
1

Digital Logic Basics

Chapter 2
S. Dandamudi

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 2

Outline

• Basic concepts
∗ Simple gates
∗ Completeness

• Logic functions
∗ Expressing logic functions
∗ Equivalence

• Boolean algebra
∗ Boolean identities
∗ Logical equivalence

• Logic Circuit Design
Process

• Deriving logical expressions
∗ Sum-of-products form
∗ Product-of-sums form

• Simplifying logical
expressions
∗ Algebraic manipulation
∗ Karnaugh map method
∗ Quine-McCluskey method

• Generalized gates
• Multiple outputs
• Implementation using other

gates (NAND and XOR)

2

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 3

Introduction

• Hardware consists of a few simple building blocks
∗ These are called logic gates

» AND, OR, NOT, …
» NAND, NOR, XOR, …

• Logic gates are built using transistors
» NOT gate can be implemented by a single transistor
» AND gate requires 3 transistors

• Transistors are the fundamental devices
» Pentium consists of 3 million transistors
» Compaq Alpha consists of 9 million transistors
» Now we can build chips with more than 100 million transistors

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 4

Basic Concepts

• Simple gates
∗ AND
∗ OR
∗ NOT

• Functionality can be
expressed by a truth table
∗ A truth table lists output for

each possible input
combination

• Other methods
∗ Logic expressions
∗ Logic diagrams

3

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 5

Basic Concepts (cont’d)

• Additional useful gates
∗ NAND
∗ NOR
∗ XOR

• NAND = AND + NOT
• NOR = OR + NOT
• XOR implements

exclusive-OR function
• NAND and NOR gates

require only 2 transistors
∗ AND and OR need 3

transistors!

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 6

Basic Concepts (cont’d)

• Number of functions
∗ With N logical variables, we can define

22N functions
∗ Some of them are useful

» AND, NAND, NOR, XOR, …

∗ Some are not useful:
» Output is always 1
» Output is always 0

∗ “Number of functions” definition is useful in proving
completeness property

4

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 7

Basic Concepts (cont’d)

• Complete sets
∗ A set of gates is complete

» if we can implement any logical function using only the type of
gates in the set

– You can uses as many gates as you want
∗ Some example complete sets

» {AND, OR, NOT} Not a minimal complete set
» {AND, NOT}
» {OR, NOT}
» {NAND}
» {NOR}

∗ Minimal complete set
– A complete set with no redundant elements.

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 8

Basic Concepts (cont’d)

• Proving NAND gate is universal

5

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 9

Basic Concepts (cont’d)

• Proving NOR gate is universal

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 10

Logic Chips

• Basic building block:
» Transistor

• Three connection points
∗ Base
∗ Emitter
∗ Collector

• Transistor can operate
∗ Linear mode

» Used in amplifiers
∗ Switching mode

» Used to implement digital
circuits

6

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 11

Logic Chips (cont’d)

NOT NAND NOR

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 12

Logic Chips (cont’d)

• Low voltage level: < 0.4V
• High voltage level: > 2.4V
• Positive logic:

∗ Low voltage represents 0
∗ High voltage represents 1

• Negative logic:
∗ High voltage represents 0
∗ Low voltage represents 1

• Propagation delay
∗ Delay from input to output
∗ Typical value: 5-10 ns

7

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 13

Logic Chips (cont’d)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 14

Logic Chips (cont’d)

• Integration levels
∗ SSI (small scale integration)

» Introduced in late 1960s
» 1-10 gates (previous examples)

∗ MSI (medium scale integration)
» Introduced in late 1960s
» 10-100 gates

∗ LSI (large scale integration)
» Introduced in early 1970s
» 100-10,000 gates

∗ VLSI (very large scale integration)
» Introduced in late 1970s
» More than 10,000 gates

8

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 15

Logic Functions

• Logical functions can be expressed in several
ways:
∗ Truth table
∗ Logical expressions
∗ Graphical form

• Example:
∗ Majority function

» Output is one whenever majority of inputs is 1
» We use 3-input majority function

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 16

Logic Functions (cont’d)

3-input majority function

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• Logical expression form
F = A B + B C + A C

9

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 17

Logical Equivalence

• All three circuits implement F = A B function

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 18

Logical Equivalence (cont’d)

• Proving logical equivalence of two circuits
∗ Derive the logical expression for the output of each

circuit
∗ Show that these two expressions are equivalent

» Two ways:
– You can use the truth table method

For every combination of inputs, if both expressions
yield the same output, they are equivalent
Good for logical expressions with small number of
variables

– You can also use algebraic manipulation
Need Boolean identities

10

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 19

Logical Equivalence (cont’d)

• Derivation of logical expression from a circuit
∗ Trace from the input to output

» Write down intermediate logical expressions along the path

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 20

Logical Equivalence (cont’d)

• Proving logical equivalence: Truth table method

A B F1 = A B F3 = (A + B) (A + B) (A + B)
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

11

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 21

Boolean Algebra

Boolean identities
Name AND version OR version
Identity x.1 = x x + 0 = x
Complement x. x = 0 x + x = 1
Commutative x.y = y.x x + y = y + x
Distribution x. (y+z) = xy+xz x + (y. z) =

(x+y) (x+z)
Idempotent x.x = x x + x = x
Null x.0 = 0 x + 1 = 1

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 22

Boolean Algebra (cont’d)

• Boolean identities (cont’d)
Name AND version OR version

Involution x = x ---
Absorption x. (x+y) = x x + (x.y) = x
Associative x.(y. z) = (x. y).z x + (y + z) =

(x + y) + z
de Morgan x. y = x + y x + y = x . y

12

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 23

Boolean Algebra (cont’d)

• Proving logical equivalence: Boolean algebra
method
∗ To prove that two logical functions F1 and F2 are

equivalent
» Start with one function and apply Boolean laws to derive the

other function
» Needs intuition as to which laws should be applied and when

– Practice helps
» Sometimes it may be convenient to reduce both functions to

the same expression

∗ Example: F1= A B and F3 are equivalent

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 24

Logic Circuit Design Process

• A simple logic design process involves
» Problem specification
» Truth table derivation
» Derivation of logical expression
» Simplification of logical expression
» Implementation

13

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 25

Deriving Logical Expressions

• Derivation of logical expressions from truth tables
∗ sum-of-products (SOP) form
∗ product-of-sums (POS) form

• SOP form
∗ Write an AND term for each input combination that

produces a 1 output
» Write the variable if its value is 1; complement otherwise

∗ OR the AND terms to get the final expression
• POS form

∗ Dual of the SOP form

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 26

Deriving Logical Expressions (cont’d)

• 3-input majority function

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• SOP logical expression
• Four product terms

∗ Because there are 4 rows
with a 1 output

F = A B C + A B C +
A B C + A B C

• Sigma notation

Σ(3, 5, 6, 7)

14

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 27

Deriving Logical Expressions (cont’d)

• 3-input majority function

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• POS logical expression
• Four sum terms

∗ Because there are 4 rows
with a 0 output

F = (A + B + C) (A + B + C)
(A + B + C) (A + B + C)

• Pi notation

Π (0, 1, 2, 4)

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 28

Brute Force Method of Implementation

3-input even-parity function

A B C F

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

• SOP implementation

15

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 29

Brute Force Method of Implementation

3-input even-parity function

A B C F

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

• POS implementation

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 30

Logical Expression Simplification

• Three basic methods
∗ Algebraic manipulation

» Use Boolean laws to simplify the expression
– Difficult to use
– Don’t know if you have the simplified form

∗ Karnaugh map method
» Graphical method
» Easy to use

– Can be used to simplify logical expressions with a few
variables

∗ Quine-McCluskey method
» Tabular method
» Can be automated

16

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 31

Algebraic Manipulation

• Majority function example

A B C + A B C + A B C + A B C =

A B C + A B C + A B C + A B C + A B C + A B C

• We can now simplify this expression as

B C + A C + A B

• A difficult method to use for complex expressions

Added extra

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 32

Karnaugh Map Method

Note the order

17

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 33

Karnaugh Map Method (cont’d)

Simplification examples

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 34

Karnaugh Map Method (cont’d)

First and last columns/rows are adjacent

18

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 35

Karnaugh Map Method (cont’d)

Minimal expression depends on groupings

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 36

Karnaugh Map Method (cont’d)

No redundant groupings

19

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 37

Karnaugh Map Method (cont’d)

• Example
∗ Seven-segment display
∗ Need to select the right LEDs to display a digit

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 38

Karnaugh Map Method (cont’d)

Truth table for segment d
No A B C D Seg. No A B C D Seg.
0 0 0 0 0 1 8 1 0 0 0 1
1 0 0 0 1 0 9 1 0 0 1 1
2 0 0 1 0 1 10 1 0 1 0 ?
3 0 0 1 1 1 11 1 0 1 1 ?
4 0 1 0 0 0 12 1 1 0 0 ?
5 0 1 0 1 1 13 1 1 0 1 ?
6 0 1 1 0 1 14 1 1 1 0 ?
7 0 1 1 1 0 15 1 1 1 1 ?

20

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 39

Karnaugh Map Method (cont’d)

Don’t cares simplify the expression a lot

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 40

Karnaugh Map Method (cont’d)

Example 7-segment display driver chip

21

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 41

Quine-McCluskey Method

• Simplification involves two steps:
∗ Obtain a simplified expression

» Essentially uses the following rule

X Y + X Y = X
» This expression need not be minimal

– Next step eliminates any redundant terms

∗ Eliminate redundant terms from the simplified
expression in the last step

» This step is needed even in the Karnaugh map method

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 42

Generalized Gates

• Multiple input
gates can be built
using smaller gates

• Some gates like
AND are easy to
build

• Other gates like
NAND are more
involved

22

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 43

Generalized Gates (cont’d)

• Various ways to build
higher-input gates
∗ Series
∗ Series-parallel

• Propagation delay
depends on the
implementation
∗ Series implementation

» 3-gate delay
∗ Series-parallel

implementation
» 2-gate delay

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 44

Multiple Outputs

Two-output function

A B C F1 F2

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

• F1 and F2 are
familiar functions

» F1 = Even-parity
function

» F2 = Majority
function

• Another
interpretation
∗ Full adder

» F1 = Sum
» F2 = Carry

23

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 45

Implementation Using Other Gates

• Using NAND gates
∗ Get an equivalent expression

A B + C D = A B + C D
∗ Using de Morgan’s law

A B + C D = A B . C D
∗ Can be generalized

» Majority function

A B + B C + AC = A B . BC . AC

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 46

Implementation Using Other Gates (cont’d)

• Majority function

24

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 47

Implementation Using Other Gates (cont’d)

Bubble Notation

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 48

Implementation Using Other Gates (cont’d)

• Using XOR gates
∗ More complicated

25

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 49

Summary

• Logic gates
» AND, OR, NOT
» NAND, NOR, XOR

• Logical functions can be represented using
» Truth table
» Logical expressions
» Graphical form

• Logical expressions
∗ Sum-of-products
∗ Product-of-sums

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 50

Summary (cont’d)

• Simplifying logical expressions
∗ Boolean algebra
∗ Karnaugh map
∗ Quine-McCluskey

• Implementations
∗ Using AND, OR, NOT

» Straightforward

∗ Using NAND
∗ Using XOR

Last slide

