT˚Mb T˚Mq. Sometimes we say “a metric
on M” meaning “a metric on TM”.

Remark 170. Riemannian metric always exist on any smooth M; we can write
such a metric in local coordinates x1, . . . , xn on U Ď M as

g “
ÿ

i,j

gijdxi b dxj

where for each p P U, pgijppqq is a positive definite symmetric matrix.
As with vector spaces, giving a metric on TM is equivalent to giving a (non-

canonical) isomorphism of a vector bundle TM Ñ T˚M.

Remark 171. Given a Koszul connection∇, we have an induced connection∇
on T˚Mb T˚M; moreover for Xp P Tp M,

p∇Xp gqpY, Zq “ XppgpY, Zqq ´ gp∇XpY, Zq ´ gpY,∇Xp Zq.

Thus the metric g is covariantly constant with respect to ∇, meaning that
∇g “ 0 if and only if for all ∇ is an orthogonal connection with respect to the
metric (meaning that dgpY, Zq “ p∇Y, Zq ` gpY,∇Zq).

Definition 172. In this case, where ∇g “ 0, we say that ∇ is a metric connec-
tion on M.

Proposition 173. ∇ is a metric connection if and only if parallel translation
τt along any curve γ : ra, bs Ñ M is an isometry with respect to x , yγpaq and
x , yγptq.

Proof. pùñq. Suppose V is a parallel vector field along γ (recall parallel means
DV
dt “ 0). Write V locally as

ÿ

i

Viptq
B

Bxi

and so
DV
dt

“
ÿ

i

ˆ

dVi
dt

B

Bxi
`Vi

D
dt
B

Bxi

˙

.
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Now

d
dt
xV, Vy “

d
dt

ÿ

i,j

ViVj

C

B

Bxi
,
B

Bxj

G

“ 2
ÿ

i,j

dVi
dt

Vj

C

B

Bxi
,
B

Bxj

G

`
ÿ

i,h

ViVj
d
dt

C

B

Bxi
,
B

Bxj

G

where, since ∇ is a metric connection,

d
dt

C

B

Bxi
,
B

Bxj

G

“
d
dt

˜C

B

Bxi
,
B

Bxj

G

˝ γ

¸

“ 9γptq

C

B

Bxi
,
B

Bxj

G

“

C

∇ 9γptq
B

Bxi
,
B

Bxj

G

`

C

B

Bxi
,∇ 9γptq

B

Bxj

G

Substituting this in the above, we see that

d
dt
xV, Vy “ 2

ÿ

i,j

dVi
dt

Vj

C

B

Bxi
,
B

Bxj

G

`
ÿ

i,h

ViVj
d
dt

C

B

Bxi
,
B

Bxj

G

“ 2
ÿ

i,j

C

dVi
dt

B

Bxi
`Vi

D
dt
B

Bxi
, Vj

B

Bxj

G

“ 2
B

DV
dt

, V
F

“ 0

pðùq. For given p P M and Xp P Tp M, chose a curve γ with γp0q “ p,
9γp0q “ Xp. Our assumption implies that we can choose parallel vector fields
v1, . . . , vn along γ which form an orthonormal basis for TγptqM for all t.

For given vector fields Y, Z in a neighborhood of p, write

Ypγptqq “
ÿ

YiptqViptq,

Zpγptqq “
ÿ

ZjptqVjptq.

Therefore,

XpxY, Zy “
d
dt
xY, Zy ˝ γ

ˇ

ˇ

ˇ

ˇ

0

“
d
dt

ÿ

i

YiptqZiptq
ˇ

ˇ

ˇ

ˇ

0

“
ÿ

i

ˆ

dYi
dt
p0qZip0q `Yip0q

dZi
dt
p0q

˙

“ x∇XpY, Zyp ` xY,∇Xp Zyp.
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Remark 174. Given a connection ∇ and a metric x , y, we can form a p0, 4q
tensor R P ΓpT˚Mb T˚Mb T˚Mb T˚Mqwhere

RpW, Z, X, Yq “ xRpX, YqZ, Wy

In coordinates,
R “ Rijpqdxi b dxj b dxp b dxq

where
Rijpq “

A

R
´

B{Bxp , B{Bxq

¯

B{Bxj ,
B{Bxi

E

“
ř

k gkiRk
jpq,

Rk
jpq in our previous notation.

Symmetries of R

Proposition 175. If∇ is both a metric and symmetric connection, then we have

(a) We always have RpW, Z, Y, Xq “ ´RpW, Z, X, Yq ùñ Rk`ji “ ´Rk`ij.

(b) For a metric connection, we have RpZ, W, X, Yq “ ´RpW, Z, X, Yq ùñ

Rk`ij “ ´R`kij. Without loss of generality we may take a local orthonor-
mal frame v1, . . . , vn, and then use that the matrix Θk

`pX, Yq is skew-symmetric.

(c) For a symmetric connection, we have the first Bianchi identity

RpW, Z, X, Yq ` RpW, X, Y, Zq ` RpW, Y, Z, Xq “ 0;

in coordinates, Rk`ij ` Rkij` ` Rkj`i “ 0.

(d) RpW, Z, X, Yq “ RpX, Y, W, Zq ùñ R`kij “ Rij`k.

Proof of (d).

xRpX, YqZ, Wy “ xRpW, ZqY, Xy

Then by (1), the left hand side is

LHS “ ´xRpY, XqZ, W by (a)

“ xRpX, ZqY, Wy ` xRpZ, YqX, Wy by (c) (10)

Also,

LHS “ ´xRpX, YqW, Zy by (b)

“ xRpY, WqX, Zy ` xRpW, XqY, Zy by (c) (11)

Now add together (10) and (11) to see that

2 LHS “ xRpX, ZqY, Wy ` xRpZ, YqX, Wy ` xRpY, WqX, Zy ` xRpW, XqY, Zy

and similarly with X Ø W and Y Ø Z. Likewise,

2 RHS “ xRpW, YqZ, Xy ` xRpY, ZqW, Xy ` xRpZ, XqW, Yy ` xRpX, WqZ, Yy

Now properties (a), (b) and uniqueness imply that these are equal!
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Levi-Civita Connection

Lemma 176 (Fundamental Lemma of Riemannian Geometry). On a Rieman-
nian manifold pM, gqwith g “ x , y, there exists a unique symmetric connection
compatible with the metric defined by

2x∇XY, Zy “ XxY, Zy `YxZ, Xy ´ ZxX, Yy ´ xrY, Zs, Xy ` xrZ, Xs, Yy ` xrX, Ys, Zy
(12)

for all vector fields X, Y, Z.

Proof. Uniqueness: given a symemtric metric connection, we show that it sat-
isfies (12).

Compatability with metric implies

XxY, Zy “ x∇XY, Zy ` xY,∇XZy.

Symmetric implies

x∇XY, Zy ´ x∇YX, Zy “ xrX, Ys, Zy.

Therefore,

XxY, Zy `YxZ, Xy ´ ZxX, Yy “ x∇XY, Zy ` xY,∇XZy ` x∇YZ, Xy

` xZ,∇YXy ´ x∇ZX, Yy ´ xX,∇ZYy

“ p2x∇XY, Zy ´ xrX, Ys, Zyq ` xrX, Zs, Yy ` xrY, Zs, Xy

And this implies equation (12). Hence we have uniqueness.

Existence: If we define ∇XY by (12), we then need to show what we’ve
defined is a connection. So it remains to prove

(a) ∇ f XY “ f∇XY;

(b) ∇Xp f Yq “ Xp f qY` f∇XY.

So we can check these individually.

(a) From the formula, we see that

2x∇ f XY, Zy “ 2 f x∇XY, Zy `Yp f qxZ, Xy ´ Zp f qxX, Yy ` Zp f qxX, Yy ´Yp f qxX, Zy

“ 2 f x∇XY, Zy

This holds for any Z, so we have established (a).

(b) From the formula, we see that

2x∇Xp f Yq, Zy “ 2 f x∇XY, Zy ` Xp f qxY, Zy ´ Zp f qxX, Yy ` Zp f qxY, Xy ` Xp f qxY, Zy

“ 2xXp f qY` f∇XY, Zy

This holds for any Z, so we have established (b).
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The fact that ∇ is symmetric comes straight from (12) by inspection.

The fact that∇ is a metric connection comes by using (12) to write down for-
mulae for x∇XY, Zy and x∇XZ, Yy “ xY,∇XZy and adding to get x∇XY, Zy `
xY,∇XZy “ XxY, Zy.

Definition 177. This is called the Levi-Civita Connection.

Lecture 23 28 November 2015

Remark 178. Classically, the Levi-Civita connection ∇ is given in terms of its
Christoffel symbols – if we have coordinates x1, . . . , xn on U Ď M, then

2
A

∇i
B{Bxj ,

B{Bxk

E

“ 2
ÿ

`

Γ`
ijg`k

But if you look at the formula (12), this is also

2
A

∇i
B{Bxj ,

B{Bxk

E

“
Bgjk{Bxi `

Bgki{Bxj ´
Bgij{Bxk

This implies a formula for the Christoffel symbols of the Levi-Civita connec-
tion.

Γ`
ij “

1
2

ÿ

k

g`k

˜

Bgjk

Bxi
`
Bgki
Bxj

´
Bgij

Bxk

¸

where g`k :“
`

g´1˘

`k; g´1 is the inverse matrix to g “ pgijq.

Definition 179. The curvature of the Levi-Civita connection is a tensor of type
p1, 3qwith components, Rk

ipq as before; taking

A

R
´

B{Bxp , B{Bxq

¯

B{Bxi ,
B{Bxj

E

“ Rjipq “
ÿ

k

gjkRk
ipq

we obtain a tensor of type p0, 4q with all indices down; this is called the Rie-
mannian Curvature Tensor.

In invariant notation, the Riemannian Curvature Tensor is a p0, 4q tensor R
such that

RpX, Y, Z, Wq “ xRpZ, WqY, Xy “ xRpX, YqW, Zy

Definition 180. Given orthonormal tangent vectors η1, η2 at p P M, we define
the sectional curvature of the 2-plane W spanned by η1, η2 to be

KpWq “ Rpη1, η2, η1, η2q “ xRpη1, η2qη2, η1y.

If η1, η2 are not orthonormal, then we define the sectional curvature

KpWq “
xRpη1, η2qη2, η1y

xη1, η1yxη2, η2y ´ xη2, η2y2
.
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Remark 181. It’s easy to check that this just depends on the 2-plane spanned by
η1 and η2, not the actual vectors themselves. This just uses the antisymmetries
of the curvature tensor and symmetries of the metric.

It turns out that you can recover the information about the curvature from
just the sectional curvature!

Lemma 182. If V is an R-vector space and R1, R2 : V ˆ V ˆ V ˆ V Ñ R are
quadrilinear maps satisfying symmetries (a), (b), (c), (d) of Proposition 175 and
such that

R1pX, Y, X, Yq “ R2pX, Y, X, Yq

for all X, Y P V, then R1 “ R2.

Proof. Reduce to the case that R1 “ R and R2 “ 0 by taking their difference.
Then it remains to prove that RpX, Y, X, Yq “ 0 for all X, Y, which will show
that R “ 0.

To that end, we calculate

0 “ RpX, Y`W, X, Y`Wq

“ RpX, Y, X, Wq ` RpX, W, X, Yq

“ 2RpX, Y, X, Wq by Proposition 175(d)

So R is skew-symmetric in the first and third entries, and similarly in the sec-
ond and fourth entries. This is in addition to all the other symmetries of Propo-
sition 175. From the 1st Bianchi identity, we see that

RpX, Y, Z, Wq ` RpX, Z, W, Yq ` RpX, W, Y, Zq “ 0.

But then our antisymmetries imply that

3RpX, Y, Z, Wq “ 0

for all X, Y, Z, W.

This lemma immediately implies the following corollary.

Corollary 183. Sectional Curvatures determine the full curvature tensor.

Definition 184. When dim M “ 2, the sectional curvature is usually called the
Gaussian curvature (c.f. Part II Diff Geom, or Example Sheet 3, Question 6).

Corollary 185. Suppose that a metric x , y on M has the property that at any
point p, the sectional curvatures at p are all constant with value K “ Kppq.
Then

RpXp, Yp, Zp, Wpq “ K ¨
`

xXp, ZpyxYp, Wpy ´ xXp, WPyxYp, Zpy
˘

(13)

Proof. Essentially we’ve seen a proof of this already. Let R0pX, Y, Z, Wq be the
right hand side of (13). Then if R is the Riemannian curvature, R “ R0 by the
previous lemma Lemma 182, so R “ R0 at p.
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Definition 186. Set rpX, Yq to be the trace of the endomorphism of TM given
by V ÞÑ RpV, XqY. This is called the Ricci tensor, and is sometimes denoted
Ricpgqwhere g is the metric.

If we take any orthonormal basis e1, . . . , en for Tp M, then

rpXp, Ypq “ trpVp ÞÑ RpVp, XpqYpq

“
ÿ

i

Rpei, Yp, ei, Xpq

“ rpYp, Xpq by Proposition 175(d)

sp r is a symmetric covariant covariant tensor of rank 2. There’s another sym-
metric covariant tensor of rank 2 floating around, namely the metric. This mo-
tivates the next definition.

Definition 187. A metric g on M is called Einstein if r “ λg for some constant
λ.

Definition 188. For any 0 ‰ v P Tp M, the Ricci curvature in direction v is
defined by

rpvq :“
rpv, vq
xv, vy

.

If we normalize so that v has length 1 (i.e. xv, vy “ 1), we may extend v to
an orthornomal basis v “ e1, e2, . . . , en of Tp M, and then

rpvq “
n
ÿ

i“2

Rpei, v, ei, vq “
n
ÿ

i“1

Rpei, e1, ei, e1q,

and rpvq{n´1 is the average of the sectional curvatures of the planes generated
by v and ei for i ą 1.

Lemma 189. The Ricci curvatures at p are constant with value λ if and only if
the metric is Einstein (r “ λg) at p.

Proof. pðùq. Clear.
pùñq. If rpvq “ λ for all v ‰ 0, then we know that rpv, vq “ λxv, vy for all

v P Tp M. Therefore,
rpv, wq “ λxv, wy

for any v, w P Tp M. Hence r “ λg at p.

Example 190. If the sectional curvatures at p all have value K, then r is also
constant on Tp Mzt0u given by pn´ 1qK.

Lecture 24 1 December 2015

Last time we defined the Ricci Tensor and the Ricci Curvature. Today we’re
going to go one step further with one more contraction.
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Definition 191. The Ricci tensor r and the metric determine an endomorphism

Tp M θ
ÝÑ Tp M where rpv,´q “ xθpvq,´y. The scalar curvature is just the trace

of this endomorphism. With respect to an orthonormal basis, e1, . . . , en, this is
just

n
ÿ

i“1

xθpeiq, eiy “

n
ÿ

i“1

rpei, eiq “

n
ÿ

i“1

rpeiq,

wehere rpeiq is the Ricci curvature of ei.
So s{n is an average of Ricci curatures.

Example 192. If the Ricci curvatures at P are constant with value λ, then s “
nλ. If the sectional curvatures at P are all K, then s “ npn´ 1qK.

Definition 193. Given a metric on M, we say that a local coordinate system
x1, . . . , xn is normal at p if

B

B

Bxi
,
B

Bxj

F

p
“ δij and

B

Bxk

B

B

Bxi
,
B

Bxj

F

p
“ 0

Remark 194. Choosing a set of normal coordinates greatly simplifies calcu-
lations in many cases. Once we’ve got existence of normal coordinates, the
proofs (e.g. for the second Bianchi identity) can be much much shorter.

Lemma 195. Normal coordinates exist at any point p.

Proof. Gram-Schmidt implies we may choose the coordinates x1, . . . , xn, or-
thonormal with respect to the metric; that is, gijppq “ δij. Then set aijk “
dgij{dxk

ppq, and

bkij “
1
2

´

akij ` akji ´ aijk

¯

.

Notice this is symmetric in i, j. Therefore,

bijk ` bjik “ aijk.

Define a new coordinate system by

yk “ xk `
1
2

ÿ

`,r

bk`rx`xr

This then implies that
Byk
Bx`

“ δ`k `
ÿ

r
bk`rxr.

Now a routine check verifies the required properties.

Corollary 196. If x1, . . . , xn are normal coordinates at p, then the Christoffel
symbols of the Levi-Civita connection all vanish.

Proof. Straight from the formula for the Christoffel symbols Γk
ij.
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Remark 197. In particular, with respect to normal coordinates x1, . . . , xn, we
have the second Bianchi identity

B

Bxi
Rm

`jk `
B

Bxj
Rm

`ki `
B

Bxk
Rm

`ij “ 0

at p. Now

B

Bxi

´

Rm`jk

¯

p
“

˜

B

Bxi

ÿ

r
gmrRr

`jk

¸

p

“

ˆ

B

Bxi
Rm

`jk

˙

p
,

the last identity because first derivatives of the metric vanish. So the second
Bianchi identity may be rewritten as

B

Bxi
Rm`jk `

B

Bxj
Rm`ki `

B

Bxk
Rm`ij “ 0, (14)

with respect to the normal coordinates x1, . . . , xp at p. s

An application of this is the following theorem.

Theorem 198 (Schur). Let M be a connected Riemannian manifold of dimen-
sion ě 3. Then

(i) If the sectional curvatures are pointwise constant, such that for any p P M
all the sectional curvatures have value f ppq, then f is a constant.

(ii) If the Ricci curvatures are pointwise constant, such that for any p P M all
the Ricci curvatures have value cppq at p, then c is a constant.

Proof. (i) We suppose the sectional curvatures at p are all f ppq. We choose
normal coordinates x1, . . . , xn in a neighborhood of p; we can write

Rijk` “ f ¨ pgikgj` ´ gi`gjkq

in a neighborhood of p. The Bianchi identity Equation 14 implies that

B

Bxh
Rijk` `

B

Bxk
Rij`h `

B

Bx`
Rijhk “ 0

at p. Letting Bh f “ B f{Bxh
, etc., we get

Bh f ppq
´

δikδj` ´ δi`δjk

¯

`Bk f ppq
´

δi`δjh ´ δihδj`

¯

`B` f ppq
´

δihδjk ´ δikδjh

¯

“ 0

Since n ě 3, for each h, we can choose i ‰ j with h, i, j distinct. If we set
k “ i, ` “ j in the above identity then h, i, j distinct.

If we set k “ i, ` “ j in the above identity and deduce Bh f ppq “ 0 for
all h, then dp f “ 0. Hence, f is locally constant, which implies that f is
globally constant.

(ii) Similar – see example sheet 4, question 11.
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Remark 199. Constant sectional curvature is not too interesting. If simply con-
nected and complete, just have Rn, Sn, and Hn, where Hn is hyperbolic space
as defined in Example Sheet 4, question 10.

Constant Ricci curvature, on the other hand, gives the Einstein Manifolds.
Constant scalar curvature is not too interesting because of the following:

Theorem 200 (Yamahi Problem). If pM, gq is a compact connected Riemannian
manifold of dimension ě 3. Then there is a smooth function f such that the
conformally equivalent metric e2 f g has constant scalar curvature. This was
finally proved by Schaen in 1984.

In the complex case, a complex compact manifold having a constant scalar
curvature Kähler metric is an interesting condition – see recent work of Tian,
Donaldson et. al.
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