Digital PID Controller Design

Digital PID Controller Design

• Plant and Controller

$$G(z) = \frac{N(z)}{D(z)}, \qquad C(z) = \frac{N_C(z)}{D_C(z)}$$

• The *characteristic polynomial* of the closed loop system

$$\Pi(z) := D_C(z)D(z) + N_C(z)N(z)$$

TCHEBYSHEV REPRESENTATION AND ROOT CLUSTERING

Tchebyshev representation of real polynomials

- Consider a real polynomial $P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$
- The image of P(z) evaluated on the circle C_{ρ} of radius ρ , centered at the origin is:

$$\left\{P(z) : z = \rho e^{j\theta}, \quad 0 \le \theta \le 2\pi\right\}.$$

• As the coefficients a_i are real $P(\rho e^{j\theta})$ and $P(\rho e^{-j\theta})$ are conjugate complex numbers, and so it suffices to determine the image of the upper half of the circle:

$$\{P(z) : z = \rho e^{j\theta}, \quad 0 \le \theta \le \pi\}.$$

3

4

Since
$$z^k |_{z=\rho e^{j\theta}} = \rho^k (\cos k\theta + j \sin k\theta),$$

 $P\left(\rho e^{j\theta}\right) = \underbrace{\left(a_n \rho^n \cos n\theta + \dots + a_1 \rho \cos \theta + a_0\right)}_{\bar{R}(\rho,\theta)} + j \underbrace{\left(a_n \rho^n \sin n\theta + \dots + a_1 \rho \sin \theta\right)}_{\bar{I}(\rho,\theta)}$
 $= \bar{R}(\rho,\theta) + j \bar{I}(\rho,\theta).$

• Consider $(\rho e^{j\theta})^k = \rho^k \cos k\theta + j\rho^k \sin k\theta$

• Write $u = -\cos\theta$ and define the generalized Tchebyshev polynomials as follows: $c_k(u,\rho) = \rho^k c_k(u), \ s_k(u,\rho) = \rho^k s_k(u), \ k = 0, 1, 2 \cdots$

and note that

$$s_{k}(u,\rho) = -\frac{1}{k} \cdot \frac{d[c_{k}(u,\rho)]}{du}, \quad k = 1, 2, \cdots$$

$$c_{k+1}(u,\rho) = -\rho u c_{k}(u,\rho) - (1-u^{2}) \rho s_{k}(u,\rho), \quad k = 1, 2, \cdots$$

Digital PID Controller Design

• The generalized Tchebyshev polynomials are for $k = 1, \dots 5$:

k	$c_k(u, ho)$	$s_k(u, ho)$	
1	- ho u	ρ	
2	$\rho^2 \left(2u^2 - 1 \right)$	$-2 ho^2 u$	12
3	$\rho^3 (-4u^3 + 3u)$	$\rho^3 (4u^2 - 1)$	
4	$\rho^4 (8u^4 - 8u^2 + 1)$	$\rho^4 (-8u^3 + 4u)$	
5	$ ho^5 \left(-16 u^5+20 u^3-5 u ight)$	$\rho^5 \left(16u^4 - 12u^2 + 1\right)$	

• With this notation, $P\left(\rho e^{j\theta}\right) = R(u,\rho) + j\sqrt{1-u^2}T(u,\rho) =: P_c(u,\rho)$ where

$$R(u,\rho) = a_n c_n(u,\rho) + a_{n-1} c_{n-1}(u,\rho) + \dots + a_1 c_1(u,\rho) + a_0$$

$$T(u,\rho) = a_n s_n(u,\rho) + a_{n-1} s_{n-1}(u,\rho) + \dots + a_1 s_1(u,\rho).$$

- $R(u, \rho)$ and $T(u, \rho)$ are polynomials in u and ρ .
- The complex plane image of P(z) as z traverses the upper half of the circle C_{ρ} can be obtained by evaluating $P_c(u, \rho)$ as u runs from -1 to +1.

LEMMA

For a fixed $\rho > 0$,

- (a) if P(z) has no roots on the circle of radius $\rho > 0$, $(R(u,\rho), T(u,\rho))$ have no common roots for $u \in [-1,1]$ and $R(\pm 1,\rho) \neq 0$.
- (b) if P(z) has 2m roots at $z = -\rho (z = +\rho)$, then $R(u, \rho)$ and $T(u, \rho)$ have m roots each at u = +1 (u = -1).
- (c) if P(z) has 2m 1 roots at $z = -\rho (z = +\rho)$, then $R(u, \rho)$ and $T(u, \rho)$ have m and m 1 roots, respectively at u = +1 (u = -1).
- (d) if P(z) has q_i pairs of complex roots at $z = -\rho u_i \pm j\rho \sqrt{1 u_i^2}$, for $u_i \neq \pm 1$, then $R(u, \rho)$ and $T(u, \rho)$ each have q_i real roots at $u = u_i$.

• When the circle of interest is the unit circle, that is $\rho = 1$, we will write $P_c(u, 1) = P_c(u)$ and also

$$R(u,1) =: R(u), \qquad T(u,1) =: T(u)$$

Interlacing Conditions for Root Clustering and Schur Stability

THEOREM

P(z) has all its zeros strictly within \mathcal{C}_{ρ} if and only if

(a) $R(u, \rho)$ has n real distinct zeros r_i , $i = 1, 2, \dots, n$ in (-1, 1).

- (b) $T(u,\rho)$ has n-1 real distinct zeros t_j , $j = 1, 2, \cdots, n-1$ in (-1, 1).
- (c) The zeros r_i and t_j interlace:

$$-1 < r_1 < t_1 < r_2 < t_2 < \dots < t_{n-1} < r_n < +1.$$

The three conditions given in the above Theorem may be referred to as interlacing conditions on $R(u, \rho)$ and $T(u, \rho)$. By setting $\rho = 1$ in the above Theorem we obtain conditions for Schur stability in terms of interlacing of the zeros of R(u) and T(u).

8

Tchebyshev Representation of Rational Functions

• Let

$$P_i(z)|_{z=-\rho u+j\rho\sqrt{1-u^2}} = R_i(u,\rho) + j\sqrt{1-u^2}T_i(u,\rho), i=1,2.$$

$$Q(z)|_{z=-\rho u+j\rho\sqrt{1-u^2}} = \frac{P_1(z)P_2(z^{-1})}{P_2(z)P_2(z^{-1})}\Big|_{z=-\rho u+j\rho\sqrt{1-u^2}}$$

$$= \frac{R(u,\rho)}{(R_1(u,\rho)R_2(u,\rho) + (1-u^2)T_1(u,\rho)T_2(u,\rho))} R_2^2(u,\rho) + (1-u^2)T_2^2(u,\rho)}$$

$$+j\frac{\sqrt{1-u^2}(T_1(u,\rho)R_2(u,\rho) - R_1(u,\rho)T_2(u,\rho))}{R_2^2(u,\rho) + (1-u^2)T_2^2(h,\rho)}$$

• $R(u, \rho), T(u, \rho)$ are rational functions of the real variable u which runs from -1 to +1.

ROOT COUNTING FORMULAS

LEMMA

Let the real polynomial P(z) have *i* roots in the interior of the circle C_{ρ} and no roots on the circle. Then:

 $\Delta_0^{\pi}[\phi_P(\theta)] = \pi i$

LEMMA

Let $Q(z) = \frac{P_1(z)}{P_2(z)}$ where the real polynomials $P_1(z)$ and $P_2(z)$ have i_1 and i_2 roots, respectively in the interior of the circle C_{ρ} and no roots on the circle. Then

 $\Delta_0^{\pi}[\phi_Q(\theta)] = \pi (i_1 - i_2) = \Delta_{-1}^{+1}[\phi_{Q_C}(u)].$

• Let t_1, \dots, t_k denote the real distinct zeros of $T(u, \rho)$ of odd multiplicity, for $u \in (-1, 1)$, ordered as follows: $-1 < t_1 < t_2 < \dots < t_k < +1$. Suppose also that $T(u, \rho)$ has p zeros at u = -1 and let $f^i(x_0)$ denote the *i*-th derivative to f(x) evaluated at $x = x_0$.

THEOREM

Let P(z) be a real polynomial with no roots on the circle C_{ρ} and suppose that $T(u, \rho)$ has p zeros at u = -1. Then the number of roots i of P(z) in the interior of the circle C_{ρ} is given by

$$i = \frac{1}{2} \operatorname{Sgn} \left[T^{(p)}(-1,\rho) \right] \left(\operatorname{Sgn} \left[R(-1,\rho) \right] + 2 \sum_{j=1}^{k} (-1)^{j} \operatorname{Sgn} \left[R(t_{j},\rho) \right] + (-1)^{k+1} \operatorname{Sgn} \left[R(+1,\rho) \right] \right)$$

- The result derived above can now be extended to the case of rational functions. Let $Q(z) = \frac{P_1(z)}{P_2(z)}$ where $P_i(z), i = 1, 2$ are real rational functions.
- Tchebyshev representation of Q(z) on the circle C_{ρ} . Let $R(u, \rho), T(u, \rho)$ be defined by: $R(u, \rho) = R_1(u, \rho)R_2(u, \rho) + (1 - u^2)T_1(u, \rho)T_2(u, \rho)$ $T(u, \rho) = T_1(u, \rho)R_2(u, \rho) - R_1(u, \rho)T_1(u, \rho)$
- Suppose that $T(u, \rho)$ has p zeros at u = -1 and let $t_1 \cdots t_k$ denote the real distinct zeros of $T(u, \rho)$ of odd multiplicity ordered as $-1 < t_1 < t_2 < \cdots < t_k < +1$.

THEOREM

Let $Q(z) = \frac{P_1(z)}{P_2(z)}$ where $P_i(z), i = 1, 2$ are real polynomials with i_1 and i_2 zeros respectively inside the circle C_{ρ} and no zeros on it. Then

 $i_1 - i_2 = \frac{1}{2} \operatorname{Sgn} \left[T^{(p)}(-1,\rho) \right] \left(\operatorname{Sgn} \left[R(-1,\rho) \right] + 2 \sum_{j=1}^k (-1)^j \operatorname{Sgn} \left[R(t_j,\rho) \right] + (-1)^{k+1} \operatorname{Sgn} \left[R(+1,\rho) \right] \right).$

DIGITAL PI, PD AND PID CONTROLLERS

• For PI controllers,

$$C(z) = K_P + K_I T \cdot \frac{z}{z-1} = \frac{(K_P + K_I T) \left(z - \frac{K_P}{K_I T + K_P}\right)}{z-1}$$

= $\frac{K_1 \left(z - K_2\right)}{z-1}$ where $K_P = K_1 K_2$, $K_I = \frac{K_1 - K_1 K_2}{T}$

• For PD controllers,

$$C(z) = K_P + \frac{K_D}{T} \cdot \frac{z - 1}{z} = \frac{\left(K_P + \frac{K_D}{T}\right) \left(z - \frac{\frac{K_D}{T}}{K_P + \frac{K_D}{T}}\right)}{z}$$

=: $\frac{K_1 \left(z - K_2\right)}{z}$ where $K_P = K_1 - K_1 K_2$, $K_D = K_1 K_2 T$.

• The general formula of a discrete PID controller, using backward differences to preserve causality,

$$C(z) = K_P + K_I T \cdot \frac{z}{z-1} + \frac{K_D}{T} \cdot \frac{z-1}{z} =: \frac{K_2 z^2 + K_1 z + K_0}{z(z-1)} \text{ where}$$

$$K_P = -K_1 - 2K_0, \quad K_I = \frac{K_0 + K_1 + K_2}{T}, \quad K_D = K_0 T.$$

12

COMPUTATION OF THE STABILIZING SET

Constant Gain Stabilization

- Plant $G(z) = \frac{N(z)}{D(z)}$
- The closed-loop characteristic polynomial is

$$\delta(z) = D(z) + KN(z).$$

 $\bullet\,$ Tchebyshev representations of D(z) and N(z)

$$D(e^{j\theta}) = R_D(u) + j\sqrt{1 - u^2}T_D(u)$$

$$N(e^{j\theta}) = R_N(u) + j\sqrt{1 - u^2}T_N(u),$$

• Note also that $N(e^{-j\theta}) = R_D(u) - j\sqrt{1 - u^2}T_D(u)$ and $N(z^{-1}) = \frac{N_r(z)}{z^l}$ where $N_r(z)$ is the *reverse polynomial* and l is the degree of N(z).

13

Digital PID Controller Design

•
$$\delta(z)N(z^{-1}) = D(z)N(z^{-1}) + KN(z)N(z^{-1})$$

• $\frac{\delta(z)N_r(z)}{z^l}\Big|_{z=e^{j\theta}} = \left(R_D(u) + j\sqrt{1-u^2}T_D(u)\right)\left(R_N(u) - j\sqrt{1-u^2}T_N(u)\right)$
 $+K\left[R_N^2(u) + (1-u^2)T_N^2(u)\right]$
 $= \underbrace{R_D(u)R_N(u) + (1-u^2)T_D(u)T_N(u) + K\left[R_N^2(u) + (1-u^2)T_N^2(u)\right]}_{R(K,u)}$
 $+j\sqrt{1-u^2}\left[T_D(u)R_N(u) - R_D(u)T_N(u)\right]$
 $= R(K, u) + j\sqrt{1-u^2}T(u).$

• The imaginary part of the above expression has been rendered independent of K as a result of multiplying $\delta(z)$ by $N(z^{-1})$.

parameter separation

Ready to apply the root counting formulas 14

Constant Gain Stabilization Algorithm

- Let $t_i, i = 1, 2 \cdots, k$ denote the real zeros of odd multiplicity of the fixed T(u), for u in (-1, +1) and set $t_0 = -1, t_{k+1} = +1$.
- Write Sgn $[R(K, t_j)] = x_j, \qquad j = 0, 1, \cdots, k+1$
- Let i_{δ} , i_{N_r} denote the number of zeros of $\delta(z)$ and $N_r(z)$ inside the unit circle. For simplicity assume that N(z) has no unit circle zeros and therefore neither does $N_r(z)$.

$$i_{\delta} + i_{N_{r}} - l = \frac{1}{2} \operatorname{Sgn} \left[T^{(p)}(-1) \right]$$

$$\cdot \left(\operatorname{Sgn} \left[R(K, -1) \right] + 2 \sum_{j=1}^{k} (-1)^{j} \operatorname{Sgn} \left[R(K, t_{j}) \right] + (-1)^{k+1} \operatorname{Sgn} \left[R(K, +1) \right] \right).$$

Example

$$G(z) = \frac{z^4 + 1.93z^3 + 2.2692z^2 + 0.1443z - 0.7047}{z^5 - 0.2z^4 - 3.005z^3 - 3.9608z^2 - 0.0985z + 1.2311}.$$

• Then

$$R_D(u) = -16u^5 - 1.6u^4 + 32.02u^3 - 6.3216u^2 - 13.9165u + 4.9919$$

$$T_D(u) = 16u^4 + 1.6u^3 - 24.02u^3 + 7.1216u + 3.9065$$

$$R_N(u) = 8u^4 - 7.72u^3 - 3.4616u^2 + 5.6457u - 1.9739$$

$$T_N(u) = -8u^3 + 7.72u^2 - 0.5384u - 1.7857$$

• and

$$T(u) = T_D(u)R_N(u) - R_D(u)T_N(u)$$

= -11.2752u⁴ + 7.5669u³ + 16.7782u² - 14.1655u + 1.203

• The roots of T(u) of odd multiplicity and lying in (-1, 1) are 0.0963 and 0.8358.

 $R(K, u) = 11.2752u^{5} + 12.1307u^{4} - 40.6359u^{3} - 7.1779u^{2} + 40.8322u$ -16.8293 - 19.6615u - 5.4727 +K(-11.2752u^{4} + 9.7262u^{3} + 15.0696u^{2} - 20.3653u + 7.085).

• Since $i_{\delta} = 5$ for stability, and $i_{N_r} = 2$ and l = 4, we must have:

 $\operatorname{Sgn}\left[T^{(p)}(-1)\right]\left(\operatorname{Sgn}[R(K,-1)] - 2\operatorname{Sgn}[R(K,0.0963)] + 2\operatorname{Sgn}[R(K,0.8358)] - \operatorname{Sgn}[R(K,1)]\right) = 6$

• Since Sgn $[T^{(p)}(-1)] = +1$, we have the only feasible string given by:

$$\begin{array}{c|c} Sgn[R(K,-1)] & Sgn[R(K, 0.0963)] & Sgn[R(K, 0.8358)] & Sgn[R(K, 1)] \\ \hline 1 & -1 & 1 & -1 \end{array}$$

• This translates into the following set of inequalities:

 $R(K, -1) = -23.348 + 21.5185K > 0 \Rightarrow K > 1.085$ $R(K, 0.0963) = -12.998 + 5.2709K < 0 \Rightarrow K < 2.466$ $R(K, 0.8358) = -0.9232 + 0.7673K > 0 \Rightarrow K > 1.2032$ $R(K, 1) = -0.4050 + 0.2403K < 0 \Rightarrow K < 1.6854.$

- The closed loop system is stable for 1.2032 < K < 1.6854.
- In this example, we have $x_j, j = 0, 1, 2, 3$. Each x_j may assume the value +1 or -1 since 0 is excluded as we are testing for stability. This leads to $2^4 = 16$ possible strings which may satisfy the signature requirement. In this example, only one string of the possible 16 satisfies the signature requirement.

Stabilization with PI Controllers

- Plant and Controller: $P(z) = \frac{N(z)}{D(z)}, \qquad C(z) = \frac{K_1(z K_2)}{z 1}$
- The characteristic polynomial: $\delta(z) = (z-1)D(z) + K_1(z-K_2)N(z)$
- Writing the Tchebyshev representations of D(z), N(z) and $N(z^{-1})$
- Then to achieve parameter separation, we calculate $\delta(z)N(z^{-1})|_{u=-\cos\theta} = \left(-u - 1 + j\sqrt{1-u^2}\right) \left(P_1(u) + j\sqrt{1-u^2}P_2(u)\right) + jK_1\sqrt{1-u^2}P_3(u) - K_1(u+K_2)P_3(u)$

where $P_1(u) = R_D(u)R_N(u) + (1-u^2)T_D(u)T_N(u)$ $P_2(u) = R_N(u)T_D(u) - T_N(u)R_D(u)$ $P_3(u) = R_N^2(u) + (1-u^2)T_N^2(u).$

$$\delta(z)N(z^{-1})\big|_{z=e^{j\theta},u=-\cos\theta} = \frac{\delta(z)N_r(z)}{z^l}\Big|_{z=e^{j\theta},u=-\cos\theta}$$
$$= R(u,K_1,K_2) + \sqrt{1-u^2}T(u,K_1)$$

where $R(u, K_1, K_2) = -(u+1)P_1(u) - (1-u^2)P_2(u) - K_1(u+K_2)P_3(u)$ $T(u, K_1) = P_1(u) - (u+1)P_2(u) + K_1P_3(u).$

- For a fixed value of K_1 , we calculate the real distinct zeros t_i of $T(u, K_1)$ of odd multiplicity for $u \in (-1, 1)$: $-1 < t_1 < \cdots < t_k < +1$.
- Let i_{δ} , i_{N_r} be the number of zeros of $\delta(z)$ and $N_r(z)$ inside the unit circle, respectively, then we have

$$i_{\delta} + i_{N_r} - l = \frac{1}{2} \text{Sgn} \left[T^{(p)}(-1) \right] \left(\text{Sgn} \left[R\left(-1, K_1, K_2\right) \right] + 2 \sum_{j=1}^{k} (-1)^j \text{Sgn} \left[R\left(t_j, K_1, K_2\right) \right] + (-1)^{k+1} \text{Sgn} \left[R\left(+1, K_1, K_2\right) \right] \right).$$

Stabilization with PD Controllers

- Plant and Controller: $P(z) = \frac{N(z)}{D(z)}, \qquad C(z) = \frac{K_1(z K_2)}{z}$
- The characteristic polynomial: $\delta(z) = zD(z) + K_1(z K_2)N(z)$
- Consider

$$\delta(z)N(z^{-1})|_{z=e^{j\theta},u=-\cos\theta} = R(u,K_1,K_2) + j\sqrt{1-u^2}T(u,K_1)$$

where

$$R(u, K_1, K_2) = -uP_1(u) - (1 - u^2) P_2(u) - K_1(u + K_2) P_3(u)$$

$$T(u, K_1) = K_1 P_3(u) + P_1(u) - uP_2(u).$$

- Parameter separation has again been achieved, that is, K_1 appears only in the imaginary part and for fixed K_1 the real part is linear in K_2 .
- Thus the application of the root counting formulas will yield linear inequalities in K_2 , for fixed K_1 .

STABILIZATION WITH PID CONTROLLERS

- PID Controller: $C(z) = \frac{K_2 z^2 + K_1 z + K_0}{z(z-1)}$
- The characteristic polynomial becomes $\delta(z) = z(z-1)D(z) + (K_2z^2 + K_1z + K_0) N(z)$
- Multiplying the characteristic polynomial by $z^{-1}N(z^{-1})$, $z^{-1}\delta(z)N(z^{-1}) = (z-1)D(z)N(z^{-1}) + (K_2z + K_1 + K_0z^{-1})N(z)N(z^{-1})$.
- Using the Tchebyshev representations, we have $z^{-1}\delta(z)N(z^{-1}) = -(u+1)P_1(u) - (1-u^2)P_2(u) - [(K_0 + K_2)u - K_1]P_3(u) + j\sqrt{1-u^2}[-(u+1)P_2(u) + P_1(u) + (K_2 - K_0)P_3(u)] = R(u, K_0, K_1, K_2) + j\sqrt{1-u^2}T(u, K_0, K_2).$

- Let $K_3 := K_2 K_0$.
- Then $K_P = -K_1 2K_0$, $K_I = \frac{K_0 + K_1 + K_2}{T}$, and $K_D = K_0 T$.
- Hence we rewrite $R(u, K_0, K_1, K_2)$ and $T(u, K_0, K_2)$ as follows. $R(u, K_1, K_2, K_3) = -(u+1)P_1(u) - (1-u^2)P_2(u) - [(2K_2 - K_3)u - K_1]P_3(u)$ $T(u, K_3) = P_1(u) - (u+1)P_2(u) + K_3P_3(u)$
- The parameter separation achieved : K_3 appears only in the imaginary part and K_1, K_2, K_3 appear linearly in the real part.
- Thus by applying root counting formulas to the rational function on the left, and imposing the stability requirement yields linear inequalities in the parameters for fixed K_3 .
- The solution is completed by sweeping over the range of K_3 for which an adequate number of real roots t_k exist.

Example

• Plant:
$$G(z) = \frac{1}{z^2 - 0.25}$$

- Then $R_D(u) = 2u^2 1.25$, $T_D(u) = -2u$, $R_N(u) = 1$, $T_N(u) = 0$ $P_1(u) = 2u^2 - 1.25$, $P_2(u) = -2u$, $P_3(u) = 1$
- Since G(z) is of order 2 and C(z), the PID controller, is of order 2, the number of roots of $\delta(z)$ inside the unit circle is required to be 4 for stability.
- From Theorem (Root counting for a real polynomial),

$$i_i - i_2 = \underbrace{(i_\delta + i_{N_r})}_{i_1} - \underbrace{(l+1)}_{i_2}$$

where i_{δ} and i_{N_r} are the numbers of roots of $\delta(z)$ and the reverse polynomial of N(z) inside the unit circle, respectively and l is the degree of N(z).

- Since the required i_{δ} is 4, $i_{N_r} = 0$, and l = 0, $i_1 i_2$ is required to be 3.
- To illustrate the example in detail, we first fix $K_3 = 1.3$.
- Then the real roots of $T(u, K_3)$ in (-1, 1) are -0.4736 and -0.0264.
- Furthermore, Sgn[T(-1)] = 1, $i_1 i_2 = 3$ requires that:

 $\frac{1}{2}\operatorname{Sgn}[T(-1)]\left(\operatorname{Sgn}[R(-1)] - 2\operatorname{Sgn}[R(-0.4736)] + 2\operatorname{Sgn}[R(-0.0264)] - \operatorname{Sgn}[R(1)]\right) = 3$

• We have only one valid sequence satisfying the above equation,

 $\frac{\text{Sgn}[\text{R}(-1)] \quad \text{Sgn}[\text{R}(-0.4736)] \quad \text{Sgn}[\text{R}(-0.0264)] \quad \text{Sgn}[\text{R}(1)] \quad 2(i_1 - i_2)}{1 \quad -1 \quad 6}$

• From this valid sequence, we have the following set of linear inequalities.

 $\begin{aligned} -1.3 + K_1 + 2K_2 &> 0\\ -0.9286 + K_1 + 0.9472 &< 0\\ 1.1286 + K_1 + 0.0528K_2 &> 0\\ -0.2 + K_1 - 2K_2 &< 0. \end{aligned}$

Digital PID Controller Design

$$\begin{bmatrix} K_P \\ K_I \\ K_D \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0 \\ \frac{1}{T} & \frac{1}{T} & \frac{1}{T} \\ T & 0 & 0 \end{bmatrix} \begin{bmatrix} K_0 \\ K_1 \\ K_2 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0 \\ \frac{1}{T} & \frac{1}{T} & \frac{1}{T} \\ T & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & -2 & 2 \\ \frac{1}{T} & \frac{2}{T} & -\frac{1}{T} \\ 0 & T & -T \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix}.$$

Stability regions in (K_1, K_2, K_3) space (left) and (K_P, K_I, K_D) space (right)

27

Maximally Deadbeat Control

- The design scheme attempts to place the closed loop poles in a circle of minimum radius ρ. Let S_ρ denote the set of PID controllers achieving such a closed loop root cluster.
- We show below how S_{ρ} can be computed for fixed ρ . The minimum value of ρ can be found by determining the value ρ^* for which $S_{\rho^*} = \phi$ but $S_{\rho} \neq \phi, \rho > \rho^*$.

• PID Controller:
$$C(z) = \frac{K_2 z^2 + K_1 z + K_0}{z(z-1)}$$

• The characteristic equation

$$\delta(z) = z(z-1)D(z) + (K_2 z^2 + K_1 z + K_0) N(z).$$

• Note that
$$D(z)|_{z=-\rho u+j\rho\sqrt{1-u^2}} = R_D(u,\rho) + j\sqrt{1-u^2}T_D(u,\rho)$$

 $N(z)|_{z=-\rho u+j\rho\sqrt{1-u^2}} = R_N(u,\rho) + j\sqrt{1-u^2}T_N(u,\rho)$

Digital PID Controller Design

$$N(\rho^{2}z^{-1})|_{z=-\rho u+j\rho\sqrt{1-u^{2}}} = N(z)|_{z=-\rho u-j\rho\sqrt{1-u^{2}}}$$

= $R_{N}(u,\rho) - j\sqrt{1-u^{2}}T_{N}(u,\rho)$

• We evaluate

$$\rho^2 z^{-1} \delta(z) N\left(\rho^2 z^{-1}\right) = \rho^2 z^{-1} \underbrace{\left[z(z-1)D(z) + \left(K_2 z^2 + K_1 z + K_0\right)N(z)\right]}_{\delta(z)} N\left(\rho^2 z^{-1}\right)$$

over the circle \mathcal{C}_{ρ}

$$\rho^{2} z^{-1} \delta(z) N\left(\rho^{2} z^{-1}\right) \Big|_{z=-\rho u+j\rho\sqrt{1-u^{2}}} = -\rho^{2} (\rho u+1) P_{1}(u,\rho) - \rho^{3} \left(1-u^{2}\right) P_{2}(u,\rho) - \left[\left(K_{0}+K_{2}\rho^{2}\right)\rho u-K_{1}\rho^{2}\right] P_{3}(u,\rho) + j\sqrt{1-u^{2}} \left[\rho^{3} P_{1}(u,\rho) - \rho^{2} (\rho u+1) P_{2}(u,\rho) + \left(K_{2}\rho^{2}-K_{0}\right)\rho P_{3}(u,\rho)\right]$$

where
$$P_1(u,\rho) = R_D(u,\rho)R_N(u,\rho) + (1-u^2)T_D(u,\rho)T_N(u,\rho)$$

 $P_2(u,\rho) = R_N(u,\rho)T_D(u,\rho) - T_N(u,\rho)R_D(u,\rho)$
 $P_3(u,\rho) = R_N^2(u,\rho) + (1-u^2)T_N^2(u,\rho).$

- By letting $K_3 := K_2 \rho^2 K_0$,
- we have

$$\rho^{2} z^{-1} \delta(z) N\left(\rho^{2} z^{-1}\right) \Big|_{z=-\rho u+j\rho\sqrt{1-u^{2}}} = -\rho^{2} (\rho u+1) P_{1}(u,\rho) - \rho^{3} (1-u^{2}) P_{2}(u,\rho) - \left[\left(2K_{2}\rho^{2}-K_{3}\right) \rho u - K_{1}\rho^{2} \right] P_{3}(u,\rho) + j\sqrt{1-u^{2}} \left[\rho^{3} P_{1}(u,\rho) - \rho^{2} (\rho u+1) P_{2}(u,\rho) + K_{3}\rho P_{3}(u,\rho) \right].$$

• Fix K_3 , use the root counting formulas, develop linear inequalities in K_2, K_3 and sweep over the requisite range of K_3 . This procedure is then performed as ρ decreases until the set of stabilizing PID parameters just disappears.

Example

- We consider the same plant used in the previous example.
- Left figure shows the stabilizing set in the PID gain space at $\rho = 0.275$.

- For a smaller value of ρ , the stabilizing region in PID parameter space disappears. This means that there is no PID controller available to push all closed loop poles inside a circle of radius smaller than 0.275.
- From this we select a point inside the region that is

 $K_0 = 0.0048, \quad K_1 = -0.3195, \quad K_2 = 0.6390, \quad K_3 = 0.0435.$

• From the relationship between parameters, we have

$$\begin{bmatrix} K_P \\ K_I \\ K_D \end{bmatrix} = \begin{bmatrix} -1 & -2\rho^2 & 2 \\ \frac{1}{T} & \frac{\rho^2}{T} + \frac{1}{T} & -\frac{1}{T} \\ 0 & \rho^2 T & -T \end{bmatrix} \begin{bmatrix} K1 \\ K2 \\ K3 \end{bmatrix} = \begin{bmatrix} 0.3099 \\ 0.3243 \\ 0.0048 \end{bmatrix}$$

• Right figure shows the closed loop poles that lie inside the circle of radius $\rho = 0.275$. The roots are:

 $0.2500 \pm j0.1118$ and $0.2500 \pm j0.0387$.

• We select several sets of stabilizing PID parameters from the set obtained in the previous example (i.e., $\rho = 1$) and compare the step responses between them.

Maximum Delay Tolerance Design

• Finding the maximum values of L^* such that the stabilizing PID gain set that simultaneously stabilizes the set of plants

$$z^{-L}G(z) = \frac{N(z)}{z^{L}D(z)},$$
 for $L = 0, 1, \dots, L^{*}$

is not empty.

• Let S_i be the set of PID gains that stabilizes the plant $z^{-i}G(z)$. Then $\bigcap_{i=0}^{L} S_i$ stabilizes $z^i G(z)$ for all $i = 0, 1, \dots, L$.

• The right figure shows the stabilizing PID gains when L = 0, 1. As seen in the figure, the size of the set is reduced as the delay increases.

Digital PID Controller Design Stability region: K₃=1, L=0, 1 Stability region: K₃=1, L=0 ∽₀0 ∠° 0 -1 2 -1 2 1 0 0 K ĸ 0 –1 0 –1 K_{P} Kp Stability region is empty: $K_a=1$, L=0, 1, 2, 3 Stability region: $K_a=1$, L=0, 1, 2 ∽o 0 ∠° 0 -1 2 -1 2 0 0 0 -1 0 –1 ĸ K_{p} ĸ Κ_P

• In many systems, the set disappears for a large value of L^* . This is the maximum delay that can be stabilized by any PID controllers.

35