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Introduction

Over the last decade, digital signal processing has matured; thus, digital signal
processing techniques have played a key role in the expansion of electronic products
for everyday use, especially in the field of audio, image and video processing.
Nowadays, digital signal is used in MP3 and DVD players, digital cameras, mobile
phones, and also in radar processing, biomedical applications, seismic data
processing, etc.

This book aims to be a text book which presents a thorough introduction to
digital signal processing featuring the design of digital filters. The purpose of the
first part (Chapters 1 to 9) is to initiate the newcomer to digital signal and image
processing whereas the second part (Chapters 10 and 11) covers some advanced
topics on stability for 2-D filter design. These chapters are written at a level that is
suitable for students or for individual study by practicing engineers.

When talking about filtering methods, we refer to techniques to design and
synthesize filters with constant filter coefficients. By way of contrast, when dealing
with adaptive filters, the filter taps change with time to adjust to the underlying
system. These types of filters will not be addressed here, but are presented in various
books such as [HAY 96], [SAY 03], [NAJ 06].

Chapter 1 provides an overview of various classes of signals and systems. It
discusses the time-domain representations and characterizations of the continuous-
time and discrete-time signals.

Chapter 2 details the background for the analysis of discrete-time signals. It
mainly deals with the z-transform, its properties and its use for the analysis of linear
systems, represented by difference equations.



xiv  Digital Filters Design for Signal and Image Processing

Chapter 3 is dedicated to the analysis of the frequency properties of signals and
systems. The Fourier transform, the discrete Fourier transform (DFT) and the fast
Fourier transform (FFT) are introduced along with their properties. In addition, the
well-known Shannon sampling theorem is recalled.

As we will see, some of the most popular techniques for digital infinite impulse
response (IIR) filter design benefit from results initially developed for analog
signals. In order to make the reader’s task easy, Chapter 4 is devoted to continuous-
time filter design. More particularly, we recall several approximation techniques
developed by mathematicians such as Chebyshev or Legendre, who have thus seen
their names associated with techniques of filter design.

The following chapters form the core of the book. Chapter 5 deals with the
techniques to synthesize finite impulse response (FIR) filters. Unlike IIR filters,
these have no equivalent in the continuous-time domain. The so-called windowing
method, as a FIR filter design method, is first presented. This also enables us to
emphasize the key role played by the windowing in digital signal processing, e.g.,
for frequency analysis. The Remez algorithm is then detailed.

Chapter 6 concerns IIR filters. The most popular techniques for analog to digital
filter conversion, such as the bilinear transform and the impulse invariance method,
are presented. As the frequency response of these filters is represented by rational
functions, we must tackle the problems of stability induced by the existence of poles
of these rational functions.

In Chapter 7, we address the selection of the filter structure and point out its
importance for filter implementation. Some problems due to the finite-precision
implementation are listed and we provide rules to choose an appropriate structure
while implementing filter on fixed point operating devices.

In comparison with many available books dedicated to digital filtering, this title
features both 1-D and 2-D systems, and as such covers both signal and image
processing. Thus, in Chapters 8 and 9, 2-D filtering is investigated.

Moreover, it is not easy to establish the necessary and sufficient conditions to
test the stability of 2-D signals. Therefore, Chapters 10 and 11 are dedicated to the
difficult problem of the stability of 2-D digital system, a topic which is still the
subject of many works such as [ALA 2003] [SER 06]. Even if these two chapters are
not a prerequisite for filter design, they can provide the reader who would like to
study the problems of stability in the multi-dimensional case with valuable
clarifications. This contribution is another element that makes this book stand out.
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The field of digital filtering is often perceived by students as a “patchwork™ of
formulae and recipes. Indeed, the methods and concepts are based on several
specific optimization techniques and mathematical results which are difficult to

grasp.

For instance, we have to remember that the so-called Parks-McClellan algorithm
proposed in 1972 was first rejected by the reviewers [PAR 72]. This was probably
due to the fact that the size of the submitted paper, i.e., 5 pages, did not enable the
reviewers to understand every step of the approach [McC 05].

In this book we have tried, at every stage, to justify the necessity of these
approaches without recalling all the steps of the derivation of the algorithm. They
are described in many articles published during the 1970s in the IEEE periodicals
i.e., Transactions on Acoustics Speech and Signal Processing, which has since
become Transactions on Signal Processing and Transactions on Circuits and
Systems.

Mohamed NAJIM
Bordeaux
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Chapter 1

Introduction to Signals and Systems

1.1. Introduction

Throughout a range of fields as varied as multimedia, telecommunications,
geophysics, astrophysics, acoustics and biomedicine, signals and systems play a
major role. Their frequential and temporal characteristics are used to extract and
analyze the information they contain. However, what importance do signals and
systems really hold for these disciplines? In this chapter we will look at some of the
answers to this question.

First we will discuss different types of continuous and discrete-time signals,
which can be termed random or deterministic according to their nature. We will also
introduce several mathematical tools to help characterize these signals. In addition,
we will describe the acquisition chain and processing of signals.

Later we will define the concept of a system, emphasizing invariant discrete-time
linear systems.

1.2. Signals: categories, representations and characterizations

1.2.1. Definition of continuous-time and discrete-time signals

The function of a signal is to serve as a medium for information. It is a
representation of the variations of a physical variable.

Chapter written by Yannick BERTHOUMIEU, Eric GRIVEL and Mohamed NAJIM.
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A signal can be measured by a sensor, then analyzed to describe a physical
phenomenon. This is the situation of a tension taken to the limits of a resistance in
order to verify the correct functioning of an electronic board, as well as, to cite one
example, speech signals that describe air pressure fluctuations perceived by the
human ear.

Generally, a signal is a function of time. There are two kinds of signals:
continuous and discrete-time.

A continuous-time or analog signal can be measured at certain instants. This
means physical phenomena create, for the most part, continuous-time signals.

40
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Figure 1.1. Example of the sleep spindles of
an electroencephalogram (EEG) signal

The advancement of computer-based techniques at the end of the 20™ century led
to the development of digital methods for information processing. The capacity to
change analog signals to digital signals has meant a continual improvement in
processing devices in many application fields. The most significant example of this
is in the field of telecommunications, especially in cell phones and digital
televisions. The digital representation of signals has led to an explosion of new
techniques in other fields as varied as speech processing, audiofrequency signal
analysis, biomedical disciplines, seismic measurements, multimedia, radar and
measurement instrumentation, among others.
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The signal is said to be a discrete-time signal when it can be measured at certain
instants; it corresponds to a sequence of numerical values. Sampled signals are the
result of sampling, uniform or not, of a continuous-time signal. In this work, we are
especially interested in signals taken at regular intervals of time, called sampling

periods, which we write as T, :% where f; is called the sampling rate or the

sampling frequency. This is the situation for a temperature taken during an
experiment, or of a speech signal (see Figure 1.2). This discrete signal can be written
either as x(k) or x(kT;). Generally, we will use the first writing for its simplicity. In
addition, a digital signal is a discrete-time discrete-valued signal. In that case, each
signal sample value belongs to a finite set of possible values.

x10

Figure 1.2. Example of a digital voiced speech signal
(the sampling frequency f; is at 16 KHz)

The choice of a sampling frequency depends on the applications being used and
the frequency range of the signal to be sampled. Table 1.1 gives several examples of
sampling frequencies, according to different applications.
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Signal £ T,
Speech:
Telephone band — telephone- 8 KHz 125 us
Broadband — audio-visual conferencing- or 16 KHz 62.5 us
Audio: Broadband (Stereo) 32 KHz 31.25 ps
44.1 KHz 22.7 us
48 KHz 20.8 us
Video 10 MHz 100 ns

Table 1.1. Sampling frequencies according to processed signals

In Figure 1.3, we show an acquisition chain, a processing chain and a signal
restitution chain.

The adaptation amplifier makes the input signal compatible with the
measurement chain.

A pre-filter which is either pass-band or low-pass, is chosen to limit the width of
the input signal spectrum; this avoids the undesirable spectral overlap and hence, the
loss of spectral information (aliasing). We will return to this point when we discuss
the sampling theorem in section 3.2.2.9. This kind of anti-aliasing filter also makes
it possible to reject the out-of-band noise and, when it is a pass-band filter, it helps
suppress the continuous component of the signal.

The Analog-to-Digital Converter (A/D) partly carries out sampling, and then
quantification, at the sampling frequency f;, that is, it allocates a coding to each
sampling on a certain number of bits.

The digital input signal is then processed in order to give the digital output
signal. The reconversion into an analog signal is made possible by using a D/A
converter and a smoothing filter.

Many parameters influence sampling, notably the quantification step and the
response time of the digital system, both during acquisition and restitution.
However, by improving the precision of the A/D converter and the speed of the
calculators, we can get around these problems. The choice of the sampling
frequency also plays an important role.
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Physical
variable

Analog
signal

v
Adaptation

amplifier
Processed
signal
Y
Low-pass filter
or pass-band
Smoothing
4 filter
Sampling
blocker . A
¢ Digital system
D/A
A/D converter > Processing — »| converter
Digital Digital
input output
signal signal

Figure 1.3. Complete acquisition chain and digital processing of a signal

Different types of digital signal representation are possible, such as functional
representations, tabulated representations, sequential representations, and graphic
representations (as in bar diagrams).

Looking at examples of basic digital signals, we return to the unit sample
sequence represented by the Kronecker symbol d(k), the unit step signal u(k), and
the unit ramp signal 7(k). This gives us:

5(0)=1

Unit sample sequence:
pre s {5(k):lfork¢0
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, ) u(k)=1for k>0
Unit step signal:
u(k)=0fork<0
r(k)=kfor k>0

Unit ignal:
i ramp Slend {r(k) =0 for k <0.

impulse unity
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Scale
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-10 -8 -6 -4 -2 0 2 4 6 8 10

indices

Figure 1.4. Unit sample sequence d(k) and unit step signal u(k)

1.2.2. Deterministic and random signals

We class signals as being deterministic or random. Random signals can be
defined according to the domain in which they are observed. Sometimes, having
specified all the experimental conditions of obtaining the physical variable, we see
that it fluctuates. Its values are not completely determined, but they can be evaluated
in terms of probability. In this case, we are dealing with a random experiment and
the signal is called random. In the opposite situation, the signal is called
deterministic.
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Figure 1.5. Several realizations of a 1-D random signal

EXAMPLE 1.1.— let us look at a continuous signal modeled by a sinusoidal function
of the following type.

x(1) = axsin(2nft)
This kind of model is deterministic. However, in other situations, the signal

amplitude and the signal frequency can be subject to variations. Moreover, the signal
can be disturbed by an additive noise b(¢); then it is written in the following form:

x(t)=a(t)xsin(2nf (¢)xt)+b(t)
where a(¢), f(t) and b(f) are random variables for each value of £. We say then that

x(?) is a random signal. The properties of the received signal x(¢) then depends on the
statistical properties of these random variables.
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Figure 1.6. Several examples of a discrete random 2-D process

1.2.3. Periodic signals
The class of signals termed periodic plays an important role in signal and image
processing. In the case of a continuous-time signal, a signal is called periodic of
period Ty if Ty is the smallest value verifying the relation:
x(t+7y)=x(t), vt.
And, for a discrete-time signal, the period of which is N, we have:

x(k+Ny)=x(k), Vi .

EXAMPLE 1.2.— examples of periodic signals:

©(t) = sin(2n1) , x{k) = (—1)k,x(k)=cos[%[j.
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1.2.4. Mean, energy and power

We can characterize a signal by its mean value. This value represents the
continuous component of the signal.

When the signal is deterministic, it equals:

p= 11m % J (t)dt where T designates the integration time. (1.1

1(1)

When a continuous-time signal is periodic and of period 7, the expression of the
mean value comes to:

x()dt (1.2)
PROOF — we can always express the integration time 7 according to the period of

the signal in the following way:

= kT, + & where k is an integer and & is chosen so that 0 <¢& < Ty,

.1 .
From there, u= lim - .[ x(1)dt = klll’l’l — | x(#)dt, since & becomes
| oo —>+oo
(@) Ty iz,

insignificant compared to k7.

By using the periodicity property of the continuous signal x(¢), we deduce that

X [ aee=- [ (e

T, % () O(Tu)

When the signal is random, the statistical mean is defined for a fixed value of ¢,
as follows:

w(e)=E[x()]=[" x p(x.1) dx, (13)

where E[.] indicates the mathematical expectation and p(x, f) represents the
probability density of the random signal at the instant z. We can obtain the mean
value if we know p(x, 7); in other situations, we can only obtain an estimated value.
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For the class of signals called ergodic in the sense of the mean, we assimilate the
statistical mean to the temporal mean, which brings us back to the expression we
have seen previously:

.1
p=lim — | x(z)dt.
T‘_”NTH'T[) (3

Often, we are interested in the energy & of the processed signal. For a
continuous-time signal x(¢), we have:

8=I:|x(t)|2 dt . (1.4)

In the case of a discrete-time signal, the energy is defined as the sum of the
magnitude-squared values of the signal x(k):

2
e=Y (k) (15)
k
For a continuous-time signal x(f), its mean power P is expressed as follows:
.1 2
P—Tl_l)nng(le(tX dt . (1.6)

For a discrete-time signal x(k), its mean power is represented as:

1 & 2
P= lim — k 1.7
Jlim ;Ix( ) (17

In signal processing, we often introduce the concept of signal-to-noise ratio
(SNR) to characterize the noise that can affect signals. This variable, expressed in
decibels (dB), corresponds to the ratio of powers between the signal and the noise. It
is represented as:

f.)s‘ignal
SNR =10log,, {—} (1.8)

where P, and P

i signa. . noise
signal and the noise.

indicate, respectively, the powers of the sequences of the

EXAMPLE 1.3.— let us consider the example of a periodic signal with a period of
300 Hz signal that is perturbed by a zero-mean Gaussian additive noise with a
signal-to-noise ratio varying from 20 to 0 dB at each 10 dB step. Figures 1.7 and 1.8
show these different situations.
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1.2.5. Autocorrelation function

Let us take the example of a deterministic continuous signal x() of finite energy.
We can carry out a signal analysis from its autocorrelation function, which is
represented as:

R, (0= [ x(t)x (t-z)dt (1.9)
The autocorrelation function allows us to measure the degree of resemblance

existing between x(¢) and x(t - 2') . Some of these properties can then be shown from
the results of the scalar products.

From the relations shown in equations (1.4) and (1.9), we see that R.(0)
corresponds to the energy of the signal. We can easily demonstrate the following
properties:

R.(f)=R, (-7) Ve R (1.10)

IR, (0| <R, (0) VzeR (1.11)

When the signal is periodic and of the period Ty, the autocorrelation function is
periodic and of the period 7. It can be obtained as follows:

R_(1)= j X (t—1)dt (1.12)

We should remember that the autocorrelation function is a specific instance of
the intercorrelation function of two deterministic signals x(¢) and y(¢), represented as:

R,(1)= j (t—)dr (1.13)

Now, let us look at a discrete-time random process {x(k)}. We can describe this
process from its autocorrelation function, at the instants k and k,, written R, (k), k)
and expressed as

Rxx(kl,kz):E[x(kl)x*(kz)} Y(k k) €7ZxLZ, (1.14)

where x° (k, ) denotes the conjugate of x(k,) in the case of complex processes.



