CKV

Digital Design

CS/EEE/ECE/INSTR F215

Innovate

achleve

ead

Lecture 4: Boolean algebra

Postulates of Boolean Algebra

1. x + 0 = xDuality Principle2. x + x' = 1 $+ (OR) \rightarrow . (AND)$ 3. x + y = y + x $. (AND) \rightarrow + (OR)$ 4. x(y + z) = xy + xz $0 \rightarrow 1$

Applying Duality

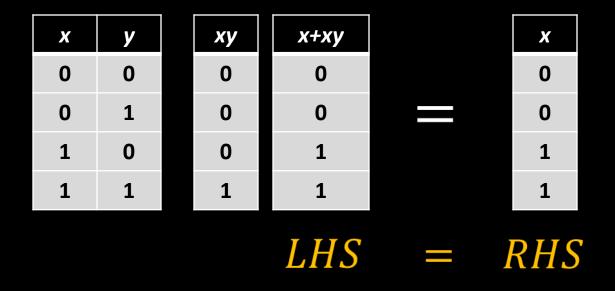
- 1. x + 0 = x $x \cdot 1 = x$
- 2. x + x' = 1 $x \cdot x' = 0$
- 3. x + y = y + x $x \cdot y = y \cdot x$
- 4. x(y + z) = xy + xz x + (y, z) = (x + y).(x + z)

Some important Theorems

1. x + x = x $x \cdot x = x$ 2. (x')' = xx.(y.z) = (x.y).z3. x + (y + z) = (x + y) + z(4. (x + y)' = x'y' DeMorgan's Th. (x, y)' = x' + y'x.(x+y) = x4. x + xy = x

Theorems can be proved in two ways

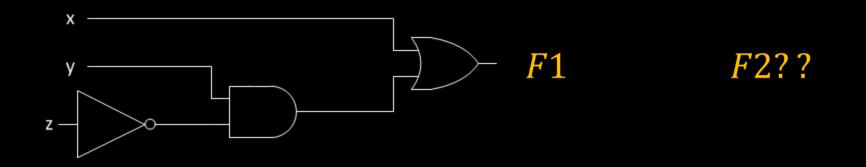
-using Postulates


$$x + xy = x$$
$$LHS = x \cdot 1 + xy$$
$$= x \cdot (1 + y)$$
$$= x \cdot 1$$
$$= x$$

Theorems can be proved in two ways

-using Truth tables

$$x + xy = x$$



Consists of binary variables, constants and Logic symbols

$$F1 = x + yz'$$
 $F2 = (x + yz')'$

Single variable in normal or complemented form - literal

Can be transformed into circuit

Boolean function can be represented by truth table in only one way

X	у	Z	F1	F2
0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$F1 = x + yz'$$
$$F2 = (x + yz')'$$

Boolean function can be represented in many ways in algebraic form

$$F2 = (x + yz')'$$

Both represent same function ?

$$F2 = x'yz' + x'yz + xz'$$

Implementation of both same ? Try it out

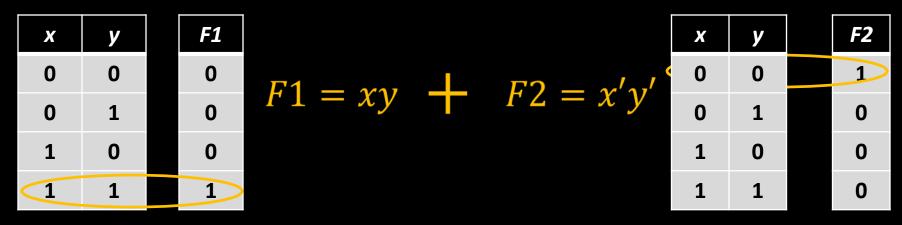
Need for simplification

Ways of simplification

-Algebraic manipulation

-K Maps

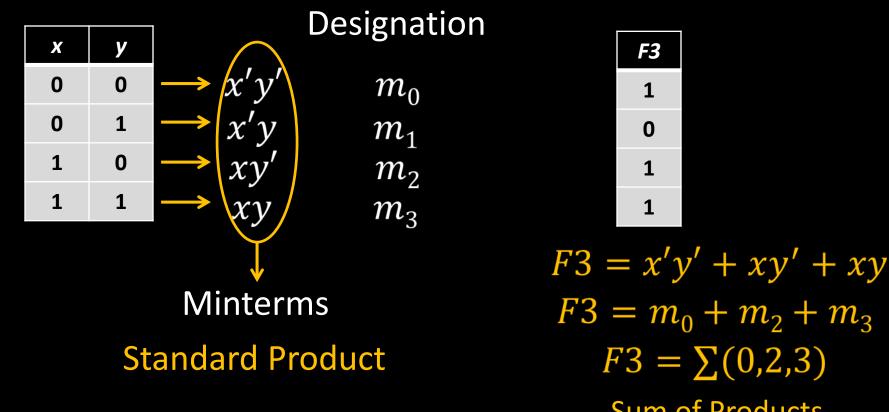
-QM(Quine-McCluskey) Method



Algebraic manipulation done using postulates and theorems

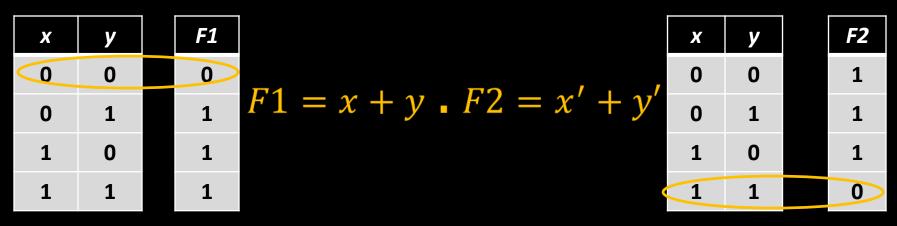
For example: F1 = x(x' + y) 1 Not, 1 OR, 1 AND F1 = xx' + xyF1 = xy 1 AND

Canonical Forms-Type1



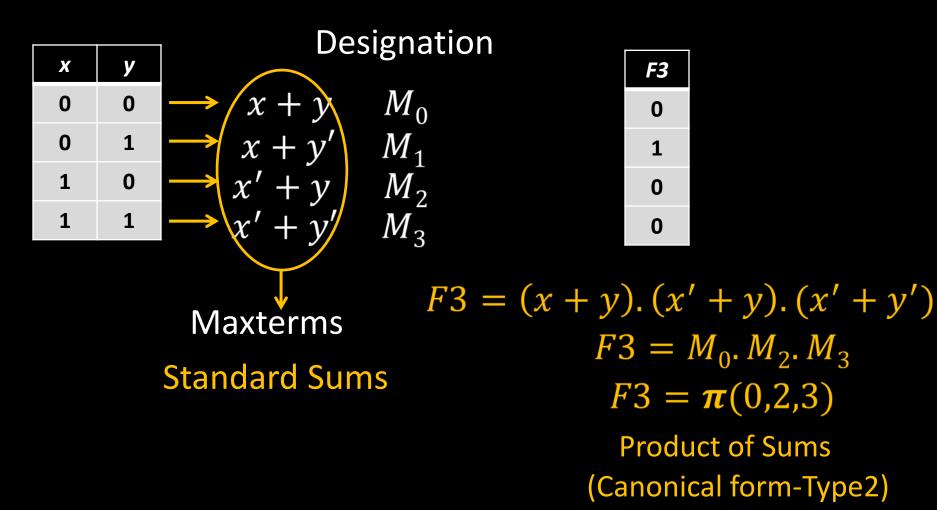
X	у	F3
0	0	1
0	1	0
1	0	0
	1	1

F	'3	=?	?	
F3	_	xy	+	x'y'



Each input entry will be represented by a term

Canonical Forms-Type2

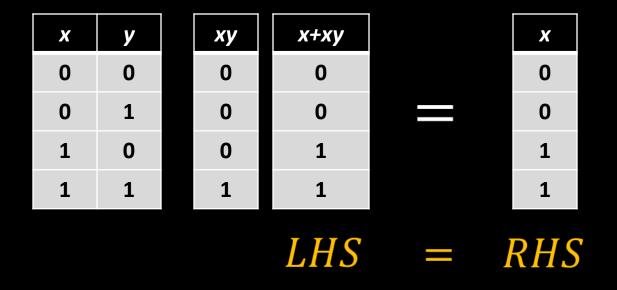


F3 = ??

F3 = (x + y).(x' + y')

Each input entry will be represented by a term

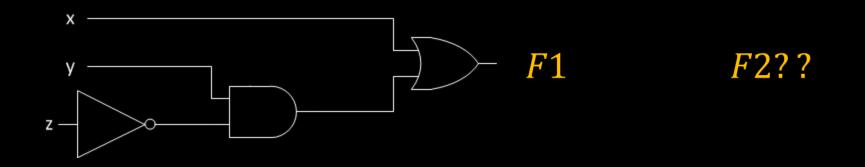
Some important Theorems


1. x + x = x2. (x')' = x3. x + (y + z) = (x + y) + z4. (x + y)' = x'y' DeMorgan's Th. (x, y)' = x' + y'

Theorems can be proved in two ways

-using Truth tables

$$x + xy = x$$



Consists of binary variables, constants and Logic symbols

$$F1 = x + yz' \qquad F2 = (x + yz')'$$

Single variable in normal or complemented form - literal

Can be transformed into circuit

Boolean function can be represented by truth table in only one way

X	у	Z	F1	F2
0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$F1 = x + yz'$$
$$F2 = (x + yz')'$$

Boolean function can be represented in many ways in algebraic form

$$F2 = (x + yz')'$$

Both represent same function

$$F2 = x'y'z' + x'y'z + x'z$$

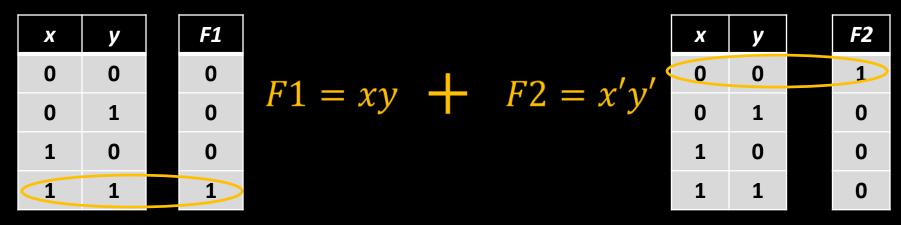
Implementation of both same? Try it out

Need for simplification

Algebraic manipulation done using postulates and theorems

For example: F1 = x(x' + y) 1 Not, 1 OR, 1 AND F1 = xx' + xyF1 = xy 1 AND

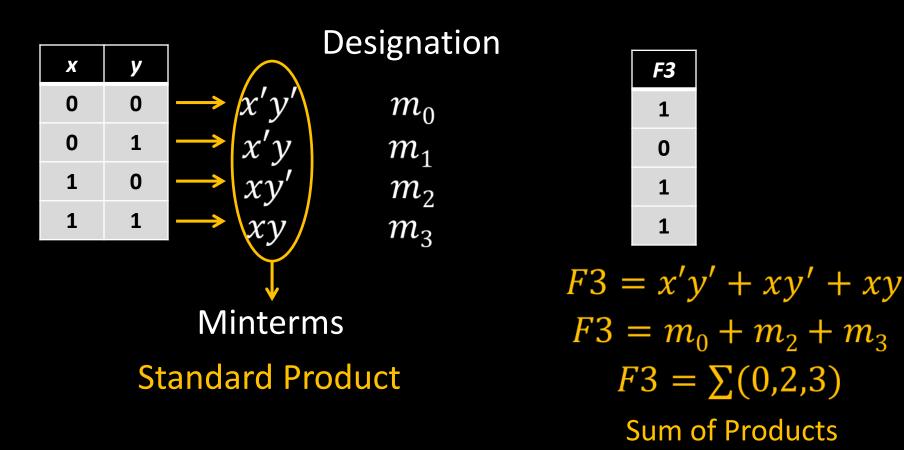
Before learning


-K Maps

-QM(Quine-McCluskey) Method

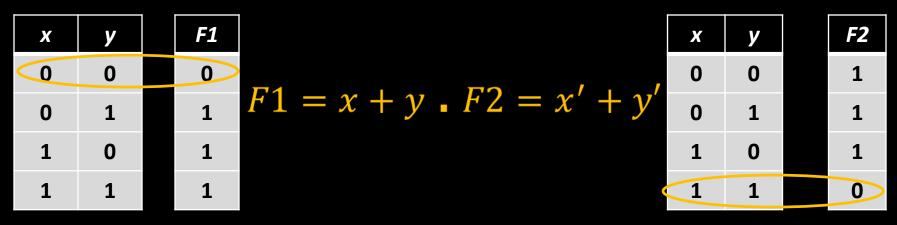
Canonical and standard forms of Boolean functions

Canonical Forms-Type1

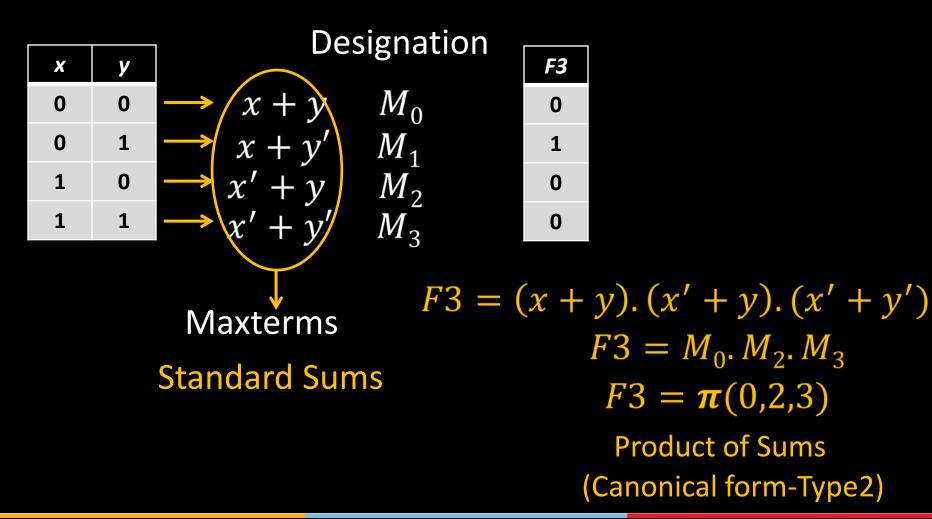


X	у	F3	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

F	'3	=?	?	
<i>F</i> 3	_	xy	+	x'y'


Each input entry will be represented by a term

(Canonical form-Type1)


Canonical Forms-Type2

=??

Each input entry will be represented by a term

Canonical forms from Truth table

X	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Sum of Products Representation ?

Product of Sums Representation ?

Can we convert from one canonical form to another ?

X	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Using Truth Table $F = m_1 + m_2 + m_4 + m_7$ (*Three variables* - 0,1,2,3,4,5,6,7) $F = M_0.M_3.M_5.M_6$

Minterm and Maxterm are Complementary to each other

X	У	Z	F	F'
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

$$F = m_1 + m_2 + m_4 + m_7$$

$$F' = m_0 + m_3 + m_5 + m_6$$

$$F' = x'y'z' + x'yz + xy'z + xyz'$$

$$F = (F')'$$

$$F = (x'y'z' + x'yz + xy'z + xyz')'$$

$$F = (x'y'z')' \cdot (x'yz)' \cdot (xy'z)' \cdot (xyz')'$$

F = (x + y + z) . (x + y' + z') . (x' + y + z') . (x' + y' + z)

 $F = M_0 . M_3 . M_5 . M_6$

Express in minterms:

Example 1: F = y + x'yz'

F = y (x + x')(z + z') + x'yz'Simplify F = xyz + xyz' + x'yz + x'yz' + x'yz'

 $F = m_7 + m_6 + m_3 + m_2$

Express in minterms:

Example 1: F = y + x'yz'

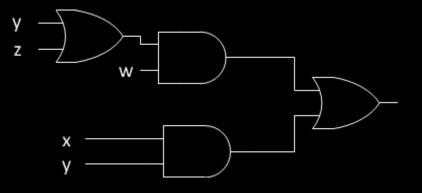
X	У	Z	x'yz'	F
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	1
1	1	1	0	1

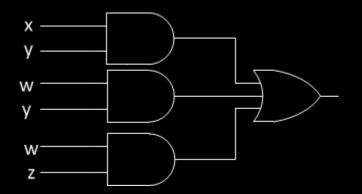
$$F = m_2 + m_3 + m_6 + m_7$$

$$F = M_0.M_1..M_4.M_5$$

Standard Form – Terms that form the function may contain one, two or many literals

F1 = y' + xy + x'yz' Sum of Products


$$F2 = x(y' + z).(x + y + z')$$
 Product of Sums


How is it different from canonical form ??



Some times standard forms result in better implementation

What form ?? F = xy + w(y + z)

Standard Form

SPOT THE DIFF ??

Thank You