Chapter 1

Digital Image Basics

1.1 What is a Digital Image?

To understand what a digital image is, we have to first realize that what we see
when we look at a “digital image” is actually a physical image reconstructed
from a digital image. The digital image itself is really a data structure within
the computer, containing a number or code for each pizel or picture element
in the image. This code determines the color of that pixel. Each pixel can be
thought of as a discrete sample of a continuous real image.

It is helpful to think about the common ways that a digital image is created.
Some of the main ways are via a digital camera, a page or slide scanner, a 3D
rendering program, or a paint or drawing package. The simplest process to
understand is the one used by the digital camera.

Figure 1.1 diagrams how a digital image is made with a digital camera. The
camera is aimed at a scene in the world, and light from the scene is focused
onto the camera’s picture plane by the lens (Figure 1.1a). The camera’s picture
plane contains photosensors arranged in a grid-like array, with one sensor for
each pixel in the resulting image (Figure 1.1b). Each sensor emits a voltage
proportional to the intensity of the light falling on it, and an analog to digital
conversion circuit converts the voltage to a binary code or number suitable for
storage in a cell of computer memory. This code is called the pixel’s value.
The typical storage structure is a 2D array of pixel values, arranged so that
the layout of pixel values in memory is organized into a regular grid with row
and column numbers corresponding with the row and column numbers of the
photosensor reading this pixel’s value (Figure 1.1c).

Since each photosensor has a finite area, as indicated by the circles in Figure
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Figure 1.1: Capturing a 2D Continuous Image of a Scene

1.1b, the reading that it makes is a weighted average of the intensity of the
light falling over its surface. So, although each pixel is conceptually the sample
of a single point on the image plane of the camera, in reality it represents a
spread of light over a small area centered at the sample point. The weighting
function that is used to describe how the weighted average is obtained over the
area of the sample is called a point spread function. The exact form of the
point spread function is a complex combination of photosensor size and shape,
focus of the camera, and photoelectric properties of the photosensor surface.
Sampling through a point spread function of a shape that might be encountered
in a digital camera is shown in diagram form in Figure 1.2.

A digital image is of little use if it cannot be viewed. To recreate the discretely
sampled image from a real continuous scene, there must be as reconstruction
process to invert the sampling process. This process must convert the discrete
image samples back into a continuous image suitable for output on a device like
a CRT or LCD for viewing, or a printer or film recorder for hardcopy. This
process can also be understood via the notion of the point spread function.
Think of each sample (i.e. pixel) in the digital image being passed back through
a point spread function that spreads the pixel value out over a small region.
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Figure 1.2: Sampling Through a Point-Spread Function
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Figure 1.3: Some Typical Point-Spread Functions
1.2 Bitmaps and Pixmaps

1.2.1 Bitmap - the simplest image storage mechanism

A bitmap is a simple black and white image, stored as a 2D array of bits (ones
and zeros). In this representation, each bit represents one pizel of the image.
Typically, a bit set to zero represents black and a bit set to one represents white.
The left side of Figure 1.4shows a simple block letter U laid out on an 8 x 8
grid. The right side shows the 2-dimensional array of bit values that would
correspond to the image, if it were stored as a bitmap. Each row or scanline
on the image corresponds to a row of the 2D array, and each element of a row
corresponds with a pixel on the scanline.

Although our experience with television, the print media, and computers leads
us to feel that the natural organization of an image is as a 2D grid of dots or
pixels, this notion is simply a product of our experience. In fact, although images
are displayed as 2D grids, most image storage media are not organized in this
way. For example, the computer’s memory is organized into a long linear array
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Figure 1.4: Image of Black Block Letter U and Corresponding Bitmap

of addressable bytes (8 bit groups) of storage. Thus, somewhere in the memory
of a typical computer, the block letter U of Figure 1.4 might be represented as
the following string of contiguous bytes:

11111111 11011011 11011011 11011011 11011011 11011011 11000011 11111111

Since the memory is addressable only at the byte level, the color of each pixel
(black or white) must be extracted from the byte holding the pixel’s value. And,
since the memory is addressed as a linear array, rather than as a 2D array, a
computation must be made to determine which byte in the representation con-
tains the pixel that we wish to examine, and which bit in that byte corresponds
with the pixel.

The procedure print_bitmap() in Figure 1.5 will print the contents of the im-
age stored in the array named bitmap. We assume that the image represented
by bitmap contains exactly width * height pixels, organized into height scan-
lines, each of length width. In other words, the number of pixels vertically along
the image is height, and the number of pixels horizontally across the image is
width. The print_bitmap() procedure assumes that each scanline in memory
is padded out to a multiple of 8 bits (pixels), so that it exactly fits into an
integer number of bytes. The variable w gives the width of a scanline in bytes.

Another issue is that the representation of groups of pixels in terms of lists
of ones and zeros is extremely difficult for humans to deal with cognitively.
To convince yourself of this, try looking at a group of two or more bytes of
information, remembering what you see, and then writing down the numbers
from memory. To make the handling of this binary encoded information more
manageable, it is convenient to think of each group of 4 bits as encoding a
hexadecimal number. The hexadecimal numbers are the numbers written using
a base of 16, as opposed to the usual decimal numbers that use base 10, or the
binary numbers of the computer that use base 2. Since 16 is the 4th power
of 2, each hexadecimal digit can be represented exactly by a unique pattern
of 4 binary digits. These patterns are given in table Table 1.1, and because
of their regular organization they can be easily memorized. With the device
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void print_bitmap(unsigned char *bitmap, int width, int height){

int w = (width + 7) / 8; // number of bytes per scanline

int row; // scanline number (row)

int col; // pixel number on scanline (column)
int byte; // byte number within bitmap array
int bit; // bit number within byte

int value; // value of bit (0 or 1)

for(row = 0; row < height; row++){ // loop for each scanline
for(col = 0; col < width; col++){ // loop for each pixel on line
byte = row * w + col / 8;
bit = 7 - col ¥ 8;
value = bitmap[byte] >> bit & 1; // isolate bit
printf ("%1d", value);
}
printf ("\n");
}
}

Figure 1.5: Procedure to Print the Contents of a Bitmap

of hexadecimal notation, we can now display the internal representation of the
block letter U, by representing each 8-bit byte by two hexadecimal digits. This
reduces the display to:

[FF [ DB [ DB | DB [ DB | DB C3[FF |

1.2.2 Pixmap - Representing Grey Levels or Color

If the pixels of an image can be arbitrary grey tones, rather than simply black
or white, we could allocate enough space in memory to store a real number,
rather than a single bit, for each pixel. Then arbitrary levels of grey could be
represented as a 2D array of real numbers, say between 0 and 1, with pixel color
varying smoothly from black at 0.0 through mid-grey at 0.5 to white at 1.0.
However, this scheme would be very inefficient, since floating point numbers
(the computer equivalent of real numbers) typically take 32 or more bits to
store. Thus image size would grow 32 times from that needed to store a simple
bitmap. The pizmap is an efficient alternative to the idea of using a full floating
point number for each pixel. The main idea is that we can take advantage of
the eye’s finite ability to discriminate levels of grey.
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Table 1.1: Hexadecimal Notation

Binary | Hexadecimal | Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Table 1.2: Combinations of Bits

Bits | # of Combinations Combinations
1 2t =2 0,1
2 22 =4 00, 01, 10, 11
3 25 =38 000, 001, 010, 011, 100, 101, 110, 111
8 28 = 256 00000000, 00000001, ... , 11111110, 11111111
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It is a simple mathematical fact that in a group of n bits, the number of distinct
combinations of 1’s and 0’s is 2. In other words, n bits of storage will allow
us to represent and discriminate among exactly 2™ different values or pieces of
information. This relationship is shown in tabular form in Table 1.2. If, in our
image representation, we use 1 byte (8 bits) to represent each pixel, then we
can represent up to 256 different grey levels. This turns out to be enough to
“fool” the eye of most people. If these 256 different grey levels are drawn as
vertical lines across a computer screen, people will think that they are seeing a
smoothly varying grey scale.

The structure of a pixmap, then, is a 2D array of pixel values, with each pixel’s
value stored as a group of 2 or more bits. To conform to byte boundaries, the
number of bits used is typically 8, 16, 24 or 32 bits per pixel, although any size is
possible. If we think of the bits within a byte as representing a binary number,
we can store grey levels between 0 and 255 in 8 bits. We can easily convert the
pixel value in each byte to a grey level between 0.0 and 1.0 by dividing the pixel
value by the maximum grey value of 255.

Assuming that we have a pixmap storing grey levels in eight bits per pixel, the
procedure print_greymap() in Figure 1.6 will print the contents of the image
stored in the array named greymap. We assume that the image represented
by greymap contains exactly width * height pixels, organized into height
scanlines, each of length width.

void print_greymap(unsigned char *greymap, int width, int height){

int row; // scanline number (row)
int col; // pixel number on scanline (column)
int value; // value of pixel (0 to 255)

for(row = 0; row < height; row++){ // loop for each scanline
for(col = 0; col < width; col++){ // loop for each pixel on line
value = greymapl[row * width + col]l; // fetch pixel value
printf("%5.3f ", value / 255.0);
}
printf ("\n");
}
}

Figure 1.6: Procedure to Print the Contents of an 8 bit/pixel Greylevel Pixmap
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1.3 The RGB Color Space

If we want to store color images, we need a scheme of color representation that
will allow us to represent color in a pattern of bits (just like we represented grey
levels as patterns of bits). Fortunately, many such representations exist, and
the most common one used for image storage is the RGB or Red-Green-Blue
system. This takes advantage of the fact that we can “fool” the human eye into
“seeing” most of the colors that we can recognize perceptually by superimposing
3 lights colored red, green and blue. The level or intensity of each of the three
lights determines the color that we perceive.

Green

Red

Colored
Spot

Figure 1.7: Additive Color Mixing for the Red-Green-Blue System

If we think of red, green, and blue levels as varying from 0 (off) to 1 (full
brightness), then a color can be represented as a red, green, blue triple. Some
example color representations using this on/off scheme are shown in Figure 1.8.
It is interesting and somewhat surprising that yellow is made by combining red
and green!

(1,0,0)=red (0,1,0)=green (0,0,1)=Dblue
(1,1,0)=yellow (0,1, 1)=cyan (1,0, 1)=magenta
(0,0,0)=black  (1,1,1)=white (0.5,0.5,0.5)=grey
Figure 1.8: Example Colors Encoded as RGB Triples
Now, we can extend this idea by allowing a group of bits to represent one pixel.

We can assign some of these bits to the red level, some to green, and some
to blue, using a binary encoding scheme like we used to store grey level. For



1.3. THE RGB COLOR SPACE 9

example, if we have only 8 bits per pixel, we might use three for the red level,
3 for green, and 2 for blue (since our eye discriminates blue much more weakly
than red or green). Figure 1.9 shows how a muted green color could be stored
using this kind of scheme. The value actually stored is hexadecimal 59, which
is then shown in binary broken into red, green and blue binary fields. Each of
these binary numbers is divided by the maximum unsigned number possible in
the designated number of bits, and finally shown represented as a (RGB) triple
of color primary values, each on a scale of 0 — 1.

On a high end graphics computer, it is not unusual to allocate 24 bits per pixel
for color representation, allowing 8 bits for each of the red, green and blue
components. This is more than enough to allow for perceptually smooth color
gradations, and fits nicely into a computer whose memory is organized into 8-bit
bytes. If you read specifications for computer displays or use graphics software,
you will have noticed that many of these systems use red, green, and blue levels
between 0-255. These are obviously systems that use an 8-bit per color primary
representation.

5916 _| OE{O | %O | (1)31 _ (2/7,6/7,1/3) = (0.286,0.757, 0.333)

Figure 1.9: 8-Bit Encoding of a Muted Green
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Figure 1.10: RGB Color Cube

Since the RGB system organizes color into three primaries, and allows us to
scale each primary independently, we can think of all of the colors that are
represented by the system as being organized in the shape of a cube, as shown
in Figure 1.10. We call this the RGB color cube, or the RGB color space (when
we add coordinate axes to measure R, G and B levels). Note that the corners
of the RGB color cube represent pure black and pure white, the three primaries
red, green and blue, and the 3 secondary colors yellow, cyan and magenta. The
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diagonal from the black corner to the white corner represents all of the grey
levels. Other locations within the cube correspond with all of the other colors
that can be displayed.

A pixmap storing RGB levels using eight bits per primary, with an additional
eight bits per pixel reserved, is called an RGBA (or Red, Green, Blue, Alpha)
pixmap. The procedure print_pixmap() in Figure 1.11 will print the contents of
the RGBA image stored in the array named pixmap. We assume that the image
represented by pixmap contains exactly width * height pixels, organized into
height scanlines, each of length width.

void print_pixmap(unsigned int *pixmap, int width, int height){

int row; // scanline number (row)

int col; // pixel number on scanline (column)
unsigned int value; // pixel as fetched from pixmap

int r, g, b; // RGB values of pixel (0 to 255)

for(row = 0; row < height; row++){ // loop for each scanline
for(col = 0; col < width; col++){ // loop for each pixel on line
value = pixmap[row * width + col]; // fetch pixel value
r = value >> 24;
g = (value >> 16) & OxFF;
b (value >> 8) & OxFF;
printf (" (%5.3f,%5.3f,%5.3f) ",
r / 2565.0, g / 265.0, b / 255.0);

}
printf("\n");
}
}

Figure 1.11: Procedure to Print the RGB Values in a 32 Bit/Pixel RGBA
Pixmap

Note that the code in Figure 1.11 is written to work correctly on a “Big Endian”
architecture processor. If you are working on a Windows machine, or any Intel-
like computing architecture, your machine will be “Little Endian”. This will
affect how colors are displayed. Please refer to the Homework Nuts and Bolts’
section of the next chapter of these notes (on Simple Image File Formats) for a
fuller explanation of this issue.
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1.4 Other Ways to Organize RGBA Pixmaps

The method of storing red, green, blue and alpha values by packing them into
a single unsigned int (which is a 32 bit structure) as shown in the example
Figure 1.11, is only one way to organize the storage of RGBA pixels. Another
way would be to define a pixel to be an array of four unsigned characters, or
a struct whose elements are four unsigned characters. You can do this using a
type definition in C. For example

typedef unsigned char RGBApixell[4];

defines the type RGBApixel to be an array of four unsigned char. If you create
a variable RGBApixel pixel, then pixel[0] will store the red value, pixel[1]
will store the green value, pixel [2] will store the blue value, and pixel [3] will
store the alpha value for the pixel.

Alternatively, we could use the form

typedef struct rgbapixel{
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;

} RGBApixel;

which defines the type RGBApixel to be a struct with four elements, each an
unsigned char. Using this definition, if you create a variable RGBApixel pixel,
then pixel.r will store the red value, pixel.g will store the green value,
pixel.b will store the blue value, and pixel.a will store the alpha value.

In addition, it is a bit cumbersome to have to compute the index row * width +
into the pixmap array every time you want to reference an individual pixel at row
row and column col. It would be much easier if we could use a two-dimensional
array notation, so that we could index the pixmap array directly using row and
col as array indices. Unfortunately, it is not possible to do this directly in C
if the width of the array (i.e. the number of columns) is not known at compile
time. When dealing with digital images this it is usually the case that when
you are writing your program you will not know the exact image dimensions.
This will usually be determined at runtime. Fortunately we can get around this
problem by being clever about how we allocate the data structure to store the
pixmap.

The trick that we can use is that C actually implements an array using pointer
arithmetic. The name of an array is a pointer to the first cell in the block of

col
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memory holding the array. Then, the use of an array index causes the index,
times the number of bytes in a cell of the array, to be added to the address
of the first cell in the array. So, if we have an array int array[10];, then,
remembering that an integer takes four bytes in memory, array[0] stands for
the address of the first cell in the array: array + 0 * 4, and array[2] stands
for the address of the third cell in the array: array + 2 * 4.

Here is the construction that we can use. Assuming one of the typedefs above
for RGBApixel, we declare our pixmap variable to be a pointer to a pointer to
an RGBApixel. Now, assuming that our pixmap has height rows, and width
columns, we allocate an array of height pointers to RGBApixel, then allocate
an array of width * height RGBApixel, and finally assign to each element i of
the first array a pointer to the beginning of the i’th scanline in the large array.
The code for doing this would be:

RGBApixel **pixmap;
pixmap = new RGBApixelx[height];
pixmap[0] = new RGBApixel[width * height];
for(int i = 1; i < height; i++)
pixmap[i] = pixmap[i - 1] + width;

The final data structure would look like the diagram shown in Figure 1.12, which
shows the layout that would be obtained with height = 5, and width = 6.
Once this allocation is done, all references to the pixmap at row row and column
col would be in the form pixmap [row] [col]. There is no longer any need to do
an explicit calculation of the position of the pixel in the array, as pixmap [row]
is the address of the cell of the small array corresponding to row, and when we
index off of this cell by [coll, we get the offset to the specified column in the
specified row.
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Figure 1.12: Pixmap Organized as a 2D Array



