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Outline

• Basic concepts
∗ Simple gates
∗ Completeness

• Logic functions
∗ Expressing logic functions
∗ Equivalence

• Boolean algebra
∗ Boolean identities
∗ Logical equivalence

• Logic Circuit Design 
Process

• Deriving logical expressions
∗ Sum-of-products form
∗ Product-of-sums form

• Simplifying logical 
expressions
∗ Algebraic manipulation
∗ Karnaugh map method
∗ Quine-McCluskey method

• Generalized gates
• Multiple outputs
• Implementation using other 

gates (NAND and XOR)
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Introduction

• Hardware consists of a few simple building blocks
∗ These are called logic gates

» AND, OR, NOT, … 
» NAND, NOR, XOR, …

• Logic gates are built using transistors
» NOT gate can be implemented by a single transistor
» AND gate requires 3 transistors

• Transistors are the fundamental devices
» Pentium consists of 3 million transistors
» Compaq Alpha consists of 9 million transistors
» Now we can build chips with more than 100 million transistors

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 4

Basic Concepts

• Simple gates
∗ AND
∗ OR
∗ NOT

• Functionality can be 
expressed by a truth table
∗ A truth table lists output for 

each possible input 
combination

• Other methods
∗ Logic expressions
∗ Logic diagrams
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Basic Concepts (cont’d)

• Additional useful gates
∗ NAND
∗ NOR
∗ XOR

• NAND = AND + NOT
• NOR = OR + NOT
• XOR implements 

exclusive-OR function
• NAND and NOR gates 

require only 2 transistors
∗ AND and OR need 3 

transistors!
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Basic Concepts (cont’d)

• Number of functions
∗ With N logical variables, we can define

22N functions
∗ Some of them are useful

» AND, NAND, NOR, XOR, …

∗ Some are not useful:
» Output is always 1
» Output is always 0

∗ “Number of functions” definition is useful in proving 
completeness property
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Basic Concepts (cont’d)

• Complete sets
∗ A set of gates is complete

» if we can implement any logical function using only the type of 
gates in the set

– You can uses as many gates as you want
∗ Some example complete sets

» {AND, OR, NOT}                      Not a minimal complete set
» {AND, NOT}
» {OR, NOT}
» {NAND}
» {NOR}

∗ Minimal complete set
– A complete set with no redundant elements.

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 8

Basic Concepts (cont’d)

• Proving NAND gate is universal
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Basic Concepts (cont’d)

• Proving NOR gate is universal
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Logic Chips

• Basic building block: 
» Transistor

• Three connection points
∗ Base
∗ Emitter
∗ Collector

• Transistor can operate
∗ Linear mode

» Used in amplifiers
∗ Switching mode

» Used to implement digital 
circuits
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Logic Chips (cont’d)

NOT NAND NOR
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Logic Chips (cont’d)

• Low voltage level: < 0.4V
• High voltage level: > 2.4V
• Positive logic:

∗ Low voltage represents 0
∗ High voltage represents 1

• Negative logic:
∗ High voltage represents 0
∗ Low voltage represents 1

• Propagation delay
∗ Delay from input to output
∗ Typical value: 5-10 ns
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Logic Chips (cont’d)
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Logic Chips (cont’d)

• Integration levels
∗ SSI (small scale integration)

» Introduced in late 1960s
» 1-10 gates (previous examples)

∗ MSI (medium scale integration)
» Introduced in late 1960s
» 10-100 gates

∗ LSI (large scale integration)
» Introduced in early 1970s
» 100-10,000 gates

∗ VLSI (very large scale integration)
» Introduced in late 1970s
» More than 10,000 gates
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Logic Functions

• Logical functions can be expressed in several 
ways:
∗ Truth table
∗ Logical expressions
∗ Graphical form

• Example:
∗ Majority function

» Output is one whenever majority of inputs is 1
» We use 3-input majority function
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Logic Functions (cont’d)

3-input majority function

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• Logical expression form
F = A B + B C + A C
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Logical Equivalence

• All three circuits implement F = A B function
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Logical Equivalence (cont’d)

• Proving logical equivalence of two circuits
∗ Derive the logical expression  for the output of each 

circuit
∗ Show that these two expressions are equivalent

» Two ways:
– You can use the truth table method

For every combination of inputs, if both expressions 
yield the same output,  they are equivalent
Good for logical expressions with small number of 
variables

– You can also use algebraic manipulation
Need Boolean identities
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Logical Equivalence (cont’d)

• Derivation of logical expression from a circuit
∗ Trace from the input to output

» Write down intermediate logical expressions along the path
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Logical Equivalence (cont’d)

• Proving logical equivalence: Truth table method

A B F1 = A B F3 = (A + B) (A + B) (A + B)
0 0 0                                        0
0 1 0                                        0
1 0 0                                        0
1 1 1                                        1
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Boolean Algebra

Boolean identities
Name AND version OR version
Identity x.1 = x x + 0 = x
Complement x. x = 0 x + x = 1
Commutative x.y = y.x x + y = y + x
Distribution x. (y+z) = xy+xz x + (y. z) =

(x+y) (x+z)
Idempotent x.x = x x + x = x
Null x.0 = 0 x + 1 = 1
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Boolean Algebra (cont’d)

• Boolean identities (cont’d)
Name AND version OR version

Involution x = x ---
Absorption x. (x+y) = x x + (x.y) = x
Associative x.(y. z) = (x. y).z x + (y + z) = 

(x + y) + z
de Morgan x. y = x + y x + y = x . y
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Boolean Algebra (cont’d)

• Proving logical equivalence: Boolean algebra 
method
∗ To prove that two logical functions F1 and F2 are 

equivalent
» Start with one function and apply Boolean laws to derive the 

other function
» Needs intuition as to which laws should be applied and when

– Practice helps
» Sometimes it may be convenient to reduce both functions to 

the same expression

∗ Example: F1= A B and F3 are equivalent
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Logic Circuit Design Process

• A simple logic design process involves
» Problem specification
» Truth table derivation
» Derivation of logical expression
» Simplification of logical expression
» Implementation
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Deriving Logical Expressions

• Derivation of logical expressions from truth tables
∗ sum-of-products (SOP) form
∗ product-of-sums (POS) form

• SOP form 
∗ Write an AND term for each input combination that 

produces a 1 output
» Write the variable if its value is 1; complement otherwise

∗ OR the AND terms to get the final expression
• POS form

∗ Dual of the SOP form
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Deriving Logical Expressions (cont’d)

• 3-input majority function

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• SOP logical expression
• Four product terms

∗ Because there are 4 rows 
with a 1 output

F = A B C + A B C +
A B C + A B C

• Sigma notation

Σ(3, 5, 6, 7)
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Deriving Logical Expressions (cont’d)

• 3-input majority function

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

• POS logical expression
• Four sum terms

∗ Because there are 4 rows 
with a 0 output

F = (A + B + C) (A + B + C)
(A + B + C) (A + B + C)

• Pi notation

Π (0, 1, 2, 4 )
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Brute Force Method of Implementation

3-input even-parity function

A B C F

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

• SOP implementation
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Brute Force Method of Implementation

3-input even-parity function

A B C F

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

• POS implementation
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Logical Expression Simplification

• Three basic methods
∗ Algebraic manipulation

» Use Boolean laws to simplify the expression
– Difficult to use
– Don’t know if you have the simplified form

∗ Karnaugh map method
» Graphical method
» Easy to use

– Can be used to simplify logical expressions with a few 
variables

∗ Quine-McCluskey method
» Tabular method
» Can be automated
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Algebraic Manipulation

• Majority function example

A B C + A B C + A B C + A B C  =

A B C + A B C + A B C + A B C + A B C + A B C 

• We can now simplify this expression as

B C + A C + A B

• A difficult method to use for complex expressions

Added extra
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Karnaugh Map Method

Note the order
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Karnaugh Map Method (cont’d)

Simplification examples
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Karnaugh Map Method (cont’d)

First and last columns/rows are adjacent
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Karnaugh Map Method (cont’d)

Minimal expression depends on groupings
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Karnaugh Map Method (cont’d)

No redundant groupings
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Karnaugh Map Method (cont’d)

• Example
∗ Seven-segment display
∗ Need to select the right LEDs to display a digit
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Karnaugh Map Method (cont’d)

Truth table for segment d
No   A     B     C     D    Seg.         No   A     B     C     D Seg.
0      0     0      0     0       1              8      1     0 0     0       1 
1      0     0      0     1       0              9      1     0 0     1       1 
2      0     0      1     0       1            10      1     0 1     0       ? 
3      0     0      1     1       1            11      1     0 1     1       ? 
4      0     1      0     0       0            12      1     1 0     0       ? 
5      0     1      0     1       1            13      1     1 0     1       ? 
6      0     1      1     0       1            14      1     1 1     0       ? 
7      0     1      1     1       0            15      1     1 1     1       ? 
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Karnaugh Map Method (cont’d)

Don’t cares simplify the expression a lot
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Karnaugh Map Method (cont’d)

Example 7-segment display driver chip
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Quine-McCluskey Method

• Simplification involves two steps:
∗ Obtain a simplified expression

» Essentially uses the following rule

X Y + X Y = X
» This expression need not be minimal

– Next step eliminates any redundant terms

∗ Eliminate redundant terms from the simplified 
expression in the last step

» This step is needed even in the Karnaugh map method
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Generalized Gates

• Multiple input 
gates can be built 
using smaller gates

• Some gates like 
AND are easy to 
build

• Other gates like 
NAND are more 
involved
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Generalized Gates (cont’d)

• Various ways to build 
higher-input gates
∗ Series
∗ Series-parallel

• Propagation delay 
depends on the 
implementation
∗ Series implementation

» 3-gate delay
∗ Series-parallel 

implementation
» 2-gate delay
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Multiple Outputs

Two-output function

A B C F1         F2

0 0 0 0          0
0 0 1 1          0
0 1 0 1          0
0 1 1 0          1
1 0 0 1          0
1 0 1 0          1
1 1 0 0          1
1 1 1 1          1

• F1 and F2 are 
familiar functions

» F1 = Even-parity 
function

» F2 = Majority 
function

• Another 
interpretation
∗ Full adder

» F1 = Sum
» F2 = Carry
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Implementation Using Other Gates

• Using NAND gates
∗ Get an equivalent expression

A B + C D = A B + C D
∗ Using de Morgan’s law

A B + C D = A B . C D
∗ Can be generalized

» Majority function

A B + B C + AC = A B . BC . AC
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Implementation Using Other Gates (cont’d)

• Majority function
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Implementation Using Other Gates (cont’d)

Bubble Notation

2003
To be used with S. Dandamudi, “Fundamentals of Computer Organization and Design,” Springer, 2003.

© S. Dandamudi Chapter 2: Page 48

Implementation Using Other Gates (cont’d)

• Using XOR gates
∗ More complicated
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Summary

• Logic gates
» AND, OR, NOT
» NAND, NOR, XOR

• Logical functions can be represented using
» Truth table
» Logical expressions
» Graphical form

• Logical expressions
∗ Sum-of-products
∗ Product-of-sums
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Summary (cont’d)

• Simplifying logical expressions
∗ Boolean algebra
∗ Karnaugh map
∗ Quine-McCluskey

• Implementations 
∗ Using AND, OR, NOT

» Straightforward

∗ Using NAND
∗ Using XOR

Last slide


