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Lecture 1 8 October 2015

Administrative Stuff

There are some Lecture Notes online. They have some stuff that we won't
cover. The best book is Spivak.

Manifolds and Vector Spaces

Smooth Manifolds

Definition 1. If U < R™ and §: U — R, we say that J is smooth or C* if has
continuous partial derivatives of all orders.

Definition 2. A topological space X is called second countable if there exists
a countable collection B of open subsets of X such that any open subset of X
may be written as the union of sets of B.

Definition 3. A Hausdorff, second countable topological space X is called
a topological manifold of dimension d if each point has an open neighbor-
hood (nbhd) homeomorphic to an open subset U of RY by a homeomorphism
¢: U——"—¢(U) c R

The pair (U, ¢) of a homeomorphism and open subset of M is called a chart:
given open subsets U and V of X with UV # &, and charts (U, ¢y;) and
(V,py), with ¢y: U — ¢(U) < R? and ¢y: V — ¢(V) < R, we have a
homeomorphism ¢y; = ¢y o <p&1: Ppu(UnV) — ¢y (U n V) of open subsets
of R%.

Given a chart (U, ¢1) and a point p € U, we call U a coordinate neighbor-
hood of p and we call the functions x;: U — R given by 71; o ¢y (Where 7; is
the projection onto the i-th coordinate) coordinates of U.

Definition 4. A smooth structure on a topological manifold is a collection A
of charts (U, ¢ ) for a € A, such that

(i) {Ux | « € A} is an open cover of M;

(ii) for any a, B € A such that Uy n Ug # J, the transition function ¢p, =
$po ¢y ! is smooth. The charts ¢, and ¢p are said to be compatible;

(iii) the collection of charts ¢, is maximal with respect to (ii). In particular,
this means that if a chart ¢ is compatible with all the ¢, then it’s already
in the collection.

Remark 5. Since ¢, = 4)1;“1: ¢p(Ux 0 Up) — ¢o(Ux N Up), both ¢pp, and ¢ug
are in fact diffeomorphisms (since by assumption, they are smooth).

This remark shows that item (ii) in Definition 4 implies that transition func-
tions are diffeomorphisms.
For notation, we sometimes write Uaﬁ = U, N Uﬁ.


https://www.dpmms.cam.ac.uk/~pmhw/DG2007.pdf

Definition 6. A collection of charts {(Uy, ) | & € A} satisfying items (i) and
(ii) in Definition 4 is called an atlas.

Claim 7. Any atlas A is contained in a unique maximal atlas and so defines a
unique smooth structure on the manifold.

Proof. If A = {(Uy, ¢n) | « € A} is an atlas, we define a new atlas A* of all
charts on M compatible with every chart in A. To be compatible with every
chart in A means that if (U, ¢) € A*, ¢y, = ¢ o ¢z ! is smooth for all a € A.

We should justify that A* is an atlas. This involves checking conditions (i)
and (ii) in Definition 4.

Clearly (i) is satisfied, because A* contains .A and A covers M.

For (ii), we suppose (U, ¢y;) and (V, ¢y ) are elements of A*. We show that
the homeomorphism ¢y is smooth. It suffices to show that ¢y; is smooth
in a neighborhood of each point ¢,(p) for ¢, € A. To that end, consider the
neighborhood ¢y (Uy N U n V) of ¢u(p) in ¢y (U n V). It suffices to show that
¢y is smooth when restricted to this neighborhood; that is, we want to show
that

Pvu lpyunvau): PuUnValy) = ¢v(UnV A Us)

is smooth. Let W = U NV n Uy. ¢vu |4, (w) can be realized as the composition
of two smooth transition functions as follows:

Pvu lpywy= Pv o a0 ba 0 7" gy = @V o b ) lpuwy ©(@a 0 0" Loy w)

Pvulp,;w)

du(W pv (W)
¢

)
u,xu\¢u<W)\t PV pa (W)

$a(W)

Since each of ¢y, 17 and ¢y, is smooth by assumption, then so is their compos-
ite and so ¢y is smooth at ¢, (p). Therefore, it is smooth.

Now finally, we need to justify that A* is maximal. Clearly any atlas con-
taining A must consist of elements of A*. So A* is maximal and unique. [

Definition 8. A topological manifold M with a smooth structure is called a
smooth manifold of dimension d. Sometimes we use M? to denote dimension
d.

Remark 9. We can also talk about C*¥ manifolds for k > 0. But this course is
about smooth manifolds.

Example 10.

(1) R with the chart consisting of one element, the identity, is a smooth
manifold.

(i) S < R+ is clearly a Hausdorff, second-countable topological space.
Let U = {¥ € S? | x; > 0} and let U, = {¥ € $% | x; < 0}. We have



charts ¢;: Ui+ — R% and y;: u, — R? given by just forgetting the i-th
coordinate. Note that ¢ o ¢; Uand ¢, 0 ¢; 1y are both maps defined by

(V2 Yas1) = (\/1*]/%*'-'*y§+1/]/3r"-ryd+l)-

This is smooth on an appropriate subset of

PU) = {Wr o yann) [+ 4B <1

given by y2 > 0 (resp. y2 < 0). The reason that y, > 0 is the appropriate
subset is because U;" n U, = {¥ € $¢ | x; > 0and x, > 0}, and we want
¢>1_1 (Y2,---,Ya+1) to be in U5 so that it’s in the domain of ¢,.

From this it follows that S? is a smooth manifold. We should be careful
to note that each ¥ € S? has some x; # 0, so lies in one of the sets LI;r or
u-.

1

(iii) Similarly the real projective space RIPY = 57 /{+1} identifying antipodal
points is a smooth manifold.
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Example 11. Further examples. Continued from last time.

(iv) Consider the equivalence relation on R? given by ¥ ~ 7 if and only if
X1 — Y1 € Z, xo —y € Z. Let T denote the quotient topological space the
2-dimensional torus. Any unit square Q in R? with vertices at (a,b), (a +
1,b),(a,b+1),and (a+1,b+ 1) determines a homeomorphism 7: int Q —— U(Q) <
T, with U(Q) = m(int Q) openin T. The inverse is a chart. Given two dif-
ferent unit squares Q1, Q», we get the coordinate transform ¢, which is
locally (but not globally) just given by translation. This gives a smooth
structure on T. Similarly define the n-torus T" = R"/Z" as a smooth
manifold.

Definition 12. Let M", N"* be smooth manifolds with given smooth structures.
A continuous map f: M — N is smooth if forieach p € M, there are charts
(U,¢u), (V,py)withpe U, f(p) e V,such that f = ¢pyo fo 4)51 is smooth.

p f(p)

Un f~4V) f 1%
¢ul Yy
pu(U n f7H(V)) — Py (V)

Note that since the coordinate transforms for different charts are diffeo-
morphisms, this implies that the condition that f is smooth holds for all charts

', ¢ur), V', py)withpe U, f(p) e V'.



Definition 13. A smooth function f on an open U < M is just a smooth map
f: U — R where R has its natural structure.

Definition 14. A homeomorphism f: M — N of smooth manifolds is called a
diffeomorphism if both f and f~! are smooth maps.

Tangent Spaces

Definition 15. Suppose p € M. Smooth functions f, ¢ defined on open neigh-
borhoods of p are said to have the same germ if they agree on some open neigh-
borhood. More precisely, a germ is an equivalence class on the set {(U, f) | p €
U, f: U — R} under the relation ~ where (U, f) ~ (V,g) if and only if there is
an open W < U n V such that f|w = g|w.

Denote the set of germs of smooth functions at p by A, = Ap,. We can
add, subtract, multiply germs without problems. Hence, A, is a ring. There is
a natural inclusion R «—— A of constant germs. So A, is an R-module. This
is the ring of germs at p.

A germ has a well-defined value at p. We set 7, = A, to be the ideal of
germs vanishing at p. We can also say that this is the kernel of the evaluation
map F, = ker(f — f(p)). This is the unique maximal ideal of A}, (and so A,
is a local ring) because any germ which doesn’t vanish at p has an inverse in
Ay (after an appropriate shrinking of the neighborhood of p) and so cannot lie
in any maximal ideal.

Definition 16. A tangent vector v at p € M is a linear derivation of the algebra
Ayp. In particular, this means that v(fg) = f(p)v(g) +v(f)g(p) forall f,g e Ap.

Definition 17. The tangent vectors form an IR-vector space: given tangent vec-
tors v,w and A € R, we define (v + w)(f) = v(f) + w(f) and Av(f) = v(Af).
The tangent space to M at p is this vector space, denoted by M, or T,M or
(TM),.

If ¢ denotes the constant germ at p for ¢ € IR, then for any tangent vector
v, v(c) = cv(1). What's v(1)? Well, v(1) = v(1-1) = v(1) + v(1) = 2v(1), so
v(c) =0forallce R.

Let M be a manifold and let p € M. Let Ay = Apaj denote the germs of
smooth functions at 0 in R? and (U, ¢) be a chart with p € U and ¢(p) = 0.
By definition of smooth functions on an open subset of M, we have an isomor-
phism of R-algebras ¢*: Ay —— A, given locally at p by f — 6 = f o ¢. The
inverse of ¢* is given locally by f + f = fop~ 1.

A tangent vector v at p € M determines a tangent vector ¢« (v) at zero in
R,

9+(0) (F) =o (Foo)
So the chart ¢ determines an identification ¢: T,M — Tﬁle.

Therefore, to understand the tangent space, it suffices to understand the
tangent space TG]Rd' This is just the linear derivations of Ay, 5 If R has stan-

dard coordinates r4, ..., 74, then ’3/5,1 Grener a/ar ., ’6 are linear derivations of Ay.
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More tangent spaces

gare linear deriva-

If RY has itandard coordinatesrq,...,r,, then a/arl |6’ s, a/(;r .
tions on Aj.

Let (U,¢) be a chart with p € U. Denoting ¢: U — RY on M by ¢ =
(x1,...,x4), set a/axl, ‘p to be the linear derivation on A, defined by

Afogp™) =
f = T(O)
Note that 5
o p(xj) = dij.

Claim 18. The linear derivations

0
(/57‘1

form a basis for TGRd and so dim T, M = d with basis

g ondlg

0

(7.’)(1

7
G

p

d H) (7’]) = aj/
0

(S

i

Proof. Since

it is clear they are linearly independent.
Now we need to show spanning. Given a linear derivation v: A5 — R, set

a; = v(r;) and
0
ro = Zaiﬁ
i 1

Given any smooth germ (V, f) in Aj represented by a smooth function f on

0

V 30, a standard result from analysis says that we can, on some B(0,¢) c V,
write f as

. - of = "
f7) = f(0) + Zri%m) + > ri8ii (P)
i ! ij
for some smooth functions g;; on B(0,¢). Hence

u(f) = O—s—Zai%};(ﬁ) +0 = ro(f)

for all germs f. Hence, v = g and so the a/ar,- span as well. O



Remark 19. Above proof shows that for any tangent vector v at p on M,

d 0
U= izzlv(xi)a—xi

In particular, given local coordinate charts at p, ¢ = (x1,...,x7) and ¢ =
(y1,---,Y4), then

p

O _am| 2
Wilp i3 Yjlpoxily
Where . 5
oX;
= — (x;).
oil, oyil,

Applying this to a germ at p, this is a just local version of the chain rule.

Remark 20. There’s a dangerous bend here! Even if y; = x1, it’s not in general

true that
0

oxy

2
5}/1

P P

It depends on the charts!

Let F = ¢ o ! be a local coordinate transform and let the coordinates on
im¢be S1,---,54,

ax a a X; O -1 -
f = (xi)zi( Za? )(0),
Yilp  Yjlp 5
where x; = r; o ¢. This implies that
axi @l’i oF - 61:1' =
o I 6) = L)
a]/]‘ (95]‘ @S]'

Where F; is the i-th coordinate of the transition function F. Therefore, the ma-

tI‘lX

is just the Jacobian matrix of the coordinate transformation F, evaluated at 0.

Example 21. Let M = IRY, the tangent space of p € M has natural basis

{6 }

-~ V4
»

Crilp ) 1<i<d

and so there exists a natural identification

T,M—— T;R" —~— R?

which identifies 2

0x;

0

«— — <« @;
P ari !

0

7



Maps between smooth manifolds

Given a map f: M — N of smooth manifolds with f(p) = g, we have an
induced map f*: Ay4 — Amp viah— ho f.

Definition 22. The derivative or differential of f is
dpf = (df)p: TyM — TyN

for v € T,M, we define
(dpf)(v)(h) = v(hof)
forall h e Ay 4.

Claim 23. The chain rule is now easy. If g: N — X is a smooth map of mani-
folds with g(g) = r, then

dp(gof) =dsgodpf: TyM — Tr X
Proof. Forve TyM,h € Ax,, we compute the left hand side:
dp(go f)(©)(h) = v(ogo f)

and the right hand side:

(dy(8) o dpf)(©)(h) = (dpf) () (hog) = v(hogo f)
Hey look, they’re equal! O
Example 24. If f: R" — R" and we write f = (f1,..., f), then

dpf: Tp]Rn g Tf(p)]Rm.

We give Tp]R” the basis

AR
0x1 p"”'axn »
and give Tf(,)R™ the basis
2 o
Wlpp) " mls)
then d, f corresponds to the map R" — IR™ given by the Jacobian matrix of f,
since
0 0 ofi
(df) ( ) i) = o—| Wiof) ==
P 6x] p ! (3x] p ! 836] P
This then implies that
0 o Ofi| o
@f)p ( > = AR
oxalp z; Oxjlp ilf(p)



More generally, given any coordinate chart ¢ = (xq,...,x;): U — R?, we
can define

0
by
0 o(fop™)
| () =—"—F—
0xi i lpep)

p
atall p e U where f € Ap.

If ¢(p) = ¢ € RY, we may translate by C, taking the chart ¥ = (y1,...,¥4)
with y; = x; —¢;.

Thus for f € A, the previous definition implies that

A | _afoy)| _afop
ayi (7r,» ] 61’1‘

0

¢ ax,

p p

Thus any coordinate system ¢ gives rise to tangent vectors a/axi forallp e U.
Moreover, if f is a smooth function on U, then

o _ 8o (o)

6rl-

0x;
is the composition of two smooth functions on U, with

of G
Txi(p) = 57361 p(f)

for all p.
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A different way to think about tangent spaces

Definition 25. A smooth curve on M is a smooth map o: (4,b) — M. For
t € (a,b), the tangent to the curve at o(f) is

d
(dU’)t <d1”t> € Tg(t)M.

We denote this ¢ (t).

Example 26. If 0: (a,b) — R", and R" has coordinates x1, ..., Xy, say o(t) =

(@1(t), ..., 0n(t)), then
(d(T)t (;}’ t) (xl-) = % t(Ti = % = (Tl(t)

t

Therefore,
. ) 0
o(t) = D01~
i 1

o(t)



That is, in terms of natural identifications of T,R" with R" with basis

2
(7x1

o
R

4

o(t)

we have that o(t) corresponds to (01 (t),...,0u(f)).

We say that a smooth curve o: (—¢, &) — M with 0(0) = p defines a tangent
vector ¢(0) € TyM. Informally, if o is a germ of a smooth curve (i.e. has a small
domain like (—¢, €)), we call it a short curve.

If ¢ is a chart around p with ¢(p) = 0, then two such curves oy, 0> define
the same tangent vector if and only if ¢ o 07 and ¢ o 0» have the same tangent
vector at 0 € R”. We say that two short curves are equivalent if they define the
same tangent vector.

Conversely, given a tangent vector

0
0= Z aiaixi
with a coordinate chart ¢ = (x1,...,x,) such that ¢(p) = 0, then

0
¢x0 = Zaia—ri

By a linear change of coordinates, we may assume this is just a/arl
U= a/&xl ’p'

Set o(r) = 49*1(7’, 0,0,...,0) = 4)’1 o i1, where i is inclusion into the first
coordinate. Then compute

e T,M

p

4

i that is,

0/ = @ (5] ) o)
= % . (hoq)_loil)

(h) = o(h)

; 6<h0¢_1) B 8i1,,

~on

Therefore, we can represent v € T,M by an equivalence class of germs of
smooth curves o: (—¢,¢) — M with 0(0) = p.
Vector Fields

Definition 27. Let M be a smooth manifold. The tangent bundle of M is

T™™ = | | T,M,
pPEM

with a natural projection 7w: TM — M.

Claim 28. TM is naturally a smooth manifold of dimension 21, where # is the
dimension of M.

10



Proof Sketch. For any chart ¢ = (x1,...,x,): U — R", T,M has basis

A

o
(9x1

0
p,...,axn

p

for any p € U. We can then identify 77~ (U) with U x R” via a map ¢.
Given p € U and
0
0= Z aié\ixi

define the image of (p, v) under 4~> tobe (p,ay,...,a,).
But this looks chart-dependent, so what happens if we take another chart?
Given ¢ = (y1,...,yn) on U, we can do the same. We write in these coordinates

U:ijﬁ

€ TyM,

p

p

and the image of (p,v) under 1f is (p,by,...,bn).
The map o ! is determined by

_ N %
7

a;

b,

p

where as in last lecture, (g—;;) corresponds to the Jacobian matrix of the coor-
dinate transform.

We claimed that TM was a smooth manifold, so we should say what the
topology on it is. The natural topology on 77~ !(U) is given by identification
with U x R". We define a topology on TM whereby W < TM is open if and
only if W n 7= 1(U) is open for all charts patches (U, ¢) of M.

We can also define a smooth atlas on TM by taking charts (7~1(U), (¢ x
id) o gg) for chart (U, ¢). We justify the coordinate transforms being smooth
with the Jacobian matrix stuff from above.

The fact that g o ¢~ is linear on the fibers (given by the Jacobian matrix
acting on R") is the statement that TM is a vector bundle (which we'll talk
about later). O

Exercise 29. A smooth map f: M — N induces a smooth map df: TM — TN.

Definition 30. A vector field X on M is given by a smooth section X: M —
TM. (X being a smooth section means that 7r o X = idys). This says

X:M- | | T,M
peEM

with property that, for any coordinate chart ¢ = (xq,...,x,): U — R", writing

Xp = X(P) = Y ai(p) 5

8)(1'

P
the a; are smooth functions on U (equivalently, X(x;) is smooth for all 7).

11



Definition 31. Vector fields X(1), ..., X(") on M are independentif XV (p), ..., X(") (p)
form a basis for T, M for any p € M.

Theorem 32. Suppose M is a smooth manifold of dimension # on which there
exist n independent vector fields X(l), . ..,X(”). Then TM is isomorphic to
M x IR" as a vector bundle (there is a diffeomorphism TM — M x R" and for
any p € M, the restriction to T, M is an isomorphism T, M —— R").

Proof. An element of TM is given by some v € T, M. Write
v=">a;X"(p),
i

and defineamap ¥: TM — M x R" by
Y: (P,v)— (P,ay,...,a,)

with obvious inverse.
A mechanical check verifies that for a coordinate chart ¢ = (x1,...,x,): U —
R, the corresponding map

U x R —— = ) 24, 7 « R”

is a diffeomorphism of smooth manifolds and an isomorphism on fibers R".
O

Example 33. TS! is isomorphic to S! x R because there is a nowhere vanish-
ing vector field 955. But TS? is not isomorphic to S? x R? by the Hairy Ball
Theorem.
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Let’s begin with a little lemma that’s often useful in calculating derivatives
of maps. This is really just reinterpreting something we already know from
calculus in the language of tangent spaces.

Lemma 34. Suppose ¢: U — R is smooth, and
n 9
0
N
¢ Z lax,»
i=1
then if x: Ty R™ — R™ gives Ty R™ the canonical identification with IR™

with the basis
i i
oy’ oy )

c(dap(o) = 5| pia+ i <1>

e T;(U) = R,
i

we have

12



Proof. Set: (—¢,€) — U given by 7(t) = @ + th.

x-—i (a
o/ "' Ot

10)(x) = dov (5

Therefore, v(0) = v.

dap(o)(v) = dapo (55| ) )

But now the chain rule is staring us in the face. So this becomes

o (5] ) o

Now using the definition of derivative,

d

=] 9@+ ),

0

To show that this lemma is useful, consider the following example.

Example 35. Let ¢y: Myx,(R) — My;x,(R) given by ¢(A) = AAT, where AT
is the transpose and @ = I. Then for H € M;;»»(R), the right hand side of (1) is

d T T d
S+t I+t =H+HT = xdpy | Y Hpg— | .
dt|, % pqupq

Vector Fields

Recall that if ¢ = (x1,...,x,): U — R" is a coordinate chart, then for f smooth
on U,

of @ Afop™)
Txl- = (?Tci(f) =——F—0°¢

(77’1'

is smooth on U.

Definition 36. Given now X: M — TM a smooth vector field and f: M — R
a smooth function, we can define the function X(f): M — R by X(f)(p) =

Xp(f)-

So there are two ways to think about X. Either as a map M — TM, or as a
map C®(M) — C®(M).
If locally for some chart (U, ¢), with ¢ = (x1,..., %),

0
Xzzl.:X"(Txi

with X; smooth, then

X() - Lk @

13



is also smooth.

For X, Y smooth vector fields on M, we might hope that XY is a vector field
by (XY)(f) = X(Y(f)) is a vector field. But it’s not, because looking at (2) and
multiplying it out or something,

(XY)(f8) = X(f)Y(8) + X(g)Y(f) + f(XY)(g) + &(XY)(f)

contains terms X(f)Y(g) + X(g)Y(f) which are extra. We want XY to obey the
Leibniz rule so that it’s a tangent vector, but this clearly does not! Instead, we
can get around this by using the Lie bracket which will cause the mixed terms
to cancel. This is to say,

[X, Y](f) = X(Y(f)) = Y(X())

is a vector field. In particular, the Lie bracket is a bilinear form on vector fields.
Locally in a coordinate chart (U, ¢), there are local vector fields a/(;xi U -

TU. Note that [a/axi, a/axj] = 0, so mixed partials commute.

Exercise 37. Properties of the Lie Bracket (check these!)
@ [Y, X] = -[X,Y];
(b) [fX,gY] = fg[X, Y]+ f-(X(g))Y —g- (Y(f))X for all smooth f, g;
© [X[Y,Z])+[Y,[X,Z]] + [Z,[X, Y]] = 0, Jacobi Identity).

For (c), we need only check for X = f a/axl., Y = ga/ax]., Z = ha/axk. Use (b) and
the vanishing of the bracket for fields of the form a/axl..

Definition 38. A real vector space (perhaps infinite-dimensional) equipped
with a bracket [—, —] which is bilinear, antisymmetric, and satisfies the Jacobi
identity is called a Lie algebra.

The case we're interested in is the space of smooth vector fields on M, which
we denote @(M).

Given a diffeomorphism of manifolds F: M — N and a smooth vector field
X on M, we have a vector field F, X on N defined by (F.X)(h) = X(hoF)o F~1.
For a particular point p € M,

(FeX)p(py(h) = Xp(ho F) o F~1 = ((d,F)(Xp)) ().
Exercise 39. On the first example sheet, show that

Recall that a smooth curve 0: (a,b) — M determines a tangent vector

: d
o(t) = dio (dr ) € Ty M.

t

00 = (e (5

)yﬂ=0wﬂo

14



Definition 40. If X is a smooth vector field on M, a smooth curveo: (a,b) - M
is called an integral curve for X if o(t) = X(o(t)) for all t € (a,b).

Theorem 41. Given a smooth vector field X on M, and p € M, then exist a,b €
R U {0} depending on p and a smooth curve y: (4,b) — M such that

(i) 0€ (a,b) and v(0) = p;
(ii) <y is an integral curve of X;

(iil) if pr: (c,d) — Mis a smooth curve satisfying (i) and (ii), then (c,d) < (a, b)
and u = '7|(c,d)-

Proof. To see this, work in local coordinates and reduce to a question about

differential equations in R”. We want d., (d/d,\ t) = X(7(t)) for t € (a,b). We

may assume that 0 € (a,b) and ¢(0) = p. Choose coordinates x1, . .., x; around
p (that is, a chart ¢: U — RRY). In these coordinates, write

a9
Xlu = Efzg
i=1 !

for some f; smooth functions on U.
Moreover, if y(t) € U, then

0
diy (6;’ t

since for any tangent vector v,

4 d(xio7)
) - Z dr

7(1)

o= Totr

So if 4; = x; oy, we wish to solve the first order system of ODE’s

p.
ﬁ = fi( — f.ob~ ! — o
g = filv®) = fiog™ (m(t),...,7a(t) = gi(n ()., 7a(t)).

For g; = fio¢~!. The standard theory of ODE'’s implies that there is a solution.
O

Remark 42. If we also vary p, and set ¢:(p) = 7p(t), where 7,(t) is just the
integral curve we discovered for X through p, we obtain what’s called a local
flow. A local flow is an open U 3 p, for ¢ > 0 and diffeomorphisms ¢;: U —
¢1(U) < M for |t| < e such that 7,(t) is smooth in both t and p.
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Submanifolds

Definition 43. Suppose that F: M — N is a smooth map of manifolds. We
have several concepts:
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(i) Fis an immersion if (dF), = d,F is an injection for each p € M;
(ii) (M, F) is a submanifold of N if F is an injective immersion;

(iii) Fis an embedding if (M, F) is a submanifold of N and F is a homeomor-
pism onto its image (with the subspace topology).

Example 44. Note that an immersion may not have a manifold as its image.
For example, the embedding of the real line in IR? as the nodal cubic.

An example of a submanifold that is not an immersion is as follows: a line
with irrational slope in IR? gives rise to a submanifold of the torus T = R?/Z?
whose image is dense in T, and therefore not an embedded submanifold.

From now on, I'll take the word “submanifold” to mean “embedded sub-
manifold.” Usually we identify M with its image in N and take F to be the
inclusion map.

Definition 45. Given a smooth map F: M — N of manifolds, a point g € N
is called a regular value if, for any p € M such that F(p) = g, we have
dpF: TyM — T;N is surjective.

Theorem 46. If F: M — N is smooth, g is a regular value in F(M), then the
fiber F~1(q) is an embedded submanifold of M of dimension dim M — dim N,
and for any point p € F~1(g),

T,(F(q)) = ker(d,F: T,M — T;N).

Proof. This is easily seen as just an application (in local coordinates) of the in-
verse/implicit function theorem — see the part II course or Warner, Theorem
1.38. O

2

Example 47. The group GL(#n,R) is an open submanifold of M;;»,(R) = R™.
The symmetric # x n matrices S may be identified with R"("*1)/2, Define
¢: GL(n,R) — Sby A — AAT. Note that ¢~1(I) = O(n) is the orthogonal
group (A € O(n) «— AAT =1). Since A € O(n) if and only if its columns are
orthogonal, we see that O(n) is compact.

Forany A in GL(n,R), we can define a linear map R 4 : M1 (R) — My x,(R)
given by right multiplication by A, inducing a diffeomorphism R4 : GL(n, R) —
GL(n,R). Observe that for A € O(n), the y o R4 = 1p. The extended version of
the chain rule implies that when A € O(n), dq o R4 = dry, and hence dip has
the same rank at all points of O(n).

But djyp(H) for H € Myx,(R) was identified as H + HT, and a general
symmetric matrix is of this form, so the map dji is surjective. This implies by
the previous theorem that O(n) is an embedded submanifold of GL(n,R) of
dimension ("1

Since A € O(n) has det(A) = £1, then O(n) has two connected components.
SO(n) is the component with det(A) = +1, containing the identity.

Now, the tangent space of O(n) at the identity is just

ker(djy: T;GL(n,R) — Tlp(l)zls)‘
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But d;¢ is the map H — H + H',s0 T{O(n) = {H € Mux,(R) | H+ H' = 0}.

If now M < N is an embedded submanifold, then T,M —— T,N in a
natural way: v € TyMactson A,(N) by f — v(f|pm). Furthermore, TM —— TN
as an embedded submanifold (easiest to see by quoting example sheet 1, ques-
tion 9).

Definition 48. Given a smooth manifold N, an r-dimensional distribution D
is a choice of r-dimensional subspaces D(p) of T,N for each p € N. Such a
distribution is a smooth distribution if for each point p € N, there is an open
neighborhood U 3 p and smooth vector fields X7, ..., X, on U spanning D(p).

Definition 49. A smooth distribution is called involutive or completely inte-
grable if for all smooth vector fields X, Y belonging to D, (i.e. X(q),Y(q) € D(q)
for all g), the Lie bracket [X, Y] also belongs to D.

Definition 50. A local integrable submanifold M of D through p is a local
embedded submanifold, (M —— U 3 p) with T,M = D(q) < T;N for all
g € M. If D is r-dimensional, it must be the case that M is also r-dimensional.

Remark 51. If there is a local integrable submanifold through each point N,
then it’s easy to check that if D satisfies D(q) = im (T;M — T,U), then it is an
involution.

The following (in red) is possibly wrong, or at least misleading.

Given an embedded submanifold M < N, there are local coordinates x1, ..., X,
on N such that M is given by x,,41,...,%; = 0and xy,..., x;; are local coordi-
nates on M. Then

is a local involutive distribution.

Theorem 52 (Frobenius Corrected). The converse of this statement is also true!
If Xy,..., Xy is an involutive distribution, then locally there is a submanifold
M < N and xq,...,x; on N such that M is given by x,,11,...,x, = 0 and
X1,..., Xy are coordinates on M, with X; = F/gyl forl <i<m.

I won't prove it because it takes up four pages in Warner’s book (pg. 42-
46). The proof proceeds by induction on the dimension of the distribution, and
depends heavily on the involutive property.

Remark 53 (Final word on conditions for involutive distributions). D is an
involution <= there are local integrable manifolds (M < U < N) such that
T,M = D(q).

Remark 54. A (hard!) theorem of Whitney says that any smooth manifold of
dimension m may be embedded in R?". In the compact case, there is an easy
proof that it embeds in RN for some large N. (The proof is in Thomas & Barden
Section 1.4).
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Lie Groups

Definition 55. A group G is called a Lie groups if it is also a smooth manifold
and the group operations y: G x G — G and i: G — G are smooth maps. (It
suffices to requires that the map G x G — G: (g,h) — gh~! is smooth.)
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Example 56. Some examples of Lie groups.
(1) The matrix groups GL(n,R), O(n), SL(n).

(2) The n-torus T" = R"/Z" is a Lie group, with group operation inherited
from addition on RR. It’s abelian.

3) (]R3, -) with (ay,ap,a3) - (by, ba, b3) = (a1 + by, ap + by + ay1b3, a3 + b3). This
can be identified with the subgroup of GL(3, R) consisting of matrices of

the form
1 a9 ap
0 1 a 3
0 0 1

So some manifolds may be Lie groups in two different ways.

Recall that tangent space at [ to GL(n,R) < R™ is identified with the 1 x n
matrices My x,(R) = R". O(n) is an embedded submanifold of GL(n, R) of
dimension "("~1j,; the tangent space T;O(n) at the identity is identified as a
subspace of 1 x n matrices which are antisymmetric.

Remark 57.

(1) The projection A — %(A — AT) yields a chart on some neighborhood of
I € SO(n) to an open neighborhood of 0 in the Lie algebra T;SO(n).

(2) If H is an antisymmetric matrix, we can define a curve ¢ on O(n) by
o(t) = exp(tH) = I+ tH + )t?H? + 13t3H® + ... This is absolutely
convergent with o(t) € O(n) and o(t) = o(t)H.

(3) Similar arguments work for other subgroups of GL(n, R).

Construction of left-invariant vector fields

Suppose that G is a Lie group and e € G. We denote by g the tangent space T.G.
Denote multiplication L: G x G — G, and for a given g € G, the left-translation
diffeomorphism L¢: G — G is given by h — gh.

A note on notation: sometimes we’ve used d,F and sometimes dF;. In this
section, we'll be very careful to use d,F because otherwise there’s a risk of
becoming confused.

For < € g, define X = X(4): G = TG by X(<)(g) = (deLg)(2) € T,G.
Clearly X (<) # 0 at any given point g € G for < # 0, since d.Lg is an isomor-
phism.
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Claim 58. X(j) is a smooth vector field on G.

Proof. Take charts ¢, = (x1,...,x,): U, — R", and ¢¢ = (y1,...,Yn): Ué —
R", with say ¢(e) = 0, Uy = gU; = Lg(Uy), and finally ¢pg = ¢eo L' =
¢e e} Lgfl .

Why have we put primes on U, and Ué? Well, we can find smaller open
neighborhoods U, = U; and Uy = Uy such that Uy x Ue = (Ug x Ug) N L’l(U§)
in the product manifold G x G. In particular, this means that L: U x U, — Ué.

Ug x U, ——— U

o] |

]RZ”DVngeLVéCIR”

where F(7,5) = (F,...,Fy) and given a € Uy, deL,: T.G — T,G is given by the
Jacobian matrix

oF;
<(}S]> (@g(a),0).
This is basically just saying that
d dF; d
Tl T 2 g $e(@),0)
dx]- e ; dS] 8 dyz a

Since the entries are smooth functions on U, (since F(7,5) smooth in 7), it fol-
lows that for a fixed < = Y] ﬂjd/dxj‘g some tangent vector, X(<)(a) = (deLa)(=)
defines a smooth vector field on U,. O

Definition 59. A vector field X is left-invariant if (Lg)*X = Xforallge G.
Proposition 60. If X is left invariant, then X = X<y where < = X(e).

Proof. First let X be a left-invariant vector field. Recall that for any diffeomor-
phism F: M — N of smooth manifolds and X a smooth vector field on M,
we defined a vector field Fx X by (F«X)(F(p)) = (dyF)(X(p)). For h smooth,
(ExX)(h) = X(ho F) o F~1L,
Apply thisto F = L¢: G x G — G. So
(L)« X)(g) = deLg(X(e)) = X(<)(8),

where < = X(e).
It remains to show that any vector field of the form X~ is left-invariant.
This is just a simple calculation.

((Lg)*X(j)> (ga) = daLgX(j)(”) = (daLg)(deLa)(j) = (deLga)(f) = X(j)(ga)
O

Definition 61. In general, for a diffeomorphism F: M toM, we say that a vector
field X is invariant under F if F. X = X.
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Following the previous proposition, g = T,G may be embedded as the
space of left-invariant vector fields in the space ®(G) of all smooth vector fields
via < — X(<). We know that there’s a bracket operation on ©(G). The hope is
that this induces a bracket operation on g, thereby making it a Lie algebra.

Proposition 62. The bracket operation on ®(G) induces a bracket operation on
g, thereby making g into a Lie algebra (the Lie algebra of G).

Proof. We have to show that the bracket of two left-invariant vector fields is left
invariant. By a question on example sheet 1,

[(Lg)«X, (Lg) * Y] = (Lg)«[X, Y].
Because X, Y are left-invariant, then
[X, Y] = [(Lg)«X, (Lg) * Y] = (Lg)«[X,Y].
So the Lie bracket of two left-invariant vector fields is also left-invariant. O

To sum it all up, for X € g, we have a left-invariant vector field X(j) and a
curve 0: (—¢,¢) — G with 8(0) = e and 0(t) = X(<)(6(t)) forall t € (—¢¢)

Lemma 63. For s, t such that |s|, [t| < %5, we have that 0(s + t) = 6(s)0(¢) (mul-
tiplication in the Lie group G).
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Last time, we defined for < € g a left-invariant vector field X(<) and a curve
0: (—¢,&) — G such that 6(0) = ¢, 6(t) = X< (6(t)) forall t € (—¢,¢).

Lemma 64. For s, t with |s|, |t| < %2, we have that (s + t) = 6(s)0(¢).

Proof. For fixed s, we show that the curves 0(s + t) and 6(s)0(t ) are solutions to
the differential equation ¢: (—%,%) — G with ¢(0) = 6(s), ¢(t) = X(<(6(t))
and so we must have equality. We show that both 6(s + t) and 6(s)6(¢) are
solutions to the same differential equation, which by uniqueness of solutions
must give us that they are equal.

(@) ¢(t) = 0(s +t) is a composition locally of maps R — R Y, G, where the
first map is t — s + t. Therefore,

3 = @) (5 ) = (o) (5 ) = 806+ ) = X9l = 85+
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(b) Let g = 0(s). Set ¢(t) = gt(t) = L0(t). Then we use the chain rule:
~ 0
¢(t) = di(Lg 0 6) <3r>

- oy o)) (5 )
= (dg(ryLg)0(1)

)
) by left-invariance of X(j)

O

This enables us to define a 1-parameter subroup as a homomorphism of Lie
groups : R — G such that ¢(t) = X(<)(9()) for all t € R by recipe.

For given t, choose N such that !/ € (—¢,¢) and define y(t) := 6 (t/N)N.
Let’s check that this is well-defined. If M is another such integer,

N
(O (/mn)) ™ =0 (/m)
and so N MN v
0 () =©OCmn)" =0 (M)
Example 65. For G = GL(N,R) c M;x,(R), with tangent space at I being
M, xn(R) = IR"Z, then for any A € M, x»(R) corresponding to the tangent

vector p
a;;—,
Z gl 6xij

the corresponding 1-parameter subgroup  is just
Y(t) = exp(tA) = I +tA + 5 (tA)* + 3 (tA)P + ...
A standard check shows that

1P(t) =9P(H)A = L¢(t)A = deLlIJ(t)A = X(A)(¢(t)),
which is as required to define a one-parameter subgroup.

Remark 66. In general, given a 1-parameter subgroup ¢ () = (=, ) defined
by < € T, G, we one can show that (=, t) = (=<, 1). In this way we can define
in general a map exp: T,G — G such that < — ¢(=,1). This is a smooth map
and a local diffeomorphism.

Example 67. G = GL(n,R) € My, x,(R). We have T,G =~ M, x,(R) with the
basis a/(;qu. Suppose

0
=" Z i 0xpg

e
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corresponds to some matrix A € My x,(R). Thenif ¢ = (xyp) (0 gpq(€) = Jpg)

0

1‘

X(<)(g) = deLg(=X) = Lg(= Zxrp“pqa

Given also 5
n=>"b
Z g axij .

corresponding to a matrix B € M;;x,(IR), then

X(r])(g) = dELg = Lg Zxkz 11(9

Now we can work out explicitly what the Lie bracket of these vector fields is.

0
[X(j), () Z 5rpapq rkfsqzbz/ Oxe: 2 57Pbpq57k5qlal]a
p.a.k,ij OXkj P‘?kl]
= Z akz ij '\ J Z bklal]a
r]/
= Z[A’ B]k] P
k.j

where [A, B] = AB— BA € My xn(R). So the Lie algebra of left-invariant vector
fields on G is just the Lie algebra of n x n matrices under the natural bracket.

Remark 68. If G < GL(n,R) is a Lie subgroup of GL(n,R), then for a tan-
gent vector < € TeG S My, xn(R) there is a left-invariant vector field X(j) on
GL(n, R) restricting to a left-invariant vector field X(<)|c on G. And moreover

[X(j)|G/ X(;y)|G] = [X(f)’X(W)“G'

so the induced bracket on T,G is just the restriction of the natural bracket on
M 5n(R).

Example 69. If G = SO(n), then g is just the antisymmetric matrices and the
Lie bracket on SO(n) is just given by [A, B] = AB — BA.

Forms and Tensors on Manifolds

Differential Forms

In many ways, vector fields are important objects to study on manifolds, but
differential forms are quite possibly even more important.
Given a smooth manifold M and U < M open, a smooth function f: U —
R gives rise to the differential df: TU — TR consisting of the linear forms
dpf: ToU — R for p € U. Here, we identify Tf(,)R with R%5, via v — o(r).
Given g: U — R smooth, we have the family of linear forms g(p)d, f: T,U —
R. Note that d,(fg) = f(p)dpg + g(p)dyf.
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If we have coordinates for U given by x1, ..., x,;, then we have

0 0
_ (7’) -
P) 8x]

(@) ( 7

for all p € U. So therefore,

(rof) =L

B 6x]

p p

o))

b = 3 5Ly,
j=1

0 ox;
! é’x] p aX] p g

Sodpxi, ..., dpxy gives abasis of the dual space Ty M dual to the basis a/axl |p, e Yo, |p
of Ty M.

In particular,
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Last time someone asked me what facts we were using when we computed
the Lie bracket of matrices, and I forgot to mention some details. We defined
the composition of vector fields X,Y as XY(h) = X(Y(h)). If X = 8/5961 and
Y = %x]., then XY (h) = azh/axiaxj = YX(h), so in this case [X, Y] = 0.

Okay, so last time we were talking about differential forms. Let’s make this
definition formal.

Definition 70. A smooth 1-form on M is a map w: M — | |,cp Ty M with
w(p) € Ty M for all p, which can locally be written in the form }; fidg; with
fi,gi (ocally) smooth. Equivalently, for any coordinate system xy,...,x, on
U < M, it may be written as ; fidx; with f; smooth functions.

We denote the collection of smooth 1-forms on M by Q! (M)

When we talked about vector fields, we were using the tangent bundle.
The definition above uses something that looks very similar, which we call the
cotangent bundle.

Definition 71. The cotangent bundle on M is the set T*M = | |,,c); T, M, with
m: T*M — M the projection map.

Just as for the tangent bundle, T*M is naturally a smooth manifold of di-
mension 2n. How do we see this? Given a chart with ¢(x1,...,x,): U — R",
T; M has basis dpx1,...,dpx, for all p € U. We then identify ~~l(U) = TU
with U x R” via the map

wp = Zaidpx,- — (p;ay,...,an).
i

23



In this case, if > axdxy = J; bjdyj, then

0 0
a; = <Zakdxk> axl'p = Zb]dpy] ((9.’){,
k j

)2 () -

The matrix here (%‘/axi) is the inverse transpose of the one we had for the
P

tangent bundle we saw in Claim 28.

Warning: this is backwards from the way that you transform coordinates
for tangent vectors!

We can also say that the projection 77: T*M — M is smooth, and by con-
struction the fiber over p is the cotangent space at p. In equations, this reads
n(p) = Ty M.

Our definition of a smooth 1-form w could therefore have been a smooth
section w: M — T*M such that 7t o w = idy,.

Vector Bundles

Now that we’ve seen how both the tangent bundle TM and the cotangent bun-
dle T* M are smooth manifolds of dimension 211, we should set up the language
of general vector bundles. Note that I'll probably stop saying “smooth” soon,
but you should know that we’re working in categories of smooth maps.

Definition 72. Let B be a smooth manifold. A manifold E together with a
surjective smooth map 7r: E — B is called a vector bundle of rank k over B if
the following conditions hold.

(i) There is a k-dimensional real vector space F such that for any p € B, the
fiber E, = 71! (p) is a vector space isomorphic to F.

(ii) Any point p € B has a neighborhood U such that there is a diffeomor-

phism ®;: 7~ 1(U) — U x F such that the diagram below commutes:

) 24 UxF
=
u——u
Here, pr is projection onto the first factor U x F — U. Py is called a
trivialization of E.

(iii) Pylg, — F is an isomorphism on vector spaces for all g € U.

B is called the base space and E is the total space of the bundle. If k = 1, we
call it a line bundle.

Definition 73. A smooth map s: B — E such that 7t os = idp is called a section
of E. Denote the sections of E by I'(E) or Q)(E).

Example 74. T(T*M) = QY(M).
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If we have two trivializations ®y: 77 1(V) — V x F and ®: n~1(U) —
U x F, then we compute the diffeomorphism

Qyod;: (UnV)xF— (UnV)xF

For p € U n V, we have an isomorphism of vector spaces fyy(p): F — F.
Choosing a basis for F identifies GL(F) with GL(k,R) and then the fy; can

be thought of as matrices fy;: Un V — GL(k,R), whose entries are smooth

functions on U n V. These functions fy; are called transition functions.

Fact 75. There are some pretty obvious properties satisfied by these fy;.
(i) fuu = id is the identity matrix;
(i) fru=fponUnV;
(iii) fwv o fvu = fwuonUnVnW.

Definition 76. Now given vector bundles Ej, E; over the same base space B, a
smooth map F: E; — Ey such that mp o F = ¢

E1—>E2

AN

is called a morphism of vector bundles if the induced maps on fibers are linear
maps of vector spaces. Morphisms with inverses are isomorphisms, and a sub-
bundle is defined in the obvious way.

So we’ve seen that if we have a fiber bundle, then we have transition func-
tions f;;. Now what if we have an open cover of a manifold with transition
functions as in Fact 75? It turns out we can construct a fiber bundle that these
come from. This is what we sketch below.

Theorem 77. Suppose B is a smooth manifold with an open ocver U = {U; |
ie I}, |U; U; = B, and smooth functions f;;: U; n U; — GL(k, R) such that

L fii = Iy
2. f]-l-(p) = ﬂj(p)_1 forallpe U; nUj;
3. fki(p)fji(p) = fii(p) forall p € U; n U; n U (matrix multiplication)

Then there exists a rank k vector bundle (unique up to isomorphism) 7r: E — B
for which U is a trivializing cover of B and the transition functions are the f;;.

Proof sketch. (See Darling Chapter 6 for full detaﬂs.)

As a topological space, set E = | |;c; U; x RF / ~, where ~ is the equivalence
relation (p, @) ~ (q,b) < p=qandid = fj(q )b.

Define 7t: E — B by the projection onto the first factor.
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To put a manifold structure on E, we notice that for each j, the inclusion

Uj x RFe—s |_|LIZ- x RF — nfl(ll]-)
i€l
is a homeomorphism. This gives the trivializations required with transition
functions f;; defining smooth maps (U; n U;) x RF — (U; n Uj) x Rk,

Hence, E is a smooth manifold with fibers Ej, isomorphic to R¥, and the
above maps restrict vector space isomorphisms on the fibers via the f;;(p).

If however two vector bundles 711: E; — B and 71p: E; — B have the same
trivializing cover and the same transition functions, then we can define a vec-
tor bundle isomorphism between them. The point is that we know the isomor-
phism F locally, and then by the definition of the equivalence relation ~ they
should be compatible.

Locally, this isomorphism F is given by the diagram

i u) s i w)

J» *

U; x RF —4 5 1, « R

Why doesn’t this depend on the choice of coordinates? It doeesn’t depend on
the U; we choose here because the transition functions are the same. Hence,
this is a well-defined isomorphism. O
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Last time, we wrote down a map U; x RF—— n_l(uj), but this requires a
bit of interpretation. To clarify, I meant that for each j, the inclusion U; x
RF < | |; U; x RF induces a homeomorphism Uj x RF = n—l(u]«).

This should take care of all of the boring stuff about vector bundles, so now
let’s see some examples.

Example 78.
(1) The trivial bundle E = M x RF — M with T(E) = C®(M)X.

(2) Thetangent and cotangent bundles are examples of vector bundles MTM
M and T*M — M, with T(M) = ©(M) and T(T*M) = QY(M).

(3) The tautological bundle or Hopf bundle on CIP” is a complex line bun-
dle, that is, a bundle of rank 1 over C. This means that it’s a rank 2 bun-
dle over R. Each point of CIP" corresponds to a line through the origin
in C"*! and hence to an equivalence class of points in C"*1\{0} where
¥~y < 3A e C*st. X = Ajj. So points of CIP" are represented by
homogeneous coordinates (xp: x1: ...: x;) with x; not all zero, and only
the ratios matter.
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CIP" has an open cover by open sets U; =~ C" where U; = {X | x; # 0} and
the chart on this open set U; is given by

note that we omit the i-th coordinate.

Define the tautological bundle or Hopf bundle E — CIP" to have fiber E,
being the line in C"*! corresponding to a point P € CP", (E = pecpn Ep) .
This is in fact a sub-bundle of the trivial bundle CIP" x C"*+1.

Let’s try to understand the trivializations and the transition functions on
this bundle. For simplicity, let’s take the case n = 1. There are here two
open sets, Uy and U;, with charts

uy —— C u —=-s C

(1:2) +w— z ¢:1) = ¢

We also have a coordinate transformation Uy — Uj given by z +— 1/, = .
There is an obvious trivialization of E = l_lpeC]Pl E, over U given by

Eq.z) 3 (wwz) — ((1: z),w) e Up x C
and over U,
Ez.1) 3 (00, 0) — ((¢:1),0) e Uy x C

So (w, wz) = (v{,v) <= v = wz, where { = !,. Therefore, the transition
functions are the 1 x 1 matrices f19g = z and fy; = C.

Another choice of trivialization is given by ®( on U,

Eq.z) 2 (w,wz) 20, ((1: z),wA/ 1+ |z|2> elyxC

Let’s set t = w+/1+ |z|?. This has the property |t| = 1 if and only if the
corresponding point (w, wz) lies on the appropriate unit sphere S < C2.

We also have a similar trivialization ®; on U; given by

e 2 (00,0 % (@ 0, o/1+ () ety <
and we call s = v4/1 + |Z]2.

There is a transition function

t tz
_l .
Pro®y (21 = (\/1+|Z|2 "W+ zz>

=d, ( tHZl t|§\/€ )
VIHIZRE V141
— ((g; 1)/\6%,5)
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and the transition function is gven by s = %£. So the transition function
P10 is just multiplication by % € U(1). This means that E is what we call
a unitary bundle over CP! = S2.
So E is a smooth rank 1 complex vector bundle over CP! = S2. Finally,
note that

jwl? + Jwz|* = |t

2 2 2

[ogI” + [ol” = Is[%,
so lengths on trivializations corresponds to taking a standard (Hermitian)
length of vectors in C2.

Definition 79. If the transition functions of a vector bundle with respect to
some trivialization all lie in a subgroup G < GL(k, R), we say that the structure
group of E is G.

Example 80.

(1) Let G = GL™ (k,R) be the matrices with positive determinant. A vector
bundle with structure group E is called orientable. If the tangent space
of a manifold M is orientable, then M is an orientable manifold.

(2) If G = O(k) = { matrices preserving the standard inner product on R¥},
this means that we have a well-defined family of inner products on the
fibers vary smoothly over the base. This is just the concept of a metric on
E in Riemannian geometry.

On the Hopf bundle, this metric corresponds to the standard one on C?.
Example sheet 2, question 9 says that we can always find such a metric.

New Bundles from Old

Given vector bundles E and E’ on M, of ranks k and ¢, respectively, we can al-
ways find a common trivializing cover & = {U;}. We can define the (Whitney)
sum E®E' — M by

| | E;®E, & M.
peEM

Given U € U and trivializations ®y;: 7~ (U) — U x F and ®: (7)1 (U) —
U x F', we have a natural structure on 7 ~!(U), namely U x (F® F’). The iden-
tification is given by

Ey ®E, 3 (sp,5)) — (p, (Pu(sp), @y(sy))) e U x (FOF)

If ®; and P}, are determined by frames (a collection of smooth sections over
U)sq,...,sgand 0y, ..., 00, then &y is determined by the frame

(51,0), (Sz, 0), ey (Sk, 0), (0,0'1), ey (0, O'n).

As for the tangent bundle, this determines a topological space structure on
E @ E’ Namely a subset is open if and only if all its intersections with such
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subsets 77~ 1(U) are open, where 77~ !(U) has been identified as this product
U x (F® F’). There are natural charts on E@® E’.

With U as above, with transition functions {f;;} on E and {g;;} on E’ then
the vector bundle E @ E’ has transition functions given by the block diagonal
matrices f;; ®g;j: U; nU; — GL(k + £, R).

Kif

Recall from Theorem 77 last time that this in any case determines the bundle
up to isomorphism.

Lecture 11 31 October 2015

Last time we defined the Whitney sum of two vector bundles. There are many
other operations on vector bundles that are analogous to those on vector spaces.
In a similar way to the dual space of a vector space, we can define the dual
-1
bundle E* — M with transition functions ( l-]-) : U; nUj — GL(n, R).
In the case of a line bundle, this is just a nowhere vanishing function 1/f,,]..
Note that a metric on E gives rise to an isomorphism E —— E*; this is on
example sheet 2 as question 9. But this isomorphism isn’t natural — it depends
on the choice of metric.
Similarly, there is a tensor product of two bundles E ® E' — M with transi-
tion functions given by f;; ® fj;: U; n U; — GL(k(, R) = GL(RF @ RY).
There is also a bundle Hom(E, E’) such that for each p € B, we have that

E,,%E%,

Jqﬁ, l%
F—— F
The bundle Hom(E, E’) is isomorphic to E* ® E’.
There is also an exterior power bundle A"E — M for 0 < r < k with
transition functions A fj;: U; n U; — GL ((}),R). To be more precise, if a: F —
F, then

a@aR - Qu: FRFR---QF —— FRF®R---®F

l l

A a: NF —ooeeeooeeeeeeeos A'F

Definition 81. A (mixed) tensor of type (r,s) on a manifold M is a smooth
section of the bundle

TM@-~®TM®I*M®T*M®~.®T*NJI

r S
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It has r contravariant factors and s covariant factors.
If we have local coordinates x1, ..., x, on U M, then teh tensor can locally
be written in the form

0
ll 12 ... —_— . DY .
Z Z ]1!]2/ /]s ax ® ® axi’, ®dx]1 ® ®dx]5
1 yeeesip 1yeeer

Remark 82. If one employs the Einstein summation convention, one would

write coordinates as x1,...,x", and the sum is over all repeated indices with

one up and one down. For example alb; = >iaib;.
Interlude — a little multilinear algebra
You may not think you need this, but you probably do.

Definition 83. Recall that given vector spaces Vi, ..., V;, the tensor product
of V1,...,V, is the universal multilinear object, meaning that there is a map
@ VixVyx---xV, > V1®V®:--®V, such that, given a multilinear form
f:VixVyx---xV, - R, then there is a unique map g: V1@V, ®---®V;
such that f = go®.

M, vi —— R

b

Definition 84. A perfect pairing between finite dimensional vector spaces V,
W is a bilinear map (—, —): V x W — R for which

we W\{0} = Joust (v,w)#0
ve V\{0} = Jws.t (v,w)#0
Therefore, a perfect pairing induces isomorphisms V — W* and W — V*.
Example 85. There is a natural perfect pairing
VeV, ® eV ) x (1®@he V) - R
given (on the elementary tensors) by
(0} ® - ®})(01® - ®y) = 0} (01)0F (22) -+ 0] (o)

and extended linearly to the whole space.

This gives a natural isomorphism V;* ® - - - @ V —— (V1 ® - - - ®@ V})*.

So for a fixed vector space V, we may identify the multilinear forms on V
with V¥ ® .- - @ V*.
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Definition 86. The exterior power A’V is a quotient subspace of V&' that is
universal among all alternating multilinear forms f: V" — RR.

v R

\ TEI ! linear map
NV
We denote the image of 11 ® - - ® v, in \" Vby vy A -++ A 0.

We can identify the alternating forms on V, Alt’(V), with (A’ V)*. Now
AV (V) —— (V+)® — A" V* is an isomorphisms, whose image is deter-
mined by

1
fl/\-u/\fr’_’ ﬁ Z Sgn(ﬂ)fn(1)®-..®f7r(r)

" neS,

We call this the logical convention.

Definition 87. Unfortunately, most books do not adopt this convention. So, to
be consistent with all of the books, we’ll therefore define

(iAo A f) @100 = det ([fio)]] s )

This differs from the usual definition because we drop the factor of 1/,!. Under
this definition, we identify f1 A ... A f; with

D580 (7) fr(1) @+ ® fr(r)

TES,

and fiA o iI®H—-HL®f1

Remark 88 (WARNING!). The composite of this map with projection is not the
identity, but instead multiplication by r! (r factorial).

NV* > Al (V)—— (V¥) - NV*
With this identification of /" V* with Alt’(V), the natural map
NV x NIV 2 APty
induces a wedge product on alternating forms

Alt'(V) x AItI(V)  —  AltPTI(V)
(f.8) —  fArg

where
(f A &) (V1. Vptq)

1
= W Z sgn(rc)f(vn(l), . ,vn(p))g(vn(pﬂ), . 'vn(erq))' (3)
1 ﬂESp_H]
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Remark 89. Above in (3) we use the convention given in Definition 87. The
“logical identification” would have a factor of 1/(p )t

Definition 90. In defining f A g in (3), we form an algebra of alternating forms

Alt(V) := (P Al (V)

r=0

where dim Alt"(V) = (%), forn = dim V..

Differential forms on manifolds
Now after that interlude, we can go back to doing geometry.

Definition 91. A (smooth) r-form w on a manifold M is a smooth section of
AN T*M for some r, 0 < r < dim M.

Using the identification above, we may alternatively regard this as a family
of alternating forms on tangent spaces. If xq,...,x, are local coordinates on
U < M, then we write

w = Z fi1/~~~/irdxi1 Ao A dxi,

h<ih<...<iy

locally and uniquely since dx1, ..., dx, are a basis for T*M at each point of U.
By convention, the zero-forms on a manifold are just the smooth functions.
By convention, N Eis just the trivial bundle M x R.
Denote the space of smooth r-forms on M by Q" := Q"(M) = T(A\" T*M).
r is called the degree of the form, and Q°(M) = C®(M).

Lecture 12 3 November 2015

Theorem 92 (Orientations). Let M be an n-dimensional manifold. Then the
following are equivalent:

(a) there is a nowhere vanishing smooth differential n-form w on M;
b)) N"T*M >~ M x R;

(c) there is a family of charts {(Uy, ¢o) | & € A} in the differential structure
on M such that the U, cover M and the Jacobian matrices [ayf/axi ( p)] for

the change in coordinates have positive determinant for p € Uy n Ug for
each «, B.

Proof sketch. (a) <= (D) is easy, and is similar to the criterion for the paral-
lelizability of manifolds.
(a) = (c): Given two charts (x1,...,x,) and (y1,...,yn) we have

89(1'

6}/]

dx1/\.../\dxn=detl 111}/1/\.../\%,
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on the overlap. Now cover M by such (connected) coordinate charts (U, ¢)
with ¢ = (x1,...,x,), choosing the order of coordinates so that on U,

w=fdx;n...Andxy

with f(p) > Oforall p e U.
(¢) = (a). For this, we need the next theorem. O

This theorem will be the first time we’ve used the condition that manifolds
are second countable in this course.

Theorem 93 (Partitions of Unity exist). For any open cover U = {U, | « € A}
of M, there is a countable collection of functions p; € C*(M) for i € IN, such
that

(i) for any i the support supp(p;) := closure of {x € M: p;(x) # 0} is com-
pact and contained in U, for some o € A;

(ii) the collection is locally finite: each p € M has an open neighborhood
W (p) such that p; is identically zero on W(p) except for finitely many i;

(iif) p; = 0 on M for all i, and for each p € M,
dpilp) = 1.
i

Definition 94. The collection {p; | i € IN} as in Theorem 93 is called a partition
of unity subordinate to {U, | x € A}.

The proof of the existence of partitions of unity comes down to standard
general topology and the existence of smooth bump functions. This proof is in
Warner, Theorem 1.1 or Bott & Tu, Theorem 1.5.2 or Spivak Chapter 2.

Now we can return to the proof of Theorem 92.

Proof of Theorem 92, continued. (¢) = (a). Given a family of coordinate neigh-
borhoods as in (c), U = {U; | &« € A}, choose a partition of unity suboordi-
nate to /. For each i, we set w; = dx%“) A A dx,(f‘) where &« = a(i) with
supp(p;) € Uy(;), and order the coordinates choses so that the Jacobian matri-

ces have positive determinant. Then p;w; is a well-defined smooth n-form on
M. Define
w = 2 piw;.
i
This is the required nowhere vanishing global form, because the Jacobian con-
dition rules out any possible cancellations. O

Definition 95. A connected manifold M satisfying one of the above conditions
is called orientable. If M is orientable, there are two possible global choices of
sign, which are called orientations.

Example 96. RIP" = S"/{+1} is orientable for n odd (on example sheet 2) and
non-orientable for n even (Spivak pages 87-88).

33



Exterior Differentiation

The approach we take here is the sheaf-theoretic version of the definition of
exterior derivative, which is different to most books. We'll also take the sheaf-
theoretic definition of connections, later.

Theorem 97. Given M, r > 0, there exists a unique linear operator 4: Q)" (U) —
Q' T1(U) for all U < M open, such that for open V < U,

Qru) —4 o+l

J |

'(v) —1= ()
commutes. Furthermore,
(i) if f € QO(U), then df is the 1-form defined previously;
(ii) d(w A7) =dw A+ (—1)98%9w A dy for any forms w, ;7 on open U < M;
(iii) d(dw) = 0 for any form w on an open subset U of M.

Proof. In local coordinates on some chart U, the three conditions above mean
that we must have, if d exists,

d(fdxiy A...~ndx;) =df ndxy ndxy, n...Adx;,
of
_; <0x]> dxj A dxi A..oAdx;,

So we define d this way locally, and extend linearly to all of OO"(U). The condi-
tions (i), (ii), and (iii) follow from this recipe by direct calculation. For example,

d*(fdxi, A...ndx;) =d (Z (;) dxj ndxi AL A dx,-,)
i ]

]

:Zd (5){) d.?Cj/\dxl'1 /\...Adxl'r
j

]

% f
= Z 7 0% dxj ndxg Adxi, A..ondx;,
ik

Now because the second derivative is symmetric, terms cancel.

If d exists, then it has to be given locally by the above formula, and that
(dw), depends only on the value of w locally.

To show existence, we need to prove that the above recipe doesn’t depend
on the choice of local coordinates. Suppose d’ is defined with respect to other
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local coordinates, y1,...,y». Then by the above, d’ also satisfies (i), (ii), and
(iii). So let’s consider

d(fdxi ~...ondxg)=d'fade ~...ondx;,

r
+ (DT fdxy n A d (dxg) Ao ndy, (4)
j=1

But d’f = df and since x; is a function on U, we have that dx; = d’x;. The def-
inition of df is just the old definition of df we had before. Therefore, d’(dx;) =
d’'(d'x;) = 0. Hence, the terms on the second line in (4) vanish and therefore,

d'(fdxi ~...ndxg) =df ndxy ~...Adx;, O

De Rahm Cohomology

Definition 98. w € (V' (M) is closed if dw = 0, and exact if w = dy for some
neQr1(M).
The quotient space

closed r-formson M kerd /
- imd

HL (M) :=
pr(M) exact r-forms on M

is the r-th de Rahm cohomology group of M.

Lecture 13 5 November 2015

Last time we introduced de Rahm cohomology.

Definition 99. Any smooth map F: M — N of smooth manifolds induces a
map

forallpe M. Fora e T;‘(p)M andv e T,M,
F* (@)(0) = a(dpF(0))
This is called the pullback of F. Notice for any g: N — R,
F*(dg)(0) = dg(dyF(0)) = (d,F)(0)(g) = v(g o F) = v(F*g) = d(F*g)(0)
This defines a pullback map F*: Q' (N) — Q" (M) given by
(F*w)p(v1, ..., 0r) = W) (dpF(v1), ..., dpF(vr))
for some tangent vectors v; € T, M.

Given this definition, what'’s the pullback of the wedge of two forms w and
7 in Q(N)? Well, the definition above implies that

F*(w A ) = (F*w) & (F*p)
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because it is true pointwise. This also includes the case when w is a 0-form,
that is, a smooth function.

The fact that F*w is smooth (that is, in (O"(N)) when w is smooth follows
from a local calculation. For any local coordinate system x1,...,x, on U < N,

F*(gdxj, A ... Adx;) = F*(g)dh n...ndhj

where hl-]. = F* (xij) = xj; 0 [ are smooth functions on F~1U < M and hence the
above form is locally smooth on M. Linearity implies that F*w € Q)"(M) for
any w.

Fact 100.

(a) Following from the definition, we also observe that for F: M — N and
G: P - M, (FoG)* = G* o F* by the chain rule.

(b) F*dw = d(F*w) follows straight from calculations with the definition of
exterior derivative.

(c) From item (b), we can see that the pullback of a closed form is closed, and
the pullback of an exact form is exact.

Therefore, by item (c) above, any smooth map F: M — N induces a linear
map F*: H{r(N) — Hpr(M). If F is a diffeomorphism with inverse G, then
F* on de Rahm cohomology is an isomorphism with inverse G*.

Remark 101. This is kind of a weak statement. de Rahm Cohommology is a
topological invariant, not just a smooth invariant.

Lemma 102 (Poincaré Lemma). H¥(D) = 0 for any k > 0 and open ball D in
R".

Proof Sketch. One constructs linear maps k. : (D) — Qf~1(D) such that
hk+l O d + d e} hk = lko(D)

(See Warner pg 155-156 for the construction). Then given w € ('(D) closed,
apply the identity to see that

w = g1 (dw) +d(hpw) = iy 1(0) + d(gw)
and therefore w is exact. Therefore, Hf (D) = 0. O

Exercise 103. For any connected manifold M, H%R(M) = Risjust the constant
function.
Integration on Manifolds

Let M be an n-dimensional oriented manifold. Let w € Q"(M) such that the
support of w
supp(w) := closure of {p € M | w,, # 0}
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is compact. We say w is compactly supported. If M is itself compact, then this
is a silly consideration because supp(w) is closed anyway, and hence compact.

Suppose we have a coordinate chart ¢ = (x9,...,x,): U — R" with U con-
nected and ¢(U) is bounded. Let w € OV*(U). Since O"T*M is 1 dimensional
and generated over U by dx; A ... A dx,, we can write w = fdx; A ... A dxy
on U with f smooth on U. Without loss of generality, assume f o ¢~ ! extends

continuously to ¢(U) < R". Assume that the order of the coordinates has been
chosen such that dx; A ... A dxy, is in the given orientation.

Definition 104. We define
J (U:J fdxy Ao Adxy :=J (fop™Ndr ndry n ... Adry
u u p(U)

where the rightmost integral is as in ordinary multivariable calculus.
Claim 105. This definition doesn’t depend on the choice of chart.

Proof. Suppose ¢ = (y1,...,y») on U is a chart in the same orientation. Then

fdxlA.../\dxn—fdet<2;Cl:> dyr A oo A dyy,
]

where because ¢, i are in the same orientation, det (axf/ayj> > 0. Recall that

6xi —To
() <rev

where | is the Jacobian matrix of the coordinate transformation

F=¢oyp™:V=y(U) - ¢(U) = F(V).

Change of variable formula for multivariable calculus says that
J hd?l/\.../\dT’nZJ(hOF)|det]|d51/\'~'/\dSn,

F(V) v

where s; are the coordinates on ¢(U) < R". When h = f o ¢!, we see that

J fdxy A ... Adxy :J (fop ™ Hdri a...Adry
¢(U) p(U)
_ J (Fouy~)|detldss A ... A dsy

y(U)

ZJ (Foy~V)detJds A ... Ads,
p(u)

ox;
= fdet<l>dy1/\...Adyn
L(m ;j

Therefore, §; w is well-defined. O
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We can make our integrations more general. Given supp(w) compact, there
is a finite collection ¢i: U; — R" of bounded coordinate charts (i = 1,...,r)
such that supp(w) < Ji_; U;. We set

Ai:J wfori=1,...,r,
U;

A,-]':J w fori < j,and
Uu,nu;

Aijk:J fori<j<k.
Uimlljmllk

These are all well-defined by the previous claim. Define
J Z Aj— Z A1] + Z Az]k +. 1)r+1A1,2,...,n
i<j i<j<k

Lemma 106. This is independent of the choice of scharts. That is, if we have
another collection of charts P2 Vi — R" of charts with j = 1,...,s and with

supp(w U] Vj, set Bj, Bjj, Bjjk snmlarly to the above. Then
r
ZAi—EAi]‘+ Z Aijk+' ZB—ZB”—F Z Bz]k+
i=1 i<j i<j<k i<j i<j<k
Lecture 14 7 November 2015

Last time we defined integration on manifolds. There were a few hiccups with
the last lecture so let’s make some clarifications.

Remark 107. Clarification of the definition of {,, w.

(1) One can assume that f o ! extends continuously to the closure of ¢(U)
by shrinking U if required.

(2) Recall w = fdxy A ... Adxy, = Adyy A ... A dyy, where A is the determi-
nant of the Jacobian. The left hand side of the change of variable formula
is Su w in the x; coordinates,

dexlA...Adxn
u

and the right hand side is Su w in the Y coordinates,
J fAdyy A oA dyy.
u

Theorem 108 (Stokes’s Theorem without proof). Suppose 7 € Q"~1(M) has
compact support. Then
J dn = 0.
M
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Fact 109. Stokes’s Theorem produces a perfect pairing between H,(M, R) x
Hir(M,R) — R by means of “integrating over cycles.” Here H,(M, R) is sin-
gular homology.

Corollary 110 (Integration by Parts). Suppose «, p are compactly supported
forms on M, with dega + deg 8 = dim M — 1. Then

JM{X A dp = (—1)desatl J (da) A B

M
Corollary 111. If M is a compact, orientable n-manifold, then Hf}; (M) # 0.

Proof. Choose an orientation w € O"(M). Then §,,w > 0. But w is clearly
closed, but not exact by Stokes. Hence, H} (M) # 0. O

Lie Derivatives

These won’t play a major part in this course, but they do have an important
relation with connections, which will be the major topic of this course after this
lecture.

Definition 112. Given a vector field X on a manifold M and p € M, and an
open neighborhood U > p, a flow on U is a collection of functions ¢;: U —
¢¢(U) for |t| < e such that

(i) ¢: (—¢€) x U — M defined by ¢(t,9) = ¢+(q) is smooth;
(if) if |s], [¢], [t + 5| < e and ¢(q) € U, then ¢s1+(q) = ¢s(P1(4));
(iii) if g € U, then X(q) is the tangent vector at t = 0 of the curve t — ¢;(qg).

So if f: U — R is a smooth function on an appropriate neighborhood of
U > p, by assumption 7y: t — ¢;(p) is an integral curve for X with (0) = p.
Furthermore, X(p) = 7(0) = doy (d/dr)- Therefore,

X)) = X)) = dor (1) £ = (Fo ) ©)

This map f o 7 is now a function R — IR, so we can write out the derivative in
terms of limits.

= lim

h—0 h

* —

i 22D P) — f(p)

h—0 h

Locally, we therefore have that
A
X(f) = jim ==,

This is the Lie Derivative on functions.
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Definition 113. The Lie Derivative of f: M — Ris Lx(f) = X(f) € C*(U)

Now we can extend the definition of the Lie derivative to forms. For F: N —
M smooth and w € A\’ T*M a smooth r-for, last time we defined F*w induced
pointwise from maps dpF: TyN — Tf(,) M. Namely,

F*(w)(p) = (dpF)*(wp(p)),
which we’ll also denote by F*(wp(,))-

Definition 114. If w is an r-form on M, we define the Lie Derivative with
respect to X by

*(w) —w

or pointwise by

Lx(w)(p) = lim i <w><vh> —w(p)

Fact 115. Some facts regarding Lie derivatives.
(a) If w,n are smooth forms, then
(9 (w A ) = Am)p = (1 (@) A i (1) —w ATy
= 931 @g ) A (B9, = 10) + (B0, ) = 0p) ATy
This implies that Ly is a derivation:

Lx(wnrn)=Lx(w)rn+wnLx(n).

(b) For any smooth map ¢, we saw that ¢*(dw) = d(¢*w). Hence,
Lx(dw), = li Ly d d
x(dw)y = lim & (971 (dew)g, ) — deoy )

.1
= lim 2 (950, ) ~ )

= dﬁxw

(0 ItEX =3 Xi%x, in local coordinates and w = fdx; A ... A dx; , then (a)
implies that

.
Lxw = (Xf)dxy Ao Adxe+ £ dxy A ndxi_ ndXp AL dx,
j=1
sine ﬁx(dx]) = d(EX(x])) = d(X(X])) = dX]

Suppose now ¢: U — V is a diffeomorphism and Y is a vector field on V.
We can define ¢*(Y) := (¢~')4Y, which produces a vector field on M.
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Definition 116. Thus for Y a vector field on M, we can define a Lie derivative
of a vector field Y by

(Pn)=MP) = Y(P) _ . (@-n):Yp ) — Yp
Ex(M(p) = Jim T — i T
Therefore,
[,X(Y) _ ;111_1% (‘P—h);yi Y

Remark 117. Setting k = —#, this is also

1
fim 2 (¥ = (@0 Yo,

— Lx(¥) = lim 1 (Y~ (g)uY)

Example sheet 2, question 11 asks you to prove that Lx(Y) = [X, Y].
Remark 118.
(1) Lx defines an operator on all tensors of a given type in exactly the same
way.

(2) (LxT)p depends on X in a neighborhood of p and not just on X(p). (Con-
trast this with connections when we talk about them next time.)

(3) Ingeneral, (L¢xT)y # f(p)(LxT)p-

Lecture 15 10 November 2015

Connections on Vector Bundles

This is really the crux of the course. Here we're going to talk about connections
on arbitrary vector bundles, and later we're going to specialize to connections
on the tangent bundle. Even later, we'll introduce metrics into the equation
and then there’s a canonical connection called the Levi-Civita connection.

We start with vector bundle valued forms.

Definition 119. Suppose 7v: E — M is a smooth rank k vector bundle over M.
An E-valued g-form is a smooth section of the vector bundle E ® /\q T*M =
E® (A TM)* = Hom (A\TM,E).

Denote such forms as Q7(M, E).

Definition 120. If U € M is an open subset for which E|; = 7~ 1(U) = U x R¥,
then we have a frame of smooth sections e, ..., e, of E|;; which form a basis
for the fiber E, forall p e U.
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Therefore,
Elu® A'T*M|y = (ANT*M|y),
and sections of Q7(U, E) may be written in the form wye; + ... + wiex € QX (U).
If moreover U is a coordinate neighborhood in M with coordinates x1, ..., x,,
each w; is of the form w; = > ) fidx; A ... A dxl-q and so an element of Q7 (U, E)
may be written as

Z fL]-dxl-l VANREVAN dxl-q ®€]
}

Ic{1,..n
#1=q,1<j<k
This shows that the bundle (E® A7 T*M)|y is trivial, isomorphic to U x RF),
Similarly, we have smooth sections of ()7(End(E)) of

Hom(E,E)®@ A1T*M,

where End(E) := Hom(E, E). And if E|; is trivial, the sections of this bundle
over U may be regarded as matrix-valued g-forms.

Definition 121. Ifeq, ..., ¢, is alocal frame for E over U, we have the dual frame
€1,...,& for E* over U and any element of Q7(U, End(E)) may be written in
the form

2, Wi ®¢i @,

L]
with w;; € QT(U).

Fact 122. Given finite dimensional vector spaces V and W, there is a natural
identification Hom(V, V) ® W — Hom(V, V ® W). In particular, this identifies
the vector bundles

Hom(E, E)® /\' T*M —"-Hom (E, Eo N T*M)

Definition 123. Given a vector valued forms o7 € QP (M, E), 0, € Q1(M, E'),
we can define a product oy A 03 € QP T1(M, EQ E’). On forms, this is just taking
the wedge product, and on the bundle part it’s just tensoring.

Locally, with respect to a trivialization ey, ..., ey of Eand e, ..., e} of E/, this
is defined by

(W1 ®e) A (W2 ®¢€)) = (w1 A w)er Ve,

and extending linearly. Morally, we should check that this definition makes
global sense (i.e. agrees on overlaps of trivialization chosen).

Definition 124. When E’ = E*, we have a natural map E ® E* to the trivial
bundle given locally by e; ® ¢; — ¢;(e;). If we identify E® E* = Hom(E, E),
then this is just given by the trace map.
This defines a product on E-valued p-forms and E*-valued g-forms via the
composition
QOF(M, E) x Q1(M, E*) —"— QPM(M, E® E*) —— QP T(M)

This is usually just denoted by A.
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Definition 125. Similarly, we have a product
QP (M, End(E)) x Q7(M,End(E)) —— QP*7(M, End(E)).

This is just multiplying these matrices, but using the wedge product instead of
multiplication.

Definition 126. Of particular importance is the product
QOF(M,End(E)) x Q1(M, E) —— QP*1(M, E)

given locally by

(Z wi®9i/277j®5j) = Wi A @ (85(5)))
i j ij

This is usually just denoted by A.

Example 127. When we define the curvature R, it is an element of Q% (M, End(E))
and we have an induced map

QI(E) —— QI2(E)
[ — RAC

Connections

Connections enable us to differentiate sections of a vector bundle of rank r.

Definition 128. A linear connection on the vector bundle E over M is given by,
forany open U € M,amap D = D(U): T(E,U) — QY(U,E) = T(U,EQ T*M),
such that

(i) f U2V and o eI (U, E), then D(c|y) = (Do)l|y;
(i) D(fo) = fD(o)+df ®0;
(iii) D(oq + 02) = Doy + Doy. Where f is a smooth function on M.

Remark 129. This definition of the connection differs form almost every book
on differential geometry. It’s the sheaf-theoretical definition of connections.
Most books define it to be a global map T'(E) — Q'(M, E) satisfying Defini-
tion 128(ii) and Definition 128(iii).

While in some cases we’ve taken the standard notation to agree with the
books, defining this thing globally is just wrong. Many books require some
illegal finesse to discuss global-to-local property.

Our definition avoids this problem because if we know D(lU,) for some
open cover {U, | « € A} of M, then Definition 128(i) guarantees that we have a
well-defined global map.

43



Definition 130. For a given p € M and « € T, M, we can define a map
D,:T(U,E) — Ep

for any neighborhood U s p by
Dq(0) = (Do)(a).

This is the covariant derivative along «.
Moreover, if X is a smooth vector field on U < M, then define the covariant
derivative along X by

Dx (o) = (Do)(X) e T'(U,E)
Note that Dx(c)(p) € Ep only depends on locally on ¢ and X.

Fact 131. From the properties of D, we see that
Dx(01 + 02) = Dxo1 + Dxoy

Dx(fo) = fDxo + X(f)o
Dix1g¢y(0) = fDx0 + gDyo

Contrast the covariant derivative with the Lie derivative, on say E = TM.
Recall that
EfX+gY(Z) # fLxZ + gﬁyZ

in general.

Lecture 16 12 November 2015

Last time we introduced the essential topic of connections on vector bundles
in a sheaf-theoretic way. What dos this look like in local coordinates? This
lecture is somewhat of a tangent (no pun intended) wherein we explore the
alternative definition of connections that is found in most books, and compare
to our definition.

Suppose now that {ey, ..., e;} is a local frame for E over U = M; let us set

Dej = ZGk]-ek S Ql(l,l, E),
)

where the juxtaposition 6; ® e,. We also often write ij = Ogj-
The matrix 6, = [6;], <ij<k of local 1-forms is called the connection matrix.

If U also a coordinate neighborhood with coordinates x1,...,x,, we can
write entries of the connection matrix in terms of dxy, ..., dx,, say

n
k k
0 = 2, Ty
i=1
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with Fkl-j smooth functions on U. Then setting
Di = Dyjox,

(this is Dx where X is the vector field X = a/(;Xl.). Then we have

r
k
Die]- = Z T i]-ek.
k=1

(Note that in some books, the indices i and j may be transposed.)
What happens when we change coordinates? If we change the chart, then

ij and l"ki]- will also change. Suppose for instance we have another frame

e’l,. .., ¢, and the transition functions between the two trivializations is given

by an r x r matrix of smooth functions ¢ = [1,[11']-]1 <ij<r This means that with

respect to the {e/}-basis

ef = 2 Pijee:
k
Therefore,
Dej =D (Z 1ij£k> = e + O PriOey
k k k¢
We can rewrite this in terms of the {¢/}-basis by applying Py~
=D D (@i + D kO () e | €l
P k k¢
These terms in parentheses are the coordinates of 6,/, so
Be)pi = | 2o d0 (0™ )k + D P (™) e
k kt

So we are left with the important equation

O = 1y + P10,y

Exercise 132. We could also change coordinate systems on U, say to y1,...,Yn
and find expressions for (I’ )kl-]- in terms of Fki]-. Check that

1k -1 ' -1y, 1k 0xg
IT)% = (¥ )ikT + )i e (%) /
where we have assumed the summation convention in the expression above.

Definition 133. We say that a section o € I'(U, E) is horizontal at p € U with
respect to the connection if and only if D, = 0 for all « € T, M, if and only if
(Do)p = 0.
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What does this really mean? Given a local trivialization o = Zj fiej as
above,

k=1

D (Z f]'e]') =2 <dff®€j + 2 f#’kﬁk)
j j=1

5 (o0 S s
k=1

j=1

This is an equation at p. So D(c) = 0 at p if and only if the coefficients vanish,
r
dfi+ > 0ifj =0,
j=1

at p for all k.
If moreover we have coordinates x1, ..., x; on U, we may rewrite this con-
dition as

dfi+ ) fiTdx; = 0
ij

fork =1,...,r. Plugging in x; to this equation, we get the condition

fk koo
axi+;rijf]_o

atpforallk=1,...,randalli=1,...,n.

Under the above trivialization given by the frame ¢y, . .., ¢, and coordinates
x1,...,X%5 onU, wehave coordinateson E|; = U x Rgivenby (x1,...,x4;41,. ..
The tangent space T;E for q € E|;; has dimension 7 + n and basis

0 0 0 0

oxy" " oxy O0my” " Oay

Let o be the section of E given by ¢(¥) = (X; f1(X), ..., f+(¥)). The tangent
space to o(U) at o(p) is generated by tangent vectors of the form

(i)

where )
C
(@) (55 ) () = - 00) = f
and y
0 0 of;
(do) ((%cl-) (a]) 3 l(a] o0) = o p.
This means that
of
w(2)-2] xLpl
é’xi ﬁxi o(p) — 0Xj 011] o(p)

/ar)-



What does this all have to do with what we did before? Let’s evaluate the

form
(dak + Z Fkija]-dxi>

ij
on the vector

Oy
aXK 0’(p) ] an (911] U'(P)
then
8f of
k ] k
dak + Z T ijajdxl- - (’JXp ("a = ox + Z F ]f]
ij o(p) ¢ .

And if o is horizontal at p, then this is zero.

Definition 134. Note that the forms
day + Z l"kijajdxi
ij
on TU( ?) Efork =1,...,rarelinearly independent, and when ¢ is horizontal at
p they also span. So the tangent space to o(U) at o(p) is cut out precisely by

these forms. We then say that the tangent space at o(p) of o(U) is horizontal
with respect to the connection.

Definition 135. This yields an alternative description of the connection as a
family S; = T,E of n-dimensional subspaces (what we previously called a
distribution), called the horizontal subspaces; the corresponding sub-bundle
generated by this distribution is called a horizontal bundle.

In terms of any local trivialization of 1 (U) with coordinates x1,...,x,,
ai,...,ar as above, S, is defined by forms of the type

day + 2 r l]a]dxl = day + 2 Okja;
ij j

and is independent of the trivialization.
Reversing the argument gives a connection in the sense we’ve defined it in
the previous lecture (Definition 128).

Definition 136. A local section o: U — E is horizontal/parallel/covariantly
constant if it is horizontal at all points p of L.

Example 137. The standard connection on TIR" is given by
0
Dl—)=
((7xi> 0

del ——0 <= df;=0foralli < f; constant for all i

foralli. If o = 3, f;%y,, then
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Lecture 17 14 November 2015

Lemma 138. Given a vector bundle E over M, there is a connection on E.

Proof. Locally, E|; = U x R" is trivial, where r is the rank of the bundle E.
There is a connection V on U x R” such that V(e;) = 0 for all k, where {e;}
defines a frame on U.

Now choose an open cover U = {U; | j € ]} of M consisting of such open
sets, and a partition of unity {p; | i € I} subordinate to U (which means that for
each i € I, supp(p;) < Uj(;) for some j € J). Then define the connection on E by

D= Zpivf(i),

iel

where V/() is the connection on Ely. O

Homomorphisms of bundles

Recall that a homomorphism of vector bundles over M isasmoothmap ¥: E —
F with maps on fibers ¥,: E, — F, for each p, commuting with the maps
E—-Mand F - M.

E—FX S F

NS

M

So if U < M, we have an induced map ¥, = ¥(U): I'(U,E) — I'(U,F)
given by ¥« (0) = ¥ o 0. Note that

Yi(fo+g7) = f¥x(0) + g¥x(T) @)

for all smooth f, g e QO(U).

I think I messed up the difference between capital and lowercase ¢ in the
following. I got confused by the lecturer’s handwriting! The point is that ¢(U)
is the local map I'(U, E) — I'(U, F), while ¥ is the map of bundles globally
E—F.

Conversely, suppose we have maps (U): I'(U,E) — I'(U, F) compatible
with restrictions (as in sheaf morphisms) such that (5) holds

Pp(U)(fo+g7) = fEU)(0) + gPp(U)(T)

forall o, 7 € T(U,E) and f,g € Q(U).

We have a well-defined map ¥: E — F given for any section s € I'(U, E),
U 5 p, by ¥(s(p)) = $(s)(p)-

What does this look like locally? In any open neighborhood of p, we choose
aframeey,..., e of E|y (thatis, e;(q),...,e;(q) a basis for E, for all g € U) and
then any section s of E|y; is of the form s = 3, fie; for some f; € Q°(U). Then
(5) implies that

Y(s) =D fisi,
i
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where s = (U)(e;) € I'(U, F). So when evaluating at p, we get
¥(s)(p) = Zfi(P)Si(P),

and any element of E, is of the form }; A;e;(p), and so define

Y (Z Aﬂi(P)) = 2 Aisi(p)-

This is well-defined by the compatibility conditions we imposed. Hence, ¥
gives a homomorphism of vector bundles, and moreover for any section o €
I'(V,E), Vopenin M,

for all p € V. This implies that ¥ = 1 over any open set.

Lemma 139. Suppose D;, D; are connections on a vector bundle E over M,
then (D; — Dy) corresponds to an element of O!(End(E)) =~ I'(Hom(E, E®
T*M)). Essentially, we can take any connection, add a 1-form over End(E),
and get another connection.

Remark 140. For bundles E, F, Hom(E,EQ F) ~ E*Q EQ F ~ Hom(E,E) ® F.

Proof of Lemma 139. Just note that for any open set U and sections o, T € I'(U, E)
and f,g € Q%(U), compute

(D1—D2)(fo +87) = f(D1—D2)(0) + g(D1 — D2)(7)
Hence, the result follows from the discussion above. O

Following this lemma, we can see that the connections on a vector bundle
are an infinite dimensional affine space (meaning that we have a vector space
without an origin) over the vector field Q! (End(E)). The automorphism group
of the vector bundle acts in a natural way on this affine space of connections.

Covariant Exterior Derivative

Definition 141. Given a connection D: Q°(E) — Q!(E) (this is really short-
hand for D(U) on sections over U for all open U, compatible with restrictions).
We can define a covariant exterior derivative D = df: QF (E) — QP*1(E), sat-
isfying the Liebniz rule, that is, for any E-valued form y and every differential
form w,

dE(u A w) =dBu A w+ (—1)%81y A dw

dE(w A p) = dw A p+ (=1)%8%w A dEp
Lemma 142. Given a connection D on a vector bundle E, there is a unique

covariant derivative df such that df () = Do for all ¢ € Q°(E).
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Proof. Suppose that we have a local frame sy, .. .,s, for E. Then for o = ), fis;,
Do =) dfi®s;+ Y fiDsi = ), fibisk
i i ik

We extend this as follows. There’s really only one choice, since we have the
Leibniz rule. Given ), w; ® s; € QF (U, E) , we set

dt (Z wl-@si) = Z (dwl- ®s;i + (-1 w; A dEs) ,

1

where df(s;) = Ds; = >k Okisk. Therefore,

dt <Z wi®si) = Zd(di ®s; + (—1)”2(@ A OkiSk-
i i ik

Given a change of frame s; = > ¥ijsi, one checks easily that this definition
doesn’t depend on the choice of frame.

We're forced by the Leibniz rule to make this definition the way that we
did, and so df is defined uniquely over such an open set U. In particular,
these patch together to give a well-defined and unique map df: QF (U, E) —
QPF1(U, E) for any open U, including U = M. O

Definition 143. Consider now the map R = df odf = D?: Q%E) — Q%(E).
This is called the curvature operator.

Note that
D?(fo) = D(Af @0 + fDo) = d*f ® ¢ —df A Do +df ~ Do + fD*0 = fD%0.

So even though D doesn’t correspond to a homomorphism of vector bundles,
R in fact does. Our previous discussion shows that R € I'(Hom(E, /\2 T*M®
E)), but we can in fact identify the bundle Hom(E, A’ T* M QE)) with A’> T*M ®
Hom(E, E), and hence R corresponds to an element

ReT (/\2 T*M @ Hom(E, F)
where R(0) = R A o, that is,
R(0)(X,Y)or =R(X,Y)oeT(E)

forall o e T(E).
Usually we denote R also by R, that is, we identify

Hom(E, A\’ T*M®E) = A\’ T*M®Hom(E, E)

Definition 144. O2(End(E)) := I['(A? T*M ® Hom(E, E)).
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Lecture 18 17 November 2015

Last time we defined the curvature by setting D> = R € T'(Hom(E, A2T*M ®
E)) =~ O?(End(E)). This curvature R corresponds to R € Q?(End(E)) by

R(@)(X,Y)=R(X,Y)o

for all vector fields X, Y. With respect to a trivialization ey, . .., ex of E, it’s given
by a matrix of 2-forms ®,, namely

D? <2fiei> = > fiD?(e)

where
D?(e;) = D() Bxiex)
k
= Z dekiek — Z 9ki A ijej
k K
= Z dbyer + Z 9]'k A Gkiej
k k]
Therefore,

D?(e;) = ) Opiex
where @, = df, + 6, A 0, is a matrix of 2-forms.
If e; =3 ije; is another frame, the curvature matrix changes as follows:

D% = D? (Z ‘Pifei)
= Z ;D (e;)
= Zlk: PijOxie
= Z PiiOki (¥~ xey

ikl

Therefore,
-1
(@) = D) Opithij
ik
but again this looks much neater when we write this as a matrix:

Oy = PO,

Definition 145. A connection is called flat if it’s curvature is zero.
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For example, if E = M x IR is the trivial bundle with trivializing frame
e1,...,e such that e;(p) = (p,e;), then we can define a flat connection on E by
specifying that the e; are parallel, thatis, D(e;) =0 foralli=1,...,r.

Exercise 146 (Example Sheet 3, Question 7). If a vector bundle E admits a flat
connection, then there is a choice of local trivializations so that the transition
functions are constant: yg,(p) = hp, for all p € Uy n Ug. Moreover, if M
is simply connected, then the vector bundle is isomorphic to a trivial bundle
(trivialized by a parallel frame).

With respect to a local frame ey, ..., ¢, for E, R € Q?(End(E)) corresponds
to a matrix ®, of 2-forms, and

R(er) = ), Ogiex = Y Ofey,
where Oy, = ©F.

1
Therefore, R = Z@fsi ® e, where ¢1,...,¢, are the dual frame for E*.

Given a local coordinate system x1, ..., x,;, we have that

o 0 W
R{—, - )e = o
<8xp'6xq)el Zqu <6xp'6xq)ek
Therefore,

0 0 k
R <0xp' 6Xq> € = Z];R ipqCks

where the coefficients are given by Rkip g = ok (a/axp, a/a,%).
So
Re;) = Z Rkipqup Adxg ® ey
k=1,...,r
p<q
= Z Rkipqup ®dx; ®ex

k=1,...r
p<q

k _ _pk
where R iap = R ipg-
Exercise 147 (Example Sheet 3, Question 4). If ¢ is a section of E, then

R(X, Y)O’ = R(O’)(X, Y) = Dny(T— DyDXcT— D[X,Y]U
In essence, the curvature measures the failure of Dx and Dy to commute.

From now on, denote the curvature map also by R rather than R. This is a
consequence of identifying Hom(E, A? T* M ® E) with A? T* M @ Hom(E, E).

Proposition 148 (General Bianchi Identity, coordinate version). Having chosen
a local trivialization ey, . . ., e, for E over U, recall that

D?(e;) = R(e;) = ), Opiey,
k
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with @y; = @i-‘. This matrix is given by @, = (Q;), given by
O, = dbe + 0, A 6,
where 0 is the connection matrix. Then,

d® =dO A0 —0 Adb
=dOAO+OAOAND—-—OAdO—OAOAD
=OA0-0A0O

Consequently,
d®ki = Z (®k] A 6]1 - Gk] A ®]1)

]

A coordinate free version of the Bianchi identity is on Example Sheet 3,
Question 5.

Orthogonal Connections

Suppose we have an orthogonal structure on a vector bundle E over M of rank
r in which all the transition functions lie in O(r). In this case, the standard
inner product on R” yields a well-defined inner product ( , ), on fibers Ej,
of E varying smoothly with p. More abstractly, this is a smooth section of
E* ® E* which induces the inner product on each fiber. This smooth section is
symmetric and positive definite.

We call such a section of E* ® E* a smooth metric on E, denoted by (, ).

Conversely, if we have a smooth metric on E, then we may reduce the struc-
ture group to O(r). Locally, we can apply Gram-Schmidt orthonormalization
to any given frame.

Lemma 149. Metrics always exist on any given vector bundle E.

Less of a proof and more of some words that vaguely justify why. Clearly, they exist
locally, and then we can use a partition of unity to get a global metric. O

Definition 150. A connection D on E is orthogonal with respect to a given
metric( , YonE if
d{s1,s2) = (Ds1,52) + {51, Dsp)

for all 51,5, € I'(E). And for any vector field X,
X(s1,52) = (Dxs1,52) + (51, Dx52)-

Proposition 151. An orthogonal connection has a skew-symmetric connection
matrix 6, and skew-symmetric curvature matrix ®, with respect to any or-
thonormal frame.
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Lecture 19 19 November 2015
Recall that a connection D is orthogonal with respect to a metric {, ) on E if

d{s1,s2) = (Ds1,52) + {51, Dsp)

for all s1,s5 € T(E).
For a vector field X, this means that

X<Sl, 52> = <st1,52> + <51/ st2>.

Proposition 152. An orthogonal connection has a skew-symmmetric connec-
tion matrix 6, and skew-symmetric ®, with respect to any orthonormal frame.

Proof. Suppose that ey, ..., ey, is a local orthonormal frame and

Dei = 2 Gkiek.
k
Then
0= d<€i, €]>
= <2 ekiek/ej> + <12 9ej€z>
k L
= 9]'1' + 9”

Hence 6 is skew-symmetric. Now given ©®, = df, + 6, A 8., we know that

®ik = dgij + Z Gij A ij
j

®ki = deki + ng] A 9]'1'
j

= —df — Y 0ij A O = —Oj
j

Connections on the Tangent Bundle

Koszul Connections

In this chapter, we now specialize to the case of connections V on the tangent
bundle, called Koszul Connections. For notational convenience, we set

Vi=Voon

with respect to a local coordinate system x1, ..., x,. Therefore,
0 u v 0
Vil—1|=%NT1"
l (3"]') 2
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and the l"kl-]- are called the Christoffel Symbols.

The curvature R € 2 (End(TM)) determines, for X,Y,Z vector fields, a
vector field R(X,Y)Z where

R(X,Y)Z = —R(X,Y)Z.

As a tensor, we can write R with respect to local coordinates x1, ..., x; as

0

_ k R ——
R = Z R ipq dxp®dxq®dxl® 6xk
i,p.qk

kK _ _pk
Note that R ipg = ~Riigp-
Remark 153 (WARNING!). You won't find consistency between any two books
with how the coordinates of the curvature tensor are written. Sometimes what

we write as Rkip q 18 Rkpi g books or something even weirder.

This definition of R in local coordinates in particular means that
0o 0 d k0
R ,— (=) =) R —
(a“xp (}Xq) <8x,-) A P 6xk

Definition 154. Let v: [4,b] — M be a smooth curve. A vector field V along y
is a smooth function V on [4, b] with V; = V(t) € T, ;) M. Locally we can write

0
" Zilvi(t)aixi (1)

for smooth functions v; on [a, b].
Suppose now V is a smooth vector field in a neighborhood of y([a, b]). Then
t— V’YV

is a vector field along <. This vector field is called the covariant derivative of V
along v, written %; this may however be generalized for any smooth vector
field V along 1.

Proposition 155. There is a unique operation V — % from smooth vector
fields along 7y to smooth vector fields along < such that

D(V+W) _ DV , DW.
@ —F— ="+

(b) 2UV) _ (df/dt) V + fOY for f: [a,b] - R smooth;
(c) If Vs = Y () for some smooth vector field Y defined on a neighborhood

of y(t), then %(s) = VY.
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Proof. If x1,...,x, is a local coordinate system around p = <(tg), then for ¢
sufficiently close to ty, we may write

wamm@

j=1 ()
Then using (a),
DV D 0
— =2 7 vtz ) by (a)
dt ]221 dt ( / ax] ’y(t)
" (doj o ? >
]
D e () by (b)
]’:Z‘i ( dt f)x] 'Y(t) / dt ax] ,Y(t)
" (dv; ¢ 0
]
= — +0i(H) Vi =— by (c)
]‘_Zl ( dt dxjl, VIO ax,-> Y
Now as P
Vi
t) = Zhn
T Z b oxily

& dyi 0
1
1=

—zﬁﬁa;mmmgmﬁ;k

So there is at most one such operation, and it’s easy, if tedious, to check that
the above formula has the required properties. O

(1)

Remark 156. This yields a value for %, even at points where (0) = 0. For
example, if 7 is a constant curve, then a vector field along 7 is just a curve in the
corresponding tangent space T, M. Moreover, in the case where v is constant,
then % is the usual derivative of a vector-valued function.

Definition 157. A vector field V along v is parallel along 7 with respect to V
if % = 0 along 7.

This definition makes sense, because when M = R" and V is the directional
derivative

\Y (Zfi&') = dei e

— V(fi,... fa) = @f1,...,dfn)
= Vx(fi,--o fu) = (X(f1), -, X(fn)

we obtain the standard picture of a parallel vector field along 7, since the equa-
tions reduce down to % = 0 for all k.
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Remark 158. In general, given a curve 7: [a,b] — M and a vector V; € Tv(a)M,
there is a unique vector field along y which is parallel along <. This is because
the linear ODEs

ey d’)/l 0
(5 Erego)

ij=1

=0 (6)
(1)

have unique solutions vy defined on [a, b] with initial data V(y(a)) = V;, and
the required vector field is then

V= Zv]

Definition 159. We say that the vector V; € T, ;) M is said to be obtained from
Vi by parallel transport or parallel translation along +y.

7(f)

Clearly from the equations (6), the map 7: T, ;)M — T, ;)M is a line map;
it has inverse given by parallel transport along the reversed curve and so is an
isomorphisms of vector spaces.

This gives us a way to connect tangent spaces at different points. Parallel
translation is determined in terms of V, but we can reverse the process as well.
This will let us define parallel connections on any tensor bundle, not just the
tangent bundle.

Lecture 20 21 November 2015

Recall that given a connection V on TM and a curve y: [a,b] — M, we have a
parallel translation map 7: T, ()M — T, ;) M.

Proposition 160. Let y: [0,1] — M be a curve with ¢(0) = p and 7(0) = X,.
Then for any vector field Y defined locally at p,

1/
Vx, Y = lim o (Th Yo - Yp)

Proof. Let V3, ..., V, be parallel vector fields along y which are independent at
7(0), and hence at all points y(t). Set

= S ai(t)Vi(h)

i=1
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Therefore,

N . S -

fim (5 Yy~ ¥p) =l (Z ) Vi)~ az-<o>vi<0>)
1
h

= Vx,Y by property (c)
O

Remark 161. Let Té‘(M) denote the tensor bundle

TF (M) =TM® - @ TMR®T*M® - ®T*M.
k l

Parallel translation 7 : T, ()M —— T.,(;y M induces isomorphisms that we call
Té‘Tt: (TZ,‘)W(O) — (Té‘)y(t). For any tensor A € T(Té‘(M)), we can define

Vi A = lim = (TG ) AG () — AGp))

where X}, = 7(0). Note that Té‘(l’h—l) = Té‘(Th)*l.
We need to check this is a connection on the tensor bundle Té‘M. Most
conditions here are clear, for example

Vi, (FA) = lim 7 [ () (Thg ALy () — A(p)) + (F(r() — F((O))A()]

h—0 h
= f(p)Vx, A+ Xp(f)A(p)

where (f 07)(0) = dy 0 f(7(0)) = Xp(f)-
But it’s less clear in general that the definition is independent of the choice
of v with ¢(0) = X, and moreover that

VfX+gyA = fVXA + gVyA,

but in the cases we're interested in, this will follow by the formula derived
below, and in general by an inductive extension of this argument (see example
sheet 3, question 9).

Example 162. How does this connection act on various tensors?

(1) For Ae C®(U),
d(Ao7y)
dt

Vx,A = (0) = X, A.
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(2) Suppose A € End(TM). For a given local vector field Y, we have

Vx(p) (A(Y)) = (Vx, A)Y + A(V, Y).

Example sheet 2, question 2, is the case of an arbitrary vector bundle E.

Proof. Given v with ¥(0) = X,, we can write down linearly independent
parallel vector fields V3, ...,V along v, and linearly independent dual
1-forms ¢y, ..., ¢, along . Note that ¢; and ¢; ® V; are parallel for all
i, ], since they are just given by parallel translation (c.f. example sheet 3,
question 8). Set

n
A(r(D) = D Aij()9i ® V).
So if we have a vector field -
Y(y(t) = ;Yk(f)vk,
say, then we have

Vi (AY) = 3 0 (a500%0)

i,j

Vi(0)

0
dAl]

- ; ( dt 0) Y0

= (VXPA)Y—FA(VXPY) [

ay;
dt

Yi(0) + A;;(0)

0

(3) Suppose A € T(T*M ® T*M). This is the sort of thing we’ll have when
we have a metric. Then

(Vx,A)(Y,Z) = X,(A(Y, Z)) = A(Vx, (V) Z) = A(Y, Vx,Z).

The proof is exactly the same as before — we write it down in terms of
parallel bases and then compute.

Proof. With notation as above, we write

A(y() = DI Aij(1)gi(t) ® (1)
ij

Y(y() = D Y;(HVi(t)
j

Z(y(8) = Y. Zi(t)Vi(t)
P

Therefore,

Xp(A(Y,2) = Vi, (A(Y, 2))
d
=25 (Ai¥iZ))
L]

= (Vx,A)(Y,Z) + A(Vx,Y, Z) + A(Y, Vx,Z)

t=0
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(4) This generalizes to A € Q*(End(TM)) < I(T*M ® T*M ® End(TM)).
Setting
A(t) =D Aij(Hi(t) ® Vi(t)
i
with Aji(t) now 2-forms, a similar argument implies
Vx,(A(Y, Z2)) = (Vx,A)(Y, Z) + A(Vx,Y,Z) + A(Y,Vx,Z) (7)

as sections of End(TM). We're particularly interested in this case because
of curvature. In particular, given a connection V on the tangent bundle,
the formula (7) defines a connection V on OQ?(End(TM)) (the fact that it
is a connection is an easy exercise).

For the curvature R € Q?(End(TM)), this gives the formula for (VxR)(Y, Z),
which is needed in the proof of the second Bianchi identity.

Torsion Free Connections

Definition 163. Given a Koszul connection V on TM, define for vector fields
X,Y anew vector field

T(X,Y)=VxY—-VyX—[X,Y]

called thetorsion T of the connection V.

Remark 164. It’s easy to check that T is bilinear over smooth functions:
T(fX,Y)=fT(X,Y)=T(X, fY).

And so T(X, Y),[J depends only on X,, Y, and hence it defines a tensor in
[(T*MQT*M®TM).
If V has Christoffel symbols l"kij with respect to a given local coordinate

system, then
(2 < zz(rk..,rk..)i
6xi'6xj p 1 1) oxi”

So T has components le.j = (Fk. - Fkﬁ).

ij

Lecture 21 24 November 2015
Recall that last time we defined the Torsion tensor T by
T(X,Y)=VxY—-VyX—[X,Y]

with respect to a given coordinate system, T has coordinates
k k k
Tl = (%= 1%)

Definition 165. A connection is called symmetric or torsion free if T = 0.
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Proposition 166. For p € M, the torsion tensor T of a connection V vanishes
at p if and only if there is a coordinate system around p with l"ki].(p) = 0 for all

ij k.
Proof. («<). Clearly we have T(p) = 0 independent of the coordinate system.
(=). Suppose we have local coordinates x, ..., x, and that

rkij(p) = iji(P)

foralli,j, k.
Define a new coordinate system vy, ...,y by

Yk = (xx — xk(p Z T xi(p))(xj — xj(p))-

1]1

Using the symmetry of V, we compute
Yk N
oy, = Okt DR () (xi = xilp))
¢ i=1
with /5. (p) = .

This shows that in a neighborhood of p, y1, ...,y is also a coordinate sys-
tem around p and moreover that

Py ok
Fx:0%, (p) =T%p) (8)

What are the Christoffel symbols with respect to the new coordinate sys-
tem? Call them I".

k 0 0
Zk] ()% e = Valow <0y )
OXg 0
Vojoy, ay ox,
_ 2 0xy 2 0xy axr J
0y 0y, an oy; oy; Vojox, oxy

0 Oxy 0 0
Z 5 axg E(xf er ”’a;s

0Y;0y; Y; i

Now evaluate this whole thing on y; to get

(Y55 = 2K () T ) ©)
ij\p ay,ay] ij\p
using ayk/@xf(P) = py-
Now in a neighborhood of p,
Z Ay oxp
oxg dyj %
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Operate by a/g;xi to get (the right term is derived from throwing in an extra
chain rule)

S P 05t 5 i Oy
7 0x;0xy JY; ~ dxy 0x; 0y, 0Y;

This then implies, using (8), that

62xk
Yidy;

I(p) + = —=~(p) = 0

Hence, we deduce from (9) that
k
(')’ (P) =0,
which is what we wanted to show. O
Proposition 167 (Bianchi’s Identities for Torsion-free Koszul Connections).
(i) 1st Bianchi Identity R(X,Y)Z + R(Y,Z)X+R(Z,X)Y =0
(i) 2nd Bianchi Identity (VxR)(Y,Z) + (VyR)(Z,X) + (VzR)(X,Y) =0
In coordinates, this can be written as
h h h
Rk + Riigej + Rigjx

for all i, j, k¢ where

AV AN
(o) ) (50) = Sy

Proof.

(i) Use Example sheet 3 question 4:
R(X,Y)Z =VxVyZ—-VyVxZ -V xy|Z

It suffices to verify the identity for coordinate vector fields a/axi, and so
we may assume that the Lie brackets vanish. Then it’s clear that the cyclic
sum vanishes using the symmetry of the connection.

So R(X,Y)Z = VxVyZ — VyVxZ. Now take the cyclic sum and use
symmetry VyZ = VzY; everything cancels.

(ii) Again, since everything in sight is a tensor (and therefore linear with
respect to multiplication by smooth functions in all variables), we only
need check this pointwise in local coordinates. Suppose given p, we can
choose coordinates x1, ..., x; so that the Christoffel symbols vanish at p
(using the symmetry of V).
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Thus using the formula for the covariant derivative of the curvature from
last time,

o 0 J 0
14 P
0 0
—R (Va/gxl. (ax]) ’ axk>
P
0 0
—R (ax], v(;/axi <(’}xk>>
p
But V6, (%ax,) = 0 by our choice of coordinates. Therefore,
0 0 0 0 0
(Va/axiR) <8x]' &xk> = Voo, (R ((%C]' o’xk>> ((9365)
p p
0 0 0 0
Va/ax,- (zhl R tik BX},> R (Bx]-’ 6xk> (va/axi <ax£>)p
P

Again, the second term vanishes because V5, (a/axh) = 0 by our choice
of coordinates, so we get
P >

o 0 o (., o
(Va/ax,-R) <8x]-’6xk>p = Zh: ox; <R Uk 3y

Thus, with respect to the given coordinates x1, . .., x;, it remains to prove
that

O om , 9 pm , 9 om
o e]‘k+a7j it G tij =0

To that end, given the connection matrix 6, is assumes zero at p, the gen-
eral Bianchi identity we proved is

AO=0A0—-0A0
with dO7" = 0 at p for all m, £. Now,
j<k
1 m
L]

Therefore,

1 0
d@zn = E Zk Tleﬂé]kdxz A dx] A dxk =0
i,

at p for all m, £. This implies the statement required because this is valid
for all p. O

63



Remark 168. There is a coordinate-free approach to these identities on Exam-
ples Sheet 3, Question 5. A connection V on TM induces covariant exterior
derivative d¥4: O?(End TM) — Q3(End TM). The curvature tensor R of V
lies in O?(End TM). The coordinate-free form of the second Bianchi identity
says that

d""4(R) =0

Lecture 22 26 November 2015

Riemannian Manifolds

Definition 169. A Riemannian manifold is a smooth manifold M equipped
with a Riemannian metric, that is, a metric ¢ = {(, ) on TM. Note that g is
therefore a symmetric tensor in I'(T*M ® T*M). Sometimes we say “a metric
on M” meaning “a metric on TM”.

Remark 170. Riemannian metric always exist on any smooth M; we can write
such a metric in local coordinates x1,...,x, on U < M as

g = Zgijdxi ®dx]
ij
where for each p € U, (g;i(p)) is a positive definite symmetric matrix.

As with vector spaces, giving a metric on TM is equivalent to giving a (non-
canonical) isomorphism of a vector bundle TM — T* M.

Remark 171. Given a Koszul connection V, we have an induced connection V
on T*M ® T*M; moreover for X, € T, M,

(Vx,9(Y, Z) = X,(8(Y, 2)) = 8(Vx,Y, Z) = g(Y, Vx,2).

Thus the metric g is covariantly constant with respect to V, meaning that
Vg = 0if and only if for all V is an orthogonal connection with respect to the
metric (meaning that dg(Y,Z) = (VY,Z) + g(Y,VZ)).

Definition 172. In this case, where Vg = 0, we say that V is a metric connec-
tion on M.

Proposition 173. V is a metric connection if and only if parallel translation
7; along any curve 7: [a,b] — M is an isometry with respect to {, ), (,) and

Oyt

Proof. (=). Suppose V is a parallel vector field along 7y (recall parallel means
BY = 0). Write V locally as

0
Zilvi(t)a?i

DV dv; o D o
cﬁz(aﬁaaci+‘/’clzfaaci>'

i

and so
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Now

d d
SV V)= dtlZViVj<axl 8x]>

=2 V;
Z <(9xl 6x]> Z ! ]dt<ax1 6x]>
where, since V is a metric connection,

dt<6xl 6x> dt <<f‘xl 6x )
<ox, x]->
= <Vw'(t>axif aax]> * <ai’v7'<f>;xj>
Substituting this in the above, we see that
dt<V V)= 22 <&xl > Z i ]dt<(7x, 6x>
_22<dd‘; ao ldtaxl Vfaij>

(<=). For given p € M and X, € T,M, chose a curve 7 with 7(0) = p,
7(0) = Xp. Our assumption implies that we can choose parallel vector fields
v1,...,0y along v which form an orthonormal basis for Ty(t)M for all ¢.

For given vector fields Y, Z in a neighborhood of p, write

)) = D Yi(hVi(h)
= 2. Zi(OV(h)

Therefore,

d
Xp(Y, 2y = =Y, Z)oy .
d
- FIWOZ0)
-3 (Foz0 o o)

= (Vx,Y, Z)p + <Y, Vx, Z)p. O
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Remark 174. Given a connection V and a metric { , ), we can form a (0,4)
tensor Re [(T*M Q@ T*M QR T*M ® T* M) where

R(W,Z,X,Y) =(R(X,Y)Z, W)

In coordinates,
R = R,»qudxi () dxj X dxp X dxq

where
k
Riqu = <R (%xp,%xq> %xj/%x,-> = Zk SkiR irq’
Rk].p q in our previous notation.

Symmetries of R
Proposition 175. If V is both a metric and symmetric connection, then we have
(a) We always have R(W, Z,Y, X) = —R(W,Z,X,Y) = Rysji = —Ryij.

(b) For a metric connection, we have R(Z, W, X,Y) = —R(W,Z,X,Y) =
Rysij = —Rykij- Without loss of generality we may take a local orthonor-
mal frame v1, . .., v;;, and then use that the matrix @’g (X,Y) is skew-symmetric.

(c) For a symmetric connection, we have the first Bianchi identity
R(W,Z,X,Y)+R(W,X,Y,Z)+ R(W,Y,Z,X)=0;
in coordinates, Ryy;; + Ryij¢ + Ryjei = 0.
(d) RW,Z,X,Y) =R(X,Y,W,Z) = Rpij = Rije-
Proof of (d).
(R(X,Y)Z,W)=(R(W,2)Y,X)

Then by (1), the left hand side is

LHS = —(R(Y, X)Z,W by (a)
=(R(X,Z2)Y, W) +{(R(Z,Y)X,W) by (c) (10)
Also,
LHS = —(R(X, Y)W, Z) by (b)
=(R(Y,W)X,Z)+ (R(W,X)Y,Z) by (c) (11)

Now add together (10) and (11) to see that

2LHS =(R(X,2)Y, W) +{(R(Z,Y)X, W)+ (R(Y, W)X, Z) +(R(W, X)Y, Z)
and similarly with X < Wand Y < Z. Likewise,

2RHS =(RW,Y)Z,X> +<{R(Y,Z)W,X) + (R(Z, X)W, Y) + (R(X,W)Z,Y)

Now properties (a), (b) and uniqueness imply that these are equal! O
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Levi-Civita Connection

Lemma 176 (Fundamental Lemma of Riemannian Geometry). On a Rieman-
nian manifold (M, g) with ¢ = {, ), there exists a unique symmetric connection
compatible with the metric defined by

UVY,Z) = XY, Z)+ Y{Z, Xy — Z(X, Y)Y —{[Y, Z], X) + ([Z, X], )+ {[X, Y], Z)
(12)

for all vector fields X, Y, Z.

Proof. Uniqueness: given a symemtric metric connection, we show that it sat-
isfies (12).
Compatability with metric implies

XY,Z) =(VxY,Z)+{Y,VxZ).
Symmetric implies
(VxY,Z)—(VyX,Z) ={[X,Y], Z).
Therefore,

XY, 2>+ Y{Z,X) — Z(X, Y)Y = (VxY, Z) + (Y, VxZ) +(VyZ,X)
+ <Z, VYX> — <V2X, Y> — <X, VZY>
= (2<VXY/ Z> - <[X/ Y], Z>) + <[Xr Z]r Y> + <[Yr Z]/ X>

And this implies equation (12). Hence we have uniqueness.

Existence: If we define VxY by (12), we then need to show what we’ve
defined is a connection. So it remains to prove

(@) VixY = fVxY;
(b) Vx(fY) = X(f)Y + fVxY.
So we can check these individually.
(a) From the formula, we see that
2V xY, Z) = 2f(VxY, Z) + Y(f)(Z,X) = Z(f XX, Y) + Z(f XX, Y) = Y(f XX, Z)
=2f(VxY,Z)
This holds for any Z, so we have established (a).

(b) From the formula, we see that

2V(fY), Z) = 2f(VxY, Z) + X()CY, Z) — Z(F)(X, Y) + Z()Y, X) + X(F)Y, Z)
= AX()Y + fVxY, 2)

This holds for any Z, so we have established (b).
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The fact that V is symmetric comes straight from (12) by inspection.

The fact that V is a metric connection comes by using (12) to write down for-
mulae for (VxY,Z) and (VxZ,Y) = {Y,VxZ) and adding to get (VxY,Z) +
Y, VxZ)y=X{Y,Z). O

Definition 177. This is called the Levi-Civita Connection.

Lecture 23 28 November 2015

Remark 178. Classically, the Levi-Civita connection V is given in terms of its
Christoffel symbols — if we have coordinates x4, ...,x, on U € M, then

2 <Via/6xj/ %xk> =23 Tsu
l
But if you look at the formula (12), this is also

Oo- ) o
2<via/ax]‘/ a/&xk> = g]k/axi + agkl/&xj‘ - g”/axk

This implies a formula for the Christoffel symbols of the Levi-Civita connec-

tion.
1 ogik 0k 08ij
¢ _ o o [ 98 Ski  “8ij
r ) 2 Zklg < 0x; N 6x] Oxy

where g% := (g71) ,; ¢! is the inverse matrix to g = (gjj)-

Definition 179. The curvature of the Levi-Civita connection is a tensor of type
(1,3) with components, Rkl.p g a8 before; taking

<R (0/635,,/&/53(,7) %Yox; %xj> = Rjipg = ) 8ikRYyq
k

we obtain a tensor of type (0,4) with all indices down; this is called the Rie-
mannian Curvature Tensor.
In invariant notation, the Riemannian Curvature Tensor is a (0,4) tensor R
such that
R(X,Y,Z,W) =(R(Z,W)Y,X) =(R(X, Y)W, Z)

Definition 180. Given orthonormal tangent vectors #1, 17, at p € M, we define
the sectional curvature of the 2-plane W spanned by #1, 17, to be

K(W) = R(m,112,m,112) = <R(11,112)112, 11)-
If 71, 172 are not orthonormal, then we define the sectional curvature

_ ROy, m2)n2,11)
{n Xz, 2y — (2, m2)?
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Remark 181. It’s easy to check that this just depends on the 2-plane spanned by
11 and 772, not the actual vectors themselves. This just uses the antisymmetries
of the curvature tensor and symmetries of the metric.

It turns out that you can recover the information about the curvature from
just the sectional curvature!

Lemma 182. If V is an R-vector space and Ri,Ry: Vx V x V xV — R are
quadrilinear maps satisfying symmetries (a), (b), (c), (d) of Proposition 175 and
such that

Ri(X,Y,X,Y) =Ry(X,Y,X,Y)

forall X,Y € V, then R; = R».

Proof. Reduce to the case that Ry = R and R, = 0 by taking their difference.
Then it remains to prove that R(X,Y, X,Y) = 0 for all X,Y, which will show
that R = 0.

To that end, we calculate

0=R(X,Y+W, X Y+W)
= R(X,Y,X,W)+R(X,W,X,Y)
=2R(X,Y,X,W) by Proposition 175(d)

So R is skew-symmetric in the first and third entries, and similarly in the sec-
ond and fourth entries. This is in addition to all the other symmetries of Propo-
sition 175. From the 1st Bianchi identity, we see that

R(X,Y,Z,W)+R(X,Z,W,Y)+R(X,W,Y,Z) = 0.
But then our antisymmetries imply that
3R(X,Y,Z,W) =0
forall X,Y,Z,W. O
This lemma immediately implies the following corollary.
Corollary 183. Sectional Curvatures determine the full curvature tensor.

Definition 184. When dim M = 2, the sectional curvature is usually called the
Gaussian curvature (c.f. Part II Diff Geom, or Example Sheet 3, Question 6).

Corollary 185. Suppose that a metric {, ) on M has the property that at any
point p, the sectional curvatures at p are all constant with value K = K(p).
Then

R(Xp,Yp, Zp,Wp) = K- (<Xp, Zp)XXp, Wp) — (Xp, Wp)XYp, Z,,}) (13)

Proof. Essentially we’ve seen a proof of this already. Let Ro(X, Y, Z, W) be the
right hand side of (13). Then if R is the Riemannian curvature, R = Rq by the
previous lemma Lemma 182, so R = Ry at p. O
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Definition 186. Set (X, Y) to be the trace of the endomorphism of TM given
by V — R(V,X)Y. This is called the Ricci tensor, and is sometimes denoted
Ric(g) where g is the metric.

If we take any orthonormal basis ey, .. ., e, for T, M, then
r(Xp, Yp) = tr(Vy = R(Vp, Xp)Yp)
= 2 R(e;, Yp, e, Xp)
i

=71(Yp, Xp) by Proposition 175(d)

sp r is a symmetric covariant covariant tensor of rank 2. There’s another sym-
metric covariant tensor of rank 2 floating around, namely the metric. This mo-
tivates the next definition.

Definition 187. A metric g on M is called Einstein if r = Ag for some constant
A

Definition 188. For any 0 # v € T,M, the Ricci curvature in direction v is
defined by
r(v,0)

0y
If we normalize so that v has length 1 (i.e. {v,v) = 1), we may extend v to
an orthornomal basis v = ey, e, ..., e, of T;M, and then

r(v) :=

n n

7’('0) = Z el/v €, 0 Z el/elrelrel

i=2 i=1

and (), is the average of the sectional curvatures of the planes generated
by vande; fori > 1.

Lemma 189. The Ricci curvatures at p are constant with value A if and only if
the metric is Einstein (r = Ag) at p.

Proof. («<). Clear.
(=). If r(v) = Aforall v # 0, then we know that r(v,v) = Ao, v) for all
v € T, M. Therefore,

r(v,w) = Ao, w)
for any v,w € T, M. Hence r = Ag at p. O

Example 190. If the sectional curvatures at p all have value K, then r is also
constant on T, M\{0} given by (n — 1)K.

Lecture 24 1 December 2015

Last time we defined the Ricci Tensor and the Ricci Curvature. Today we're
going to go one step further with one more contraction.
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Definition 191. The Ricci tensor r and the metric determine an endomorphism

T,M LR TyM where r(v, —) = {0(v), —). The scalar curvature is just the trace
of this endomorphism. With respect to an orthonormal basis, ey, . .., e,, this is
just

Z<9 ) i) = Z r(ei ;) Z r(ei)
i=1 i=1

wehere r(e;) is the Ricci curvature of e;.
So s/n is an average of Ricci curatures.

Example 192. If the Ricci curvatures at P are constant with value A, then s =
nA. If the sectional curvatures at P are all K, then s = n(n —1)K.

Definition 193. Given a metric on M, we say that a local coordinate system
X1,...,%p is normal at p if

o 0
6x,6x]>p =% and (9xk<6x1 ;/,

Remark 194. Choosing a set of normal coordinates greatly simplifies calcu-
lations in many cases. Once we’ve got existence of normal coordinates, the
proofs (e.g. for the second Bianchi identity) can be much much shorter.

Lemma 195. Normal coordinates exist at any point p.

Proof. Gram-Schmidt implies we may choose the coordinates x1,...,x;, or-
thonormal with respect to the metric; that is, g;j(p) = ;. Then set Ajk =

d ..
gl]/dxk (p)’ and
1
biij = 5 (ﬂkij + ayji — ﬂz’jk) -
Notice this is symmetric in i, j. Therefore,
bijk + bjix = aijg.-

Define a new coordinate system by

Ye=2xt 5 Z bierx oy

lr
This then implies that
Y
Er Ok + Zr: brerxr.
Now a routine check verifies the required properties. O

Corollary 196. If xy,...,x, are normal coordinates at p, then the Christoffel
symbols of the Levi-Civita connection all vanish.

Proof. Straight from the formula for the Christoffel symbols I'% i O
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Remark 197. In particular, with respect to normal coordinates xy,...,x,;, we
have the second Bianchi identity
0 0 0

m m m - __
=Ry + i T 3Ry =0

6xi TXJ 8xk

at p. Now

2 (e AT .
ox; (Rmﬁjk)p = ((93(1 Zr:ger Ejk)p = <8xiR €jk>p/

the last identity because first derivatives of the metric vanish. So the second
Bianchi identity may be rewritten as

0 0 0
aTCiRmejk + aTCijEki + aTckRmeij =0, (14)

with respect to the normal coordinates x1,...,x, at p. s
An application of this is the following theorem.

Theorem 198 (Schur). Let M be a connected Riemannian manifold of dimen-
sion > 3. Then

(i) If the sectional curvatures are pointwise constant, such that for any p € M
all the sectional curvatures have value f(p), then f is a constant.

(ii) If the Ricci curvatures are pointwise constant, such that for any p € M all
the Ricci curvatures have value c(p) at p, then c is a constant.

Proof. (i) We suppose the sectional curvatures at p are all f(p). We choose
normal coordinates x1, ..., x;, in a neighborhood of p; we can write
Rijke = f - (Qik&je — SieSjk)
in a neighborhood of p. The Bianchi identity Equation 14 implies that

0 0 0
= Rijke + 5—Rijen + 7%,

Ry =
ox, i Oxr , ijhk 0

at p. Letting &), f = %/ Jox,r €tc., we get

onf(p) <5ik5jé - 5ief5jk> +0cf(p) (5i€5jh - 5ih5]’€) +0cf(p) (5ih5jk - 5ik5jh> =0
Since n > 3, for each h, we can choose i # j with £, 1, j distinct. If we set
k =i, ¢ = jin the above identity then F, 7, j distinct.

If we set k = i, £ = j in the above identity and deduce ), f(p) = 0 for
all h, then d,f = 0. Hence, f is locally constant, which implies that f is
globally constant.

(ii) Similar — see example sheet 4, question 11. O
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Remark 199. Constant sectional curvature is not too interesting. If simply con-
nected and complete, just have R”, S, and H", where H" is hyperbolic space
as defined in Example Sheet 4, question 10.
Constant Ricci curvature, on the other hand, gives the Einstein Manifolds.
Constant scalar curvature is not too interesting because of the following:

Theorem 200 (Yamahi Problem). If (M, g) is a compact connected Riemannian
manifold of dimension > 3. Then there is a smooth function f such that the
conformally equivalent metric ¢*f¢ has constant scalar curvature. This was
finally proved by Schaen in 1984.

In the complex case, a complex compact manifold having a constant scalar
curvature Kahler metric is an interesting condition — see recent work of Tian,
Donaldson et. al.
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