
Digital ASIC Design

A Tutorial on the Design Flow

Digital ASIC Group

October 20, 2005

ElectroScience — 2 —

Contents

Contents 3

1 Introduction to VHDL 11
1.1 Background . 11
1.2 Event-driven simulation . 12
1.3 Design units . 12

1.3.1 Entity . 13
1.3.2 Architecture . 13
1.3.3 Configuration . 13
1.3.4 Component . 14
1.3.5 Package . 14

1.4 Data types and modelling . 16
1.4.1 Type declaration . 16
1.4.2 Signals . 16
1.4.3 Generics . 17
1.4.4 Constants . 17
1.4.5 Variables . 18
1.4.6 Common operations . 18

1.5 Process statement . 19
1.5.1 Sequential vs. combinatorial logic 19

1.6 Instantiation and port maps . 21
1.7 Generate statements . 21
1.8 Simulation . 23

1.8.1 Testbenches . 23
1.8.2 Modelsim . 24
1.8.3 Non-synthesizable code 25

1.9 Design example . 25

2 Design Methodology 31
2.1 Structured VHDL programming 32

2.1.1 Source code disposition 32
2.1.2 Records . 33
2.1.3 Clock and reset signal . 33
2.1.4 Hierarchy . 34
2.1.5 Local variables . 35
2.1.6 Subprograms . 35
2.1.7 Summary . 36

2.2 Example . 37

— 3 — Lund Institute of Technology

Contents

2.3 Technology independence . 37
2.3.1 ASIC Memories . 39
2.3.2 ASIC Pads . 39
2.3.3 FPGA modules . 40
2.3.4 FPGA Pads . 41
2.3.5 ALU unit . 42

3 Arithmetic 43
3.1 Introduction . 43
3.2 VHDL Packages . 43

3.2.1 Data types . 44
3.2.2 Operations . 45
3.2.3 VHDL examples . 45

3.3 DesignWare . 48
3.3.1 Arithmetic Operations using DesignWare 48
3.3.2 Manual Selection of the Implementation in dc shell 51

3.4 Addition and Subtraction . 53
3.4.1 Basic VHDL example . 53
3.4.2 Increasing wordlength . 54
3.4.3 Counters . 55
3.4.4 Multioperand addition . 56
3.4.5 Implementations . 57

3.5 Comparison operation . 58
3.5.1 Basic VHDL example . 59

3.6 Multiplication . 60
3.6.1 Multiplication by constants 61
3.6.2 Multiplication of signed numbers 62

3.7 Datapath Manipulation . 63

4 Memories 67
4.1 SR example . 67
4.2 Memory split example . 69
4.3 Cache example . 70

5 Synthesis 75
5.1 Basic concepts . 75
5.2 Setting up libraries for synthesis 76
5.3 Baseline synthesis flow . 78

5.3.1 Sample synthesis script for a simple design 78
5.4 Advanced topics . 79

5.4.1 Wireload model . 80
5.4.2 Constraining the design for better performance 81
5.4.3 Compile mode concepts 82
5.4.4 Compile strategy . 83
5.4.5 Design Optimization and constraints 84
5.4.6 Resolving multiple instances 85
5.4.7 Optimization flow . 86
5.4.8 Behavioral Optimization of Arithmetic and Behavioral

Re-timing . 88
5.5 Coding style for synthesis . 89

ElectroScience — 4 —

Contents

5.5.1 Coding style if statement 89
5.5.2 Coding style for loop statement 90

6 Place & Route 93
6.1 Introduction and Disclaimer . 93
6.2 Starting Silicon Ensemble . 93
6.3 Import to SE . 96
6.4 Creating a mac file . 97
6.5 Floorplanning . 99
6.6 Block and Cell Placement . 101
6.7 Power Routing . 103
6.8 Connecting Rings . 106
6.9 Clock Tree Generation . 107
6.10 Filler Cells . 109
6.11 Clock and Signal Routing . 110
6.12 Verification and Tapeout . 111
6.13 Acknowledgements . 112

7 Optimization strategies for power 113
7.1 Sources of power consumption . 113

7.1.1 Dynamic power consumption 113
7.1.2 Static power consumption 114

7.2 Optimization . 114
7.2.1 Architecural issues—Pipelining and parallelization 115
7.2.2 Clock gating . 118
7.2.3 Operand isolation . 119
7.2.4 Leakage power optimization 120
7.2.5 Beyond clock gating . 121

7.3 Power estimation with Synopsys Power Compiler 122
7.3.1 Switching Activity Interchange Format (SAIF) 123
7.3.2 Information provided by the cell library 125
7.3.3 Calculating the power consumption 125

7.4 Power-aware design flow at the gate level 126
7.5 Scripts . 128

7.5.1 Design flow . 128
7.5.2 Patches . 130

7.6 Commands in DC . 131
7.6.1 Some useful DC commands 131
7.6.2 nc-verilog . 133

7.7 The ALU example . 134

8 Formal Verification 135
8.1 Concepts within Formal Verification 135

8.1.1 Formal Specification . 136
8.1.2 The System Model . 136
8.1.3 Formal Verification . 137
8.1.4 Formal System Construction 137

8.2 Areas of Use for Formal Verification Tools 137
8.2.1 Model Checking . 137
8.2.2 Equivalence Checking . 137

— 5 — Lund Institute of Technology

Contents

8.2.3 Limitations in Formal Verification Tools 138
8.3 Other Methods to Decrease Simulation Time 138

8.3.1 Running the simulation in a cluster of several computers . 138
8.3.2 ASIC-emulators . 138
8.3.3 FPGA-Prototypes . 138

8.4 Future . 138
8.5 References . 139

9 Multiple Supply Voltages 141
9.1 Demonstration of Dual Supply Voltage in Silicon Ensemble . . . 143

9.1.1 Editing Power Connections in the Netlist 143
9.1.2 Floorplan and Placement 145
9.1.3 Power and Signal Routing 146
9.1.4 Filler Cells . 148

ElectroScience — 6 —

Preface

When buying a book on hardware design, the focus is often limited to one
area. It could be on signal processing, system level design, VHDL and other
programming languages or arithmetic. In this manual, we will try to describe
the design flow from developing code to chip layout, see Figure 1. The manual
is divided into the following main sections:

Function

Function

Synthesis

Layout

Tape out

RTL

Function
Timing

Prelayout

Postlayout
Function
Timing

Behavioral

Standard
Library

Constraints

Test Vectors

Timing
Information

Specification

RTL Coding

Synopsys: Design Compiler

C/C++
MATLAB

Cadence: Silicon Ensemble

Floating/Fixed
Point Modeling

VHDL/Verilog
Mentor Graphics: ModelSim

Standard
Library

Timing
Information

Figure 1: Common digital ASIC design flow.

— 7 — Lund Institute of Technology

Contents

VHDL

Chapter 1 presents an introduction to VHDL and the basic concepts of de-
scribing and simulating hardware. This is however not a complete reference to
the language itself, more an overview and a selection of the most important
parts of the language. Chapter 2 presents a strucured way of writing and using
VHDL. The design methodology described here is developed by Jiri Gaisler at
Chalmers. This chapter also describes how to develop platform independent
code, supporting several technologies such as programmable logic and various
cell libraries.

Arithmetic

The chapter on arithmetic describes how to infer a component for an arithmetic
operation in a digital design. The most commonly used arithmetic operations
are described and the connection between the VHDL description and the fi-
nal hardware structure realized during synthesis is illustrated. This chapter
gives the reader an overview on how the determine a highly effective hardware
structure by coding and controlling the synthesis tool.

Memories

One of the most important topics in digital ASIC design today is memories. Not
only the amount of memory but also the memory hierarchy, including caches
and off-chip memories, has to be considered. Each memory hierarchy should
be optimized for high speed, low power, small area or a combination of these,
depending on the application. However, this is a too large topic to cover in this
compendium. Instead three different designs are presented in this Chapter in
order to show possible optimizations to various memory structures.

Synthesis

This chapter gives a overview of the whole synthesis process, and covers the basic
synthesis concepts and guidelines for design optimization. It starts with the
basic concept of what synthesis is, followed by environment setups for synthesis,
and wireload model basics. In order to better understand the effect of setting
constraints, the synthesis process is described. At last, VHDL coding style is
mentioned as a guideline for better synthesis results.

Place & Route

Place and Route is the final step before sending the design for fabrication. The
standard cells determined during synthesis are placed automatically on the cell
core. Location of the pads and placement of the on-chip memory has to be
defined and carried out by the user. The core supply, power and ground rings,
are added. A design-rule check (DRC) verifies that the fabrication constraints
are met and finalizing your design for fabrication.

ElectroScience — 8 —

Contents

Power Estimation

This chapter gives an introduction to power estimation and optimization tech-
niques in an ASIC design flow with Synopsys Power Compiler. After a short
review of the sources of power consumption in a digital circuit, tool-independent
optimization techniques are presented for different abstraction levels. It is also
shown how the design tool interacts with information from the cell library and
external simulation tools to estimate and optimize power at gate level. For those
who like to probe further, additional information is found in the reference list
at the end of the chapter.

— 9 — Lund Institute of Technology

ElectroScience — 10 —

Chapter 1

Introduction to VHDL

This chapter is a brief introduction to hardware design using a Hardware De-
scription Language (HDL). A language describing hardware is quite different
from C, Pascal, or other software languages. A computer program is dynamic,
i.e., sharing the same resources, allocating resources when needed and not al-
ways optimized for maximum speed, optimal memory management, or lowest
resource requirements. The main focus is functionality, but it is still not un-
common that software programs can behave quite unexpected. When problems
arise, new versions of the programs are distributed by the vendor, usually with
a new version number and a higher price tag.
The demands on hardware design are high compared to software. Often it is not
possible, or at least very tricky, to patch hardware after fabrication. Clearly, the
functionality must be correct and in addition how the code is written will affect
the size and speed of the resulting hardware. Each mm2 of a chip costs money,
lots of money. The amount of logic cells, memory blocks and input/output con-
nections will affect the size of the design and therefore also the manufacturing
cost. A software designer using a HDL has to be careful. The degrees of freedom
compared with software design have dramatically increased and must be taken
into account.
The focus of this chapter is not to present VHDL in detail. A programming
language often specifies more functionality than actually needed. This is espe-
cially true for VHDL, since it is only a small part of the program language that
can be synthesized to hardware. In this chapter, the basics parts of VHDL pro-
gramming that can be used in hardware design will be presented. In the next
chapter, a design methodology is applied and a structured way of writing VHDL
will be presented. There are numerous available books that addresses VHDL
coding and to probe further, the book written by J. Bhasker [1] is recommended
as first choice. Another book worth mentioning is written by P. J. Ashenden [2]
and is used at many Universities.

1.1 Background

VHDL is a acronym which stands for Very High Speed Integrated Circuit Hard-
ware Description Language. VHDL has been standardized by IEEE and the
most widely used version is called VHDL’87 (1079-1987). In 1994, an updated

— 11 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

version called VHDL’93 introduced new functionality and a more symmetric
syntax. However, using the VHDL’87 syntax guarantees compatibility with
both old and new synthesis and simulation tools. A recommendation is to
use VHDL’87 syntax for synthesizable code, while testbenches and other non-
synthesizable parts can be written using VHDL’87/93. Although being a hard-
ware description language, VHDL still supports file access, floating point, and
complex numbers, and other features not directly associated with hardware de-
sign. This comes in handy when writing reference designs or testbenches, but
is not even close to being synthesizable, i.e., transferred into physical gates and
how they are connected which is equivalent to a gate-level netlist or simply
called a netlist.

1.2 Event-driven simulation

A computer program running on a microprocessor executes one instruction at
a time. Therefore, it is easy to debug and understand the behaviour of the
program. A compiler translates the source code into machine language and
executes the instructions sequentially. Hardware is by nature concurrent, i.e.,
statements are executed in parallel depending on the chosen architecture. In-
stead of compiling the VHDL code into a sequential program, it is executed using
an event-driven simulator. This simulator understands the concept of time and
delay. The smallest time quantum is called delta (∆), which is the time it will
take to assign a value to a signal. When an external event triggers the system,
the timescale is incremented with ∆ until all signals are stable, i.e. until there
are no more events in the system to process. The external event could be, e.g.,
the master clock, updating the system registers on a rising or falling edge. Fig-
ure 1.1 shows an example of event driven simulation. It is shown that it takes
two (∆) to propagate signals from input to output in this design.

0 000
0

0
0

1

1

1

1
1

1

1 11

Stable t = T − 1 New inputs t = T t = T + ∆ t = T + 2∆

Figure 1.1: Event-driven simulation of a small design.

1.3 Design units

This chapter will present the five design units in VHDL. The entity, describing
the interface between building blocks. The architecture, describing the struc-
ture or behaviour of a block. The configuration associating an architecture
with an entity. The component that is used to include a building block as
part of a new building block. Finally, packages to store common or global
information.

ElectroScience — 12 —

1.3. Design units

1.3.1 Entity

The concept of VHDL coding can be compared to building a design using dis-
crete logical circuits and wires. The once so popular 74xx circuits are series of
TTL logic blocks with different logical functions, Boolean logic, inverters, bi-
nary counters and flip-flops. They come in small packages with a number of pins
connected to the outside world. This can be compared to an entity in VHDL.
The entity describes the interface, the input signals, and the output signals,
without any information about the functionality. In Figure 1.2 the interface of
a TTL circuit is described in VHDL. All signals except for power and ground
are declared in the entity together with signal direction, i.e., input or output.
Power and ground signals will not be part of the design flow until the design is
placed and routed, see Chapter 6 for more details.

entity TTL is
port(A1,B1 : in std_logic;

...
A4,B4 : in std_logic;
Y1 : out std_logic;
...
Y4 : out std_logic

);
end;

Figure 1.2: The entity describes the interface of the block.

1.3.2 Architecture

Every entity has one or several architectures describing the behaviour of the
block. For example, the circuit in Figure 1.2 contains 4 NAND gates. However,
using the same entity but replacing the architecture with a description of 4 NOR
gates changes the behaviour but not the interface to the block.

architecture OR of TTL is architecture NAND of TTL is
begin begin

Y1 <= A1 or B1; Y1 <= not (A1 and B1);
Y2 <= A2 or B2; Y2 <= not (A2 and B2);
Y3 <= A3 or B3; Y3 <= not (A3 and B3);
Y4 <= A4 or B4; Y4 <= not (A4 and B4);

end; end;

1.3.3 Configuration

A configuration specifies which architecture to use for a certain instantiation
of the entity. Normally, there is only one architecture for each entity, and in
this case no configuration is needed. However, it is useful to write a config-
uration for post-synthesis simulations, selecting and simulating the gate-level
netlist generated by the synthesis tool. This way, it is possible to create sev-
eral configurations to simulate before synthesis, after synthesis, and finally after
place and route. To use two architecture to describe different behaviourals of
the same entity, as shown in Section 1.3.2, is not commonly used, since it is not
always supported in the synthesis tool. However, to use it in the testbench is
okay, since it is not synthesized.

— 13 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

configuration cfg_pre_syn_adder of tb_adder is -- configuration before synthesis
for behavioural -- testbench architecture name

for iadd: adder -- DUT instantiation name
use entity WORK.ADDER(STRUCTURAL); -- point to behavioural adder

end for;
end for;

end;

configuration cfg_post_syn_adder of tb_adder is -- configuration after synthesis
for behavioural -- testbench architecture name

for iadd: adder -- DUT instantiation name
use entity WORK.ADDER(SYN_STRUCTURAL); -- point to synthesized adder

end for;
end for;

end;

If no configuration exists, a default architecture will be selected. The default
architecture is selected by the simulation or synthesis tool, taking the most
recent compiled architecture with the exact same name and port description as
the entity. If no such architecture exists, the entity will be linked to an empty
black box. This could be used for inserting components in the empty space after
synthesis.

1.3.4 Component

Component declarations is used to include a pre-made design as part of a new
design. To be able to use the pre-made design in the new design it has to
be declared in the code as a component. The component declaration is either
included in a package or placed in the architecture part of the code before
begin. For example, to include the previously mention TTL design in a new
larger design, the code could look like this:

entity larger_design is
port(A : in std_logic;

Y : out std_logic);
end;

architecture my_first_arch of larger_design is

component TTL
port(A1,B1 : in std_logic;

...
A4,B4 : in std_logic;
Y1 : out std_logic;
...
Y4 : out std_logic

);
end comonent;

begin
-- use TTL here

end;

1.3.5 Package

A package can be used to store global information such as constants, types,
component declarations or subroutines/functions. A package in VHDL is like
the header files used in C. The package is separated in a declaration and a body.
The body contains implementations of the functions in the declaration part.

package MY_STUFF is
constant ZERO : std_logic := ’0’;
constant ONE : std_logic := ’1’;
function invert(v : std_logic_vector) return std_logic_vector;

ElectroScience — 14 —

1.3. Design units

end;

package body MY_STUFF is
function invert(v : std_logic_vector) return std_logic_vector is

variable result : std_logic_vector((v’length)-1 downto 0);
begin

result := not v; -- Input v is returned bit wise inverted
return result; -- from the function invert

end;
end;

The package can be included at the beginning of a VHDL file using

library MY_LIB
use MY_LIB.my_stuff.all;

— 15 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

1.4 Data types and modelling

After describing the design units, the next step is to connect the building blocks.
The entity describes the interface of each block and these interfaces are con-
nected using signals. Signals are like wires on a PCB (Printed Circuit Board),
routing the traces between the individual chips. Signals are connected to the
building blocks with port maps that specifies which input/output is connected
to which signal. This chapter also presents generics, specified in the entity,
which makes it possible to pass constant values to a module and to dynamically
configure the wordlength of input and output signals in the port map. Finally,
constants and variables will be presented.

1.4.1 Type declaration

A constant, variable, signal, or generic can be of any type. To simplify this
section, only the most useful types will be described. Types and subtypes can
be declared in the architecture, or in a package if the types are going to be used
between entities. Subtypes are limited sets of a type, e.g., the range 0 to 7 is
a subtype of the type integers. There are two reasons to use subtypes; One, to
give informative names to the subtypes and secondly, the simulator will raise
a warning if values exceeds the subtype range. Integers and enumerated data
types are built-in (package standard), while std logic is defined in a package
standardized by IEEE. Records are structures containing several values of any
type, and will be further discussed in the next chapter about design methodol-
ogy.

library IEEE;
use IEEE.std_logic_1164.all; -- std_logic package

architecture ... of ... is
type state_type is (IDLE, START, STOP); -- enumeration
subtype byte is integer range 0 to 255; -- 8 bit integer
subtype data_type is std_logic_vector(7 downto 0); -- 8 bit vector
type reg_type is record -- define record

state : state_type; -- using types above
data : data_type;

end record;
begin

Type Description Assigning Representation
integer numbers i := 32 32-bit number max
std logic a single bit v := ’0’ U,X,0,1,Z,W,L,H,-
std logic vector bit vector v := ”00” U,X,0,1,Z,W,L,H,-
enumeration set of names s := IDLE any legal name
record set of types r.state := IDLE

1.4.2 Signals

Signals can be viewed as physical connections between blocks and inside mod-
ules. Signals are used as interconnects between ports and are assigned a value
using the <= operator. Inputs and outputs described in the entity are also
signals but with a predefined direction. The value of an input signal can only
be read, and an output signal can only be assigned a value. For signals declared
in the architecture body, the direction is not specified.

ElectroScience — 16 —

1.4. Data types and modelling

entity INVERTER is
port(x : in std_logic;

y : out std_logic;
);

end entity;

architecture behavioural of INVERTER is
signal internal : std_logic; -- internal signal, no direction is specified
begin

internal <= ’0’ when x = ’1’ else ’1’; -- using WHEN statement
y <= not x; -- boolean function

end;

1.4.3 Generics

One important feature in VHDL is the possibility of building generic compo-
nents, i.e., creating dynamic designs. For example, when designing a component
for adding two values, it would be inconvenient if the number of bits of the in-
put operands were static values. If the adder component is reused in several
places in the design, a static approach would force the designer to create several
versions of the same component with various wordlengths. Therefore, the entity
can be described using generic values in addition to the interface. The generic
value of a specific instantiation is given a value with the generic map command
that is similar to the port map command. The value of a generic parameter can
be used in the port specification of the entity as well as in the architecture.

...

architecture struct of ALU is

component adder -- component declaration
generic(WIDTH : integer); -- generic parameter
port(a : in std_logic_vector(WIDTH-1 downto 0); -- signals controlled by

b : in std_logic_vector(WIDTH-1 downto 0); -- generic parameter
z : out std_logic_vector(WIDTH downto 0)

);
end component;

begin
signal c,d : std_logic_vector(8 downto 0);
signal q : std_logic_vector(9 downto 0);

adder_1 : adder generic map(WIDTH => 9) port map(a => c, b => d, z => q);
-- WIDTH is given the value 9 and the signals c, d, and q are connected to
-- the in and out ports of the adder instantiation adder_1.

...

1.4.4 Constants

It is often useful to define constants instead of hard-coding values in the VHDL
code. If the constant names are chosen with care, e.g., MEM ADDR BITS to
describe the width of an address bus to a memory, it will improve the readability
and simplify the maintenance of the code. Constants can be declared in a
package or in the architecture. Constants declared in the architecture are only
local, while constants defined in a package can be used as global values.

package my_constants is -- in package
constant GND : std_logic := ’0’; -- logical zero
constant VDD : std_logic := ’1’; -- logical one
constant MAGIC : std_logic_vector(3 downto 0) := "1010"; -- constant vector

end;

— 17 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

architecture arch_counter of counter is -- in architecture
constant MAXVAL : std_logic_vector(3 downto 0) := "1111"; -- all one vector

begin
...

end;

1.4.5 Variables

Variables can be used to temporarily store values in a process. Assigning a
value to a variable has a different syntax than for a signal, using the := opera-
tor. When discussing design methodologies, we will show how variables can be
used to avoid signal assignment and to change the concurrent behaviour into
sequential execution. The advantage of variables is that they are sequentially
executed since a value is assigned immediately, as in software programs. From
a simulation point of view, it is also faster to work with variables than signals.
Normally, variables are only used inside a process, but in later versions of VHDL
it is also possible to declare shared variables directly in the architecture.

It is important to note that the hardware will be the same whether variables
or signals are used! The hardware will not be sequential, it is only the code
that is executed sequentially. Variables are used to increase the readability of
the code and to reduce simulation time. Below is an example of the differences
using variables and signals, but the hardware will be exactly the same in both
cases. The process to the right uses only signals, which all change values at
the same time. The first time this process is executed due to a change in z,
signals a will become z + 1 and b will become 3 + 1, the old value of a plus one.
These changes will trigger the process one more time, since a and b are in the
sensitivity list of the process. The second time correct values will be assigned
to b and q. The process to the left that uses variables, will assign correct values
to a, b, and q the first and only time the process is triggered by a change in z.
For more details of processes see Section 1.5.

process(z) -- sensitive to changes on z process(a,b,z) -- sensitive to a, b, z
variable a,b integer; begin -- assume that z=5 and a=3 then

begin -- assume that z=5 then a<=z+1; -- a=6 after 1 delta
a:=z+1; -- a=6 b<=a+1; -- b=4 after 1 delta and b=7 after 2 delta
b:=a+1; -- b=7 -- changes to a and b will trigger process again
q<=b; -- signal q=7 after one delta q<=b; -- q=4 after 1 delta and 7 after 2 delta

end process; end process;

1.4.6 Common operations

Table 1.1 shows a list of common operators and which data types that can be
used with them. All logical operations, e.g., and and or, are performed bit wise
and both input most be of the same length. The input to comparison operations
do not have to be of the same length, but the smallest input will be extended to
the same length as the widest input in the hardware. For wordlengths concerning
arithmetic operations see Chapter 3.

ElectroScience — 18 —

1.5. Process statement

1.5 Process statement

Processes are used to increase code readability, reduce simulation time, and
for the synthesis tool to recognize some common hardware blocks, e.g., flip-
flops and latches. A hardware architecture can contain an arbitrary amount
of processes. However, to increase code readability it is recommended that a
maximum of two processes are used, one containing sequential logic and one
containing combinatorial logic, e.g., flip-flops and latches.

A process can be viewed as a self-contained module, sensing changes in the
input signals and changing the output signals accordingly. A process has a
sensitivity list which reacts to changes in the input signals. If a signal in
the sensitivity list changes, all statements in the process will be executed once.
Therefore, it is very important to add all dependent signals, i.e., signals that
are being read in the process, to the sensitivity list. Otherwise, the simulation
result will not be correct.

A process without a sensitivity list is executed continuously and has to con-
tain some kind of wait statement. Otherwise, the simulation tool will lock up.
A wait statement could for example be wait until sel=’1’, continuing execution
when the condition is met. A simple MUX is presented below. The process is
sensitive to changes to the input operands a and b and the select signal sel.

entity mux is
port(a : in std_logic;

b : in std_logic;
sel : in std_logic;
q : out std_logic

);
end entity;

architecture behavioural of mux is
begin

process(a,b,sel) -- sensitive to changes on A, B, SEL
begin

if (sel = ’1’)
q <= a;

else
q <= b;

end if;
end process;

end;

1.5.1 Sequential vs. combinatorial logic

All the examples so far have demonstrated combinatorial circuits, for example
Boolean functions, adders or multiplexers. Normally, the combinational blocks
are separated by sequential logic, updated only on the rising or falling edge of
the clock signal, see Figure 1.3. By combining sequential and combinatorial
logic, it is possible to describe state machines, counters, and other sequential
units. The accumulator in Figure 1.4 uses a sequential unit to store the sum
of all previous input values. It uses a feedback signal to add the current input
to the accumulated sum. The reset signal forces the sequential unit back to
zero. The code example below shows the implementation of the accumulator,
using one process to describe the combinatorial logic and one process for the
sequential unit. The command a <= (others =>′ 0′) is used to assign zero to
all bits in a, independently of the wordlength of a.

entity ACCUMULATOR is

— 19 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

clkclkclk

Figure 1.3: Combinatorial logic divided by sequential registers.

1

00

d
q

rst clk

Figure 1.4: Simple accumulator with reset. The adder and MUX are the com-
binatorial part of the circuit. The register is sequentially updated by the clock
signal.

generic(BITS : integer);
port(clk : in std_logic;

rst : in std_logic;
d : in std_logic_vector(BITS-1 downto 0);
q : out std_logic_vector(BITS-1 downto 0));

end;

architecture MY_GOD_I_HOPE_THIS_WORKS of ACCUMULATOR is
signal sum, feedback : std_logic_vector(BITS-1 downto 0);

begin

comb: process(rst, d, feedback) -- combinatorial update
begin

if (rst = ’0’) then
sum <= (others => ’0’); -- assign ’0’ to all vector elements

else
sum <= feedback + d;

end if;
end process;

seq: process(clk) -- sequential update
begin

if rising_edge(clk) then -- update on the rising clock edge
feedback <= sum;

end if;
end process;

q <= feedback;

end;

ElectroScience — 20 —

1.6. Instantiation and port maps

1.6 Instantiation and port maps

Hardware design is well suited for a hierarchical approach. Small logical cells
build arithmetic units such as adders. Adders are basic building blocks in signal
processing, and several signal processing algorithms can form a complete system.
This way of designing is called bottom-up, first specifying the smallest and
most fundamental building block, then using (instantiating) these basic blocks
to build more complex designs. Using previously designed components in a new
component is called instantiation. For example, an FIR filter instantiates a
number of adders and multipliers and connects wires between the instantiated
blocks. The procedure for instantiation is presented below. Examples of how to
instantiate components can be found in Section 1.9.

1. Create a new entity adder, as shown in Section 1.3.1.

2. Specify the adder architecture, as shown in Section 1.3.2.

3. Create a new entity and architecture to the FIR.

4. Include a component declaration of the adder, in the FIR architecture
(before begin).

5. Instantiate the adder in the FIR architecture (after begin)

6. Connect the signals in the port map to create a filter function

entity ADDER is
 ...
end;

entity ADDER is
 ...
end;

architecture ... of ADDER is
 ...
end;

entity FIR is
 ...
end;

architecture ... of FIR is
 ...
end;

architecture ... of FIR is
 component ADDER
 ...
 end component;
begin
 ...
end;

begin
 myadd1: ADDER
 generic map (WIDTH => 4)
 port map(A => A,
 B => B,
 Z => Z);
 myadd2: ADDER
 ...

FIRFIRFIRADDADD

1 2 3 4 5

Figure 1.5: FIR filter instantiating a generic adder component.

1.7 Generate statements

When building highly regular structures, for example a direct map FIR filter,
instantiating components by hand would be a cumbersome procedure. In the
case of an FIR filter, the number of components depends on the actual filter size.
Changing the filter size would require manual work to instantiate a different
number of components. However, VHDL has a construct to cope with the
situation of dynamic instantiation. The generate statement, similar to the for
statement, can be used for instantiating blocks or connecting signals using the
loop counter as index.

A frequently used signal processing element is the CORDIC (Coordinate
Rotation Digital Computer). It performs a series of pseudo-rotations based
on shift and add operations, useful for evaluating trigonometrically functions.
An N bit CORDIC element can be implemented as a time multiplexed unit
performing N iterations or by pipelining N units, as shown in Figure 1.6. The

— 21 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

ctrl
xyz

ctrl
xyz

0 1 N-1

Figure 1.6: A pipelined CORDIC element with N bit precision.

example in this section shows how to instantiate N units and connecting them
in a pipeline.

architecture structural of cordic is

subtype data_type is std_logic_vector(N-1 downto 0);

type cordic_data is record
ctrl : cordic_control_type;
x, y, z : data_type;

end record;

type cordic_pipeline is array(0 to N) of cordic_data;

signal pipeline : cordic_pipeline;

begin

gen_pipe: for i in 0 to N-1 generate
inst_unit: cordic_unit

generic map(BITS => N,
STAGE => i)

port map(clk => clk,
rst => rst,
ctrli => pipeline(i).ctrl,
ctrlo => pipeline(i+1).ctrl,
xi => pipeline(i).x,
yi => pipeline(i).y,
zi => pipeline(i).z,
xo => pipeline(i+1).x,
yo => pipeline(i+1).y,
zo => pipeline(i+1).z);

end generate;

end;

ElectroScience — 22 —

1.8. Simulation

1.8 Simulation

1.8.1 Testbenches

When writing a design, it is important to verify its functionality. The most
common method of doing this is to create a testbench, i.e., instantiating a
DUT (Device Under Test), generate test vectors (a set of inputs), and monitor
the output, as shown in Figure 1.7. Common testbench tasks are to generate
clock and reset signals, and read/write information to file. Writing the output
values to a file makes it possible to verify the result using, e.g., Matlab. An
example testbench is found below.

0101

0101
d

qrst

clk

DUTread

write

Figure 1.7: Testbench providing stimuli to a device under test (DUT).

library IEEE;
use IEEE.std_logic_1164.all;
use std.textio.all;

entity tb_exmple is
end tb_exemple;

architecture behav of tb_example is
file in_data:text open read_mode is "../stimuli/input";
file out_data:text open write_mode is "../stimuli/output";

constant half_period: time :=10 ms; -- half period = half clock period

component test_design
port (clk : in std_logic;

rst : in std_logic;
input : in std_logic_vector(1 downto 0);
output: out std_logic_vector(1 downto 0));

end component;

signal clk: std_logic:=’0’; -- start value of clk is ’0’
signal rst: std_logic:=’1’;
signal input_sig, output_sig : std_logic_vector(1 downto 0);

begin

rst <= ’0’ after 20 ms;

DUT : test_design port map (
clk => clk, -- device pin (clk) connected with (=>) signal in tb (clk)
rst => rst,
input => input_sig,
output=> ouput_sig);

process(clk)
variable buffer_in,buffer_out:line;
variable d,result :integer;
begin
if (clk=’1’) and (clk’event) then -- at each positive clock edge a new input

readline(in_data,buffer_in); -- is written to the DUT and the output is
read(buffer_in,d); -- written to the output file
inp_sig <= CONV_STD_LOGIC_VECTOR(d,2) after 2 ns; -- delay input 2 ns

result:=CONV_INTEGER(output_sig);
write(buffer_out,result);

— 23 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

writeline(out_data,buffer_out);
end if;
end process;

process --clock generator
begin

wait for half_period;
clk <= not clk;

end process;
end;

1.8.2 Modelsim

Modelsim is a widely used simulator for VHDL and Verilog-HDL. The screen-
shots from the program in Figure 1.8 and Figure 1.9 show the simulation of the
accumulator example from Section 1.5.1. Simulation is performed by compiling
a VHDL file using the Modelsim command vcom, loading the design with vsim
and finally starting the simulation with the run command. All commands can
either be written at the prompt or found in the GUI. The waveform window
shows how the output value is incremented with d for each clock cycle.

ModelSim> vcom -work MYLIB accumulator.vhd
ModelSim> vsim MYLIB.accumulator
ModelSim> run 1000 ns

Figure 1.8: Modelsim main window. Can be used for compiling and simulating
designs.

ElectroScience — 24 —

1.9. Design example

Figure 1.9: Modelsim waveform window. The accumulated values increases with
d for each clock cycle.

1.8.3 Non-synthesizable code

Sometimes it is convenient to include functions that are non-synthesizable dur-
ing simulation. It could be printing a message in the simulation window, or
writing important information to a file. During synthesis, these lines of code
must be discarded. This can be done by placing a special line before and after
the non-synthesizable code. Place the line

-- pragma translate_off

before, and

-- pragma translate_on

after the part you want to hide from the synthesizing tool. When using Syn-
opsys, a system variable must also be set in order for Synopsys to understand
the translate off and translate on commands. This is done by setting the
following variable in the synthesis script:

hdlin_translate_off_skip_text = true

An example of non-synthesizable code is signal delays. During simulation, it
is possible to delay the signal assignment to emulate the behaviour of gates,
memories or external interfaces. However, most synthesis tools understand this
syntax and will simply ignore it; generating a warning message. It is not neces-
sary to use translate off when adding signal delays.

1.9 Design example

A small design example of an ALU (arithmetic logical unit) will be presented in
this section. The ALU supports addition, subtraction, and some logical func-
tions. There are two input operands, input control signal, and one output for
the ALU result. The architecture for the design example is found in Figure 1.10.

— 25 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

ALU_OP

S

X

A

M

B

Q

R

Mux

R_reg

Q_reg

Alu

Shift

Figure 1.10: Schematic view of the ALU design.

ALU unit
entity ALU is architecture BEHAVIOURAL of ALU is

generic (WL : integer); begin
port(ALU_OP : in std_logic_vector(2 downto 0); process (A,ALU_OP,M)

A, M : in std_logic_vector(WL-1 downto 0); begin
X : out std_logic_vector(WL-1 downto 0)); case ALU_OP is

end; when "000" => X <= A;
when "001" => X <= A+M;
when "010" => X <= A-M;
when "011" => X <= M-A;
when "100" => X <= -(A+M);
when "101" => X <= (A and M);
when "110" => X <= (A or M);
when "111" => X <= (A xor M);
when others => null;

end case;
end process;

end;

Shift unit
entity SHIFTOP is architecture BEHAVIOURAL of SHIFTOP is

generic(WL : integer); begin
port(SHIFT : in std_logic_vector(1 downto 0); process (X,SHIFT)

X : in std_logic_vector(W_L-1 downto 0); variable S_temp : std_logic_vector(WL-1 downto 0);
S : out std_logic_vector(W_L-1 downto 0)); begin

end; case SHIFT is
when "01" => S <= X(WL-1) & X(WL-1 downto 1);
when "11" => S <= X(WL-2 downto 0) & ’0’;
when "10" => S <= X(WL-3 downto 0) & "00";
when others => S <= X;

end case;
end process;

end;

MUX unit
entity MUX is architecture BEHAVIOURAL of MUX is

generic(WL : integer); begin
port(MUX : in std_logic; process (MUX,B,R)

B,R : in std_logic_vector(WL-1 downto 0); begin
M : out std_logic_vector(WL-1 downto 0)); if MUX=’0’ then

ElectroScience — 26 —

1.9. Design example

end; M <= B;
else

M <= R;
end if;

end process;
end;

Registers
entity REGISTER is architecture BEHAVIOURAL of REGISTER is

generic(WL : integer); begin
port(clk : in std_logic; process (clk,WR_R,S)

WR_R : in std_logic; begin
S : in std_logic_vector(WL-1 downto 0); if (clk=’1’) and (clk’event) then
R : out std_logic_vector(WL-1 downto 0)); if WR_R=’1’ then

end; R <= S;
end if;

end if;
end process;

end;

— 27 — Lund Institute of Technology

Chapter 1. Introduction to VHDL

ALU toplevel

The ALU toplevel instantiates the previously created designs and connects the
port maps using signals.

entity ALU_TOP is
generic(WL : nteger := 8);
port(A, B : in std_logic_vector(WL-1 downto 0);

ALU_PORT : in std_logic_vector(7 downto 0);
clk : in std_logic;
Q : out std_logic_vector(WL-1 downto 0));

end;

architecture BEHAVIOURAL of ALU_TOP is

component alu -- declare components
generic (WL : integer);
port(ALU_OP : in std_logic_vector(2 downto 0);

A, M : in std_logic_vector(WL-1 downto 0);
X : out std_logic_vector(WL-1 downto 0));

end component;

...
-- declare signals

signal OEN, WR_R, MUX : std_logic;
signal SHIFT : std_logic_vector(1 downto 0);
signal ALU_OP : std_logic_vector(2 downto 0);
signal R,S,M,X : std_logic_vector(WL-1 downto 0);

begin
OEN <= ALU_PORT(7); -- connect signals
WR_R <= ALU_PORT(6);
SHIFT <= ALU_PORT(5 downto 4);
MUX <= ALU_PORT(3);
ALU_OP <= ALU_PORT(2 downto 0);

A_OP : alu -- instatiate units
generic map (WL => WL)
port map (ALU_OP => ALU_OP, A => A, M => M, X => X);

S_OP : shiftop
generic map (WL => WL)
port map (SHIFT => SHIFT, S => S, X => X);

M_OP: mux
generic map (WL => WL)
port map (MUX => MUX, B => B, R => R, M => M);

R_OP: register
generic map (WL => WL)
port map (clk => clk, WR_R => WR_R, S => S, R => R);

Q_OP: register
generic map (WL => WL)
port map (clk => clk, WR_R => OEN, S => S, R => Q);

end;

ElectroScience — 28 —

1.9. Design example

Table 1.1: List of operations.
Operator Description Operand type Example
and logical and bit, vector a := b and c
or logical or bit, vector a := b or c
nand logical nand bit, vector a := b nand c
nor logical nor bit, vector a := b nor c
not logical not bit, vector a := not b
xor logical xor VHDL’93 bit, vector a := b xor c
xnor logical xnor VHDL’93 bit, vector a := b xnor c
= equal bit, vector, integer if (a = 0) then
/ = not equal bit, vector, integer if (a /= 0) then
< less than bit, vector, integer if (a < 2) then
<= less or equal bit, vector, integer if (a <= 2) then
> greater than bit, vector, integer if (a > 2) then
>= greater or equal bit, vector, integer if (a >= 2) then
+ addition bit, vector, integer a := b + ”0100”
− subtraction bit, vector, integer a := b - ”0100”
∗ multiplication bit, vector, integer a := b * c
∗∗ exponent (shift) bit, vector, integer a := 2 ** b
& concatenation bit, vector, string a := ”01” & ”10”

— 29 — Lund Institute of Technology

ElectroScience — 30 —

Chapter 2

Design Methodology

This chapter proposes an HDL Design Methodology (DM) that is based on uti-
lizing certain properties of the VHDL language. After having gotten acquainted
with VHDL, it seems that the language contains many useful properties. As a re-
sult, an ad-hoq coding style often arises, resulting not only in non-synthesizable
code but also in many concurrent processes, signals and different source file dis-
positions. As the design grows, i.e., the actual length and number of source files,
together with the time spent on debugging, the need for an effective DM be-
comes evident. This is especially important when several designers are involved
in the same project. In the subsequent sections, a DM is proposed, based on the
methodology proposed by Jiri Gaisler [3], together with some additional guide-
lines. The proposed DM main objectives are to improve the following important
properties of HDL design namely:

• Increase readability.

• Simplify debugging.

• Simplify maintenance.

• Decrease design time.

The readability can be increased by exploring several important properties of
HDL design and VHDL, e.g., hierarchy, i.e., abstraction level; not use more than
two processes per entity, i.e., one combinatorial and one sequential; the way a
Finite State Machine (FSM) is written, using case statements; etc. As a result,
the source code will have a uniform disposition simplifying code orientation and
the way to address a certain design problem.

As the design grows, the time spent on functionality debugging becomes
a larger part of the design time. Using a proper DM will certainly help to
minimize the time spent on debugging.

An important issue after having released an IP-block is proper maintenance
and support, which might lead to an advantage over competitive designs. An
effective DM can simplify these procedures, since code orientation and single
block functionality verification becomes easier.

— 31 — Lund Institute of Technology

Chapter 2. Design Methodology

2.1 Structured VHDL programming

Structured VHDL programming involves specific properties of the VHDL lan-
guage as well as addressing design problems in a certain way. This section will
propose some simple guidelines to achieve the goals mentioned in the previous
section. The guidelines are summarized below:

• Use a uniform source code disposition, e.g., two processes per entity.

• Utilize records.

• Use synchronous reset and clocking.

• Explore hierarchy.

• Use local variables.

• Utilize sub-programs.

The proposed DM is based on these properties and they have to be utilized
throughout the complete design process. At first glance, adopting all paragraphs
may seem excessive, but as the skill of the designer increases, the individual ben-
efits will become evident. Furthermore, the presented guidelines are applicable
to any synchronous single-clock design, but many will, with some modification,
work for all types of designs, e.g., Globally Asynchronous Locally Synchronous
(GALS). Furthermore, the guidelines should be seen as recommendations and
following them will most certainly result in synthesizable and well structured
designs. The benefits of each paragraph will be explained in detail in the sub-
sequent sections.

2.1.1 Source code disposition

Limiting the number of processes to two per entity improves readability and
results in a uniform coding style. One process contains the sequential logic
(synchronous), i.e., registers, and the other contains the combinatorial part
(asynchronous), i.e., behavioral logic. The sequential part always looks the
same but the combinatorial part looks different in every source file due to the
functionality of the block. Due to this fact, the sequential part is always put
after the combinational part. A typical source code disposition is compiled
below:

1. Included library(s).

2. Entity declaration(s).

3. Constant declaration(s).

4. Signal declaration(s).

5. Architecture declaration.

6. Component instantiation(s).

7. Combinatorial process declaration.

ElectroScience — 32 —

2.1. Structured VHDL programming

8. Sequential process declaration .

The source file disposition should always have this given order, simplifying
readability, code orientation, and maintenance.

2.1.2 Records

A typical VHDL design consists of several hundreds of signal declarations. Each
signal has to be added on several places in the code, i.e., entity, component dec-
laration, sensitivity list, component instantiation, which obviously can become
quite hard to keep track of as the number of lines of code increase. A simple way
of avoiding this is to use records since once the signal is included in a record; all
these updates are done automatically. This is due to the fact that the record is
already included in the necessary places and the actual signal is hidden within
the record.

A record in VHDL is analogous to a struct in C and is a collection of
various type declarations, e.g., standard logic vectors, integers, other records,
etc. The declarations should not contain any direction, i.e., in or out. Below is
an example how a simple record is defined VHDL:

type my_type is record
A : std_logic_vector(WIDTH-1 downto 0);
B : integer;
Z : record_type;

end record;

The record declarations should be compiled in a declaration package that
can be imported to the various files, thus enabling reuse. Using records not
only reduces many lines of code but also simplifies signal assignment since none
of the default signal assignments are forgotten, which otherwise can lead to
unnecessary latches in the synthesized design.

2.1.3 Clock and reset signal

The clock signal solely controls the sequential part, i.e., updating the registers,
of the source file and should be left out of any record declaration. This is mainly
because the clock signal is treated differently by the synthesis tools, since it is
routed from an input pad throughout the complete design. Also, many clock
tree generation and timing analysis tools do not support clock signals that are
part of a bus. The sequential part always looks the same and should only have
the clock signal in the sensitivity list, see example below:

sequential_part : process(clk)
begin
if rising_edge(clk)
r <= rin;

end if;
end process;

There are two methods of implementing the reset signal, namely synchronous
and asynchronous. There are also two places to put the reset assignment in the

— 33 — Lund Institute of Technology

Chapter 2. Design Methodology

L evel 1 L evel 2

register operation

mux operation

shift operation

alu operation

alu (top level)

Figure 2.1: An example of how hierarchy can be used in the ALU example.

source code, i.e., in the sequential or combinational part. Choosing between the
two methods and deciding where to put the assignment seems to be a religious
matter and many of the arguments for choosing either of them are obsolete,
since most of the commercial synthesis tools now support them. In the proposed
DM, synchronous reset assigned in the combinational part is utilized, and for
the same reasons as for the clock signal; the reset signal should not be included
in any kind of record declaration1. The reset assignment is put in the latter part
of the combinational block, just before the current state record is updated, and
should be triggered on a logic zero, which is a commonly used convention. The
following example illustrates where the synchronous reset assignment is placed
in the source file:

combinational_part : process (various signals and records, reset)
begin
...
if (reset = ’0’) then
v.state := IDLE;
...

end if;
...
rin <= v;

end process;

2.1.4 Hierarchy

Hierarchy is an important concept and is general for all types of modeling since
altering the abstraction level tends to simplify a given problem. In VHDL,
hierarchy can be utilized to split a given problem or model into individual mod-
ules, designs or sub programs. Each program level is controlled by component
instantiation, enabling debugging of each block individually. Clearly, there is
no general methodology to explore hierarchy rather that it can and should be
utilized in every design. A block diagram of how hierarchy can be used in the
ALU example can be seen in Figure 2.1:

1A synchronous reset signal can be added in a record since it is then treated as any other
signal but it is not advisory since it does not support a uniform coding style.

ElectroScience — 34 —

2.1. Structured VHDL programming

2.1.5 Local variables

By utilizing local variables instead of signals in the combinational part, a given
design problem is transformed from concurrent to sequential programming, i.e.,
each line of code is executed in consecutive order during simulation. This is
advantageous since humans find it easier to think in sequential terms rather
than in parallel. Using local variables will also increase simulation speed since
simulation is often event triggered and the tool can execute events in order of
appearance and does not have to consider parallel events. Basically, there is only
one restriction when using local variables namely that a computational result
stored in a variable should not be reused within the same clock cycle but rather
stored in a register to be used in the succeeding clock cycle. This is mainly to
avoid long logic paths and combinational feedback loops. Below is an example
of how to use local variables in the ALU example:

ALU_example : process("additional signals and records", r, reset)
variable v : reg_type;

begin
v := r;
...
case r.state is
when IDLE => v.state := CALC;
...

end case;
...
rin <= v;

end;

Initially, the local variable v is set to the current values of the registers stored
in r. Then, the local variable v is used throughout the combinational part in a
sequential programming fashion. Finally, the input signal to the registers rin is
updated to the computed values of the local variable v. To see the complete code
of the ALU example, please refer to Section 2.2. Variable and signal assignments
should be placed exactly as in the example above.

2.1.6 Subprograms

Using sub-programs is often a good way of compiling commonly used func-
tions and algorithms, thus increasing readability. Subprograms can be used to
increase the hierarchy and abstraction level, hiding complexity and enabling
reuse. The subprograms are defined in packages and imported into the different
source files. A restriction in the use of subprograms is that functions should only
contain purely combinatorial logic. Below is an example of how subprograms
can be used in the ALU example:

-- package declaration
function shift_operation (A : in data_type, m : in data_type,

control : in control_type)
return data_type;

-- package body

— 35 — Lund Institute of Technology

Chapter 2. Design Methodology

function shift_operation(A : in data_type , m : in data_type,
control : in control_type)
return data_type is

begin
case control is
when "000" => return A;
when "001" => return A + m;
when "010" => return A - m;
when "011" => return m;
when "100" => return (others => ’0’);
when "101" => return A and m;
when "110" => return A or m;
when "111" => return A xor m;
when others => return null;

end case;
end function shift_operation;

Each subprogram can be debugged individually with a separate testbench
to ensure correct functionality of the block.

2.1.7 Summary

The previous sections have proposed guidelines to establish a sound DM to
be used throughout the whole design process. As a result, a uniform coding
style can be established to simplify and increase readability, debugging, and
maintenance. There are also several other benefits of adopting this DM where
most important are summarized in the table below:

• Less lines of code.

• Altering the abstraction level, hiding complexity, and enabling reuse.

• Parallel coding is transformed into sequential.

• Improved simulation and synthesis speed.

Finally, adopting proposed guidelines hopefully results in synthesizable and
well disposed designs that will help the design team on the way towards the
final goal, which is a robust design using a minimal design time.

ElectroScience — 36 —

2.2. Example

2.2 Example

The same example as in the previous chapter is now presented, using the pro-
posed design methodology. The ALU code is divided into a global package and
the actual implementation. The package contains constants and type declara-
tions to improve the readability and portability, and can be found below. The
rest of the ALU implementation is presented in Section 2.3.5.

library IEEE;
use IEEE.std_logic_1164.all; -- for std_logic
use IEEE.std_logic_signed.all; -- for signed add/sub

package alu_pkg is

constant WL : integer := 8;

constant ALU_STORE : std_logic_vector(2 downto 0) := "000";
constant ALU_ADD : std_logic_vector(2 downto 0) := "001";
constant ALU_SUB : std_logic_vector(2 downto 0) := "010";
constant ALU_FB : std_logic_vector(2 downto 0) := "011";
constant ALU_CLEAR : std_logic_vector(2 downto 0) := "100";
constant ALU_AND : std_logic_vector(2 downto 0) := "101";
constant ALU_OR : std_logic_vector(2 downto 0) := "110";
constant ALU_XOR : std_logic_vector(2 downto 0) := "111";

constant SHIFT_NONE : std_logic_vector(1 downto 0) := "00";
constant SHIFT_RIGHT : std_logic_vector(1 downto 0) := "01";
constant SHIFT_2LEFT : std_logic_vector(1 downto 0) := "10";
constant SHIFT_1LEFT : std_logic_vector(1 downto 0) := "11";

subtype data_type is std_logic_vector(WL-1 downto 0);

type control_type is record
oen : std_logic;
fb : std_logic;
mux : std_logic;
shift : std_logic_vector(1 downto 0);
alu_op : std_logic_vector(2 downto 0);

end record;

component alu
port (clk : in std_logic;

A : in data_type;
B : in data_type;
control : in control_type;
Q : out data_type);

end component;

end;

2.3 Technology independence

During code development, the target technology may not yet be known or
changed at a later stage. An important design aspect is therefore to keep the
code free from parts that are technology specific. All parts that are not standard
cells and pure logic, for example on-chip memories and the pads connecting
the design to the outside world, are technology dependent.
Memories and pads are instantiated in the VHDL code by name. At the same
time, avoid hard coding the memory name or pad name in the design. A simple
solution is to use abstraction. Start with creating a mapping file, which selects
the proper component based on the user constraints and the chosen technology.
For example, when creating a memory, specify only the number of data bits and
address bits in the code. Then let the mapping file choose the correct memory

— 37 — Lund Institute of Technology

Chapter 2. Design Methodology

pads

logic

memory

Figure 2.2: A chip layout with standard cells (logic), memories and pads.

based on the current technology and by using your specifications about the
address and data bus.

Design.vhd

mem: gen_ram
 generic map (6, 16)
 port map (...);

tech_map.vhd

if (target_tech = VIRTEX) then
 mem: virtex_ram ...
end;

if (target_tech = UMC13) then
 mem: umc13_ram ...
end;

tech_virtex.vhd

Instantiate and connect
Virtex memory by name

tech_umc13.vhd

Instantiate and connect
UMC .13um memory by name

target_tech

Figure 2.3: Using a mapping file to handle target specific modules.

In your design, instantiate a memory from the mapping file as:

use work.tech_map.all;

mem: gen_ram
generic map (ADDR_BITS => 5,

DATA_BITS => 16);
port map (clk, addr, d, q);

The instantiation will point to the technology mapping file, instead of the actual
memory, which selects and connects the chosen technology dependent module.
The mapping file contains the following information:

use work.tech_virtex.all; -- one library for
use work.tech_umc13.all; -- each technology

type target_type is (VIRTEX, UMC13); -- available technologies
constant target_tech : target_type := VIRTEX; -- set technology here

entity gen_ram
generic map (ADDR_BITS : integer;

DATA_BITS : integer);
port map (clk : std_logic;

addr : std_logic_vector(ADDR_BITS-1 downto 0);
d : std_logic_vector(DATA_BITS-1 downto 0);
q : std_logic_vector(DATA_BITS-1 downto 0));

end;

architecture structural of gen_ram is

ElectroScience — 38 —

2.3. Technology independence

begin
if (target_tech = VIRTEX) generate -- VIRTEX memory

mem: virtex_ram
generic map (ADDR_BITS, DATA_BITS);
port map (clk, addr, d, q);

end generate;

if (target_tech = UMC13) generate -- UMC ASIC memory
mem: umc13_ram

generic map (ADDR_BITS, DATA_BITS);
port map (clk, addr, d, q);

end generate;
end;

2.3.1 ASIC Memories

ASIC memories must be created using a memory generator or by contacting the
vendor. The ideal memory generator creates a VHDL simulation model, entity
and architecture, and a layout file specifying the size and connections of the
memory. The memory is instantiated from the VHDL code by using exactly the
same name and port connections.

Physical size

Verilog
netlist

entity

GDS II

comp

phys

MEM
GEN

LEF

DB

VHDL

SYN

SIM

PaR

Figure 2.4: The memory generator creates simulation files, library files and
physical description files.

2.3.2 ASIC Pads

For smaller projects, pads are normally inserted during synthesis. The reason
is simple: it is less work. For ASIC technologies, pad insertion is only a couple
of lines in the synthesis script. For Synopsys, use:

dc_shell> set_port_is_pad all_inputs()
dc_shell> set_port_is_pad all_outputs()
dc_shell> set_pad_type -exact IBUF all_inputs();
dc_shell> set_pad_type -exact B2CR all_outputs();
dc_shell> insert_pads -respect_hierarchy

The only thing you have to select is the pad name from your target library,
in this case IBUF for input ports and B2CR for output ports, names that are
technology specific. The number associated with the output pad is usually the
driving strength in mA. However, for larger designs, several different pad types
are usually required. It could be pads with different driving strength, Schmitt-
trigger, open-drains or bi-directional pads. Assigning pads individually and at

— 39 — Lund Institute of Technology

Chapter 2. Design Methodology

the same time creating multiple version, one for each technology, will be difficult.
Adding one pad requires changing the synthesis script for all technologies.

The solution is to apply the same technique as described for memories; create
generic pads in a mapping file, and point to the current technology. Adding a
new pad will only require a pad instantiation at the top level of your design,
and the correct pads will be chosen from the mapping file.

2.3.3 FPGA modules

For FPGAs, memories and pads are only two examples of technology specific
components. Xilinx has created a tool for automatically creating small cores
that can be used in the design. The tool is called Core Generator and creates
modules (.edn) that can be inferred during the place and route step. The mod-
ules are instantiated by name (which will create a black box during synthesis),
replacing the black box when reading the .edf file. For example, core generator
can create memories and multipliers of any size, combining the resources in the
FPGA. Usually the on-chip memories are small, but can be grouped to form a
larger memory.

Component description

.EDF file

Bitstream

.UCF
user constraint file

GEN
CORE

EDN

VHDL

SYN

SIM

ISE

Figure 2.5: Core Generator can create all kinds of modules, instantiated by
name in the VHDL code.

ElectroScience — 40 —

2.3. Technology independence

Figure 2.6: Core Generator main window. Generated cores can be instantiated
in the VHDL code.

2.3.4 FPGA Pads

Memory and pad insertion is more simple for FPGAs than for ASIC. The reason
is that the synthesis tool for FPGA already knows what kinds of memories and
pads that are available for a certain FPGA. The synthesis tool can therefore
handle a lot of things automatically.

— 41 — Lund Institute of Technology

Chapter 2. Design Methodology

2.3.5 ALU unit
The ALU unit imports the package on the previous page and uses the type
and constant declarations. The ALU is implemented using the two process
methodology, separating the sequential and combinatorial logic. All sequential
elements are declared in a record type.

use work.alu_pkg.all; -- use ALU types

entity alu is
port (clk : in std_logic;

A, B : in data_type;
control : in control_type;
Q : out data_type);

end;

architecture behavioural of alu is
type reg_type is record -- all registers

output : data_type;
feedback : data_type;

end record;

signal r, rin : reg_type;
begin

process(r, A, B, control)
variable m, x, s : data_type;
variable v : reg_type;

begin
v := r;

if control.mux = ’1’ then -- select input or feedback
m := B;

else
m := r.feedback;

end if;

case control.alu_op is -- arithmetic operation
when ALU_STORE => x := A;
when ALU_ADD => x := A + m;
when ALU_SUB => x := A - m;
...
when others => null;

end case;

case control.shift is -- shift operation
when SHIFT_NONE => s := x;
when SHIFT_RIGHT => s := x(WL-1) & x(WL-1 downto 1);
when SHIFT_2LEFT => s := x(WL-2 downto 0) & ’0’;
when SHIFT_1LEFT => s := x(WL-3 downto 0) & "00";
when others => null;

end case;

if (control.fb = ’1’) then -- feedback enable
v.feedback := s;

end if;
if (control.oen = ’1’) then -- output enable

v.output := s;
end if;

Q <= r.output; -- drive output from register
rin <= v;

end process;

process(clk) -- update registers
begin

if rising_edge(clk) then
r <= rin;

end if;
end process;

end;

ElectroScience — 42 —

Chapter 3

Arithmetic

3.1 Introduction

In the original meaning, arithmetic describes the four fundamental rules of math-
ematics: addition, subtraction, multiplication and division. In computer tech-
nology, a device that performs these operations is called Arithmetic and Logical
Unit (ALU). In addition to the four fundamental rules of arithmetic, an ALU
can perform several other operations, e.g. shifting and logical operations.

Arithmetic and logical operations are of course very important to understand
when designing hardware, as we want an efficient hardware structure as possible
to perform the operation. Different implementations of a particular operation
can be distinguished in terms of area, performance or power.

To understand the implementation of arithmetic operations we must first
consider and distinguish two important concepts: the operation and the data
type. When it comes to hardware design with VHDL, the data type and the
operation is specified in the VHDL language. The description in this chapter
will concentrate on the VHDL data types based on an array of std logic and
the operations that can be performed on this specific data type. Although the
VHDL language specify both the data type and the operations to be performed
on this type, it does not say anything about how the operations are to be im-
plemented as a hardware structure. This is decided in the step which hardware
designers refer to as synthesis, which in this chapter will be discussed in the
context of the Synopsys synthesis tool, Design Compiler or DC for short.
Hence, this chapter addresses the implementation of arithmetic operations in a
digital ASIC.

3.2 VHDL Packages

Operations and data types are specified in the VHDL language in packages and
are made accessible by use of a library clause at the beginning of the VHDL file.

-- Library clause in VHDL
library IEEE;
use IEEE.std_logic_1164.all;

— 43 — Lund Institute of Technology

Chapter 3. Arithmetic

As there may be several definitions of the same operator in a standard pack-
age, the actual operator selected, by the compiler, is controlled by operator
overloading. Operator overloading means that the compiler checks input and
output data types, to find the correct operation from the list of all operations
currently accessible through the library clauses in the file.

The most important and widely used standard packages when it comes to
ASIC design, simulation and synthesis, are:

• std logic 1164

• std logic arith

• std logic signed

• std logic unsigned

The standard package called std logic 1164 is an IEEE standard and the
other three are Synopsys de facto industry standards. We will briefly explain
the content of the packages which also are found in Appendix A.

3.2.1 Data types

The basic data type from which the data types, used for writing synthesizable
VHDL code, originate is std ulogic. The type describes a 9-level information
carrier, see Table 3.1. The information carriers are ’U’ (uninitialized), ’X’ (forc-
ing unknown), ’0’ (forcing 0), ’1’ (forcing 1), ’Z’ (high impedance), ’W’ (weak
unknown), ’L’ (weak 0), ’H’ (weak 1) and ’-’ (don’t care). These are the values
you can find on a signal when simulating the design in Modelsim.

The data type std logic is a resolved std ulogic, which means that if
several processes assign the same signal, there will always be a defined value of
that signal. This is an important concept in hardware design, to describe shared
busses. When a conflict occurs in a resolved signal, a resolution function will
be automatically invoked to solve the conflict and give the signal a well defined
value.

When writing synthesizable VHDL code, the type std logic and the types
based on an array of std logic should be used exclusively. In std logic 1164,
the important types std logic and std logic vector are defined. The stan-
dard package std logic arith defines two additional types: signed and unsigned.
These types have definitions identical to the type std logic vector. Table 3.1
summarizes the data types and the standard package from which they originate.

Table 3.1: Important VHDL types
Type Description Package
std ulogic ’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, ’-’ std logic 1164
std logic Resolved std ulogic std logic 1164
std logic vector Array of std logic std logic 1164
unsigned Array of std logic std logic arith
signed Array of std logic std logic arith
integer −(231 − 1) to (231 − 1) standard

ElectroScience — 44 —

3.2. VHDL Packages

3.2.2 Operations

It should be familiar to the reader that a number can be coded into a binary rep-
resentation in different ways. A binary number representation must be specified
to perform a predictable operation on the type. Since hardware for unsigned
arithmetic is less complex than hardware for signed arithmetic in a given num-
ber range, these cases have been separated in the standard packages. Signed
operations are done with two’s complement number representation and unsigned
operations with natural binary number representation. In the VHDL language,
there are two ways of controlling if signed or unsigned operations should be
performed.

If std logic vector is used in the design, the operation is controlled in the
library clause by including the package std logic signed or std logic unsigned
to select signed or unsigned operations, respectively. Hence, the type is just a
container for either unsigned or signed numbers. An obvious drawback is that it
is not straightforward to mix signed and unsigned operators in the same VHDL
file.

-- Library clause for unsigned operations with std_logic_vector
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

-- Library clause for signed operations with std_logic_vector
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;

The other method is to use the types signed and unsigned and hence ex-
plicitly, in the type definition, specify the contents and thereby the operation.
The operators for signed and unsigned data types are all specified in the
std logic arith package. Whether a signed or an unsigned operator are se-
lected is then controlled by operator overloading.

-- Library clause for signed or unsigned operations with signed or
-- unsigned data types
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

As already stated, several functions for the same operation are defined in each
specific package. Table 3.2 summarizes the arithmetic operations in the pack-
ages. For details about operator overloading and all defined functions, we refer
the reader to Appendix A where all packages described are found.

3.2.3 VHDL examples

Here is a VHDL code example where std logic vector is used as the data type
in a multiplication. The std logic vector is synonymous to an unsigned by
including the std logic unsigned package.

library IEEE;

— 45 — Lund Institute of Technology

Chapter 3. Arithmetic

Table 3.2: Arithmetic operations in packages
Operation Description Arith Signed Unsigned

ABS Absolute value Yes Yes No
+ Unary addition Yes Yes Yes
− Negation Yes Yes No
+ Addition Yes Yes Yes
− Substraction Yes Yes Yes
∗ Multiplication Yes Yes Yes
< Less than Yes Yes Yes

<= Less than or equal to Yes Yes Yes
> Greater than Yes Yes Yes

>= Greater than or equal to Yes Yes Yes
= Equal to Yes Yes Yes

/ = Not equal to Yes Yes Yes
SHL Left shift Yes Yes Yes
SHR Right shift Yes Yes Yes
EXT Zero extension Yes No No
SXT Sign extension Yes No No

use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity multiplication is
generic(wordlength: integer);
port(in1, in2 : in std_logic_vector(wordlength-1 downto 0);

product : out std_logic_vector(2*wordlength-1 downto 0));
end multiplication;

architecture rtl of multiplication is

begin

process(in1, in2)
begin

product <= in1 * in2;
end process;

end;

Here is a VHDL code example where std logic vector is used as the data
type in a multiplication. The std logic vector is synonymous to a signed by
including the std logic signed package.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;

entity multiplication is
generic(wordlength: integer);

ElectroScience — 46 —

3.2. VHDL Packages

port(in1, in2 : in std_logic_vector(wordlength-1 downto 0);
product : out std_logic_vector(2*wordlength-1 downto 0));

end multiplication;

architecture rtl of multiplication is

begin

process(in1, in2)
begin
product <= in1 * in2;

end process;

end;

Here is a VHDL code example where signed and unsigned are used as the
data types in a multiplication. Only the std logic arith package are included.
Hence, no arithmetic operations can be performed directly on std logic vector.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity multiplication is
generic(wordlength: integer);
port(in1, in2 : in std_logic_vector(wordlength-1 downto 0);

product_u : out std_logic_vector(2*wordlength-1 downto 0);
product_s : out std_logic_vector(2*wordlength-1 downto 0));

end multiplication;

architecture rtl of multiplication is

begin

process(in1, in2)
variable product_u : unsigned(2*wordlength-1 downto 0);
variable product_s : signed(2*wordlength-1 downto 0);
begin
-- Unsigned multiplication
product_u := unsigned(in1) * unsigned(in2);

-- Signed multiplication
product_s := signed(in1) * signed(in2);

end process;

product_u <= std_logic_vector(product_u);
product_s <= std_logic_vector(product_s);

end;

— 47 — Lund Institute of Technology

Chapter 3. Arithmetic

3.3 DesignWare

In a VHDL description, the operations are specified, but it is not decided how
these operations are to be implemented, or mapped, to hardware components.
That is decided in the synthesis step. The synthesis tool comes with pre-built
components that implement the built-in VHDL operators. These pre-built com-
ponents are technology independent and several components for implementing
the same operator may exist. Since, the different implementations have differ-
ent properties when it comes to power, area, and delay, the designer provides
power, area, or delay constraints to the synthesis tool, which then selects the
most suitable implementation.

3.3.1 Arithmetic Operations using DesignWare

In synposys synthesis tool Design Compiler the libraries with pre-built com-
ponents are called DesignWare libraries. In these libraries there are technology
independent implementations of the in-built VHDL operators as well as other
more specialized operations. Technology independent means that the imple-
mentations are described as a netlist of common logic elements, which could
later be mapped to standard cells in a specific cell library. The DesignWare li-
braries which will be loaded into DC and used during the synthesis process are
controlled in the file .synopsys dc.setup. You can list all libraries currently
loaded, using the dc shell command list -libraries. A DesignWare library
has the file extension .sldb.

dc_shell> list -libraries
Library File Path
------- ---- ----
dw01.sldb dw01.sldb /usr/local-tde/...
dw02.sldb dw02.sldb /usr/local-tde/...
standard.sldb standard.sldb /usr/local-tde/...

A DesignWare component can be included in a design using basically three
different methods.

Operator inference: In operator inference, which is the most commonly used
method, the synthesis tool automatically maps operators in the VHDL
code to components in the included DesignWare libraries. This is done in a
hierarchy of abstractions. The VHDL operator is associated to a Synthetic
operator, which is bound to Synthetic modules. Each Synthetic module
can have several implementations. The operator inference is performed
by the synthesis tool during the Analyze and Elaborate phase, during
which the VHDL operator are mapped to a Synthetic operator. Next, the
designer sets the design constraints and compiles. During this phase the
synthetic operator is mapped to a synthetic module and a implementation
is selected. Table 3.3 list the most commonly used synthetic modules
and implementations used for operator inference. A complete list of the
DesignWare components can be found by typing sold at the UNIX prompt,
select DesignWare Library and then select DesignWare Building
Block IP. Figure 3.3.1 illustrates the flow for operator inference using
the addition operator.

ElectroScience — 48 —

3.3. DesignWare

DW01_add
(rpl)

Synthetic operator

sum = in1 + in2

Analyse and Elaborate

Constrain and Compile

 in1

 in2

sum

DW01_add
(cla)

Figure 3.1: The figure illustrates the steps and abstraction levels used for oper-
ator inference of the addition operator

Function inference Including the DesignWare component through function
inference is done by first making the function available though a library
clause in the VHDL file, and then call the function inside the architecture
body.

Component instantiation Including a DesignWare component through com-
ponent instantiation is done similarly as including a component through
function inference. The component is made accessible through a library
clause, an entity declaration of the component is included and the archi-
tecture body contains a port map.

A complete description on how to include a specific DesignWare component
through function inference or component instantiation is found in DesignWare
Building Block IP under the specific component. Normally, when including
a DesignWare component through one of the above mentioned methods, the de-
signer selects only the synthetic module and leaves selection of implementation
to the synthesis tool. However, it is possible to control also the implementation.
This can be done in two different ways. One method is to use component in-
stantiation or function inference and add VHDL code that specifies also the im-
plementation. The other method, which makes the VHDL code implementation

— 49 — Lund Institute of Technology

Chapter 3. Arithmetic

Table 3.3: Basic arithmetic synthetic modules and their implementations
Synthetic Module Operator Description Implementations
DW01 absval ABS Absolute Ripple (rpl)

value Carry Look-Ahead(cla)
Fast Carry Look-Ahead (clf)

DW01 add + Adder Ripple (cla)
Carry Look-Ahead (cla)
Fast Carry Look-Ahead (clf)
Brent-Kung architecture (bk)
Conditional Sum (csm)

DW01 addsub +, − Adder and Ripple (rpl)
subtractor Carry Look-Ahead (cla)

Fast Carry Look-Ahead (clf)
Brent-Kung architecture (bk)
Conditional Sum (csm)

DW01 cmp2 <, > 2-Function Ripple (rpl)
comparator Fast Carry Look-Ahead (clf)

Brent-Kung architecture (bk)
DW01 cmp6 <, >, 6-Function Ripple (rpl)

<=, >= comparator Fast Carry Look-Ahead (clf)
Brent-Kung architecture (bk)

DW01 dec − Decrementer Ripple (rpl)
Carry Look-Ahead(cla)
Fast Carry Look-Ahead (clf)

DW01 inc + Incrementer Ripple (rpl)
Carry Look-Ahead(cla)
Fast Carry Look-Ahead (clf)

DW01 incdec +, − Incrementer Ripple (rpl)
and Carry Look-Ahead(cla)
Decrementer Fast Carry Look-Ahead (clf)

DW01 add − Subtractor Ripple (cla)
Carry Look-Ahead (cla)
Fast Carry Look-Ahead (clf)
Brent-Kung architecture (bk)
Conditional Sum (csm)

DW01 mult ∗ Multiplier Carry Save Array (csa)
Non-Both-recoded Wallace (nbw)
Wallace Tree (wall)

ElectroScience — 50 —

3.3. DesignWare

independent, is to use operator inference, function inference or component in-
stantiation in the VHDL file. Then, for a specific cell, after the elaborate stage,
select the implementation using the dc shell command set implementation.
For example:

dc_shell> set_implementation DW01_add/rpl cell_name

selects the cell cell name to be implemented as a Ripple Carry adder (rpl) from
the synthetic module DW01 add. This method is preferable since it keeps the
VHDL code free from implementation specific details, which is then handled in
the Synthesis script. With some knowledge of the dc shell script commands, it
is for example possible to map all addition operators in a design to a specific
synthetic module and implementation.

The dc shell script command report resources can be used after the com-
pile step to check which synthetic modules and implementations the synthesis
tool has selected for the design.

3.3.2 Manual Selection of the Implementation in dc shell

The Synopsys Design Compiler automatically determines the hardware imple-
mentation to meet the design constraints speed, area and power in the given
order. However, if one wants to realize hardware that meets special needs, it
can be necessary to select the implementation manually.

Before the implementation type can be chosen the following steps are re-
quired a priori:

• analyze

• elaborate

• uniquify

• compile

Information on the used resources, e.g., number and type of adders, can be
obtained by

dc_shell > report_resources

The table below shows an example of how the structure in Figure 3.14 is imple-
mented. The chosen implementation is a ripple-carry structure for all adders.
If one wants to change the implementation of one of the adders the desired type
has to be determined manually, see Table 3.4 and needs to be assigned to the
target cell as

dc_shell > set_implementation cla add_37/plus/plus

The implementation of the targeted adder cell has now been changed to a carry-
lookahead structure,see the table below.

\label{sc:report_resources}
**
Report : resources
Design: adder
Version: 2003.06-SP1-3
Date : Mon Jul 5 16:58:42

— 51 — Lund Institute of Technology

Chapter 3. Arithmetic

Table 3.4: Adder Synthesis Implementation
Implementation name Function Library

rpl Ripple-carry DWB
cla Carry-look-ahead DWB
clf Fast carry-look-ahead DWF
bk Brent-Kung architecture DWF
csm Conditional-Sum DWF
rpcs Ripple-carry-select DWF
clsa Carry-look-ahead-select DWF
csa Carry-select DWF

fastcla Fast-carry-look-ahead DWF

2004**

Resource Sharing Report for design adder in file
/home/toll/jrs/Synopsys/vhdl/course/adder.vhd

===
| | | | Contained | |
| Resource | Module | Parameters | Resources | Contained Operations |
===
r139	DW01_add	width=12		add_37/plus/plus
r142	DW01_add	width=12		add_37/plus/plus_1
r145	DW01_add	width=12		add_37/plus/plus_2
r148	DW01_add	width=12		add_37/plus/plus_3
===

Implementation Report

===
| | | Current | Set |
| Cell | Module | Implementation | Implementation |
===
add_37/plus/plus	DW01_add	rpl	cla
add_37/plus/plus_1	DW01_add	rpl	
add_37/plus/plus_2	DW01_add	rpl	
add_37/plus/plus_3	DW01_add	rpl	
===

If all the implementations in one design needs to be set manually a script
can be executed in the dc shell

SELECT_DW_CELLS = true /* Choose DW implementations (rpl or
cla)*/

DW_ADD_IMPL = rpl
DW_SUB_IMPL = rpl
DW_CMP_IMPL = rpl

design_list = find (design, "*", -hierarchy) design_list =
design_list + current_design

if (SELECT_DW_CELLS == true) {
foreach (de, design_list) {

current_design de
plus_list = find (cell, "*plus*")
if (plus_list != {}) {

set_implementation DW01_add/ + DW_ADD_IMPL plus_list }
if (BF == sub) {

minus_list = find (cell, "*minus*")
if (minus_list != {}) {

set_implementation DW01_sub/ + DW_SUB_IMPL minus_list
}}

else {
cmp_list = find (cell, "*lt*")
if (cmp_list != {}) {

ElectroScience — 52 —

3.4. Addition and Subtraction

set_implementation DW01_cmp2/ + DW_CMP_IMPL cmp_list
}}}}

3.4 Addition and Subtraction

Addition and substraction are two of the most frequently used arithmetic op-
erations. They are used both in data paths as well as in controllers. Addition
and subtraction are closely related operations. A substraction can be performed
by negating the subtrahend and add the result to the minuend with a carry in.
Hence, the same basic architectures used for the implementations of adders are
found in the implementations of subtractors, see Table 3.3.

When a + or − sign is used in the VHDL code, either the DW01 add,
DW01 sub, DW01 inc, DW01 dec, DW01 incdec, or DW01 addsub synthetic
module will be instantiated through operator inference during compilation. The
same synthetic modules and implementations are used, independent of whether
unsigned or signed data types are used in the addition or subtraction. Al-
though there is no difference between an adder/subtractor for unsigned or signed
operands, there are indeed differences when it comes to exceptions, e.g., overflow
conditions or increasing the wordlength of the operands.

Figure 3.4 demonstrates signed and unsigned addition for a 3-bit number
representation. From this example we see that the same basic addition operation
can be used for both unsigned and signed numbers. The same number of bits
should be used in the result as used in the input operands. Hence, we see
that adding 011 with 101 generates the result 000. This is the correct result
for the signed addition, but it is an overflow for the unsigned addition. A
similar example for unsigned or signed substraction shows that the same basic
subtractor can be used for both signed and unsigned numbers.

 8

 3 3
+

011
+ (−3) + 5

code

 2

unsignedsigned

 0 (1)000
101

101
010

+
111

+ (−3)
 2

 −1 7
+ 5

signed

−3
−4

 0
 1
 2
 3

0

7
6
5
4
3
2
1

−2

unsigned

111
110
101
100
011
010
001
000

−1

Figure 3.2: 3-bits unsigned and signed addition

3.4.1 Basic VHDL example

The wordlength of an addition or substraction specifies the number of bits used
in the operands. An unsigned number with wordlength w bits lies in the range
0 to 2w − 1 and a signed number with wordlength w lies in the range −2w−1

to 2w−1 − 1. Generally, the wordlength of the input operands and the result
should be the same in the VHDL code. The wordlength of an addition or

— 53 — Lund Institute of Technology

Chapter 3. Arithmetic

subtraction is one of the most important parameters used to control the final
area and performance of the implementation. To be able to do wordlength
optimizations, the designer must be aware of the dynamic range of the input
signals and the precisions needed in the operation.

The following VHDL code will instantiate the synthetic module DW01 add for
the addition operator and the synthetic module DW01 sub for the substraction
operator, through operator inference during compilation. The implementation
will be selected to meet the design constraints as well as possible. The VHDL
code used in the examples will not be complete when it comes to entity decla-
ration, architecture body, etc. Instead, for the sake of readability, we show only
the signal declarations and the actual operation.

-- Unsigned addition
in1, in2, sum : unsigned(wordlength-1 downto 0);
sum <= in1 + in2;

-- Signed addition
in1, in2, sum : signed(wordlength-1 downto 0);
sum <= in1 + in2;

-- Unsigned substraction
in1, in2, diff : unsigned(wordlength-1 downto 0);
diff <= in1 - in2;

-- Signed substraction
in1, in2, diff : signed(wordlength-1 downto 0);
diff <= in1 - in2;

The synthetic module DW01 addsub can perform both addition and substrac-
tion and will be inferred into the design if it is possible to do resource sharing
between an addition and subtraction.

3.4.2 Increasing wordlength

Addition or subtraction of two operands with the dynamic range −2w−1 to
2w−1 − 1, gives a result with the dynamic range −2w to 2w − 1, as seen in
Figure 3.4.2. Hence, to avoid overflow in the result, the wordlength of the
operands must be increased by one bit before the operation, as the result must
have the same wordlength as the largest wordlength of the input operands in
the VHDL code.

This is handled differently depending on, whether the operands are signed
or unsigned. An unsigned number should be extended with zeroes. A signed
operand should be sign extended, i.e. extend with the most significant bit of
the operand.

-- Unsigned addition with extended wordlength
in1, in2 : std_logic_vector(wordlength-1 downto 0);
sum : std_logic_vector(wordlength downto 0);
sum <= ext(in1, wordlength+1) + ext(in2, wordlength+1);

-- Signed addition with extended wordlength

ElectroScience — 54 —

3.4. Addition and Subtraction

sum

 in2

 in1

 w

 w

 w+1

Figure 3.3: The dynamic range of the result of a two-operand addition or sub-
straction is increased by one bit compared to the dynamic range of the input
operands

in1, in2 : std_logic_vector(wordlength-1 downto 0);
sum : std_logic_vector(wordlength downto 0);
sum <= sxt(in1, wordlength+1) + sxt(in2, wordlength+1);

An important condition for addition or substraction in VHDL is that the
output wordlength must be equal to the largest wordlength of the operands. The
operand with shortest wordlength will be zero or sign extended, depending on
whether it is unsigned or signed, respectively. In the following VHDL example
in1 will be automatically sign extended to 16 bits.

-- Signed addition with implicit sign extension
in1 : signed(7 downto 0);
in2 : signed(15 downto 0);
sum : signed(15 downto 0);
sum <= in1 + in2 ;

3.4.3 Counters

Counters and addressing arithmetic are used extensively in controllers. A
counter is defined as an addition or subtraction where one of the operands
is a constant. In such operations the addition or substraction can be optimized
compared to the two-operand operation. In VHDL, a counter is best described
by using an integer to represent the constant.

-- Counter adding 5
input : std_logic_vector(wordlength-1 downto 0);
counter : std_logic_vector(wordlength-1 downto 0);
counter <= input + 5;

In the special case when the constant is equal to +1, we have a incrementer.
When the constant is equal to −1, a decrementer. The incremeter/decrementer
is the only case among counters that has a dedicated synthetic module in the
DesignWare library. An incrementer will be mapped to the synthetic module
DW01 inc and a decrementer to the synthetic module DW01 dec. If it is possible
to perform resource sharing between incrementation and decrementation, the
synthetic module DW01 incdec will be used.

The area and delay through a counter depends on the constant. For example,
a logic 0 at bit position i in the constant will prevent carry propagation to the
next stage in a ripple carry structure. Firstly this means that a half adder is

— 55 — Lund Institute of Technology

Chapter 3. Arithmetic

sufficient at bit position i + 1 and secondly that the critical path through the
carry chain will be reduced.

The beneficial architecture of the incrementer/decrementer in the Design-
Ware library may also be used, with some efforts, to make a counter with a
constant that is a power of two. The following VHDL example illustrates this
procedure with the constant equal to 8.

-- Counter adding 8
input : std_logic_vector(wordlength-1downto 0);
counter : std_logic_vector(wordlength-1 downto 0);
counter <= (input(wordlength-1 downto 3) + 1) & input(2 downto 0);

This example gives the area 205 area units compared to 224 area units, if the
operation where expressed writing +8.

3.4.4 Multioperand addition

Multioperand addition means addition with more than two input operands. To
perform this in a single cycle a binary tree of adders is used. Single cycle
multioperand addition are expressed in VHDL by using the + operator between
all operands. The following example shows a single cycle 4-operand addition.

-- Multioperand addition
in1, in2, in3, in4, sum :signed(wordlength-1 downto 0);
sum <= in1 + in2 + in3 + in4 ;

The code will instantiate 3 DW01 add synthetic modules during synthesis, see
Figure 3.4.4. To avoid overflow, the wordlength must be manually controlled

sum

 in4

 in3

 in2

 in1

Figure 3.4: Multioperand addition, adding four operands, implemented as a
binary adder tree

and selected by the designer. Implementation as a binary adder tree dictates
that the wordlength of the last addition will be w+dlog2Me, where w is the
wordlength of the input operands and M is the number of input operands.
Hence, for each depth in the binary adder tree, 1 bit is added to the wordlength
of the input operands.

Multioperand addition can also be performed using the specialized synthetic
module DW01 sum, which contains optimized architectures for multioperand ad-
dition. The module is inferred into the design through function inference or
component instantiation. There is no support for operator inference.

ElectroScience — 56 —

3.4. Addition and Subtraction

A recurrent problem closely connected to multioperand addition, is that of
calculating a sum of M operands using a single time-shared adder and a register
to store the partial results. The wordlength of the adder and the register should
then be selected as the wordlength of the input operands plus dlog2(M)e bits,
to avoid overflow.

3.4.5 Implementations

The design space for an operator is a multidimensional space. First, the wordlength
of the operator is crucial for the designer to decide. Secondly, there are several
possible implementations for each operator. Finally, for each implementation
there exists an area-delay-power space, depending on the mapping of the struc-
ture to a cell library. Such a multidimensional space is not easily illustrated.

To make some benchmarks which can be illustrated, we have used a 16-
bits adder (DW01 add) and a 16-bits subtractor (DW01 sub) and plotted delay
versus area for the different implementations in a 0.13 µm CMOS process, see
Figure 3.4.5 and Figure 3.4.5. The plots are generated by running DC sev-
eral times with different delay constraints. The point most far to the right in
each implementation is the smallest area possible to achieve with that specific
implementation.

With an area-delay plot for all different implementations we can find the
optimal area-delay curve, which spans through the different implementations.
This optimal area-delay curve is also plotted in the figures and the optimal
implementation for a given delay interval is printed.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Delay (ns)

A
re

a
(a

.u
.)

Optimal
rpl
cla
clf
bk
csm
rpcs

rpl

cla

clf

bk

csm

rpcs

bk cla rpcs rpl

Infeasible
region

Figure 3.5: Area-Delay plot for 16-bits DW01 add implementations

— 57 — Lund Institute of Technology

Chapter 3. Arithmetic

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

400

600

800

1000

1200

1400

1600

1800

2000

2200

Delay (ns)

A
re

a
(a

.u
.)

Optimal
rpl
cla
clf
bk
csm
rpcs

rpl

cla

clf

bk

csm

rpcs

bk cla rpcs rpl

Infeasible
region

Figure 3.6: Area-Delay plot for 16-bits DW01 sub implementations

3.5 Comparison operation

Comparison operators are used frequently in controlling the data flow in data
paths and selecting operands and outputs. The result of a comparison operation
is a boolean type (true or false), which often is used to control multiplexors in
the data path.

When it comes to comparison operation it is important to distinguish be-
tween signed and unsigned operators. For example, 100 < 011 if the operands
are signed and 100 > 011 if the operands are unsigned. In VHDL there are
six comparison operators: =, <, >, <=, >= and \ =. The only two operators
where it does not matter if the operators are unsigned or signed is equal to (=)
and not equal to (\ =).

A comparison operation in the VHDL code will instantiate the synthetic
module DW01 cmp6 or DW01 cmp2 through operator inference during compilation.
Figure 3.5 shows the input and outputs to the synthetic module DW01 cmp6. If

 Not equal to

 DW01_cmp6

 signed or unsigned

 in2

 in1

 Greater than or equal to
 Less than or equal to
 Equal to
 Greater than
 Less than

Figure 3.7: Synthetic module for the six-function comparator DW01 cmp6

ElectroScience — 58 —

3.5. Comparison operation

not all the outputs of the synthetic module for comparison operations are used,
the unused logic will be removed. Thus, adding no extra area to the design.

3.5.1 Basic VHDL example

The most basic example is to compare operands of equal size and data type, as
shown in the following VHDL example.

-- Comparison
in1 : std_logic_vector(wordlength-1 downto 0);
in2 : std_logic_vector(wordlength-1 downto 0);
result : boolean;
result <= in1 < in2;

It is also possible to make a comparison between operands with different wordlengths,
which will result in sign or zero extension of the operand with smallest wordlength.

-- Comparison with implicit sign extension
in1 : signed(wordlength-1 downto 0);
in2 : signed(wordlength-9 downto 0);
result : boolean;
result <= in1 < in2;

Comparing two operands of different types will result in an implicit type con-
version. For example, the following VHDL code will increase the wordlength of
the comparison by one bit. Then sign extend in1 and zero extend in2.

-- Comparison between different types
in1 : signed(wordlength-1 downto 0);
in2 : unsigned(wordlength-1 downto 0);
result : boolean;
result <= in1 < in2;

The counter as a special case when building an adder/substractor structure
corresponds to doing a comparison with a constant, in the context of a com-
parator structure. Hence, comparing one input operand with a constant makes
it possible to reduce the area and delay of the operation. A constant is best
described in VHDL by using an integer.

As the output of the comparison operation is very often used as an input to
a multiplexor, we demonstrate such an example as well.

-- Comparison used to control a multiplexer
in1 : signed(wordlength-1 downto 0);
in2 : signed(wordlength-1 downto 0);
diff : signed(wordlength-1 downto 0);
if (in1 < in2) then

diff <= in2 - in1;
else

diff <= in1 - in2;
end if;

The code may be translated to the hardware blocks (or synthetic modules)
shown in Figure 3.5.1.

— 59 — Lund Institute of Technology

Chapter 3. Arithmetic

 in1

 in2

 Less than
diff

 DW01_cmp2 DW01_sub

mux
 in1

 in2

mux
 in2

 in1

Figure 3.8: The output from the comparator used as input to multiplexors, to
control the data flow

Table 3.5: Various Multiplier Synthesis Implementation
Synthetic Module Inferencing Description * Implementation

DW02 mult * Multiplier csa, nbw, wall
DW02 mult stage * 2, 3, 4, 5, 6 -stage Multiplier csa, nbw, wall
DW02 prod sum component instantiation Sum of products csa, nbw, wall

3.6 Multiplication

The implementation of a multiplier in digital hardware can be done in various
ways, see Table 3.5. Dependent on the design constraints, e.g. speed, area, and
power consumption, DC chooses the most suitable implementation to meet the
design constraints. However, if an operation such as a a product-sum multiplier
is desired the instantiation has to be done in the VHDL code.

A multiplier is basically a construct the adds the partial products of the
multiplicand and multiplier. The main differences between the different imple-
mentations is the Adder implementation. The multiplication of 2 two’s comple-
ment numbers is illustrated in Figure 3.9. The width of the required Adders is
Na + Nx − 1. The width of the adders can be reduced to Nx by carrying out
the multiplication with right-shifts, see Figure 3.12, 3.13.

a0
x0

a0x0

p0

x
a1
x1

a2
x2

a3
x3

a4
x4

a1x0a2x0a3x0
a0x1a1x1a2x1a3x1

a0x2a1x2a2x2
a0x3a1x3

a3x2
a2x3a3x3−a4x3−a3x4a4x4

p1p2p3p4p5p6p7p8

−a4x0−a4x1−a4x2

−a2x4 −a1x4 −a0x4

Figure 3.9: Sequential multiplication of 2 two’s complement numbers.

ElectroScience — 60 —

3.6. Multiplication

3.6.1 Multiplication by constants

For applications where multiplications with fixed coefficients are required, DC
optimizes the multiplication with smaller multipliers. Therefore, the multipliers
must be implemented as constants rather than having them stored in a ROM.
If fixed coefficients are read from a ROM, full-sized multipliers will be imple-
mented.

However, if the multiplier, c, is a power of 2 number, 2, 4, 8, . . . , DC replaces
the multiplier automatically by a bit-shift operation. Bit-shifts are hardwired
and do not require any gates. Therefore, it is recommended to use as many power
of 2 numbers as possible when designing hardware. Moreover, if c 6= 2k it might
be beneficial to express the multipliers by bit shifts and additions/subtractions.
A multiplication such as 126 · x can be written as
128 ·x−2 ·x A VHDL example on how to write a multiplication with a constant

is given below:

architecture STRUCTURAL of mult126 is

signal input : std_logic_vector(N-1 downto 0);
signal hundred26 : std_logic_vector(N+9-1 downto 0);

begin
process(input)
begin

hundred26 <= conv_std_logic_vector(126,9)*input;
end process;

A VHDL example on how to implement a multiplication as a shift-and-add
operation is given below:

architecture STRUCTURAL of adder126 is

signal input : std_logic_vector(N-1 downto 0);
signal hundred28 : std_logic_vector(N+9-1 downto 0);
signal hundred26 : std_logic_vector(N+9-1 downto 0);

begin

process(input,hundred28)
begin

hundred28 <= conv_std_logic_vector(128,9)*input(0);
hundred26 <=hundred28 - conv_std_logic_vector(2,3)*input(0);

end process;

The area and delay can be reduced significantly by expressing a multipli-
cation by a bit-shift and add operations. Synthesis results show that such a
multiplication results in least area and delay if implemented as carry-lookahead,
see Figure 3.10. There are various articles on how the find the minimum number
of adders for the implementation of a multiplier. The more interested reader is
referred to [].

— 61 — Lund Institute of Technology

Chapter 3. Arithmetic

0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

Delay (ns)

A
re

a
(a

.u
.)

nbw
wall

0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

Delay (ns)

A
re

a
(a

.u
.)

rpl
cla
clf
bk
csm
rpcs

Figure 3.10: Area/Delay comparison of a implemented multiplication. The
graphs on the left panel refer to an implementation as 126 · x and on the right
panel as 128 · x− 2 · x

3.6.2 Multiplication of signed numbers

A multiplication can be implemented as carry-save array (csa), Non-Booth-
recoded Wallace-tree (nbw) and Booth recoded Wallace-tree (wall). Synthesis
results show that the nbw implementation is superior in terms of area and
delay compared csa and wall, see Figure 3.11. The synthesis results of the
csa implementation is not shown as it can not compete with the csa and wall
implementation.

ElectroScience — 62 —

3.7. Datapath Manipulation

3.7 Datapath Manipulation

This section shows how the construction of the datapath can be determined by
writing appropriate VHDL code. A simple arithmetic instruction as an addition
can be written as:

z <= A + B + C + D;

The instruction is mapped to hardware as a balanced tree if possible in order
to minimize the delay. The same hardware construct can be obtained as follows:

z <= (A + B) + (C + D);

If information on the arrival time of the signal is available the delay can
be shortened by rearranging the order of the adders. Assuming that signal E
arrives late, the delay time can be shortened by using parentheses as

z <= (A + B + C + D) + E;

The parser is forced to place E latest in the adder chain. The signals within
the parentheses will be arranged as a balanced adder tree, see Figure 3.15.

1 1.5 2 2.5
1500

2000

2500

3000

3500

4000

Delay (ns)

A
re

a
(a

.u
.)

nbw
wall

1.5 2 2.5 3 3.5
7500

8000

8500

9000

9500

10000

10500

11000

11500

12000

Delay (ns)

A
re

a
(a

.u
.)

nbw
wall

Figure 3.11: Area/Delay comparison of multipliers. On the left-hand side a
8-bit multiplier and on the right-hand side a 16-bit multiplier.

— 63 — Lund Institute of Technology

Chapter 3. Arithmetic

x 1 0 1 0 1

0 0 0 0 0
1 0 1 0 1

1 1 0 1 0 1
0 0 0 0 0

1 1 1 0 1 0 1
1 0 1 0 1

1 1 0 0 1 0 0 1
0 0 0 0 0

1 1 1 0 0 1 0 0 1
0 1 0 1 1

1 0 1 0 1

1 1 0 1 0 1

1 0 0 1 0 0 1

1 1 0 0 1 0 0 1

1 0 1 0 1

 0 0 1 1 1 1 0 0 1

p(0)
+x0a

2p(1)

+x1a

2p(2)

+x2a

2p(3)

+x3a

2p(4)

+(−x4a)
p(5)

1

1

1

1

Figure 3.12: Negative Right-Shift Multiplier.

1 0 1 0 1
0 1 0 1 1x
0 0 0 0 0
1 0 1 0 1

1 0 1 0 1
1 1 0 1 0 1
1 0 1 0 1

0 1 1 1 1 1
1 0 1 1 1 1 1
0 0 0 0 0

1 0 1 1 1 1 1
1 1 0 1 1 1 1 1
1 0 1 0 1

1 0 0 0 0 1 1 1
1 1 0 0 0 0 1 1 1
0 0 0 0 0

1 1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1

p(0)
+x0a

2p(1)

+x1a

2p(2)

+x2a

2p(3)

+x3a

2p(4)

+x4a

2p(5)
p(5)

1

1

1

1

1

Figure 3.13: Positive Right-Shift Multiplier.

Z

DCBA

Figure 3.14: Balanced Adder Tree

ElectroScience — 64 —

3.7. Datapath Manipulation

Z

E

DCBA

Figure 3.15: Unbalanced Adder Tree

— 65 — Lund Institute of Technology

ElectroScience — 66 —

Chapter 4

Memories

One of the most important topics in digital ASIC design today is memories.
Memories occupy a lot of space and consume a lot of power and the situation
becomes even worse if off-chip memories are considered. Even though each new
generation of silicon processes can include more transistors on a single chip, it
is predicted that the percentage of memory on a chip will increase. In the road
map from Japanese system-LSI industry it is predicted that in 2014 more than
90% of a chip is covered with memory, compared to todays 50%.

With these numbers in mind, it is reasonable to spend some time to optimize
the memory system when designing a new ASIC. Each saved square millimeter
of silicon corresponds to a neat pile of money and to be able to use ASICs in
mobile or extremely fast applications, low power consumption is required. In
mobile applications to maximize battery life time and in fast applications to
avoid expensive cooling equipment. Another memory issue is that the larger a
memory is the slower and more power hungry it becomes. The consequence is,
that the designer have to split large memories into smaller once in order to be
more power efficient or to meet timing requirements. This will create a more
complex memory hierarchy and introduce more design criterias.

This section does not try to cover every aspect of memory design; instead
some examples on what can be done to optimize memory systems. These ex-
amples do not serve as the final truth but rather show the reader that memory
systems have to be tailor made for each specific application. The first example
is about minimizing the area of a Shift Register (SR) [4]. The second example
deals with a memory that is not always utilized 100% [5]. A cache system to
read from a off-chip memory in a image convolution application is presented in
the last example [6]. For more information on memory designs consult [7].

4.1 SR example

In this example shift register (SRs) are considered. SRs are commonly used
to delay or align data in data paths, for example, in a pipelined Fast Fourier
Transform (FFT) processor. Here, four different ways to implement a SR are
presented together with an estimate of the required silicon area.

Since one input is read and one output is written each clock cycle, the SR
could be implemented in at least four different ways, as shown in Figure 4.1:

— 67 — Lund Institute of Technology

Chapter 4. Memories

FF

FF

FF

FF

FF

(a)

RD WR

Dual-port

Memory

(b)

FF

MUX

FF

Single

Port

Mem.

Single

Port

Mem.

(c)

FF

MUX

FF

Single-port

Memory

(d)

Figure 4.1: Four ways to realize a SR. Flip-flop based (a), dual-port memory
(b), two single-port memories (c), and one single-port memory of twice width
(d).

a. Flip-flops connected in series: This is an easy solution since there is no
control logic needed. Additionally, flip-flops have a fast access time and
thus allow high operation speed. However, flip-flops are not optimized for
area.

b. One dual-port memory: A dual-port memory can perform both a read and
write operation each clock cycle and thus suits the requirements perfectly.
However, in order to perform simultaneous read/write additional logic is
required in each memory cell, compared to a single port memory.

c. Two single-port memories of half length and alternating read/write: The
input is gathered in blocks of two and written to the memories every
other clock cycle. In a similar manner, two words are read from the mem-
ories every other clock cycle. Single-port memories have smaller memory
cells than dual-port memories, but additional logic is required outside the
memories in order to gather and separate input and output.

d. One single-port memory of half length and double width, which reads
and writes every other clock cycle. This solution works in the same way
as the previous solution, but instead of storing the two inputs in separate
memories they are stored as one word in the same memory location. Thus,
the memory has to be twice as wide.

Figure 4.2 shows the estimated area for the different implementations of SRs
in a 0.35µm CMOS technology. There are no interconnections included in the
flip-flop area. All memory SRs include control logic and a 50µm power ring on
three sides of the block. In the figure it can be seen, that flip-flops is only the
best solution, from an area perspective, if the SR is less than approximately 400

ElectroScience — 68 —

4.2. Memory split example

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

FIFO size [Kbits]

A
re

a
m

m
2

Flip-flops
Dual-port memory
Single-port memories
Double width memory

Figure 4.2: Area versus SR size for different implementations.

bits and that one single port memory of double width is the most area efficient
solution for SRs larger than 400 bits. It can also be seen that memory size does
not increase linearly with the number of bits such as flip-flops do. This is due
to the decreased relative overhead from address logic and buffers, these parts
do not increase in size as fast as the cell matrix does. A rough number on the
overhead can be estimated if the memory areas in Figure 4.2 are extrapolated
down to a zero bit SR. Particularly, it can be seen that the overhead for a
dual-port memory is extremely large compared to single-port memories in this
process. This is due to extra transistors in each memory cell and double address
logic.

4.2 Memory split example

The target application in this example is a memory that continuously stores
data sequences of different lengths. The length of the sequence, N , can be any
power of two between 32 and 1024. The application will write N words of data
into the memory and then read the same data in a different order from the
memory, this operation will be performed continuously.

Table 4.1: Average current drawn for 128-1024 words memories. With Vdd=3.3
V and a wordlength of 24 bits.

Size [words] 1024 512 256 128
IDD [µA/MHz] 516 463 436 74

Since the largest N in this design is 1024, the memory has to be 1024 words
long. If the memory is implemented as one block it will consume much power
even if only a subset of the addresses is used. Hence, to reduce power con-
sumption for cases when N is less than 1024, the memory is split into smaller
blocks. As a trade-off between power reduction and the difficulty to place and

— 69 — Lund Institute of Technology

Chapter 4. Memories

Table 4.2: Average current drawn for the memory bank for different sizes of N .
The values are given for Vdd=3.3 V and a wordlength of 24 bits.

N 1024 512 256 128 64 32
IDD [µA/MHz] 359 255 74 74 74 74

Table 4.3: Average power consumption for different sizes of N . The values are
given for Vdd=3.3 V and a clock frequency of 50 MHz.

N 1024 512 256 128 64 32
One memory [mW] 85 85 85 85 85 85
Memory bank [mW] 59 42 12 12 12 12
Power savings [%] 30 50 86 86 86 86

route many memories, the memory is split into four blocks of size 128, 128, 256,
and 512 words. Table 4.1 shows the average current that the memory draws.
The values are given for memories in a standard 0.35 µm CMOS process with
five metal layers, provided as macrocells. Note that the 128-words memory is
a low power memory and this was the largest low power memory available for
this process. The average current drawn for the memory bank for different sizes
of N is shown in Table 4.2. For example, if N = 512-points, both 128-words
memories and the 256-words memory is used. Each 128-words memory is used
a quarter of the time and the 256-words memory is used half the time. In this
case the average current is calculated as 436/2 + 74/4 + 74/4 = 255 µA/MHz.
With N smaller than 512-points, only the low power memories are used.

Table 4.3 shows a comparison of the power consumption between the one
memory and the memory bank solution. The values are given for a clock fre-
quency of 50 MHz and Vdd=3.3 V. The last row shows the power savings in
percent. The power savings are between 30 and 86 percent. However, the draw-
back is that a larger chip is required, since the silicon area increases with the
number of memories due to the overhead in address logic and power supply.

4.3 Cache example

The target application is a custom image convolution processor. Two dimen-
sional image convolution is one of the fundamental processing elements among
many image applications and has the following mathematical form:

y(K1,K2) =
∑ ∑

x(K1 −m1,K2 −m2)h(m1,m2), (4.1)

where x and h denote the image to be filtered and kernel functions, respectively.
K1 and K2 is the pixel index, i.e., this operation is performed once for each
output pixel. In this example x is 256×256 pixels and h is 15×15 pixels large.

As a consequence of the image size, the complete image has to be stored on
off-chip memory. During the convolving operations, each kernel position requires
15×15 pixel values from off-chip memory directly. When this is performed
in real-time, a very high data throughput is needed. Furthermore, accessing
large off-chip memory is expensive in terms of power consumption and so is the
signaling due to the large capacitance of package pins and PCB wires.

ElectroScience — 70 —

4.3. Cache example

Table 4.4: memory hierarchy schemes and access counts for an image of 256×256
(M0=off-chip 0.18µm, C0 and C1=0.35µm)

Scheme M0 C0 C1 energy cost
A: M0 13176900 790 mJ

B: M0→ C0 65536 13176900 56.6 mJ
C: M0→ C1 929280 13176900 68.9 mJ

D: M0→C0→C1 65536 929280 13176900 20.8 mJ

By the observation that each pixel value, except the one in the extreme
corners, is used in several calculations, a two level memory hierarchy was intro-
duced. Instead of accessing off-chip memories 225 times for each pixel operation,
14 full rows of pixel values and 15 values on the 15th row are filled into 15 on-
chip line memories before any convolution starts. After the first pixel operation,
for each successive pixel position, the value in the upper left is discarded and
a new value is read from the off-chip memory. As a result, pixel values from
the off-chip memories are read only once for the whole convolving process from
upper left to lower right. Thus the input data rates are reduced from 15×15
accesses/pixel to only 1 read. In Figure 7.16 a three level memory hierarchy is
shown and the number of memory access required for Equation 4.1 when using
one, two, or three levels of the hierarchy.

2
N

2
MMMN)1(

Image memory
off-chip

Kernel

memoriesLine memories

Scheme Image Line Kernel

Image M2(N-M+1)2

Image line N2 M2(N-M+1)2

Image kernel MN(N-M+1) M2(N-M+1)2

Image line kernel N2 MN(N-M+1) M2(N-M+1)2

Figure 4.3: Three levels of memory hierarchy and the number of reads from
each level.

Using a two level memory structure can reduce both power consumptions
and I/O bandwidth requirements, one extra cache level is introduced to further
optimize for power consumptions during memory operations, as shown in Fig-
ure 7.16. Since accessing large memory consumes more power, 15 small cache
memories are added to the two level memory hierarchy. The small cache mem-
ories are composed of 15 separate memories to provide one column pixel values

— 71 — Lund Institute of Technology

Chapter 4. Memories

during each clock cycle. Instead of reading pixel values directly from line mem-
ories 15 times for each pixel operation, one column of pixel values are read to
cache memories first from the line memories for each new pixel operation ex-
cept for the first one. During each pixel operation, direct line memory access is
replaced by reading from the cache. As a result, reading pixel values from line
memories 15 times could be replaced by only once plus 15 times small cache
accesses. Assuming that the embedded memories are implemented in a 0.35µm
process CMOS, by the calculation method in [7], it is shown in Table 4.4, that
the power consumption for the total memory operation could be reduced over
2.5 times compared to that of a two level hierarchy.

In addition to the new cache memory, one extra address calculator is syn-
thesized to handle the cache address calculation. In order to simplify address
calculation, the depth for each cache is set to 16. This allows circular operations
on the cache memories. During new pixel operations each new column of data
is filled into the cache in a cyclic manner. However, the achieved low power so-
lution has to be traded for extra clock cycles introduced during the initial filling
of the third level cache memories. In the case of an image size of 256×256, this
will contribute 61696 clock cycles in total. Compared with the total clock cycles
in the magnitude of 107, such a side effect is negligible.

Cache

level 3
(15x16)

Processor
core

1

Processor
core

4

Processor
core

2

Processor
core

3

Line memories with pipelined registers

level 2

(15x256)
2

APU

1

APU

3

New value feeded during
each new pixel operation

Large off-chip
memories

level 1 (256x256)

Input
buffer

New column written
to cache for each

new pixel operation

Image processor
without controller

Data out - 4x24 bits

System bus 15x8 bits

8 bits

Cyclic column
storage

4 bits
address line

Control
signals from

controller

Unfilled memory
elements

Kernel moving one
pixel to the right

Figure 4.4: Controller Architecture with incremental circuitry

In fact, alternative schemes exists by different combinations of the three
memories in the hierarchy. All these possible solutions differ substantially in
memory accesses. In Table 4.4, different memory schemes are shown where M0,
C0, C1 denote off-chip memory, line memories and smaller caches, respectively.
Although the amount of data provided to the datapath remains the same for
all four schemes, the access counts to the large off-chip memories varies. For
the two and three level hierarchy structures, the counts to the large memory
M0 are reduced by nearly 225 times compared to that of the one level solution.
Between scheme B and D, the least access counts to both external memories and
line memories are identified in three level memory structure, but this is achieved
at the cost of extra clock cycles introduced during each pixel operation. Thus,
trade off should be made when different implementation techniques are used.
For the FPGAs where power consumption is considered less significant, two
level hierarchies prevails due to its lower clock cycle counts. While for ASIC

ElectroScience — 72 —

4.3. Cache example

solutions, three level hierarchy is more preferable as it results in a reasonable
power reduction.

— 73 — Lund Institute of Technology

ElectroScience — 74 —

Chapter 5

Synthesis

5.1 Basic concepts

Synthesis is the process of taking a design written in a hardware description
language, such as VHDL, and compiling it into a netlist of interconnected gates
which are selected from a user-provided library of various gates. The design
after synthesis is a gate-level design that can then be placed and routed onto
various IC technologies.

There are three types of hardware synthesis, namely, logic synthesis, which
maps gate level designs into a logic library, RTL synthesis, creating a gate level
netlist from RTL behavior, behavioral(high-level)synthesis, that creats a RTL
description from an algorithmic representation.

Such a process is generally automated by many commercial CAD tools. How-
ever, this tutorial will only cover the synthesis tool named Design Compiler by
Synopsys, which is widely used in industry and universities. The much sim-
plified version of the design flow is shown in Figure 5.1. The Design Compiler
product is the core of the Synopsys synthesis software products. It comprises
tools that synthesize your HDL designs into optimized technology-dependent,
gate-level designs. It supports a wide range of flat and hierarchical design styles
and can optimize both combinational and sequential designs for speed, area,
and power.

Design Compiler deals with both RTL and logic synthesis work. Its process of
synthesis can be described as translation plus logic optimization plus mapping.
This is illustrated in Figure 5.2.

Translation is the process of translating a design written in behavioral hdl
into a technology independent netlists of logic gates. In design compiler, this is
done by either the command read vhdl or analyze/elaborate. It performs
syntax checks, then builds the design using generic (GTECH) components.

After translation, the design in the form of netlists of generic components
needs to be mapped into the real logic gates (contained in cell libraries provided
by IC vendors). This process is accompanied by design optimization. Accord-
ing to various user specified constraints and optimization techniques, design
compiler maps and optimizes the design with a range of algorithms, eg., trans-
formation, logic flattening, design re-timing, and selecting alternative cells, etc.
Aiming to meet the design constraints, the process makes trade-offs between

— 75 — Lund Institute of Technology

Chapter 5. Synthesis

VHDL

Simulation

Correct Function?

Synthesis

Place &
Route

Layout

 Modelsim

Design Compiler

Silicon Ensemble

N

Y

Back Annotate

Figure 5.1: Simplified ASIC Design flow

speed, area and power consumption. Upon completion, the unmapped design
in Design Compiler memory is overwritten by the new, mapped design, ready
for use in later physical design of place and route.

5.2 Setting up libraries for synthesis

Before Design Compiler could synthesize a design, it is necessary to tell the tool
which libraries it should use to pick up the cells. In total, there are three types
of libraries that should be specified in Synopsys setup file ”.synopsys dc.setup”,
namely, technology libraries, symbol libraries, and DesignWare libraries.

The technology libraries, which contain information about the characteristics
and functions of each cell, are provided and maintained by the semiconductor
vendors and must be in .db format. If only library source code is provided, you
have to use Synopsys Library Compiler to generate .db format, see Library Com-
piler manual for further information. In addition to cell information, Wireload
models are also provided to calculate wire delays during optimization process.
Wireload models will be discussed in detail in the following sections.

The symbol libraries contain graphical symbols for each library cells. As
with technology libraries, it is also provided and maintained by semiconductor
vendors. Design compiler uses it to display symbols for each cell in the design
schematic.

The DesignWare libraries are composed of pre-implemented circuits for arith-
metic operations in your design, and such designware parts are inferred through
arithmetic operators in the HDL code, such as ”+−∗ <><=>=”. The libraries
come with two types: the standard DesignWare library and the Foundation De-
signWare library. The standard version provides some basic implementation of
arithmetic operations, for example, the classic implementation of multiplication
by a 2-D array of full adders. The Foundation provided some advanced im-
plementation to provide significant performance boost at the cost of a higher
gate count. For example, a Booth-coded Wallace tree multiplier is provided

ElectroScience — 76 —

5.2. Setting up libraries for synthesis

library ieee;
entity test is
 port (
 a : in ..
 b: in ...
 ...
end test;
architecture ..

create_clock ...
uniquify
... ...

TranslateTranslate

Mapping+optimizationMapping+optimization

constraints

VHDL

GTECH netlist

Technology netlist

Figure 5.2: Synthesis Process

for multiplications. In addition to basic arithmetic operations, several com-
plex arithmetic operations are implemented to obtain even higher performance.
These are the MAC (Multiply-Accumulate), SOP (Sum-of-Products), vector
adder(A+B+C+D), their counterpart DesignWare components are DW02 mac,
DW02 prod sum, DW02 sum respectively. One thing to note is these parts can
not be inferred through HDL operators, modifications to the HDL code has to be
done by instantiating or using function calls to utilize those parts. The standard
library comes for free, while the foundation library need a extra license.

To setup these libraries in Synopsys setup file, use four library variables,
”target library, link library, symbol library, synthetic library”.

Here is one example segment of the setup files for AMS035 technology at the
department.

/* -- .synopsys_dc.setup -- -- setup file for Synopsys synthesis
Synopsys v2002.05 --
AMS 0.35u CMOS v3.50 -- Feb 2003 / S Molund -- */

company = "TdE LUND"

cache_read = ./; cache_write = ./;

search_path = {
/usr/local-tde/cad1/amslibs/v3.51/synopsys/c35_3.3V } +
search_path

link_library = { c35_CORELIB.db c35_IOLIB_4M.db standard.sldb
dw01.sldb dw02.sldb}

target_library = { c35_CORELIB.db c35_IOLIB_4M.db }

symbol_library = { c35_CORELIB.sdb c35_IOLIB_4M.sdb }
synthetic_library = { standard.sldb dw01.sldb dw02.sldb }

From Synopsys manual, target libraries set the target technology libraries
where all the cells are mapped to, in the example above, ”c35 CORELIB.db

— 77 — Lund Institute of Technology

Chapter 5. Synthesis

c35 IOLIB 4M.db” in the directory indicated in ”search path”. The link li-
braries resolve cell references in your design, so both target library(c35 CORELIB.db
c35 IOLIB 4M.db), your own design(* by default), and DesignWare libraries(standard.sldb
dw01.sldb dw02.sldb) should be specified here. The variable ”symbol library”,
”synthetic library” set symbol libraries and DesignWare libraries respectively,
where ”stdandard.sldb” represents standard DesignWare library while ”dw01.sldb
dw02.sldb” is a foundation DesignWare library.

5.3 Baseline synthesis flow

After correctly setting up the environments, the synthesis tool is ready to start.
Synopsys Design Compiler provides two ways to synthesize the design. One is
the command line user interface, called dc shell, which works much like the way
of a unix shell, and even some common unix command is also supported in such
a shell, eg., ls, cd. The shell can be invoked by typing the command: dc shell.
If the designer is more into the graphical interface, there exists two programs
provided by Synopsys, namely, design analyzer and design vision. These two
programs are nothing but simple graphical interfaces for dc shell. Most com-
mon operations in synthesis can be done by ”pushing-button” procedure in the
graphical tools. To use any of the two graphical tools, type in design analyzer
& or desgin vision -dcsh mode &.

To synthesize a design using command line based dc shell is usually con-
fusing for beginners, however, it is a more efficient way to do synthesis for the
experienced designer. By running synthesis script (a collection of synthesis com-
mands and constraints) on a dc shell, a synthesis flow can be fully automated
without any intervention. For this reason, only synthesis commands/constraints
are given for each synthesis steps in the following sections. Beginners who uses
graphical tools can easily find these commands/constraints in the menus, refer
to Design Vision User Guide or Design Analyzer Reference manual for more
details about the graphical tools.

5.3.1 Sample synthesis script for a simple design

The following is a sample synthesis script for a simple design. Assume there is
one project containing a hierarchy of design files, which is shown in Figure 5.3.
To synthesize the design, the design files are first analyzed one by one from
bottom up in the hierarchy. During this process, each design is checked for
syntax error and loaded into Design Compiler memory if no errors are found.
The top design is then elaborated, which means the whole design is translated
into a circuit interconnected by technology independent logic gates (GTECH
netlist). Given some goals (eg. speed or area of the circuit) by constraint
specification, Design Compiler starts mapping and optimization processes at
the same time. That is, trying to pick up cells from the technology libraries
to meet the design goals. This is called optimization, which can be done by
the command compile. Whenever the design is optimized and mapped to the
technology gates, it can be saved as different format for future use, eg., .sdf and
.vhd format for back-annotate simulation, .v format(verilog) for place&route.
To check if the synthesized design meets the goals, report has to be generated.
Use the command report timing or report area.

ElectroScience — 78 —

5.4. Advanced topics

TOP

Module_1 Module_2

Cell_1 Cell_2 Cell_3

Figure 5.3: Sample hierarchical design

/* Analyze and ELaborate design */
analyze -f vhdl -lib WORK cell_1.vhd
analyze -f vhdl -lib WORK cell_2.vhd
analyze -f vhdl -lib WORK cell_3.vhd
analyze -f vhdl -lib WORK module_1.vhd
analyze -f vhdl -lib WORK modele_2.vhd
analyze -f vhdl -lib WORK top.vhd

elaborate top -lib WORK

/* constraints (design goals) */
create_clock -period CLK_PERIOD -name CLK find(port CLK)
uniquify

/* compile (mapping & optimization) */
current_design top
compile

/* outputs */
write -format db -hier -output TOP.db
write -f vhdl -hier -output TOP.vhd
write -f verilog -hier -output TOP.v
write_sdf -version 1.0 top.sdf

/* reports */
current_design top
report_timing >"timing.rpt"
report_area > "area.rpt"

5.4 Advanced topics

So far, simple synthesis steps have been given to show how to derive a hardware
(netlist) from a behavioral HDL descriptions using Design Compiler. However,
due to its inherent complexity in synthesis process, further knowledge on inner
working mechanism of synthesis process would be beneficial for a designer to
control the synthesis process in order for better synthesis results. The following
sections will try to address some of important issues that will lead to a bet-
ter understanding of the synthesis process, hopefully resulting in better script
writing to control the synthesis process.

— 79 — Lund Institute of Technology

Chapter 5. Synthesis

Figure 5.4: Statistic distributions of wire capacitance value

5.4.1 Wireload model

During optimization phase, design compiler needs to know both cell delays and
wire delays. The cell delays are relatively fixed and dependent on the fan-
ins and fan-outs of those cells. Wire delays, however, can not be determined
before post-synthesis place and route. One has to estimate such delays in certain
”pessimistic” way to guarantee the estimated delay is equal to or larger than the
real wire delays after place and route, otherwise the circuit might malfunction.
Usually, Wireload models are developed by semiconductor vendors, and this is
done based on statistical information taken from a variety of example designs.
For all nets with a particular fanout, the number of nets with a given capacitance
is plotted as a histogram, one capacitance is picked to represent the real values
for that fanout depending on how conservative criteria you want the model to
be. Figure 5.4 is one example of such histogram. If a criteria of 90 percent is
chosen, the value is 0.198 pF in this case.

Since the larger a design gets, the larger capacitance the wires might have,
Wireload models usually come with a range of area specifications. Use the
command report lib, you will see the segment describing the wireload models
as the example below.

**

report : library

Library: c35_CORELIB

Version: 2003.06-SP1-3

Date : Wed Aug 18 13:06:21 2004
**

Library Type : Technology
Tool Created :2000.11 Date Created : Date:2003/03/14
Library Version : c35_CORELIB 1.8 - bka Comments :
Owner: austriamicrosystems AG HIT-Kit: Digital Time Unit : 1ns

Capacitive Load Unit : 1.000000pf Pulling Resistance Unit :
1kilo-ohm Voltage Unit : 1V Current Unit :
1uA Leakage Power Unit : Not specified.

ElectroScience — 80 —

5.4. Advanced topics

Bus Naming Style : %s[%d] (default)

Wire Loading Model:

Name : 10k Location : c35_CORELIB Resistance
: 0.0014 Capacitance : 0.001633 Area : 1.8
Slope : 5 Fanout Length Points Average Cap Std
Deviation
--

1 5.00

Name : 30k Location : c35_CORELIB Resistance
: 0.0014 Capacitance : 0.001633 Area : 1.8
Slope : 6 Fanout Length Points Average Cap Std
Deviation
--

1 6.00

Name : 100k Location : c35_CORELIB Resistance
: 0.0014 Capacitance : 0.001633 Area : 1.8
Slope : 8 Fanout Length Points Average Cap Std
Deviation
--

1 8.00

Name : pad_wire_load Location : c35_CORELIB
Resistance : 0.0014 Capacitance : 0.001633 Area
: 1.8 Slope : 15 Fanout Length Points Average Cap
Std Deviation
--

1 15.00

Wire Loading Model Selection Group:

Name : sub_micron

Selection Wire load name
min area max area

0.00 1427094.00 10k

1427094.00 4280637.00 30k
4280637.00 219533760.00 100k

Wire Loading Model Mode: enclosed.

As to how to select Wireload models for wires crossing design hierarchy,
synopsys provides three modes, namely, top, enclosed and segmented.

This is shown in Figure 5.5.
For the top mode, Design Compiler sees the whole design as if there is no

hierarchy, and use the Wireload model used for the top level for all nets.
In the enclosed mode, Design Compiler uses the Wireload model specified

for the smallest design that encloses the wires across the hierarchy.
Segmented mode is the most optimistic mode among all these three, it uses

several Wireload models for segments of the wire for each hierarchy.
You can choose which mode to use by the command set wire load model

in your constraint file. Otherwise, design compiler uses the mode specified in
the technology libraries or it’s own default mode.

5.4.2 Constraining the design for better performance

After translating process, the design in behavioral HDL is translated into tech-
nology independent gates, after which optimization phase starts. Two major

— 81 — Lund Institute of Technology

Chapter 5. Synthesis

10K10K 30K

100K 100K

100K

10K

Mode=segmented

100K

10K

30K

10K

30K

100K

D Q

D Q

QD

D Q

D Q

D Q

D Q

D Q

D Q

30K

100K100K 100K

100K 100K

Mode=top

100K

100K

100K

10K 10K

100K

100K

D Q

D Q

QD

D Q

D Q

D Q

D Q

D Q

D Q

30K

30K30K 30K

100K 100K

Mode=enclosed

100K

100K

100K

10K

100K

100K

10K

D Q

D Q

QD

D Q

D Q

D Q

D Q

D Q

D Q

Figure 5.5: Wireload mode

tasks take place during this process, combinational logic optimization plus map-
ping and sequential logic optimization.

For combinational logic optimization, a phase called technology-independent
optimization is performed to meet your timing and area goals. Two most com-
monly used methods to do this are logic flattening and structuring which are
described in the section about logic optimization. Combinational logic mapping
takes in the technology-independent gates optimized from an early phase and
maps those into cells selected from vendor technology libraries. It tries different
cell combinations, using only those that meet or approach the required speed
and area goals.

Sequential optimization maps sequential elements (registers, latches, flip-
flops, etc.) in the netlists into real sequential cells (standard or scan type) in
the technology libraries, and also tries to further optimize sequential elements
on the critical path by attempting to combine sequential elements with it’s
surrounding combinational logic and pack those into one complex sequential
cells, refer to Design Compiler Reference Manual: Optimization and Timing
analysis.

5.4.3 Compile mode concepts

Before going into details about optimization techniques, the basic concepts re-
garding different compile modes should be explained. It is crucial for under-
standing different compile strategies and scripts writing. If properly used, these
compile modes will significantly reduce the compile time and improve the final

ElectroScience — 82 —

5.4. Advanced topics

synthesis results.

• Full compilation

The most commonly used compile mode is the full compilation. It starts
the optimization and mapping process all over again no matter whether
the design was compiled or not before. If prior optimized gate structure
already exists, it removes it in the design and rebuild a brand new gate
structure. Usually this results in better circuit implementation after the
design has been changed, but such improvements come at the cost of
increased compilation time. Full compilation is simply invoked by the
command compile in the scripts.

• Incremental compilation

Incremental compilation is useful if only part of the design fails to meet
the constraints. It starts with an optimized gate structure and works
on the parts with violations. It tries to re-map these parts and change
the structure only if they are improved. BY working on only problem-
atic parts without first phase of logic optimization, the compile time is
reduced substantially. Use the command compile -inc for incremental
compilation.

5.4.4 Compile strategy

Most designers would not bother with design strategy if their design is within
reasonable size (for example, within 150k equivalent gates), which is the case for
the designs at the department. Just take the top level design in the hierarchy
and compile it, a better results among all alternative strategies can be achieved.
This is so called top-down compile strategy. In addition to the QOR(Quality of
Results), the script writing is much simpler and easy to understand.

If the design, however, turns into a huge project, like the ones a group of peo-
ple work on, the run time of compiling the whole design could be prohibitive. In
such cases, the synthesis process has to take place in parallel. This demands the
whole design be separated into several sub-blocks, synthesized separately, and
integrated together on the top level, a typical divide-and-conquer procedure. In
practice, such bottom-up and then top-down strategy would not be manipulated
as easily as it sounds. Problems always emerge in the sub-block interfacing. If
snake path is present due to not fully registered sub-blocks, manually setting
constraints on the sub-block borders could be laborious and apt to mistakes.
Some blocks might be over-constrained while others under-constrained. This in
turn will direct Design Compiler to work on the wrong part of a timing path.
Solution to the above problems is automatic design budgeting, one capability
that comes with Design Compiler.

Design budgeting can be invoked on dc shell with the command dc allocate budgets
at three different levels. The budgeting starts either in unmapped RTL level or
mapped gate level or the mix of these two. It utilizes top level constraints and
delay information (cell delays, Wireload models, physical data from P&R, etc.)
to create a set of constraints among all hierarchies, a designer could then apply
these constraints to the sub-blocks interested, and compile top-down for the
sub-modules separately, and do top level compile to fix interconnect violations

— 83 — Lund Institute of Technology

Chapter 5. Synthesis

for top level modules. Refer to Synopsys User Guide, Budgeting for Synthesis
for more information.

5.4.5 Design Optimization and constraints

Design optimization is performed by Design Compiler according to user specified
constraints. Two types of constraints exist for constraining your design. The
following sections will discuss these in detail.

One of the two types is the design rule constraints, which are implicit con-
straints defined by the technology libraries. These constraints are required to
guarantee the circuit to function correctly. Some examples are:

• The maximum transition time for a net, specifying a cell with input pin
connected to the net to function correctly.

• The maximum fanout of a cell that drives many load cells.

• The maximum load capacitance a net could have.

• A table listing maximum capacitance of a net as a function of the transition
times at the inputs of the cell.

When violations are found during the optimization process, measures are
taken to meet the requirements, eg. choosing cells with different size, buffer-
ing the outputs of a driving cell. Although the design will meet design rule
constraints with default values by technology libraries, the designer could still
specify more restrict design rule constraints.

The other type is optimization constraints. These constraints are defined by
the designer with the goal to get better synthesis results such as higher speed or
less chip area. It has a lower priority over design rule constraints. In other word,
design compiler can not violate design rule constraints, even if it means violat-
ing optimization constraints. Comprised of four types of constraints (namely
speed, power, area, and porosity), optimization constraints are commonly used
to optimize for the speed of your design.

To use optimization constraints to obtain better circuit performance, you
should have in mind that your design is composed of two parts, synchronous
and asynchronous paths. Synchronous paths are usually the timing paths of
combinational logics between any two sequential elements (eg. registers). To
specify the maximum delay of these timing paths, you only have to set clock
period constraints on the clock pins of the sequential elements. Use the com-
mand create clock to specify the clocks. In addition to timing paths between
sequential elements, any paths starting from an input port and end at the se-
quential elements or paths from sequential elements to output ports are regarded
as synchronous paths as well. Apart from clock period setting, input and out-
put delays have to be specified to complete timing paths constraints. Use the
set input delay and set output delay for this purpose. Asynchronous delay
is defined as point to point paths with partial or no association with sequential
elements. To set the constraints on these paths like maximum and minimum
delays, use the command set max delay and set min delay.

In the example, only clock period is set to constrain any synchronous paths
between synchronous elements under the assumptions of 0 input and output
delay.

ElectroScience — 84 —

5.4. Advanced topics

Optimize accrodinglyTOP

A_1

A_0

Copy

CopySubdesign A

A_0

A_1

TOP

Compile

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Figure 5.6: Uniquify method

5.4.6 Resolving multiple instances

Before compilation, the designer need to tell Design Compiler how multiple
instances should be optimized according to the environment around. In a hier-
archical design, a sub-design is usually referenced more than once in the upper
level, thus reducing the effort of recoding the same functionality by design reuse.
In order to obtain better synthesis results, each copy of these sub-designs has
to be optimized specifically to be tailored to the surrounding logic environment.
Design Compiler provides three different ways of resolving multiple instances.

• Uniquify

When the environment around each instance of a sub-design differs signif-
icantly, it would be better to optimize each copy independently to make
it fit to the specific environment around them. Design Compiler provides
the command Uniquify to do this. The command makes copies of the
sub-design each time it is referenced in the upper level of the hierarchy,
and optimize each copy in a unique way according to the conditions and
constraints of its surrounding logic. Each copy of the sub-design will be
renamed in certain conventions. The default is %s %d, where %s is the
sub-design name, and %d is the smallest integer count number that dis-
tinguish each instance. This is shown in Figure 5.6. The corresponding
sample script is as follows:

dc_shell> current_design top
dc_shell> uniquify
dc_shell> compile

• Don’t touch

There is one another way called Don’t touch that compile the sub-design
once and use the same compiled version across all the instances that ref-
erence the sub-design. This is shown in Figure 5.7. This is used when the
environment around all the instances of the same sub-design is quite simi-
lar. Use the command characterize to get the worst environment among
all the instances, and the derived constraints are applied when compiling
the sub-design. A dont touch attribute is then set on the sub-design
so that the following compilation in the upper level will leave the all the
instances intact. The major motivation of doing optimization in this way
is to save compilation time of the whole design. The script is as follows:

— 85 — Lund Institute of Technology

Chapter 5. Synthesis

Subdesign

TOP

A

A

A

Copy

Compile

A

D Q

D Q

D Q

D Q

D Q

Figure 5.7: Dont touch method

dc_shell> current_design top
dc_shell> characterize U2/U3
dc_shell> current_design C
dc_shell> compile
dc_shell>current_design top

dc_shell> set_dont_touch {U2/U3 U2/U4}
dc_shell>
compile

• Ungroup

If the designer wants the best synthesis results in optimizing multiple in-
stances, use the command Ungroup. Similar to Uniquify, Ungroup makes
copies of a sub-design each time it is referenced. Instead of optimizing each
instance directly, design compiler removes the hierarchy of the instance to
“melt” it into its upper level design in the hierarchy. This is shown in
Figure 5.8. In this way, further design optimization could be done at the
logics that were originally at the instance border which are impossible to
optimize with design hierarchy. The better synthesis result comes at the
cost of even longer compilation time. In addition, design hierarchy is de-
stroyed, which makes post-synthesis simulation harder to perform. The
sample script is as follows:

dc_shell> current_design B
dc_shell> ungroup {U3 U4}
dc_shell>current_design top
dc_shell> compile

5.4.7 Optimization flow

Until now, enough “peripheral” knowledge has been introduced regarding de-
sign optimization. This section will move on to give an overview of the whole
optimization process, intended for a better understanding of what is actually
happening in synthesis process. This, to the author’s view, is beneficial for
constraints settings in optimization.

ElectroScience — 86 —

5.4. Advanced topics

Compile

Copy

Copy

Subdesign A

TOP

A_0

A_1

Hierarchy

Remove

A_0
TOP

A_1

TOP Two logic blocks merging Optimize accrodingly

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Figure 5.8: Ungroup method

In fact, design optimization starts already when it reads in designs in HDL
format. Aside from performing grammatical checks, it tries to locate com-
mon sub-expressions for possible resource sharing, select appropriate Design-
Ware implementations for operators, or reorder operators for optimal hardware
implementations, etc. These high level optimization steps are based on your
constraints and HDL coding style. Synopsys refers this optimization phase as
Architectural Optimization.

After architectural optimization, the design represented as GTECH netlist
goes through logic optimization phase. Two major process happens during this
phase:

• Logic Structuring

For paths not on critical timing ranges, structuring means smaller area
at the cost of speed. It checks the logic structure of the netlist for common
logic functions, attempting to evaluate and factor out the most commonly
used factors, and put them into intermediate variables. Design resource
is reduced by hardware sharing. Introducing extra intermediate variables
increases the logic levels into the existing logic structure, which in turn
makes path delay worse. This is the default mode that design compiler
optimize a design.

• Logic Flattening

Opposite to logic structuring, logic flattening converts combinational logic
paths into a two level, sum-of-products structure by flattening logic ex-
pressions with common factors. It removes all the intermediate variables
and form low depth logic structure of only two levels. The resulting en-

— 87 — Lund Institute of Technology

Chapter 5. Synthesis

hanced speed specification is a tradeoff for area and compilation time, and
some times it is even not practical to perform such tasks due to limited
CPU capability. By default, design compiler does not flatten the design.
It is even constraints independent, meaning design compiler would not in-
voke it even timing constraints is present. Designer, however, can enable
such capability by using the command set flatten.

Gate level optimization is about selecting alternative gates from the cells in
the technology libraries, which tries to meet timing and area goals based on your
constraints. Setting constraints (both design rule and optimization) is already
covered in the previous section. Various compile mode can be used to control
the mapping process in gate level optimization.

5.4.8 Behavioral Optimization of Arithmetic and Behav-
ioral Re-timing

For designs with large number of arithmetic operations such as multimedia ap-
plications, manually setting constraints to optimize datapath is a tedious work.
Designer has to go back to HDL descriptions, manually inserting pipeline stages
to the parts on the critical ranges. Specialized arithmetic components have to
be coded or instantiated in the HDL file, making it harder to maintain. To
address this issue, Design Compiler provides two capabilities that will automate
such a process.

BOA (Behavioral Optimization of Arithmetic) is a feature that applies var-
ious optimization on arithmetic expressions. It is effective for datapaths with
large number of computations in the form of tree structures and large word-
length operands. BOA replaces arithmetic computations in the form of adder
trees with carry save architecture. This includes decomposing a multiplier into
a wallace tree and an adder. It also optimizes multiplication with a constant
into a series of shift-and-add operations. Compared to similar implementations
from DesignWare components, BOA can also work on much more complicated
arithmetic operations and does not need to change the source code manually.
Acting as a behavioral optimization techniques, it only recognizes high level
synthetic operators (+,−, ∗), and is invoked by the command transform csa
after elaboration (but before compile).

BRT (Behavioral Re-timing) is a technique to move registers around com-
binational paths to achieve faster speed or less register area. The concept of
retiming is introduced in the course “DSP-Design”. By inserting pipeline reg-
isters into timing paths, the path delays between any two registers are reduced.
As a result, the total circuit could run at a higher speed at the cost of latency.
The idea is easy to understand but hard to implement when this is done in
the mapped gate level. Use the command pipeline design provided by Design
Compiler. This command will automatically place the pipeline registers on your
design to achieve the best timing results according to your requirements. One
thing to note is that the targeted design has to be purely combinational circuits.
There is another command, optimize registers, which optimizes the number
of the registers by moving registers in a sequential design. Refer to Creating
High-speed Data-Path Components for more details.

ElectroScience — 88 —

5.5. Coding style for synthesis

Figure 5.9: synthesis for if bad

5.5 Coding style for synthesis

Although synthesis tools will optimize the design to a certain extent, only 10-20
percent of performance enhancement is usually expected. The higher the design
level you are working on, the more performance boost you will get eventually.
In this context, the most important factor for a good design lies mostly in every-
thing in the upper level, ie, how well the algorithm is, what kind of architecture
the whole system is utilized, how good the whole system is partitioned, whether
a good coding style is used in VHDL.

Since this will cover everything from algorithm down to logic gates, which
is beyond the range of the tutorial, only coding styles will be covered in the
following section. Two examples on how the synthesis results could differ in a
good and bad coding style will be shown.

5.5.1 Coding style if statement

This is a “classical” problem regarding if statement coding style in vhdl, which
comes to different synthesis results. Below is two coding styles using if state-
ment for the same functionality.

library ieee;
use ieee.std_logic_1164.all;

entity if_bad is
port (

a, b, c, d : in std_logic;
sel : in std_logic_vector(1 downto 0);
o : out std_logic);

end if_bad;

architecture behave of if_bad is
begin

process (sel, a, b, c, d)
begin -- process

if sel="00" then
o<=a;

end if;
if sel="01" then

o<=b;
end if;
if sel="10" then

o<=c;
end if;
if sel="11" then

o<=d;
end if;

end process;
end behave;

— 89 — Lund Institute of Technology

Chapter 5. Synthesis

Figure 5.10: synthesis for if good

library ieee;
use ieee.std_logic_1164.all;
entity if_good is
port (

a, b, c, d : in std_logic;
sel : in std_logic_vector(1 downto 0);
o : out std_logic);

end if_good;

architecture behave of if_good is begin
process (sel, a, b, c, d)
begin -- process

if sel="00" then
o<=a;

elsif sel="01" then
o<=b;

elsif sel="10" then
o<=c;

else
o<=d;

end if;
end process;

end behave;

Here is the synthesis results from synopsys for both designs. For if bad
design, critical path increases due to the delay propagated from input pin d
through all the way to the output o. Design Compiler is not smart enough to
take the advantage of all these exclusive if conditions, that should be translated
into a single MUX. Instead, it uses priority coding for if statements without
following else statements. This results in three cascaded MUXes.

5.5.2 Coding style for loop statement
For for loop construct in the vhdl design, Design Compiler simply unrolls the loop, making a
hardware for each iteration of the loop. So, when writing such loops, the designer should aware of
the hardware inference in such for loop, and try to use as less hardware as possible within the loop.
The following is an example of two for loop coding styles.

architecture RTL of LOOP_BAD is
type TABLE_8_x_5 is array (1 to 8) of std_logic_vector (4 downto 0);

begin

process (BASE_ADDR, IRQ)

variable INNER_ADDR: std_logic_vector(4 downto 0);

ElectroScience — 90 —

5.5. Coding style for synthesis

Figure 5.11: synthesis for loop bad

variable DONE: std_logic;

constant OFFSET: TABLE_8_x_5 :=("00001","00010", "00100",
"01000","10000","10001","10100","11000");

begin

DONE := ’0’;
INNER_ADDR := BASE_ADDR;

for I in 1 to 8 loop
if ((IRQ(I) = ’1’) and (DONE = ’0’)) then
INNER_ADDR := INNER_ADDR + OFFSET(I);
DONE := ’1’;
end if;

end loop;

ADDR <= INNER_ADDR;
end process;
end RTL;

architecture RTL of LOOP_BEST is
type TABLE_8_x_5 is array (1 to 8) of std_logic_vector (4 downto 0);

begin
process (BASE_ADDR, IRQ)

variable TEMP_OFFSET: std_logic_vector(4 downto 0);
variable DONE: std_logic;
constant OFFSET: TABLE_8_x_5 := ("00001","00010","00100","01000",

"10000","10001", "10100","11000");
begin

TEMP_OFFSET := "00000";
for I in 8 downto 1 loop if (IRQ(I) = ’1’) then
TEMP_OFFSET := OFFSET(I);
end if;

end loop;
-- Calculate Address of interrupt Vector

ADDR <= BASE_ADDR + TEMP_OFFSET;
end process;
end RTL;

— 91 — Lund Institute of Technology

Chapter 5. Synthesis

Figure 5.12: synthesis for loop good

ElectroScience — 92 —

Chapter 6

Place & Route

6.1 Introduction and Disclaimer

This manual is intended to guide an ASIC designer carrying out the designs steps
from netlist to tapeout. The reader is guided by using the Silicon Ensemble GUI
and by the use of script (mac) files. However, this manual was never intended
to be complete. The design steps considered in this manuscript are presented
in Figure 6.1. Several digital ASIC’s have been successfully produced (in our
digital ASIC group) according to the presented design flow. For a more detailed
description the reader is referred to the Silicon Ensemble manual.

Although every precaution has been taken in the preparation of this manual,
the publisher and the authors assume no responsibility for errors or omissions.
Neither is there any liability assumed for damages or financial loss resulting
from the use of the information contained herein.

6.2 Starting Silicon Ensemble

Before you start SE you should ensure that your design has been tested exten-
sively as the place and routing job can be very time consuming dependent on
the design size.

The required library elements for the design flow are:

• LEF/DEF Files (usually provided from the chip manufacturer)

• Netlist in Verilog format (generated with Synopsys)

!As SE needs a lot of disk quota to do the routing you should check that
you have enough free disk space!

— 93 — Lund Institute of Technology

Chapter 6. Place & Route

Import to Silicon
Ensemble

Block and Cell
Placement

Floorplanning

Pad Placement

Signal Routing

Clock Tree
Generation and

Routing

Design Verification

Initialization Files
LEF/DEF
Verilog

Power Routing

Figure 6.1: Silicon Ensemble Design Flow

To start SE go to the cadence work directory: cd NameofDirectory

Setup the SE environment with source

To view the SE manual type: openbook

Start SE graphical user interface with seultra -m=500&

and following actions will take place:

• 200 MB RAM will be allocated for the use of SE.

• A log file se.jnl will be created

• Commands in the initialization file se.ini will be run

• The SE GUI pops up and is ready to use

ElectroScience — 94 —

6.2. Starting Silicon Ensemble

Type seultra -h for more information.

— 95 — Lund Institute of Technology

Chapter 6. Place & Route

6.3 Import to SE

To create a database for your design the LEF files have to be imported to cre-
ate a physical and logical library. LEF files contain information on the target
technology, the cells and the pads. If memory cells are used the respective LEF
files have to be read as well. The import can be done by using the GUI.

⇒ Select File → Import → LEF
Import cmos035tech.lef (process parameters), MTC45000.lef, MTC45100.lef
(cells and pads) and memory.lef (custom memeory) in the given order and
terminate each import routine with ok.

The description of the memory and a netlist of the design in verilog format
needs to be imported to SE:
⇒ Select File → Import → Verilog
and browse for the memory verilog file memory.v. Repeat the same procedure
and import filter.v. Type the name of your top module under Verilog Top Mod-
ule. The name of the top module is created after the synthesis and can be quite
long as all the generics are included in the name. Set Compiled Verilog Output
Library to projdir, see Figure 6.2.

In the next step the supply pads definition file that specifies the names of
the different power pins is imported:
⇒ Select File → Import → DEF
and browse for the supplyPads.def file.
Such files contains the minimum set and a few additional supply pads. All the
files required to start the SE design flow have now been imported.

⇒ Type save design ”loaded”;
in the command line of the SE GUI.

ElectroScience — 96 —

6.4. Creating a mac file

Figure 6.2: Import of the netlist in verilog format

6.4 Creating a mac file

Instead of using the GUI to import the data, a script file can be executed to
perform the same operations. All the instructions needed to set up such a script
file can be found in se∗.jnl. The *.jnl is a screen dump of the report window.
If the structure of a script file and the SE design flow is understood, script files
can be more than a competitive alternative to the GUI. If parameters needs
to be changed it is more convenient to do the changes in the script file rather
than doing the changes via the GUI. For future designs the script files can be
easily modified and the time needed to do the place and route job is significantly
reduced. Furthermore, a complete mac file serves as documentation and makes
it possible to repeat the flow exactly.

⇒ Open a new file, e.g. 1 verilogin.mac, with an editor, e.g emacs. Scan
se.jnl for the instructions that have been carried out with the GUI to load the
LEF, Verilog and DEF files. Paste the instructions in your newly generated file.
You script file may look as follows:

— 97 — Lund Institute of Technology

Chapter 6. Place & Route

##-- Import Library Data ##--
FINPUT LEF F LEF/cmos035tech.lef;
INPUT LEF F LEF/MTC45000.lef ;
INPUT LEF F LEF/MTC45100.lef ;
INPUT LEF F LEF/memory.lef;
##-- your design.
INPUT VERILOG FILE "/../memory.v"; LIB "cds_vbin" REFLIB "MTC45000 MTC45100
cds_vbin";
INPUT VERILOG FILE "/../your_design.v"; LIB "projdir" REFLIB "MTC45000 MTC45100
cds_vbin";
DESIGN "projdir.your_design:hdl" ;
INPUT DEF F DEF/supplyPads.def ;
SAVE DESIGN "LOADED" ;
FLOAD DESIGN "LOADED";

Change the first command (in your mac file) INPUT to FINPUT. The dif-
ference between these commands is that it is possible to add data to an existing
library with INPUT but not with FINPUT. However, as SE provides a huge set
of commands, are variations in commands that result in the same design task
possible.

⇒ Select File → Execute → 1 verilogin.mac
All the necessary files have been imported as it has been equivalently done

with the GUI.

ElectroScience — 98 —

6.5. Floorplanning

6.5 Floorplanning

The floorplanning is done by using a combination of automatic functions pro-
vided with the GUI in combination with modifications done by the user, see
Figure 6.3. By Initialize Floorplan following actions will take place:

• A starting floorplan is created by an estimate of the required layout.

• Global and detailed routing grids are created.

• The core rows are created

• Sites for corner cells are created if necessary

⇒ Select Floorplan → Initialize Floorplan and Figure 6.3 pops up.

In Figure 6.3 the design statistics such as Number of Cells, IO’s, Nets is
provided by SE. The aspect ratio is set to one by default, which is square.

The distance of the IO to the core needs to be set, e.g. 150µ in both cases.
The distance has to be large enough to leave room to route power and ground
wires.
⇒ Select Flip Every other row and Abut Rows to create rows where VDD and
GND alternates. Set the value for Block Halo Per Side (distance between blocks
and rows) to 30µ for this design. The calculate button describes the floorplan
in terms of number of rows, row utilization, chip area etc., before creating the
floorplan. The floorplan, as described in Expected Results, will be created by
confirming your settings with apply or ok.

Figure 6.3: Initialize Floorplan Dialog Window

— 99 — Lund Institute of Technology

Chapter 6. Place & Route

You can try different setting, e.g. IO to core distance, and observe how the
floorplan changes. Before continuing in the design flow return to your initial
settings for the floorplan. A floorplan and a memory cell are visible now, see
Figure 6.4.

Figure 6.4: Initialized floorplan with memory cell

ElectroScience — 100 —

6.6. Block and Cell Placement

6.6 Block and Cell Placement

The memory cell, currently placed on the lower left site, needs to be placed on
the core, see Figure 6.4.
⇒ Activate cell as selectable,
⇒ Select Move on the icon panel on the left hand side.
Drag the memory cell to one of the corners on the core.
Assure that the memory supply faces to one of the core borders (the memory
pins become visible if net is selected as visible). Thus the memory power ring
has only to be drawn on two or three sides of the memory. The coordinates for
cell orientation are illustrated in Figure 6.5.

⇒ Select Floorplan → Update Core Rows → ok.
The rows underneath the memory are cut and the rows surrounding the memory
are shortened (halo per side) to give space for the memory power ring.

⇒ Scan se.jnl for the instructions and paste them a new file, e.g. 2 floorplan.mac.

Next, the power pins and signal IO’s needs to be placed.
⇒ Select Place → IO’s → Random → ok.
⇒ Select Place → IO’s → I/O constraint file and select Write.

A file ioplace.ioc is generated that specifies the location/orientation of the
pads. The order of the cell names in the generated file is the placement order:
Left → right in the top and bottom rows and bottom → top in the left and
right rows.
⇒ Select Edit if you want to do changes in the pad placement. The names of
the IO’s as specified in the vhdl code are listed with their respective net name
in the verilog file.
⇒ Finally, place the IO pads with ok.

The aim of placing the pads manually by using ioplace.ioc is to make your
ASIC fit better with surrounding blocks. However, by setting such constraints
it might be a much harder job for the router and some configurations might not
be routeable at all. As a rule of thumb: Place the supply pads evenly in the
center of each side of the chip. Interrupt a series of IO pads with pad supply to
obtain a better driving of the pads. The more supply pads the better. Avoid
core supply pads in the corners of the ASIC.

North FLPNorth South FLPSouth

Figure 6.5: Initialized floorplan with memory cell

— 101 — Lund Institute of Technology

Chapter 6. Place & Route

The floorplan is now ready to insert the cells. The placement will be done
automatically (QPlace). Dependent on the design size this can take some time.
⇒ Select Place → Cell and ok
and the cells will be placed on the rows, see Figure 6.6.
⇒ Save you design as placed.
⇒ Scan se.jnl for the instructions carried out under block and cell placement
and paste them in a new file, e.g. 3 place.mac.

Figure 6.6: Closeup of the memory and placed cells

ElectroScience — 102 —

6.7. Power Routing

6.7 Power Routing

The power ring structures surrounding the core and the memory cell has to be
planned and routed. With Plan Power the following design steps are done:

• Power paths can be planned and modified before routing them

• Generation of power rings that are surrounding all blocks and cells

• Creates stripes over standard cell rows

• Connects created ring, stripes and power pads

To start Plan Power
⇒ SelectRoute → Plan Power → Add Rings.
Only vdd and gnd is needed as core supply. Delete other supplies in the dialog
window, see Figure 6.7. The order of the rings can be defined by the order of
the net names. The first net name is the left or bottom-most ring.
⇒ Select the type of metal you want to use for the power ring. To prevent
routing violations choose metal3, metal4, as at least metal1 is already reserved
for signal routing. Specify the width for the core supply ring and channel,
located between the memory and core, to 30µ and 10µ, respectively. If the IO
to core distance (defined during initialize floorplan) is to narrow you will get a
warning.

In order to improve the power supply throughout the rows, wires crossing
the core can be added.
⇒ Select Route → Plan Power → Add Stripes.
With the dialog box that pops up, see Figure 6.9, the following can be specified:

• layer for the stripes

• width and spacing

• number of stripes (equally spaced across the core)

Figure 6.7: Dialog box for Add Rings

— 103 — Lund Institute of Technology

Chapter 6. Place & Route

Figure 6.8: Core with power rings

To create stripes across the core you may use following parameters:
layer metal4
width 5.000
spacing 1.000
mode all
Set to Set spacing 100.000

The strips are only generated to the edge of the core and will be connected
later to the power rings.
⇒ Scan se.jnl for the instructions carried out during power routing and paste
them in a new file, e.g. 4 powerroute.mac.

ElectroScience — 104 —

6.7. Power Routing

Figure 6.9: Dialog box for Add Stripes

Filling the gaps between the IO pads

The gaps between the the IO pads needs to be closed to maintain continuity in
the power supply ring. This can be done by inserting fillercells (dummy-cells)
in the IO ring, see Figure 6.10.
⇒ Select Place → FillerCells → AddCells
to open the dialog box. Fill in the Model as IOFILLER64 and the prefix as
FP64.
⇒ Select North, Flip North, South, Flip South under Placement, see Figure 6.11.
Iterate this procedure with narrower filler cells (32,16,8,4,2,1). The different
filler cells can be found in MTC45100.lef. Observe how the gaps between the
IO pads are vanishing.

⇒ Scan se.jnl for the instructions and paste them in a script file.
It is recommended to save the commands for the filler cells in a separate script
file, e.g. IOdummys.mac, as the script can easily be reused in the AMIS 0.35
CMOS technology. You only need to set the area parameter to a rather big
value to make it applicable for future designs.

— 105 — Lund Institute of Technology

Chapter 6. Place & Route

IO IO IO IOIO IO

IO IO IO IOIO IO

IOcell IOcell IOcell IOcell

IO IO IO IOIO IO

IOcell IOcell IOcell IOcell

text

text

text

text

vdd

gnd

Filler
cell

Filler
cell

text

text

vdd

gnd

Before placement

After placement: empty
cells result in interruption
of the supplies

Filler cells result in
continuous supply lines

Figure 6.10: Adding Filler Cells

6.8 Connecting Rings

To connect the rings use the Connect Rings command. The following is com-
pleted with the Connect Ring command:

• Connections between IO power pins within IO rows

• Connections between CORE IO ring wires and the IO power pins

• Connections between stripes and core rings

• Connections between block power pins and the core IO wires

⇒ Select Route → Connect Ring
Assure that Stripe, Block, All Ports, IO Pad, IO Ring, Follow Pins are selected.
All the supplies are now connected, see Figure 6.12.
⇒ Save the design as connected.

⇒ Scan se.jnl for the instructions carried out during connecting the rings
and paste them in a script file, e.g 5 connectrings.mac.

Export your design as b4CT.def.
⇒ File → Export → DEF

ElectroScience — 106 —

6.9. Clock Tree Generation

Figure 6.11: IO Filler Cell Window

6.9 Clock Tree Generation

As an optional tool to SE comes a clock-tree generator (CT-Gen). It can be
controlled with the GUI or as a stand-alone tool. We will use CT-gen as a
stand-alone tool. You need to export your design as b4CT.def before generat-
ing the clock tree.

It is recommended to route the clock net only after all the core cells are
connected to the supplies as eventual routing violations might be prevented.

With the use of data from your DEF file CT-Gen produces clock tree(s),
computes wire estimates and inserts buffers to reduce clock skew. The input
DEF file must be fully and legally placed. The output of CT-Gen is a fully
placed netlist with new components such as buffers and inverters.

CT-Gen provides following features:

• Construction of an optimized clock tree.

• Minimizes skew.

• Produces code for Silicon Assemble router.

• Controls buffer and inverter selection

Following constraints for the clock tree need to be defined before using CT-
Gen:

• Clock root.

• trise and tfall of the waveform.

• Minimum/maximum insertion from clock root to any leaf

• Maximum skew between insertion delay and any leaf pin

— 107 — Lund Institute of Technology

Chapter 6. Place & Route

Figure 6.12: Closeup of the layout after the Connect Ring command

⇒ Open the file ctgen.constrainsts and set the constraints (see the comments
for explanation). In the ctgen.commands parameters such as the input LEF file,
supply definitions need to be set.

The clock generator tool uses the library CTGEN (defined in ctgen.commands)
as work library.
⇒ Delete all the files in CTGEN that may remain from previous designs with
\rm -r CTGEN/.

⇒ Start CT-Gen with ctgentool ctgen.commands

If the the clock generation was successful, a number of report files will be
produced in CTGEN/rpt. The report files are of the syntax <stage>.<type>
where <stage> is one of

• initial: without modifications.

• clock: after the clock tree has been added.

• final: when the clock tree components are placed correctly.

and <type> is one of

• analysis: complete description of best and worst path found.

• timing: the same without the details.

• trace: describes the clock path/tree with its components.

• violations: lists any violations against the given constraints.

The DEF file generated with CT-Gen needs to be loaded to SE. However,
the technology and memory LEF files needs to be imported first.

⇒ Open the verilogin.mac and paste the instructions in the SE command
line.

ElectroScience — 108 —

6.10. Filler Cells

6.10 Filler Cells

The row utilization as calculated during floorplan initialization is visible on the
floorplan. The red gaps between the cells need to be closed to avoid design rule
violations. By placing filler cells continuity is maintained in the rows. Further-
more, substrate biasing is improved by filler cells substrate connections.

⇒ Select File → Import → DEF and select afterCT.def
⇒ Select Place → FillerCells → AddCells
to open the dialog box. Fill in the Model as FILLERCELL16 and the prefix
as FC16. Select North, Flip North, South, Flip South under Placement, see
Figure 6.13.

⇒ Open a new file, e.g 6 coredummy.mac and scan se.jnl for the place filler
cell command. Paste the command in your newly generated file. Iterate this
procedure and change the width of the filler cells (8,4,2,). The different filler
cells can be found in MTC45000.lef.

!With increased area in your 6 coredummy.mac file such file can
be reused in other designs!

Figure 6.13: Core Filler Cell Window

— 109 — Lund Institute of Technology

Chapter 6. Place & Route

6.11 Clock and Signal Routing

For final routing the Envisia Ultra Router (WRoute) is used. WRoute is
included in the SE package and can be used with the GUI or as stand-alone
tool. The benefits of WRoute are:

• 3 to 20 times faster than GRoute/FRoute

• Timing driven global and final routing

• Automatic search and repair in final routing

• Supports prerouted nets

• Final clean up

WRoute requires a lot of memory. If it crashes decrease memory allocation
for SE as WRoute is run outside SE and thus will get more memory. !It is
recommended to route the clock before routing the remaining signals (shortest
wiring possible)!

⇒ Select Route → Clock route. Assure that ALL is selected and proceed
with ok

To start the final routing
⇒ Select Route → WRoute to open the dialog box. Select Global and Final
Route and Auto Search and Repair.

⇒ Scan se.jnl for the instructions carried out during final routing the rings
and paste them in a script file, e.g 7 finalroute.mac.

If the final routing is done identify different parts of the ASIC.
⇒ Select nets as visible.
Choose one or several pins and find the clock signal. Trace the highlighted sig-
nal path and identify the cell where the net ends.

⇒ Select Edit → Find. Choose net as type. Specify the net name as: nxxxx∗.
The ∗ option ⇒ Selects every netname that starts with nxxx.
⇒ Select highlight and the entire clock tree becomes visible.

Scan the last lines in se.jnl for ”Total wire length” and ”Total number of
vias”.
⇒ Select Route → WRoute. Enable Incremental Final Route.
⇒ Select Options and enable Optimize Wire Length. OK in both boxes.

After the improved routing is done find the new ”Total wire length” and
”Total number of vias”. Check if the design could be improved.

ElectroScience — 110 —

6.12. Verification and Tapeout

Figure 6.14: Closeup of the final layout

6.12 Verification and Tapeout

As a last step in the SE design you may test if the place and route process went
smoothly. To check if there are any unconnected pins or routing violations
⇒ Select Verify → Connectivity.
Assure that Types and Nets are set to ALL.

If no errors are found the design is ready for tapeout.

Tapeout files

The finished design needs to be saved as DEF or as GDS II format. However,
for tapeout, the manufacturer requests the GDS II format.

⇒ Select File → Export → GDS II.

⇒ Select a name of the GDS-II file and a name of the Report file.
A map-file is used to translate the design to GDS II.
⇒ Choose the map-file cmos035gds2.map and terminate with OK.

The GDS II file is ready to send to the manufacturer. The manufacturer
replaces the cell abstracts with layout cells.

— 111 — Lund Institute of Technology

Chapter 6. Place & Route

6.13 Acknowledgements

Thanks to Stefan Molund for setting up a system for our needs. Thanks to
Shousheng He, Anders Berkemann, Fredrik Kristensen and Zhan Guo for con-
tributing with their experience and knowledge.

ElectroScience — 112 —

Chapter 7

Optimization strategies for
power

7.1 Sources of power consumption

Two major sources of power consumption are considered: Dynamic and static
power. Dynamic power is dissipated when a circuit is active, that is, the voltage
on a net changes due to changes at the input. However, transitions on a cell
input do not necessarily result in a logic transition at the output. Hence, one
further distinguishes between switching and internal power consumption. On
the other hand, static power is considered to be consumed when the circuit
is inactive, that is, not switching. As technology is scaled down, static power
consumption starts to be the major part of the power consumption even during
switching.

7.1.1 Dynamic power consumption

Switching power

The switching power is due to charging and discharging of capacitances and can
be described by superposition of the individual switching power contributed by
every node in a design. The load capacitance as seen by a cell is composed of net
and gate capacitances on the driving output. Since charging and discharging
are result of logic transitions, the switching power increases as logic transitions
increase.

Internal power

The internal power consumption is due to voltage changes on nets that are
internal to a cell. Here, short-circuit power is the major contributor and often
used synonymously. This power is consumed during a momentary short caused
by a non-perfect signal transition, that is, nonzero rise or fall time. In a static
CMOS cell, both P and N transistors are conducting simultaneously for a short
time, providing a direct path between Vdd and ground.

Internal power consumption of a cell is said to be both state and path de-
pendent. Clearly, a complex cell can have several levels of logic and hence

— 113 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

transitions on different input pins will consume a different amount of internal
power, depending on the number of logic levels that are affected by the tran-
sition, as exemplified in Figure 7.1. Input A and D can each cause an output
transition at Z. However, D only affects one level of logic, whereas A affects all
three, thus consuming more internal power.

Z

A
B

D

C

Figure 7.1: Cell with different logic depths.

A typical example for a cell with state dependent internal power is a RAM
cell. It consumes a different amount of internal power, depending on whether it
is in read or write mode.

7.1.2 Static power consumption

In digital CMOS technology, static power consumption is caused by leakage
through the transistors. In [8], six different types of leakage are described.
The current I1 in Figure 7.2 comes from the pn-junction reverse-bias, I2 is a
combination of subthreshold current and channel punchthrough current, I3 is
gain-induced drain leakage and finally, I4 is a combination of oxide tunnelling
current and gate current due to hot-carrier injection.

In CMOS circuits currently used today, the major sources of leakage are the
subthreshold current (part of I2) and gate leakage due to oxide tunnelling (part
of I4). In future CMOS technologies, the gain-induced drain leakage (I3), and
the pn-junction leakage (I1) may also become important factors.

For submicron CMOS technology, the supply voltage is decreased to reduce
electrical field strengths and power dissipation [9]. Since the ratio of supply volt-
age to threshold voltage affects the circuit delay, the threshold voltage is also
decreased to sustain an improvement in gate delay for each new technology gen-
eration [8]. Leakage power due to subthreshold current increases exponentially
with threshold voltage scaling [8], which makes leakage increasingly trouble-
some. Traditionally, leakage has been a rather small contributor to the overall
power consumption in digital circuits. However, the increase in static leakage
power cannot be ignored in CMOS circuits of today and will be an even greater
issue in the future.

7.2 Optimization

Where and when to apply power optimization strategies is simply answered,
as early as possible and at the highest possible abstraction level. Figure 7.3
shows that the attainable power savings are the greatest at system level and still
significant downto register transfer level (RTL)—before the design is committed
to a specific technology. However, the highest accuracy on a power estimate is at
gate and transistor level. Despite possible savings at higher abstraction levels,

ElectroScience — 114 —

7.2. Optimization

I1

I2
I3

I4
Gate Oxide

Gate

DrainSource

Figure 7.2: Leakage currents in a MOS transistor.

most IC’s are still developed at RTL due to the maturity of design, synthesis,
and verification flows that come along with it.

Figure 7.3: Power savings and accuracy attainable at different abstraction levels
[10].

RTL power estimation is usually fast and gives early answers to the ques-
tions:

• Which architecture consumes least power?

• Which module in a design is consuming the most power?

• Where is power being consumed within a given block?

Doing such an estimation does not introduce much overhead to your design flow
and should be carried out if power is a serious objective in your design, which is
usually true. Based on the obtained results, design modifications can be carried
out1. Following are some of the options that can be thought of.

7.2.1 Architecural issues—Pipelining and parallelization

The dynamic power consumption Pd for a CMOS design depends on the oper-
ating speed as

Pd ∝ CL · f · Vdd · Vswing ≈ CL · f · V 2
dd, (7.1)

where CL is the total capacitive load on the chip that is switched, Vdd is the
operating voltage, Vswing is the voltage swing, and f is the clock frequency. For
simplicity, it is assumed that the voltage swing is equal to Vdd.

1From our experience, RTL power estimation in Synopsys involves basically the same steps
as the more accurate gate-level estimation and will hence be neglected in favour of the latter.

— 115 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

Let freq be the frequency that is required at the output of a design to achieve
a desired throughput. Then, the architecture of the design will affect both freq

and thus the dynamic power consumption, see Figure 7.4 [11].

FF

FF

f = freq

(a)

FF

FF

FF

f = freq

(b)

FFFF

FF FF

f = freq/2

(c)

FF

FF

f = 2 · freq

MUX

(d)

Figure 7.4: HW mapped (a), pipelined (b), parallel (c), and time shared (d)
implementation.

The hardware mapped and pipelined designs both produce one sample per
clock cycle and hence have f equal to the required frequency freq. Note that
the pipelined design has a shorter critical path and can therefore reach a higher
maximum clock frequency. The parallel design produces two samples per clock
cycle and f can be reduced to freq/2, while the time shared design has to double
f to reach freq.

Comparing the hardware mapped and the parallel implementation, it seems
as if there is nothing to gain from a power perspective by decreasing f since
CL increases accordingly. However, with a lower clock frequency, Vdd can be
decreased since

f =
1
t

(7.2)

and

tpd ∝ CcritVdd

K(Vdd − Vt)α
, (7.3)

where tpd is the propagation delay, K and α are constants, Ccrit is the capacitive
load in the critical path, and Vt is the threshold voltage. K, α, and Vt depend
on the silicon process. Note that α accounts for velocity saturation in processes
characterized by short channel devices. Consequently, a circuit designed for high

ElectroScience — 116 —

7.2. Optimization

speed can, when operated at low speed, reduce the power consumption below
that of a circuit only designed to operate at low speed.

As an example, consider the designs from Figure 7.4(a) and Figure 7.4(c).
The latter produces two samples each clock period and thus the frequency can
be halved while the original throughput is maintained. With (7.1) and (7.3)
and, for simplicity and rather traditional, Vt is assumed to be much smaller
than Vdd and α = 2, the dynamic power consumption is calculated as

fpar =
forg

2
. (7.4)

Hence, with (7.2) and (7.4)

tpar = 2 · torg. (7.5)

Let the capactive load of a multiplier, an adder, a register, and a multiplexer
be 24c, 3c, 1c, and 1c, respectively. Then, the total load of the original design
is CL,org = 56c and for the parallel design CL,par = 112c. The load along the
respective critical path is then Ccrit,org = 55c and Ccrit,par = 56c.

tpar ≈ Ccrit,parVdd

K(Vdd − Vt)2
≈ Ccrit,par

KVpar
=

56c

KVpar
(7.6)

torg ≈ Ccrit,orgVdd

K(Vdd − Vt)2
≈ Ccrit,org

KVorg
=

55c

KVorg
(7.7)

Substituting (7.6) and (7.7) into (7.5) yields

56c

KVpar
=

2 · 55c

KVorg
⇒ Vpar =

Vorg

1.96
, (7.8)

and finally, using (7.1),

Ppar

Porg
=

CL,parfparV
2
par

CL,orgforgV 2
org

=
112c

forg

2 (Vorg

1.96)2

56cforgV 2
org

≈ 0.26. (7.9)

The parallel design has the same throughput at approximately a quarter of
the original design’s power consumption and can achieve double throughput at
double power consumption. Note that the approximation Vt � Vdd becomes
too rough and unreliable as silicon processes shrink since Vt does not scale with
Vdd. Hence, the power savings will not be as large as in the presented example
for processes below 0.18µm. Also, α approaches numbers smaller than 2, for
example, between 1.3 and 1.5 for a 0.25µm process [12].

The drawback with the parallel design is that the amount of hardware is dou-
bled. In addition, if the design should be able to switch between high through-
put/power and low throughput/power mode during run time, an active power
controller will be required. To design a device with active power control will
increase the number of constraints on the design and add additional verification
time. A cell library that is characterized for multiple voltages is needed as well
as hardware to generate the voltage levels and logic to control it. However, it
is possible and an example of a commercial processor with active power control
is found in [13].

— 117 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

To insert additional pipeline stages in the original design has the same effect
as parallelizing, either the throughput is increased or the power consumption is
reduced. However, there are some differences worth noticing. First and most
important, the amount of additional hardware is normally much less than in
the parallel case since only some extra registers are needed. Secondly, whereas
parallelizing is only restricted by area, pipelining has an upper limit to the
number of pipeline stages that can be inserted. At some point there will be no
more combinational logic that can be separated by pipeline registers. Finally, for
pipelining to be really efficient the delay through each stage should be balanced
since frequency and voltage are proportional to the critical path. In addition,
pipelining increases latency, that is, the number of clock cycles from which data
is present at the input until the corresponding result is presented at the output.

7.2.2 Clock gating

When a design increases in size and functionality there is a great chance that
parts of the hardware are only used at certain times or in certain operation
modes. These blocks will consume switching power and contribute with unnec-
essary load to the clock tree, even though the result is unused. One simple way
to deal with this problem is to gate the clocks into these blocks, that is, turn
off the clocks. In addition to reducing the clock load it will prevent unneces-
sary switching activity since almost all hardware modules have registers at their
input.

gclk
clk

en

(a)

clk

en

gclk

(b)

Figure 7.5: A simple clock gate (a) and its timing diagram (b).

The simplest clock gate is implemented as an AND-gate, as shown in Fig-
ure 7.5(a). The timing diagram is shown in Figure 7.5(b). When the enable
signal en is low the gated clock is turned off. This design is simple but sensitive
to glitches, which must be avoided under all circumstances.

A safer, but larger, implementation is shown in Figure 7.6(a). Here, en is
latched in order to avoid transitions while the clock signal is high and glitches
on the output. To turn off the gated clock for one clock cycle, en is lowered at

ElectroScience — 118 —

7.2. Optimization

D
enl

G

Q

gclk

clk

en

(a)

clk

en

gclk

enl

(b)

Figure 7.6: A latched clock gate (a) and its timing diagram (b).

any time in the preceding clock cycle and then raised again in the next clock
cycle, as shown in Figure 7.6(b). This design is safer since the latch is only
transparent when the clock is zero keeping the output of the AND-gate at zero.

7.2.3 Operand isolation

Operand isolation, also called guarded evaluation [14], prevents unnecessary op-
erations to be performed. However, instead of halting the clock signal, datapath
signals are directly disabled and hence no new results are evaluated.

Traditionally, datapath operators are always active. Due to changing inputs,
they dissipate power even when the output of the operators is not used. In
a particular clock cycle, the datapath operator output is not used if it is an
unselected input to a multiplexer or if the datapath operator is an input to a
register that is currently disabled.

With the operand isolation approach, additional logic (AND or OR gates)
called isolation logic is inserted along with an activation signal to hold the inputs
of the data-path operators stable whenever their output is not used. Isolation
candidates can be identified in the HDL source by using a pragma annotation
or at the GTECH level by using commands in the synthesis script.

do_operand_isolation = true
read -f vhdl /simple.vhd
set_operand_isolation_style -logic or
set_operand_isolation_cell DW_MULT
set_operand_isolation_slack 5
/* define constraints */

— 119 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

compile

In Synopsys, operand isolation automatically builds isolation logic for the
identified operators. A rollback mechanism is also provided to remove the iso-
lation logic if you determine that the delay penalty is not acceptable.

D0

D1

S0

S1

Figure 7.7: Datapath operator and selection circuitry.

Consider the example from Figure 7.7. Here, the result from the datapath
operator is not used in further steps if S0=0 or if S1=1. By creating an activation
signal (AS) based on this observation, the inputs to the operator are kept stable,
see Figure 7.8.

D1

D0

AS

S0 S1

Figure 7.8: Operands isolated from the datapath operator.

For inputs that mostly stay at logic 1, use OR gates to create the operand
isolation since this holds the inputs to the operator at logic 1 during inactive
mode, minimizing switching activity at the transition from active to inactive
mode. Similarily, AND gates are used for inputs that mostly stay at logic 0.

Ideal candidates for operand isolation are arithmetic modules such as arith-
metic logical units (ALUs), adders, and multipliers that frequently perform
redundant computations.

7.2.4 Leakage power optimization

While the active power consumption varies with the workload and can be locally
eliminated using for instance clock gating, power consumption due to leakage
remains, as long as the power supply voltage is switched on. For burst mode
applications, such as mobile phones, a large part of the system is in idle mode
most of the time. This makes the energy consumed by leakage a large contributor
to the overall energy consumption and, thus, making simple saving schemes such
as clock gating less attractive.

One efficient and often-used method to combat leakage is to use dual or
variable threshold technologies [15, 16]. In a dual threshold technology, there

ElectroScience — 120 —

7.2. Optimization

are typically two versions of each digital gate, one with high threshold voltage
transistors for low power and one with low threshold voltage transistors for low
delay. Using low threshold devices only in timing critical paths can radically
decrease leakage currents both in standby and operational mode.

Due to transistor stacking in CMOS gates, the input pattern has great im-
pact on the leakage power. The leakage current may differ several orders of
magnitude for a simple CMOS gate depending on the input pattern [17]. Re-
duced leakage power is therefore achievable during idle mode depending on the
selected patterns for internal nodes.

In [18], a comparison is made between four different leakage reduction tech-
niques involving supply voltage scaling, increased channel length, stacking tran-
sistors, and reverse body bias. Increased channel length is a static design method
while stacking transistors, supply voltage scaling and reverse body bias are suit-
able as adaptive or reconfigurable power management methods. Results in [18]
indicate that reverse body bias is an efficient method to reduce leakage.

Supply voltage scaling directly affects leakage, making it a feasible technique
for power reductions. In [8], power consumption due to leakage is described as
Ileak · Vdd, and in [19], it is shown that the leakage current decreases when the
supply voltage is decreased.

Stacking transistors increases the resistance between supply and ground, and
thereby reduces both leakage current and maximum transistor current [8]. In
Figure 7.9(a), the potential Vm is higher than 0V due to the leakage current. The
increased potential at Vm makes the voltage between gate and source negative
for transistor T2, which reduces the leakage current. The voltages between bulk
and source, and between drain and source also change due to the stacking effect,
which also results in less leakage current [8].

Reverse body bias as well as increased channel length can be utilized to
increase the threshold voltage and thereby reduce leakage [8]. Reverse body bias
involves increasing the bulk potential for the PMOS transistors and decreasing
the bulk potential for the NMOS transistors, see Figure 7.9(b). A technique
using reverse body bias for standby power management is described in [20].

7.2.5 Beyond clock gating

With aggressive gate length scaling follows an excessive gate leakage current
that is due to very thin oxy-nitride gate dielectrics. Therefore, the static power
dissipation will rapidly increase with the development of the technology and
methods for power saving, such as clock gating, will cease to work.

A simple way to save power is to shut down a function block when it is not
used. This method is applicable if it can be predicted when a block is going to
be used again. This stems from the fact that the time to power up a block is in
the order of a few microseconds. This rather long time duration is due to the
risk of interference with other parts on a chip. A way to reduce the power-up
time and still save power is to just lower the voltage in a block when it is not
used. A disadvantage with these methods is that the block loses its information.
To retain this information some memory stages can be inserted in the block that
stores the state the block was in before it was shut down.

For handheld applications a low power dissipation is very important. There-
fore, special low power cell libraries has been developed for new technologies.
The difference with these cell libraries is that the oxy-nitride dielectrics are as

— 121 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

0V

0V

Vdd

Vm

T1

T2

(a)

Vdd

GND − V2

Vdd + V1

(b)

Figure 7.9: The stacking effect (a). Reverse body bias (b).

thick as in the previous technology. As an example, the 90 nm and the 130 nm
technology use oxy-nitride dielectrics with same thickness. The drawback with
this is that the performance with respect to speed will also be similar to the
previous technology.

Using the methods above to decrease the power dissipation of the block has
an increase of 5% to 20% in chip area of a block.

One can also predict that technologies have to be developed with high-κ gate
dielectrics to meet stringent gate leakage and performance requirements. Also,
the downscaling of technology causes the drain current in a transistor (Gain
Induced Drain Leakage) to increase to be in the same order of the gate current.
More information about future technology predictions, see [21].

7.3 Power estimation with Synopsys Power Com-
piler

This section tries to give some practical examples of how to carry out power
estimation using Synopsys PowerCompiler. First, a format that models dif-
ferent properties of a cell’s and a design’s behaviour is presented. Information
provided by a cell library should be briefly verified by inspecting the respective
files in order to be able to manually calculate the power consumption of a cell.

ElectroScience — 122 —

7.3. Power estimation with Synopsys Power Compiler

7.3.1 Switching Activity Interchange Format (SAIF)

In order to allow for power estimation and optimization there has to be input
in form of toggle rate and static probability data based on switching activity,
typically available through simulation. Here, the toggle rate is a measure of how
often a net, pin, or port went through either a 0 → 1 or a 1 → 0 transition. The
static probability is the probability that a signal is at a certain logic state. With
SAIF [22] data, DC can perform a more precise power estimation, for example,
modelling state and path dependent power consumption of cells. Generally,
there are two types of SAIF files: forward annotation and back annotation. The
former is provided as input to the simulator, the latter is generated by the
simulator as input to the following power estimation and optimization tool.

For RTL simulation, the forward annotation SAIF file contains directives
that determine which design elements are to be traced during simulation. These
directives are generated by the synthesis tool from the technology-independent
elaborated design. Furthermore, it lists synthesis invariant points (nets, ports)
and provides a mapping from RTL identifiers to synthesized gate level identi-
fiers (variables, signals). Following is the command that can be used from the
dc shell prompt.

dc_shell> rtl2saif -output rtl_fwd.saif -design <design_name>

For gate level simulation, the forward annotation SAIF file contains information
from the technology library about cells with state and/or path dependent power
models. The extra information provided results in more accurate estimates.

dc_shell> read -format db <library_name>.db
dc_shell> lib2saif -output <library_name>.saif <library_name>.db

Following is an example of a forward annotation SAIF file for gate level simula-
tion that takes state and path dependent information into account. Considered
is a 2-input XOR cell from the UMC 0.13µm process.

(MODULE "HDEXOR2DL"

(PORT

(Z

(COND !A2 RISE_FALL (IOPATH A1)

COND !A1 RISE_FALL (IOPATH A2)

COND A2 RISE_FALL (IOPATH A1)

COND A1 RISE_FALL (IOPATH A2))

)

)

(LEAKAGE

(COND (!A2 * !A1)

COND (A2 * !A1)

COND (!A2 * A1)

COND (A2 * A1)

COND_DEFAULT)

)

)

When a transition at output Z occurs, the simulator should determine which
path caused the transition and evaluate the associated state condition at the
input transition time. For example, if a transition at Z is caused by A1 and
the value of A2 was “0” at the time, the transition belonged to COND !A2
RISE FALL (IOPATH A1). In this example, all four possible outcomes can

— 123 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

be assigned different power values in the back annotation SAIF file. Also, the
leakage power section is divided into four outcomes for valid cell states and a
default outcome for cell states not covered by the aforementioned ones.

The back annotation SAIF file from the simulator includes the captured
switching activity based on the information and directives in the appropriate
forward annotation file. Switching activity can be divided into two categories,
non-glitching and glitching. The former is the basis of information about toggle
rate and static probability. This information usually yields reasonable analysis
and optimization results. To model glitching behaviour, a full-timing simulation
is required. Transport glitches (TG), for example, are extra transitions at the
output of a gate before the output signal settles to a steady state. They consume
the same amount of power as a normal toggle transition does and are an ideal
candidate for power optimization. Unbalanced logic often give rise to these kind
of glitches.

The second category of glitches is called inertial glitches (IG). Unlike TG,
their pulsewidth is smaller than a gate delay and would be filtered out if an
inertial delay algorithm were applied in the simulator. However, the number of
transitions is not enough to accurately estimate their power dissipation. There-
fore, the simulation tool provides a de-rating factor (IK) to scale the IG count
to an effective count of normal toggle transitions.

In a back annotated SAIF file there are timing and toggle attributes. The
former group includes:

• T0: Total time design object is in “0” state

• T1: Total time design object is in “1” state

• TX: Total time design object is in unkown “X” state

• TZ: Total time design object is in floating “Z” state

• TB: Total time design object is in bus contention (multiple drivers simul-
taneously driving “0” or “1”)

The toggle attributes can be summarized as:

• TC: Number of “0” to “1” and “1” to “0” transitions

• TG: Number of transport glitches

• IG: Number of inertial glitches

• IK: Inertial glitch de-rating factor

Following is an example of how state dependent timing attributes appear in the
back annotated file and how they are interpreted.

(COND (A*B*Y) (T1 1) (T0 8)

COND (!A*B*Y) (T1 1) (T0 8)

COND (A*!(B*C)) (T1 2) (T0 7)

COND B (T1 1) (T0 8)

COND C (T1 1) (T0 8)

COND_DEFAULT (T1 3) (T0 6))

ElectroScience — 124 —

7.3. Power estimation with Synopsys Power Compiler

D
E
F B

!A
*B

*Y

A
*B

*Y

D
E
F

D
E
F C

A
*!

(B
*C

)

A

B

C

Y

Figure 7.10: Simulated waveforms result in back-annotated SAIF data as listed
before.

The respective simulated waveforms are depicted in Figure 7.10. There are
9 cycles in total and for every condition defined, the number of cycles for which
this condition is fulfilled are counted.

Extending this, we list the back annotated SAIF-file that results from a gate
level simulation of a simple XOR gate in xor back.saif. Each net is modeled
with its timing and toggle attributes. From the simulation time tsim, the toggle
rates TR and static probabilities Pr{I}, are obtained according to

TR = TC/tsim (7.10)

and

Pr{I} = T1/tsim. (7.11)

This is the basic information needed to calculate switching and leakage power.

7.3.2 Information provided by the cell library

As an example, the standard cell library to UMC’s 0.13µm process is considered.
The information is bundled in [23]. Included are general definitions of base units,
operating conditions, and wire load models. Each cell’s behaviour is described
in conjunction with timing and power model templates. These templates use
weighted input transition times and output net capacitances as indeces into the
respective look-up tables that specify the energy per transition. Figure 7.11
shows an example of how the internal energy per transition is obtained using a
look-up table.

Considering a simple cell, this look-up is done for every input pin. The path
dependent power model distinguishes which state the pin is in and whether a
rising or falling transition occured. Furthermore, as indicated in the figure, an
extrapolation takes place if the exact index into the table is not available.

7.3.3 Calculating the power consumption

As a simple example, we consider a 2-input XOR cell. The information needed
to calculate the power consumption is in a file called HDEXOR2DL.rpt. Included
is the necessary wire load model and the cell description. In order to calculate

— 125 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

load cap.

Output

Energy/transition

Weighted average

input transition

time

z

y
x

0.20

0.56

0.82

0.67

10.2 30.8

65.942.4

69.1

Figure 7.11: Look-up table based internal energy calculation.

toggle rates and static probabilities of the nets, use the back annotated SAIF
file listed earlier in this section.

The total leakage power of a cell is determined by a superposition of the
probabilities of being in a certain state times the leakage power for this state.
Here you have to make use of the state dependent leakage power information
that is provided in the cell library.

Pleak =
N∑

i=1

Pr{I = i} · Pleak,i, (7.12)

where N = 2m is the number of combinations of m binary inputs and I =
[1 . . . 2m].

The switching power of a cell can be expressed as

Pswitch = 1/2 · TR

t.u.
· (Cwire + Cpin) · V 2

dd. (7.13)

Here, one has to take the load capacitance into account which is usually com-
prised of wire load and pin load. The factor 1/2 results from the fact that TR
accounts for both 0 → 1 and 1 → 0 transitions, but only half of them affect the
power consumption. Also, the number of transitions is counted on a per second
basis and hence one has to normalize TR to the default time unit (t.u.) of the
cell library, usually 1ns.

Based on these facts try to calculate both switching and leakage power of
the cell. The internal power is a lot more subtle to calculate since the tool’s
extrapolation algorithm is hard to track. For verification of your results, the
power estimation report is found in xor.rpt. Surely, one gets a feeling for the
amount of information that has to be processed to get an estimate of a design’s
power consumption.

7.4 Power-aware design flow at the gate level

After having introduced the basic concepts of power estimation, it is time to
conclude with a complete design flow. Figure 7.12 shows an example of a design

ElectroScience — 126 —

7.4. Power-aware design flow at the gate level

flow that estimates and optimizes power consumption of a digital design at the
gate level.

Analyze, elaborate

clock gating
RTL, GTECH

Compile

area, timing constr.

Gate-level sim.

capture toggle info
SDPD info

netlist (.v), delay (.sdf)

BW-SAIF FW-SAIFBack-

annotate

Report

power

Compile -incr

power constr.

Gate-level sim.

capture toggle info
SDPD info

netlist (.v), delay (.sdf)

BW-SAIF FW-SAIFBack-

annotate

Report

power

Figure 7.12: Gate-level power estimation and optimization flow.

After RTL clock gating is completed, timing and area constraints are set
to the design. In most cases clock gates have to be inserted manually in the
design together with control logic but in some cases there are tools that can
perform automatic low level clock gating. These tools automatically find flip-
flops that have an enable control and exchange these to a clock gate and standard
flip-flops. Figure 7.13(a) shows a flip-flop with enable input. These flip-flops
are implemented with a feedback from output to input and a multiplexer that
selects if the previous output is to be kept or a new input is to be accepted,
see Figure 7.13(b). Figure 7.14 shows the result of automatic clock gating on a
bank of enable flip-flops. Unlike manual clock gating, no extra control signals
are needed since all control logic is already there.

Compiling the elaborated RTL or GTECH description results in a gate level
netlist on which you can annotate switching activity from a back annotation file
(BW-SAIF). This file is created by a gate-level simulator, preferably nc-verilog
or vcs since these simulators make use of state and path dependent information
provided by the cell library (FW-SAIF). Note that MS can not make use of
this information and hence the power estimates based on the toggle files from
this simulator will be inferior. Now, the switching activity is annotated and
power constraints are set to the design. An incremental compile will then try to
optimize the netlist based on the premises it was provided with. If the design
was fully annotated, Synopsys claims that the power estimates lie within 10-25%
of SPICE accuracy.

— 127 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

clk

D Q
out

en

in

(a)

clk

en

D Q
out

in

(b)

Figure 7.13: An enable flip-flop (a) and its implementation in Synopsys (b).

D Q
outin

gclk

en
clk

clock
gate

Figure 7.14: The result of automatic clock gating on a bank of enable flip-flops.

Optimization takes place by evaluating optimization moves and their impact
on the overall cost function. There is a predefined optimization priority that
can be changed. By default, design rule constraints set by the technology li-
brary, for example, max fanout, max transition, and max capacitance, are the
most important ones. Then, timing is the next critical issue. Following are in
descending order dynamic power, leakage power, and area constraints.

Generally, a positive timing slack will leave more possibilities for optimiza-
tion whereas already tight timing constraints might not result in any power
improvement at all. Also, diverse cell libraries make life easier for the optimiza-
tion tool. Furthermore, designs dominated by sequential logic often achieve less
power reduction since different sequential cells tend to have less variation in
power than combinational cells.

7.5 Scripts

This section provides a short description on scripts for DC and Cadence nc-
verilog that deal with power estimation and optimization. These scripts can
be downloaded from [?]. A general knowledge about UNIX and DC is assumed.
The scripts are written for the UMC 0.13 µm technology. No responsibility is
taken for the consequences of using these scripts, although great care has been
taken to debug the scripts. All feedback is welcome.

7.5.1 Design flow

Figure 7.15 shows the design flow for the power optimization scripts, the names
of each script and environments they are executed in. Inputs are header.scr

ElectroScience — 128 —

7.5. Scripts

read hdl.scr

timing area.scr

Design Compiler

vhdl description header.scr

netlist (.v)

delay (.sdf)

nc-verilog

compile.ncverilog

switching activity (.saif)

Design Compiler

power opt.scr

nc-verilog

power optimized

netlist (.v)

Design Compiler

final power.scr

new switching activity (.saif)

umc013.saif

first
power report

final
power report

netlist (.vhd)
delay (.sdf)

compile pwr.ncverilog

Figure 7.15: Design flow for power optimization with DC and nc-verilog.

and VHDL code. All information about the design and the target values for the
synthesis is listed in header.scr.

The first step in the optimization takes place in DC. Here the design is be
read, elaborated, and synthesized. Timing and area constraints are set in this
stage and DC will look for places to insert clock gates. The result is an initial
VERILOG netlist together with a standard delay format (SDF) file that will be
used in nc-verilog to estimate switching activity in each node of the design.
This is carried out by running

ncverilog -f compile.ncverilog

Then, the switching activity report is used to estimate the power consumption
in DC (power opt.scr). All important results are collected in a report file.
With this results as a guideline, power constraints on both dynamic and leakage
power can be set in the header.scr. An incremental synthesis is performed
and the result, a power optimized netlist, is used in nc-verilog to collect the
new switching activity by running

— 129 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

ncverilog -f compile_pwr.ncverilog

The remaining step is to estimate the final power consumption and collect
all important information in a report file. This is performed in DC with
final pwr.scr. The final output are a VHDL netlist, an SDF file, and a report
file with the final power consumption estimate. To create an SDF file for VHDL
the write.sdf script has to be executed in PrimeTime due to some naming
conventions problems between the UMC libraries and the DC SDF file. Then,
this netlist and the SDF file can be used to perform a post synthesis simulation
for verification purposes in MS.

7.5.2 Patches

The aim was to generate a fully automatic design flow that could be executed
with one script and where all parameters are set in one constraint file. However,
since more than one program is involved there are some parts of the scripts that
have to be patched manually, which files and what to change are listed below.
In addition to run an automated flow a file hierarchy as shown in Figure 7.16
must be provided. The complete structure with all script files and an example
can be downloaded from [?].

PROJECT

sim

source setup.ncverilog

compile.ncverilog

compile pwr.ncverilog

syn vhdl

vhdl filessource setup.syn

all.scr
read hdl.scr

timing area.scr
power opt.scr
final pwr.scr
report.scr

write sdf.scr
header.scr

stimuli

Figure 7.16: The required file hierarchy for an automated design flow.

To initialize the project, create the hierarchy shown in Figure 7.16. Then
source setup.syn in the syn folder and source setup.ncverilog in the sim
folder. Then, open the header.scr and fill in search paths, constraints, and
design names. Finally, the parts that have to be manually patched are shown
in Table 7.1.

If the above procedure is performed correctly, the all.scr script executed
in the syn folder will perform all steps in the design flow and the result can be
read in the report files. However, it is strongly recommended that the scripts
are executed one at a time and the observed results are correct, at least once
before the all.scr script is executed.

ElectroScience — 130 —

7.6. Commands in DC

Table 7.1: Manual patches.
File Parameter Values and example
write.sdf design data base db/ALU W L8 PWR.db
write.sdf result file name netlist/ALU W L8 PWR.sdf
verilog tb file name must be tb ”MODULE”.v, e.g., tb ALU.v
verilog tb Design under test must be labeled as dut
verilog tb inputs and parameters see the example, tb ALU.v
compile.ncverilog tb name tb ”MODULE”.v, e.g., tb ALU.v
compile.ncverilog netlist name ../syn/netlists/ALU W L8.v
compile pwr.ncverilog tb name tb ”MODULE”.v, e.g., tb ALU.v
compile pwr.ncverilog netlist name ../syn/netlists/ALU W L8 PWR.v

7.6 Commands in DC

Some commands that are frequently used in DC and nc-verilog for power
optimization are briefly explained in this section. It is assumed that the reader
already has basic knowledge about common commands in DC. For a complete
explanation use the man command in dc shell, for example,

dc_shell> man <command_name>

To get a glimpse of how many commands there are, feel free to type:

dc_shell> list -commands

For a complete explanation of the commands in nc-verilog, type sold and look
in the Power Management/Power Compiler reference manual/Using Verilog.

7.6.1 Some useful DC commands

This section is an excerpt of the commands that appear in the power estimation
scripts.

Clock gating

set clock gating style -sequential cell latch -minimum bitwidth 3
Description: Tells DC to use latch based clock gates if it finds enable registers
that are at least -minimum bitwidth bits wide when elaborating.
Warning: Use clock gates with latch to avoid glitch sensitivity. Might cause
timing errors in DC, see also set false path.

elaborate ALU -lib WORK -update -gate clock
Description: Elaborates the design and looks for places to insert clock gates.

set false path -to find(-flat, -hierarchy, pin "latch/D")
Description: Tells DC to NOT perform timing checks on the enable signal in
clock gates. DC might otherwise insert one clock cycle of delays on the enable
signal.
Warning: Will only function correct if the latches in the clock gates are the
only latches in the design (this is normally the case).

— 131 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

report clock gating -hier -gating elements
Description: Reports all inserted clock gates.

Power estimation and optimization

link
Description: Links all used libraries to the current design.

power preserve rtl hier names=true
Description: Preserves RTL-hierarchy in RTL design.
Warning: Must be set to true if rtl2saif is to be used.

rtl2saif
Description: Used to create a forward annotated SAIF file. This file is then
used in a simulation tool to capture switching activity.
Warning: Only necessary if power estimation is performed on RTL. The for-
ward SAIF file for gate-level simulation is provided by the technology library
(lib2saif).

set max dynamic power 8 mW
set max leakage power 20 uW
Description: Sets target values for power optimization.

compile -incremental
Description: Will only try to solve issues due to new constraints set on an
already compiled design. Used to recompile the design after power constraints
are specified.
Warning: Must be used if a second compile is performed on the same design.

report power -analysis medium -hier -hier level 3 >> REPORT FILE
Description: Reports power consumption in the design and lists it for each
module down to the third hierarchy level.

reset switching activity -all
read saif -input "backward.saif" -instance "tb ALU/dut" -unit base ns
Description: Removes previously annotated switching activity and reads new
switching information from the backward.saif file into the design. This in-
formation is used to estimate power consumption. See also the nc-verilog
command toggle report.

Miscellaneous commands

compile -boundary optimization
Description: Will optimize across all hierarchy levels.

report area > REPORT FILE
report timing >> REPORT FILE
report constraint >> REPORT FILE
report design >> REPORT FILE
report reference >> REPORT FILE
report routability >> REPORT FILE
report port >> REPORT FILE

ElectroScience — 132 —

7.6. Commands in DC

report clock gating -hier -gating elements >> REPORT FILE
report saif -flat -missing >> REPORT FILE
report power -analysis medium -hier -hier level 3 >> REPORT FILE
Description: Reports a lot of useful information and store it in REPORT FILE.

change names -rules vhdl -hierarchy
write -format vhdl -hierarchy -output "netlist/ALU syntesized.vhd"
Description: Change names to match with current db and save the netlist as
in vhdl-format. change names is used since DC sometimes change names on
nets and ports.
Warning: Will not fix all names for vhdl-format. Therefore, do not be sur-
prised about all the warnings.

write sdf -version 1.0 "ALU.sdf"
Description: Writes information about timing and delay between all pins in
the design. This file is used to perform a more accurate simulation of the netlist.

set register type -exact -flip flop HDSDFPQ1
Description: Replaces all registers with the specific register HDSFPQ1.

design list = find (design, "*", -hierarchy)
design list = design list + current design
foreach (de, design list) {

current design de
cell list = find (cell,"*plus*")
set implementation "DW01 add/cla" cell list
remove unconnected ports cell list

}
Description: Finds all adders in the elaborated design and set them to be
implemented in carry-lookahead (CLA) style found in the DesignWare library
DW01.

7.6.2 nc-verilog

read lib saif("umce13h210t3 tc 120V 25C.saif");
Description: Will read the timing information specific to the technology li-
brary that is used.

sdf annotate("ALU.sdf", dut, ,"./sdf.log");
Description: Will read the timing information specific to the design dut that
is to be simulated.

set toggle region(tb ALU.dut);
Description: Specifies the top level in the design, in this case the dut module.

toggle start();
Description: Specifies at what time toggle count will start, for example,

#50*CYCLE_TIME $toggle_start()

states that toggle count will begin after 50 clock cycles (CYCLE TIME is a
constant specified in the testbench).

— 133 — Lund Institute of Technology

Chapter 7. Optimization strategies for power

toggle stop();
Description: Specifies at what time toggle count will stop, for example,

#1000*CYCLE_TIME $toggle_stop()

states that toggle count will begin after 1000 clock cycles (CYCLE TIME is a
constant specified in the testbench).

toggle report("/backward.saif",1.0e-9,"tb ALU");
Description: Writes all information about switching activity for each pin and
net in the design to the file backward.saif, the time scale is nano seconds. This
file is used in DC to perform a more accurate power consumption estimate.

7.7 The ALU example

The power optimization scripts described in the previous section includes an
example design, an ALU. Figure 7.17 shows the ALU schematics where A and B
are inputs, Q is output, and ALU CTRL are the control signals, see Chapter ??
for more details. What follows is a short description of the effects of running
the scripts on the ALU design.

ALU OP

S

X

A

M

B

Q

R

Mux

R reg

Q reg

Alu

Shift

Figure 7.17: An Arithmetic Logical Unit (ALU).

The two enable flip-flops will be identified as candidates for clock gating and
exchanged with a clock gate and basic flip-flops without enable input. The ALU
will then be synthesized according to timing constraints, that is, the required
clock frequency, and an estimate of the power consumption is performed based
on the inputs in the stimuli file. Then, power constraints are specified and an
incremental synthesis is performed. Finally, the new design is power estimated
and the result is presented in a report file, the intermediate results from synthesis
are also available in a different report file for comparison purposes.

ElectroScience — 134 —

Chapter 8

Formal Verification

With the growing complexity and reduced time-to-market the biggest bottleneck
in digital hardware design is design verification. An insufficiently verified ASIC
design may contain hardware bugs that can cause expensive project delays when
they are discovered during software or system tests on the real hardware. The
growing complexity of ASIC designs has caused the time of verification through
simulation to increasing very much. Of this reason there is a huge demand to
find verification methods that are faster without reducing the coverage of the
verification.

One method that has matured and established it self in real life design flows
is formal verification methods. The formal verification methods can be described
as a group of mathematical methods used to prove or disprove properties of a
design. It has been shown that for a design of 20 to 25 million gates the veri-
fication time was reduced to less than a tenth of the verification time using a
simulation tool. In addition to being much faster than simulation, formal verifi-
cation techniques are also inherently more robust. It is therefore not necessary
for the designer to identify all corner cases and test each one with a set of test
vectors. A formal verification tool will automatically find all cases where a de-
sign does not meet the specifications. This means that it will find the difficult
corner case even if the designer has missed it.

An example that will make the difference between verification using simula-
tion and formal verification visible is the verification of a 32 bit shifter. To fully
verify the shifter block, 256 billion test vectors are needed where as with formal
verification methods only a mathematical equivalence verification is needed.

8.1 Concepts within Formal Verification

In Figure 8.1 the most important concepts in formal verification, and how they
relate to another is described.

Requirements and needs are more or less precisely formulated requirements
and expectations of a system. By requirements formalization, one arrives at a
formal specification, which gives precis requirements. The formal specification
is validated to make sure that it correctly captures the requirements and needs.

The real system is the actual design. The system is modelled to obtain a
mathematical description of how it works. The modelled description of the real

— 135 — Lund Institute of Technology

Chapter 8. Formal Verification

Requirements & Needs

Formal Specification

System Model

Real System

Requirements Formalisation Validation

VerificationFormal Construction

Modeling

Figure 8.1: The concepts in formal verification.

system is called the system model.
By formal verification one can prove or disprove that the system model

satisfies the requirements in the formal specification. Another possibility is to
use formal construction to create a system model which with certainty satisfies
the requirements.

8.1.1 Formal Specification

The formal specification gives an exact description of the system function. The
function of the formal specification is therefore to precisely describe the concepts
used when talking about the functionality of the system. It is also essential to
make certain that the formal specification correctly describes the functionality
of the system. This is done by validating the specification.

When a formal specification is generated by a tool it is important that the
formal specification correctly describes the behavior of the design. Since this is
an issue of the correctness of the tool used it is hard to have any control over it.
To increase the certainty, some designers uses two formal verification tools from
different vendors with the hope that the tools complement each other when it
comes to correctness.

8.1.2 The System Model

Since the formal specification is a mathematical description of what the sys-
tem should do, a mathematical description of what the system actually does is
needed. This description is called the system model.

Also when the system model is generated by a tool the correctness is an issue
and therefore the same procedure as for the tool generated formal specification
is used.

ElectroScience — 136 —

8.2. Areas of Use for Formal Verification Tools

8.1.3 Formal Verification

Formal verification means that using a mathematical proof it can be checked
with certainty whether the system (as described by the system model) satisfies
the requirements (as expressed by the formal specification).

Formal verification differs from testing in that it guarantees that the system
acts correctly in every case. When relying on testing there is no guarantee that
the system does not behave incorrectly in a case which has not been tested. A
precondition for meaningful verification is, of course, that the system model and
the formal specifications correctly capture the properties of the system and the
requirements, respectively.

A successful formal verification does not imply that testing is superfluous
since every step in the system development can not be treated formally. What
the formal verification will substantially reduced is the amount of testing, and
above all reduce the amount of debugging.

8.1.4 Formal System Construction

The feasibility of successful verification depends to a major extent on how the
system is constructed. The principle of designing for testability is most certainly
valid when formal methods are to be used. It is often difficult to verify an
existing hardware system already designed and constructed using traditional
methods.

Instead of developing the system with traditional methods and then verify-
ing it, the system can be developed using a formal construction process (often
referred to as synthesis of the system). In general, formal design and construc-
tion is therefore preferable to applying formal verification on top of a traditional
system development process.

8.2 Areas of Use for Formal Verification Tools

There are two main kinds of usage for formal verification tools namely, model
checking and equivalence checking, which is used in different stages in the design
flow.

8.2.1 Model Checking

When the formal verification tool is used as a model checker design specifications
are translated into a set of properties described in a formal language. The design
is then mathematically verified for consistency with these properties. This kind
of verification is often used to verify RTL code before synthesis, where the
designer does not have time to wait for lengthy simulation runs during each
design iteration.

8.2.2 Equivalence Checking

When the formal verification tool is used as an equivalence checker the tool
compares two design descriptions and verifies that they have the same behavior.
In this case the formal specification and the system model is automatically
generated by the tool. This kind of verification is often used to compare two

— 137 — Lund Institute of Technology

Chapter 8. Formal Verification

versions of RTL code to ensure that an optimization has not changed behavior
of the design, or it can compare two netlists to ensure that the insertion of a
scan chain or other test logic has not ruined the original behavior of the design.

8.2.3 Limitations in Formal Verification Tools

With formal verification methods only functionality checks of a design can be
done. To cover delay problems, timing problems and sequencing problems in a
designspecial verificatin tools has to be used.

In formal verification tools as in synthesize tools the same class of algorithms
is used. To reduce the risk of double error it is therefore important to use
independent tools. Often secured by using tools from different vendors.

In an asynchronous circuit designs formal verification methods are not usable
since formal verification methods can not handle non sequential circuit designs.

8.3 Other Methods to Decrease Simulation Time

8.3.1 Running the simulation in a cluster of several com-
puters

The simulation is divided up on several computers in a network. To be able to
do this the simulation tool used must have this possibility.

8.3.2 ASIC-emulators

The ASIC-emulators is mainly used to start software development earlier but
can also be used as a hardware simulation tool. A feature in ASIC-emulators
that makes hardware simulation easier is that the emulator can be compiled in
such a way so that nodes in the design is visible to an desirable extent.

8.3.3 FPGA-Prototypes

As for the ASIC-emulator the FPGA-prototypes is mainly used for software de-
velopment but can also be used for hardware simulation. The FPGA-prototypes
has some limitation when it comes to imitate designs on chip. The penalty of
these limitations for FPGA-prototypes is mainly that one has to adjust the de-
sign methodology to these limitations. Example of limitations is that FPGA’s
are developed for a certain type of applications which sets the architecture of the
FPGA. Therefore when implementing an ASIC-design on an FPGA it is fairly
often that the ASIC-architecture not agrees with the architecture of the FPGA.
Limitations in development tools for FPGA’s can also give some problems since
they are not so advanced as development tools for ASIC’s. Despite the limita-
tions with FPGA’s, it is one of the most preferred methods when simulating a
hardware design.

8.4 Future

Reliability of formal verification tool has increased very much since the tools
become commonly used for ASIC-verification. The reliability will properly in-

ElectroScience — 138 —

8.5. References

crease even more in the future and reduce the limitations.
A process in constant progress is to move hardware design to a higher ab-

straction level. The need of this comes from the desire to reduce time-to-market.
Formal methods has shown that they apply very well on the next level of ab-
straction that is the system level. Hence, it can be expected that in new tools
formal methods will be more common.

8.5 References

http://www.l4i.se/E_form.htm
http://www.edtnscandinavia.com/story/OEG20010403S0006
http://www.hardi.com/eda-tools/literature/Formell_verifiering_i_praktiken_1.pdf
http://www.hardi.se/eda-tools/why_formal_verification.htm
http://www.mentor.com/formalpro/css.html, click on Alcatel, Emmanuel Ligeon.

— 139 — Lund Institute of Technology

ElectroScience — 140 —

Chapter 9

Multiple Supply Voltages

Energy and power consumption are important factors in the design of integrated
hardware. To make the battery in a hand-held device, such as a PDA or a
cellular phone to last as long as possible, energy stored in the battery must
be used efficiently. Furthermore, limiting the on-chip power consumption is
important due to increased production costs for cooling arrangements.

For the past decades, the technology development has followed the predic-
tions by Gordon Moore in “Moore’s law”. The original version of “Moore’s
law” was an observation that the number of components on integrated circuits
doubles every 12 months [24]. Later, “Moore’s law” has been revised to a
factor two improvement every 24 months, and a prediction of doubled clock fre-
quency every 24 months has also been added [25,26]. If the increased computing
speed and packing density of modern technologies is to result in faster and more
complex chips, new methods must be developed to handle power consumption.
Power management has therefore gained much attention both in industry and
in universities.

Active power consumption due to capacitive switching is traditionally re-
garded as the main source of power consumption in digital design. However,
reaching deep submicron technologies also makes it necessary to take transistor
leakage into account, since it causes an increasing power consumption in each
technology generation [27]. Figure 9.1 shows the development in active and
leakage power [27]. If the trend shown in Figure 9.1 continues, the active power
consumption will soon be overtaken by the leakage power.

While the active power consumption varies with the workload, and can be
locally eliminated using for instance clock gating, power consumption due to
leakage remains, as long as the power supply voltage is switched on. For burst
mode applications, such as mobile phones, a large part of the system is in idle
mode most of the time. This makes the energy consumed by leakage a large
contributor to the overall energy consumption and, thus, making simple saving
schemes such as clock gating less attractive.

Reducing the power supply voltage is an efficient method to reduce all types
of power consumption (due to switching, short circuit, and leakage) [28]. How-
ever, reducing the power supply voltage for an entire chip might not be possible
due to performance constraints. Components of an ASIC or a microprocessor
have different requirements on power supply voltage due to different critical
paths. Therefore, running some components on a lower voltage can save power.

— 141 — Lund Institute of Technology

Chapter 9. Multiple Supply Voltages

1000

100

10

1

0.1

0.01

0.001

1960 1970 1980 1990 2000 2010

Active Power

Leakage

P
ow

er
(W

)

Source: G. E. Moore, Intel Corp [27]

Figure 9.1: Processor power, active and leakage.

Increasing the number of available supply voltages from one to two often
results in large power savings, while using more than two voltages only leads to
minor additional savings. In [29], and [30], power savings in the range of 25-
50 % are achieved for a number of design examples using dual supply voltages
compared to a single voltage approach. For the designs in [29], an increase in the
number of supply voltages from two to three results in less than 5 % additional
power savings.

Supply voltage scaling is associated with an overhead due to DC/DC-converters
for transforming the supply voltage down to lower voltage levels. The most fre-
quently used DC/DC-converter for power savings by lowering the supply voltage
is the Buck converter [28]. The Buck converter converts the main supply voltage
down to a lower voltage using large transistor switches, as shown in Figure 9.2a.
In the Buck converter, a control circuit is used for generating a square-wave
with variable duty factor that controls the switches. The switched supply is
filtered using a low-pass filter to minimize the ripple at Vout. Besides the power
consumption in the control circuits for the Buck converter, there is always a
power loss in the switches due to resistance of the transistors. In [31] and [32],
there are examples of Buck converters reaching an efficiency as high as 90 %.

In a system with more than one supply voltage, signal level converters are
needed to ensure correct functionality when going from a low voltage region
to a higher voltage region. The signal level converter shown in Figure 9.2b is
used in [30, 33, 34]. Furthermore, if each output bit is connected to an inverter
supplied by a lower voltage, all buses and signals are run at the lower voltage.
This leads to further power savings [35].

ElectroScience — 142 —

9.1. Demonstration of Dual Supply Voltage in Silicon Ensemble

VDD

Vctrl

Vhigh

Vlow

in

outVout

(a) (b)

Figure 9.2: Overhead components associated with multiple supply voltages.
Buck converter (a), and signal level converter (b).

9.1 Demonstration of Dual Supply Voltage in
Silicon Ensemble

This part describes a (fairly) simple method to Place & Route a design with
multiple supply voltages using the tool Silicon Ensemble. Advantages of this
method are that no other tool than Silicon Ensemble is necessary, and that
the designer has full control over the design procedure. The text is intended
for anyone having knowledge on how to use scripts in Silicon Ensemble. The
example is implemented using the UMC 0.13µm technology. A description of
the design used in this demonstration is found in [Matthias paper]. Scripts and
netlist files for the example are found in [?].

9.1.1 Editing Power Connections in the Netlist

The netlist contains information about which net to use for power and ground.
Changing an automatically generated netlist is generally avoided. However, as-
signments of power nets are easily manipulated in a netlist written in Design
Exchange Format (DEF).

It is likely that the design is initially described using a Verilog netlist (.v). To
simplify edits in the netlist, it is converted to DEF format. The hierarchy of the
design shall contain a top view where each block is intended to use a separate
supply voltage. In this example, the top view contains the two blocks “conven-
tional” and “improved”.

Start Silicon Ensemble as described in ...Joachims manual.... To import supply
pads use the DEF-file “supplyPads2Vdd.def”, which contains an extra supply
voltage pad with net name “VDP”. The contents of the file “supplyPads2Vdd.def”
is shown below. The added supply voltage pad is “pi VDP”, and it is connected
to the net “VDP”. The macro “Verilog2DEF.mac” can be executed in silicon
ensemble to import and convert the design “dummy top.v” to “dummy dop.def”.

— 143 — Lund Institute of Technology

Chapter 9. Multiple Supply Voltages

DESIGN demoDesign ;

UNITS DISTANCE MICRONS 1000 ;

COMPONENTS 9 ;
- pi_VDDC WVVDD ;
- pi_VDP WVVDD ;
- pi_VSSC WVVSS ;
- pi_VDDI WVV3IO ;
- pi_VSSI WVV0IO ;
- pi_CORNER_LT WCORNER ;
- pi_CORNER_RT WCORNER ;
- pi_CORNER_LB WCORNER ;
- pi_CORNER_RB WCORNER ;
END COMPONENTS

SPECIALNETS 5 ;
- V3IO (pi_* V3IO) + USE POWER ;
- V0IO (pi_* V0IO) + USE GROUND ;
- VDD (pi_VDDC VDD) + USE POWER ;
- VDP (pi_VDP VDD) + USE POWER ;
- VSS (* VSS) + USE GROUND ;
END SPECIALNETS

END DESIGN

Open the netlist “dummy dop.def” in a text editor and skip down to the line
“PINS 28 ;”. Change number of pins to 29 and add a supply voltage pin “VDP”
as shown below.

PINS 29 ;
- V0IO + NET V0IO + DIRECTION INPUT + USE GROUND ;
- VSS + NET VSS + DIRECTION INPUT + USE GROUND ;
- V3IO + NET V3IO + DIRECTION INPUT + USE POWER ;
- VDD + NET VDD + DIRECTION INPUT + USE POWER ;
- VDP + NET VDP + DIRECTION INPUT + USE POWER ;

Skip down to the line “SPECIALNETS 5 ;”. The text between “SPECIAL-
NETS” and “END SPECIALNETS” contains connections for power supply
wires. As default, both blocks use power supply “VDD”. This is changed to
“VDP” for the block named “conventional”.

Skip down to the first line that contains “conventional” and change the block
to use “VDP” as shown below.

(improved/l_trellis_instance/l_butterfly_instance_0/U70 VDD)
(improved/l_trellis_instance/l_butterfly_instance_0/U69 VDD)

ElectroScience — 144 —

9.1. Demonstration of Dual Supply Voltage in Silicon Ensemble

(pi_VDDC VDD) + USE POWER ;
- VDP (conventional/U16 VDD) (conventional/bm_sig_reg_0_0_3 VDD)

(conventional/bm_sig_reg_0_0_2 VDD) (conventional/bm_sig_reg_0_0_1 VDD)
(conventional/bm_sig_reg_0_0_0 VDD) (conventional/bm_sig_reg_0_1_3 VDD)

The line

(pi_VDDC VDD) + USE POWER ;

sets the block “improved” to use the pad “pi VDDC”.

Skip down to the last assignment of VDD-pins for the block named “conven-
tional” and change the block to use the pad “pi VDP” as shown below.

(conventional/l_trellis_instance/l_butterfly_instance_0/U67 VDD)
(conventional/l_trellis_instance/l_butterfly_instance_0/U66 VDD)
(pi_VDP VDD) + USE POWER ;

- V0IO (U75 V0IO) (U74 V0IO) (U73 V0IO) (U72 V0IO) (U71 V0IO)
(U70 V0IO) (U69 V0IO) (U68 V0IO) (U67 V0IO) (U66 V0IO) (U65 V0IO)
(U64 V0IO) (U63 V0IO) (U62 V0IO) (U61 V0IO) (U60 V0IO) (U59 V0IO)

The line

- VDP (pi_VDP VDD) + USE POWER ;

which is found just before the line

END SPECIALNETS

should be removed to avoid warnings.

The file “dummy.def” contains all the edits described in this section.

9.1.2 Floorplan and Placement

Import the design with “1-import.mac”. This script imports the netlist
“dummy top.def”. Change this to “dummy.def” if you skipped the edits de-
scribed in chapter 9.1.1.

Floorplan and I/O placement is performed with the script “2-floorp and IO.mac”.
The I/O placement is set in the file “ioplace.ioc”, which is the default placement
except for the power pads.

Since the two parts of the design shall use separate supply voltages, they are
placed as two separate blocks. This is controlled by adding “regions” and se-
lecting one region for each block. Regions are added by running the script
“3-regions.mac”, which is shown below.

ADD REGION NAME USEVDP CELL conventional* BBOX (-100000 -45000) (-50000 46000);
ADD REGION NAME USEVDD CELL improved* BBOX (50000 -45000) (100000 25000);
SET VAR DRAW.REGION.AT "On";
REFRESH

— 145 — Lund Institute of Technology

Chapter 9. Multiple Supply Voltages

Figure 9.3: Floorplan with regions.

The command

ADD REGION NAME USEVDP CELL conventional* BBOX (-100000 -45000) (-50000 46000);

creates the region “USEVDP” at the specified coordinates, and sets the place-
ment of all components at hierarchical level “conventional” and below to use the
region “USEVDP”. Deciding size and placement of the regions is an iterative
process.

Figure 9.3 shows the floorplan with created regions.

Place cells by running the script “4-placecells.mac”. The cells are placed
within the defined regions.

9.1.3 Power and Signal Routing

In this design, all components belong to one of the blocks that are placed within
the two regions. Rows outside the regions can therefore be removed to give space
for power routing. Running the script “5-cutrows.mac” (shown below) deletes
rows outside the regions.

DELETE ROW AREA SPLIT (-50000,-50000) (50000,50000);
DELETE ROW AREA SPLIT (50000,25000) (100000,50000);

Initial power rings are created and then edited for this design. Run the script
“6-initialpower.mac” to create three power rings (VDD, VDP, and VSS).

ElectroScience — 146 —

9.1. Demonstration of Dual Supply Voltage in Silicon Ensemble

Figure 9.4: Initial power rings.

Figure 9.4 shows the initial power rings.

The script “7-modifypower.mac”, shown below contains two types of com-
mands; First, two wires are added for the net “VSS”, and then wires for the
nets “VDP”, and “VDD” are moved to optimize power routing. Adding and
moving wires is easily done using the menu commands (Edit-Wire-Move/Add),
and then saved as a script file.

ADD WIRE SPECIAL DRC NOVIASATCROSSOVER SHORTSCHECK NET VSS
LAYER MET2 WIDTH 10000 YFIRST (-41000, 55200) (-41000, -54800);
ADD WIRE SPECIAL DRC NOVIASATCROSSOVER SHORTSCHECK NET VSS
LAYER MET2 WIDTH 10000 YFIRST (40000, 55200) (40000, -54800);
MOVE WIRE NOVIASATCROSSOVER DRC SNAP NET VDP (120613,23800) (-28000, -22400);
MOVE WIRE NOVIASATCROSSOVER DRC SNAP NET VDD (-135842 25901) (27000, -14800);
MOVE WIRE NOVIASATCROSSOVER DRC SNAP NET VDD (62969,-80009) (62160, -68000);
MOVE WIRE NOVIASATCROSSOVER DRC SNAP NET VDD (62969,79721) (63120, 34800);
MOVE WIRE NOVIASATCROSSOVER DRC SNAP NET VDD (134658,16312) (124000,16312);

Power is routed by running the script “8-routepower.mac”, and finally, sig-
nals are routed by running the script “9-wroute.mac”.

There might be geometry violations on signal wires close to pads. This is due
to a grid mismatch and can (at your own risk) be ignored.

— 147 — Lund Institute of Technology

Chapter 9. Multiple Supply Voltages

9.1.4 Filler Cells

To fill out empty spaces between I/O-pads, run the script “10-fillperi.mac”.

Filler cells are also needed in empty spaces between standard cells. The two
blocks must be handled separately since they have different names on power nets.
The script “11-fillcore.mac” shown below adds filler cells to both blocks. For
each command in “11-fillcore.mac”, cells are added in a part of the routing
area, and connected to the power nets. The area “(20000 -75000) (133000
44000)” matches the block using supply voltage “VDD”, and the area “(-130000
-75000) (-42000 55000)” matches the block using supply voltage “VDP”.

Figure 9.5 shows the completed design with geometry violations.

#--Block using VDD

SROUTE ADDCELL MODEL HDFILL16 PREFIX FC16 NO FN SO FS
SPIN VDD NET VDD SPIN VSS NET VSS
AREA (20000 -75000) (133000 44000) ;

SROUTE ADDCELL MODEL HDFILL8 PREFIX FC8 NO FN SO FS
SPIN VDD NET VDD SPIN VSS NET VSS
AREA (20000 -75000) (133000 44000) ;

SROUTE ADDCELL MODEL HDFILL4 PREFIX FC4 NO FN SO FS
SPIN VDD NET VDD SPIN VSS NET VSS
AREA (20000 -75000) (133000 44000) ;

SROUTE ADDCELL MODEL HDFILL2 PREFIX FC2 NO FN SO FS
SPIN VDD NET VDD SPIN VSS NET VSS
AREA (20000 -75000) (133000 44000) ;

SROUTE ADDCELL MODEL HDFILL1 PREFIX FC1 NO FN SO FS
SPIN VDD NET VDD SPIN VSS NET VSS
AREA (20000 -75000) (133000 44000) ;

#--Block using VDP

SROUTE ADDCELL MODEL HDFILL16 PREFIX FC16 NO FN SO FS
SPIN VDD NET VDP SPIN VSS NET VSS
AREA (-130000 -75000) (-42000 55000) ;

SROUTE ADDCELL MODEL HDFILL8 PREFIX FC8 NO FN SO FS
SPIN VDD NET VDP SPIN VSS NET VSS
AREA (-130000 -75000) (-42000 55000) ;

SROUTE ADDCELL MODEL HDFILL4 PREFIX FC4 NO FN SO FS
SPIN VDD NET VDP SPIN VSS NET VSS
AREA (-130000 -75000) (-42000 55000) ;

ElectroScience — 148 —

9.1. Demonstration of Dual Supply Voltage in Silicon Ensemble

SROUTE ADDCELL MODEL HDFILL2 PREFIX FC2 NO FN SO FS
SPIN VDD NET VDP SPIN VSS NET VSS
AREA (-130000 -75000) (-42000 55000) ;

SROUTE ADDCELL MODEL HDFILL1 PREFIX FC1 NO FN SO FS
SPIN VDD NET VDP SPIN VSS NET VSS
AREA (-130000 -75000) (-42000 55000) ;

— 149 — Lund Institute of Technology

Chapter 9. Multiple Supply Voltages

Figure 9.5: Completed design.

ElectroScience — 150 —

Bibliography

[1] J. Bhasker, A VHDL Primer, 3rd ed. Prentice Hall, 1999.

[2] P. J. Ashenden, Designers Guide to VHDL, 2nd ed. Morgan Kaufman,
2001.

[3] Jiri Gaisler, “High-level design methodology,”
http://www.gaisler.com/doc/vhdl2proc.pdf.

[4] F. Kristensen, P. Nilsson, and A. Olsson, “A flexible FFT processor,” in
Proc. 20th NORCHIP Conference, Copenhagen, Denmark, Nov. 2002.

[5] ——, “A generic transmitter for wireless OFDM systems,” in Proc.
IEEE Conference on Personal, Indoor, and Mobile Radio Communication
(PIMRC), vol. 3, Bejing, China, Sept. 2003, pp. 2234–2238.

[6] H. Jiang and V. wall, “FPGA implementation of controller-datapath pair
in custom image processor design,” in Proc. IEEE Symposium on Circuits
and Systems (ISCAS), Vancouver, Canada, May 2004.

[7] F. Catthoor, Custom Memory Management Methodology, 1st ed. Kluwer,
1998.

[8] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Current
Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer
CMOS Circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, Feb.
2003.

[9] A. J. Bhavnagarwala, B. Austin, A. Kapoor, and J. D. Meindl, “CMOS
System-on-a-Chip Voltage Scaling beyond 50nm,” in Proceedings of the
10th Great Lakes Symposium on VLSI, Chicago, Illinois, USA, 2000, pp.
7–12.

[10] “Managing power in ultra deep submicron ASIC/IC design,” Synopsys,
Inc., Tech. Rep., 2002.

[11] K. K. Parhi, VLSI Digital Signal Processing Systems. New York, NY:
Wiley, 1999.

[12] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and threshold voltage
scaling for low power CMOS,” IEEE Journal of Solid-State Circuits, vol. 32,
no. 8, pp. 1210–1216, Aug. 1997.

— 151 — Lund Institute of Technology

Bibliography

[13] Transmeta Corporation, “Transmeta LongRun Power Management,”
http://www.transmeta.com.

[14] V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez, “Dynamic power man-
agement for microprocessors: A case study,” in Proc. Tenth International
Conference on VLSI Design, Hyderabad, India, Jan. 1997, pp. 185–192.

[15] T. Karnik, S. Borkar, and V. De, “Sub-90 nm Technologies-Challenges and
Opportunities for CAD,” in Proceedings of the 2002 IEEE International
Conference on Computer Aided Design, Nov. 2002, pp. 203–206.

[16] G. Sery, S. Borkar, and V. De, “Life is CMOS: why chase the life after?”
in Proceedings of the 39th Design Automation Conference, DAC’02. ACM
Press, June 10-14 2002, pp. 78–83.

[17] R. Kumar and C. P. Ravikumar, “Leakage Power Estimation for Deep
Submicron Circuits in an ASIC Design Environment,” in Proceedings of
the 7th Asia and South Pacific Design Automation Conference and the
15th International Conference on VLSI Design, Jan. 2002, pp. 45–50.

[18] B. Chatterjee, M. Sachdev, S. Hsu, R. Krishnamurthy, and S. Borkar, “Ef-
fectiveness and Scaling Trends of Leakage Control Techniques for Sub-130
nm CMOS Technologies,” in Proceedings of the 2003 International Sympo-
sium on Low Power Electronics and Design, ISLPED’03, Aug. 2003, pp.
122–127.

[19] S. Mukhopadhyay and K. Roy, “Modeling and Estimation of Total Leakage
Current in Nano-scaled-CMOS Devices Considering the Effect of Parameter
Variation,” in Proceedings of the 2003 International Symposium on Low
Power Electronics and Design, ISLPED’03, Aug. 2003, pp. 172–175.

[20] L. T. Clark, S. Demmons, N. Deutscher, and F. Ricci, “Standby Power
Management for a 0.18µm Microprocessor,” in Proceedings of the 2002 In-
ternational Symposium on Low Power Electronics and Design, ISLPED’02,
Aug. 2002, pp. 7–12.

[21] ???, “International Technology Roadmap for Semiconductors,”
http://public.itrs.net.

[22] “Switching activity interchange format (SAIF),” Synopsys, Inc., Tech.
Rep., 2002.

[23] $UMC LIB/../UMCE13H210D3 1.1/lib/umce13h210t3 tc 120V 25C.lib.

[24] G. E. Moore, “Cramming More Components onto Integrated Cir-
cuits,” Electronocs, vol. 38, no. 8, Apr. 1965. [Online]. Available:
ftp://download.intel.com/research/silicon/moorespaper.pdf

[25] I. Toumi, “The Lives and Death of Moore’s Law,” First Monday, Nov.
2002. [Online]. Available: http://firstmonday.org/issues/issue7 11/tuomi/

[26] S. Borkar, “Obeying Moore’s Law Beyond 0.18 Micron,” in Proceedings
of the 13th Annual IEEE International ASIC/SOC Conference, Arlington,
VA, Sept. 2000, pp. 26–31.

ElectroScience — 152 —

Bibliography

[27] G. E. Moore, “No Exponential is Forever: But “Forever” Can Be Delayed!”
in Proceedings of the IEEE International Solid-State Circuits Conference,
ISSCC’03, Feb. 2003, pp. 20–23.

[28] A. P. Chandrakasan and R. W. Brodersen, “Minimizing Power Consump-
tion in Digital CMOS Circuits,” in Proceedings of the IEEE, vol. 83, no. 4,
Apr. 1995, pp. 498–523.

[29] M. C. Johnson and K. Roy, “Optimal Selection of Supply Voltages and
Level Conversions During Data Path Scheduling Under Resource Con-
straints,” in Proceedings of the 1996 IEEE International Conference on
Computer Design, Oct. 1996, pp. 72–77.

[30] V. Sundararajan and K. K. Parhi, “Synthesis of Low Power CMOS VLSI
Circuits using Dual Supply Voltages,” in Proceedings of the 36th Design
Automation Conference, DAC’99. New Orleans, LA, USA: ACM Press,
June 21-25 1999, pp. 72–75.

[31] G.-Y. Wei and M. Horowitz, “A Fully Digital, Energy-Efficient, Adaptive
Power-Supply Regulator,” IEEE Journal of Solid-State Circuits, vol. 34,
no. 4, pp. 520–528, Apr. 1999.

[32] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba,
Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama, “Vari-
able Supply-Voltage Scheme for Low-Power High-Speed CMOS Digital De-
sign,” IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 454–462,
Mar. 1998.

[33] M. Johnson and K. Roy, “Scheduling and Optimal Voltage Selection for
Low Power Multi-Voltage DSP Datapaths,” in Proceedings of IEEE Inter-
national Symposium on Circuits and Systems, ISCAS’97, June 1997, pp.
2152–2155.

[34] T. Olsson, P. Åström, and P. Nilsson, “Dual Supply–Voltage Scaling for
Reconfigurable SoCs,” in Proceedings of IEEE International Symposium
on Circuits and Systems, ISCAS 2001, vol. 2, Sydney, Australia, May 6-9
2001, pp. 61–64.

[35] T. Nakagome, K. Itoh, M. Isoda, K. Takeuchi, and M. Aoki, “Sub-1-V
Swing Internal Bus Architecture for Future Low-Power ULSI’s,” IEEE
Journal of Solid-State Circuits, vol. 28, no. 4, pp. 414–419, Apr. 1993.

— 153 — Lund Institute of Technology

ElectroScience — 154 —

Appendix A

std logic 1164
PACKAGE std_logic_1164 IS

-- logic state system (unresolved)

TYPE std_ulogic IS (’U’, -- Uninitialized

’X’, -- Forcing Unknown
’0’, -- Forcing 0
’1’, -- Forcing 1
’Z’, -- High Impedance
’W’, -- Weak Unknown
’L’, -- Weak 0
’H’, -- Weak 1
’-’ -- Don’t care

);

-- unconstrained array of std_ulogic for use with the resolution function

TYPE std_ulogic_vector IS ARRAY (NATURAL RANGE <>) OF std_ulogic;

-- resolution function

FUNCTION resolved (s : std_ulogic_vector) RETURN std_ulogic;

-- *** industry standard logic type ***

SUBTYPE std_logic IS resolved std_ulogic;

-- unconstrained array of std_logic for use in declaring signal arrays

TYPE std_logic_vector IS ARRAY (NATURAL RANGE <>) OF std_logic;

-- common subtypes

SUBTYPE X01 IS resolved std_ulogic RANGE ’X’ TO ’1’; -- (’X’,’0’,’1’)
SUBTYPE X01Z IS resolved std_ulogic RANGE ’X’ TO ’Z’; -- (’X’,’0’,’1’,’Z’)
SUBTYPE UX01 IS resolved std_ulogic RANGE ’U’ TO ’1’; -- (’U’,’X’,’0’,’1’)
SUBTYPE UX01Z IS resolved std_ulogic RANGE ’U’ TO ’Z’; -- (’U’,’X’,’0’,’1’,’Z’)

-- overloaded logical operators

FUNCTION "and" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "nand" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "or" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "nor" (l : std_ulogic; r : std_ulogic) RETURN UX01;
FUNCTION "xor" (l : std_ulogic; r : std_ulogic) RETURN UX01;
function "xnor" (l : std_ulogic; r : std_ulogic) return ux01;
FUNCTION "not" (l : std_ulogic) RETURN UX01;

— 155 — Lund Institute of Technology

Bibliography

-- vectorized overloaded logical operators

FUNCTION "and" (l, r : std_logic_vector) RETURN std_logic_vector;
FUNCTION "and" (l, r : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION "nand" (l, r : std_logic_vector) RETURN std_logic_vector;
FUNCTION "nand" (l, r : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION "or" (l, r : std_logic_vector) RETURN std_logic_vector;
FUNCTION "or" (l, r : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION "nor" (l, r : std_logic_vector) RETURN std_logic_vector;
FUNCTION "nor" (l, r : std_ulogic_vector) RETURN std_ulogic_vector;

FUNCTION "xor" (l, r : std_logic_vector) RETURN std_logic_vector;
FUNCTION "xor" (l, r : std_ulogic_vector) RETURN std_ulogic_vector;

function "xnor" (l, r : std_logic_vector) return std_logic_vector;
function "xnor" (l, r : std_ulogic_vector) return std_ulogic_vector;

FUNCTION "not" (l : std_logic_vector) RETURN std_logic_vector;
FUNCTION "not" (l : std_ulogic_vector) RETURN std_ulogic_vector;

-- conversion functions

FUNCTION To_bit (s : std_ulogic; xmap : BIT := ’0’) RETURN BIT;
FUNCTION To_bitvector (s : std_logic_vector ; xmap : BIT := ’0’) RETURN BIT_VECTOR;
FUNCTION To_bitvector (s : std_ulogic_vector; xmap : BIT := ’0’) RETURN BIT_VECTOR;

FUNCTION To_StdULogic (b : BIT) RETURN std_ulogic;
FUNCTION To_StdLogicVector (b : BIT_VECTOR) RETURN std_logic_vector;
FUNCTION To_StdLogicVector (s : std_ulogic_vector) RETURN std_logic_vector;
FUNCTION To_StdULogicVector (b : BIT_VECTOR) RETURN std_ulogic_vector;
FUNCTION To_StdULogicVector (s : std_logic_vector) RETURN std_ulogic_vector;

-- strength strippers and type convertors

FUNCTION To_X01 (s : std_logic_vector) RETURN std_logic_vector;
FUNCTION To_X01 (s : std_ulogic_vector) RETURN std_ulogic_vector;
FUNCTION To_X01 (s : std_ulogic) RETURN X01;
FUNCTION To_X01 (b : BIT_VECTOR) RETURN std_logic_vector;
FUNCTION To_X01 (b : BIT_VECTOR) RETURN std_ulogic_vector;
FUNCTION To_X01 (b : BIT) RETURN X01;

FUNCTION To_X01Z (s : std_logic_vector) RETURN std_logic_vector;
FUNCTION To_X01Z (s : std_ulogic_vector) RETURN std_ulogic_vector;
FUNCTION To_X01Z (s : std_ulogic) RETURN X01Z;
FUNCTION To_X01Z (b : BIT_VECTOR) RETURN std_logic_vector;
FUNCTION To_X01Z (b : BIT_VECTOR) RETURN std_ulogic_vector;
FUNCTION To_X01Z (b : BIT) RETURN X01Z;

FUNCTION To_UX01 (s : std_logic_vector) RETURN std_logic_vector;
FUNCTION To_UX01 (s : std_ulogic_vector) RETURN std_ulogic_vector;
FUNCTION To_UX01 (s : std_ulogic) RETURN UX01;
FUNCTION To_UX01 (b : BIT_VECTOR) RETURN std_logic_vector;
FUNCTION To_UX01 (b : BIT_VECTOR) RETURN std_ulogic_vector;
FUNCTION To_UX01 (b : BIT) RETURN UX01;

-- edge detection

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN;

-- object contains an unknown

FUNCTION Is_X (s : std_ulogic_vector) RETURN BOOLEAN;
FUNCTION Is_X (s : std_logic_vector) RETURN BOOLEAN;

ElectroScience — 156 —

Bibliography

FUNCTION Is_X (s : std_ulogic) RETURN BOOLEAN;

END std_logic_1164;

— 157 — Lund Institute of Technology

Bibliography

std logic arith

--
--
-- -- Copyright (c) 1990,1991,1992 by Synopsys, Inc. All rights
reserved. -- --
-- -- This source file may be used and distributed without
restriction -- -- provided that this copyright statement is
not removed from the file -- -- and that any derivative work
contains this copyright notice. -- --
--
--

library IEEE; use IEEE.std_logic_1164.all;

package std_logic_arith is

type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
type SIGNED is array (NATURAL range <>) of STD_LOGIC;
subtype SMALL_INT is INTEGER range 0 to 1;

function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "+"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "+"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: INTEGER) return SIGNED;
function "+"(L: INTEGER; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "+"(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "-"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "-"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: INTEGER) return SIGNED;
function "-"(L: INTEGER; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "-"(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function "-"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "+"(L: UNSIGNED) return UNSIGNED;

ElectroScience — 158 —

Bibliography

function "+"(L: SIGNED) return SIGNED;
function "-"(L: SIGNED) return SIGNED;
function "ABS"(L: SIGNED) return SIGNED;

function "+"(L: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED) return STD_LOGIC_VECTOR;
function "ABS"(L: SIGNED) return STD_LOGIC_VECTOR;

function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "*"(L: SIGNED; R: SIGNED) return SIGNED;
function "*"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "*"(L: UNSIGNED; R: SIGNED) return SIGNED;

function "*"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "*"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "*"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "*"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;

function "<"(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "<"(L: SIGNED; R: SIGNED) return BOOLEAN;
function "<"(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "<"(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "<"(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "<"(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "<"(L: SIGNED; R: INTEGER) return BOOLEAN;
function "<"(L: INTEGER; R: SIGNED) return BOOLEAN;

function "<="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "<="(L: SIGNED; R: SIGNED) return BOOLEAN;
function "<="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "<="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "<="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "<="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "<="(L: SIGNED; R: INTEGER) return BOOLEAN;
function "<="(L: INTEGER; R: SIGNED) return BOOLEAN;

function ">"(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function ">"(L: SIGNED; R: SIGNED) return BOOLEAN;
function ">"(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function ">"(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function ">"(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function ">"(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function ">"(L: SIGNED; R: INTEGER) return BOOLEAN;
function ">"(L: INTEGER; R: SIGNED) return BOOLEAN;

function ">="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function ">="(L: SIGNED; R: SIGNED) return BOOLEAN;
function ">="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function ">="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function ">="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function ">="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function ">="(L: SIGNED; R: INTEGER) return BOOLEAN;
function ">="(L: INTEGER; R: SIGNED) return BOOLEAN;

function "="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "="(L: SIGNED; R: SIGNED) return BOOLEAN;
function "="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "="(L: SIGNED; R: INTEGER) return BOOLEAN;
function "="(L: INTEGER; R: SIGNED) return BOOLEAN;

function "/="(L: UNSIGNED; R: UNSIGNED) return BOOLEAN;
function "/="(L: SIGNED; R: SIGNED) return BOOLEAN;
function "/="(L: UNSIGNED; R: SIGNED) return BOOLEAN;
function "/="(L: SIGNED; R: UNSIGNED) return BOOLEAN;
function "/="(L: UNSIGNED; R: INTEGER) return BOOLEAN;
function "/="(L: INTEGER; R: UNSIGNED) return BOOLEAN;
function "/="(L: SIGNED; R: INTEGER) return BOOLEAN;
function "/="(L: INTEGER; R: SIGNED) return BOOLEAN;

function SHL(ARG: UNSIGNED; COUNT: UNSIGNED) return UNSIGNED;

— 159 — Lund Institute of Technology

Bibliography

function SHL(ARG: SIGNED; COUNT: UNSIGNED) return SIGNED;
function SHR(ARG: UNSIGNED; COUNT: UNSIGNED) return UNSIGNED;
function SHR(ARG: SIGNED; COUNT: UNSIGNED) return SIGNED;

function CONV_INTEGER(ARG: INTEGER) return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
function CONV_INTEGER(ARG: SIGNED) return INTEGER;
function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER; SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED; SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED; SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC; SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER; SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: UNSIGNED; SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: SIGNED; SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: STD_ULOGIC; SIZE: INTEGER) return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED; SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: SIGNED; SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC; SIZE: INTEGER) return STD_LOGIC_VECTOR;

-- zero extend STD_LOGIC_VECTOR (ARG) to SIZE,
-- SIZE < 0 is same as SIZE = 0
-- returns STD_LOGIC_VECTOR(SIZE-1 downto 0)
function EXT(ARG: STD_LOGIC_VECTOR; SIZE: INTEGER) return STD_LOGIC_VECTOR;

-- sign extend STD_LOGIC_VECTOR (ARG) to SIZE,
-- SIZE < 0 is same as SIZE = 0
-- return STD_LOGIC_VECTOR(SIZE-1 downto 0)
function SXT(ARG: STD_LOGIC_VECTOR; SIZE: INTEGER) return STD_LOGIC_VECTOR;

end Std_logic_arith;

ElectroScience — 160 —

Bibliography

std logic unsigned
--
--
-- -- Copyright (c) 1990, 1991, 1992 by Synopsys, Inc.
-- -- All rights
reserved. -- --
-- -- This source file may be used and distributed without
restriction -- -- provided that this copyright statement is
not removed from the file -- -- and that any derivative work
contains this copyright notice. -- --
--
--

library IEEE; use IEEE.std_logic_1164.all; use
IEEE.std_logic_arith.all;

package STD_LOGIC_UNSIGNED is

function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "+"(L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "<"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "<"(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "<"(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function "<="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "<="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "<="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function ">"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function ">"(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function ">"(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function ">="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function ">="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function ">="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function "="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function "/="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "/="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "/="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function SHL(ARG:STD_LOGIC_VECTOR;COUNT: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function SHR(ARG:STD_LOGIC_VECTOR;COUNT: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function CONV_INTEGER(ARG: STD_LOGIC_VECTOR) return INTEGER;

-- remove this since it is already in std_logic_arith
-- function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE: INTEGER) return STD_LOGIC_VECTOR;

end STD_LOGIC_UNSIGNED;

— 161 — Lund Institute of Technology

Bibliography

std logic signed
--
--
-- -- Copyright (c) 1990, 1991, 1992 by Synopsys, Inc.
-- -- All rights
reserved. -- --
-- -- This source file may be used and distributed without
restriction -- -- provided that this copyright statement is
not removed from the file -- -- and that any derivative work
contains this copyright notice. -- --
--
--

library IEEE; use IEEE.std_logic_1164.all; use
IEEE.std_logic_arith.all;

package STD_LOGIC_SIGNED is

function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR; R: STD_LOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "+"(L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "-"(L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function "ABS"(L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function "<"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "<"(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "<"(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function "<="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "<="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "<="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function ">"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function ">"(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function ">"(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function ">="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function ">="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function ">="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function "="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;

function "/="(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return BOOLEAN;
function "/="(L: STD_LOGIC_VECTOR; R: INTEGER) return BOOLEAN;
function "/="(L: INTEGER; R: STD_LOGIC_VECTOR) return BOOLEAN;
function SHL(ARG:STD_LOGIC_VECTOR;COUNT: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;
function SHR(ARG:STD_LOGIC_VECTOR;COUNT: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR;

function CONV_INTEGER(ARG: STD_LOGIC_VECTOR) return INTEGER;

-- remove this since it is already in std_logic_arith --
function CONV_STD_LOGIC_VECTOR(ARG: INTEGER; SIZE: INTEGER) return
STD_LOGIC_VECTOR;

end STD_LOGIC_SIGNED;

ElectroScience — 162 —

