Digital Communications

Chapter 3: Digital Modulation Schemes

Po-Ning Chen, Professor

Institute of Communications Engineering National Chiao-Tung University, Taiwan

3.1 Representation of digitally modulated signals

Digital information

Note that the channel symbols are bandpass signals.

Digital information

- Memoryless modulation: $s_{m_{\ell}}(t), m_{\ell} \in\{1,2, \ldots, M\}$, $m_{\ell}=$ function of Block $_{\ell}$
- Modulation with memory: $s_{m_{\ell}}(t)$,
$L=$ Constraint length of modulation (with memory) $m_{\ell}=$ function of $\left(\right.$ Block $_{\ell}$, Block $_{\ell-1}, \cdots$, Block $\left._{\ell-(L-1)}\right)$

Terminology

Signal $s_{m}(t), 1 \leq m \leq M, t \in\left[0, T_{s}\right)$

- Signaling interval: T_{s} (For convenience, we will sometimes use T instead.)
- Signaling rate (or symbol rate): $R_{s}=\frac{1}{T_{s}}$
- (Equivalent) Bit interval: $T_{b}=\frac{T_{s}}{\log _{2} M}$
- (Eqiuvalent) Bit rate: $R_{b}=\frac{1}{T_{b}}=R_{s} \log _{2} M$
- Average signal energy (assume equal-probable in message m)

$$
\mathcal{E}_{\mathrm{avg}}=\frac{1}{M} \sum_{m=1}^{M} \int_{0}^{T_{s}}\left|s_{m}(t)\right|^{2} d t
$$

- (Equivalent) Average bit energy: $\mathcal{E}_{\text {bavg }}=\frac{\varepsilon_{\text {avg }}}{\log _{2} M}$
- Average power: $P_{\text {avg }}=\frac{\mathcal{E}_{\text {avg }}}{T_{s}}=R_{s} \mathcal{E}_{\text {avg }}=\frac{\mathcal{E}_{\text {buvg }}}{T_{b}}=R_{b} \mathcal{E}_{\text {bavg }}$

3.2 Memoryless modulation methods

Example studies of memoryless modulation

- Digital pulse amplitude modulated (PAM) signals (Amplitude-shift keying or ASK)
- Digital phase-modulated (PM) signals (Phase shift keying or PSK)
- Quadrature amplitude modulated (QAM) signals
- Multidimensional modulated signals
- Orthogonal
- Bi-orthogonal
- Simplex signals

M-ary pulse amplitude modulation (M-PAM)

PAM bandpass waveform

$$
s_{m}(t)=\operatorname{Re}\left\{A_{m} g(t) e^{\imath 2 \pi f_{c} t}\right\}=A_{m} g(t) \cos \left(2 \pi f_{c} t\right), t \in\left[0, T_{s}\right)
$$

where $A_{m}=(2 m-1-M) d$, and $m=1,2, \cdots, M$

Example $1(\mathrm{M}=4)$

$$
\left\{\begin{array}{l}
s_{1}(t)=-3 \cdot d \cdot g(t) \cdot \cos \left(2 \pi f_{c} t\right) \\
s_{2}(t)=-1 \cdot d \cdot g(t) \cdot \cos \left(2 \pi f_{c} t\right) \\
s_{3}(t)=+1 \cdot d \cdot g(t) \cdot \cos \left(2 \pi f_{c} t\right) \\
s_{4}(t)=+3 \cdot d \cdot g(t) \cdot \cos \left(2 \pi f_{c} t\right)
\end{array}\right.
$$

The amplitude difference between two adjacent signals $=2 d$.

$$
s_{m}(t)=\boldsymbol{R e}\left\{A_{m} g(t) e^{22 \pi f_{c} t}\right\}=A_{m} g(t) \cos \left(2 \pi f_{c} t\right), t \in\left[0, T_{s}\right)
$$

- $g(t)$ is the pulse shaping function.
- T_{s} is usually assumed to be a multiple of $\frac{1}{f_{c}}$ in principle.

Vectorization of M-PAM signals (Gram-Schmidt)

$$
\begin{aligned}
\phi_{1}(t) & =\frac{g(t)}{\|g(t)\|} \sqrt{2} \cos \left(2 \pi f_{c} t\right)=\frac{g(t)}{\sqrt{\mathcal{E}_{g}}} \sqrt{2} \cos \left(2 \pi f_{c} t\right) \\
\boldsymbol{s}_{m} & =\left[\frac{A_{m}}{\sqrt{2}} \cdot\|g(t)\|\right], \text { a one-dimensional vector }
\end{aligned}
$$

By the correct Gram-Schmidt procedure,

$$
\begin{aligned}
\phi_{1}(t) & =\frac{g(t) \cos \left(2 \pi f_{c} t\right)}{\left\|g(t) \cos \left(2 \pi f_{c} t\right)\right\|} \\
& \neq \frac{g(t) \cos \left(2 \pi f_{c} t\right)}{\|g(t)\| \cdot \frac{1}{\sqrt{T_{s}}}\left\|\cos \left(2 \pi f_{c} t\right)\right\|}=\frac{g(t) \cos \left(2 \pi f_{c} t\right)}{\|g(t)\| \sqrt{1 / 2}}
\end{aligned}
$$

The idea behind the above derivation is to single out " $\|g(t)\|$ " in the expression! This justifies the necessity of introducing the lowpass equivalent signal where the influence of f_{c} has been relaxed.

For a time-limited signal, we can only claim $\mathcal{E}_{x_{\ell}} \approx 2 \mathcal{E}_{x}$!

$$
\begin{aligned}
\left\|\phi_{1}(t)\right\|^{2}= & \frac{2}{\|g(t)\|^{2}} \int_{0}^{T_{s}} g^{2}(t) \cos ^{2}\left(2 \pi f_{c} t\right) d t \\
= & \frac{2}{\|g(t)\|^{2}} \int_{0}^{T_{s}} g^{2}(t)\left[\frac{1+\cos \left(4 \pi f_{c} t\right)}{2}\right] d t \\
= & \frac{1}{\|g(t)\|^{2}} \int_{0}^{T_{s}} g^{2}(t) d t \\
& +\frac{1}{\|g(t)\|^{2}} \int_{0}^{T_{s}} g^{2}(t) \cos \left(4 \pi f_{c} t\right) d t \\
\approx & \frac{1}{\|g(t)\|^{2}} \int_{0}^{T_{s}} g^{2}(t) d t=1
\end{aligned}
$$

If $g(t)$ is constant for $t \in\left[0, T_{s}\right)$ and T_{s} is a multiple of $\frac{1}{f_{c}}$, then the above " \approx " becomes " $=$."

Based on the "pseudo"-vectorization,

- Transmission energy of M-PAM signals

$$
\mathcal{E}_{m}=\int_{0}^{T_{s}}\left|s_{m}(t)\right|^{2} d t \approx \frac{A_{m}^{2}\|g(t)\|^{2}}{2}=\frac{1}{2} A_{m}^{2} \mathcal{E}_{g}
$$

- Error consideration
- The most possible error is the erroneous selection of an adjacent amplitude to the transmitted signal amplitude.
- Therefore, the mapping (from bit pattern to channel symbol) is assigned such that the adjacent signal amplitudes differ by exactly one bit. (Gray encoding)
- In such way, the most possible bit error pattern (caused by the noise) is a single bit error.

Gray code (Signal space diagram : one dimension)

$$
\begin{aligned}
& M=2 \xrightarrow[0]{\perp} \xrightarrow{\perp} \\
& M=4 \\
& M=8
\end{aligned}
$$

Euclidean distance

$$
\begin{aligned}
\left\|s_{m}(t)-s_{n}(t)\right\| & \approx\left|\frac{A_{m}\|g(t)\|}{\sqrt{2}}-\frac{A_{n}\|g(t)\|}{\sqrt{2}}\right| \\
& =\frac{\|g(t)\|}{\sqrt{2}}|(2 m-1-M) d-(2 n-1-M) d| \\
& =d \sqrt{2}\|g(t)\||m-n|
\end{aligned}
$$

Single side band (SSB) PAM

(1) $g(t)$ is real $\Leftrightarrow G(f)$ is Hermitian symmetric.
(2) Consequently, the previous PAM is based on the double side band (DSB) transmission which requires twice the bandwidth.
(3) Recall

$$
\mathcal{F}^{-1}\left\{u_{-1}(f) G(f)\right\}=\frac{1}{2}[g(t)+\imath \hat{g}(t)]=g_{+}(t)
$$

where $\hat{g}(t)$ is the Hilbert transform of $g(t)$.

$$
\text { Symmetric } G(f)
$$

$$
2 u_{-1}(f) G(f)
$$

$$
s_{m, S S B}(t)=\boldsymbol{\operatorname { R e }}\left\{A_{m} g_{+}(t) e^{i 2 \pi f_{c} t}\right\}
$$

$\phi_{1, S S B}(t) \approx \frac{\boldsymbol{\operatorname { R e }}\left\{A_{m} g_{+}(t) e^{\imath 2 \pi f_{c} t}\right\}}{\left\|g_{+}(t)\right\| \cdot \frac{1}{\sqrt{T_{s}}}\left\|\operatorname{Re}\left\{A_{m} e^{\imath 2 \pi f_{c} t}\right\}\right\|}=\frac{\boldsymbol{\operatorname { R e }}\left\{\sqrt{2} g_{+}(t) e^{\imath 2 \pi f_{c} t}\right\}}{\left\|g_{+}(t)\right\|}$ $\boldsymbol{s}_{m, S S B}=\left[\frac{A_{m}}{\sqrt{2}}\left\|g_{+}(t)\right\|\right]$

$$
\begin{aligned}
&\left\|g_{+}(t)\right\|^{2} \cdot \int_{0}^{T_{s}} \phi_{1, S S B}^{2}(t) d t \\
&=2 \int_{0}^{T_{s}} \operatorname{Re}\left\{g_{+}(t) e^{\imath 2 \pi f_{c} t}\right\}^{2} d t \\
&=\frac{1}{2} \int_{0}^{T_{s}}\left[g_{+}(t) e^{\imath 2 \pi f_{c} t}+g_{+}^{*}(t) e^{-\imath 2 \pi f_{c} t}\right]^{2} d t \\
&=\frac{1}{2} \int_{0}^{T_{s}}\left[\left|g_{+}(t)\right| e^{\imath 2 \pi f_{c} t+\angle g_{+}(t)}+\left|g_{+}(t)\right| e^{-\imath 2 \pi f_{c} t-\angle g_{+}(t)}\right]^{2} d t \\
&=\int_{0}^{T_{s}}\left|g_{+}(t)\right|^{2} d t+\int_{0}^{T_{s}}\left|g_{+}(t)\right|^{2} \cos \left[4 \pi f_{c} t+2 \angle g_{+}(t)\right] d t \\
& \approx \int_{0}^{T_{s}}\left|g_{+}(t)\right|^{2} d t=\left\|g_{+}(t)\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
s_{m, S S B}(t) & =\operatorname{Re}\left\{\frac{A_{m}}{2}[g(t) \pm \imath \hat{g}(t)] e^{\imath 2 \pi f_{c} t}\right\} \\
& =\frac{A_{m}}{2} g(t) \cos \left(2 \pi f_{c} t\right) \mp \frac{A_{m}}{2} \hat{g}(t) \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

$$
\left\|g_{+}(t)\right\|^{2}=\left\|\frac{1}{2} g(t)+\imath \frac{1}{2} \hat{g}(t)\right\|^{2}=\frac{1}{2}\|g(t)\|^{2}
$$

Recall from Slide 2-22, $x_{+}(t)=\frac{1}{2}(x(t)+\imath \hat{x}(t))$ and $\mathcal{E}_{X}=2 \mathcal{E}_{x_{+}}$.

To summarize

$$
\begin{aligned}
& \left\{\begin{aligned}
\phi_{1(, D S B)}(t) & =\frac{g(t)}{\|g(t)\|} \sqrt{2} \cos \left(2 \pi f_{c} t\right) \\
s_{m(, D S B)} & =\frac{A_{m}}{\sqrt{2}}\|g(t)\|
\end{aligned}\right. \\
& \left\{\begin{aligned}
\phi_{1, S S B}(t) & =\operatorname{Re}\left\{\frac{g_{+}(t)}{\|g+(t)\|} \sqrt{2} e^{\imath 2 \pi f_{c} t}\right\} \\
s_{m, S S B} & =\frac{A_{m}}{\sqrt{2}}\left\|g_{+}(t)\right\|
\end{aligned}\right.
\end{aligned}
$$

2-level PAM signals are particularly named antipodal signals.
(± 1 signals)

Applications of PAM

Phase-modulation (PM)

Bandpass PM

$$
\begin{aligned}
s_{m}(t) & =\boldsymbol{\operatorname { R e }}\left[g(t) e^{\imath 2 \pi(m-1) / M} e^{\imath 2 \pi f_{c} t}\right] \\
& =g(t) \cos \left(2 \pi f_{c} t+\theta_{m}\right) \\
& =\cos \left(\theta_{m}\right) \underbrace{g(t) \cos \left(2 \pi f_{c} t\right)}_{\phi_{1}}-\sin \left(\theta_{m}\right) \underbrace{g(t) \sin \left(2 \pi f_{c} t\right)}_{\phi_{2}}
\end{aligned}
$$

where $\theta_{m}=2 \pi(m-1) / M, m=1,2, \cdots, M$

Example $2(\mathrm{M}=4)$

$$
\left\{\begin{array}{l}
s_{1}(t)=g(t) \cos \left(2 \pi f_{c} t\right) \\
s_{2}(t)=g(t) \cos \left(2 \pi f_{c} t+\pi / 2\right) \\
s_{3}(t)=g(t) \cos \left(2 \pi f_{c} t+\pi\right) \\
s_{4}(t)=g(t) \cos \left(2 \pi f_{c} t+3 \pi / 2\right)
\end{array}\right.
$$

Signal space of PM signals

$$
\begin{aligned}
& \left\{\begin{array}{l}
\phi_{1}(t) \approx \frac{g(t)}{[g(t)} \sqrt{2} \cos \left(2 \pi f_{c} t\right) \\
\phi_{2}(t) \approx-\frac{g(t)}{\|g(t)\|} \sqrt{2} \sin \left(2 \pi f_{c} t\right)
\end{array}\right. \\
& \boldsymbol{s}_{m}=\left[\frac{\|g(t)\|}{\sqrt{2}} \cos \left(\theta_{m}\right), \frac{\|g(t)\|}{\sqrt{2}} \sin \left(\theta_{m}\right)\right]
\end{aligned}
$$

- Transmission energy of PM Signals

$$
\mathcal{E}_{m}=\int_{0}^{T} s_{m}^{2}(t) d t \approx \frac{\|g(t)\|^{2}}{2}\left[\cos ^{2}\left(\theta_{m}\right)+\sin ^{2}\left(\theta_{m}\right)\right]=\frac{\mathcal{E}_{g}}{2}
$$

Advantages of PM signals: Equal energy for every channel symbol

- Error consideration
- The most possible error is the erroneous selection of an adjacent phase of the transmitted signal phase.
- Therefore, we assign the mapping from bit pattern to channel symbol as the adjacent signal phases differ only by one bit. (Gray encoding)
- The most possible bit error pattern caused by the noise is a single-bit error.

Signal space diagram of PM with Gray code

$$
\boldsymbol{s}_{m}=\left[\frac{\|g(t)\|}{\sqrt{2}} \cos \left(\theta_{m}\right), \frac{\|g(t)\|}{\sqrt{2}} \sin \left(\theta_{m}\right)\right]
$$

- Euclidean distance

$$
\begin{aligned}
& \left\|s_{m}(t)-s_{n}(t)\right\| \\
& \quad=\frac{\|g(t)\|}{\sqrt{2}} \sqrt{\left|\cos \left(\theta_{m}\right)-\cos \left(\theta_{n}\right)\right|^{2}+\left|\sin \left(\theta_{m}\right)-\sin \left(\theta_{n}\right)\right|^{2}} \\
& \quad=\|g(t)\| \sqrt{1-\cos \left(\theta_{m}-\theta_{n}\right)}
\end{aligned}
$$

$\pi / 4-$ QPSK

A variant of 4-phase PSK (QPSK), named $\pi / 4$-QPSK, is obtained by introducing an additional $\pi / 4$ phase shift in the carrier phase in each symbol interval.

Quadrature amplitude modulation (QAM)

Bandpass QAM

$$
s_{m}(t)=x_{i}(t) \cos \left(2 \pi f_{c} t\right)-x_{q}(t) \sin \left(2 \pi f_{c} t\right)
$$

where $x_{i}(t)$ and $x_{q}(t)$ are quadrature components. Let
$x_{i}(t)=A_{m i} g(t)$ and $x_{q}(t)=A_{m q} g(t)$; then bandpass QAM is

$$
s_{m}(t)=A_{m i} g(t) \cos \left(2 \pi f_{c} t\right)-A_{m q} g(t) \sin \left(2 \pi f_{c} t\right)
$$

Advantage: Transmit more digital information by using both quadrature components as information carriers. As a result, the transfer rate of digital data is doubled.

Vectorization of QAM signals

$$
s_{m}(t)=A_{m i} \underbrace{g(t) \cos \left(2 \pi f_{c} t\right)}_{\phi_{1}}-A_{m q} \underbrace{g(t) \sin \left(2 \pi f_{c} t\right)}_{\phi_{2}}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\phi_{1}(t) \approx \frac{g(t)}{[g(t))} \sqrt{2} \cos \left(2 \pi f_{c} t\right) \\
\phi_{2}(t) \approx-\frac{g(t)}{\|g(t)\|} \sqrt{2} \sin \left(2 \pi f_{c} t\right)
\end{array}\right. \\
& \Longrightarrow s_{m}=\left[\frac{A_{m i}}{\sqrt{2}}\|g(t)\|, \frac{A_{m q}}{\sqrt{2}}\|g(t)\|\right]
\end{aligned}
$$

$$
\boldsymbol{s}_{m}=\left[\frac{A_{m i}}{\sqrt{2}}\|g(t)\|, \frac{A_{m q}}{\sqrt{2}}\|g(t)\|\right]
$$

- Transmission energy of QAM signals

$$
\begin{aligned}
\mathcal{E}_{m} & =\int_{0}^{T} s_{m}^{2}(t) d t \\
& =\frac{1}{2}\|g(t)\|^{2} A_{m i}^{2}+\frac{1}{2}\|g(t)\|^{2} A_{m q}^{2} \\
& =\frac{1}{2}\|g(t)\|^{2}\left(A_{m i}^{2}+A_{m q}^{2}\right) \\
& =\frac{1}{2} \mathcal{E}_{g}\left(A_{m i}^{2}+A_{m q}^{2}\right)
\end{aligned}
$$

- Euclidean Distance

$$
\left\|s_{m}(t)-s_{n}(t)\right\|=\frac{\sqrt{\mathcal{E}_{g}}}{\sqrt{2}} \sqrt{\left|A_{m i}-A_{n i}\right|^{2}+\left|A_{m q}-A_{n q}\right|^{2}}
$$

Signal space diagram for rectangular QAM

$$
\boldsymbol{s}_{m}=\left[\frac{A_{m i}}{\sqrt{2}}\|g(t)\|, \frac{A_{m q}}{\sqrt{2}}\|g(t)\|\right]
$$

where $A_{m i}, A_{m q} \in\{(2 m-1-\sqrt{M}): m=1,2, \cdots, \sqrt{M}\}$

- Minimum Euclidean distance (of square QAM)

$$
\min _{m \neq n} \sqrt{\frac{\mathcal{E}_{g}}{2}} \sqrt{\underbrace{\left|A_{m i}-A_{n i}\right|^{2}}_{=4}+\underbrace{\left|A_{m q}-A_{n q}\right|^{2}}_{=0}}=\sqrt{2 \mathcal{E}_{g}}
$$

- Average symbol energy (of square QAM)

$$
\mathcal{E}_{\text {avg }}=\frac{1}{M} \frac{\mathcal{E}_{g}}{2} \sum_{m=1}^{\sqrt{M}} \sum_{n=1}^{\sqrt{M}}\left(A_{m i}^{2}+A_{n q}^{2}\right)=\frac{\mathcal{E}_{g}}{2 M} \frac{2 M(M-1)}{3}=\frac{M-1}{3} \mathcal{E}_{g}
$$

- Average bit energy (of square QAM)

$$
\mathcal{E}_{\text {bavg }}=\frac{M-1}{3 \log _{2} M} \mathcal{E}_{g}
$$

Example of applications of square QAM

- CCITT V. 22 modem
- Serial binary, asynchronous or synchronous, full duplex, dial-up
- 2400 bps or 600 baud (symbols/sec)
- QAM, 16-point rectangular-type signal constellation

Alternative viewpoint of QAM

$\mathrm{QAM}=\mathrm{PM}(\mathrm{PSK})+\mathrm{PAM}(\mathrm{ASK})$

- Use both amplitude and phase as digital information bearers.

$$
s_{m}(t)=\operatorname{Re}\left[V_{m 1} e^{\imath \theta_{m 2}} g(t) e^{\imath 2 \pi f_{c} t}\right]=V_{m 1} g(t) \cos \left(2 \pi f_{c} t+\theta_{m 2}\right)
$$

- Compare with the previous viewpoint

$$
\begin{aligned}
s_{m}(t) & =A_{m i} g(t) \cos \left(2 \pi f_{c} t\right)-A_{m q} g(t) \sin \left(2 \pi f_{c} t\right) \\
& =V_{m 1} g(t) \cos \left(2 \pi f_{c} t+\theta_{m 2}\right)
\end{aligned}
$$

where $V_{m 1}=\sqrt{A_{m i}^{2}+A_{m q}^{2}}$ and $\theta_{m 2}=\tan ^{-1}\left(A_{m q} / A_{m i}\right)$

- There is a one-to-one correspondence mapping from $\left(A_{m i}, A_{m q}\right)$ domain to $\left(V_{m 1}, \theta_{m 2}\right)$ domain.

Signal space for non-rectangular QAM (AM-PSK)

Multi-dimensional signals

- PAM : one-dimensional
- PM : two-dimensional
- QAM : two-dimensional
- How to create three or higher dimensional signal?
(1) Subdivision of time

Example. N time slots can be used to form $2 N$ vector basis elements (each has two quadrature bearers.)
(2) Subdivision of frequency

Example. N frequency subbands can be used to form $2 N$ vector basis elements (each has two quadrature bearers.)
(3) Subdivision of both time and frequency

Frequency shift keying or FSK

- Subdivision of frequency
- Bandpass orthogonal multidimensional signals (Frequency shift keying or FSK)

$$
\begin{aligned}
s_{m}(t) & =\operatorname{Re}\left[\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 2 \pi(m \Delta f) t} e^{\imath 2 \pi f_{c} t}\right] \\
& =\sqrt{\frac{2 \mathcal{E}}{T}} \cos \left(2 \pi f_{c} t+2 \pi(m \Delta f) t\right)
\end{aligned}
$$

- Vectorization of FSK signals under orthogonality conditions (introduced in next few slides)

$$
\phi_{m}(t)=\frac{1}{\sqrt{\mathcal{E}}} s_{m}(t) \text { and } \boldsymbol{s}_{m}=[0, \ldots, 0, \underbrace{\sqrt{\mathcal{E}}}_{\substack{m+h \\ \text { position }}}, 0, \ldots, 0]^{\mathrm{T}}
$$

Crosscorrelations of FSK signals

$$
\begin{aligned}
s_{m, \ell}(t) & =\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 2 \pi(m \Delta f) t} \quad \text { and } \quad\left\|s_{m, \ell}(t)\right\|=\sqrt{2 \mathcal{E}} \\
\rho_{m n, \ell} & =\frac{\left\langle s_{m, \ell}(t), s_{n, \ell}(t)\right\rangle}{\left\|s_{m, \ell}(t)\right\| \cdot\left\|s_{n, \ell}(t)\right\|}=\frac{1}{T} \int_{0}^{T} e^{\imath 2 \pi(m-n) \Delta f \cdot t} d t \\
& =\operatorname{sinc}[T(m-n) \Delta f] e^{\imath \pi T(m-n) \Delta f}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\left\langle s_{m}(t), s_{n}(t)\right\rangle}{\left\|s_{m}(t)\right\|\left\|s_{n}(t)\right\|}=\operatorname{Re}\left\{\rho_{m n, \ell}\right\} & =\frac{\sin (\pi T(m-n) \Delta f)}{\pi T(m-n) \Delta f} \cos (\pi T(m-n) \Delta f) \\
& =\operatorname{sinc}(2 T(m-n) \Delta f)
\end{aligned}
$$

When $\Delta f=\frac{k}{2 T}, \operatorname{Re}\left\{\rho_{m n, \ell}\right\}=0$ for $m \neq n$. In other words, the minimum frequency separation between adjacent (bandpass) signals for orthogonality is $\Delta f=\frac{1}{2 T}$.

- Transmission energy of FSK signals

$$
\mathcal{E}_{m}=\int_{0}^{T}\left|s_{m}(t)\right|^{2} d t=\mathcal{E}
$$

\Longrightarrow Equal transmission power for each channel symbol

- Signal space diagram for FSK

Euclidean distance between FSK signals

Equal distance between signals

$$
\begin{aligned}
& {\left[\begin{array}{llll}
s_{1} & s_{2} & \cdots & s_{M}
\end{array}\right]=\left[\begin{array}{cccc}
\sqrt{\mathcal{E}} & 0 & \cdots & 0 \\
0 & \sqrt{\mathcal{E}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\mathcal{E}}
\end{array}\right] } \\
&\left\|s_{m}-s_{n}\right\|=\sqrt{2 \mathcal{E}}
\end{aligned}
$$

Biorthogonal multidimensional FSK signals

- Transmission energy for biorthogonal FSK signals

$$
\mathcal{E}_{m}=\int_{0}^{T}\left|s_{m}(t)\right|^{2} d t=\mathcal{E}
$$

Still, equal transmission power for each channel symbol.

- Cross-correlation of baseband biorthogonal FSK signals

$$
\begin{aligned}
s_{m, \ell}(t) & =\operatorname{sgn}(m) \sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 2 \pi|m|(\Delta f) t}, \quad m= \pm 1, \pm 2, \cdots, \pm M / 2 \\
\rho_{m n, \ell} & =\left\{\begin{aligned}
1, & m=n \\
-1, & m=-n \\
0, & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

Euclidean distance between signals

$$
\begin{aligned}
& {\left[\begin{array}{llllllll}
s_{-1} & \cdots & s_{-M / 2} & s_{1} & \cdots & s_{M / 2}
\end{array}\right]} \\
& \\
& \quad=\left[\begin{array}{ccccccc}
-\sqrt{\mathcal{E}} & 0 & \cdots & 0 & \sqrt{\mathcal{E}} & 0 & \cdots \\
0 & -\sqrt{\mathcal{E}} & \cdots & 0 & 0 & \sqrt{\mathcal{E}} & \cdots \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
\vdots & 0 & \cdots & -\sqrt{\mathcal{E}} & 0 & 0 & \cdots
\end{array}\right]
\end{aligned}
$$

Hence

$$
\left\|\boldsymbol{s}_{m}-\boldsymbol{s}_{n}\right\|= \begin{cases}\sqrt{2 \mathcal{E}} & \text { if } m \neq-n \\ 2 \sqrt{\mathcal{E}} & \text { if } m=-n\end{cases}
$$

Simplex signals

Given the vector representations of orthogonal and equal-power channel symbols (such as FSK)

$$
\boldsymbol{s}_{m}=\left[a_{m 1}, a_{m 2}, \cdots, a_{m k}\right]
$$

for $m=1,2, \cdots, M$, its center (of gravity under equal prior probability assumption) is

$$
c=\left[\frac{1}{M} \sum_{m=1}^{M} a_{m 1}, \frac{1}{M} \sum_{m=1}^{M} a_{m 2}, \cdots, \frac{1}{M} \sum_{m=1}^{M} a_{m k}\right]
$$

Define new channel symbol as

$$
s_{m}^{\prime}=s_{m}-c
$$

Then $\left\{\boldsymbol{s}_{1}^{\prime}, \boldsymbol{s}_{2}^{\prime}, \cdots, s_{M}^{\prime}\right\}$ is called the simplex signal.

Transmission energy of simplex signals

$$
\begin{aligned}
& \mathcal{E}_{m}^{\prime}=\int_{0}^{T}\left|\boldsymbol{s}_{m}^{\prime}(t)\right|^{2} d t \\
&=\left\|\boldsymbol{s}_{m}-\boldsymbol{c}\right\|^{2} \\
&=\left\|\boldsymbol{s}_{m}\right\|^{2}+\|\boldsymbol{c}\|^{2}-\left\langle\boldsymbol{s}_{m}, \boldsymbol{c}\right\rangle-\left\langle\boldsymbol{c}, \boldsymbol{s}_{m}\right\rangle \quad\left(\boldsymbol{c}=\frac{1}{M} \sum_{i=1}^{M} \boldsymbol{s}_{i}\right) \\
&=\left\|\boldsymbol{s}_{m}\right\|^{2}+\|\boldsymbol{c}\|^{2}-\frac{1}{M} \sum_{i=1}^{M}\left\langle\boldsymbol{s}_{m}, \boldsymbol{s}_{i}\right\rangle-\frac{1}{M} \sum_{i=1}^{M}\left\langle\boldsymbol{s}_{i}, \boldsymbol{s}_{m}\right\rangle \\
&=\left\|\boldsymbol{s}_{m}\right\|^{2}+\frac{1}{M}\left\|\boldsymbol{s}_{m}\right\|^{2}-\frac{2}{M}\left\|\boldsymbol{s}_{m}\right\|^{2} \quad \text { (by orthogonality } \\
&\text { and equal-power })
\end{aligned}
$$

- The transmission energy of a signal is reduced by "simplexing" it.

Crosscorrelation of simplex signals

$$
\begin{aligned}
\rho_{m n}=\frac{\left\langle\boldsymbol{s}_{m}^{\prime}, \boldsymbol{s}_{n}^{\prime}\right\rangle}{\left\|\boldsymbol{s}_{m}^{\prime}\right\|\left\|\boldsymbol{s}_{n}^{\prime}\right\|} & =\frac{\left\langle\boldsymbol{s}_{m}-\boldsymbol{c}, \boldsymbol{s}_{n}-\boldsymbol{c}\right\rangle}{\left(1-\frac{1}{M}\right)\left\|\boldsymbol{s}_{m}\right\|^{2}} \\
& =\frac{\left\langle\boldsymbol{s}_{m}, \boldsymbol{s}_{n}\right\rangle-\left\langle\boldsymbol{s}_{m}, \boldsymbol{c}\right\rangle-\left\langle\boldsymbol{c}, \boldsymbol{s}_{n}\right\rangle+\langle\boldsymbol{c}, \boldsymbol{c}\rangle}{\left(1-\frac{1}{M}\right)\left\|\boldsymbol{s}_{m}\right\|^{2}} \\
& =\left\{\begin{array}{cl}
\frac{\left\|\boldsymbol{s}_{m}\right\|^{2}-\frac{2}{M}\left\|\boldsymbol{s}_{m}\right\|^{2}+\frac{1}{M}\left\|\boldsymbol{s}_{m}\right\|^{2}}{\left(1-\frac{1}{M}\right)\left\|\boldsymbol{s}_{m}\right\|^{2}} & m=n \\
\frac{0}{0}-\frac{2}{M}\left\|\boldsymbol{s}_{m}\right\|^{2}+\frac{1}{M}\left\|\boldsymbol{s}_{m}\right\|^{2} \\
\left(1-\frac{1}{M}\right)\left\|\boldsymbol{s}_{m}\right\|^{2} & m \neq n
\end{array}\right. \\
& =\left\{\begin{array}{cl}
1 & m=n \\
-\frac{1}{M-1} & m \neq n
\end{array}\right.
\end{aligned}
$$

Simplex signals are equally correlated !

Example of simplex signals

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
s_{1} & \cdots & s_{M}
\end{array}\right]=\left[\begin{array}{cccc}
\sqrt{\mathcal{E}} & 0 & \cdots & 0 \\
0 & \sqrt{\mathcal{E}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\mathcal{E}}
\end{array}\right]} \\
\Downarrow \\
{\left[\begin{array}{lll}
s_{1}^{\prime} & \cdots & s_{M}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\left(1-\frac{1}{M}\right) \sqrt{\mathcal{E}} & -\frac{1}{M} \sqrt{\mathcal{E}} & \cdots & -\frac{1}{M} \sqrt{\mathcal{E}} \\
-\frac{1}{M} \sqrt{\mathcal{E}} & \left(1-\frac{1}{M}\right) \sqrt{\mathcal{E}} & \cdots & -\frac{1}{M} \sqrt{\mathcal{E}} \\
\vdots \\
-\frac{1}{M} \sqrt{\mathcal{E}} & -\frac{1}{M} \sqrt{\mathcal{E}} & \cdots & \vdots \\
\hline
\end{array} 1-\frac{1}{M}\right) \sqrt{\mathcal{E}}}
\end{array}\right] .
$$

Subdivision of time: N time slots

For example: BPSK in each dimension

$$
\boldsymbol{s}_{m}=\left[c_{m, 0}, c_{m, 1}, \cdots, c_{m, N-1}\right], \quad 1 \leq m \leq M
$$

where $N T_{c}=T$

- " $c_{m, j}=0 " \equiv " g_{1}(t)$ is transmitted at time slot $j "$
- " $c_{m, j}=1 " \equiv " g_{2}(t)$ is transmitted at time slot $j "$

$$
g_{1}(t)=+\sqrt{\frac{2 \mathcal{E}_{c}}{T_{c}}} \cos \left(2 \pi f_{c} t\right), \quad g_{2}(t)=-\sqrt{\frac{2 \mathcal{E}}{T}} \cos \left(2 \pi f_{c} t\right),
$$

with $t \in\left[0, T_{c}\right)$
$s_{m}(t)=\sqrt{\frac{2 \mathcal{E}_{c}}{T_{c}}} \sum_{j=0}^{N-1}(-1)^{c_{m, j}} \cos \left(2 \pi f_{c}\left(t-j T_{c}\right)\right) \mathbf{1}\left\{j T_{c} \leq t<(j+1) T_{c}\right\}$

- Crosscorrelation coefficient of adjacent signals (i.e., with only one distinct component)
- For those identical components

$$
\int_{0}^{T_{c}}\left|g_{1}(t)\right|^{2} d t=\int_{0}^{T_{c}}\left|g_{2}(t)\right|^{2} d t=\mathcal{E}_{c}
$$

- For the single distinct component

$$
\int_{0}^{T_{c}} g_{1}(t) g_{2}^{*}(t) d t=\int_{0}^{T_{c}}-\left|g_{1}(t)\right|^{2} d t=-\mathcal{E}_{c}
$$

- Hence

$$
\rho_{m n}=\frac{\left\langle\boldsymbol{s}_{m}, \boldsymbol{s}_{n}\right\rangle}{\left\|\boldsymbol{s}_{m}\right\|\left\|\boldsymbol{s}_{n}\right\|}=\frac{(N-1) \mathcal{E}_{c}-\mathcal{E}_{c}}{N \mathcal{E}_{c}}=1-\frac{2}{N}
$$

- Minimum Euclidean distance between adjacent codewords

$$
\begin{aligned}
\min _{m \neq n}\left\|\boldsymbol{s}_{m}-\boldsymbol{s}_{n}\right\| & =\min _{m \neq n} \sqrt{\left\|\boldsymbol{s}_{m}\right\|^{2}+\left\|\boldsymbol{s}_{n}\right\|^{2}-\left\langle\boldsymbol{s}_{m}, \boldsymbol{s}_{n}\right\rangle-\left\langle\boldsymbol{s}_{n}, \boldsymbol{s}_{m}\right\rangle} \\
& =\sqrt{N \mathcal{E}_{c}+N \mathcal{E}_{c}-2\left(N \mathcal{E}_{c}\right) \frac{N-2}{N}}=2 \sqrt{\mathcal{E}_{c}}
\end{aligned}
$$

- Transmission energy of multidimensional BPSK signals

$$
\mathcal{E}_{m}=\int_{0}^{T}\left|s_{m}(t)\right|^{2} d t=N\left\|g_{1}(t)\right\|^{2}=N \int_{0}^{T_{c}}\left|g_{1}(t)\right|^{2} d t=N \mathcal{E}_{c}
$$

- Largest number of channel symbols

$$
M \leq 2^{N}
$$

- Vectorization of BPSK signals

$$
\boldsymbol{S}_{m}=\left[\begin{array}{c}
\pm \sqrt{\mathcal{E}_{c}} \\
\pm \sqrt{\mathcal{E}_{c}} \\
\vdots \\
\pm \sqrt{\mathcal{E}_{c}}
\end{array}\right]_{N \times 1}
$$

Can we properly choose $\left\{s_{m}\right\}_{m=1}^{M}$ such that they are orthogonal to each other ?

Orthogonal multidimensional signals: Hadamard signals

- Definition: The Hadamard signals of size $M=2^{n}$ can be recursively defined as

$$
H_{n}=\left[\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right]
$$

with initial value $H_{0}=[1]$.
For example,

$$
H_{1}=\left[\begin{array}{c|c}
1 & 1 \\
\hline 1 & -1
\end{array}\right] \text { and } H_{2}=\left[\begin{array}{cc|cc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
\hline 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Hence, when $M=4$, the Hadamard multidimensional orthogonal (BPSK) signals are

$$
\left[\begin{array}{llll}
s_{1} & s_{2} & s_{3} & s_{4}
\end{array}\right]=\left[\begin{array}{cccc}
\sqrt{\mathcal{E}_{c}} & \sqrt{\mathcal{E}_{c}} & \sqrt{\mathcal{E}_{c}} & \sqrt{\mathcal{E}_{c}} \\
\sqrt{\mathcal{E}_{c}} & -\sqrt{\mathcal{E}_{c}} & \sqrt{\mathcal{E}_{c}} & -\sqrt{\mathcal{E}_{c}} \\
\sqrt{\mathcal{E}_{c}} & \sqrt{\mathcal{E}_{c}} & -\sqrt{\mathcal{E}_{c}} & -\sqrt{\mathcal{E}_{c}} \\
\sqrt{\mathcal{E}_{c}} & -\sqrt{\mathcal{E}_{c}} & -\sqrt{\mathcal{E}_{c}} & \sqrt{\mathcal{E}_{c}}
\end{array}\right]
$$

3.3 Signaling schemes with memory

- Memoryless modulation: $s_{m_{i}}(t), m_{i} \in\{1,2, \ldots, M\}$, $m_{i}=$ function of Block ${ }_{i}$
- Modulation with memory: $s_{m_{i}}(t)$, $m_{i}=$ function of $\left(\right.$ Block $_{i}$, $^{\text {Block }_{i-1}}, \cdots$, Block $\left._{i-(L-1)}\right)$
- Linear modulation: The modulated part of $s_{m_{i}}(t)$ is a linear function of the digital waveform.

$$
\begin{aligned}
& \text { Linearity }=\text { Principle of superposition } \\
& \quad \text { If } a_{1} \rightarrow b_{1} \text { and } a_{2} \rightarrow b_{2} \text {, then } a_{1}+a_{2} \rightarrow b_{1}+b_{2}
\end{aligned}
$$

- Non-linear modulation:
- Why introducing "memory" into signals?
- The signal dependence is introduced for the purpose of shaping the spectrum of transmitted signal so that it matches the spectral characteristics of the channel.
- Linearity
- For example, $s_{m_{i}}(t)=\boldsymbol{\operatorname { R e }}\left\{A_{m_{i}} e^{2 \pi f_{c} t}\right\}$.

$$
\left\{\begin{array}{lll}
-3 & \longrightarrow & \operatorname{Re}\left\{-3 e^{2 \pi f_{c} t}\right\} \\
-1 & \longrightarrow & \operatorname{Re}\left\{-1 e^{2 \pi f_{c} t}\right\} \\
+1 & \longrightarrow & \operatorname{Re}\left\{+1 e^{2 \pi f_{c} t}\right\} \\
+3 & \longrightarrow & \operatorname{Re}\left\{+3 e^{2 \pi f_{c} t}\right\}
\end{array}\right.
$$

- If the modulated part of $s_{m_{i}}(t)$ cannot be made as a linear function of the digital waveform, the modulation is classified as nonlinear.

Linear modulations with/without memory

- NRZ (Non-Return-to-Zero) = Binary PAM or binary PSK : memoryless
channel code bit = input bit
- NRZI (Non-Return-to-Zero, Inverted) =Differential encoding : with memory
$(\text { channel code bit })_{k}=(\text { input bit })_{k} \oplus(\text { channel code bit) })_{k-1}$

$$
\begin{cases}(\text { channel code bit })_{k}=(\text { channel code bit })_{k-1}, & \text { when (input bit })_{k}=0 \\ (\text { channel code bit })_{k}=\overline{(\text { channel code bit })_{k-1}}, & \text { when (input bit) })_{k}=1\end{cases}
$$

Application: DBPSK/DQPSK in Wireless LAN

Advantage of modulation with memory

Why adding differential encoding before BPSK ?

- For PSK modulations, digital information is carried by absolute phase.
- Synchronization is often achieved by either adding a small pilot signal or using some self-synchronization scheme.
- The demodulator needs to detect the phase, which may have a phase ambiguity due to noise and other constraints.

Example of phase ambiguity (frequency shift)

- Ideal (noiseless) case

$$
\left\{\begin{array}{l}
f_{\text {transmiter }}=f_{c}: \text { receive } \cos \left(2 \pi f_{c} t+\theta\right) \\
f
\end{array} \Longrightarrow \text { estimate } \hat{\theta}=\theta\right.
$$

- Ambiguous case

$$
\begin{aligned}
& \left\{\begin{array}{l}
f_{\text {transmiter }}=f_{c}: \text { receive } \cos \left(2 \pi f_{c} t+\theta\right) \\
f_{\text {receiver }} \neq f_{c}: \text { estimate it based on } f_{c}^{\prime}
\end{array}\right. \\
& \Longrightarrow \quad \begin{array}{l}
\text { receive } \cos \left(2 \pi f_{c}^{\prime} t+\left[2 \pi\left(f_{c}-f_{c}^{\prime}\right) t\right]+\theta\right) \\
\text { estimate it based on } f_{c}^{\prime}
\end{array} \\
& \Longrightarrow \quad \text { estimate } \hat{\theta}=\left[2 \pi\left(f_{c}-f_{c}^{\prime}\right) t\right]+\theta
\end{aligned}
$$

Advantage of differential encoding

$(\text { channel code bit })_{k}=(\text { input bit })_{k} \oplus(\text { channel code bit })_{k-1}$

- The phases or signs of the received waveforms are not important for detection.
- What is important is the change in the sign of successive pulses.
- The sign change can be detected even if the demodulating carrier has a phase ambiguity.

Advantage of diff encode (Noncoherent demod)

- No need to generate a local carrier at the receiver side.
- Use the received signal itself as a carrier.

$$
\begin{aligned}
& \pm A_{c} \cos \left(2 \pi f_{c} t\right) \\
& z(t)=\left\{\begin{array}{r}
\text { Delay } \\
T_{0}
\end{array}\right] \\
& y\left(t-T_{0}\right) \\
& \begin{aligned}
A_{c}^{2} \cos ^{2}\left(2 \pi f_{c} t\right)=\frac{A_{c}^{2}}{2}+\frac{1}{2} \cos \left(4 \pi f_{c} t\right) \rightarrow \frac{1}{2} A_{c}^{2} \\
\text { if } y(t)=y\left(t-T_{0}\right) \\
-A_{c}^{2} \cos ^{2}\left(2 \pi f_{c} t\right)=-\frac{A_{c}^{2}}{2}-\frac{1}{2} \cos \left(4 \pi f_{c} t\right) \rightarrow-\frac{1}{2} A_{c}^{2} \\
\text { if } y(t)=-y\left(t-T_{0}\right)
\end{aligned}
\end{aligned}
$$

Nonlinear modulation methods with memory

- Linear modulation: The modulated part of $s_{m_{i}}(t)$ is a linear function of the digital waveform.
Linearity $=$ Principle of superposition If $a_{1} \rightarrow b_{1}$ and $a_{2} \rightarrow b_{2}$, then $a_{1}+a_{2} \rightarrow b_{1}+b_{2}$.
- Nonlinear modulation: The modulated part of $s_{m_{i}}(t)$ cannot be made as a linear function of the digital waveform.

(Linear (from the aspect of phase)) Frequency shift keying or FSK

$$
s_{m}(t)=\operatorname{Re}\left[\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 2 \pi(m \Delta f) t} e^{\imath 2 \pi f_{c} t}\right]
$$

where $m= \pm 1, \pm 2, \cdots, \pm(M-1)$

Motivation: Disadvantages of FSK

- Potential obstacles of multidimensional FSK with ($M-1$) oscillators for each desired frequency
- Abrupt switching from one oscillator to another will result in relatively large spectral side lobes outside of the main spectral band of the signal.

Continuous-Phase FSK (CPFSK)

- Alternative implementation of multidimensional FSK
- A single carrier whose frequency is changed continuously.
- This is considered as a modulated signal with memory (we will explain this point in the next few slides).

Recall

$$
s(t)=\operatorname{Re}\left\{s_{\ell}(t) e^{\imath 2 \pi f_{c} t}\right\}, \quad s_{\ell}(t)=x_{i}(t)+\imath x_{q}(t)
$$

$s_{\ell}(t)$ is the baseband version of the bandpass signal $s(t)$.
For ideal FSK signals

$$
\begin{aligned}
s_{m}(t) & =\operatorname{Re}\left[\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 2 \pi(m \Delta f) t} e^{\imath 2 \pi f_{c} t}\right] \\
\Longrightarrow \quad s_{m, \ell}(t) & =\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 2 \pi(m \Delta f) t}
\end{aligned}
$$

where $\Delta f=f_{d}$ and $m= \pm 1, \pm 2, \cdots, \pm(M-1)$.

Example of ideal (2-OSC) FSK signals

Let $T=0.5 \mathrm{sec}, \mathcal{E}=0.25, f_{d}=0.5, I_{n}(=m) \in\{1,-1\}$, and $f_{c}=1.5 \mathrm{~Hz}$.

$$
s(t)=\operatorname{Re}\left\{s_{\ell}(t) e^{i 2 \pi f_{c} t}\right\}= \begin{cases}\cos (4 \pi t) & I_{n}=1 \\ \cos (2 \pi t), & I_{n}=-1\end{cases}
$$

Discontinuous phase of (2-OSC) FSK

Phase of $s_{\ell}(t)=\left\{\begin{array}{ll}\pi t, & I_{n}=1 \\ -\pi t, & I_{n}=-1\end{array}\right.$ for $t \in[n T,(n+1) T)$

Phase change of (2-OSC) FSK

- (Normalized) phase change (for $t \in[n T,(n+1) T)$)

$$
d(t)=\frac{\text { phase of } s_{l}(t)}{4 \pi T f_{d}}=\frac{\frac{\partial}{\partial t}\left(2 \pi I_{n} f_{d} t\right)}{4 \pi T f_{d}}=\frac{I_{n}}{2 T}
$$

is the derivative of the phase!
Continue from the previous example with $T=0.5$.

$$
\begin{aligned}
d(t) & =I_{0}\left[u_{-1}(t)-u_{-1}(t-T)\right]+\mathbf{1}\left\{I_{0} \neq I_{1}\right\} \cdot I_{1} \cdot 1 \cdot \delta(t-T) \\
& +I_{1}\left[u_{-1}(t-T)-u_{-1}(t-2 T)\right]+\mathbf{1}\left\{I_{1} \neq I_{2}\right\} \cdot I_{2} \cdot 2 \cdot \delta(t-2 T) \\
& +I_{2}\left[u_{-1}(t-2 T)-u_{-1}(t-3 T)\right]+\mathbf{1}\left\{I_{2} \neq I_{3}\right\} \cdot I_{3} \cdot 3 \cdot \delta(t-3 T) \\
& +I_{3}\left[u_{-1}(t-3 T)-u_{-1}(t-4 T)\right]+\mathbf{1}\left\{I_{3} \neq I_{4}\right\} \cdot I_{4} \cdot 4 \cdot \delta(t-4 T) \\
& +\cdots
\end{aligned}
$$

- Phase change is the derivative of the phase!
- Phase is the integration of phase change!

$$
s_{\ell}(t)=\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 4 \pi T f_{d} \int_{-\infty}^{t} d(\tau) d \tau}
$$

- Those $\delta(\cdot)$ functions result in "discontinuity" in integration! Hence, let us remove them to force "continuity" in phase.

Continuous phase FSK (CPFSK)

$$
s_{\ell}(t)=\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath 4 \pi T f_{d} \int_{-\infty}^{t} d(\tau) d \tau}
$$

where

$$
d(t)=\sum_{n=-\infty}^{\infty} I_{n} g(t-n T) \text { and } g(t)=\frac{1}{2 T}\left[u_{-1}(t)-u_{-1}(t-T)\right]
$$

- $I_{n} \in\{ \pm 1, \pm 3, \pm 5, \cdots\}$ is the PAM information sequence.
- $g(t)$ is the "phase shaping function".
- It is now chosen as a rectangular pulse of height $1 /(2 T)$ and duration $[0, T$) (hence, the area is $1 / 2$.)
- T is the symbol duration.

Re-express $s_{\ell}(t)$ as

$$
s_{\ell}(t)=\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath \phi(t ; l)}
$$

where

$$
\begin{aligned}
\phi & (t ; \boldsymbol{I}) \\
& =4 \pi T f_{d} \int_{-\infty}^{t} d(\tau) d \tau \\
& =4 \pi T f_{d} \int_{-\infty}^{t}\left[\sum_{n=-\infty}^{\infty} I_{n} g(\tau-n T)\right] d \tau \\
& =4 \pi f_{d} T\left[\sum_{k=-\infty}^{n-1} I_{k}\left(T \times \frac{1}{2 T}\right)+I_{n} \frac{t-n T}{2 T}\right] \quad \text { for } t \in[n T,(n+1) T) \\
& =2 \pi f_{d} T \sum_{k=-\infty}^{n-1} I_{k}+2 \pi f_{d}(t-n T) I_{n} \quad \text { for } t \in[n T,(n+1) T)
\end{aligned}
$$

(Cont.) For $t \in[n T,(n+1) T), s_{\ell}(t)=\sqrt{\frac{2 \mathcal{E}}{T}} e^{\imath \phi(t ; l)}$ with

$$
\begin{aligned}
\phi(t ; \boldsymbol{I}) & =2 \pi f_{d} T \sum_{k=-\infty}^{n-1} I_{k}+2 \pi f_{d}(t-n T) I_{n} \\
& =\theta_{n}+2 \pi h \cdot I_{n} \cdot q(t-n T),
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
h=2 f_{d} T \quad \text { (modulation index) } \\
\theta_{n}=\pi h \sum_{k=-\infty}^{n-1} I_{k} \quad \text { (accumulation of history/memory) } \\
q(t)= \begin{cases}0 & t<0 \\
\frac{t}{2 T} & 0 \leq t<T \quad \text { (integration of } g(t)) \\
\frac{1}{2} & t \geq T\end{cases}
\end{array}\right.
$$

Generalization of CPFSK: CPM

We can further generalize $\phi(t ; \boldsymbol{I})$ to

$$
\phi(t ; \boldsymbol{I})=2 \pi \sum_{k=-\infty}^{n} h_{k} \cdot I_{k} \cdot q(t-k T)
$$

for $n T \leq t<(n+1) T$
where
(1) $I=\left\{I_{k}\right\}_{k=-\infty}^{\infty}$ is the sequence of PAM symbols in $\{ \pm 1, \pm 3, \ldots, \pm(M-1)\}$.
(2) h_{k} is the modulation index.

If h_{k} varies with k, it is called multi- h CPM.
(3) $q(t)=\int_{0}^{t} g(\tau) d \tau$.

If $g(t)=0$ for $t \geq T$ (and $t<0$), $s_{\ell}(t)$ is called full-response CPM; otherwise it is called partial-response CPM.

Examples of CPMs

Examples of CPMs

Some commonly used CPM pulse shapes

- LREC (Rectangular): LREC with $L=1$ is CPFSK

$$
g(t)=\frac{1}{2 L T}\left(u_{-1}(t)-u_{-1}(t-L T)\right)
$$

- LRC (Raised cosine)

$$
g(t)=\frac{1}{2 L T}\left(u_{-1}(t)-u_{-1}(t-L T)\right)\left(1-\cos \left(\frac{2 \pi t}{L T}\right)\right)
$$

Some commonly used CPM pulse shapes

- GMSK (Gaussian minimum shift keying)
$g(t)=Q\left(2 \pi B\left(t-\frac{T}{2}\right) / \sqrt{\ln 2}\right)-Q\left(2 \pi B\left(t+\frac{T}{2}\right) / \sqrt{\ln 2}\right)$
where $Q(t)=\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$, and B is 3 dB Bandwidth
- $g(t)$ is the response of filter $H(f)=2^{-\frac{(f / B)^{2}}{2}}$ to a rectangular pulse of $u_{-1}(t+T / 2)-u_{-1}(t-T / 2)$.
- GMSK with $B T=0.3$ is used in the European digital cellular communication system, called GSM (2G).
- At $B T=0.3$, the GMSK pulse may be truncated at $|t|=1.5 T$ with a relatively small error incurred for $t>1.5 T$.

Representations of continuous-phase

- Phase trajectory or phase tree
- Phase trellis

Phase trajectory or phase tree

Binary CPFSK (i.e., $I_{n}= \pm 1$ and $g(t)$ is full response rectangular function)

$$
\phi(t ; \boldsymbol{I})=\pi h \sum_{k=-\infty}^{n-1} I_{k}+2 \pi h I_{n} \cdot q(t-n T)
$$

Example 3

Quaternary CPFSK (See the next page) with $I_{n} \in\{-3,-1,+1,+3\}$.

- We observe that the phase trees for CPFSK are piecewise linear as a consequence of the fact that the pulse $g(t)$ is rectangular.
- Smoother phase trajectories and phase trees are obtained by using pulses that do not contain discontinuities.

If $g(t)$ is continuous (especially at boundaries), phase trajectory becomes smooth.

Example 4

$$
g(t)=\frac{1}{6 T}\left(1-\cos \left(\frac{2 \pi t}{3 T}\right)\right)=\text { raised cosine of length } 3 T
$$

$$
\text { with }\left(I_{-2}, I_{-1}, I_{0}, I_{1}, I_{2}, \cdots\right)=(+1,+1,+1,-1,-1,-1,+1,+1,-1,+1, \cdots)
$$

* solid line = partial response CPM based on raised cosine pulse of length $3 T$.
* dashed line = binary CPFSK.

Phase trellis

Phase trellis $=$ Phase trajectory is plotted with modulo 2π

Example 5

Binary CPFSK with $h=1 / 2$ and $g(t)$ is a full response rectangular function.
$I_{n}=1$
$I_{n}=-1$

Thus CPM can be decoded by Viterbi trellis decoding.

Minimum shift keying (MSK)

Recall for $n T \leq t<(n+1) T$, CPM has

$$
\phi(t ; \boldsymbol{I})=2 \pi \sum_{k=-\infty}^{n} h_{k} \cdot I_{k} \cdot q(t-k T)
$$

CPFSK is a special case of CPM with

$$
g(t)=\frac{1}{2 T} \text { for } 0 \leq t<T
$$

MSK is a special case of binary CPFSK with

$$
h_{k}=\frac{1}{2}, g(t)=\frac{1}{2 T} \text { for } 0 \leq t<T \text { and } I_{n} \in\{ \pm 1\}
$$

Thus for MSK, we have for $n T \leq t<(n+1) T$,

$$
\phi(t ; \boldsymbol{I})=\frac{\pi}{2} \sum_{k=-\infty}^{n-1} I_{k}+\pi I_{n} q(t-n T)=\theta_{n}+\frac{1}{2} \pi I_{n}\left(\frac{t-n T}{T}\right)
$$

$$
\Phi(t ; \boldsymbol{I})=\theta_{n}+\frac{1}{2} \pi I_{n}\left(\frac{t-n T}{T}\right)=2 \pi\left(\frac{I_{n}}{4 T}\right) t-\frac{n \pi I_{n}}{2}+\theta_{n}
$$

The corresponding modulated carrier wave is

$$
\begin{aligned}
S_{\mathrm{MSK}}(t) & =A \cos \left(2 \pi f_{c} t+\Phi(t ; \boldsymbol{I})\right) \\
& =A \cos \left[2 \pi\left(f_{c}+\frac{I_{n}}{4 T}\right) t-\frac{n \pi I_{n}}{2}+\theta_{n}\right]
\end{aligned}
$$

Since $I_{n} \in\{ \pm 1\}, s_{M S K}(t)$ has two frequency components:

$$
\begin{aligned}
& f_{1}=f_{c}-\frac{1}{4 T} \\
& f_{2}=f_{c}+\frac{1}{4 T}
\end{aligned}
$$

Minimum shift keying (MSK)

MSK is so named because $f_{2}-f_{1}=\frac{1}{2 T}=$ the minimum (frequency) shift that makes the two frequency components orthogonal.
[See Slide 3-35] When $\Delta f=\frac{k}{2 T}, \operatorname{Re}\left\{\rho_{m n, \ell}\right\}=0$ for $m \neq n$. In other words, the minimum frequency separation between adjacent (passband) signals for orthogonality is $\Delta f=\frac{1}{2 T}$.

MSK is sometimes regarded as a kind of OQPSK (Offset QPSK). Why?

Offset QPSK

The original QPSK

There could be 180 degree of (sudden) phase change (so, not continuous phase), e.g., from $(+1,+1)$ to $(-1,-1)$.

$$
\begin{aligned}
s_{\mathrm{QPSK}}(t)= & \sum_{n=-\infty}^{\infty} I_{2 n} g(t-2 n T) \cos \left(2 \pi f_{c}\right) \\
& -\sum_{n=-\infty}^{\infty} I_{2 n+1} g(t-2 n T) \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

$\left(I_{0}, I_{1}\right)=(+1,+1),\left(I_{2}, I_{3}\right)=(-1,-1)$ and $\left(I_{4}, I_{5}\right)=(-1,+1)$. $g(t)$ rectangular pulse of unit height and during $2 T$.

Offset QPSK (OQPSK)

How to reduce the 180° phase change to only 90° ?
Simple solution: Do not let the "two bits" $I_{2 n}$ and $I_{2 n+1}$ change at the same time!

$$
\begin{aligned}
& \operatorname{SOQPSK}(t)=\sum_{n=-\infty}^{\infty} I_{2 n} g(t-2 n T) \cos \left(2 \pi f_{c} t\right) \\
& -\sum_{n=-\infty}^{\infty} l_{2 n+1} g(t-(2 n+1) T) \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

To synchronize with the textbook, we reverse $\left\{I_{2 n+1}\right\}$ to obtain

$$
\begin{aligned}
\operatorname{sOQPSK}(t)= & \sum_{n=-\infty}^{\infty} I_{2 n} g(t-2 n T) \cos \left(2 \pi f_{c} t\right) \\
& +\sum_{n=-\infty}^{\infty} I_{2 n+1} g(t-(2 n+1) T) \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

OQPSK vs. MSK

MSK can be regarded as a kind of (memoryless) OQPSK. Why?

$$
\text { MSK: } \phi(t ; \boldsymbol{I})=\theta_{n}+\frac{1}{2} \pi I_{n}\left(\frac{t-n T}{T}\right)=\theta_{0}+\frac{\pi}{2} \sum_{k=0}^{n-1} I_{k}+\pi\left(\frac{I_{n}}{2 T}\right) t-\frac{n \pi}{2} I_{n} \quad \text { for } n T \leq t<(n+1) T
$$

Proof: Suppose without loss of generality,

$$
\theta_{0}=\frac{\pi}{2} \sum_{k=-\infty}^{-1} I_{k}=\frac{3 \pi}{2} .
$$

Then for $n T \leq t<(n+1) T$ (and $n \geq 1)$,

$$
\begin{aligned}
& S_{\mathrm{MSK}, \ell}(t)=e^{\imath \phi(t ; \boldsymbol{I})} \\
& \quad=e^{\imath \pi\left(\frac{I_{n}}{2 T}\right) t} \cdot e^{-\imath \frac{n \pi}{2} I_{n}} \cdot e^{\imath \frac{\pi}{2} \sum_{k=0}^{n-1} I_{k}} \cdot e^{\imath \theta_{0}} \quad \text { Note }(-\imath)^{n} \imath^{n}=1 . \\
& = \\
& =\left[\cos \left(\pi \frac{t}{2 T}\right)+\imath I_{n} \sin \left(\pi \frac{t}{2 T}\right)\right]\left(-I_{n} \imath\right)^{n}\left(\prod_{k=0}^{n-1}\left(I_{k} \imath\right)\right)(-\imath) \\
& =I_{n}^{n+1}\left(\prod_{k=0}^{n-1} I_{k}\right) \sin \left(\pi \frac{t}{2 T}\right)+\imath I_{n}^{n}\left(\prod_{k=0}^{n-1} I_{k}\right) \sin \left(\pi \frac{(t-T)}{2 T}\right)
\end{aligned}
$$

n	$I_{n}^{n+1}\left(\prod_{k=0}^{n-1} I_{k}\right)$	$I_{n}^{n}\left(\prod_{k=0}^{n-1} I_{k}\right)$
0	$J_{0}=I_{0}=J_{2\lfloor 0 / 2\rfloor}$	
1	$J_{0}=I_{0}=J_{2\lfloor 1 / 2\rfloor}$	$J_{1}=I_{0} I_{1}=J_{2\lfloor(1-1) / 2\rfloor+1}$
2	$J_{2}=I_{0} I_{1} I_{2}=J_{2\lfloor 2 / 2\rfloor}$	$J_{1}=I_{0} I_{1}=J_{2\lfloor(2-1) / 2\rfloor+1}$
3	$J_{2}=I_{0} I_{1} I_{2}=J_{2\lfloor 3 / 2\rfloor}$	$J_{3}=I_{0} I_{1} I_{2} I_{3}=J_{2\lfloor(3-1) / 2\rfloor+1}$
4	$J_{4}=I_{0} I_{1} I_{2} I_{3} I_{4}=J_{2\lfloor 4 / 2\rfloor}$	$J_{3}=I_{0} I_{1} I_{2} I_{3}=J_{2\lfloor(4-1) / 2\rfloor+1}$
5	$J_{4}=I_{0} I_{1} I_{2} I_{3} I_{4}=J_{2\lfloor 5 / 2\rfloor}$	$J_{5}=I_{0} I_{1} I_{2} I_{3} I_{4} I_{5}=J_{2\lfloor(5-1) / 2\rfloor+1}$
6	$J_{6}=I_{0} I_{1} I_{2} I_{3} I_{4} I_{5} I_{6}=J_{2\lfloor 6 / 2\rfloor}$	$J_{5}=I_{0} I_{1} I_{2} I_{3} I_{4} I_{5}=J_{2\lfloor(6-1) / 2\rfloor+1}$

For $n T \leq t<(n+1) T$,

$$
\begin{aligned}
& s_{\mathrm{MSK}, \ell}(t)=J_{2\lfloor n / 2\rfloor}(-1)^{\lfloor n / 2\rfloor} \underbrace{\sin \left(\pi \frac{(t-2\lfloor n / 2\rfloor T)}{2 T}\right)}_{g(t-2\lfloor n / 2\rfloor T)} \\
& -\imath J_{2\lfloor(n-1) / 2\rfloor+1}(-1)^{\lfloor(n-1) / 2\rfloor+1} \underbrace{\sin \left(\pi \frac{(t-2\lfloor(n-1) / 2\rfloor T-T)}{2 T}\right)}_{g(t-2\lfloor(n-1) / 2\rfloor T-T)}
\end{aligned}
$$

For $2 m T \leq t<(2 m+1) T$ (i.e., $n=2 m$),

$$
s_{\mathrm{MSK}, \ell}(t)=J_{2 m}(-1)^{m} g(t-2 m T)-\imath J_{2 m-1} \underbrace{(-1)^{m}}_{=(-1)^{(2 m-1) / 2\rceil}} g(t-(2 m-1) T)
$$

For $(2 m+1) T \leq t<(2 m+2) T$ (i.e., $n=2 m+1)$,

$$
s_{\mathrm{MSK}, \ell}(t)=J_{2 m}(-1)^{m} g(t-2 m T)-\imath J_{2 m+1} \underbrace{(-1)^{m+1}}_{=(-1)^{[(2 m+1) / 2]}} g(t-(2 m+1) T)
$$

For $(2 m+2) T \leq t<(2 m+3) T$ (i.e., $n=2 m+2)$,

$$
\begin{aligned}
& \begin{aligned}
\operatorname{sMSK}, \ell(t)=J_{2(m+1)}(-1)^{m+1} g(t & -2(m+1) T) \\
-\imath J_{2 m+1} & \underbrace{(-1)^{m+1}}_{=(-1)^{\lceil(2 m+1) / 2\rceil}} g(t-(2 m+1) T)
\end{aligned} \\
& \text { with } g(t)=\sin \left(\pi \frac{t}{2 T}\right)\left[u_{-1}(t)-u_{-1}(t-2 T)\right] .
\end{aligned}
$$

MSK can be regarded as a memoryless OQPSK by setting

$$
\begin{aligned}
s_{\text {MSK }}(t)= & {\left[\sum_{n=-\infty}^{\infty} \tilde{I}_{2 n} g(t-2 n T)\right] \cos \left(2 \pi f_{c} t\right) } \\
& +\left[\sum_{n=-\infty}^{\infty} \tilde{I}_{2 n+1} g(t-(2 n+1) T)\right] \sin \left(2 \pi f_{c} t\right)
\end{aligned}
$$

with

$$
\tilde{I}_{n}=(-1)^{[n / 2]} J_{n}=(-1)^{[n / 2]} \prod_{k=0}^{n} I_{k} .
$$

- MSK can be "composed" using "memoryless" circuits with "with-memory" information sequence II.
- Please be noted that the textbook abuses the notation by using $g(t)$ to denote both amplitude and phase pulse shaping functions for CPM signals!

A linear representation of CPM

The key of OQPSK representation of MSK is that phase can be "pulled down" as a multiplicative adjustment in amplitude when $I_{n} \in\{-1,+1\}$!

For example, $\quad e^{\imath 2 \pi\left(\frac{l_{n}}{4 T}\right) t}=\cos \left(\pi \frac{t}{2 T}\right)+\imath I_{n} \sin \left(\pi \frac{t}{2 T}\right)$.

(1986 Laurent)

- CPM can also be represented as a linear superposition of AM signal waveforms (if $I_{n} \in\{ \pm 1\}$).
- Such a representation provides an alternative method for synthesizing CPM signal at the transmitter and for demodulating the signal at the receiver.

An important and useful fact

For $I \in\{-1,+1\}$,

$$
e^{\imath A \cdot I}=\frac{\sin (B-A)}{\sin (B)}+e^{\imath B \cdot l} \frac{\sin (A)}{\sin (B)}
$$

Proof:

$$
\begin{aligned}
& \sin (B) e^{\imath A \cdot l} \\
& \quad=\sin (B)[\cos (A)+\imath / \sin (A)] \\
& \quad=\sin (B) \cos (A)+\imath \sin (B \cdot I) \sin (A) \\
& =\sin (B-A)+\cos (B) \sin (A)+\imath \sin (B \cdot I) \sin (A) \\
& =\sin (B-A)+\sin (A)[\cos (B \cdot l)+\imath \sin (B \cdot l)] \\
& =\sin (B-A)+\sin (A) e^{\imath B \cdot l}
\end{aligned}
$$

For general h and $g(\cdot)$ function of duration L and of integral $1 / 2$ (but each $I_{n} \in\{ \pm 1\}$), we have for $n T \leq t<(n+1) T$ (for a binary CPM signal),

$$
\begin{aligned}
& S_{\mathrm{b}-\mathrm{CPM}, \ell}(t)=e^{\imath \phi(t ; I)} \\
& =e^{\imath\left(\pi h \sum_{k=-\infty}^{n-L} I_{k}+2 \pi h \sum_{k=n-L+1}^{n} I_{k} q(t-k T)\right)} \\
& =e^{\imath \pi h \sum_{k=-\infty}^{n-L} I_{k}} \prod_{k^{\prime}=0}^{L-1} e^{\imath 2 \pi h I_{n-k^{\prime}} q\left(t-\left(n-k^{\prime}\right) T\right)} \quad\left(n-k^{\prime}=k\right) \\
& =e^{\imath \pi h \sum_{k=-\infty}^{n-L} I_{k}} \prod_{k^{\prime}=0}^{L-1}\left(\frac{\sin \left(B-2 \pi h q\left(t-\left(n-k^{\prime}\right) T\right)\right)}{\sin (B)}\right. \\
& \left.\quad+e^{\imath B \cdot I_{n-k^{\prime}}} \frac{\sin \left(2 \pi h q\left(t-\left(n-k^{\prime}\right) T\right)\right)}{\sin (B)}\right)
\end{aligned}
$$

where $B=\pi h$.

Define

$$
s_{0}(t)= \begin{cases}\frac{\sin (2 \pi h q(t))}{\sin (B)} & 0 \leq t<L T \\ \frac{\sin (B-2 \pi h q(t-L T))}{\sin (B)} & L T \leq t<2 L T \\ 0 & \text { otherwise }\end{cases}
$$

Since $q(0)=0$ and $q(L T)=1 / 2, s_{0}(t)$ is continuous for $t \in \mathbb{R}$.

Continue the derivation:
$s_{\mathrm{b} \text {-CPM }, \ell}(t)$

$$
\begin{aligned}
&=e^{\imath \pi h \sum_{k=-\infty}^{n-L} I_{k}} \prod_{k^{\prime}=0}^{L-1}(\frac{\sin \left(B-2 \pi h q\left(t-\left(n-k^{\prime}\right) T+L T-L T\right)\right)}{\sin (B)} \\
&=e^{2 \pi h \sum_{k=-\infty}^{n-L} I_{k}} \prod_{k^{\prime}=0}^{L-1}(\left(e^{2 B \cdot I_{n-k^{\prime}}\left(t-\left(n-k^{\prime}\right) T+L T\right)}\right. \\
& \sin (B) \\
&+e^{\left.2 B \cdot I_{n-k^{\prime}} s_{0}\left(t-\left(n-k^{\prime}\right) T\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
n T & \leq t<(n+1) T \text { and } 0 \leq k^{\prime} \leq L-1 \text { imply that } \\
0 & \leq t-\left(n-k^{\prime}\right) T<L T \text { and } L T \leq t-\left(n-k^{\prime}\right) T+L T<2 L T .
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{k^{\prime}=0}^{L-1}\left(s_{0}\left(t-\left(n-k^{\prime}\right) T+L T\right)+e^{\imath B \cdot I_{n-k^{\prime}}} s_{0}\left(t-\left(n-k^{\prime}\right) T\right)\right) \\
& =(\underbrace{s_{0}(t-n T+0 \cdot T+L T)}_{a_{i, 0}=1\left(k^{\prime}=0\right)}+e^{2 B \cdot I_{n-0}} \underbrace{s_{0}(t-n T+0 \cdot T)}_{a_{i, 0}=0}) \\
& \times(\underbrace{s_{0}(t-n T+1 \cdot T+L T)}_{a_{i, 1}=1\left(k^{\prime}=1\right)}+e^{\imath B \cdot I_{n-1}} \underbrace{s_{0}(t-n T+1 \cdot T)}_{a_{i, 1}=0\left(k^{\prime}=1\right)}) \\
& \times(\underbrace{s_{0}\left(k^{\prime}=L-1\right)}_{a_{i, L-1}=1} n+e^{\imath B \cdot I_{n-(L-1)}} \underbrace{s_{0}\left(k^{\prime}=L-1\right)}_{a_{i, L-1}=0} \underbrace{t-n T+(L-1) \cdot T)}) \\
& =\sum_{i=0}^{2^{L}-1} e^{\imath B \sum_{k^{\prime}=0}^{L-1}\left(1-a_{i, k^{\prime}}\right) I_{n-k^{\prime}}} \prod_{k^{\prime}=0}^{L-1} s_{0}\left(t-n T+k^{\prime} T+a_{i, k^{\prime}} L T\right)
\end{aligned}
$$

where $\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, L-1}\right)$ is the binary representation of i with $a_{i, 0}$ being the most significant bit.

Continue the derivation:
$s_{\mathrm{b}-\mathrm{CPM}, \ell}(t)$

$$
\begin{aligned}
& =e^{\imath B \sum_{k=-\infty}^{n-L} I_{k}} \sum_{i=0}^{2^{L}-1} e^{\imath B \sum_{k^{\prime}=0}^{L-1}\left(1-a_{i, k^{\prime}}\right) I_{n-k^{\prime}}} \prod_{k^{\prime}=0}^{L-1} s_{0}\left(t-n T+k^{\prime} T+a_{i, k^{\prime}} L T\right) \\
& =\sum_{i=0}^{2^{L}-1} \underbrace{e^{\imath \pi h A_{i, n}}}_{\substack{\text { complex } \\
\text { amplitude }}} \underbrace{c_{i}(t-n T)}_{\substack{\text { pulse shaping } \\
\text { function }}}
\end{aligned}
$$

where

$$
A_{i, n}=\sum_{k=-\infty}^{n} I_{k}-\sum_{k^{\prime}=0}^{L-1} a_{i, k^{\prime}} I_{n-k^{\prime}} \quad \text { and } \quad c_{i}(t)=\prod_{k^{\prime}=0}^{L-1} s_{0}\left(t+k^{\prime} T+a_{i, k^{\prime}} L T\right)
$$

Binary CPM can be expressed as a weighted sum of 2^{L} real-valued pulses $\left\{c_{i}(t)\right\}$ where the complex amplitudes depends on the information sequence. This is useful, especially when L is small!

Property of $c_{i}(t)$

- Duration: $c_{i}(t)=0$ if any of $s_{0}\left(t+k^{\prime} T+a_{i, k^{\prime}} L T\right)=0$. Hence, $c_{i}(t) \neq 0$ only possible in

$$
\begin{gathered}
\max _{0 \leq k^{\prime}<L}\left(-k^{\prime} T-a_{i, k^{\prime}} L T\right) \leq t<\min _{0 \leq k^{\prime}<L}\left[\left(-k^{\prime} T-a_{i, k^{\prime}} L T\right)+2 L T\right] \\
\Leftrightarrow-(\underbrace{\min _{\substack{0 \leq k^{\prime} \leq L \\
\text { and } a_{i, k^{\prime}}=0}} k^{\prime}}_{\substack{\text { " } \leq L^{\prime \prime} \text { for the case } \\
\text { of } a a_{i, k^{\prime}}=1 \forall 0 \leq k^{\prime}<L}}) T \leq t<L T-(\underbrace{\max _{\substack{-1 \leq k^{\prime}<L \\
\text { and } a_{i, k^{\prime}}=1}} k^{\prime}}_{\begin{array}{c}
-1 \leq \leq^{\prime \prime} \text { for the case } \\
\text { of } a_{i, k^{\prime}}=0 \forall 0 \leq k^{\prime}<L
\end{array}}) T
\end{gathered}
$$

where we define $a_{i, L}=0$ and $a_{i,-1}=1$. So, the duration is equal to:

$$
(L-\underbrace{\left(\max _{-1 \leq k^{\prime}<L \text { and } a_{i, k^{\prime}}=1} k^{\prime}\right)}_{k_{\max _{1}}}+\underbrace{\left(\min _{0 \leq k^{\prime} \leq L \text { and } a_{i, k^{\prime}}=0} k^{\prime}\right)}_{k_{\min 0}}) T .
$$

$L=3$				
i	$a_{i, 0} a_{i, 1} a_{i, 2}$	$-k_{\min _{0}}$	$L-k_{\max _{1}}$	$\left(L-k_{\max _{1}}\right)-\left(-k_{\min _{0}}\right)$
0	000	0	4	4
1	001	0	1	1
2	010	0	2	2
3	011	0	1	1
4	100	-1	3	4
5	101	-1	1	2
6	110	-2	2	4
7	111	-3	1	4

It can be shown that $L-k_{\max _{1}}+k_{\min _{0}} \leq L+1$, and the upper bound can always be achieved by $i=0$.

Example. $h=1 / 2$ and $q(t)=\left\{\begin{array}{ll}0 & t<0 \\ t /(6 T) & 0 \leq t<3 T \\ 1 / 2 & \text { otherwise }\end{array}\right.$. Then

$$
s_{0}(t)= \begin{cases}\sin \left(\frac{\pi}{6 T} t\right) & 0 \leq t<6 T \\ 0 & \text { otherwise }\end{cases}
$$

$$
A_{i, n}=\sum_{k=-\infty}^{n} I_{k}-\sum_{k^{\prime}=0}^{2} a_{i, k^{\prime}} I_{n-k^{\prime}} \quad \text { and } \quad c_{i}(t)=\prod_{k^{\prime}=0}^{2} s_{0}\left(t+k^{\prime} T+a_{i, k^{\prime}} L T\right) .
$$

$a_{i, 0} a_{i, 1} a_{i, 2}$	duration	$c_{i}(t)$	$e^{\imath \pi h A_{i, n}}$
$0 \equiv 000$	$[0,4 T)$	$s_{0}(t) s_{0}(t+T) s_{0}(t+2 T)$	$e^{\imath \theta_{n+1}}$
$1 \equiv 001$	$[0, T)$	$s_{0}(t) s_{0}(t+T) s_{0}(t+5 T)$	$e^{\imath\left(\theta_{n-2}+\pi h l_{n}+\pi h l_{n-1}\right)}$
$2 \equiv 010$	$[0,2 T)$	$s_{0}(t) s_{0}(t+4 T) s_{0}(t+2 T)$	$e^{\imath\left(\theta_{n-1}+\pi h l_{n}\right)}$
$3 \equiv 011$	$[0, T)$	$s_{0}(t) s_{0}(t+4 T) s_{0}(t+5 T)$	$e^{\imath\left(\theta_{n-2}+\pi h l_{n}\right)}$
$4 \equiv 100$	$[-T, 3 T)$	$s_{0}(t+3 T) s_{0}(t+T) s_{0}(t+2 T)$	$e^{\imath \theta_{n}}$
$5 \equiv 101$	$[-T, T)$	$s_{0}(t+3 T) s_{0}(t+T) s_{0}(t+5 T)$	$e^{\imath\left(\theta_{n-2}+\pi h l_{n-1}\right)}$
$6 \equiv 110$	$[-2 T, 2 T)$	$s_{0}(t+3 T) s_{0}(t+4 T) s_{0}(t+2 T)$	$e^{\imath \theta_{n-1}}$
$7 \equiv 111$	$[-3 T, T)$	$s_{0}(t+3 T) s_{0}(t+4 T) s_{0}(t+5 T)$	$e^{\imath \theta_{n-2}}$

Note that
$\left\{\begin{array}{l}c_{4}(t)=c_{0}(t+T) \\ e^{\imath \pi h A_{4, n}}=e^{\imath \pi h A_{0, n-1}}\end{array}\left\{\begin{array}{l}c_{6}(t)=c_{0}(t+2 T) \\ e^{\imath \pi h A_{6, n}}=e^{\imath \pi h A_{0, n-2}}\end{array} \quad\left\{\begin{array}{l}c_{7}(t)=c_{0}(t+3 T) \\ e^{\imath \pi h A_{7, n}}=e^{\imath \pi h A_{0, n-3}}\end{array}\right.\right.\right.$
and

$$
\left\{\begin{array}{l}
c_{5}(t)=c_{2}(t+T) \\
e^{\imath \pi h A_{5, n}}=e^{\imath \pi h A_{2, n-1}}
\end{array}\right.
$$

For $n T \leq t<(n+1) T$,

$$
\begin{aligned}
& s_{\mathrm{b}-\mathrm{CPM}, \ell}(t)=e^{\imath \phi(t ; \boldsymbol{I})}=\sum_{i=0}^{7} e^{\imath \pi h A_{i, n}} c_{i}(t-n T) \\
& =e^{\imath \pi h A_{0, n}} c_{0}(t-n T)+e^{\imath \pi h A_{1, n}} c_{1}(t-n T)+e^{\imath \pi h A_{2, n}} c_{2}(t-n T) \\
& +e^{\imath \pi h A_{3, n}} c_{3}(t-n T)+e^{\imath \pi h A_{4, n}} c_{4}(t-n T)+e^{\imath \pi h A_{5, n}} C_{5}(t-n T) \\
& +e^{\imath \pi h A_{6, n}} C_{6}(t-n T)+e^{\imath \pi h A_{7, n}} C_{7}(t-n T) \\
& =e^{\imath \pi h A_{0, n}} c_{0}(t-n T)+e^{\imath \pi h A_{1, n}} c_{1}(t-n T)+e^{\imath \pi h A_{2, n}} c_{2}(t-n T) \\
& +e^{\imath \pi h A_{3, n}} c_{3}(t-n T)+e^{\imath \pi h A_{0, n-1}} c_{0}(t-(n-1) T) \\
& +e^{\imath \pi h A_{2, n-1}} c_{2}(t-(n-1) T)+e^{\imath \pi h A_{0, n-2}} c_{0}(t-(n-2) T) \\
& +e^{\imath \pi h A_{0, n-3}} c_{0}(t-(n-3) T) \\
& =\sum_{m=-\infty}^{\infty}\left[e^{\imath \pi h A_{0, m} c_{0}(t-m T)+e^{\imath \pi h A_{1, m}} c_{1}(t-m T)}\right. \\
& \left.+e^{\imath \pi h A_{2, m}} c_{2}(t-m T)+e^{\imath \pi h A_{3, m}} c_{3}(t-m T)\right] \\
& =\sum_{m=-\infty}^{\infty}\left[\sum_{i=0}^{2^{3-1}-1} e^{\imath \pi h A_{i, m}} c_{i}(t-m T)\right]
\end{aligned}
$$

So, we notice that when $a_{i, 0}=1, c_{i}(t)$ is always a shift-version of some $c_{j}(t)$ with $0 \leq j \leq 2^{L-1}-1$.

This concludes to that:

Theorem 1 (Laurent '86)

For $n T \leq t<(n+1) T$,

$$
s_{b-C P M, \ell}(t)=\sum_{m=-\infty}^{\infty}\left[\sum_{i=0}^{2 L-1-1} e^{\imath \pi h A_{i, m}} c_{i}(t-m T)\right]
$$

where

$$
A_{i, n}=\sum_{k=-\infty}^{n} I_{k}-\sum_{k^{\prime}=1}^{L-1} a_{i, k^{\prime}} I_{n-k^{\prime}}
$$

and

$$
c_{i}(t)=s_{0}(t) \prod_{k^{\prime}=1}^{L-1} s_{0}\left(t+k^{\prime} T+a_{i, k^{\prime}} L T\right)
$$

with duration $0 \leq t<\left(L-k_{\text {max }_{1}}\right) T$.

3.4 Power spectrum of digital modulated signals

- Why studying spectral characteristics?
- Bandwidth limitation in a real channel.
- Random process \Longrightarrow Power spectral density
- PAM
- CPM

Power spectra of modulated signals

- The modulated waveform $s(t)$ is deterministic given the information sequence \boldsymbol{I}, so only the information sequence $\boldsymbol{I}=\left(\ldots, I_{-2}, I_{-1}, I_{0}, I_{1}, I_{2}, \ldots\right)$ is random!
- For convenience, we denote the waveform at $n T \leq t<(n+1) T$ as $s\left(t-n T ; I_{n}\right)$ if the modulation is memoryless, and as $s\left(t-n T ; \boldsymbol{I}_{n}\right)$ if the modulation is with memory, where $I_{n}=\left(\ldots, I_{n-2}, I_{n-1}, I_{n}\right)$.

Hence, the modulated lowpass equivalent signal can be expressed as

$$
\boldsymbol{v}_{\ell}(t)=\sum_{n=-\infty}^{\infty} s\left(t-n T ; \boldsymbol{I}_{n}\right)
$$

Note that $\boldsymbol{v}_{\ell}(t)$ is usually not a (wide-sense) stationary process but a cyclostationary process.

Its spectral characteristics is then determined by the time-averaged autocorrelation function rather than the usual authocorrelation function for a WSS proess.

2.7.2 Cyclostationary processes

- How to model a waveform source that carries digital information?
- For example,

$$
\boldsymbol{X}(t)=\sum_{n=-\infty}^{\infty} \boldsymbol{a}_{n} \cdot g(t-n T)
$$

where $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is a discrete-time random sequence, and $g(t)$ is a deterministic pulse shaping function.

Cyclostationary processes

Given that $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is WSS, what is the statistical property of $\boldsymbol{X}(t)$?

- $\boldsymbol{X}(t)$ is not necessarily (strictly) stationary. Its mean becomes periodic with period T :

$$
\mathbb{E}[X(t)]=\mathbb{E}\left[\sum_{n=-\infty}^{\infty} \boldsymbol{a}_{n} g(t-n T)\right]=\mu_{\mathbf{a}} \sum_{n=-\infty}^{\infty} g(t-n T)=E[X(t+K T)]
$$

- Autocorrelation function becomes periodic with period T

$$
\begin{aligned}
R_{\boldsymbol{X}}\left(t_{1}, t_{2}\right) & =\mathbb{E}\left[\boldsymbol{X}\left(t_{1}\right) \boldsymbol{X}^{*}\left(t_{2}\right)\right] \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathbb{E}\left[\boldsymbol{a}_{n} \boldsymbol{a}_{m}^{*}\right] g\left(t_{1}-n T\right) g\left(t_{2}-m T\right) \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_{\mathbf{a}}(n-m) g\left(t_{1}-n T\right) g\left(t_{2}-m T\right) \\
& =R_{\boldsymbol{X}}\left(t_{1}+K T, t_{2}+K T\right)
\end{aligned}
$$

Definition 1 (Cyclostationary process)

A random process is said to be cyclostationary or periodically stationary in the wide sense if its mean and autocorrelation function are both periodic.

- Time-average autocorrelation function

$$
\bar{R}_{\boldsymbol{X}}(\tau)=\frac{1}{T} \int_{0}^{T} R_{\boldsymbol{X}}(t+\tau, t) d t
$$

- Average power spectral density

$$
\bar{S}_{\boldsymbol{x}}(f)=\mathcal{F}\left\{\bar{R}_{\boldsymbol{X}}(\tau)\right\}
$$

3.4-1 Power spectral density of a digitally modulated signal with memory

$$
\mathbb{E}\left[\boldsymbol{v}_{\ell}(t)\right]=\sum_{n=-\infty}^{\infty} \mathbb{E}\left[I_{n}\right] g(t-n T)=\mu, \sum_{n=-\infty}^{\infty} g(t-n T)=\mathbb{E}\left[\boldsymbol{v}_{\ell}(t+T)\right]
$$

and

$$
\begin{aligned}
& R_{\mathbf{v}_{\ell}}\left(t_{1}, t_{2}\right)=\mathbb{E}\left[\boldsymbol{v}_{\ell}\left(t_{1}\right) \boldsymbol{v}_{\ell}^{*}\left(t_{2}\right)\right] \\
& \quad=\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \mathbb{E}\left[I_{n} I_{m}^{*}\right] g\left(t_{1}-n T\right) g^{*}\left(t_{2}-m T\right)=R_{\mathbf{v}_{\ell}}\left(t_{1}+T, t_{2}+T\right)
\end{aligned}
$$

implies that $\boldsymbol{v}_{\ell}(t)$ is cyclostationary.

$$
\begin{aligned}
& \bar{R}_{\mathbf{v}_{\ell}}(\tau) \\
&= \frac{1}{T} \int_{0}^{T} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_{\boldsymbol{l}}(n-m) g(t+\tau-n T) g^{*}(t-m T) d t \\
&= \frac{1}{T} \int_{0}^{T} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_{\boldsymbol{l}}(k) g(t+\tau-k T-m T) g^{*}(t-m T) d t \\
& \quad(k=n-m)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} R_{l}(k) \sum_{m=-\infty}^{\infty} \int_{0}^{T} g(t+\tau-k T-m T) g^{*}(t-m T) d t \\
u=t-m T & \frac{1}{T} \sum_{k=-\infty}^{\infty} R_{l}(k) \sum_{m=-\infty}^{\infty} \int_{-m T}^{-(m-1) T} g(u+\tau-k T) g^{*}(u) d u \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} R_{l}(k) \int_{-\infty}^{\infty} g(u+\tau-k T) g^{*}(u) d u \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} g_{k}(\tau-k T)
\end{aligned}
$$

where

$$
g_{m}(\tau)=R_{\boldsymbol{l}}(m) \int_{-\infty}^{\infty} g(u+\tau) g^{*}(u) d u
$$

$$
\begin{aligned}
G_{m}(f) & =\int_{-\infty}^{\infty} g_{m}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =\int_{-\infty}^{\infty}\left(R_{l}(m) \int_{-\infty}^{\infty} g(u+\tau) g^{*}(u) d u\right) e^{-\imath 2 \pi f \tau} d \tau \\
& =R_{l}(m) \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} g(u+\tau) e^{-\imath 2 \pi f \tau} d \tau\right) g^{*}(u) d u \\
& ={ }_{v}=\underline{=} \tau \tau \\
& =R_{l}(m) \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} g(v) e^{-\imath 2 \pi f(v-u)} d v\right) g^{*}(u) d u \\
& =R_{l}(m)|G(f)|^{2} \\
& \left.g(v) e^{-\imath 2 \pi f v} d v\right)\left(\int_{-\infty}^{\infty} g^{*}(u) e^{\imath 2 \pi f u} d u\right) \\
\Rightarrow \bar{S}_{\mathbf{v}_{\ell}}(f) & =\mathcal{F}\left\{\bar{R}_{\mathbf{v}_{\ell}}(\tau)\right\}=\frac{1}{T} \sum_{k=-\infty}^{\infty} \mathcal{F}\left\{g_{k}(\tau-k T)\right\} \\
& =\frac{1}{T} \sum_{k=-\infty}^{\infty} R_{l}(k)|G(f)|^{2} e^{-\imath 2 \pi k f T} \\
& =\frac{1}{T} S_{l}(f)|G(f)|^{2} \text { where } S_{l}(f)=\sum_{k=-\infty}^{\infty} R_{l}(k) e^{-\imath 2 \pi k f T} .
\end{aligned}
$$

Theorem 2

$$
\bar{S}_{v_{\ell}}(f)=\frac{1}{T} S_{l}(f)|G(f)|^{2}
$$

The average power spectrum density of PAM signals is determined by the pulse shape, as well as the input information.

Example

Input information is real and mutually uncorrelated

$$
R_{I}(k)= \begin{cases}\sigma_{I}^{2}+\mu_{I}^{2}, & k=0 \\ \mu_{I}^{2}, & k \neq 0\end{cases}
$$

Hence

$$
S_{I}(f)=\sigma_{I}^{2}+\mu_{l}^{2} \sum_{k=-\infty}^{\infty} e^{-\imath 2 \pi f k T}=\sigma_{I}^{2}+\frac{\mu_{l}^{2}}{T} \sum_{k=-\infty}^{\infty} \delta\left(f-\frac{k}{T}\right)
$$

and

$$
\bar{S}_{v_{\ell}}(f)=\frac{\sigma_{l}^{2}}{T}|G(f)|^{2}+\frac{\mu_{l}^{2}}{T^{2}} \sum_{k=-\infty}^{\infty} \delta\left(f-\frac{k}{T}\right)|G(f)|^{2}
$$

$$
\bar{S}_{\mathbf{v}_{\ell}}(f)=\underbrace{\frac{\sigma_{I}^{2}}{T}|G(f)|^{2}}_{\text {continuous }}+\underbrace{\frac{\mu_{l}^{2}}{T^{2}} \sum_{k=-\infty}^{\infty} \delta\left(f-\frac{k}{T}\right)|G(f)|^{2}}_{\text {discrete }}
$$

- Observation 1: Discrete spectrum vanishes when the input information has zero mean, which is often desirable for digital modulation techniques.
- Observation 2: With a zero-mean input information, the average power spectrum density is determined by $G(f)$.

Example 6

The average power spectrum density for rectangular pulses

$$
g(t)=A\left[u_{-1}(t)-u_{-1}(t-T)\right]
$$

It shows

$$
G(f)=A T \operatorname{sinc}(f T) e^{-\imath \pi f T} \Rightarrow|G(f)|^{2}=A^{2} T^{2} \operatorname{sinc}^{2}(f T) .
$$

Hence

$$
\begin{aligned}
\bar{S}_{\mathbf{v}_{\ell}}(f) & =\frac{\sigma_{\boldsymbol{I}}^{2}}{T}|G(f)|^{2}+\frac{\mu_{\boldsymbol{I}}^{2}}{T^{2}} \sum_{k=-\infty}^{\infty} \delta\left(f-\frac{k}{T}\right)|G(f)|^{2} \\
& =\sigma_{\boldsymbol{I}}^{2} A^{2} T \operatorname{sinc}^{2}(f T)+\mu_{\boldsymbol{I}}^{2} A^{2} \delta(f) .
\end{aligned}
$$

Example 7

The average power spectrum density for raised cosine pulse

$$
g(t)=\frac{A}{2}\left[1+\cos \left(\frac{2 \pi}{T}\left(t-\frac{T}{2}\right)\right)\right]\left(u_{-1}(t)-u_{-1}(t-T)\right) .
$$

It gives

$$
G(f)=\frac{A T}{2} \operatorname{sinc}(f T) \frac{1}{1-f^{2} T^{2}} e^{-\imath \pi f T} .
$$

Hence

$$
\begin{aligned}
& \bar{S}_{\boldsymbol{v}_{\ell}}(f)=\frac{\sigma_{I}^{2}}{T}|G(f)|^{2}+\frac{\mu_{I}^{2}}{T^{2}} \sum_{k=-\infty}^{\infty} \delta\left(f-\frac{k}{T}\right)|G(f)|^{2} \\
& \quad=\frac{\sigma_{I}^{2} A^{2} T \operatorname{sinc}^{2}(f T)}{4\left(1-f^{2} T^{2}\right)^{2}}+\frac{\mu_{I}^{2} A^{2}}{4} \delta(f)+\frac{\mu_{I}^{2} A^{2}}{16} \delta\left(f-\frac{1}{T}\right)+\frac{\mu_{I}^{2} A^{2}}{16} \delta\left(f+\frac{1}{T}\right) .
\end{aligned}
$$

Note: $\lim _{x \rightarrow \pm 1} \frac{\operatorname{sinc}^{2}(x)}{\left(1-x^{2}\right)^{2}}=\frac{1}{4}$

Comparison of the previous two examples

Broader side lobe
Faster decay in tail $\left(f^{-6}<f^{-2}\right)$

Assume $A=T=\sigma_{I}^{2}=1$ and $\mu_{I}=0$

Assume $A=T=\sigma_{I}^{2}=1$ and $\mu_{I}=0$

Assume $A=T=\sigma_{I}^{2}=1$ and $\mu_{I}=0$

- The smoother (meaning, continuity of derivatives) the pulse shape, the greater the bandwidth efficiency (lower bandwidth occupancy).
- The raised cosine pulse shape will result in higher bandwidth efficiency than the rectangular pulse shape.

What if I correlated?

Example 8

$$
I_{n}=b_{n}+b_{n-1}
$$

where $\left\{b_{n}\right\}$ mutually uncorrelated with zero mean and unit variance.

Then,

$$
\begin{aligned}
R_{l}(k) & = \begin{cases}2 & k=0 \\
1 & k= \pm 1 \\
0 & \text { otherwise }\end{cases} \\
S_{l}(f) & =2+e^{\imath 2 \pi f T}+e^{-\imath 2 \pi f T}=2(1+\cos (2 \pi f T))=4 \cos ^{2}(\pi f T) \\
\bar{S}_{v_{\ell}}(f) & =\frac{1}{T}|G(f)|^{2} S_{l}(f)=\frac{4}{T}|G(f)|^{2} \cos ^{2}(\pi f T)
\end{aligned}
$$

Rectangular pulse shape with $A=T=1$

Rectangular pulse shape with $A=T=1$

Dependence in transmitted information (not the original information) can improve the bandwidth efficiency.

Power spectra of CPFSK and CPM

CPM: Assume I i.i.d.

$$
\boldsymbol{v}_{\ell}(t)=e^{\imath \phi(t ; l)}
$$

where

$$
\phi(t ; \boldsymbol{I})=2 \pi h \sum_{k=-\infty}^{\infty} I_{k} q(t-k T)
$$

$$
\begin{aligned}
R_{\mathbf{v}_{\ell}} & \left(t_{1}, t_{2}\right) \\
& =\mathbb{E}\left[\mathbf{v}_{\ell}\left(t_{1}\right) \boldsymbol{v}_{\ell}^{*}\left(t_{2}\right)\right] \\
& =\mathbb{E}\left[e^{\imath \phi\left(t_{1}, l\right)} e^{-i \phi\left(t_{2}, l\right)}\right] \\
& =\mathbb{E}\left[\exp \left(\imath 2 \pi h \sum_{k=-\infty}^{\infty} I_{k}\left[q\left(t_{1}-k T\right)-q\left(t_{2}-k T\right)\right]\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{v_{\ell}}\left(t_{1}, t_{2}\right) \\
& \quad=\mathbb{E}\left[\prod_{k=-\infty}^{\infty} \exp \left(\imath 2 \pi h l_{k}\left[q\left(t_{1}-k T\right)-q\left(t_{2}-k T\right)\right]\right)\right] \\
& \quad=\prod_{k=-\infty}^{\infty} \mathbb{E}\left[\exp \left(22 \pi h l_{k}\left[q\left(t_{1}-k T\right)-q\left(t_{2}-k T\right)\right]\right)\right] \\
& =\prod_{k=-\infty}^{\infty}\left[\sum_{n \in \mathcal{S}} P_{n} \exp \left(\imath 2 \pi h n\left[q\left(t_{1}-k T\right)-q\left(t_{2}-k T\right)\right]\right)\right],
\end{aligned}
$$

where $I_{k}=n \in \mathcal{S}$ and $P_{n} \triangleq \operatorname{Pr}\left[I_{k}=n\right]$.

$$
\begin{aligned}
\bar{R}_{\mathbf{v}_{\ell}}(\tau)= & \frac{1}{T} \int_{0}^{T} R_{\mathbf{v}_{\ell}}(t+\tau, t) d t \\
& =\frac{1}{T} \int_{0}^{T} \prod_{k=-\infty}^{\infty}\left[\sum_{n \in \mathcal{S}} P_{n} e^{22 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right] d t .
\end{aligned}
$$

Assume $\tau \geq 0$. For $m T \leq \tau=\xi+m T<(m+1) T$ and $0 \leq t<T$ (ie., the range of integration)

$$
t+\tau-(m+1) T=t+\xi-T \text { and } t+\tau-(m+1-L) T=t+\xi-(1-L) T
$$

$\bar{R}_{\mathbf{v}_{\ell}}(\tau)$

$$
\begin{aligned}
& =\frac{1}{T} \int_{0}^{T} \prod_{k=\min \{m+1-L, 1-L\}}^{\max \{m+1,0\}}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right] d t \\
& \stackrel{m \geq 0}{=} \frac{1}{T} \int_{0}^{T} \prod_{k=1-L}^{m+1}\left[\sum_{n \in \mathcal{S}} P_{n} e^{i 2 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right] d t .
\end{aligned}
$$

Hermitian symmetry of $\bar{R}_{v_{\ell}}(\tau)$

It suffices to derive $\bar{R}_{\mathbf{v}_{\ell}}(\tau)$ for $\tau \geq 0$ because $\bar{R}_{\mathbf{v}_{\ell}}(-\tau)=\bar{R}_{\mathbf{v}_{\ell}}^{*}(\tau)$.

Proof:

$$
\begin{aligned}
\bar{R}_{\mathbf{v}_{\ell}}^{*}(\tau)= & \frac{1}{T} \int_{0}^{T} \mathbb{E}\left[e^{-\imath 2 \pi h \sum_{k=-\infty}^{\infty} I_{k}[q(t+\tau-k T)-q(t-k T)]}\right] d t \\
= & \frac{1}{T} \int_{0}^{T} \mathbb{E}\left[e^{\imath 2 \pi h \sum_{k=-\infty}^{\infty} I_{k}[q(t-k T)-q(t+\tau-k T)]}\right] d t \\
= & \frac{1}{T} \int_{\tau}^{T+\tau} \mathbb{E}\left[e^{\imath 2 \pi h \sum_{k=-\infty}^{\infty} I_{k}[q(v-\tau-k T)-q(v-k T)]}\right] d v \\
& (v=t+\tau) \\
= & \frac{1}{T} \int_{0}^{T} \mathbb{E}\left[e^{\imath 2 \pi h \sum_{k=-\infty}^{\infty} I_{k}[q(v-\tau-k T)-q(v-k T)]}\right] d v \\
= & \bar{R}_{\mathbf{v}_{\ell}}(-\tau) .
\end{aligned}
$$

Average PSD of CPM

$$
\begin{aligned}
\bar{S}_{\mathbf{v}_{\ell}}(f) & =\int_{-\infty}^{\infty} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =\int_{-\infty}^{0} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau+\int_{0}^{\infty} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =\int_{0}^{\infty} \bar{R}_{\mathbf{v}_{\ell}}(-\tau) e^{\imath 2 \pi f \tau} d \tau+\int_{0}^{\infty} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =\int_{0}^{\infty}\left[\bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau}\right]^{*} d \tau+\int_{0}^{\infty} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =2 \operatorname{Re}\left[\int_{0}^{\infty} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau\right]
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\infty} & \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =\int_{0}^{L T} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau+\int_{L T}^{\infty} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =\int_{0}^{L T} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau+\sum_{m=L}^{\infty} \int_{m T}^{(m+1) T} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau
\end{aligned}
$$

For $m \geq L$, the two "regions" below are non-overlapping!

$$
\begin{aligned}
& \bar{R}_{\boldsymbol{v}_{\ell}}(\tau) \quad \stackrel{m \geq L}{=} \quad \frac{1}{T} \int_{0}^{T} \prod_{k=1-L}^{m+1}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right] d t \\
&= \frac{1}{T} \int_{0}^{T}\left(\prod_{k=1-L}^{0}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right]\right. \\
& \prod_{k=1}^{m-L}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right] \\
&\left.\prod_{k=m+1-L}^{m+1}\left[\sum_{n \in \mathcal{S}} P_{n} e^{22 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right]\right) d t \\
&= \frac{1}{T} \int_{0}^{T}\left(\prod_{k=1-L}^{0}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[1 / 2-q(t-k T)]}\right]\right. \\
& \prod_{k=1}^{m-L}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[1 / 2-0]}\right] \\
&\left.\prod_{k=m+1-L}^{m+1}\left[\sum_{n \in \mathcal{S}} P_{n} e^{22 \pi h n[q(t+\tau-k T)-0]}\right]\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \bar{R}_{\mathbf{v}_{\ell}}(\tau) \stackrel{m \geq L}{=} \frac{1}{T} \int_{0}^{T}\left(\prod_{k=1-L}^{0}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[1 / 2-q(t-k T)]}\right]\left[\Phi_{I}(h)\right]^{m-L}\right. \\
&\left.\prod_{k^{\prime}=1-L}^{1}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n\left[q\left(t+\tau-k^{\prime} T-m T\right)\right]}\right]\right) d t \quad\left(k^{\prime}=k-m\right) \\
&= {\left[\Phi_{I}(h)\right]^{m-L} \lambda(\tau-m T) }
\end{aligned}
$$

where $\Phi_{\boldsymbol{I}}(h)=\sum_{n \in \mathcal{S}} P_{n} e^{\imath \pi h n}$ and

$$
\begin{aligned}
\lambda(\xi)= & \frac{1}{T} \int_{0}^{T}\left(\prod_{k=1-L}^{0}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[1 / 2-q(t-k T)]}\right]\right. \\
& \left.\prod_{k^{\prime}=1-L}^{1}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n\left[q\left(t+\xi-k^{\prime} T\right)\right]}\right]\right) d t .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{m=L}^{\infty} \int_{m T}^{(m+1) T} \bar{R}_{\boldsymbol{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau \\
& =\sum_{m=L}^{\infty} \int_{m T}^{(m+1) T}\left[\Phi_{I}(h)\right]^{m-L} \lambda(\tau-m T) e^{-\imath 2 \pi f \tau} d \tau \\
& =\sum_{m=L}^{\infty} \int_{0}^{T}\left[\Phi_{I}(h)\right]^{m-L} \lambda(\xi) e^{-\imath 2 \pi f(\xi+m T)} d \xi \quad(\xi=\tau-m T) \\
& =\left(\sum_{m=L}^{\infty}\left[\Phi_{\boldsymbol{I}}(h)\right]^{m-L} e^{-\imath 2 \pi f m T}\right)\left(\int_{0}^{T} \lambda(\xi) e^{-\imath 2 \pi f \xi} d \xi\right) \\
& \left(\left(\frac{e^{-\imath 2 \pi f L T}}{1-\Phi_{\boldsymbol{I}}(h) e^{-\imath 2 \pi f T}}\right)\left(\int_{0}^{T} \lambda(\xi) e^{-\imath 2 \pi f \xi} d \xi\right) \quad \text { if }\left|\Phi_{\boldsymbol{I}}(h)\right|<1\right. \\
& =\left\{\left(e^{-\imath 2 \pi f L T} \sum_{m^{\prime}=0}^{\infty} e^{-\imath 2 \pi T(f-\nu / T) m^{\prime}}\right)\left(\int_{0}^{T} \lambda(\xi) e^{-\imath 2 \pi f \xi} d \xi\right)\right. \\
& \text { if }\left|\Phi_{I}(h)\right|=\left|e^{\imath 2 \pi \nu}\right|=1 \\
& \left(\left(\frac{e^{-\imath 2 \pi f L T}}{1-\Phi_{I}(h) e^{-\imath 2 \pi f T}}\right)\left(\int_{0}^{T} \lambda(\xi) e^{-\imath 2 \pi f \xi} d \xi\right) \quad \text { if }\left|\Phi_{I}(h)\right|<1\right. \\
& =\left\{\begin{array}{l}
e^{-\imath 2 \pi f L T}\left(\frac{1}{2}+\frac{1}{2 T} \sum_{m^{\prime}=-\infty}^{\infty}\left(\delta\left(f-\frac{\nu+m^{\prime}}{T}\right)-\imath \frac{1}{\pi\left(f-\left(\nu+m^{\prime}\right) / T\right)}\right)\right) \\
\left(\int_{0}^{T} \lambda(\xi) e^{-\imath 2 \pi f \xi} d \xi\right) \quad \text { if }\left|\Phi_{I}(h)\right|=\left|e^{\imath 2 \pi \nu}\right|=1
\end{array}\right.
\end{aligned}
$$

$$
g(t) \leftrightarrow G(f) \Rightarrow\left\{\begin{array}{l}
g_{\delta}(t)=\sum_{n=-\infty}^{\infty} g\left(n T_{s}\right) \delta\left(t-n T_{s}\right) \\
G_{\delta}(f)=\sum_{n=-\infty}^{\infty} g\left(n T_{s}\right) e^{-22 \pi n T_{s} f}=\frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} G\left(f-\frac{n}{T_{s}}\right)
\end{array}\right.
$$

Slide 2-9: $u_{-1}(t)=\left\{\begin{array}{ll}1, & t>0 \\ \frac{1}{2}, & t=0 \\ 0, & t<0\end{array} \leftrightarrow U_{-1}(f)=\frac{1}{2}\left(\delta(f)-\imath \frac{1}{\pi f}\right)\right.$

$$
\Rightarrow U_{-1, \delta}(f)=\sum_{n=-\infty}^{\infty} u_{-1}\left(n T_{s}\right) e^{-\imath 2 \pi n T_{s} f}=-\frac{1}{2}+\sum_{n=0}^{\infty} e^{-\imath 2 \pi n T_{s} f}
$$

$$
=\frac{1}{T_{s}} \sum_{n=-\infty}^{\infty} U_{-1}\left(f-\frac{n}{T_{s}}\right)=\frac{1}{2 T_{s}} \sum_{n=-\infty}^{\infty}\left(\delta\left(f-\frac{n}{T_{s}}\right)-\imath \frac{1}{\pi\left(f-\frac{n}{T_{s}}\right)}\right)
$$

$$
\sum_{m^{\prime}=0}^{\infty} e^{-\imath 2 \pi T(f-\nu / T) m^{\prime}}=\frac{1}{2}+\frac{1}{2 T} \sum_{m^{\prime}=-\infty}^{\infty}\left(\delta\left(f-\frac{\nu+m^{\prime}}{T}\right)-\imath \frac{1}{\pi\left(f-\frac{\nu+m^{\prime}}{T}\right)}\right)
$$

We finally obtain a numerically computable/plotable formula for the average PSD of CPM. For example, if $\left|\Phi_{\boldsymbol{I}}(h)\right|<1$,

$$
\begin{aligned}
\bar{S}_{\mathbf{v}_{\ell}}(f)= & 2 \boldsymbol{\operatorname { R e }}\left[\int_{0}^{L T} \bar{R}_{\mathbf{v}_{\ell}}(\tau) e^{-\imath 2 \pi f \tau} d \tau\right. \\
& \left.+\left(\frac{1}{1-\Phi_{\mathbf{I}}(h) e^{-\imath 2 \pi f T}}\right)\left(\int_{0}^{T} \lambda(\xi) e^{-\imath 2 \pi f(\xi+L T)} d \xi\right)\right]
\end{aligned}
$$

where for $0 \leq \tau=\xi+m T<L T$,
$\bar{R}_{\boldsymbol{v}_{\ell}}(\tau) \stackrel{m \geq 0}{=} \frac{1}{T} \int_{0}^{T} \prod_{k=1-L}^{m+1}\left[\sum_{n \in \mathcal{S}} P_{n} e^{\imath 2 \pi h n[q(t+\tau-k T)-q(t-k T)]}\right] d t$.
However, if $\left|\Phi_{I}(h)\right|=\left|e^{22 \pi \nu}\right|=1$, where $0 \leq \nu<1$, the average PSD of CPM signals has impulses at $f_{m^{\prime}}=\frac{\nu+m^{\prime}}{T}$ for integer m^{\prime}.

Numerically plotted average PSD of the equivalent lowpass CPFSK signal ($M=2, T=0.5, P_{n}$ uniform over $\mathcal{S}=\{ \pm 1\}$ and $\left.\Phi_{I}(h)=\frac{1}{2}\left(e^{\imath \pi h}+e^{-\imath \pi h}\right)=\cos (\pi h)\right)$

Numerically plotted average PSD of the equivalent lowpass CPFSK signal $\left(M=2, T=0.5\right.$ and P_{n} uniform over $\left.\mathcal{S}=\{ \pm 1\}\right)$

Numerically plotted average PSD of the equivalent lowpass CPFSK signal $\left(M=2, T=0.5\right.$ and P_{n} uniform over $\left.\mathcal{S}=\{ \pm 1\}\right)$

Numerically plotted average PSD of the equivalent lowpass CPFSK signal $\left(M=2, T=0.5\right.$ and P_{n} uniform over $\left.\mathcal{S}=\{ \pm 1\}\right)$

Observation 1

For $h<1$

- Its average PSD is relatively smooth and well confined.
- Almost all power is confined within

$$
f T<0.6 \text { or } f<\frac{0.6}{T}
$$

where T is the width of the channel symbols.

Observation 2

For $h>1$

- Its average PSD becomes broader and hence the bandwidth is approximately

$$
f T<1.2 \text { or } f<\frac{1.2}{T}
$$

- This is the main reason why in communication systems, where CPFSK is used, the modulation index h is usually taken to be <1.

Example: Bluetooth RF specification (Version 1.0)

- GFSK (Gaussian FSK) with $B T=0.5$
- $B=$ Bandwidth (for baseband symbol) $=0.5 \mathrm{MHz}$, $T=1 \mu \mathrm{sec}$
- $1=$ positive frequency deviation
- $0=$ negative frequency deviation
- Modulation index $0.28 \sim 0.35$
- Modulation index $=2 f_{d} T$, where f_{d} is the peak frequency deviation.
- $0.28<h=2 f_{d} T<0.35 \Longrightarrow 140 \mathrm{KHz}<f_{d}<175 \mathrm{KHz}$

Observation3

By letting $h \rightarrow 1$

- we can observe M impulses in the average PSD of the equivalent lowpass CPFSK signal.

Numerically plotted average PSD of the equivalent lowpass CPFSK signal ($M=4, P_{n}$ uniform over $\mathcal{S}=\{ \pm 1, \pm 3\}$ and $\quad \Phi_{\boldsymbol{I}}(h)=$ $\left.\frac{1}{2}(\cos (\pi h)+\cos (3 \pi h))\right)$

(a)

Spectral density for four-level CPFSK

(b)

- Approximately 4 impulses appear when $h \approx 1$.
- The bandwidth becomes broader than almost twice of that of $M=2$.

- Approximately 8 impulses are observed when $h \approx 1$.
- Bandwidth becomes broader than almost four times of that of $M=2$.

Re-visit MSK versus OQPSK

Observations

- Main Lobe: MSK is 50% wider than rectangular OQPSK, i.e., $\mathrm{MSK}=1.5 \times$ rectangular OQPSK.
- Side Lobe:
- Compare the bandwidth that contains 99\% of the total power: $\mathrm{MSK}=1.2 / T$ and rectangular OQPSK $=8.0 / T$.
- MSK decreases much faster than OQPSK.
- MSK is significantly more bandwidth efficient than rectangular OQPSK.
- By further decreasing the modulation index h (i.e., making $h<1 / 2$), the bandwidth efficiency of MSKs can be increased. However, in such case, MSK signals are no longer orthogonal. $f_{d}=1 /(4 T) \Leftrightarrow h=2 f_{d} T=1 / 2$

Appendix: Fractional out-of-band power

- Fractional in-band power

$$
\Delta P_{\text {In-band }}(W)=\frac{1}{P_{\text {Total }}} \int_{-W}^{W} \bar{S}_{v_{\ell}}(f) d f
$$

where

$$
P_{\text {Total }}=\int_{-\infty}^{\infty} \bar{S}_{\boldsymbol{v}_{\ell}}(f) d f .
$$

- Fractional out-of-band power

$$
\Delta P_{\text {Out-of-band }}(W)=1-\Delta P_{\text {In-band }}(W)
$$

- This quantity is often used to measure the bandwidth efficiency of a modulation scheme. For example, finding the bandwidth W under some acceptable condition, say fractional-out-of-band power is no greater than 0.01 .

Summary of spectral characteristics of CPFSK signals

Modulation Index h

- In general, the lower the modulation index h, the higher the bandwidth efficiency.

Pulse shape $g(t)$

- The smoother (meaning, e.g., continuity of the derivatives) the $g(t)$, the greater the bandwidth efficiency.
- For example, the raised cosine $g(t)$ will result in higher bandwidth efficiency than the rectangular $g(t)$.
- For example, L RC (raised cosine $g(t)$ with duration $L T$) with larger L (i.e., smoother) will result in greater bandwidth efficiency.

What you learn from Chapter 3

- (Pseudo-)Vectorization of standard ASK, PSK and QAM signals
- Computation of average energy based on signal space vector points
- Euclidean distance based on signal space vector points
- Gray code mapping from binary pattern to the signal space vector points (in terms of their Euclidean distances)
- (Good to know) QPSK versus $\pi / 4$-QPSK
- Vectorization of standard orthogonal (FSK or multi-dimensional) and bi-orthogonal signals
- Computation of average energy based on signal space vector points
- Euclidean distance based on signal space vector points
- (Important) Cross-correlation of FSK bandpass and lowpass signals (Minimum shift keying)
- (Good to know) Simplex signals (from orthogonal signals)
- (Important) Why cyclo-stationarity for digitally modulated signals and its power spectrum
- Modulation with memory - CPM signals
- Its basic formation

$$
\phi(t ; \boldsymbol{I})=4 \pi T f_{d} \int_{-\infty}^{t} d(\tau) d \tau
$$

based on phase change $d(t)=\sum_{n=-\infty}^{\infty} I_{n} g(t-n T)$

- (Good to know) Full response and partial response
- MSK versus OQPSK
- Linear representation of CPM
- (Important) Time-average autocorrelation and power spectrum (of cyclostationary PAM and MSK)

