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3.1 Representation of digitally
modulated signals
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Note that the channel symbols are bandpass signals.
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L = Constraint length of mod-
ulation (with memory)

Memoryless modulation: sm`(t), m` ∈ {1,2, . . . ,M},
m` =function of Block`

Modulation with memory: sm`(t),
m` =function of (Block`, Block`−1,⋯, Block`−(L−1))
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Terminology

Signal sm(t), 1 ≤ m ≤M , t ∈ [0,Ts)

Signaling interval: Ts (For convenience, we will
sometimes use T instead.)

Signaling rate (or symbol rate): Rs =
1
Ts

(Equivalent) Bit interval: Tb =
Ts

log2 M

(Eqiuvalent) Bit rate: Rb =
1
Tb

= Rs log2 M

Average signal energy (assume equal-probable in message
m)

Eavg =
1

M

M

∑
m=1
∫

Ts

0
∣sm(t)∣

2
dt

(Equivalent) Average bit energy: Ebavg =
Eavg

log2 M

Average power: Pavg =
Eavg

Ts
= RsEavg =

Ebavg

Tb
= RbEbavg
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3.2 Memoryless modulation
methods
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Example studies of memoryless modulation

Digital pulse amplitude modulated (PAM) signals
(Amplitude-shift keying or ASK)

Digital phase-modulated (PM) signals (Phase shift keying
or PSK)

Quadrature amplitude modulated (QAM) signals

Multidimensional modulated signals

Orthogonal
Bi-orthogonal

Simplex signals
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M-ary pulse amplitude modulation (M-PAM)

PAM bandpass waveform

sm(t) = Re{Amg(t)e
ı2πfc t} = Amg(t) cos (2πfct) , t ∈ [0,Ts),

where Am = (2m − 1 −M)d , and m = 1,2,⋯,M

Example 1 (M=4)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

s1(t) = −3 ⋅ d ⋅ g(t) ⋅ cos (2πfct)
s2(t) = −1 ⋅ d ⋅ g(t) ⋅ cos (2πfct)
s3(t) = +1 ⋅ d ⋅ g(t) ⋅ cos (2πfct)
s4(t) = +3 ⋅ d ⋅ g(t) ⋅ cos (2πfct)

The amplitude difference between two adjacent signals = 2d .
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sm(t) = Re{Amg(t)e ı2πfc t} = Amg(t) cos (2πfct) , t ∈ [0,Ts)

g(t) is the pulse shaping function.

Ts is usually assumed to be a multiple of 1
fc

in principle.
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Vectorization of M-PAM signals (Gram-Schmidt)

φ1(t) =
g(t)

∥g(t)∥

√
2 cos (2πfct) =

g(t)
√
Eg

√
2 cos (2πfct)

sm = [
Am√

2
⋅ ∥g(t)∥] , a one-dimensional vector

By the correct Gram-Schmidt procedure,

φ1(t) =
g(t) cos(2πfct)

∥g(t) cos(2πfct)∥

≠
g(t) cos(2πfct)

∥g(t)∥ ⋅ 1√
Ts

∥ cos(2πfct)∥
=
g(t) cos(2πfct)

∥g(t)∥
√

1/2

The idea behind the above derivation is to single out “∥g(t)∥” in the

expression! This justifies the necessity of introducing the lowpass

equivalent signal where the influence of fc has been relaxed.

For a time-limited signal, we can only claim Ex` ≈ 2Ex !
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∥φ1(t)∥
2

=
2

∥g(t)∥2 ∫

Ts

0
g 2(t) cos2 (2πfct) dt

=
2

∥g(t)∥
2 ∫

Ts

0
g 2(t) [

1 + cos (4πfct)

2
] dt

=
1

∥g(t)∥
2 ∫

Ts

0
g 2(t)dt

+
1

∥g(t)∥2 ∫

Ts

0
g 2(t) cos (4πfct) dt

≈
1

∥g(t)∥
2 ∫

Ts

0
g 2(t)dt = 1

If g(t) is constant for t ∈ [0,Ts) and Ts is a multiple of 1
fc

,
then the above “≈” becomes “=.”
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Based on the “pseudo”-vectorization,

Transmission energy of M-PAM signals

Em = ∫

Ts

0
∣sm(t)∣2 dt ≈

A2
m ∥g(t)∥

2

2
=

1

2
A2
mEg

Error consideration

The most possible error is the erroneous selection of an
adjacent amplitude to the transmitted signal amplitude.

Therefore, the mapping (from bit pattern to channel
symbol) is assigned such that the adjacent signal
amplitudes differ by exactly one bit. (Gray encoding)

In such way, the most possible bit error pattern (caused
by the noise) is a single bit error.
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Gray code (Signal space diagram : one dimension)

Euclidean distance

∥sm(t) − sn(t)∥ ≈ ∣
Am ∥g(t)∥

√
2

−
An ∥g(t)∥

√
2

∣

=
∥g(t)∥
√

2
∣(2m − 1 −M)d − (2n − 1 −M)d ∣

= d
√

2 ∥g(t)∥ ∣m − n∣
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Single side band (SSB) PAM

1 g(t) is real ⇔ G(f ) is Hermitian symmetric.

2 Consequently, the previous PAM is based on the double
side band (DSB) transmission which requires twice the
bandwidth.

3 Recall

F−1 {u−1(f )G(f )} =
1

2
[g(t) + ı ĝ(t)] = g+(t)

where ĝ(t) is the Hilbert transform of g(t).
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sm,SSB(t) = Re{Amg+(t)e
ı2πfc t}

φ1,SSB(t) ≈
Re{Amg+(t)e ı2πfc t}

∥g+(t)∥ ⋅
1√
Ts

∥Re{Ame ı2πfc t}∥
=

Re{
√

2g+(t)e ı2πfc t}

∥g+(t)∥

sm,SSB = [
Am√

2
∥g+(t)∥]

∥g+(t)∥
2
⋅ ∫

Ts

0
φ2

1,SSB(t)dt

= 2∫
Ts

0
Re{g+(t)e

ı 2πfc t}
2
dt

=
1

2 ∫
Ts

0
[g+(t)e

ı 2πfc t + g∗
+
(t)e− ı 2πfc t]

2
dt

=
1

2 ∫
Ts

0
[∣g+(t)∣e

ı 2πfc t+∠g+(t) + ∣g+(t)∣e
− ı 2πfc t−∠g+(t)]

2
dt

= ∫

Ts

0
∣g+(t)∣

2
dt + ∫

Ts

0
∣g+(t)∣

2
cos [4πfct + 2∠g+(t)] dt

≈ ∫

Ts

0
∣g+(t)∣

2
dt = ∥g+(t)∥

2
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sm,SSB(t) = Re{
Am

2
[g(t) ± ı ĝ(t)] e ı2πfc t}

=
Am

2
g(t) cos (2πfct) ∓

Am

2
ĝ(t) sin (2πfct)
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∥g+(t)∥
2
= ∥

1

2
g(t) + ı

1

2
ĝ(t)∥

2

=
1

2
∥g(t)∥

2

Recall from Slide 2-22, x+(t) =
1
2
(x(t) + ı x̂(t)) and Ex = 2Ex+ .

To summarize
⎧⎪⎪
⎨
⎪⎪⎩

φ1(,DSB)(t) =
g(t)

∥g(t)∥
√

2 cos (2πfct)

sm(,DSB) = Am√
2
∥g(t)∥

⎧⎪⎪
⎨
⎪⎪⎩

φ1,SSB(t) = Re{
g+(t)

∥g+(t)∥
√

2e ı2πfc t}

sm,SSB = Am√
2
∥g+(t)∥

2-level PAM signals are particularly named antipodal signals.
(±1 signals)
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Applications of PAM

Ts = T
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Phase-modulation (PM)

Bandpass PM

sm(t) = Re [g(t)e ı2π(m−1)/M e ı2πfc t]

= g(t) cos (2πfct + θm)

= cos (θm)g(t) cos (2πfct)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ1

− sin(θm)g(t) sin(2πfct)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ2

where θm = 2π(m − 1)/M , m = 1,2,⋯,M

Example 2 (M=4)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

s1(t) = g(t) cos (2πfct)
s2(t) = g(t) cos (2πfct + π/2)
s3(t) = g(t) cos (2πfct + π)
s4(t) = g(t) cos (2πfct + 3π/2)
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Signal space of PM signals

⎧⎪⎪
⎨
⎪⎪⎩

φ1(t) ≈
g(t)

∥g(t)∥
√

2 cos (2πfct)

φ2(t) ≈ −
g(t)

∥g(t)∥
√

2 sin (2πfct)

Ô⇒

sm = [
∥g(t)∥
√

2
cos(θm),

∥g(t)∥
√

2
sin(θm)]
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Transmission energy of PM Signals

Em = ∫

T

0
s2
m(t)dt ≈

∥g(t)∥
2

2
[cos2(θm) + sin2(θm)] =

Eg

2

Advantages of PM signals : Equal energy for every
channel symbol

Error consideration

The most possible error is the erroneous selection of an
adjacent phase of the transmitted signal phase.

Therefore, we assign the mapping from bit pattern to
channel symbol as the adjacent signal phases differ only
by one bit. (Gray encoding)

The most possible bit error pattern caused by the noise
is a single-bit error.
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Signal space diagram of PM with Gray code
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sm = [
∥g(t)∥
√

2
cos(θm),

∥g(t)∥
√

2
sin(θm)]

Euclidean distance

∥sm(t) − sn(t)∥

=
∥g(t)∥
√

2

√

∣cos(θm) − cos(θn)∣
2
+ ∣sin(θm) − sin(θn)∣

2

= ∥g(t)∥
√

1 − cos(θm − θn)
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π/4-QPSK

A variant of 4-phase PSK (QPSK), named π/4-QPSK, is
obtained by introducing an additional π/4 phase shift in the
carrier phase in each symbol interval.
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Quadrature amplitude modulation (QAM)

Bandpass QAM

sm(t) = xi(t) cos(2πfct) − xq(t) sin(2πfct)

where xi(t) and xq(t) are quadrature components. Let

xi(t) = Amig(t) and xq(t) = Amqg(t); then bandpass QAM is

sm(t) = Amig(t) cos(2πfct) −Amqg(t) sin(2πfct)

Advantage: Transmit more digital information by using both
quadrature components as information carriers. As a result,
the transfer rate of digital data is doubled.
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Vectorization of QAM signals

sm(t) = Ami g(t) cos(2πfct)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ1

−Amq g(t) sin(2πfct)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

φ2

⎧⎪⎪
⎨
⎪⎪⎩

φ1(t) ≈
g(t)

∥g(t)∥
√

2 cos(2πfct)

φ2(t) ≈ −
g(t)

∥g(t)∥
√

2 sin(2πfct)

Ô⇒ sm = [
Ami
√

2
∥g(t)∥ ,

Amq
√

2
∥g(t)∥]
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sm = [
Ami
√

2
∥g(t)∥ ,

Amq
√

2
∥g(t)∥]

Transmission energy of QAM signals

Em = ∫

T

0
s2
m(t)dt

=
1

2
∥g(t)∥

2
A2
mi +

1

2
∥g(t)∥

2
A2
mq

=
1

2
∥g(t)∥

2
(A2

mi +A2
mq)

=
1

2
Eg (A2

mi +A2
mq)

Euclidean Distance

∥sm(t) − sn(t)∥ =

√
Eg

√
2

√

∣Ami −Ani ∣
2
+ ∣Amq −Anq ∣

2
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Signal space diagram for rectangular QAM
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sm = [
Ami
√

2
∥g(t)∥ ,

Amq
√

2
∥g(t)∥] ,

where Ami ,Amq ∈ {(2m − 1 −
√
M) ∶ m = 1,2,⋯,

√
M}

Minimum Euclidean distance (of square QAM)

min
m≠n

√
Eg

2

¿
Á
ÁÀ∣Ami −Ani ∣

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=4

+ ∣Amq −Anq ∣
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

=
√

2Eg

Average symbol energy (of square QAM)

Eavg =
1

M

Eg

2

√
M

∑
m=1

√
M

∑
n=1

(A2
mi +A2

nq) =
Eg

2M

2M(M − 1)

3
=
M − 1

3
Eg

Average bit energy (of square QAM)

Ebavg =
M − 1

3 log2 M
Eg
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Example of applications of square QAM

CCITT V.22 modem
Serial binary, asynchronous or synchronous, full duplex,
dial-up
2400 bps or 600 baud (symbols/sec)
QAM, 16-point rectangular-type signal constellation
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Alternative viewpoint of QAM

QAM = PM (PSK) + PAM (ASK)

Use both amplitude and phase as digital information
bearers.

sm(t) = Re [Vm1e
ı θm2g(t)e ı2πfc t] = Vm1g(t) cos (2πfct + θm2)

Compare with the previous viewpoint

sm(t) = Amig(t) cos(2πfct) −Amqg(t) sin(2πfct)

= Vm1g(t) cos (2πfct + θm2)

where Vm1 =
√
A2
mi +A2

mq and θm2 = tan−1(Amq/Ami)

There is a one-to-one correspondence mapping from
(Ami ,Amq) domain to (Vm1, θm2) domain.
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Signal space for non-rectangular QAM (AM-PSK)
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Multi-dimensional signals

PAM : one-dimensional

PM : two-dimensional

QAM : two-dimensional

How to create three or higher dimensional signal?
1 Subdivision of time

Example. N time slots can be used to form 2N vector
basis elements (each has two quadrature bearers.)

2 Subdivision of frequency
Example. N frequency subbands can be used to form 2N
vector basis elements (each has two quadrature bearers.)

3 Subdivision of both time and frequency
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Frequency shift keying or FSK

Subdivision of frequency

Bandpass orthogonal multidimensional signals (Frequency
shift keying or FSK)

sm(t) = Re

⎡
⎢
⎢
⎢
⎢
⎣

√
2E

T
e ı2π(m∆f )te ı2πfc t

⎤
⎥
⎥
⎥
⎥
⎦

=

√
2E

T
cos (2πfct + 2π(m∆f )t)

Vectorization of FSK signals under orthogonality
conditions (introduced in next few slides)

φm(t) =
1

√
E
sm(t) and sm = [0, . . . ,0,

√
E

°
mth

position

,0, . . . ,0]T
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Crosscorrelations of FSK signals

sm,`(t) =

√
2E

T
e ı2π(m∆f )t and ∥sm,`(t)∥ =

√
2E

ρmn,` =
⟨sm,`(t), sn,`(t)⟩

∥sm,`(t)∥ ⋅ ∥sn,`(t)∥
=

1

T ∫
T

0
e ı2π(m−n)∆f ⋅tdt

= sinc [T (m − n)∆f ] e ı πT(m−n)∆f

⟨sm(t), sn(t)⟩

∥sm(t)∥ ∥sn(t)∥
= Re{ρmn,`} =

sin (πT (m − n)∆f )

πT (m − n)∆f
cos (πT (m − n)∆f )

= sinc(2T (m − n)∆f )

When ∆f = k
2T , Re{ρmn,`} = 0 for m ≠ n. In other words, the

minimum frequency separation between adjacent (bandpass)
signals for orthogonality is ∆f = 1

2T .
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Transmission energy of FSK signals

Em = ∫

T

0
∣sm(t)∣2 dt = E

Ô⇒ Equal transmission power for each channel symbol

Signal space diagram for FSK
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Euclidean distance between FSK signals

Equal distance between signals

[s1 s2 ⋯ sM] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
E 0 ⋯ 0

0
√
E ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
√
E

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∥sm − sn∥ =
√

2E
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Biorthogonal multidimensional FSK signals
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Transmission energy for biorthogonal FSK signals

Em = ∫

T

0
∣sm(t)∣2 dt = E

Still, equal transmission power for each channel symbol.

Cross-correlation of baseband biorthogonal FSK signals

sm,`(t) = sgn(m)

√
2E

T
e ı2π∣m∣(∆f ) t , m = ±1,±2,⋯,±M/2

ρmn,` =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, m = n
−1, m = −n

0, otherwise
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Euclidean distance between signals

[s−1 ⋯ s−M/2 s1 ⋯ sM/2]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
√
E 0 ⋯ 0

√
E 0 ⋯ 0

0 −
√
E ⋯ 0 0

√
E ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ −
√
E 0 0 ⋯

√
E

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence

∥sm − sn∥ =
⎧⎪⎪
⎨
⎪⎪⎩

√
2E if m ≠ −n

2
√
E if m = −n
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Simplex signals

Given the vector representations of orthogonal and
equal-power channel symbols (such as FSK)

sm = [am1, am2, ⋯ , amk]

for m = 1,2,⋯,M , its center (of gravity under equal prior
probability assumption) is

c = [
1

M

M

∑
m=1

am1,
1

M

M

∑
m=1

am2, ⋯,
1

M

M

∑
m=1

amk]

Define new channel symbol as

s ′m = sm − c

Then {s ′1, s ′2,⋯, s ′M} is called the simplex signal.
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Transmission energy of simplex signals

E ′m = ∫

T

0
∣s ′m(t)∣2 dt

= ∥sm − c∥2

= ∥sm∥
2
+ ∥c∥2

− ⟨sm,c⟩ − ⟨c , sm⟩ (c =
1

M

M

∑
i=1

s i)

= ∥sm∥
2
+ ∥c∥2

−
1

M

M

∑
i=1

⟨sm, s i⟩ −
1

M

M

∑
i=1

⟨s i , sm⟩

= ∥sm∥
2
+

1

M
∥sm∥

2
−

2

M
∥sm∥

2
(

by orthogonality
and equal-power

)

= (1 −
1

M
) ∥sm∥

2

The transmission energy of a signal is reduced by
“simplexing” it.
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Crosscorrelation of simplex signals

ρmn =
⟨s ′m, s ′n⟩
∥s ′m∥ ∥s ′n∥

=
⟨sm − c , sn − c⟩
(1 − 1

M
) ∥sm∥

2

=
⟨sm, sn⟩ − ⟨sm,c⟩ − ⟨c , sn⟩ + ⟨c ,c⟩

(1 − 1
M
) ∥sm∥

2

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∥sm∥2− 2
M

∥sm∥2+ 1
M

∥sm∥2

(1− 1
M

)∥sm∥2 m = n

0 − 2
M

∥sm∥2+ 1
M

∥sm∥2

(1− 1
M

)∥sm∥2 m ≠ n

= {
1 m = n

− 1
M−1 m ≠ n

Simplex signals are equally correlated !
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Example of simplex signals

[s1 ⋯ sM] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
E 0 ⋯ 0

0
√
E ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
√
E

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇓

[s ′1 ⋯ s ′M] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − 1
M )

√
E − 1

M

√
E ⋯ − 1

M

√
E

− 1
M

√
E (1 − 1

M )
√
E ⋯ − 1

M

√
E

⋮ ⋮ ⋱ ⋮

− 1
M

√
E − 1

M

√
E ⋯ (1 − 1

M )
√
E

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Subdivision of time: N time slots

For example: BPSK in each dimension

sm = [cm,0, cm,1,⋯, cm,N−1] , 1 ≤ m ≤M

where NTc = T

“cm,j = 0” ≡ “g1(t) is transmitted at time slot j”

“cm,j = 1” ≡ “g2(t) is transmitted at time slot j”

g1(t) = +

√
2Ec
Tc

cos(2πfct), g2(t) = −

√
2E

T
cos(2πfct),

with t ∈ [0,Tc)

sm(t) =

√
2Ec
Tc

N−1

∑
j=0

(−1)cm,j cos (2πfc(t − jTc))1{jTc ≤ t < (j+1)Tc}
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Crosscorrelation coefficient of adjacent signals
(i.e., with only one distinct component)

For those identical components

∫

Tc

0
∣g1(t)∣

2 dt = ∫
Tc

0
∣g2(t)∣

2 dt = Ec

For the single distinct component

∫

Tc

0
g1(t)g

∗
2 (t)dt = ∫

Tc

0
−∣g1(t)∣

2 dt = −Ec

Hence

ρmn =
⟨sm, sn⟩

∥sm∥ ∥sn∥
=

(N − 1)Ec − Ec
NEc

= 1 −
2

N

Minimum Euclidean distance between adjacent codewords

min
m≠n

∥sm − sn∥ = min
m≠n

√

∥sm∥
2
+ ∥sn∥

2
− ⟨sm, sn⟩ − ⟨sn, sm⟩

=

√

NEc +NEc − 2(NEc)
N − 2

N
= 2

√
Ec
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Transmission energy of multidimensional BPSK signals

Em = ∫

T

0
∣sm(t)∣

2
dt = N ∥g1(t)∥

2
= N ∫

Tc

0
∣g1(t)∣

2 dt = NEc

Largest number of channel symbols

M ≤ 2N

Vectorization of BPSK signals

sm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

±
√
Ec

±
√
Ec
⋮

±
√
Ec

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦N×1

Can we properly choose {sm}Mm=1 such that they are
orthogonal to each other ?
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Orthogonal multidimensional signals: Hadamard

signals

Definition: The Hadamard signals of size M = 2n can be
recursively defined as

Hn = [
Hn−1 Hn−1

Hn−1 −Hn−1
]

with initial value H0 = [1].
For example,

H1 = [
1 1
1 -1

] and H2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Hence, when M = 4, the Hadamard multidimensional
orthogonal (BPSK) signals are

[s1 s2 s3 s4] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
Ec

√
Ec

√
Ec

√
Ec√

Ec −
√
Ec

√
Ec −

√
Ec√

Ec
√
Ec −

√
Ec −

√
Ec√

Ec −
√
Ec −

√
Ec

√
Ec

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3.3 Signaling schemes with memory
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Memoryless modulation: smi
(t), mi ∈ {1,2, . . . ,M},

mi =function of Blocki

Modulation with memory: smi
(t),

mi =function of (Blocki , Blocki−1,⋯, Blocki−(L−1))

Linear modulation: The modulated part of smi
(t) is a

linear function of the digital waveform.
Linearity = Principle of superposition

If a1 → b1 and a2 → b2, then a1 + a2 → b1 + b2.

Non-linear modulation:
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Why introducing “memory” into signals?

The signal dependence is introduced for the purpose of
shaping the spectrum of transmitted signal so that it
matches the spectral characteristics of the channel.

Linearity

For example, smi (t) = Re{Ami e
2πfc t}.

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−3 Ð→ Re{−3e2πfc t}

−1 Ð→ Re{−1e2πfc t}

+1 Ð→ Re{+1e2πfc t}

+3 Ð→ Re{+3e2πfc t}

If the modulated part of smi (t) cannot be made as a
linear function of the digital waveform, the modulation is
classified as nonlinear.

Digital Communications: Chapter 3 Ver. 2018.07.12 Po-Ning Chen 52 / 161



Digital Communications: Chapter 3 Ver. 2018.07.12 Po-Ning Chen 53 / 161



Linear modulations with/without memory

NRZ (Non-Return-to-Zero) =Binary PAM or binary PSK
: memoryless

channel code bit = input bit

NRZI (Non-Return-to-Zero, Inverted) =Differential
encoding : with memory

(channel code bit)k = (input bit)k ⊕ (channel code bit)k−1

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(channel code bit)k = (channel code bit)k−1, when (input bit)k = 0

(channel code bit)k = (channel code bit)k−1, when (input bit)k = 1
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Application: DBPSK/DQPSK in Wireless LAN
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Advantage of modulation with memory

Why adding differential encoding before BPSK ?

For PSK modulations, digital information is carried by
absolute phase.

Synchronization is often achieved by either adding a
small pilot signal or using some self-synchronization
scheme.

The demodulator needs to detect the phase, which may
have a phase ambiguity due to noise and other
constraints.
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Example of phase ambiguity (frequency shift)

Ideal (noiseless) case

{
ftransmiter = fc ∶ receive cos (2πfct + θ)
freceiver = fc ∶ estimate it based on fc

Ô⇒ estimate θ̂ = θ

Ambiguous case

{
ftransmiter = fc ∶ receive cos (2πfct + θ)
freceiver ≠ fc ∶ estimate it based on f ′c

Ô⇒ {
receive cos (2πf ′c t + [2π(fc − f ′c )t] + θ)
estimate it based on f ′c

Ô⇒ estimate θ̂ = [2π(fc − f ′c )t] + θ
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Advantage of differential encoding

(channel code bit)k = (input bit)k ⊕ (channel code bit)k−1

The phases or signs of the received waveforms are not
important for detection.

What is important is the change in the sign of successive
pulses.

The sign change can be detected even if the
demodulating carrier has a phase ambiguity.
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Advantage of diff encode (Noncoherent demod)

No need to generate a local carrier at the receiver side.

Use the received signal itself as a carrier.

±Ac cos(2πfct) -

? Delay
T0

6
⊗ - Lowpass

fileter
-

z(t)y(t)

y(t −T0)

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2
c cos2(2πfct) =

A2
c

2 + 1
2 cos (4πfct)→

1
2A

2
c ,

if y(t) = y(t −T0)

−A2
c cos2(2πfct) = −

A2
c

2 − 1
2 cos (4πfct)→ −1

2A
2
c ,

if y(t) = −y(t −T0)
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Nonlinear modulation methods with
memory
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Linear modulation: The modulated part of smi (t) is a linear function of the
digital waveform.

Linearity = Principle of superposition
If a1 → b1 and a2 → b2, then a1 + a2 → b1 + b2.

Nonlinear modulation: The modulated part of smi (t) cannot be made as a
linear function of the digital waveform.

(Linear (from the aspect of phase)) Frequency shift keying or FSK

sm(t) = Re

⎡
⎢
⎢
⎢
⎢
⎣

√
2E

T
e ı2π(m∆f )te ı2πfc t

⎤
⎥
⎥
⎥
⎥
⎦

where m = ±1,±2,⋯,±(M − 1)
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Motivation: Disadvantages of FSK

Potential obstacles of multidimensional FSK with (M − 1)
oscillators for each desired frequency

Abrupt switching from one oscillator to another will
result in relatively large spectral side lobes outside of the
main spectral band of the signal.

Continuous-Phase FSK (CPFSK)

Alternative implementation of multidimensional FSK

A single carrier whose frequency is changed continuously.

This is considered as a modulated signal with memory
(we will explain this point in the next few slides).
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Recall

s(t) = Re{s`(t)e
ı2πfc t} , s`(t) = xi(t) + ı xq(t)

s`(t) is the baseband version of the bandpass signal s(t).

For ideal FSK signals

sm(t) = Re

⎡
⎢
⎢
⎢
⎢
⎣

√
2E

T
e ı2π(m∆f )te ı2πfc t

⎤
⎥
⎥
⎥
⎥
⎦

Ô⇒ sm,`(t) =

√
2E

T
e ı2π(m∆f )t

where ∆f = fd and m = ±1,±2,⋯,±(M − 1).
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Example of ideal (2-OSC) FSK signals

Let T = 0.5 sec, E = 0.25, fd = 0.5, In (= m) ∈ {1,−1}, and
fc = 1.5 Hz.

s(t) = Re{s`(t)e
ı2πfc t} = {

cos(4πt) In = 1
cos(2πt), In = −1
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Discontinuous phase of (2-OSC) FSK

Phase of s`(t) = {
πt, In = 1
−πt, In = −1

for t ∈ [nT , (n + 1)T )
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Phase change of (2-OSC) FSK

(Normalized) phase change (for t ∈ [nT , (n + 1)T ))

d(t) =
phase of s`(t)

4πTfd
=

∂
∂t (2πInfdt)

4πTfd
=

In
2T

is the derivative of the phase!

Continue from the previous example with T = 0.5.

d(t) = (+1)[u−1(t) − u−1(t −T)] − δ(t −T)
+ (−1)[u−1(t −T) − u−1(t − 2T)]
+ (−1)[u−1(t − 2T) − u−1(t − 3T)] + 3δ(t − 3T)
+ (+1)[u−1(t − 3T) − u−1(t − 4T)] +⋯
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d(t)= I0 [u−1(t ) − u−1(t −T )] + 1{I0 ≠ I1} ⋅ I1 ⋅ 1 ⋅ δ(t −T )

+ I1 [u−1(t −T ) − u−1(t − 2T )] + 1{I1 ≠ I2} ⋅ I2 ⋅ 2 ⋅ δ(t − 2T )

+ I2 [u−1(t − 2T ) − u−1(t − 3T )] + 1{I2 ≠ I3} ⋅ I3 ⋅ 3 ⋅ δ(t − 3T )

+ I3 [u−1(t − 3T ) − u−1(t − 4T )] + 1{I3 ≠ I4} ⋅ I4 ⋅ 4 ⋅ δ(t − 4T )

+⋯

Phase change is the derivative of the phase!

Phase is the integration of phase change!

s`(t) =

√
2E

T
e ı4πTfd ∫ t

−∞ d(τ)dτ

Those δ(⋅) functions result in “discontinuity” in
integration! Hence, let us remove them to force
“continuity” in phase.
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Continuous phase FSK (CPFSK)

s`(t) =

√
2E

T
e ı4πTfd ∫ t

−∞ d(τ)dτ

where

d(t) =
∞
∑

n=−∞
Ing(t − nT ) and g(t) =

1

2T
[u−1(t) − u−1(t −T )] .

In ∈ {±1,±3,±5,⋯} is the PAM information sequence.

g(t) is the “phase shaping function”.

It is now chosen as a rectangular pulse of height 1/(2T )

and duration [0,T ) (hence, the area is 1/2.)

T is the symbol duration.
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Re-express s`(t) as

s`(t) =

√
2E

T
e ı φ(t;I)

where

φ(t; I)

= 4πTfd ∫
t

−∞
d(τ)dτ

= 4πTfd ∫
t

−∞
[

∞
∑

n=−∞
Ing(τ − nT )] dτ

= 4πfdT [
n−1

∑
k=−∞

Ik (T ×
1

2T
) + In

t − nT

2T
] for t ∈ [nT , (n + 1)T )

= 2πfdT
n−1

∑
k=−∞

Ik + 2πfd(t − nT )In for t ∈ [nT , (n + 1)T )
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(Cont.) For t ∈ [nT , (n + 1)T ), s`(t) =
√

2E
T e ı φ(t;I) with

φ(t; I ) = 2πfdT
n−1

∑
k=−∞

Ik + 2πfd(t − nT )In

= θn + 2πh ⋅ In ⋅ q(t − nT ),

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h = 2fdT (modulation index)

θn = πh
n−1

∑
k=−∞

Ik (accumulation of history/memory)

q(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 t < 0
t

2T 0 ≤ t < T
1
2 t ≥ T

(integration of g(t))
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Generalization of CPFSK: CPM

We can further generalize φ(t; I ) to

φ(t; I ) = 2π
n

∑
k=−∞

hk ⋅ Ik ⋅ q(t − kT )

for nT ≤ t < (n + 1)T

where

1 I = {Ik}∞k=−∞ is the sequence of PAM symbols in
{±1,±3, . . . ,±(M − 1)}.

2 hk is the modulation index.
If hk varies with k , it is called multi-h CPM.

3 q(t) = ∫
t

0 g(τ)dτ.
If g(t) = 0 for t ≥ T (and t < 0), s`(t) is called full-response CPM;
otherwise it is called partial-response CPM.
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Examples of CPMs
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Examples of CPMs
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Some commonly used CPM pulse shapes

LREC (Rectangular): LREC with L = 1 is CPFSK

g(t) =
1

2LT
(u−1(t) − u−1(t − LT ))

LRC (Raised cosine)

g(t) =
1

2LT
(u−1(t) − u−1(t − LT )) (1 − cos(

2πt

LT
))
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Some commonly used CPM pulse shapes

GMSK (Gaussian minimum shift keying)

g(t) = Q (2πB (t −
T

2
)/

√
ln 2)−Q (2πB (t +

T

2
)/

√
ln 2)

where Q(t) = ∫
∞
t

1√
2π
e−x

2/2 dx , and B is 3dB Bandwidth

g(t) is the response of filter H(f ) = 2−
(f /B)2

2 to a
rectangular pulse of u−1(t +T /2) − u−1(t −T /2).

GMSK with BT = 0.3 is used in the European digital
cellular communication system, called GSM (2G).

At BT = 0.3, the GMSK pulse may be truncated at
∣t ∣ = 1.5T with a relatively small error incurred for
t > 1.5T .
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Representations of continuous-phase

Phase trajectory or phase tree

Phase trellis
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Phase trajectory or phase tree

Binary CPFSK (i.e., In = ±1 and g(t) is full response
rectangular function)

φ (t; I ) = πh
n−1

∑
k=−∞

Ik + 2πhIn ⋅ q(t − nT )
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Example 3

Quaternary CPFSK (See the next page) with
In ∈ {−3,−1,+1,+3}.

We observe that the phase trees for CPFSK are piecewise
linear as a consequence of the fact that the pulse g(t) is
rectangular.

Smoother phase trajectories and phase trees are obtained
by using pulses that do not contain discontinuities.
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If g(t) is continuous (especially at boundaries), phase
trajectory becomes smooth.

Example 4

g(t) =
1

6T
(1 − cos(

2πt

3T
)) = raised cosine of length 3T

with (I−2, I−1, I0, I1, I2,⋯) = (+1,+1,+1,−1,−1,−1,+1,+1,−1,+1,⋯)
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Phase trellis

Phase trellis = Phase trajectory is plotted with modulo 2π

Example 5

Binary CPFSK with h = 1/2 and g(t) is a full response
rectangular function.

Thus CPM can be decoded by Viterbi trellis decoding.
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Minimum shift keying (MSK)

Recall for nT ≤ t < (n + 1)T , CPM has

φ(t; I ) = 2π
n

∑
k=−∞

hk ⋅ Ik ⋅ q(t − kT ).

CPFSK is a special case of CPM with

g(t) = 1
2T for 0 ≤ t < T

MSK is a special case of binary CPFSK with

hk =
1
2 , g(t) = 1

2T for 0 ≤ t < T and In ∈ {±1}

Thus for MSK, we have for nT ≤ t < (n + 1)T ,

φ(t; I ) =
π

2

n−1

∑
k=−∞

Ik + πInq(t − nT ) = θn +
1

2
πIn (

t − nT

T
)
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Φ(t; I ) = θn +
1

2
πIn (

t − nT

T
) = 2π (

In
4T

) t −
nπIn

2
+ θn

The corresponding modulated carrier wave is

sMSK(t) = A cos (2πfct +Φ(t; I ))

= A cos [2π (fc +
In

4T
) t −

nπIn
2

+ θn]

Since In ∈ {±1}, sMSK(t) has two frequency components:

f1 = fc −
1

4T

f2 = fc +
1

4T
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Minimum shift keying (MSK)

MSK is so named because f2 − f1 =
1

2T = the minimum
(frequency) shift that makes the two frequency components
orthogonal.

[See Slide 3-35] When ∆f = k
2T , Re{ρmn,`} = 0 for m ≠ n. In

other words, the minimum frequency separation between
adjacent (passband) signals for orthogonality is ∆f = 1

2T .

MSK is sometimes regarded as a kind of OQPSK (Offset
QPSK). Why?
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Offset QPSK

The original QPSK

There could be 180 degree of (sudden) phase change (so, not
continuous phase), e.g., from (+1,+1) to (−1,−1).
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sQPSK(t) =
∞
∑

n=−∞
I2ng(t − 2nT ) cos(2πfc)

−
∞
∑

n=−∞
I2n+1g(t − 2nT ) sin (2πfct)

(I0, I1) = (+1,+1), (I2, I3) = (−1,−1) and (I4, I5) = (−1,+1).
g(t) rectangular pulse of unit height and during 2T .
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Offset QPSK (OQPSK)

How to reduce the 180o phase change to only 90o?

Simple solution: Do not let the “two bits” I2n and I2n+1 change
at the same time!

0 2T 4T 6T

T 3T 5T 7T

I0 = 1 I2 = −1 I4 = −1

I1 = 1 I3 = −1 I5 = −1

sOQPSK(t) =
∞
∑

n=−∞
I2ng(t − 2nT ) cos(2πfct)

−
∞
∑

n=−∞
I2n+1g(t − (2n + 1)T ) sin (2πfct)
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To synchronize with the textbook, we reverse {I2n+1} to obtain

sOQPSK(t) =
∞
∑

n=−∞
I2ng(t − 2nT ) cos(2πfct)

+
∞
∑

n=−∞
I2n+1g(t − (2n + 1)T ) sin (2πfct)
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OQPSK vs. MSK

MSK can be regarded as a kind of (memoryless) OQPSK. Why?
MSK: φ(t; I) = θn + 1

2
πIn ( t−nT

T
) = θ0 + π2 ∑

n−1
k=0 Ik + π(

In
2T

)t − nπ
2

In for nT ≤ t < (n + 1)T

Proof: Suppose without loss of generality,

θ0 =
π

2

−1

∑
k=−∞

Ik =
3π

2
.

Then for nT ≤ t < (n + 1)T (and n ≥ 1),

sMSK,`(t) = e ı φ(t;I)

= e ı π(
In
2T

)t
⋅ e− ı

nπ
2
In ⋅ e ı

π
2 ∑

n−1
k=0 Ik ⋅ e ı θ0

Note (−ı)nın = 1.

= [cos(π
t

2T
) + ı In sin(π

t

2T
)] (−In ı )

n
(
n−1

∏
k=0

(Ik ı )) (− ı )

= I n+1
n (

n−1

∏
k=0

Ik) sin(π
t

2T
) + ı I nn (

n−1

∏
k=0

Ik) sin(π
(t −T )

2T
)
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n I n+1
n (∏

n−1
k=0 Ik) I nn (∏

n−1
k=0 Ik)

0 J0 = I0 = J2⌊0/2⌋
1 J0 = I0 = J2⌊1/2⌋ J1 = I0I1 = J2⌊(1−1)/2⌋+1

2 J2 = I0I1I2 = J2⌊2/2⌋ J1 = I0I1 = J2⌊(2−1)/2⌋+1

3 J2 = I0I1I2 = J2⌊3/2⌋ J3 = I0I1I2I3 = J2⌊(3−1)/2⌋+1

4 J4 = I0I1I2I3I4 = J2⌊4/2⌋ J3 = I0I1I2I3 = J2⌊(4−1)/2⌋+1

5 J4 = I0I1I2I3I4 = J2⌊5/2⌋ J5 = I0I1I2I3I4I5 = J2⌊(5−1)/2⌋+1

6 J6 = I0I1I2I3I4I5I6 = J2⌊6/2⌋ J5 = I0I1I2I3I4I5 = J2⌊(6−1)/2⌋+1

For nT ≤ t < (n + 1)T ,

sMSK,`(t) = J2⌊n/2⌋(−1)⌊n/2⌋ sin(π
(t − 2⌊n/2⌋T )

2T
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(t−2⌊n/2⌋T)

− ı J2⌊(n−1)/2⌋+1(−1)⌊(n−1)/2⌋+1 sin(π
(t − 2⌊(n − 1)/2⌋T −T )

2T
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(t−2⌊(n−1)/2⌋T−T)
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For 2mT ≤ t < (2m + 1)T (i.e., n = 2m),

sMSK,`(t) = J2m(−1)mg(t − 2mT ) − ı J2m−1 (−1)m

´¹¹¹¹¸¹¹¹¹¹¶
=(−1)⌈(2m−1)/2⌉

g(t − (2m − 1)T )

For (2m + 1)T ≤ t < (2m + 2)T (i.e., n = 2m + 1),

sMSK,`(t) = J2m(−1)mg(t − 2mT ) − ı J2m+1 (−1)m+1

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(−1)⌈(2m+1)/2⌉

g(t − (2m + 1)T )

For (2m + 2)T ≤ t < (2m + 3)T (i.e., n = 2m + 2),

sMSK,`(t) = J2(m+1)(−1)m+1g(t − 2(m + 1)T )

− ı J2m+1 (−1)m+1

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(−1)⌈(2m+1)/2⌉

g(t − (2m + 1)T )

with g(t) = sin (π t
2T

) [u−1(t) − u−1(t − 2T )] .
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MSK can be regarded as a memoryless OQPSK by setting

sMSK(t) = [
∞
∑

n=−∞
Ĩ2ng(t − 2nT )] cos(2πfct)

+ [
∞
∑

n=−∞
Ĩ2n+1g(t − (2n + 1)T )] sin (2πfct)

with

Ĩn = (−1)⌈n/2⌉Jn = (−1)⌈n/2⌉
n

∏
k=0

Ik .

MSK can be “composed” using “memoryless” circuits
with “with-memory” information sequence Ĩ .

Please be noted that the textbook abuses the notation by
using g(t) to denote both amplitude and phase pulse
shaping functions for CPM signals!
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A linear representation of CPM

The key of OQPSK representation of MSK is that phase can
be “pulled down” as a multiplicative adjustment in amplitude
when In ∈ {−1,+1}!

For example, e ı2π( In
4T

)t
= cos(π

t

2T
) + ı In sin(π

t

2T
) .

(1986 Laurent)

CPM can also be represented as a linear superposition of
AM signal waveforms (if In ∈ {±1}).

Such a representation provides an alternative method for
synthesizing CPM signal at the transmitter and for
demodulating the signal at the receiver.
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An important and useful fact

For I ∈ {−1,+1},

e ıA⋅I =
sin(B −A)

sin(B)
+ e ıB ⋅I

sin(A)

sin(B)
.

Proof:

sin(B)e ıA⋅I

= sin(B)[cos(A) + ı I sin(A)]

= sin(B) cos(A) + ı sin(B ⋅ I ) sin(A)

= sin(B −A) + cos(B) sin(A) + ı sin(B ⋅ I ) sin(A)

= sin(B −A) + sin(A)[cos(B ⋅ I ) + ı sin(B ⋅ I )]

= sin(B −A) + sin(A)e ıB ⋅I

◻
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For general h and g(⋅) function of duration L and of integral
1/2 (but each In ∈ {±1}), we have for nT ≤ t < (n + 1)T (for a
binary CPM signal),

sb-CPM,`(t) = e ı φ(t;I)

= e ı (πh∑
n−L
k=−∞ Ik+2πh∑n

k=n−L+1 Ikq(t−kT))

= e ı πh∑
n−L
k=−∞ Ik

L−1

∏
k ′=0

e ı2πhIn−k′q(t−(n−k ′)T) (n − k ′ = k)

= e ı πh∑
n−L
k=−∞ Ik

L−1

∏
k ′=0

(
sin(B − 2πh q(t − (n − k ′)T ))

sin(B)

+e ıB ⋅In−k′
sin(2πh q(t − (n − k ′)T ))

sin(B)
) ,

where B = πh.
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Define

s0(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

sin(2πh q(t))
sin(B) 0 ≤ t < LT

sin(B−2πh q(t−LT))
sin(B) LT ≤ t < 2LT

0 otherwise

Since q(0) = 0 and q(LT ) = 1/2, s0(t) is continuous for t ∈ R.
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Continue the derivation:

sb-CPM,`(t)

= e ı πh∑
n−L
k=−∞ Ik

L−1

∏
k ′=0

(
sin(B − 2πhq(t − (n − k ′)T + LT − LT ))

sin(B)

+e ıB ⋅In−k′
sin(2πhq(t − (n − k ′)T ))

sin(B)
)

= e ı πh∑
n−L
k=−∞ Ik

L−1

∏
k ′=0

(s0(t − (n − k ′)T + LT )

+e ıB ⋅In−k′ s0(t − (n − k ′)T ))

nT ≤ t < (n + 1)T and 0 ≤ k ′ ≤ L − 1 imply that

0 ≤ t − (n − k ′)T < LT and LT ≤ t − (n − k ′)T + LT < 2LT .
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L−1

∏
k ′=0

(s0(t − (n − k ′)T + LT ) + e ıB ⋅In−k′ s0(t − (n − k ′)T ))

= ( s0(t − nT + 0 ⋅T + LT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ai,0=1 (k ′=0)

+e ıB ⋅In−0 s0(t − nT + 0 ⋅T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ai,0=0 (k ′=0)

)

× ( s0(t − nT + 1 ⋅T + LT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ai,1=1 (k ′=1)

+e ıB ⋅In−1 s0(t − nT + 1 ⋅T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ai,1=0 (k ′=1)

)

⋮

× ( s0(t − nT + (L − 1) ⋅T + LT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ai,L−1=1 (k ′=L−1)

+e ıB ⋅In−(L−1) s0(t − nT + (L − 1) ⋅T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ai,L−1=0 (k ′=L−1)

)

=
2L−1

∑
i=0

e ıB∑
L−1
k′=0

(1−ai,k′)In−k′
L−1

∏
k ′=0

s0(t − nT + k ′T + ai ,k ′LT )

where (ai ,0, ai ,1, . . . , ai ,L−1) is the binary representation of i with

ai ,0 being the most significant bit.
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Continue the derivation:

sb-CPM,`(t)

= e ıB∑
n−L
k=−∞ Ik

2L−1

∑
i=0

e ıB∑
L−1
k′=0

(1−ai,k′)In−k′
L−1

∏
k ′=0

s0(t − nT + k ′T + ai ,k ′LT )

=
2L−1

∑
i=0

e ı πhAi,n

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
complex

amplitude

ci(t − nT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

pulse shaping
function

where

Ai ,n =
n

∑
k=−∞

Ik−
L−1

∑
k ′=0

ai ,k ′ In−k ′ and ci(t) =
L−1

∏
k ′=0

s0(t+k
′T+ai ,k ′LT ).

Binary CPM can be expressed as a weighted sum of 2L real-valued

pulses {ci(t)} where the complex amplitudes depends on the

information sequence. This is useful, especially when L is small!
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Property of ci(t)

Duration: ci(t) = 0 if any of s0(t + k ′T + ai ,k ′LT ) = 0.
Hence, ci(t) ≠ 0 only possible in

max
0≤k ′<L

(−k ′T − ai ,k ′LT) ≤ t < min
0≤k ′<L

[(−k ′T − ai ,k ′LT) + 2LT ]

⇔ −
⎛

⎝
min

0≤k′≤L
and ai,k′=0

k ′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“≤ L” for the case

of ai,k′ = 1 ∀0 ≤ k′ < L

⎞

⎠
T ≤ t < LT −

⎛

⎝
max
−1≤k′<L

and ai,k′=1

k ′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
“−1 ≤” for the case

of ai,k′ = 0 ∀0 ≤ k′ < L

⎞

⎠
T

where we define ai ,L = 0 and ai ,−1 = 1. So, the duration is
equal to:

(L − ( max
−1≤k ′<L and ai,k′=1

k ′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kmax1

+( min
0≤k ′≤L and ai,k′=0

k ′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kmin0

)T .
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L = 3

i ai ,0ai ,1ai ,2 −kmin0 L − kmax1 (L − kmax1) − (−kmin0)

0 000 0 4 4
1 001 0 1 1
2 010 0 2 2
3 011 0 1 1
4 100 −1 3 4
5 101 −1 1 2
6 110 −2 2 4
7 111 −3 1 4

It can be shown that L− kmax1 + kmin0 ≤ L+ 1, and the upper bound

can always be achieved by i = 0.
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Example. h = 1/2 and q(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 t < 0

t/(6T ) 0 ≤ t < 3T

1/2 otherwise

. Then

s0(t) =

⎧⎪⎪
⎨
⎪⎪⎩

sin ( π
6T t) 0 ≤ t < 6T

0 otherwise

Ai ,n =
n

∑
k=−∞

Ik−
2

∑
k ′=0

ai ,k ′ In−k ′ and ci(t) =
2

∏
k ′=0

s0(t+k
′T+ai ,k ′LT ).
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ai,0ai,1ai,2 duration ci(t) e ı πhAi,n

0≡000 [0,4T) s0(t)s0(t +T )s0(t + 2T ) e ı θn+1

1≡001 [0,T) s0(t)s0(t +T )s0(t + 5T ) e ı (θn−2+πhIn+πhIn−1)

2≡010 [0,2T) s0(t)s0(t + 4T )s0(t + 2T ) e ı (θn−1+πhIn)

3≡011 [0,T) s0(t)s0(t + 4T )s0(t + 5T ) e ı (θn−2+πhIn)

4≡100 [-T,3T) s0(t + 3T )s0(t +T )s0(t + 2T ) e ı θn

5≡101 [-T,T) s0(t + 3T )s0(t +T )s0(t + 5T ) e ı (θn−2+πhIn−1)

6≡110 [-2T,2T) s0(t + 3T )s0(t + 4T )s0(t + 2T ) e ı θn−1

7≡111 [-3T,T) s0(t + 3T )s0(t + 4T )s0(t + 5T ) e ı θn−2

Note that
⎧⎪⎪
⎨
⎪⎪⎩

c4(t) = c0(t +T )

e ı πhA4,n = e ı πhA0,n−1

⎧⎪⎪
⎨
⎪⎪⎩

c6(t) = c0(t + 2T )

e ı πhA6,n = e ı πhA0,n−2

⎧⎪⎪
⎨
⎪⎪⎩

c7(t) = c0(t + 3T )

e ı πhA7,n = e ı πhA0,n−3

and
⎧⎪⎪
⎨
⎪⎪⎩

c5(t) = c2(t +T )

e ı πhA5,n = e ı πhA2,n−1
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For nT ≤ t < (n + 1)T ,

sb-CPM,`(t) = e ı φ(t;I)
=

7

∑
i=0

e ı πhAi,nci(t − nT )

= e ı πhA0,nc0(t − nT ) + e ı πhA1,nc1(t − nT ) + e ı πhA2,nc2(t − nT )

+ e ı πhA3,nc3(t − nT ) + e ı πhA4,nc4(t − nT ) + e ı πhA5,nc5(t − nT )

+ e ı πhA6,nc6(t − nT ) + e ı πhA7,nc7(t − nT )

= e ı πhA0,nc0(t − nT ) + e ı πhA1,nc1(t − nT ) + e ı πhA2,nc2(t − nT )

+ e ı πhA3,nc3(t − nT ) + e ı πhA0,n−1c0(t − (n − 1)T )

+ e ı πhA2,n−1c2(t − (n − 1)T ) + e ı πhA0,n−2c0(t − (n − 2)T )

+ e ı πhA0,n−3c0(t − (n − 3)T )

=
∞
∑

m=−∞
[e ı πhA0,mc0(t −mT ) + e ı πhA1,mc1(t −mT )

+e ı πhA2,mc2(t −mT ) + e ı πhA3,mc3(t −mT )]

=
∞
∑

m=−∞

⎡
⎢
⎢
⎢
⎢
⎣

23−1−1

∑
i=0

e ı πhAi,mci(t −mT )

⎤
⎥
⎥
⎥
⎥
⎦

(for m = n − 3, n − 2, n − 1, n)
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So, we notice that when ai ,0 = 1, ci(t) is always a shift-version
of some cj(t) with 0 ≤ j ≤ 2L−1 − 1.

This concludes to that:

Theorem 1 (Laurent ’86)

For nT ≤ t < (n + 1)T ,

sb-CPM,`(t) =
∞
∑

m=−∞

⎡
⎢
⎢
⎢
⎢
⎣

2L−1−1

∑
i=0

e ı πhAi,mci(t −mT )

⎤
⎥
⎥
⎥
⎥
⎦

where

Ai ,n =
n

∑
k=−∞

Ik −
L−1

∑
k ′=1

ai ,k ′ In−k ′

and

ci(t) = s0(t)
L−1

∏
k ′=1

s0(t + k ′T + ai ,k ′LT )

with duration 0 ≤ t < (L − kmax1)T .
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3.4 Power spectrum of digital
modulated signals
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Why studying spectral characteristics?

Bandwidth limitation in a real channel.

Random process Ô⇒ Power spectral density

PAM
CPM
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Power spectra of modulated signals

The modulated waveform s(t) is deterministic given the
information sequence I , so only the information sequence
I = (. . . , I−2, I−1, I0, I1, I2, . . .) is random!
For convenience, we denote the waveform at
nT ≤ t < (n + 1)T as s(t − nT ; In) if the modulation is
memoryless, and as s(t − nT ; I n) if the modulation is
with memory, where I n = (. . . , In−2, In−1, In).
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Hence, the modulated lowpass equivalent signal can be
expressed as

v `(t) =
∞
∑

n=−∞
s(t − nT ; I n).

Note that v `(t) is usually not a (wide-sense) stationary
process but a cyclostationary process.

Its spectral characteristics is then determined by the
time-averaged autocorrelation function rather than the usual
authocorrelation function for a WSS proess.
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2.7.2 Cyclostationary processes
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How to model a waveform source that carries digital
information?

For example,

X (t) =
∞
∑

n=−∞
an ⋅ g(t − nT )

where {an}
∞
n=−∞ is a discrete-time random sequence, and

g(t) is a deterministic pulse shaping function.
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Cyclostationary processes

Given that {an}
∞
n=−∞ is WSS, what is the statistical property

of X (t)?

X (t) is not necessarily (strictly) stationary. Its mean
becomes periodic with period T :

E[X (t)] = E [
∞
∑

n=−∞
ang(t − nT )] = µa

∞
∑

n=−∞
g(t−nT ) = E [X (t+KT )]

Autocorrelation function becomes periodic with period T

RX(t1, t2) = E [X (t1)X ∗
(t2)]

=
∞
∑

n=−∞

∞
∑

m=−∞
E[ana∗m]g(t1 − nT )g(t2 −mT )

=
∞
∑

n=−∞

∞
∑

m=−∞
Ra(n −m)g(t1 − nT )g(t2 −mT )

= RX(t1 +KT , t2 +KT )
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Definition 1 (Cyclostationary process)

A random process is said to be cyclostationary or periodically
stationary in the wide sense if its mean and autocorrelation
function are both periodic.

Time-average autocorrelation function

RX(τ) =
1

T ∫
T

0
RX(t + τ, t)dt

Average power spectral density

SX(f ) = F {RX(τ)}
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3.4-1 Power spectral density of a
digitally modulated signal with

memory
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E [v `(t)] =
∞
∑

n=−∞
E [In]g(t − nT ) = µI

∞
∑

n=−∞
g(t − nT ) = E [v `(t +T )]

and

Rv`(t1, t2) = E [v `(t1)v∗` (t2)]

=
∞
∑

n=−∞

∞
∑

m=−∞
E [InI

∗
m]g(t1 − nT )g∗(t2 −mT ) = Rv`(t1 +T , t2 +T )

implies that v `(t) is cyclostationary.

Rv`(τ)

=
1

T ∫
T

0

∞
∑

n=−∞

∞
∑

m=−∞
RI (n −m)g(t + τ − nT )g∗(t −mT )dt

=
1

T ∫
T

0

∞
∑

k=−∞

∞
∑

m=−∞
RI (k)g(t + τ − kT −mT )g∗(t −mT )dt

(k = n −m)
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=
1

T

∞
∑

k=−∞
RI (k)

∞
∑

m=−∞
∫

T

0
g(t + τ − kT −mT )g∗(t −mT )dt

u=t−mT
=

1

T

∞
∑

k=−∞
RI (k)

∞
∑

m=−∞
∫

−(m−1)T

−mT
g(u + τ − kT )g∗(u)du

=
1

T

∞
∑

k=−∞
RI (k)∫

∞

−∞
g(u + τ − kT )g∗(u)du

=
1

T

∞
∑

k=−∞
gk(τ − kT )

where
gm(τ) = RI (m)∫

∞

−∞
g(u + τ)g∗(u)du.
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Gm(f ) = ∫

∞

−∞
gm(τ)e− ı2πf τdτ

= ∫

∞

−∞
(RI (m)∫

∞

−∞
g(u + τ)g∗(u)du) e− ı2πf τdτ

= RI (m)∫

∞

−∞
(∫

∞

−∞
g(u + τ)e− ı2πf τdτ)g∗(u)du

v=u+τ
= RI (m)∫

∞

−∞
(∫

∞

−∞
g(v)e− ı2πf (v−u)dv)g∗(u)du

= RI (m) (∫

∞

−∞
g(v)e− ı2πfvdv)(∫

∞

−∞
g∗(u)e ı2πfudu)

= RI (m)∣G(f )∣2

⇒ Sv`(f ) = F {Rv`(τ)} =
1

T

∞
∑

k=−∞
F {gk(τ − kT )}

=
1

T

∞
∑

k=−∞
RI (k)∣G(f )∣2e− ı2πkfT

=
1

T
SI (f )∣G(f )∣2 where SI (f ) =

∞
∑

k=−∞
RI (k)e

− ı2πkfT .
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Theorem 2

Sv`(f ) =
1

T
SI(f ) ∣G(f )∣

2

The average power spectrum density of PAM signals is
determined by the pulse shape, as well as the input
information.
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Example

Input information is real and mutually uncorrelated

RI(k) = {
σ2

I + µ
2
I , k = 0

µ2
I , k ≠ 0

Hence

SI(f ) = σ
2
I + µ

2
I

∞
∑

k=−∞
e− ı2πfkT = σ2

I +
µ2

I

T

∞
∑

k=−∞
δ (f −

k

T
)

and

Sv`(f ) =
σ2

I

T
∣G(f )∣

2
+
µ2

I

T 2

∞
∑

k=−∞
δ (f −

k

T
) ∣G(f )∣

2
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Sv`(f ) =
σ2

I

T
∣G(f )∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
continuous

+
µ2

I

T 2

∞
∑

k=−∞
δ (f −

k

T
) ∣G(f )∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
discrete

Observation 1: Discrete spectrum vanishes when the
input information has zero mean, which is often desirable
for digital modulation techniques.

Observation 2: With a zero-mean input information, the
average power spectrum density is determined by G(f ).
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Example 6

The average power spectrum density for rectangular pulses

g(t) = A [u−1(t) − u−1(t −T )]

It shows

G(f ) = AT sinc(fT )e− ı πfT ⇒ ∣G(f )∣2 = A2T 2sinc2
(fT ).

Hence

Sv`(f ) =
σ2

I
T

∣G(f )∣2 +
µ2

I
T 2

∞
∑

k=−∞
δ (f −

k

T
) ∣G(f )∣2

= σ2
I A

2T sinc2
(fT ) + µ2

IA
2δ(f ).
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Example 7

The average power spectrum density for raised cosine pulse

g(t) =
A

2
[1 + cos(

2π

T
(t −

T

2
))] (u−1(t) − u−1(t −T )) .

It gives

G(f ) =
AT

2
sinc(fT )

1

1 − f 2T 2
e− ı πfT .

Hence

Sv`(f ) =
σ2

I
T

∣G(f )∣2 +
µ2

I
T 2

∞
∑

k=−∞
δ (f −

k

T
) ∣G(f )∣2

=
σ2

I A
2T sinc2(fT )

4(1 − f 2T 2)2
+
µ2

IA
2

4
δ(f ) +

µ2
IA

2

16
δ (f −

1

T
) +

µ2
IA

2

16
δ (f +

1

T
) .

Note: limx→±1
sinc2(x)
(1−x2)2 =

1
4
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Comparison of the previous two examples

Broader side lobe

Faster decay in tail (f −6 < f −2)
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Assume A = T = σ2
I = 1 and µI = 0

Sv`(f )
Sv`(0)
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Assume A = T = σ2
I = 1 and µI = 0

Sv`(f )
Sv`(0)
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Assume A = T = σ2
I = 1 and µI = 0

The smoother (meaning, continuity of derivatives) the
pulse shape, the greater the bandwidth efficiency (lower
bandwidth occupancy).

The raised cosine pulse shape will result in higher
bandwidth efficiency than the rectangular pulse shape.
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What if I correlated?

Example 8

In = bn + bn−1

where {bn} mutually uncorrelated with zero mean and unit
variance.

Then,

RI(k) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 k = 0

1 k = ±1

0 otherwise

SI(f ) = 2 + e ı2πfT + e− ı2πfT = 2 (1 + cos(2πfT )) = 4 cos2(πfT )

Sv`(f ) =
1

T
∣G(f )∣

2
SI(f ) =

4

T
∣G(f )∣

2
cos2 (πfT )
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Rectangular pulse shape with A = T = 1

Sv`(f )
Sv`(0)
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Rectangular pulse shape with A = T = 1

Dependence in transmitted information (not the original
information) can improve the bandwidth efficiency.

Sv`(f )
Sv`(0)
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Power spectra of CPFSK and CPM

CPM: Assume I i.i.d.

v `(t) = e ı φ(t;I)

where

φ(t; I ) = 2πh
∞
∑

k=−∞
Ikq(t − kT )

Rv`(t1, t2)

= E [v `(t1)v∗
` (t2)]

= E [e ı φ(t1,I)e− ı φ(t2,I)]

= E [exp( ı2πh
∞
∑

k=−∞
Ik [q(t1 − kT ) − q(t2 − kT )])]
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Rv`(t1, t2)

= E [
∞
∏

k=−∞
exp ( ı2πhIk [q(t1 − kT ) − q(t2 − kT )])]

=
∞
∏

k=−∞
E [exp ( ı2πhIk [q(t1 − kT ) − q(t2 − kT )])]

=
∞
∏

k=−∞
[∑
n∈S

Pn exp ( ı2πhn [q(t1 − kT ) − q(t2 − kT )])] ,

where Ik = n ∈ S and Pn ≜ Pr[Ik = n].

R̄v`(τ) =
1

T ∫
T

0
Rv`(t + τ, t)dt

=
1

T ∫
T

0

∞
∏

k=−∞
[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]] dt.
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Assume τ ≥ 0. For mT ≤ τ = ξ +mT < (m + 1)T and
0 ≤ t < T (i.e., the range of integration)

t+τ −(m+1)T = t+ξ−T and t+τ −(m+1−L)T = t+ξ−(1−L)T .

Rv`(τ)

=
1

T ∫
T

0

max{m+1,0}
∏

k=min{m+1−L,1−L}
[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]] dt

m≥0
=

1

T ∫
T

0

m+1

∏
k=1−L

[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]] dt.
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Hermitian symmetry of Rv `(τ)

It suffices to derive Rv`(τ) for τ ≥ 0 because Rv`(−τ) = R
∗
v`(τ).

Proof:

R
∗
v`(τ) =

1

T ∫
T

0
E [e− ı2πh∑∞k=−∞ Ik [q(t+τ−kT)−q(t−kT)]

] dt

=
1

T ∫
T

0
E [e ı2πh∑∞k=−∞ Ik [q(t−kT)−q(t+τ−kT)]

] dt

=
1

T ∫
T+τ

τ
E [e ı2πh∑∞k=−∞ Ik [q(v−τ−kT)−q(v−kT)]

] dv

(v = t + τ)

=
1

T ∫
T

0
E [e ı2πh∑∞k=−∞ Ik [q(v−τ−kT)−q(v−kT)]

] dv

= Rv`(−τ).
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Average PSD of CPM

Sv`(f ) = ∫

∞

−∞
Rv`(τ)e

− ı2πf τ dτ

= ∫

0

−∞
Rv`(τ)e

− ı2πf τ dτ + ∫
∞

0
Rv`(τ)e

− ı2πf τ dτ

= ∫

∞

0
Rv`(−τ)e

ı2πf τ dτ + ∫
∞

0
Rv`(τ)e

− ı2πf τ dτ

= ∫

∞

0
[Rv`(τ)e

− ı2πf τ ]
∗
dτ + ∫

∞

0
Rv`(τ)e

− ı2πf τ dτ

= 2Re [∫

∞

0
Rv`(τ)e

− ı2πf τ dτ] .
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∫

∞

0
Rv`(τ)e

− ı2πf τ dτ

= ∫

LT

0
Rv`(τ)e

− ı2πf τ dτ + ∫
∞

LT
Rv`(τ)e

− ı2πf τ dτ

= ∫

LT

0
Rv`(τ)e

− ı2πf τ dτ +
∞
∑
m=L
∫

(m+1)T

mT
Rv`(τ)e

− ı2πf τ dτ.

For m ≥ L, the two “regions” below are non-overlapping!
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Rv`(τ)
m≥L
=

1

T ∫
T

0

m+1

∏
k=1−L

[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]

] dt

=
1

T ∫
T

0
(

0

∏
k=1−L

[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]

]

m−L
∏
k=1

[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]

]

m+1

∏
k=m+1−L

[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]

])dt

=
1

T ∫
T

0
(

0

∏
k=1−L

[∑
n∈S

Pne
ı2πhn[1/2−q(t−kT)]

]

m−L
∏
k=1

[∑
n∈S

Pne
ı2πhn[1/2−0]

]

m+1

∏
k=m+1−L

[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−0]

])dt
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Rv`(τ)
m≥L
=

1

T ∫
T

0
(

0

∏
k=1−L

[∑
n∈S

Pne
ı2πhn[1/2−q(t−kT)]

] [ΦI (h)]
m−L

1

∏
k ′=1−L

[∑
n∈S

Pne
ı2πhn[q(t+τ−k ′T−mT)]

])dt (k ′ = k −m)

= [ΦI (h)]
m−L λ(τ −mT ),

where ΦI (h) = ∑
n∈S

Pne
ı πhn and

λ(ξ) =
1

T ∫
T

0
(

0

∏
k=1−L

[∑
n∈S

Pne
ı2πhn[1/2−q(t−kT)]

]

1

∏
k ′=1−L

[∑
n∈S

Pne
ı2πhn[q(t+ξ−k ′T)]

])dt.
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∞
∑
m=L
∫

(m+1)T

mT
Rv`(τ)e

− ı2πf τ dτ

=
∞
∑
m=L
∫

(m+1)T

mT
[ΦI (h)]

m−L λ(τ −mT )e− ı2πf τ dτ

=
∞
∑
m=L
∫

T

0
[ΦI (h)]

m−L λ(ξ)e− ı2πf (ξ+mT) dξ (ξ = τ −mT )

= (
∞
∑
m=L

[ΦI (h)]
m−L e− ı2πfmT

)(∫

T

0
λ(ξ)e− ı2πf ξdξ)

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

( e− ı 2πfLT

1−ΦI (h)e− ı 2πfT ) (∫
T

0 λ(ξ)e− ı2πf ξdξ) if ∣ΦI (h)∣ < 1

(e− ı2πfLT
∑
∞
m′=0 e

− ı2πT(f −ν/T)m′
) (∫

T
0 λ(ξ)e− ı2πf ξdξ)

if ∣ΦI (h)∣ = ∣e ı2πν ∣ = 1

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

( e− ı 2πfLT

1−ΦI (h)e− ı 2πfT ) (∫
T

0 λ(ξ)e− ı2πf ξdξ) if ∣ΦI (h)∣ < 1

e− ı2πfLT (1
2 +

1
2T ∑

∞
m′=−∞ (δ(f − ν+m′

T
) − ı 1

π(f −(ν+m′)/T)))

(∫
T

0 λ(ξ)e− ı2πf ξdξ) if ∣ΦI (h)∣ = ∣e ı2πν ∣ = 1
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g(t)↔ G(f )⇒

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

gδ(t) =
∞

∑
n=−∞

g(nTs)δ(t − nTs)

Gδ(f ) =
∞

∑
n=−∞

g(nTs)e
−ı2πnTs f =

1

Ts

∞

∑
n=−∞

G(f −
n

Ts
)

Slide 2-9: u−1(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, t > 0
1
2
, t = 0

0, t < 0

↔ U−1(f ) =
1
2
(δ(f ) − ı 1

πf
)

⇒ U−1,δ(f ) =
∞

∑
n=−∞

u−1(nTs)e
−ı2πnTs f = −

1

2
+

∞

∑
n=0

e−ı2πnTs f

=
1

Ts

∞

∑
n=−∞

U−1(f −
n

Ts
) =

1

2Ts

∞

∑
n=−∞

(δ(f −
n

Ts
) − ı

1

π(f − n
Ts

)
)

∞

∑
m′=0

e− ı 2πT(f −ν/T)m′

=
1

2
+

1

2T

∞

∑
m′=−∞

(δ(f −
ν +m′

T
) − ı

1

π(f − ν+m′

T
)
)
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We finally obtain a numerically computable/plotable formula for
the average PSD of CPM. For example, if ∣ΦI (h)∣ < 1,

Sv`(f ) = 2 Re [∫

LT

0
Rv`(τ)e

− ı2πf τ dτ

+(
1

1 −ΦI (h)e− ı2πfT
)(∫

T

0
λ(ξ)e− ı2πf (ξ+LT)dξ)]

where for 0 ≤ τ = ξ +mT < LT ,

Rv`(τ)
m≥0
=

1

T ∫
T

0

m+1

∏
k=1−L

[∑
n∈S

Pne
ı2πhn[q(t+τ−kT)−q(t−kT)]

] dt.

However, if ∣ΦI (h)∣ = ∣eı2πν ∣ = 1, where 0 ≤ ν < 1, the average PSD
of CPM signals has impulses at fm′ = ν+m′

T for integer m′.
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Numerically plotted average PSD of the equivalent lowpass
CPFSK signal (M = 2, T = 0.5, Pn uniform over S = {±1} and
ΦI(h) =

1
2(e

ı πh + e− ı πh) = cos(πh))

Sv`(f )
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Numerically plotted average PSD of the equivalent lowpass
CPFSK signal (M = 2, T = 0.5 and Pn uniform over S = {±1})

Sv`(f )
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Numerically plotted average PSD of the equivalent lowpass
CPFSK signal (M = 2, T = 0.5 and Pn uniform over S = {±1})

Sv`(f )

Digital Communications: Chapter 3 Ver. 2018.07.12 Po-Ning Chen 144 / 161



Numerically plotted average PSD of the equivalent lowpass
CPFSK signal (M = 2, T = 0.5 and Pn uniform over S = {±1})

Sv`(f )
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Observation 1

For h < 1

Its average PSD is relatively smooth and well confined.

Almost all power is confined within

fT < 0.6 or f <
0.6

T

where T is the width of the channel symbols.
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Observation 2

For h > 1

Its average PSD becomes broader and hence the
bandwidth is approximately

fT < 1.2 or f <
1.2

T

This is the main reason why in communication systems,
where CPFSK is used, the modulation index h is usually
taken to be < 1.
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Example: Bluetooth RF specification (Version 1.0)

GFSK (Gaussian FSK) with BT = 0.5

B = Bandwidth (for baseband symbol) = 0.5 MHz,
T = 1µ sec
1 = positive frequency deviation
0 = negative frequency deviation

Modulation index 0.28 ∼ 0.35

Modulation index = 2fdT , where fd is the peak
frequency deviation.
0.28 < h = 2fdT < 0.35 Ô⇒ 140KHz < fd < 175KHz
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Observation3

By letting h → 1

we can observe M impulses in the average PSD of the
equivalent lowpass CPFSK signal.
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Numerically plot-
ted average PSD of
the equivalent low-
pass CPFSK signal
(M = 4, Pn uniform
over S = {±1,±3}
and ΦI (h) =
1
2(cos(πh)+cos(3πh)))

Approximately 4
impulses appear
when h ≈ 1.

The bandwidth
becomes broader
than almost twice
of that of M = 2.
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Approximately 8 impulses are observed when h ≈ 1.

Bandwidth becomes broader than almost four times of
that of M = 2.
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Re-visit MSK versus OQPSK

Sv`(f )
Sv`(0) (dB)
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Observations

Main Lobe: MSK is 50% wider than rectangular OQPSK,
i.e., MSK = 1.5× rectangular OQPSK.

Side Lobe:

Compare the bandwidth that contains 99% of the total
power: MSK = 1.2/T and rectangular OQPSK = 8.0/T .
MSK decreases much faster than OQPSK.
MSK is significantly more bandwidth efficient than
rectangular OQPSK.
By further decreasing the modulation index h (i.e.,
making h < 1/2), the bandwidth efficiency of MSKs can
be increased. However, in such case, MSK signals are no

longer orthogonal. fd = 1/(4T )⇔ h = 2fdT = 1/2
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Appendix: Fractional out-of-band power

Fractional in-band power

∆PIn-band(W ) =
1

PTotal
∫

W

−W
Sv`(f )df ,

where

PTotal = ∫

∞

−∞
Sv`(f )df .

Fractional out-of-band power

∆POut-of-band(W ) = 1 −∆PIn-band(W )

This quantity is often used to measure the bandwidth
efficiency of a modulation scheme. For example, finding
the bandwidth W under some acceptable condition, say
fractional-out-of-band power is no greater than 0.01.
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Summary of spectral characteristics of CPFSK

signals

Modulation Index h

In general, the lower the modulation index h, the higher
the bandwidth efficiency.

Pulse shape g(t)

The smoother (meaning, e.g., continuity of the
derivatives) the g(t), the greater the bandwidth
efficiency.

For example, the raised cosine g(t) will result in higher
bandwidth efficiency than the rectangular g(t).

For example, LRC (raised cosine g(t) with duration LT )
with larger L (i.e., smoother) will result in greater
bandwidth efficiency.
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What you learn from Chapter 3

(Pseudo-)Vectorization of standard ASK, PSK and QAM
signals

Computation of average energy based on signal space
vector points
Euclidean distance based on signal space vector points
Gray code mapping from binary pattern to the signal
space vector points (in terms of their Euclidean
distances)

(Good to know) QPSK versus π/4-QPSK
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Vectorization of standard orthogonal (FSK or
multi-dimensional) and bi-orthogonal signals

Computation of average energy based on signal space
vector points
Euclidean distance based on signal space vector points
(Important) Cross-correlation of FSK bandpass and
lowpass signals (Minimum shift keying)

(Good to know) Simplex signals (from orthogonal signals)
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(Important) Why cyclo-stationarity for digitally
modulated signals and its power spectrum

Modulation with memory – CPM signals

Its basic formation

φ(t; I) = 4πTfd ∫
t

−∞
d(τ)dτ

based on phase change d(t) = ∑∞n=−∞ Ing(t − nT )

(Good to know) Full response and partial response
MSK versus OQPSK
Linear representation of CPM
(Important) Time-average autocorrelation and power
spectrum (of cyclostationary PAM and MSK)
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