FYS 4340/FYS 9340

Diffraction Methods & Electron Microscopy

Lecture 2

Sandeep Gorantla

UiO **Centre for Materials Science and Nanotechnology (SMN)**

Transmission Electron Microscopy

Introduction and Basics Part- 1

Sandeep Gorantla

UiO **Centre for Materials Science and Nanotechnology (SMN)**

Learning more about TEM!

David B. Williams • C. Barry Carter Transmission Electron Microscopy

A Textbook for Materials Science

Second Edition

Springer

Re	off Emil or the the sta
	E B A B
	668 \$
A	berration-Corrected
Ir	naging in Transmission
E	lectron Microscopy
	An Introduction 2nd Edition
	Imperial College Press

Courtesy: WWW.amazon.com

No.

Optical Sciences

Ludwig Reimer

Electron

of Image Formation and Microanalysis

> Springer-Verlag Berlin Heidelberg GmbH

Physics

Third Edition

Transmission

Microscopy

Learning more about TEM!

http://www.matter.org.uk/tem/

Learning more about TEM!

Why learn about Transmission Electron Microscopy (TEM)?

Search Powered by Google

Materials Science

Semiconductors

Life Sciences

Oil and Gas

Industrial Manufacturing Minerals and Mining

Role of TEM in Materials Science Research and Development

Solving Materials Science problems/mysteries by probing analytically and understanding structure-property relationships at atomic scale level

Courtesy: www.wikipedia.com

Allotropes of carbon

(Courtesy: The Royal Swedish Academy of Sciences)

Courtesy: www.extremetech.com

AND COLORISE

The second

COLUMN STATE

のないないない

A CONTRACTOR OF THE OWNER OWNER

100

Courtesy: Knut Urban, Nature Materials 10, 165–166 (2011)

1D nanomaterials modification in TEM

- Irradiation of solids with energetic particles usually leads to damage
- However, in the case of carbon nanostructures, electron irradiation was observed to have some beneficial effects
 - (a) Irradiation mediated engineering(b) self-assembly or self-organization

Courtesy: Krasheninnikov, A. V. et al., Nature Mater., 6, 723 (2007)

Interface: defects on outer-wall of a nanotube and fullerene

Courtesy: Gorantla, S. et al., Nanoscale, 2, 2077 (2010)

<u>Interface</u>: defects on outer-wall of a nanotube and fullerene

Nanohump formation (Covalent interactions of fullerene fusion)

Movie Settings:

•Frame speed: 0.6 s

•Total Frames: 48

Experimental conditions:

•Acquisition time: 1 s

•Time gap between individual frames: 1s - 30s

•Total time: 14 mins

Courtesy: Gorantla, S. et al., Nanoscale, 2, 2077 (2010)

Interface: defects on the outer-wall of a SWCNT and fullerene

Fullerene fusion with a nanohump (Covalent interactions of fullerene fusion)

Movie Settings:

•Frame speed: 0.6 s

•Total Frames: 48

Experimental conditions:

•Acquisition time: 1 s

•Time gap between individual frames: 1 s

Courtesy: Gorantla, S. et al., Nanoscale, 2, 2077 (2010)

HETEROSOLAR PROJECT The aim of the work

Develop new solar cell devices base on ZnO/Cu₂O heterojunctions coupled with convetional Si based solar cells

Properties determined by the structures, faults and interfaces.

- * Theoretical eficiency ~20 %
- * Highest exp. eficiency 1-4 %

UiO University of Oslo Centre for Materials Science and Nanotechnology (SMN) he thin films and their interfaces.

Transmission Electron Microscope Brief History

FYS 4340/9340 course – Autumn 2016

Brief History: The first electron microscope

Ernst Ruska: Nobel Prize in physics 1986

- Knoll and Ruska, first TEM in 1931
- Idea and first images published in 1932
- By 1933 they had produced a TEM with two magnetic lenses which gave 12 000 times magnification.

Electron Microscope Deutsches Museum, 1933 model

Brief History: The state-of-art TEM

Electron Microscope Deutsches Museum, 1933 model

FEI Titan 60-300 TEM, NORTEM facility- UiO Installed: 2014

Brief History: The state-of-art TEM

BIG LEAP: Introduction of **Lens Aberration Correctors** allowing atomic resolution at low accelerating voltages.

Resolution limit

Year	Resolution			
1940s		~10nm		
1950s	~0.5-2nm			
1960s	0.3nm (transmission)			
17008	~15-20nm (scanning)			
1070_{S}	0.2nm (transmission)			
19708	7nm (standard scanning)			
1090	0.15nm (transmission)			
19808	5nm (scanning at 1kV)			
1000	0.1nm (transmission)			
19908	3nm (scanning at 1kV)			
2000s		<0.1 nn	(Cs correctors)	

Typical TEM operating voltages in Materials Science Research

Core of the M100 galaxy seen through Hubble (source: NASA)

Courtesy: http://www.sfc.fr/Material/hrst.mit.edu/hrs/materials/public/ElecMicr.htm

Transmission Electron Microscope Fundamentals

Electrons interaction with the specimen

Electron lenses

Any axially symmetrical electric or magnetic field have the properties of an ideal lens for paraxial rays of charged particles.

- Electrostatic **F=-eE**
 - Not used as imaging lenses, but are used in modern monochromators

- ElectroMagnetic F= -e(v x B)
 - Can be made more accurately
 - Shorter focal length

Courtesy: http://www.matter.org.uk/tem/lenses/electromagnetic_lenses.htm

TEM Lens Aberrations

TEM Lens Aberrations

Courtesy: Knut W. Urban, Science 321, 506, 2008; CEOS gmbh, Germany; www.globalsino.com

TEM Lens Aberrations

Transmission Electron Microscope Instrumentation – Part 1

UiO **University of Oslo** Centre for Materials Science and Nanotechnology (SMN)

Specimen Stage

TEM Specimen Holder

TEM Specimens

• Typically 3 mm in diameter

Courtesy: http://asummerinscience.blogspot.no

TEM Viewing Chamber – Phosphorous Screen

MPANY-

TEM Image recording CCDs and EELS Spectrometer

Transmission Electron Microscopy

Introduction and Basics Part-2

UiO **U**IO **University of Oslo** Centre for Materials Science and Nanotechnology (SMN)

TEM in Materials Science

The interesting objects for TEM is not the average structure or homogenous materials but local structure and inhomogeneities

TEM techniques

Main Constrast phenomena in TEM

Imaging

Conventional TEM Bright/Dark-Field TEM High Resolution TEM (HRTEM) Scanning TEM (STEM) Energy Filtered TEM (EFTEM)

Diffraction

Selected Area Electron Diffraction Convergent Beam Electron Diffraction

Spectroscopy

Electron Dispersive X-ray Spectroscopy (EDS) Electron Energy Loss Spectroscopy (EELS) •Mass thickness Contrast
•Diffraction contrast
•Phase Contrast
•Z-contrast

Phase identification, defects, orientation relationship between different phases, nature of crystal structure (amorphous, polycrystalline, single crystal)

Chemical composition, electronic states, nature of chemical bonding (EDS and EELS). Spatial and energy resolution down to the atomic level and ~0.1 eV.

Objective aperture: Contrast enhancement

All electrons contributes to the image.

Intensity: Thickness and density dependence

Mass-thickness contrast

A small aperture allows only electrons in the central beam in the back focal plane to contribute to the image.

Diffraction contrast (Amplitude contrast)

One grain seen along a low index zone axis.

TEM techniques

Simplified ray diagram of conventional TEM

Imaging

Conventional TEM Bright/Dark-Field TEM High Resolution TEM (HRTEM) Scanning TEM (STEM) Energy Filtered TEM (EFTEM)

Diffraction

Selected Area Electron Diffraction Convergent Beam Electron Diffraction

Spectroscopy

Electron Dispersive Spectroscopy (EDS) Electron Energy Loss Spectroscopy (EELS)

Imaging

Courtesy: http://www.ifam.fraunhofer.de; I.MacLauren et al, International Materials Review, 59, 115 (2004)

Imaging

TEM

STEM

Mass thickness and diffraction contrast

Mass thickness and Z- contrast

Imaging

HRTEM

Z- contrast

Phase contrast

47 FYS 4340/9340 course – Autumn 2016

HAADF-STEM

HRTEM

Raw HAADF-STEM, ABF-STEM and HRTEM image of Si in the [110] zone axis by FEI Titan 60-300 with spatial resolutions of 0.8 Å for STEM and 2.0 Å for TEM.

Courtesy: Wei Zhan, Øystein Prytz, et al. (2015), SMN, UiO

Electron Diffraction in TEM

Simplified ray diagram

Electron Diffraction in TEM

Elastic scattered electrons

Only the direction of \mathbf{v} is changing. (Bragg scattering)

Elastic scattering is due to Coulomb interaction between the incident electrons and the electric charge of the electron clouds and the nucleus. (Rutherford scattering).

The elastic scattering is due to the average position of the atoms in the lattice.

Reflections satisfying Braggs law:

2dsinθ=nλ

Electrons interacts 100-1000 times stronger with matter than X-rays

-more absorption (need thin samples)
-can detect weak reflections not observed with XRD technique

Courtesy: Dr. Jürgen Thomas, IFW-Dresden, Germany

Selected area diffraction(SAD)

- Parallel incoming electron beam and a selection aperture in the image plane.
- Diffraction from a single crystal in a polycrystalline sample if the SAD aperture is small enough/crystal large enough.
- Orientation relationships between grains or different phases can be determined.
- ~2% accuracy of lattice parameters
 - Convergent electron beam better

Camera constant

Indexing diffraction patterns

The **g** vector to a reflection is normal to the corresponding (h k l) plane and $IgI=1/d_{nh nk nl}$

- Measure R_i and the angles between the reflections
- Calculate d_i , i=1,2,3 (=K/R_i)
- Compare with tabulated/theoretical calculated d-values of possible phases
- Compare R_i/R_j with tabulated values for cubic structure.
- $\mathbf{g}_{1,hkl} + \mathbf{g}_{2,hkl} = \mathbf{g}_{3,hkl}$ (vector sum must be ok)
- Perpendicular vectors: $\mathbf{g}_i \bullet \mathbf{g}_j = 0$
- Zone axis: **g**_i x **g**_j =[HKL]_z
 - All indexed **g** must satisfy: $\mathbf{g} \bullet [HKL]_z=0$

Electron Diffraction in TEM

Amorphous phase

Poly crystalline sample

Single Crystals Interface between two different phases epitaxially grown

The orientation relationship between the phases can be determined with ED.

Spectroscopy

X-ray Energy Dispersive Spectroscopy

We detect the X-rays generated by the sample on a spectrometer Each element has a unique atomic structure and hence a characteristic X-ray energy

Energy Dispersive X-ray Spectroscopy

Electron Energy Loss Spectroscopy (EELS)

Courtesy: William & Carter, Transmission Electron Microscopy; EM group, Univ. of Nevada, Reno.

Electron Energy Loss Spectroscopy (EELS)

EELS of the Oxygen K edge

The reference spectra of Cu_2O and CuO are from online EELS database¹. The reference spectra were shifted in energy to match the first O K peak in our experimental, and scaled by the total counts in the energy-loss 560-590 eV.

¹Ngantcha, Gerland, Kihn & Riviere, *Eur. Phys. J. Appl. Phys.* **29**, (2005) 83.

FYS 4340/9340 course – Autumn 2016 61

Next Lecture

• TEM Instrumentation – Part 2 (Text book Chapters: 5 – 9)

• TEM Specimen Preparation (Text book Chapters: 10)

