Digital Fundamentals: A Systems Approach

Thomas L. Floyd
Functions of Combinational Logic Chapter 5

Ch. 5 Summary
Half-Adders

Basic rules of binary addition are performed by a half adder, which accepts two binary inputs (A and B) and provides two binary outputs (Carry-out and Sum).

The logic symbol and equivalent circuit are:

Half kinder

(1)

$$
\begin{aligned}
& C_{\text {out }}=A B \\
& S_{\text {um }}=\bar{A} B+A \bar{Y}=A \Theta B
\end{aligned}
$$

$0-1$

$$
\begin{aligned}
& C_{n+1}=\bar{A} B C_{\text {in }}=\left(A C_{\text {in }}(\bar{A} B+A \bar{B})\right. \\
& +A \bar{B} C_{\text {in }}=(A \oplus) C_{\text {in }} \\
& +A B \bar{C}_{\text {in }} \\
& +A B C_{\text {in }}
\end{aligned}
$$

$$
C_{\text {Jat }}=A_{B}+(A \oplus B) C_{\text {in }}
$$

Section 5.2

$$
C_{\text {ont }}=A B+(A \Theta B) C_{\text {in }}
$$

3) $\operatorname{Som}=A \oplus B \oplus \mathrm{Cin}_{\mathrm{in}}$

(2) -2

$$
\begin{aligned}
& S_{u m}=\bar{A} \bar{B} C_{\text {in }}=(\bar{A} \bar{B}+A y) C_{\text {in }} \\
& \begin{array}{l}
+\bar{A} \bar{B} \bar{C}_{i} \\
+A \bar{B} \bar{C}_{i n}
\end{array}+(\bar{A} B+A \bar{B}) \bar{C}_{\text {in }} \\
& +A_{B C}=(A \odot B) C_{\text {in }} \\
& +(A \oplus 3) \overline{\operatorname{Lin}} \\
& \bar{x} Y+x \bar{Y} \Leftrightarrow=\overline{A \Theta B} \text { - } C_{\text {in }} \\
& =X \oplus Y \quad \begin{array}{ll}
x=A \oplus B & Y(A \oplus B) \cdot \overline{C i n} \\
& y=\operatorname{in}
\end{array} \\
& =A \oplus H \oplus C_{\text {in }}
\end{aligned}
$$

Ch. 5 Summary
Full-Adders
A full adder accepts three binary inputs (A, B, and Carry-in) and provides two binary outputs (Carry-out and Sum). The truth table summarizes the operation.
A full-adder can be constructed from two half adders as shown:

Digital Fundamentals: A Systems Approach
Thomas L Floyd
Thomas L. Floyd

U 2013 by Pearson Higher Education, Inc
Upper Saddle River, New Jersey 07458 • All Rights Reserved

Ch. 5 Summary
Full-Adders
For the given inputs, determine the intermediate and final outputs of the full adder.

The first half-adder has inputs of 1 and 0 ; therefore the Sum =1 and the Carry out $=0$.

The second half-adder has inputs of 1 and 1 ; therefore the Sum = 0 and the Carry out = 1 .

The OR gate has inputs of 1 and 0 , therefore the final carry out $=1$.

Ch. 5 Summary
Parallel Adders
Full adders are combined into parallel adders that can add binary numbers with multiple bits. A 4-bit adder is shown.

The output carry $\left(C_{4}\right)$ is not ready until it propagates through all of the full adders. This is called ripple carry, which delays the addition process.

Ch. 5 Summary

Adder Expansion

Two four-bit adders can be cascaded to form an 8 -bit adder as shown.

The carry-in $\left(C_{0}\right)$ pin on the lower-order adder is grounded and the carry-out pin is connected to the C_{0} pin of the higher-order adder.

Ch. 5 Summary

Ripple Carry Adder

The parallel adder introduced earlier is a ripple carry adder. Because the carry from each adder is applied to the next, time must provided for the carry bits to "ripple" through the circuit.

If each adder has an 8 ns delay, it takes 32 ns for the carry to work its way through the adder (as shown).

Ch. 5 Summary

Look-Ahead Carry Adder

A look-ahead carry adder anticipates the carry that will be generated by each adder stage, and produces the required carry at one time, making the adder faster than a ripple carry adder.
Carry generation: When a carry signal is produced internally (i.e., a carry-in is not involved).

Carry propagation: When an input carry signal is involved in producing a carry out signal.

$$
\begin{align*}
& \text { Secti-5.3 } \\
& A+A+A=A \\
& C_{\text {out }}=\bar{A} B L_{\text {in }} \leftarrow=A B+A C_{\text {in }} \\
& \begin{array}{l}
+A \bar{B} C_{i n} \\
+A_{n}-
\end{array} \quad+B_{C i n} \\
& +A y \bar{c}_{\text {in }}+A B c_{i n}=\begin{array}{c}
c_{y} \quad c_{p}+(A+B) C_{i n} \\
c_{p}
\end{array} \\
& C_{g_{1}}=A_{1} B_{1} \\
& C_{y \varphi}=A_{4} B_{4} \\
& C_{p_{1}}=A_{1}+B_{1} \\
& C_{P_{4}}=A_{4}+B_{4} \\
& C_{g_{2}}=A_{2} B_{2} \\
& C_{p_{2}}=A_{2}+B_{2} \\
& C_{93}=A_{3} B_{3} \\
& C_{p_{3}}=A_{3}+B_{3} \\
& C_{\text {out }}=C_{g_{1}}+C_{p_{1}} C_{\text {in }} \\
& C_{\text {out }}=C_{g_{2}}+C_{n_{2}} C_{0 n+1} \tag{2}\\
& =C_{g_{2}}+C_{p_{2}}\left(C_{g_{1}}+C_{p_{1}} C_{\text {in. }}\right) \\
& =C_{y_{2}}+C_{p_{2}} C_{y_{1}}+C_{p_{2}} C_{p_{1}} C_{i n 1} \\
& \begin{array}{l}
C_{\text {out }}^{\infty}=C_{93}+C_{p_{3}} C_{\text {out }}^{2} \\
C_{\text {ont } 4}=C_{94}+C_{p 4} C_{\text {ants }}
\end{array} \\
& =f\left(C_{g 1}, C_{p_{1}}, C_{g 2}, C_{p_{2}}, C_{g 3}, C_{p_{3}}, C_{g p}\right. \text {, } \\
& C_{V 4}, C_{\text {in }} \text {) } \\
& =f\left(A_{1}, A_{5} A_{3}, A_{4}, B_{3}, B_{2}, B_{3,}, A_{4}, C_{i n}\right)
\end{align*}
$$

Ch. 5 Summary

A Four-Stage Look-Ahead Carry Adder

Ch. 5 Summary

Comparators

The function of a comparator is to compare the magnitudes of two binary numbers to determine the relationship between them. In the simplest form, a comparator can test for equality using XNOR gates.

How could you test two 2-bit numbers for equality?

AND the outputs of two XNOR gates

Ch. 5 Summary

Comparators

IC comparators provide outputs to indicate which of the numbers is larger or if they are equal. The bits are numbered starting at 0 , rather than 1 as in the case of adders.

Cascading

inputs are provided to expand the comparator to larger numbers.

Ch. 5 Summary

Decoders

A decoder is a logic circuit that detects the presence of a specific combination of bits at its input. A simple decoder that detects the presence of the binary code 1001 is shown.

The circuit on the left has an active HIGH output for the inputs shown; the circuit on the right shows the logic expressions for the various gate outputs.

Ch. 5 Summary

Decoders

IC decoders have multiple outputs to decode any combination of inputs. For example the binary-to-decimal decoder shown here has 16 outputs one for each combination of binary inputs. The first 8 lines of the circuit truth table are shown.

Ch. 5 Summary

BCD Decoder/Driver

Another useful decoder is the 74LS47. This is a BCD-to-seven segment display with active LOW outputs.

The a-g outputs are designed for much higher current than most devices (hence the word driver in the component's name).

Ch. 5 Summary

A Decoder Application

Ch. 5 Summary

Leading Zero Suppression

The 74LS47 features leading zero suppression, which blanks unnecessary leading zeros but keeps significant zeros as illustrated here. The $\overline{B I} / \overline{R B O}$ output is connected to the $\overline{R B I}$ input of the next decoder.

Ch. 5 Summary

Trailing Zero Suppression

Trailing zero suppression blanks unnecessary trailing zeros to the right of the decimal point as illustrated here. The RBI input is connected to the $B I / R B O$ output of the following decoder.

Ch. 5 Summary

Encoders

The 74 HC 147 is an example of an IC encoder. It is has ten active-LOW inputs and converts the active input to an active-LOW BCD output.

This device is a priority encoder. This means that if more than one input is active the component responds to the highest numbered input.

Ch. 5 Summary

Encoders

An encoder accepts an active logic level on one of its inputs and converts it to a coded output, such as BCD or binary.

The decimal to BCD is an encoder with an input for each of the ten decimal digits and four outputs that represent the BCD code for the active digit. The basic logic diagram is shown. There is no zero input because the outputs are all LOW when the input is zero.

Ch. 5 Summary

Code Converters

There are various code converters that change one code to another. Two examples are the four bit binary-to-Gray converter and the Gray-to-binary converter.

Show the conversion of binary 0111 to Gray and back to binary.

Ch. 5 Summary

Multiplexers

A multiplexer (MUX) selects one of several data (D) inputs and routes data from that input to the output. The data line that is selected is determined by the select (S) inputs.

The multiplexer shown has two select (S) inputs that are used to select one of four data (D) inputs.

Which data line is
selected if $S_{1} S_{0}=10$?

The select input (10) connects data line 2 to the output.

Ch. 5 Summary

Multiplexers

Here is the logic diagram for a 4-input multiplexer.

A 16-Bit Multiplexer

Ch. 5 Summary

Demultiplexers

A demultiplexer (DEMUX) performs the opposite function from a MUX. It switches data from one input line to two or more data lines depending on the select inputs.

Data is applied to one of the data input pin, and routed to the selected output line depending on the select variables. Note that the outputs are active-LOW.

Ch. 5 Summary

A 7-Segment Display Multiplexer

Ch. 5 Summary

Parity Generators/Checkers

Parity is an error detection method
that uses an extra bit appended to a group of bits to force them to be either odd or even. In even parity, the total number of ones is even; in odd parity the total number of ones is odd.
The ASCII letter S is 1010011. Show the parity bit for the letter S with odd and even parity.
S with odd parity $=11010011$
S with even parity $=01010011$

Ch. 5 Summary
Parity Generators/Checkers
A 9-bit parity checker/generator can be used to generate a parity bit or to check an incoming data stream for even or odd parity.
Checker: The even output will normally be HIGH if the data lines have even parity; otherwise it will be LOW. Likewise, the odd output will normally be HIGH if the data lines have odd parity; otherwise it will be LOW.
Generator: To generate even parity, the parity bit is taken from the odd parity output. To generate odd parity, the output is taken from the even parity output.

Digital Fundamentals: A Systems Approach
© 2013 by Pearson Higher Education, Inc
Upper Saddle River, New Jersey 07458 - All Rights Reserved

Ch. 5 Summary
A Simplified Data Transmission System with Error Detection

$$
S=101 \text { vol }|p G / C|=\sum \text { even } 1
$$

$$
\begin{aligned}
& \text { XJK } \\
& B \oplus O=B \bar{O}+\Phi=B=B \\
& B \oplus 1=\bar{B} \cdot \bar{y}+\bar{y} \cdot 1=\bar{y} \cdot 1=\bar{y} \\
& A-B=A_{3} A_{2} A_{1} A_{0}
\end{aligned}
$$

Ch. 5 Summary
Bottling Control System

iA $\overline{\text { add }}$ /subtract $=0$
it odd/subtrut $=1$

Ch. 5 Summary
Bottling Control System
Information is entered into the system using a keypad, encoder, and register.

Ch. 5 Summary
Bottling Control System

Ch. 5 Summary

Bottling Control System

The decoder, multiplexer (MUX), and demultiplexer (DEMUX) circuits.

Ch. 5 Summary

Key Terms

Full-adder A digital circuit that adds two bits and an input carry bit to produce a sum and an output carry.
Cascading Connecting two or more similar devices in a manner that expands the capability of one device.
Ripple
A method of binary addition in which the output carry from each adder becomes the input carry of the next higher order adder.
Look-ahead A method of binary addition whereby carries from carry the preceding adder stages are anticipated, thus eliminating carry propagation delays.

Ch. 5 Summary

Key Terms

Decoder A digital circuit that converts coded information into a familiar or noncoded form.

Encoder A digital circuit that converts information into a coded form.
Priority An encoder in which only the highest value input encoder digit is encoded and any other active input is ignored.
Multiplexer A circuit that switches digital data from several input lines (MUX) onto a single output line in a specified time sequence.
Demultiplexer A circuit that switches digital data from one input line onto a (DEMUX) several output lines in a specified time sequence.

