Differential Geometry of Curves

Mirela Ben-Chen

Motivation

Applications

From "Discrete Elastic Rods" by Bergou et al.

- Good intro to differential geometry on surfaces
- Nice theorems

Parameterized Curves Intuition

A particle is moving in space

At time t its position is given by

$$\alpha(t) = (x(t), y(t), z(t))$$

Parameterized Curves Definition

A parameterized differentiable curve is a differentiable map $\alpha: I \to R^3$ of an interval I = (a,b) of the real line R into R^3

 α maps $t \in I$ into a point $\alpha(t) = (x(t), y(t), z(t)) \in R^3$ such that x(t), y(t), z(t) are differentiable

A function is *differentiable* if it has, at all points, derivatives of all orders

Parameterized Curves A Simple Example

 $\alpha(I) \subset R^3$ is the *trace* of α

→ Different curves can have same trace

More Examples

 $\alpha(t) = (a \cos(t), a \sin(t), bt), t \in R$

More Examples

$$\alpha(t) = (t^3, t^2), t \in R$$

The Tangent Vector

Let

$$\alpha(t) = (x(t), y(t), z(t)) \in R^{\beta}$$

Then

$$\alpha'(t) = (x'(t), y'(t), z'(t)) \in R^3$$

is called the *tangent vector* (or *velocity vector*) of the curve α at t

Back to the Circle

$$\alpha(t) = (\cos(t), \sin(t))$$

$$\alpha'(t) = (-\sin(t), \cos(t))$$

- $\alpha'(t)$ direction of movement
- $|\alpha'(t)|$ speed of movement

Back to the Circle

$$\alpha_1(t) = (\cos(t), \sin(t))$$

$$\alpha_2(t) = (\cos(2t), \sin(2t))$$

Same direction, different speed

The Tangent Line

Let $\alpha: I \to R^3$ be a parameterized differentiable curve.

For each $t \in I$ s.t. $\alpha'(t) \neq 0$ the *tangent line* to α at t is the line which contains the point $\alpha(t)$ and the vector $\alpha'(t)$

Regular Curves

If $\alpha'(t) = 0$, then t is a singular point of α .

$$\alpha(t) = (t^3, t^2), \ t \in R$$

A parameterized differentiable curve $\alpha: I \to R^3$ is *regular* if $\alpha'(t) \neq 0$ for all $t \in I$

Spot the Difference

$$\alpha_1(t) = (t^3, t^2)$$

Differentiable
Not regular

$$\alpha_2(t) = (t, |t|)$$

Not differentiable

Which differentiable curve has the same trace as α_2 ?

Arc Length of a Curve

How long is this curve?

Approximate with straight lines

Sum lengths of lines: $\Delta s = \sqrt{(\Delta x)^2 + (\Delta y)^2}$

Arc Length

Let $\alpha: I \to R^3$ be a parameterized differentiable curve. The *arc length* of α from the point t_0 is:

$$s(t) = \int_{t_0}^{t} |\alpha'(t)| dt$$

$$= \int_{t_0}^{t} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

The arc length is an *intrinsic* property of the curve – does not depend on choice of parameterization

Examples

$$\alpha(t) = (a\cos(t), a\sin(t)), t \in [0,2\pi]$$

$$\alpha'(t) = (-a\sin(t), a\cos(t))$$

$$L(\alpha) = \int_0^{2\pi} |\alpha'(t)| dt$$

$$= \int_0^{2\pi} \sqrt{a^2 \sin^2(t) + a^2 \cos^2(t)} dt$$

$$= a \int_0^{2\pi} dt = 2\pi a$$

Examples

$$\alpha(t) = (a\cos(t), b\sin(t)), t \in [0, 2\pi]$$

$$\alpha'(t) = (-a\sin(t), b\cos(t))$$

$$L(\alpha) = \int_0^{2\pi} |\alpha'(t)| dt$$

$$= \int_0^{2\pi} \sqrt{a^2 \sin^2(t) + b^2 \cos^2(t)} dt$$

$$= ??$$

No closed form expression for an ellipse

Closed-Form Arc Length Gallery

Cycloid

$$\alpha(t) = (at - a\sin(t), a - a\cos(t))$$
$$L(\alpha) = 8a$$

Logarithmic Spiral

$$\alpha(t) = (ae^{bt}\cos(t), ae^{bt}\sin(t))$$

Catenary

$$\alpha(t) = (t, a/2 (e^{t/a} + e^{-t/a}))$$

Curves with Infinite Length

The integral
$$s(t) = \int_{t_0}^{t} |\alpha'(t)| dt$$
 does not always converge

→ Some curves have infinite length

Arc Length Parameterization

A curve $\alpha: I \to R^3$ is parameterized by arc length if $|\alpha'(t)| = 1$, for all t

For such curves we have

$$s(t) = \int_{t_0}^t dt = t - t_0$$

Arc Length Re-Parameterization

Let $\alpha: I \to R^3$ be a regular parameterized curve, and s(t) its arc length.

Then the inverse function t(s) exists, and

$$\beta(s) = \alpha(t(s))$$

is parameterized by arc length.

Proof:

 α is regular $\rightarrow s'(t) = |\alpha'(t)| > 0$

- $\rightarrow s(t)$ is a monotonic increasing function
- \rightarrow the inverse function t(s) exists

$$\Rightarrow \beta'(s) = \alpha'(t(s))t'(s) = \alpha'(t(s))/s'(t(s)) = \alpha'(t(s))/|\alpha'(t(s))|$$

$$\rightarrow |\beta'(s)| = 1$$

The Local Theory of Curves

Defines local properties of curves

Local = properties which depend only on behavior in neighborhood of point

We will consider only curves parameterized by arc length

Curvature

Let $\alpha: I \to R^3$ be a curve parameterized by arc length s. The *curvature* of α at s is defined by:

$$|\boldsymbol{\alpha}^{\prime\prime}(s)| = \kappa(s)$$

 $\alpha'(s)$ – the tangent vector at s $\alpha''(s)$ – the *change* in the tangent vector at s

 $R(s) = 1/\kappa(s)$ is called the *radius of curvature* at s.

Examples

Straight line

$$\alpha(s) = us + v, \quad u, v \in \mathbb{R}^2$$
 $\alpha'(s) = u$
 $\alpha''(s) = 0 \quad \Rightarrow \quad |\alpha''(s)| = 0$

<u>Circle</u>

$$\alpha(s) = (a \cos(s/a), a \sin(s/a)), s \in [0,2\pi a]$$

$$\alpha'(s) = (-\sin(s/a), \cos(s/a))$$

$$\alpha''(s) = (-\cos(s/a)/a, -\sin(s/a)/a) \rightarrow |\alpha''(s)| = 1/a$$

Examples

Cornu Spiral

A curve for which $\kappa(s) = s$

Generalized Cornu Spiral

A curve for which $\kappa(s)$ is a polynomial function of s

The Normal Vector

 $|\alpha'(s)|$ is the arc length $\alpha'(s)$ is the tangent vector

 $|\alpha''(s)|$ is the curvature $\alpha''(s)$ is ?

Detour to Vector Calculus

Lemma:

Let $f,g: I \rightarrow R^3$ be differentiable maps which satisfy $f(t)\cdot g(t) = const$ for all t.

Then:

$$f'(t) \cdot g(t) = -f(t) \cdot g'(t)$$

And in particular:

|f(t)| = const if and only if $f(t) \cdot f'(t) = 0$ for all t

Detour to Vector Calculus

Proof:

If $\mathbf{f} \cdot \mathbf{g}$ is constant for all t, then $(\mathbf{f} \cdot \mathbf{g})' = 0$.

From the product rule we have:

$$(\mathbf{f} \cdot \mathbf{g})'(t) = \mathbf{f}(t)' \cdot \mathbf{g}(t) + \mathbf{f}(t) \cdot \mathbf{g}'(t) = 0$$

$$f'(t) \cdot \mathbf{g}(t) = -\mathbf{f}(t) \cdot \mathbf{g}'(t)$$

Taking f = g we get:

$$f'(t) \cdot f(t) = -f(t) \cdot f'(t)$$

$$f'(t) \cdot f(t) = 0$$

Back to Curves

 α is parameterized by arc length

$$\Rightarrow$$
 $\alpha'(s) \cdot \alpha'(s) = 1$

Applying the Lemma

$$\Rightarrow \qquad \alpha''(s) \cdot \alpha'(s) = 0$$

 \rightarrow The tangent vector is orthogonal to $\alpha''(s)$

The Normal Vector

 $\alpha'(s) = T(s)$ - tangent vector

 $|\alpha'(s)|$ - arc length

 $|\alpha''(s)|$ - curvature

If $|\alpha''(s)| \neq 0$, define N(s) = T'(s)/|T'(s)|

Then $\alpha''(s) = T'(s) = \kappa(s)N(s)$

 $\alpha''(s)$

 $\alpha'(s)$

The Osculating Plane

The plane determined by the unit tangent and normal vectors T(s) and N(s) is called the *osculating plane* at s

The Binormal Vector

For points s, s.t. $\kappa(s) \neq 0$, the binormal vector $\mathbf{B}(s)$ is defined as:

$$\boldsymbol{B}(s) = \boldsymbol{T}(s) \times \boldsymbol{N}(s)$$

The binormal vector defines the osculating plane

The Frenet Frame

 $\{T(s), N(s), B(s)\}\$ form an orthonormal basis for R^3 called the *Frenet frame*

How does the frame change when the particle moves?

What are T', N', B' in terms of T, N, B?

Already used it to define the curvature:

$$T'(s) = \kappa(s)N(s)$$

Since in the direction of the normal, its orthogonal to \boldsymbol{B} and \boldsymbol{T}

N'(s)

What is N'(s) as a combination of N, T, B?

We know: $N(s) \cdot N(s) = 1$

From the lemma $\rightarrow N'(s) \cdot N(s) = 0$

We know: $N(s) \cdot T(s) = 0$

From the lemma $\rightarrow N'(s) \cdot T(s) = -N(s) \cdot T'(s)$

From the definition $\rightarrow \kappa(s) = N(s) T'(s)$

$$\rightarrow N'(s) \cdot T(s) = -\kappa(s)$$

The Torsion

Let $\alpha: I \to R^3$ be a curve parameterized by arc length s. The *torsion* of α at s is defined by:

$$\tau(s) = N'(s) \cdot \boldsymbol{B}(s)$$

Now we can express N'(s) as:

$$N'(s) = -\kappa(s) T(s) + \tau(s) B(s)$$

$$N'(s) = -\kappa(s) T(s) + \tau(s) B(s)$$

Curvature vs. Torsion

The *curvature* indicates how much the normal changes, in the direction tangent to the curve

The *torsion* indicates how much the normal changes, in the direction orthogonal to the osculating plane of the curve

The curvature is always positive, the torsion can be negative

Both properties *do not* depend on the choice of parameterization

B'(s)

What is B'(s) as a combination of N, T, B?

We know:
$$\mathbf{B}(s) \cdot \mathbf{B}(s) = 1$$

From the lemma $\rightarrow B'(s) \cdot B(s) = 0$

We know:
$$\mathbf{B}(s) \cdot \mathbf{T}(s) = 0, \mathbf{B}(s) \cdot \mathbf{N}(s) = 0$$

From the lemma \rightarrow

$$\mathbf{B}'(s) \cdot \mathbf{T}(s) = -\mathbf{B}(s) \cdot \mathbf{T}'(s) = -\mathbf{B}(s) \cdot \kappa(s) \mathbf{N}(s) = 0$$

From the lemma \rightarrow

$$B'(s) \cdot N(s) = -B(s) \cdot N'(s) = -\tau(s)$$

Now we can express B'(s) as:

$$B'(s) = -\tau(s) N(s)$$

The Frenet Formulas

$$T'(s) = \kappa(s)N(s)$$

 $N'(s) = -\kappa(s)T(s) + \tau(s)B(s)$
 $B'(s) = -\tau(s)N(s)$

In matrix form:

$$\begin{bmatrix} | & | & | \\ T'(s) & N'(s) & B'(s) \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ T(s) & N(s) & B(s) \\ | & | & | \end{bmatrix} \begin{bmatrix} 0 & -\kappa(s) & 0 \\ \kappa(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{bmatrix}$$

An Example – The Helix

$$\alpha(t) = (a\cos(t), a\sin(t), bt)$$

In arc length parameterization:

$$\alpha(s) = (a \cos(s/c), a \sin(s/c), bs/c), \text{ where } c = \sqrt{a^2 + b^2}$$

Curvature:
$$\kappa(s) = \frac{a}{a^2 + b^2}$$
 Torsion: $\tau(s) = \frac{b}{a^2 + b^2}$

Note that both the curvature and torsion are constants

A Thought Experiment

Take a straight line

Bend it to add curvature

Twist it to add torsion

 \rightarrow You got a curve in R^3

Can we define a curve in R^3 by specifying its curvature and torsion at every point?

The Fundamental Theorem of the Local Theory of Curves

Given differentiable functions $\kappa(s) > 0$ and $\tau(s)$, $s \in I$, there exists a regular parameterized curve $\alpha: I \to R^3$ such that s is the arc length, $\kappa(s)$ is the curvature, and $\tau(s)$ is the torsion of α . Moreover, any other curve β , satisfying the same conditions, differs from α only by a rigid motion.