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Lecture Schedule: 
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Week Date Lecture Title 

1 
27-Feb Introduction 

1-Mar Systems Overview 

2 
6-Mar Systems as Maps & Signals as Vectors 

8-Mar Systems: Linear Differential Systems 

3 
13-Mar Sampling Theory & Data Acquisition 

15-Mar Aliasing & Antialiasing 

4 
20-Mar Discrete Time Analysis & Z-Transform 

22-Mar Second Order LTID (& Convolution Review) 

5 
27-Mar Frequency Response 

29-Mar Filter Analysis 

6 3-Apr Digital Filters (IIR) & Filter Analysis 
5-Apr PS 1: Q & A 

7 
10-Apr Digital Filter (FIR) & Digital Windows 

12-Apr FFT 

8 17-Apr Active Filters & Estimation & Holiday 

  

19-Apr 

Holiday 24-Apr 

26-Apr 

9 
1-May Introduction to Feedback Control 

3-May Servoregulation/PID 

10 
8-May PID & State-Space 

10-May State-Space Control 

11 
15-May Digital Control Design 

17-May Stability 

12 
22-May State Space Control System Design 

24-May Shaping the Dynamic Response 

13 
29-May System Identification & Information Theory 

31-May Summary and Course Review 

http://itee.uq.edu.au/~metr4202/
http://creativecommons.org/licenses/by-nc-sa/3.0/au/deed.en_US
http://elec3004.com/
http://elec3004.com/
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Follow Along Reading: 
 

B. P. Lathi  

Signal processing  

and linear systems 

1998 

TK5102.9.L38 1998  

 

 

• Chapter 10  

(Discrete-Time System Analysis 

Using the z-Transform) 

– § 10.3 Properties of DTFT 

– § 10.5 Discrete-Time Linear System 

analysis by DTFT 

– § 10.7 Generalization of DTFT  

to the 𝒵 –Transform 

 

 

• Chapter 12 
(Frequency Response and Digital Filters) 

• § 12.1 Frequency Response of Discrete-Time Systems 

• § 12.3 Digital Filters 

• § 12.4 Filter Design Criteria 

• § 12.7 Nonrecursive Filters 

Today 
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ELEC3004 is 

 −𝒆𝝅𝒊   
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http://library.uq.edu.au/record=b2013253~S7
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Periodic Signals:  
Writing them in the Fourier Domain & z-Domain 
• Synthesis: 
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Euler’s Identity: 𝒔𝒊𝒏 𝝎𝒕 =
𝟏

𝟐𝒊
𝒆𝒊⋅ 𝝎𝒕 − 𝒆−𝒊⋅ 𝝎𝒕  

• The Discrete-Time Fourier Transform of a sinusoid 
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Recap: 
IIR Filters = “Analog Filters” in Digital Form  
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Filter Specification in the Frequency Domain 

  Passband   Transition           Stopband  

    1 

|H(ω)| 

2 

ωp  ωc     ωst 
ω 

Where: 

1 = passband ripple (dB) 

2 = stopband attenuation (dB) 

ωp = passband edge (Hz) 

ωst = stopband edge (Hz) 

ωc = cutoff frequency (@ 3dB) 

 

N: filter type/order to meet 

       specification 
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Butterworth Filters 
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• Butterworth: Smooth in the pass-band 

• The amplitude response |H(jω)| of an nth order Butterworth 

low pass filter is given by: 

 

 

 

• The normalized case (ωc=1) 

 

 

 

 

Recall that:   

 

Butterworth Filters 
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Filter Type 
Passband 

Ripple 

Stopband 

Ripple 

Transition 

Band 

MATLAB Design 

Command 

Butterworth No No Loose butter 

Chebyshev Yes No Tight cheby 

Chebyshev Type II 

(Inverse Chebyshev) 
No Yes Tight cheby2 

Eliptic Yes Yes Tightest ellip 

Analog Filter Summary  
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IIR Filter Design Methods 
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• Normally based on analogue prototypes 
– Butterworth, Chebyshev, Chebyshev 2, Elliptic, etc. 

 

• Then transform 𝐻 𝑠 →  𝐻(𝑧) 

 

• Three popular methods: 

1. Impulse invariant 
– 𝐻(𝑧): whose impulse response is a sampled version of ℎ(𝑡)  

(also step invariant) 

2. Matched z–Transform 
– poles/zeros 𝐻(𝑠) directly mapped to poles/zeros 𝐻(𝑧) 

3. Bilinear z – transform 

– left hand s – plane mapped to unit circle in z – plane  

IIR Filter Design Methods 
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Simplest approach, proceeds as follows: 

 

1. Select prototype analogue filter 

2. Determine H(s) for desired 𝜔𝑐 
𝑐𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞. 

 and 𝜔𝑠 
𝑠𝑡𝑜𝑝 𝑓𝑟𝑒𝑞.

 

3. Inverse Laplace 

• Calculate impulse response, ℎ(𝑡) 

4. Sample impulse response ℎ 𝑡  𝑡=𝑛Δ𝑡𝑑 

• ℎ[𝑛]  = Δ𝑡𝑑 ℎ(𝑛Δ𝑡𝑑) 

5. Take z-Transform of ℎ 𝑛 ⇒ 𝐻(𝑧) 
– Poles: 𝑝𝑖 maps to exp (𝑝𝑖Δ𝑡𝑑) 
– Zeros: have no simple mapping  

Impulse Invariant 
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Useful approach when: 

• Impulse (or step) invariance is required 
– e.g., control applications 

• Designing Lowpass or Bandpass filters 

 

Has problems when: 

• 𝐻 𝜔  does not  0 as 𝜔 → ∞ 
• Ex: highpass or bandstop filters 

• If H(w) is not bandlimited, aliasing occurs! 

Impulse Invariant [2] 
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• Maps poles/zeros in s – plane directly 

–to poles/zeros in z – plane 

 

• No great virtues/problems 

 

• Fairly old method 

–not commonly used 

–so we won’t consider it further  

Matched z - transform 
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• Maps complete imaginary s –plane () 
– to unit circle in z -plane  

 

• That is: map analogue frequency 𝜔𝑎 to discrete frequency 𝜔𝑑  

 

• Uses continuous transform: 

Bilinear z - transform 

2
tan

2

d
a

t

t




 
   

This compresses (warps) 𝝎𝒂 to have finite extent 
𝝎𝒔
𝟐

 

 this removes possibility of any aliasing  
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ωa 
 
 
 
 
0 

Analogue 
Filter 

|H(ωa)| 

  -         0                  2          3      4     ωdt/2  

ωdt/2 

|H(ωd)| 

ωd -ωs/2     0       ωs/2      ωs        3ωs/2      2ωs  

Spectral compression 
due to the bilinear  
z -transform 

Digital 
Filter 

tan transform maps ωa to ωd  

Note, H(ωd) periodic, due to sampling 3 April 2019 ELEC 3004: Systems 18 
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Bilinear Transform 

The bilinear transform 
 
 

Transforming to s-domain 
Remember: s = ja  
and tan = sin/cos 

Where  = dt/2 
 

Using Euler’s relation 
This becomes… 

(note: j terms cancel) 
 
 
 

Multiply by exp(-j)/exp(-j) 
 
 
 

As z = exp(sdt) = exp(jdt) 
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Bilinear Transform 

• Convert H(s)  H(z) by 

substituting, 

• However, this 

transformation compresses 

the analogue frequency 

response, which means 

– digital cut off frequency 

will be lower than the 

analogue prototype 

 

• Therefore, analogue filter 

must be “pre-warped” prior 

to transforming H(s)  H(z) 

 
 1

1

1

12









zt

z
s

Note: this comes directly 
from tan transform 
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Bilinear Pre-warping 

a = d 

2
tan

2

d
a

t

t
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• Design digital Butterworth lowpass filter 
– order, n = 2, cut off frequency 𝜔𝑑 = 628 rad/s 

– sampling frequency 𝜔𝑠 = 5024 rad/s (800Hz) 

 

• Pre-warp to find 𝜔𝑎 that gives desired 𝜔𝑑 

 

 

 

 

• Butterworth prototype (unity cut off) is, 

 

Bilinear Transform: Example 

12

1
)(

2 


ss
sH

2 628
tan 663 rad/s

1 2 800
800

a
 

 
        

Note: ωd < ωa  
due to compression 
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• De-normalised analogue prototype (𝑠’ =
𝑠

𝜔𝑐
) 

– 𝜔𝑐  =  663 rad/s (required 𝜔𝑎 to give desired 𝜔𝑑) 

 

 

 

 

– Convert H(s)  H(z) by substituting  

 

Bilinear Transform: Example [2] 

1
663

2

663

1
)(

2











ss
sH d

333.0942.0

098.0195.0098.0
)(

2

2






zz

zz
zH

Note: H(z) has both  
poles and zeros 
H(s) was all-pole 

1
)1(663

)1(8002
2

)1(663

)1(8002

1
)(

1

1
2

1

1




































z

z

z

z
zH

 
 1

1

1

12









zt

z
s
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Bilinear Transform: Example [3] 
 

 

 

 

• Multiply out and make causal: 

 

 

 

• Finally, apply inverse z-transform to yield the difference equation: 

333.0942.0

098.0195.0098.0

)(

)(
)(

2

2






zz

zz

zX

zY
zH

)098.0195.0098.0)(()333.0942.01)((

)098.0195.0098.0)(()333.0942.0)((

2121

22

 



zzzXzzzY

zzzXzzzY

[ ] 0.098 [ ] 0.195 [ 1] 0.098 [ 2]

0.942 [ 1] 0.333 [ 2]

y n x n x n x n

y n y n
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Digital compared to Analog: 

1. Increased  roll off and attenuation in stopband 

2. Nearly  attenuation at 
𝜔𝑠
2

 

 

Bilinear Transform: Example [4] 

c 

Magnitude response 
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Bilinear Transform: Example [5] 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
a
g
in

a
ry

 P
a
rt

Pole/Zero Plot
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Bilinear Transform: Example [6] 

Phase response 

Bilinear transform has 
effectively increased 

digital filter order 
(by adding zeros) 

Increased phase 
delay 
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Bilinear Transform: Example [7] 

0 2 4 6 8 10 12 14 16

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Samples

Impulse Response

A
m

p
lit

u
d
e
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Bilinear Transform: Example [8] 

]2[333.0]1[942.0

]2[098.0]1[195.0][098.0][





nyny

nxnxnxny

-0.333 0.942 

y[n] 

z -1 z -1 

 

0.098 0.195 0.098 

 
x[n] 

]2['333.0]1['942.0][]['

]2['098.0]1['195.0]['098.0][





nynynxny

nynynyny

Canonical Implementation 

of the difference equation y[n]’ 
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• Calculate pre-warping analogue cutoff frequency 

 

 

• De-normalise filter transfer function  using pre-warping cut-off 

 

 

• Apply bilinear transform and simplify 

 

 

• Use inverse z-transform to obtain difference equation  

 

Bilinear Design Summary 
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BREAK 
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• Week 6: PS 1 Review 

• Week 7: FIR Filters  

• DCT, FFT  & More! 

Tutorial 3 (Week 6 & 7!) 

ELEC 3004: Systems 3 April 2019 32 
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• 10:1 Reduction of Picture of an LCD Screen… 

 

 

 

 

 

 

 

 

 
 

 

• Moire ∵ of Aliasing of a  

Non Band-limited Signal 

Fun Demo! Resize a “Screen Shot” 

ELEC 3004: Systems 3 April 2019 33 

Without  

Gaussian  

Filter First 

WITH 

Gaussian Filter 

               (σ=2) 

 

Direct Synthesis (in the Z-Domain) 
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• Not based on analogue prototype 
– But direct placement of poles/zeros 

 

 

• Useful for  
– First order lowpass or highpass 

• simple smoothers 

 

– Resonators and equalisers 
• Single frequency amplification/removal 

 

– Comb and notch filters 
• Multiple frequency amplification/removal 

Direct Synthesis 
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• General first order transfer function 
– Gain, G, zero at –b, pole at a (a, b  both < 1) 

First Order Filter: Example 

 
 1

1

1

1
)(










az

bzG
zH

exp(j) = -1                        1= exp(j0) 

    
 
o      x 
-b     a 

z = exp(jω) with a +ve & b –ve 
this is a lowpass filter 
i.e.,  

 
 
 a

bG
H

a

bG
H











1

1
)(

1

1
)0(



Remember: H(ω) = H(z)|z = exp(jwt) 

s/2 
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• Possible design criteria 
– cut-off frequency, 𝜔𝑐 

• 3𝑑𝐵 =  20 log ( 𝐻 (𝜔𝑐) ) 

• e.g., at 𝜔𝑐  =  

2
,  

•
1+𝑏

1+𝑎
 = 2 

 

– stopband attenuation 
• assume 𝜔𝑠𝑡𝑜𝑝  =       (Nyquist frequency) 

• e.g., 2  =  
𝐻()
𝐻(0)
 =

1

21
 i.e., 

First Order Filter: Example 

21

1

)1)(1(

)1)(1(

)0(

)(







ab

ab

H

H 

two unknowns (a,b) 
two (simultaneous)  
design equations. 
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• Second order ‘resonator’ 
– single narrow peak frequency response 

– i.e., peak at resonant frequency, 𝜔0 

Digital Resonator Design Prototype 

     x 
 
 
 
     x 

w0 

R 

0        ω0         /2                    ω  

|H(ω)|2  

ω = 3dB width 

  1 
 
 
1/2 
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Quality factor (Q-factor) 

2

1
Q

• Dimensionless parameter that compares 

– Time constant for oscillator decay/bandwidth () to  

– Oscillation (resonant) period/frequency (0) 

• High Q = less energy dissipated per cycle 

 

 

• Alternative to damping factor () as 

 

 

 

• Note: Q < ½ overdamped (not an oscillator)  

 

f

f
Q





 00





2

0
02

2

0

2

00

2

2

0  
2

)(

















s
Q

s
ss

sH
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• To make a peak at 𝜔0 place pole  
– Inside unit circle (for stability) 

– At angle 𝜔0 distance R from origin 
• i.e., at location 𝑝 =  𝑅 exp (𝑗𝜔0) 

– R controls ω 

» Closer to unit circle  sharper peak 

• plus complex conj pole at p* = R exp(-jw0) 

Digital Resonator Design 
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1 1

0 0

1 2 2

0 0

1 2

1 2

1
( )

1 exp( ) 1 exp( )

1

1 exp exp

1

H z
R j z R j z

R j j z R z

G

a z a z

 

 

 

 

 


    


   


 

2

1 0 22 cos( )  and  a R a R  
Where (via Euler’s relation)  
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Digital Resonator Design 

• Frequency response H(w) = H(z)|z = exp(jw) 

   0 0

1 2

( )
1 exp( )exp( ) 1 exp( )exp( )

1 exp( ) exp( 2 )

G
H

R j j R j j

G

a j a j


   

 


      


   

Note: we know the form of the 2nd equation from the previous slide 
And a1 and a2 remain the same 
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Digital Resonator Design 

• Fixing unity gain at w0 (pole frequency) 

– i.e., |H(w0)| = 1 

   0

0 0 0 0

2

0

( ) 1
1 exp( )exp( ) 1 exp( )exp( )

solving    for   ,

(1 ) 1 2 cos(2 )

G
H w

R j j R j j

G

G R R R

   



 
      

   
Design relationship between  
gain G and pole radius R  
(at resonant frequency w0) 
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Digital Resonator Design 

• Magnitude squared response is given by 

• The 3dB bandwidth, w, occurs when 

– |H(ω)|2 = ½ (remember G selected for |H(ω0)| = 1) 

– two points ω1 and ω2 (on either side of ω0) 

– ω = ω1 - ω2  

• when pole, p, is close to the unit circle (R  1) 

   

2
2

2 2

0 0

( )
1 2 cos( ) 1 2 cos( )

G
H

R R R R


   


     

2(1 )R   i.e., closer pole is to unit circle,  
      the sharper the peak 

Note: (1 - R) is pole distance to unit circle 
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Resonator Design “Formula” 
1. For specified resonant frequency ω0 

– and 3 dB bandwidth ω 

2. Calculate pole angle  = 2ω0/ωs 

– i.e.,  

 

3. Calculate pole radius 𝑅 =  1 − 
𝜔
2

 

 

4. Calculate 

 

5. Calculate filter coefficients (𝑎1, 𝑎2) 

2

0)2cos(21)1( RwRRG 

2

1 0 22 cos( )  and  a R a R  

0

2s
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• Design a 2-pole resonator with 
• peak, 𝑓0  =  500𝐻𝑧 
• 3dB width, 𝑓 =  32𝐻𝑧 
• sampling frequency 𝑓𝑠  =  10𝑘𝐻𝑧 

 

• Normalise specification 

• 𝜔0  =  2
𝑓0

𝑓𝑠
 =  0.1 

• 𝜔 =  2
𝑓
𝑓𝑠
  =  0.02 

 

• Calculate R (from 𝜔  2(1 −  𝑅)) 
• R = 0.99 

• Then calculate G  and 𝑎1 and 𝑎2  
• 𝑮 =  0.0062, 𝑎1   =  −1.8831 and 𝑎2  =  0.9801 

Digital Resonator: Example 
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• By convention, design Lowpass filters 
– transform to HighPass, BandPass, BandStop, etc. 

 

• Simplest transformation  
– Lowpass H(z’ )  highpass H(z) 

– 𝐻𝐻𝑃(𝑧)  =  𝐻𝐿𝑃 𝑧  𝑧’  −𝑧 
• reflection about imaginary axis (

𝜔𝑠

4
) 

• changing signs of poles and zeros 

 

• LP cutoff frequency, 𝜔𝐶𝐿𝑃 becomes 
• HP cut-in frequency: 

𝜔𝐶𝐻𝑃=
1
2 − 𝜔𝐶𝐿𝑃  

Discrete Filter Transformations 
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Lowpass  highpass (z’ = -z) 

Poles/zeros reflected in imaginary axis: wCHP = ½ - wCLP 

Same gain @ ws/4 (i.e., /4) 
|H(wHP)| = |H(/2 - wLP)|  

o               x 

Lowpass 
prototype 

wCLP 

pL = ¼, zL = -1 

x               o 

Highpass 
transform 

wCHP 

pH = -¼, zH = 1 

z - plane 
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Discrete Filter Transformations 

• Lowpass H(z’ )  highpass 

H(z) 

– Cut-off (3dB) frequency = 

wc (remains same) 

• Lowpass H(z’ )  Bandpass 

H(z) 

– Centre frequency = w0  & 

3dB bandwidth = wc 

 
 ztw

ztw
z

c

c






cos1

cos
'

)cos(

)cos(

1
' 0

2

tw

tw

z

zz
z

c







 





Note: these are not the only possible BP and BS transformations! 
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• Lowpass H(z’ )  Bandstop H(z) 
– Centre frequency = 𝜔0   3dB bandwidth = 𝜔𝑐  

Discrete Filter Transformations 

 
   

2

2

20

2 / ( 1) (1 ) / (1 )
'

1 2 / ( 1) (1 ) / (1 )

cos( )
tan ( )

cos( )
c

c

z k z k k
z

k z k k z

t
k t

t






 



    


    


  



Note: order doubles for bandpass/bandstop transformations 
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o   x 

Lowpass 
prototype 

x  o 

Highpass 
transform 

x 
 
o 
 
x 

Bandpass 
transform 

    o 
 
x      x 
 
    o 

Bandstop 
transform 

z - plane 
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• By positioning multiple pole/zero pairs 
– equally spaced around the unit circle 

 

• Design a filter that removes/amplifies 
– frequencies at 𝑛 ⋅  𝜔0 
– i.e., frequency harmonics 

 

• Can also remove/amplify multiple arbitrary frequencies 

 

• Notch filter 
– removes multiple/single frequencies 

 

• Comb filter 
– amplifies multiple/single frequencies 

Notch and Comb Filters 
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Comb and Notch Filters 

o x x 

x 

x 

o 
o 

o 

0                        /2                             ω  

|H(ω)| 
Comb Filter 

x x 

x 

x 

o 

o o 

o 
0                        /2                             ω  

|H(ω)| Notch Filter 
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• Digital Filter Structures 
– Direct form (simplest) 

– Canonical form (minimum memory) 

• IIR filters 
– Feedback and/or feedforward sections 

• FIR filters 
– Feedforward only 

• Filter design 
– Bilinear transform (LP, HP, BP, BS filters) 

– Direct form (resonators and notch filters) 

– Filter transformations (LP  HP, BP, or BS) 

• Stability & Precision improved 
– Using cascade of 1st/2nd order sections 

Summary 
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• Digital Windows  
 

       &  FIR!  

 

• Review:  
– Chapter 10 of Lathi  

 

 

• A signal has many signals  

[Unless it’s bandlimited.  Then there is the one] 

 

 

Next Time… 
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