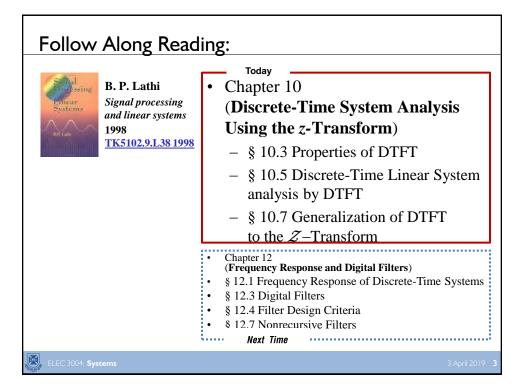
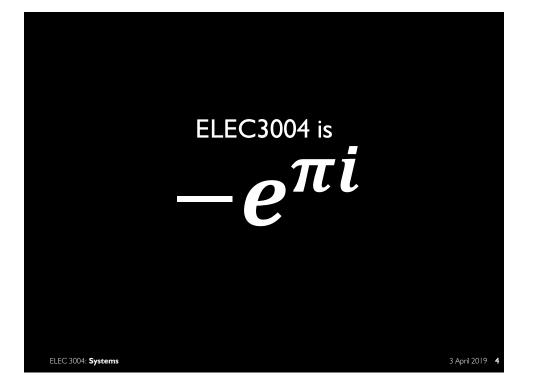
	http://elec3004.com			
Digital Filters <u>IIR</u> & FIR				
ELEC 3004: Systems : Signals & Controls Dr. Surya Singh				
Lecture 11				
elec3004@itee.uq.edu.au	April 3, 2019			
http://robotics.itee.uq.edu.au/~elec3004/				

Week	Date	Lecture Title
		Introduction
1	1-Mar	Systems Overview
2	6-Mar	Systems as Maps & Signals as Vectors
2	8-Mar	Systems: Linear Differential Systems
3	13-Mar	Sampling Theory & Data Acquisition
3	15-Mar	Aliasing & Antialiasing
4		Discrete Time Analysis & Z-Transform
4		Second Order LTID (& Convolution Review)
5		Frequency Response
	29-Mar	Filter Analysis
6		Digital Filters (IIR) & Filter Analysis
		PS 1: Q & A
7		Digital Filter (FIR) & Digital Windows
	12-Apr	
8		Active Filters & Estimation & Holiday
	19-Apr 24-Apr	Holiday
	24-Apr 26-Apr	понаау
	.	Introduction to Feedback Control
9		Servoregulation/PID
		PID & State-Space
10		State-Space Control
		Digital Control Design
11	17-May	Stability
10	22-May	State Space Control System Design
12	24-May	Shaping the Dynamic Response
13	29-May	System Identification & Information Theory
15	21.24	Summary and Course Review





Periodic Signals: Writing them in the Fourier Domain & z-Domain

• Synthesis:

The function $X(e^{j\Omega})$ defined by

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$
(7.1.1)

(if it converges) is called the *discrete-time Fourier transform* (*DTFT*) of the signal x[n]. In particular, if the region of convergence for the z transform

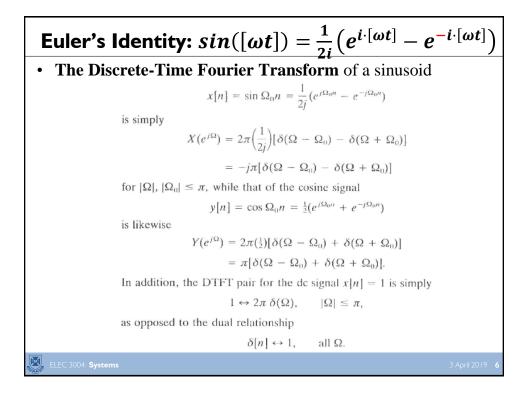
$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

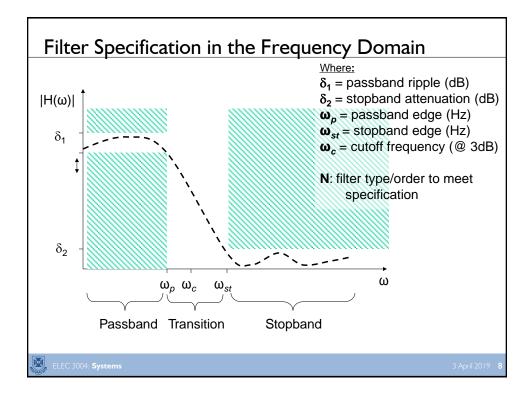
includes the unit circle, then the DTFT equals X(z) evaluated on the unit circle, that is,

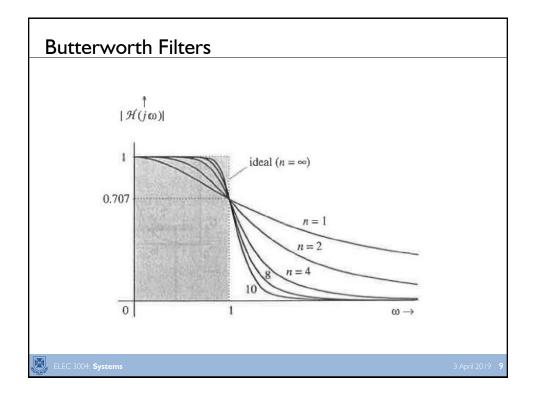
$$X(e^{j\Omega}) = X(z)|_{z=e^{j\Omega}}$$
 (7.1.2)

ELEC 3004: Systems

3 April 2019 5



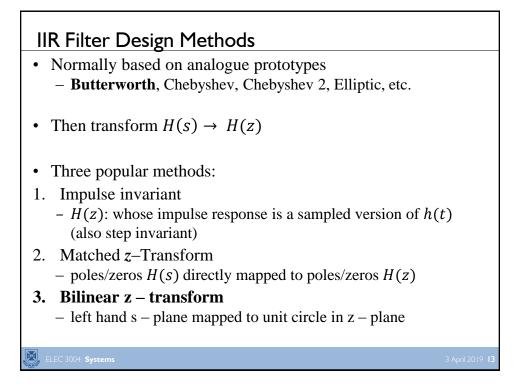


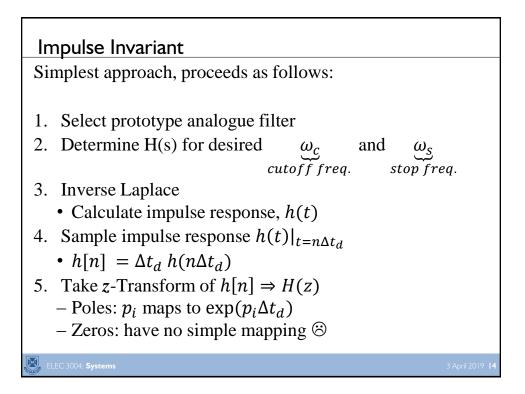


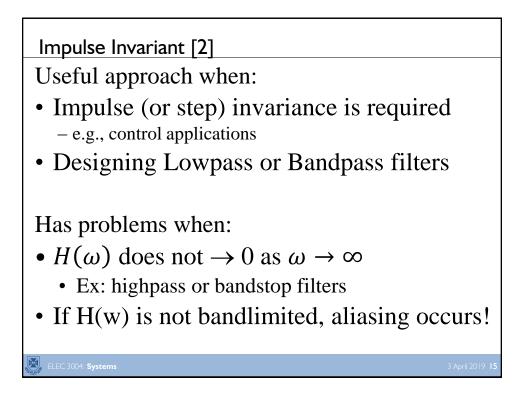
Butterworth Filters Butterworth: Smooth in the pass-band The amplitude response /H(jω)/ of an nth order Butterworth low pass filter is given by: |H(jω)| = 1/(√1 + (ω)/2)² The normalized case (ω_c=1) |H(jω)| = 1/(√1 + ω²ⁿ) → (µ(jω)H(-jω) = |H(jω)|² = 1/(1 + ω²ⁿ) Recall that: |H(jω)|² = H(jω) H(-jω)

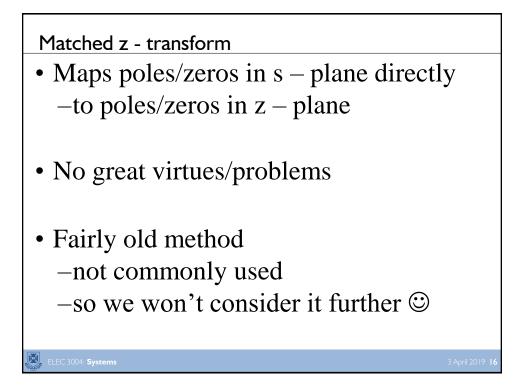
Passband Ripple	Stopband Ripple	Transition Band	MATLAB Design Command
No	No	Loose	butter
Yes	No	Tight	cheby
No	Yes	Tight	cheby2
Yes	Yes	Tightest	ellip
-	Ripple No Yes No	RippleRippleNoNoYesNoNoYes	RippleRippleBandNoNoLooseYesNoTightNoYesTight

IIR Filter Design Methods







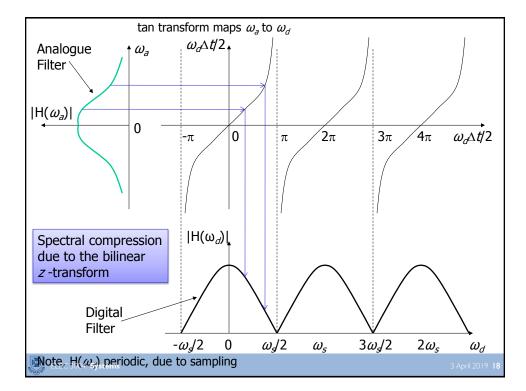


Bilinear z - transform

- Maps complete imaginary s –plane (±∞)
 to unit circle in z -plane
- That is: map analogue frequency ω_a to discrete frequency ω_d
- Uses continuous transform:

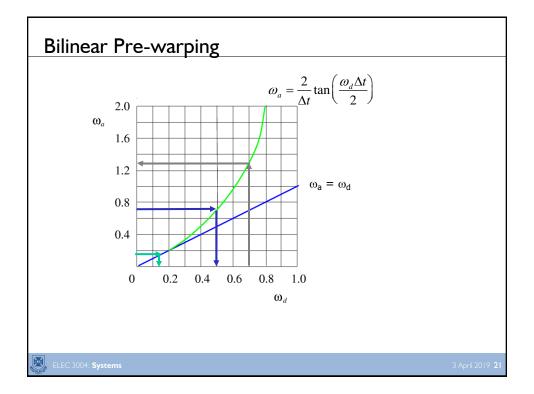
$$\omega_a = \frac{2}{\Delta t} \tan\left(\frac{\omega_d \Delta t}{2}\right)$$

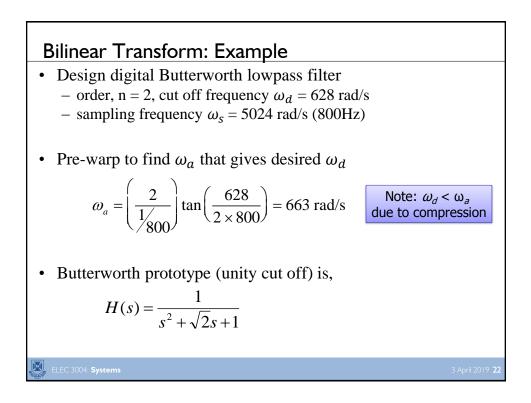
This compresses (warps) ω_a to have finite extent $\pm \frac{\omega_s}{2}$ \rightarrow this removes possibility of any aliasing \odot

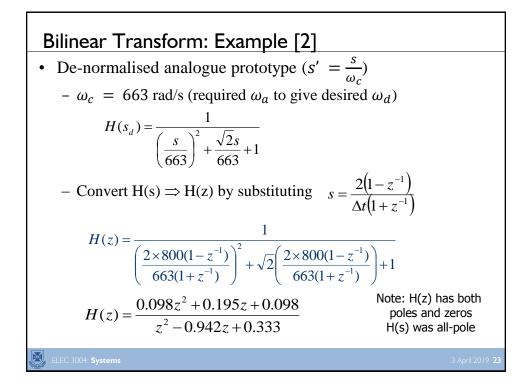


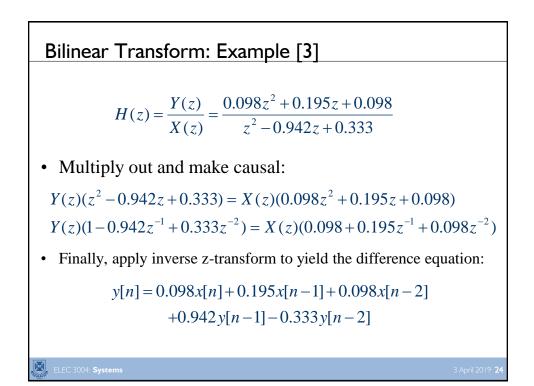
Bilinear Transform	
The bilinear transform	$\omega_a = \frac{2}{\Delta t} \tan(\frac{\omega_d \Delta t}{2})$
Transforming to s-domain Remember: $s = j\omega_a$ and $tan\theta = sin\theta/cos\theta$ Where $\theta = \omega_d \Delta t/2$	$s = \frac{2}{\Delta t} \frac{j \sin(\frac{\omega_d \Delta t}{2})}{\cos(\frac{\omega_d \Delta t}{2})}$
Using Euler's relation This becomes (note: j terms cancel)	$s = \frac{2}{\Delta t} \frac{\frac{1}{2}(\exp(\frac{j\omega_d \Delta t}{2}) - \exp(\frac{-j\omega_d \Delta t}{2}))}{\frac{1}{2}(\exp(\frac{j\omega_d \Delta t}{2}) + \exp(\frac{-j\omega_d \Delta t}{2}))}$
Multiply by exp(-jθ)/exp(-jθ)	$s = \frac{2}{\Delta t} \frac{(1 - \exp(-j\omega_d \Delta t))}{(1 + \exp(-j\omega_d \Delta t))}$
As $z = \exp(s_d \Delta t) = \exp(j\omega_d \Delta t)$	$s = \frac{2(1 - z^{-1})}{\Delta t (1 + z^{-1})}$
ELEC 3004: Systems	3 April 2019 19

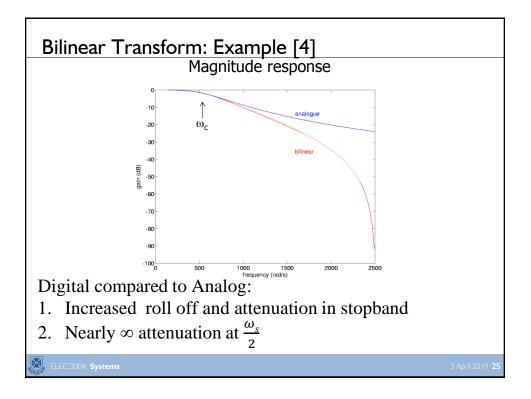
Bilinear Transform	
 Convert H(s) ⇒ H(z) by substituting, 	• However, this transformation compresses the analogue frequency response, which means
$s = \frac{2(1 - z^{-1})}{\Delta t (1 + z^{-1})}$	 digital cut off frequency will be lower than the analogue prototype
Note: this comes directly from tan transform	 Therefore, analogue filter must be "pre-warped" prior to transforming H(s) ⇒ H(z)
ELEC 3004: Systems	3 April 2019 20

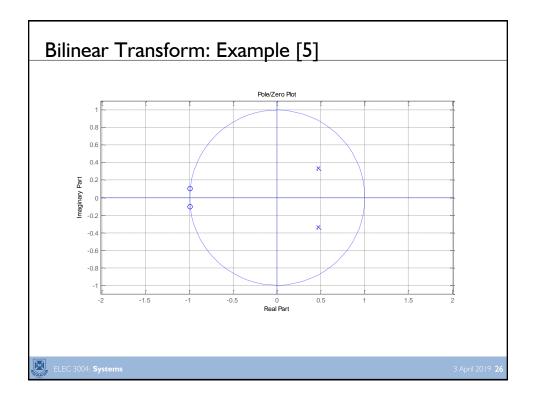


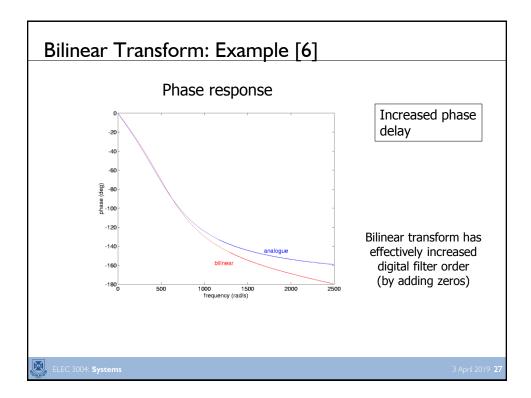


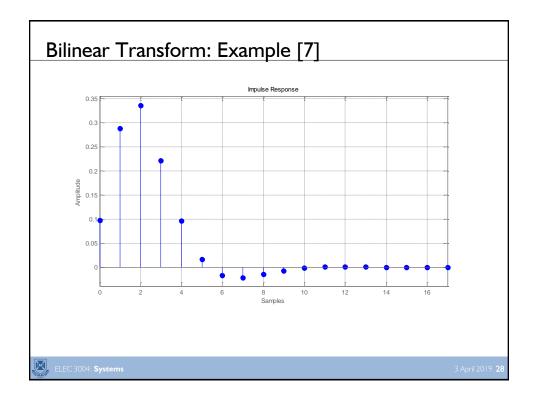


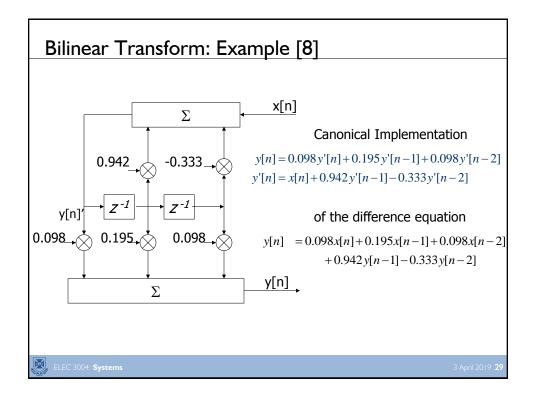


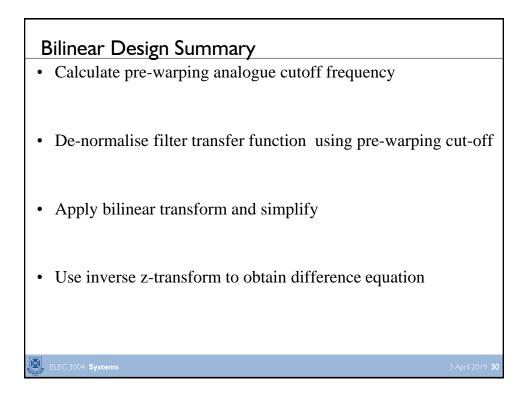




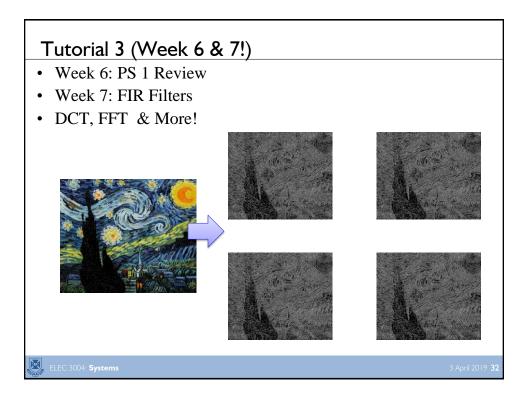


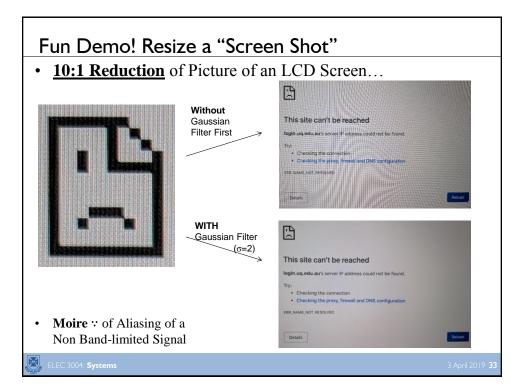


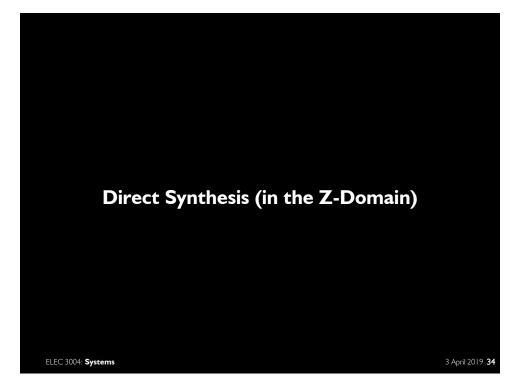


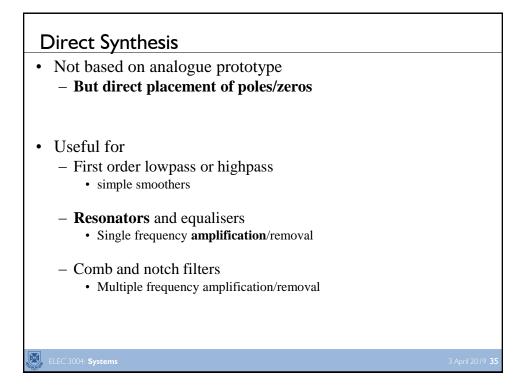


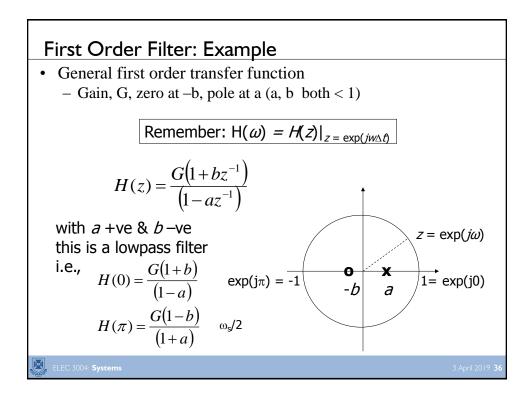
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text>

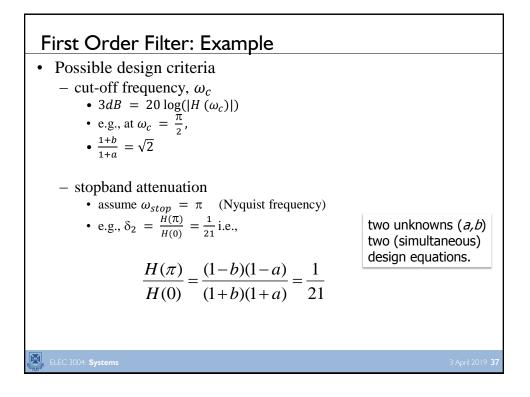


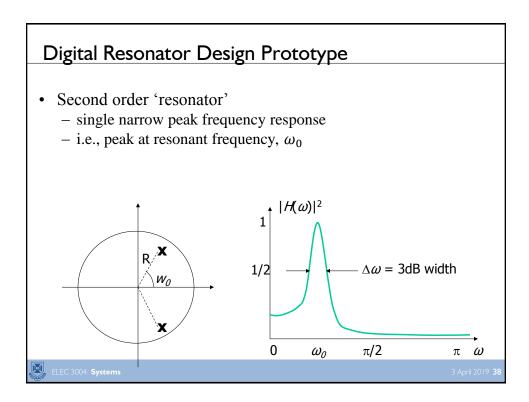












Quality factor (Q-factor)

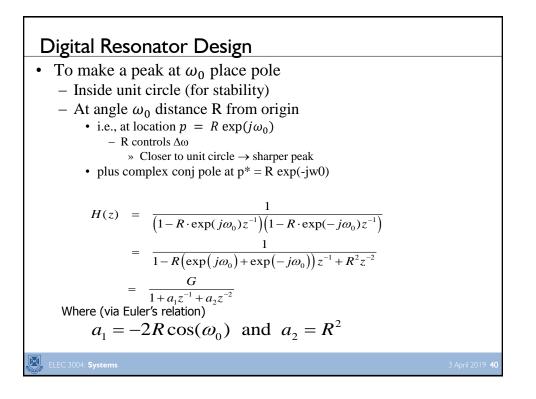
- Dimensionless parameter that compares
 - Time constant for oscillator decay/bandwidth ($\Delta\omega$) to
 - Oscillation (resonant) period/frequency (ω 0)
 - High Q = less energy dissipated per cycle

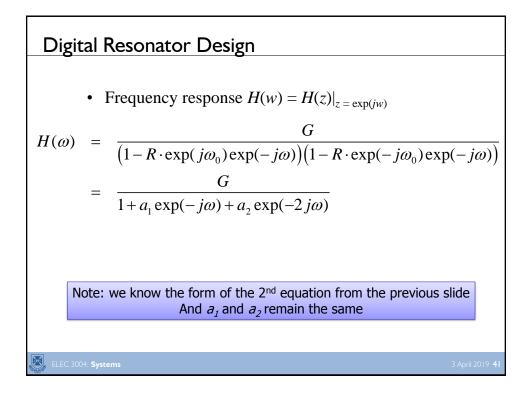
$$Q = \frac{\omega_0}{\Delta \omega} = \frac{f_0}{\Delta f}$$

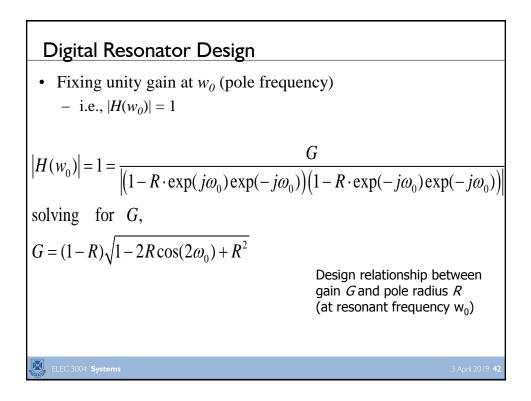
• Alternative to damping factor (ζ) as

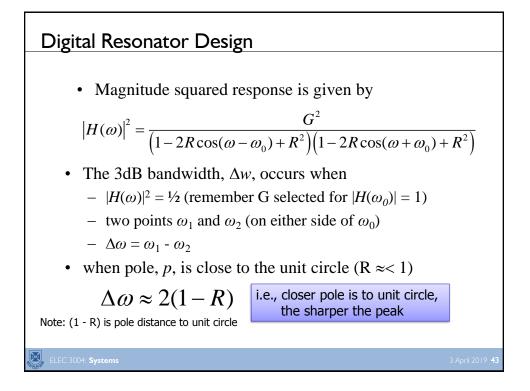
$$Q = \frac{1}{2\zeta} \qquad H(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$$

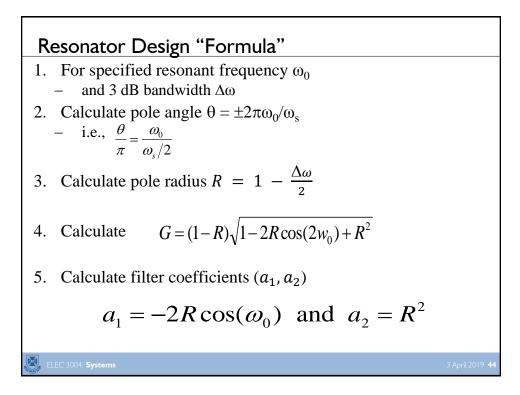
• Note: $Q < \frac{1}{2}$ overdamped (not an oscillator)











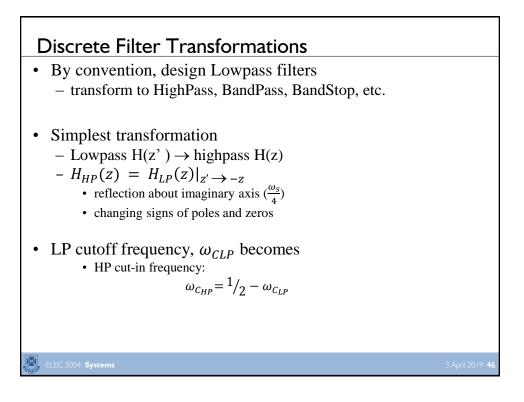
Digital Resonator: Example

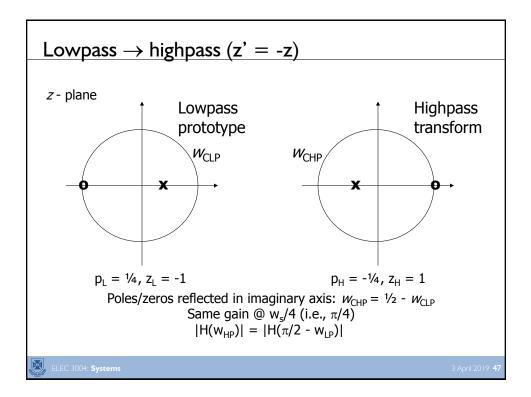
- Design a 2-pole resonator with
 - peak, $f_0 = 500 Hz$
 - 3dB width, $\Delta f = 32Hz$
 - sampling frequency $f_s = 10kHz$
- Normalise specification

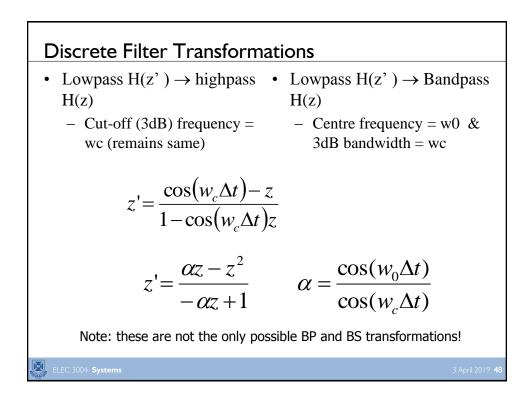
•
$$\omega_0 = 2\pi \frac{f_0}{f_s} = 0.1\pi$$

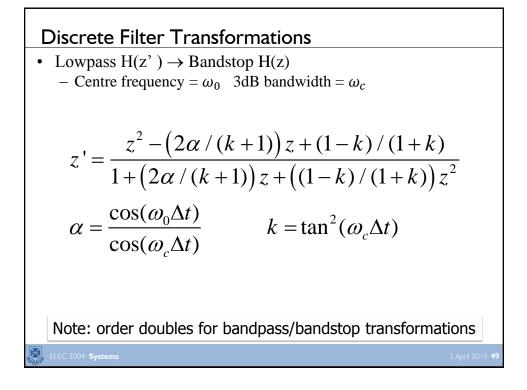
• $\Delta \omega = 2\pi \frac{\Delta f}{f_s} = 0.02$

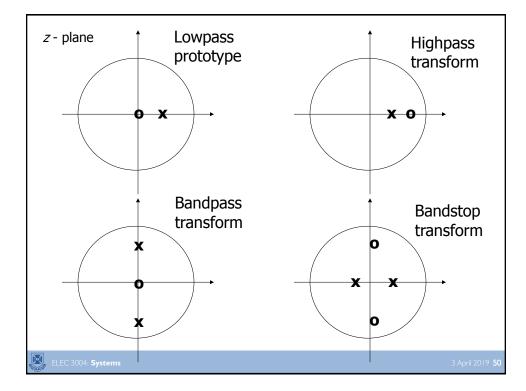
- Calculate R (from $\Delta \omega \approx 2(1 R)$) • R = 0.99
- Then calculate G and a_1 and a_2
 - $G = 0.0062, a_1 = -1.8831 \text{ and } a_2 = 0.9801$

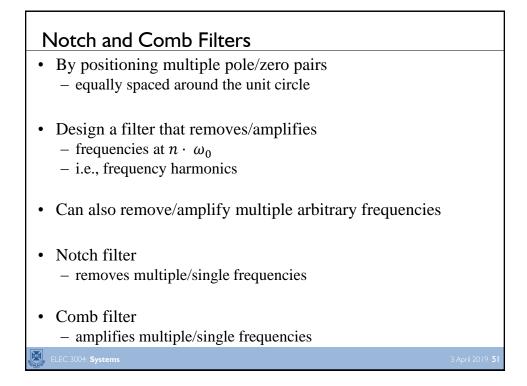


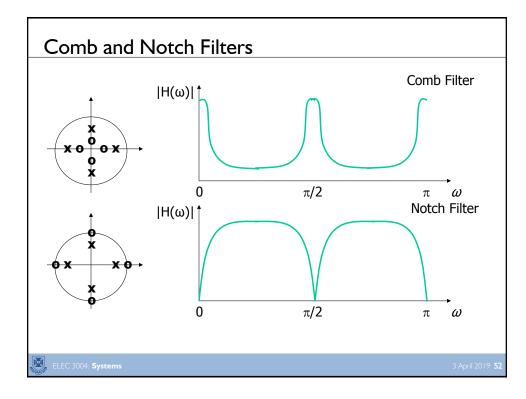












Summary

- Digital Filter Structures
 - Direct form (simplest)
 - Canonical form (minimum memory)
- IIR filters
 - Feedback and/or feedforward sections
- FIR filters
 - Feedforward only
- Filter design
 - Bilinear transform (LP, HP, BP, BS filters)
 - Direct form (resonators and notch filters)
 - Filter transformations (LP \rightarrow HP, BP, or BS)
- Stability & Precision improved
 - Using cascade of 1st/2nd order sections

