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Motivation

* Applications

From “Discrete Elastic Rods” by Bergou et al. /
\
\ P

 Good intro to differential geometry on surfaces

* Nice theorems



Parameterized Curves
Intuition

A particle is moving in space

At time t its position is given by

a(t) = (x(V), y(b), z(1))

t a(t)



Parameterized Curves
Definition
A parameterized differentiable curve is a

differentiable map a: | = R? of an interval
| = (a,b) of the real line R into R?

a mapst € | into a point a(t) = (X(1), y(t), z(t)) € R®
such that x(t), y(t), z(t) are differentiable

A function is differentiable if it has, at all points,
derivatives of all orders



Parameterized Curves
A Simple Example

/ \ a,(t) = (a cos(t), a sin(t))
\/ t e [0,21] = |

a,(t) = (a cos(2t), a sin(2t))
te [0, =1

a(l) < R?is the trace of a

— Different curves can have same trace



More Examples

a(t) = (a cos(1), a sin(t), bt), t € R

b

B



More Examples

at)= (B, 1), te R

)

Y

s this ”OK”?5




The Tangent Vector

Let

a(t) = (x(t), y(), z(t)) € R?
Then

a'(t) = (X'(), y'(V), Z(1) € R®

is called the tangent vector (or velocity vector)
of the curve a at t



Back to the Circle

a'(t)

a(t) = (cos(t), sin(t))

N

a'(t) - direction of movement

a'(t) = (-sin(t), cos(t))

a'(t)] - speed of movement



Back to the Circle

a,'(t)

4 ay(t) = (cos(t), sin(t)

L
N

a,(t) = (cos(2t), sin(2t))

Same direction, different speed



The Tangent Line

Let a: | — R3 be a parameterized differentiable
curve.

Foreacht e | s.t. a'(t) # 0 the tangent line to a
at t is the line which contains the point a(t)
and the vector a(1)

7 Tangent line at t,
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Regular Curves

If a'(t) =0, then tis a singular point of a.

)

a(t)y=(,1?), teR Y

e

t=0

A parameterized differentiable curve a: | — R3
is reqularif a'(t) #0 forallt e |



Spot the Difference

/ » X / >
t=0 t=0
ay(t) = (&, ) a(t) =, [t)
Differentiable Not differentiable
Not regular

Which differentiable curve has the same trace as a, ?
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Arc Length of a Curve

How long is this curve?

y

AS

AX

Approximate with straight Iines
Sum lengths of lines: As= J +(Ay)
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Arc Length

Let a: | — R3 be a parameterized differentiable
curve. The arc length of a from the point {,is:

s(t) = L (o)t
B ¢ é 2 Q 2 é 2
B ro\/[dt] +[dt] +[dt] a

The arc length is an intrinsic property of the curve — does
not depend on choice of parameterization




Examples

a(t) = (a cos(t), a sin(t)), t € (0,27
a'(t) = (-a sin(t), a cos(t))

L= [ o)t

2%
- j; Ja?sin?(£) + a* cos? (f)dt

=aj:“dt=27:a

1

L/




Examples

a(t) = (a cos(t), b sin(t)), t € [0,27]
a'(t) = (-a sin(t), b cos(t))

L= [ o)t

2R
- fo Ja?sin?(£) + b” cos*(£)dt

=7

No closed form expression for an ellipse

—
—

\/




Closed-Form Arc Length Gallery

v NN

Cycloid
a(t) = (at — a sin(t), a — a cos(t))
L(a) = 8a

Catenary
a(t) = (t, a/2 (e"* + e1?))

Logarithmic Spiral

a(t) = (aebt cos(t), ae sin(t))
18



Curves with Infinite Length

The integral s(t)=.]:‘a'(t)‘dt does not always
converge °

— Some curves have infinite length

/

Koch Snowflake



Arc Length Parameterization

A curve a: | — R3is parameterized by arc length
if |a'(t)| =1, for all t

For such curves we have

s(r)=ft'dt=t—t0

20



Arc Length Re-Parameterization

Let a: | — R’ be a regular parameterized curve, and s(t)
its arc length.

Then the inverse function t(S) exists, and
BS) = a(t(s))

is parameterized by arc length.

Proof:

a is regular - s'(t) = |a'(t)| > 0

—> s(t) is a monotonic increasing function

— the inverse function t(S) exists

> B'(s) = a'(E(s)t'(s) = a'(t(s))/ s'(t(s)) = a'(t(s)) /| (t(s))
> [B(s)| =1



The Local Theory of Curves

Defines local properties of curves

Local = properties which depend only on
behavior in neighborhood of point

We will consider only curves parameterized by
arc length



Curvature

Let a: | — R? be a curve parameterized by arc
length S. The curvature of a at s is defined by:

a"(s)| = K (5)

a'(S) — the tangent vector at S
a''(S) — the change in the tangent vector at S

R(s) = 1/k(S) is called the radius of curvature at s.



Examples

Straight line
a(s)=us +v, uyve R?
a(s)=u

a's)=0 > |a"(s)|=0

Circle
a(S) = (a cos(s/a), a sin(s/a)), s € [0,2na]
a'(s) = (-sin(s/a), cos(s/a))
a''(S) = (-cos(s/a)/a, -sin(s/a)/a) » |a"'(s)| = 1/a




Examples

Cornu Spiral @
A curve for which x(S) =S
(S) (@
Generalized Cornu Spiral gp
A curve for which x (S) is a T et
olynomial function of S “O)
poly (\M@ f’“

K(s)=8s>+1 K (S) = 55*-1852+5
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The Normal Vector

la'(s)| is the arc length
a'(S) is the tangent vector

la'' ()| is the curvature
a'(s)is?



Detour to Vector Calculus

Lemma:

Let £,g: | = R3 be differentiable maps which
satisfy f(1)-g(t) = const for all t.

Then:
[ g =g

And in particular:
| £(t)| = const if and only if £(t) -f'(t)=0 for all t



Detour to Vector Calculus

Proof:
If f-g is constant for all t, then (f-g)' = 0.

From the product rule we have:
f-8)'®=,1"g1+f()gM=0
- S g =, g

Taking f= g we get:
SO AY =0 S
- S'®AY=0




Back to Curves

a is parameterized by arc length
- a(s)a'(s)=1

Applying the Lemma
- a'(s)a(s)=0

— The tangent vector is orthogonal to a''(S)



The Normal Vector

a'(s)
a'(s) = T(s) - tangent vector

la'(s)| - arc length

a"(S)
a''(s) = T'(S) - normal direction
la"(S)| - curvature

If |a"'(s)| # 0, define N(s) = T'(s)/|T'(s)| a(s)

Then &"'(s) = T'(S) = k(S)NV(s)
a''(s)

30



The Osculating Plane

The plane determined by
the unit tangent and normal
vectors 1(S) and N(S) is

called the osculating plane
ats T
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The Binormal Vector

For points s, s.t. k(S) # 0, the
binormal vector B(S) is defined
as:

B(s) = T(s) x N(S)

The binormal vector defines the
osculating plane

32



The Frenet Frame

LI(s), N(s), B(S)} form
an orthonormal basis

for R called the
Frenet frame

How does the frame :
change when the
particle moves?

Whatare T', N', B' in
termsof T, N, B ?
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Already used it to define the curvature:

T'(s) = (S)N(s)

Since in the direction of the normal, its
orthogonal to B and T
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What is N'(S) as a combination of N,7,B ?
We know: N(S) - N(S) =1
From the lemma — NV'(s) - N(s) =0

We know: N(S) - T(s) =0

From the lemma — N'(S) - T (S) =-N(S) - T'(S)
From the definition — «(S) = N(S) T'(S)

—> N'(S) - T (S)=-x(S)
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The Torsion
O |/

Let a: | — R3 be a curve parameterized by arc
length S. The torsion of a at s is defined by:

7(8) =N'(S) - B(s)

Now we can express INV'(S) as:

N'(S) =-x(S) T (s) + 7(S) B(s)

36



N'(S)=-x(s) T(s)+ 7(s) B(S)

Curvature vs. Torsion

The curvature indicates how much the B
normal changes, in the direction tangent Ky
to the curve N — /|

The torsion indicates how much the normal ol
changes, in the direction orthogonal to
the osculating plane of the curve "

The curvature is always positive, the torsion
can be negative

Both properties do not depend on the
choice of parameterization

37
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What is B'(S) as a combination of NV, ;B ?
We know: B(s) - B(s)=1
From the lemma — B'(S) - B(s) =0

We know: B(s) - T(s)=0,B(s) - N(s)=0
From the lemma —
B'(s) - T(s)y=-B(s) - T(S)=-B(s) - x(S)N(s) =0
From the lemma —
B'(s) - N(s)=-B(S) - N'(S)=-7(s)

Now we can express B'(S) as:

B'(s) = -7(s) N(s)

38



The Frenet Formulas

T'(s)= K(s)N(s)
N'(s)= —x(T(s) +7(5)B(s5)
B'(s)= —7(s)N(s)

In matrix form:

[ | ][ | | | T 0 —=«(s) 0
T'(s) N'(G) B'G)|=|T(s) N(s) Bs)|x(s) 0 —2(s)
| | I | | )L 0 z(s) 0




An Example — The Helix

1
0_~
’ |

a(t) = (a cos(t), a sin(t), bt)

In arc length parameterization:
a(s) = (a cos(s/c), a sin(s/c), bs/c), where ¢=va*+b’

a
a’ +b?

Curvature: «(s)= Torsion: =(s)=

at+b*

Note that both the curvature and torsion are constants



A Thought Experiment

Take a straight line
Bend it to add curvature

Twist it to add torsion
— You got a curve in R3

Can we define a curve in R3 by specifying its
curvature and torsion at every point?



The Fundamental Theorem
of the Local Theory of Curves

Given differentiable functions k(s) > 0 and t(S),
S €l, there exists a regular parameterized curve
a: | — R3such that sis the arc length, k(S) is the
curvature, and t(S) is the torsion of a. Moreover, any

other curve f satisfying the same conditions, differs
from a only by a rigid motion.



