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Lecture 1 – Foundations

1.1 Recommended books

• Lynn. An introduction to the analysis and processing of signals. Macmillan.

• Oppenhein & Shafer. Digital signal processing. Prentice Hall

• Orfanidis Introduction to Signal Processing. Prentice Hall.

• Proakis & Manolakis. Digital Signal Processing: Principles, Algorithms and
Applications.

• Matlab Signal processing toolbox manual.
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1.2 Introduction

This course is ultimately concerned with the problem of computation, inference,

manipulation and decision making using 1- and 2-dimensional data streams (’sig-

nals’ and ’images’). The course starts by considering the foundations of modern

signal processing theory, defining terms and offering a simple but profound frame-

work under which data may be manipulated. Although theory is very important

in this subject area, an effort is made to provide examples of the major points

throughout the course.

1.3 Summary/Revision of basic definitions

For the sake of brevity in the nomenclature definitions and theorems are often

going to be introduced in their 1-d form (i.e. as signals) with the index variable

t or x . Please note that such an indexed set of samples is just a 1-d case of

a generic ordered set which could be 2-d or more, i.e. dependent on a set of

indices or variables, i , j or x, y for example. I try to keep to the convention that

f (x) is a 1-d system with 1-d frequency support indexed by u and f (x, y) is a

2-d system with 2-d frequency support indexed by u, v .
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1.3.1 Linear Systems

A linear system may be defined as one which obeys the Principle of Superpo-

sition. If f1(x) and f2(x) are inputs to a linear system which gives rise to outputs

r1(x) and r2(x) respectively, then the combined input af1(x) + bf2(x) will give

rise to an output ar1(x) + br2(x), where a and b are arbitrary constants.

Notes

• If we represent an input signal by some support in a frequency domain, Fin
(i.e. the set of frequencies present in the input) then no new frequency

support will be required to model the output, i.e.

Fout ⊆ Fin

• Linear systems can be broken down into simpler sub-systems which can be
re-arranged in any order, i.e.

f −→ g1 −→ g2 ≡ f −→ g2 −→ g1 ≡ f −→ g1,2
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1.3.2 Time or space Invariance

A time-invariant system is one whose properties do not vary with time (i.e. the

input signals are treated the same way regardless of their time of arrival); for

example, with discrete systems, if an input sequence f (x) produces an output

sequence r(x), then the input sequence f (x − xo) will produce the output se-
quence r(x − xo) for all xo. In the case of 2-d images, the system response does
not depend on the position within the image, i.e. not on xo, yo.

1.4 Linear Processes

Some of the common signal processing functions are amplification (or attenua-

tion), mixing (the addition of two or more signal waveforms) or un-mixing and

filtering. Each of these can be represented by a linear time-invariant “block” with

an input-output characteristic which can be defined by:

• The impulse response g(x) in the time domain.

• The transfer function G(u) in a frequency domain. We will see that the
choice of frequency basis may be subtly different from time to time.
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As we will see, there is (for many of the systems we examine in this course)

an invertable mapping between the time (image index) and (spatial) frequency

domain representations.

1.5 Convolution

Convolution allows the evaluation of the output signal from a LTI system, given

its impulse response and input signal.

The input signal can be considered as being composed of a succession of

impulse functions, each of which generates a weighted version of the impulse

response at the output, as shown in 1.1.
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Figure 1.1: Convolution as a summation over shifted impulse responses.
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The output at time x , r(x), is obtained simply by adding the effect of each

separate impulse function – this gives rise to the convolution integral :

r(x) =
∑
τ

{f (x − τ)dτ}g(τ) dτ→0−→
∫ ∞

0

f (x − τ)g(τ)dτ

τ is a dummy variable which represents time measured “back into the past” from

the instant x at which the output r(x) is to be calculated.

1.5.1 Notes

• Convolution is commutative. Thus:

r(x) is also

∫ ∞

0

f (τ)g(x − τ)dτ

• For discrete systems convolution is a summation operation:

r [n] =

∞∑
k=0

f [k ]g[n − k ] =
∞∑
k=0

f [n − k ]g[k ]
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1.6 Frequency-Domain Analysis

Linear (time-invariant) systems, by definition, may be represented (in the con-

tinuous case) by linear differential equations (in the discrete case by linear dif-

ference equations). Consider the application of the linear differential operator,

D = d/dx , to the function f (x) = esx :

Df (x) = sf (x)

An equation of this form means that f (x) is the eigenfunction of D. Just like the
eigen analysis you know from matrix theory, this means that f (x) and any linear

operation on f (x) may be represented using a set of functions of exponential

form, and that this function may be chosen to be orthogonal. This naturally

gives rise to the use of the Laplace and Fourier representations.

• The Laplace transform:

F (s) −→ Transfer function G(s) −→ R(s)

where,

F (s) =

∫ ∞

0

f (x)e−sxdx Laplace transform of f (x)
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R(s) = G(s)F (s)

where G(s) can be expressed as a pole-zero representation of the form:

G(s) =
A(s − z1) . . . (s − zm)

(s − p1)(s − p2) . . . (s − pn)

• The Fourier transform:

F (u) =

∫ ∞

−∞
f (x)e−i2πuxdx Fourier transform of f (x)

and

R(iu) = G(iu)F (iu)

The output time function can be obtained by taking the inverse Fourier

transform:

f (x) =
1

2π

∫ ∞

−∞
F (u)e i2πuxdu
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Theorem

Convolution in the time domain is equivalent to multiplication in the frequency

domain i.e.

r(x) = g(x) ∗ f (x) ≡ F−1{R(u) = G(u)F (u)}

and

r(x) = g(x) ∗ f (x) ≡ L−1{R(s) = G(s)F (s)}
Proof

Consider the general integral (Laplace) transform of a shifted function:

L{f (x − τ)} =
∫
x

f (x − τ)e−sxdx

= e−sτL{f (x)}

Now consider the Laplace transform of the convolution integral

L{f (x) ∗ g(x)} =
∫
x

∫
τ

f (x − τ)g(τ)dτe−sxdx

=

∫
τ

g(τ)e−sτdτL{f (x)}

= L{g(x)}L{f (x)}

By allowing s → iu we prove the result for the Fourier transform as well.
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1.7 Simple filtering - basics

It is very useful in image and signal processing to view transformations as input-

output relationships, specified by a transfer function.

f(x)
h(x)

r(x)

Figure 1.2: Transfer function model.
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The transfer function is defined by the impulse response of the system. This

specifies the response of the system to an impulse input (a dirac). The convolu-

tion theorem states that the response, r(x), of such an impulse input, i(x), may

be given as

r(x) = i(x) ∗ h(x)
where h(x) is the impulse response function. And for an arbitrary input, f (x)

r(x) = f (x) ∗ h(x)

or, by taking the FT

R(u) = F (u)H(u)

where H(u) is the transfer function in the Fourier domain. As F (u) represents

the spectrum of f (x), so multiplying by some function H(u) may be regarded as

modifying or filtering F (u) and hence filtering the data sequence f (x).

Key point : Filtering may be regarded as a multiplication in the spectral do-

main, or as a convolution in the image/signal domain.
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The Ideal LPF (ILPF) : Consists of H(u, v) = 1 if
√
(u2 + v 2) ≤ D and 0

otherwise. As the ILPF is symmetric about the origin in Fourier space, it requires

that the FT of the image is also centred on the origin.

The Butterworth LPF (BLPF) : Consists of

H(u, v) =

{
1 +

[
D(u, v)

D

]2n}−1
where D(u, v) =

√
(u2+ v 2) and D and n are filter settings The IHPF : Is the

inverse transfer function of the ILPF, and the corresponding Butterworth filter,

the BHPF, as the inverse of the BLPF.
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Figure 1.3: The ILPF and the BLPF
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Lecture 2 – The Fourier Domain & Digital Filters

2.1 The Fourier transform

Consider again the 1-D case of a signal f (x), the FT is defined as

F (u) =

∫ +∞

−∞
f (x) exp[−i2πux ]dx

and the inverse as

f (x) =

∫ ∞

−∞
F (u)e i2πuxdu

which form a Fourier transform pair. We note that the FT is, in general, a

complex function of the form F (u) = R(u) + iI(u). We call |F (u)| the Fourier
spectrum of f (x) and φ(u) = tan−1[I(u)/R(u)] the phase spectrum.
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2.1.1 2-D Fourier transform

There is no inherent change in theory for the 2-dimensional case, where f (x, y)

exists, so the FT, F (u, v) is given as

F (u, v) =

∫ ∫ +∞

−∞
f (x, y) exp[−i2π(ux + vy)]dxdy

and the inverse as

f (x, y) =

∫ ∫ +∞

−∞
F (u, v) exp[i2π(ux + vy)]dudv

We note that the above are separable

2.1.2 Some basic theorems

Here are some basic (and useful) theorems related to the FT. They are shown

for a 1-D system, for ease of reading and notation, and directly translate into

higher dimensions as above.

• Similarity theorem : if f (x)→ F (u) then f (ax)→ 1
|a|F (u/a)

• Addition theorem : if f (x), g(x) → F (u), G(u) then af (x) + bg(x) →
aF (u) + bG(u)
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• Shift or twist theorem : if f (x)→ F (u) then f (x−a)→ exp[−i2πua]F (u)

• Convolution theorem : if

f (x) ∗ g(x) =
∫
f (τ)g(x − τ)dτ

then FT [f (x)∗g(x)] = F (u)G(u). Note that this is of great use in filtering

• Power theorem : ∫
|f (x)|2dx =

∫
|F (u)|2du

i.e. a statement about conservation of energy.

• Derivative theorem : if f (x)→ F (u) then f ′(x) = d/dx [f (x)]→ iuF (u)

2.1.3 The discrete FT (DFT)

We sample the continuous (start with 1-D) function, f (x), at M points spaced

∆x apart. We now describe the function as

f (x) = f (xo + x∆x)
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where x now describes an index, with this transformation, u the Fourier varable

paired to x is discretised into M points. We thus obtain :

F (u) =
1

M

M−1∑
x=0

f (x) exp[−i2πux/M]

and

f (x) =

M−1∑
u=0

F (u) exp[i2πux/M]

and, for 2-D systems

F (u, v) =
1

M

1

N

M−1∑
x=0

N−1∑
y=0

f (x, y) exp[−i2π(ux/M + vy/N)]

and

f (x, y) =

M−1∑
u=0

N−1∑
v=0

F (u, v) exp[i2π(ux/M + vy/N)]

if y is sampled evenly at N sample points.

The sampling in the space domain, ∆x,∆y corresponds to a sampling in the

‘frequency’ domain of

∆u =
1

M∆x
∆v =

1

M∆y
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2.1.4 Some useful results using the DFT

• The total width of the samples in the x, y directions determines the lowest
spatial frequency we can resolve, umin = 1/(M∆x)

• The sample interval, ∆x,∆y , dictates the highest spatial frequency we can
resolve, umax = 1/(2∆x)

• The number of samples, M,N, dictates the number of spatial frequency
‘bins’ that can be resolved.

• Addition & linearity : as with continuous functions

• Shift theorem : : if f (x) → F (u) then f (x − a) → exp[−i2πua/M]F (u),
hence

f (x, y) exp[i2π(uox + voy)/M]→ F (u − uo, v − vo)

and

f (x − xo, y − yo)→ F (u, v) exp[−i2π(uxo + vyo)/M]
if we let uo = vo = M/2 then we can shift the frequency space to the centre

of the frequency square

f (x, y)(−1)x+y → F (u −M/2, v −M/2)
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• Discrete convolution :

f (x) ∗ g(x) =
M−1∑
m=0

f (m)g(x −m)

and

DFT [f (x) ∗ g(x)] = MF (u)G(u)

• Power theorem :
M−1∑
x=0

|f (x)|2 = M
M−1∑
u=0

|F (u)|2

• Periodicity :
F (u, v) = F (u +M, v) = F (u, v +M) = F (u +M, v +M)

Note that this leads us to deduce the aliasing theorem

• Rotation :
f (r, θ + θo)→ F (ω, φ+ θo)

• Average value : If we define the average value of the 2-D function as

f (x, y) =
1

M2

M−1∑
x=0

M−1∑
y=0

f (x, y) then f (x, y) = F (0, 0)
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• Laplacian : The Laplacian of a 2-D variable is defined as

∇2f (x, y) =
∂2f

∂x2
+
∂2f

∂y 2

The DFT of the above is hence

−(2π)2(u2 + v 2)F (u, v)

(each time we take a derivative we get a factor of i2π)

Trick : Plots of |F (u, v)| often decay very rapidly from a central peak, so it is
good to display on a log scale. Often the transform, F ′(u, v) = log[1+|F (u, v)|]
is used.
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Figure 2.1: Image (a), Fourier spectrum (b) and shifted Fourier spectrum (c).
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Figure 2.2: Some 2-D functions and their resultant DFTs
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Figure 2.3: Rotation in FT space (top) and 2-D Convolution (bottom).
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2.2 Other transforms

The FT represents a specific case in a more general transform theory. In the FT

the image is decomposed into a series of harmonic functions (sines and cosines).

These have the property of being orthogonal functions and form a complete basis

set. They are not the only such functions, however.

• FT kernel basis

• Walsh

• Hadamard

• Discrete cosine transform (DCT)

• Wavelets - localised functions.

We concentrate later in the course on the use of the DCT as this is the most

widely used of the above and forms the basis of JPEG compression. We also

look at wavelets as these form the basis of the JPEG-2000 compression scheme.

25



2.3 Digital filtering

2.3.1 The sampling process

This is performed by an analogue to digital converter (ADC) in which the con-

tinuous function f (x) is replaced by a “discrete function” f [k ], which is defined

only at x = kT , with k = 0, 1, 2. We thence only need consider the digitised

sample set f [k ] and the sample interval T . A simple generalisation allows for a

sampled set over the 2-D plane, with samples at u∆M, v∆N so that u, v indexes

the image pixels.

Aliasing

Consider f (x) = cos(π2
t
T ) (one cycle every 4 samples) and also f (t) = cos(

3π
2
x
T )

(3 cycles every 4 samples) as shown in the Figure. Note that the resultant

samples are the same. This result is referred to as aliasing.
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Figure 2.4: Aliasing.
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2.4 Introduction to the principles of digital filtering

We can see that the numerical processing is at the heart of the digital filtering

process. How can the arithmetic manipulation of a set of numbers produce a

“filtered” version of that set? Consider the noisy signal of figure 2.5, together

with its sampled version:

-2    -1    0      1      2
Figure 2.5: Noisy data.
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One way to (e.g) reduce the noise might be to try and smooth the data.

For example, we could try a polynomial fit using a least-squares criterion. If we

choose, say, to fit a parabola to every group of 5 points in the sequence, then, for

every point, we will make a parabolic approximation to that point using the value

of the sample at that point together with the values of the 4 nearest samples

(this forms a parabolic filter), as in Fig. 2.6

-2    -1    0      1      2

parabolic fit

centre point, k=0
Figure 2.6: Parabolic fit.
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p[k ] = s0 + ks1 + k
2s2

where p[k ] = value of parabola at each of the 5 possible values of k = {−2,−1, 0, 1, 2}
and s0, s1, s2 are the variables used to fit each of the parabolae to 5 input data

points.

We obtain a fit by finding a parabola (coefficients s0, s1 and s2) which best

approximates the 5 data points as measured by the least-squares error E:

E(s0, s1, s2) =

2∑
k=−2
(x [k ]− [s0 + ks1 + k2s2])2

Minimizing the least-squares error gives:

∂E

∂s0
= 0,

∂E

∂s1
= 0, and

∂E

∂s2
= 0

and thus:

5s0 + 10s2 =

k=2∑
k=−2

x [k ]

10s1 =

k=2∑
k=−2

kx [k ]
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10s0 + 34s2 =

k=2∑
k=−2

k2x [k ]

which therefore gives:

s0 =
1

35
(−3x [−2] + 12x [−1] + 17x [0] + 12x [1]− 3x [2])

s1 =
1

10
(−2x [−2]− x [−1] + x [1] + 2x [2])

s2 =
1

14
(2x [−2]− x [−1]− 2x [0]− x [1] + 2x [2])

The centre point of the parabola is given by:

p[k ] |k=0= s0 + ks1 + k2s2 |k=0= s0

Thus, the parabola coefficient s0 given above is the output sequence number

calculated from a set of 5 input sequences points. The output sequence so

obtained is similar to the input sequence, but with less noise (i.e. low-pass

filtered) because the parabolic filtering provides a smoothed approximation to

each set of five data points in the sequence. Fig. 2.7 shows this filtering effect.
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The magnitude response (which we will re-consider later) for the 5-point

parabolic filter is shown below in Fig. 2.8.
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Figure 2.8: Frequency response of 5-point parabolic filter.
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The filter which has just been described is an example of a non- recursive

digital filter, which are defined by the following relationship (known as a difference

equation):

r [k ] =

N∑
i=0

ai f [k − i ]

where the ai coefficients determine the filter characteristics. The difference

equation for the 5-point smoothing filter, therefore, is:

r [k ] =
1

35
(−3f [k + 2] + 12f [k + 1] + 17f [k ] + 12f [k − 1]− 3f [k − 2])

This is a non-causal filter since a given output value r [k ] depends not only on

previous inputs, but also on the current input f [k ], the input f [k + 1] and the

input f [k + 2]. The problem is solved by delaying the calculation of the output

value f [k ] (the centre point of the parabola) until all the 5 input values have been

sampled (i.e. a delay of 2T where T = sampling period), ie:

r [k ] =
1

35
(−3f [k ] + 12f [k − 1] + 17f [k − 2] + 12f [k − 3]− 3f [k − 4])

It is of importance to note that the equation r [k ] =
∑
ai f [k − i ] represents

a discrete convolution of the input data with the filter coefficients; hence these
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coefficients constitute the impulse response of the filter.

Proof:

Let f [k ] = 0, except at k = 0, where f [0] = 1. Then r [k ] =
∑

i ai f [k − i ] =
akf [0] (all terms zero except when i = k). This is equal to ak since f [0] = 1.

Therefore r [0] = a0; r [1] = a1; etc . . .. As there is a finite number of a’s, the

impulse response is finite. For this reason, non-recursive filters are also called

Finite-Impulse Response (FIR) filters.

As we will see, we may also formulate a digital filter as a recursive filter; in

which, the output r [k ] is also a function of previous outputs:

r [k ] =

N∑
i=0

ai f [k − i ] +
M∑
i=1

bir [k − i ]

Before we can describe methods for the design of both types of filter, we need

to review the concept of the z-transform.
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2.5 The z-transform

The z-transform is important in digital filtering because it describes the sampling

process and plays a role in the digital domain similar to that of the Laplace

transform in analogue filtering.

The Laplace transform of a unit impulse occurring at time x = kT is e−kT s .

Consider the discrete function f [k ] to be a succession of impulses, for example

of area f (0) occurring at x = 0, f (1) occurring at x = T , etc . . .. The Laplace

transform of the whole sequence would be:

Fd(s) = f (0) + f (1)e
−Ts + f (2)e−2Ts + . . .+ f [k ]e−kT s

The suffix d denotes the transform of the discrete sequence, not of the contin-

uous f (t).

Let us replace eTs by a new variable z , and rename Fd(s) as F (z):

F (z) = f (0) + f (1)z−1 + f (2)z−2 + . . . f [k ]z−k

For many functions, the infinite series can be represented in “closed form”, in

general as the ratio of two polynomials in z−1.
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2.5.1 The Pulse Transfer Function

This is the name for (z-transform of output)/(z-transform of input).

Let the impulse response, for example of an FIR filter, be a0 at t = 0, a1 at

x = T , . . . an at x = nT with n = 0 to N.

Let G(z) be the z-transform of this sequence:

G(z) = a0 + a1z
−1 + a2z

−2 + . . .+ aiz
−i + . . . aNz

−N

Let F (z) be an input expressed in the z-domain as:

F (z) = f [0] + f [1]z−1 + f [2]z−2 + . . .+ f [k ]z−k + . . .

The product G(z)F (z) is:

G(z)F (z) = (a0+a1z
−1+ . . . anz

−n+ . . . aNz
−N)(f [0]+ f [1]z−1+ . . . f [k ]z−k)

in which the coefficient of z−k is:

a0f [k ] + a1f [k − 1] + . . . anf [k − n] + . . . aNf [k − N]

This is nothing else than the value of the output sample at x = kT . Hence

the whole sequence is the z-transform of the output, say R(z), where R(z) =

G(z)F (z). Hence the pulse transfer function, G(z), is the z-transform of the

impulse response.
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For non-recursive filters:

G(z) =

N∑
n=0

anz
−n

For recursive filters:

R(z) =

N∑
n=0

aiz
−iF (z) +

M∑
i=m

biz
−iR(z)

G(z) =
R(z)

F (z)
=

∑
n anz

−n

1−
∑

m bmz
−m

2.5.2 z-plane pole-zero plot

Let z = esT , where T = sampling period. Since s = σ + i2πu, we have:

z = eσTe i2πuT

If σ = 0, then | z |= 1 and z = e i2πuT = cos 2πuT + i sin 2πuT , i.e. the
equation of a circle of unit radius (the unit circle) in the z-plane.

Thus, the imaginary axis in the s-plane (σ = 0) maps onto the unit circle in

the z-plane and the left half of the s-plane (σ < 0) onto the interior of the unit

circle.
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We know that all the poles of G(s) must be in the left half of the s-plane for

a continuous filter to be stable. We can therefore state the equivalent rule for

stability in the z-plane:

For stability all poles in the z-plane must be inside the unit circle.

2.6 Frequency response of a digital filter

This can be obtained by evaluating the (pulse) transfer function on the unit circle

( i.e. z = e2πiuT ).

Proof

Consider the general filter

r [k ] =

∞∑
n=0

anf [k − n]

NB: A recursive type can always be expressed as an infinite sum by dividing out:

eg., for G(z) =
a0

1− b1z−1
, we have r [k ] =

∞∑
n=0

a0.b
n
1f [k − n]
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Let input before sampling be cos(2πut + θ), sampled at t = 0, T, . . . , kT .

Therefore f [k ] = cos(2πukT + θ) = 12{e
i(2πukT+θ) + e−i(2πukT+θ)}

ie.r [k ] =
1

2

∞∑
n=0

ane
i{2πu[k−n]T+θ} +

1

2

∞∑
n=0

ane
−i2π{u[k−n]T+θ}

=
1

2
e i(2πukT+θ)

∞∑
n=0

ane
−i2πunT +

1

2
e−i2π(ukT+θ)

∞∑
n=0

ane
i2πunT

Now

∞∑
n=0

ane
−i2πunT =

∞∑
n=0

an(e
i2πuT )−n

But G(z) for this filter is

∞∑
n=0

anz
−n

and so

∞∑
n=0

ane
−i2πunT = G(z)z = e

i2πuT

Let G(z)z = e
i2πuT = Ae iφ.

Then ∞∑
n=0

ane
i2πunT = Ae−iφ (complex conjugate)
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Hence r [k ] = 12e
i(2πukT+θ)Ae iφ + 12e

−i(2πukT+θ)Ae−iφ

or r [k ] = A cos(2πukT + θ + φ) when f [k ] = cos(2πukT + θ)

Thus A and φ represent the gain and phase of the frequency response. i.e.

the frequency response (as a complex quantity) is

G(z)|z=e i2πuT
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Lecture 3 – Restoration : global filters

3.1 Noise removal

3.1.1 Signal in additive noise

Consider a signal f (x) corrupted by noise n(x) such that

s(x) = f (x) + n(x)

If the freqency support of the signal and the noise is different then we may recover

the signal by (typically) low-pass filtering.
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Figure 3.1: Simple low-pass filtering of additive noise
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3.1.2 Signal in multiplicative noise

Consider our signal corrupted by noise of the form:

s(x) = f (x)n(x)

One way we can work with this is to use the idea of homomorphic filtering.

Without loss of generality we can make s(x) > 0 for all x (ie just a DC shift).

Then we can take logs,

log s(x) = log f (x) + log n(x)

which is just an additive noise system. We can then (low-pass) filter this system

and invert the log (ie exponentiate) to obtain an enhanced signal or image.
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Figure 3.2: Homomorphic filtering of multiplicative noise.
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3.2 Inverse filters

In general, we will have something more to contend with than just a noise process.

Consider a camera with a blur. Consider taking a picture of a moving car, consider

a microphone with a non-perfect transfer function.

In general then, the signal or image we obtain will be (considering here the

additive noise case),

s(x) = b(x) ∗ f (x) + n(x)
where n(x) is our noise process and b(x) is a blur or convolution kernel. How do

we proceed to obtain our enhanced, restored f̂ (x)?

If we take a Fourier Transform of s(x) we obtain

S(u) = B(u)F (u) + N(u)

which yields

F (u) = B−1(u) (S(u)− N(u))
or, if we can filter out the effects of n(x) easily (using a low-pass filter, for

example)

F (u) = B−1(u)S(u)

where B−1(u) is the inverse filter which corrects for the deterministic corruption

of the original. Consider a simple ‘raised cosine’ blur, shown below...
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When we know the convolution kernel, b(x), we can achieve almost perfect re-

sults...
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The example above was all in the absence of the noise, n(x).
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Noisy deconvolution is a messy business! Also, in all the examples looked at above

we assume we know the convolution kernel, b(x). This may be reasonable if we

measure the spread of a camera lens, e.g. but for arbitrary images and signals

we don’t always know this. There are methods, so called blind deconvolution
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approaches, which can solve this but they are outside the scope of this course.

3.2.1 Motion blur

Let the true image be f (x, y). Let the displacement in the x, y directions be

α(t), β(t). Hence, over a time period −T/2, T/2 the resultant image is given
by

g(x, y) =

∫ T/2

−T/2
f (x − α(t), y − β(t))dt

Taking the FT gives

G(u, v) =

∫ T/2

−T/2

∫ ∫
f (x − α(t), y − β(t)) exp{−i2π(ux + vy)}dxdydt

Letting ξ = x − α(t) and ν = y − β(t) so

G(u, v) =

∫ T/2

T/2

(∫ ∫
f (ξ, ν)e−i2π(uξ+vν)dξdν

)
exp{−i [uα(t) + vβ(t)]}dt

The term in the brackets is just the FT of f (x, y) ie F (u, v) which is independent

of t, so

G(u, v) = F (u, v)

∫ T/2

T/2

exp{−i2π[uα(t) + vβ(t)]}dt
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which is of the form

G(u, v) = F (u, v)H(u, v)

or

g(x, y) = f (x, y) ∗ h(x, y)
If the motion is constant, i.e α(t) = Kt and β(t) = Lt then

H(u, v) =

∫ T/2

T/2

exp{−i2π[uK + vL]t}dt

=
sin(π[uK + vL]T )

π[uK + vL]

i.e. a sinc function.
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3.2.2 Other noise

The noise looked at above was additive or multiplication noise in which each

datum of our signal was corrupted. Other noise exists, for example we may have

a certain probability of corruption, such that most pixels or samples are fine, but

once in a while we get a huge noise spike. We will look at this kind of noise, that

‘replaces’ the true sample with an outlying one, later in this course.

3.3 The Wiener filter

The Wiener Filter is a noise filter based on Fourier iteration. its main advantage

is the short computational time it takes to find a solution.

Consider a situation such that there is some underlying, uncorrupted signal f (t)

that is required to measure. Error occur in the measurement due to imperfection

in equipments, thus the output signal is corrupted. There are two ways the signal

can be corrupted: First, the equipment can convolve, or ‘smear’ the signal. This

occurs when the equipment doesn’t have a perfect delta function response to the

signal. Let r(t) be the smeared signal and g(t) be the (known) response that

caused the convoltion. Then r(t) is related to f (t) by:

r(t) = f (t) ∗ g(t)
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or

R(u) = F (u)G(u)

where R, F, G are Fourier Transform of r, f , g. The second source of signal

corruption is the unknown background noise n(t). Therefore the measured signal

c(t) is a sum of r(t) and n(t):

c(t) = r(t) + n(t)

To deconvolve r to find f , simply divide R(u) by G(u) i.e.

F (u) =
R(u)

G(u)

in the absense of noise n. To deconvolve c where n is present then one needs

to find an optimum filter function φ(t) or Φ(u) which filters out the noise and

gives a signal by:

F̃ (u) =
C(u)Φ(u)

G(u)

where f̃ (t) is as close to the original signal as possible. For f̃ (t) to be similar to

f (t), their squared difference is as close to zero as possible, i.e.∫
|f (t)− f̃ (t)|2dt

54



or ∫
|F (u)− F̃ (u)|2du

is minimised. After substitution and using the fact that the expectation of cross

terms between R(u) and N(u) are zero we require the following to be minimised∫
|G(u)|−2

(
|R(u)|2|1−Φ(u)|2 + |N(u)|2|Φ(u)|2

)
du

The best filter is one where the above integral is a minimum at every value of u.

This is when,

Φ(u) =
|R(u)|2

|R(u)|2 + |N(u)|2
Now we can make the approximation

|R(u)|2 + |N(u)|2 ≈ |C(u)|2

hence

Φ(u) ≈
|R(u)|2

|C(u)|2
From the above theory, it can be seen that a program can be written to Wiener

Filter signal from noise using Fourier Transform.
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Figure 3.3: Extracting Fourier terms needed in Wiener filter.
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There is another way to Wiener filtering a signal but this time without Fourier

Transforming the data – this is the Mean-Squared Method.

The Mean-squared Method uses the fact that the Wiener Filter is one that is based

on the least-squared principle, i.e. the filter minimises the square error between

the actual output and the desired output. To do this, first the variance of the

data matrix is to be found. Then, a box window is moved over the image matrix,

moving one pixel at a time. In every box window, the local mean and variance

is found. The filtered value of each datum (at index x, y say) is found by the

following formula:

f̃x,y = µx,y +
σ2x,y − s2

σ2x,y
(cx,y − µx,y)

where f̃x,y is the filtered signal, µx,y is the local mean, σ
2
x,y is the local variance, s

2

is the noise variance of the entire data matrix, and cx,y is the original signal value.

From the above formula, it can be see that if the original signal is similar to the

local mean then the filtered value will be the local mean, and if the original signal

is very different from the local mean, then it will be filtered to give a higher/lower

intensity signal depending on the differences. Also, if the local variance is similar

to the matrix variance, which is around 1 (i.e. only noise exists in the box) then
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the filtered signal will be that of the local mean, which should be close to zero.

But if the local variance is much bigger than the matrix variance (i.e. when the

box is at the actual signal), then the signal will be amplified. As the box moves

through the entire matrix, it will calculate the solution to each pixel using the

above formula, thus filtering the data.

The Wiener filter has been here introduced in its 2-d guise, but it is trivial to

go to 1-d.
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Figure 3.4: Wiener filter (bottom right) improves over flat average filter (bottom left). 5 pixel square used in

both cases.
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Figure 3.5: Wiener filter adaptively removing noise - estimation of mean and one σ.
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Lecture 4 – Local derivative filters

4.1 Estimating derivatives in signals & images

In many applications it is useful to be able to estimate simple measures of deriva-

tives of signals & images, to detect for example level changes or edges.

Consider a simple 1-d signal, f (t). A simple backwards-difference (first order)

estimate of the gradient may be written as

f ′(t) =
1

δt
(f (t)− f (t − 1))

We can also represent this as

f ′(t) = f (t) ∗ g(t)/δt

where g(t) = [−1, 1] is a filter kernel (i.e. a simple linear filter). We must
remember that such a filter has error of orderO(δt) whereas the central difference
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estimate of the gradient is better, with O(δt2). Letting δt = 1 for ease of

nomenclature gives

f ′(t) =
1

2
(f (t + 1)− f (t − 1)) = f (t) ∗ g(t)

where now g(t) = 1
2[−1, 0, 1]. So we have a local filter. This general approach

can, of course, be extended to higher-order derivatives. The second derivative,

f ′′(t) may be estimated as

f ′′(t) =
d

dt
f ′(t) = f (t) ∗ (g(t) ∗ g(t))

where the filter kernel that does the work is (g(t)∗g(t)). Letting g(t) = [−1, 1]
then we get a filter for the 2nd derivative as

g2(t) = [1,−2, 1]

which you will have seen before. To make sure that the signal power out equals

that in we can normalise with a factor of |1|+ | − 2|+ |1| = 4 so now g2(t) =
1/4[1,−2, 1]. The figures show this working on a signal.
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Figure 4.1: Derivative estimates
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We can, of course, simply extend this to images by running over the rows and

columns using one of the above filters, but normally we will extend these 1-d

filters to a 2-d mask, typically making the mask square. For example, the 1-d

central difference filter has a kernel (ignoring the factor of 1/2 for a moment)

g(t) = [−1, 0, 1]. In its 2-d guise, operating along rows (x-direction), a 2d mask
may be made

gx(x, y) =

 −1 0 1−1 0 1
−1 0 1


and similarly in the y -direction

gy(x, y) =

 −1 −1 −10 0 0

1 1 1
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Figure 4.2: Derivative estimates on a simple image in y , x directions and magnitude.
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We may formulate the total gradient in a 2-d setting via

g(x, y) =
√
g2x + g

2
y

which is shown in the right-hand subplot of the figure.

The 2-d second derivatives may also easily be inferred via

g2x(x, y) =

 1 −2 11 −2 1
1 −2 1


and similarly in the y -direction

g2y(x, y) =

 1 1 1

−2 −2 −2
1 1 1


and hence the 2-d Laplacian may be given as

∇2(x, y) = g2x(x, y) + g2y(x, y) =

 2 −1 2−1 −4 −1
2 −1 2


and these give edge information, as valid potential edge points have∇2(x, y) = 0.
The Figure shows |∇2(x, y)| applied to the ‘house’ image.
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Figure 4.3: Laplacian estimates on a simple image.
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The major problems with such simple gradient estimators, in both 1- and 2-d,

lie in their lack of robustness in the presence of noise. The way around this is

to use simple parametric functions, such as polynomials (as covered in the A1

course) or splines and then take derivatives of the fitted functions. The Figure

shows the profound improvement for a simple signal using this approach.
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Figure 4.4: Gradient estimates on a simple signal. Top: noisy signal, middle: simple gradient filter, bottom:

gradient of polynomial fit.
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4.2 Motion analysis

In many machine applications we would like to estimate the motion of objects -

which can be caused by

• Moving objects

• Moving camera, e.g. on a robot arm or an autonomous robot

• Moving objects and camera
In essence we ask the question: is there a difference in frames? We may use a

simple difference operation, either globally or over a small window

δf (x, y , t) =
∑
x,y

|f (x, y , t)− f (x, y , t − 1)|

however this only tells us about total pixel intensity changes - we would like to

obtain motion vectors on a pixel by pixel basis.

4.3 The motion field

A 2-D representation of a 3-D motion is called the motion field. Each pixel in

the image has a velocity vector v = (vx , vy)
T . This is the motion that we wish
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to estimate and use for moving object evaluation.

We first consider some different motions.

Figure 4.5: Basic motion configurations.
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Note that twisting and scaling both resemble deformation in that the object

appears to be non-rigid. This makes them more difficult to handle. To simplfy

much motion analysis a set of motion assumptions are often made.

1. Motion has a maximum velocity

2. Small (negligable) accelerations occur over the interval dt

3. Common motion – all points in the same object move in the same way

4. Mutual correpondence – objects remain rigid

One popular method of motion field estimation is optic flow

Optic flow

• Assumes we have access to frames with a small dt

• Can give false information e.g. spinning sphere or changing illumination

• Assumes, therefore, that the illumination is constant so the observed brigh-
ness of objects is constant over t

• Nearby points in the motion field have similar motion – i.e. the velocity field
is smooth
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Let f (x, y , t) be the grey-level at pixel x, y at time t. Consider the expansion

of partial derivatives

df = fxdx + fydy + ftdt

if f remains a constant function (brightness) then df ≈ 0 whence

−ft = fxvx + fyvy = ∇f · v

The most commonly used method to solve for the velocities is the Lucas-Kanade

method which assumes places a small neighbourhood around the pixel of interest,

in which it is assumed that the motion vector is stationary. If we define the set

{p1, p2, ..., pn} as the pixels in the neighbourhood then

fx(p1)vx + fy(p1)vy = −ft(p1)
fx(p2)vx + fy(p2)vy = −ft(p2)

... ...

fx(pn)vx + fy(pn)vy = −ft(pn)

which can be written in the form

Av = b

with solution given as

v = (ATA)−1ATb
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using the pseudo inverse of A.

Alternate approaches, such as the Horne-Schunck method assume that the

motion field is smooth. If we add the smoothness constraint from the motion

assuptions, then we may seek to minimize an ‘energy’ function given by

E(x, y , t) = (fxvx + fyvy + ft)
2 + λ2(|∇vx |2 + |∇vy |2)

where λ is the smoothness multiplier of the system. We may reduce this to

solving a set of simultaneous differential equations

f 2x vx + fx fyvy + fx ft − λ2∆vx = 0

fy fxvx + f
2
y vy + fy ft − λ2∆vy = 0

in which ∆ is the Laplacian operator,

∆ =
∂2

∂x2
+
∂2

∂y 2
.

The choice of λ changes the importance we give to the criterion of velocity

smoothness in the optical flow estimation. If we allow λ to be small we are liable

to find optic flow in textured areas as the motion assuptions inevitably fail. What

we wish, therefore, to estimate the smoothest velocity field consistent with the

motion. The ‘optimal’ value of λ may be found by trial and error or by a more
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principled approach.

OF in motion analysis

We will assume that perceived motion in the image may arise from four mecha-

nisms

1. Translation perpendicular to the line of sight

2. Scaling – translation along the line of sight

3. Rotation in plane perpendicular to line of sight

4. Rotation in line of sight plane

Note that we assume a rigid body (no deformation).

Optic flow can analyse these four motions

1. A set of parallel velocity vectors

2. A set of vectors with a common focal point

3. A set of concentric vectors

4. Sets of vectors anti-parallel to one another

75



Figure 4.6: Four basic motions detectable by optic flow.
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Figure 4.7: Example of optical flow applied to car motionm using the Lucas-Kanade method.
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Lecture 5 - Stochastic Models

5.1 Introduction

We now discuss autocorrelation and autoregressive processes; that is, the corre-

lation between successive values of a time series and the linear relations between

them. We also show how these models can be used for spectral estimation.

5.2 Autocorrelation

Given a time series xt we can produce a lagged version of the time series xt−T
which lags the original by T samples. We can then calculate the covariance

between the two signals

σxx(T ) =
1

N − 1

N∑
t=1

(xt−T − µx)(xt − µx) (5.1)
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where µx is the signal mean and there are N samples. We can then plot σxx(T )

as a function of T . This is known as the autocovariance function. The autocor-

relation function is a normalised version of the autocovariance

rxx(T ) =
σxx(T )

σxx(0)
(5.2)

Note that σxx(0) = σ
2
x . We also have rxx(0) = 1. Also, because σxy = σyx we

have rxx(T ) = rxx(−T ); the autocorrelation (and autocovariance) are symmetric
functions or even functions. Figure 5.1 shows a signal and a lagged version of it

and Figure 5.2 shows the autocorrelation function.
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Figure 5.1: Signal xt (top) and xt+5 (bottom). The bottom trace leads the top trace by 5 samples. Or we

may say it lags the top by -5 samples.
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Figure 5.2: Autocorrelation function for xt . Notice the negative correlation at lag 20 and positive correlation

at lag 40. Can you see from Figure 5.1 why these should occur?
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5.3 Autoregressive models

An autoregressive (AR) model predicts the value of a time series from previous

values. A pth order AR model is defined as

xt =

p∑
i=1

xt−iai + et (5.3)

where ai are the AR coefficients and et is the prediction error. These errors

are assumed to be Gaussian with zero-mean and variance σ2e . It is also possible

to include an extra parameter a0 to soak up the mean value of the time series.

Alternatively, we can first subtract the mean from the data and then apply the

zero-mean AR model described above. We would also subtract any trend from

the data (such as a linear or exponential increase) as the AR model assumes

stationarity.

The above expression shows the relation for a single time step. To show the

relation for all time steps we can use matrix notation.

We can write the AR model in matrix form by making use of the embedding

matrix, M, and by writing the signal and AR coefficients as vectors. We now
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illustrate this for p = 4. This gives

M =


x4 x3 x2 x1
x5 x4 x3 x2
.. .. .. ..

xN−1 xN−2 xN−3 xN−4

 (5.4)

We can also write the AR coefficients as a vector a = [a1, a2, a3, a4]
T , the

errors as a vector e = [e5, e6, ..., eN]
T and the signal itself as a vector X =

[x5, x6, ..., xN]
T . This gives
x5
x6
..

xN

 =

x4 x3 x2 x1
x5 x4 x3 x2
.. .. .. ..

xN−1 xN−2 xN−3 xN−4



a1
a2
a3
a4

+

e5
e6
..

eN

 (5.5)

which can be compactly written as

X =Ma+ e (5.6)

The AR model is therefore a special case of the multivariate regression model

(compare the above equation to that given in the second lecture). The AR

coefficients can therefore be computed from the equation

â = (MTM)−1MTX (5.7)
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The AR predictions can then be computed as the vector

X̂ =Mâ (5.8)

and the error vector is then e = X − X̂. The variance of the noise is then
calculated as the variance of the error vector.

To illustrate this process we analyse our data set using an AR(4) model. The

AR coefficients were estimated to be

â = [1.46,−1.08, 0.60,−0.186]T (5.9)

and the AR predictions are shown in Figure 5.3. The noise variance was estimated

to be σ2e = 0.079 which corresponds to a standard deviation of 0.28. The

variance of the original time series was 0.3882 giving a signal to noise ratio of

(0.3882− 0.079)/0.079 = 3.93.
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Figure 5.3: (a) Original signal (solid line), X, and predictions (dotted line), X̂, from an AR(4) model and (b)

the prediction errors, e. Notice that the variance of the errors is much less than that of the original signal.
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5.3.1 Random walks

If p = 1 and a1 = 1 then the AR model reduces to a random walk model, an

example of which is shown in Figure 5.4.
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Figure 5.4: A random walk.
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5.3.2 Relation to autocorrelation

The autoregressive model can be written as

xt = a1xt−1 + a2xt−2 + ...+ apxt−p + et (5.10)

If we multiply both sides by xt−k we get

xtxt−k = a1xt−1xt−k + a2xt−2xt−k + ...+ apxt−pxt−k + etxt−k (5.11)

If we now sum over t and divide by N − 1 and assume that the signal is zero
mean (if it isn’t we can easily make it so, just by subtracting the mean value from

every sample) the above equation can be re-written in terms of covariances at

different lags

σxx(k) = a1σxx(k − 1) + a2σxx(k − 2) + ...+ apσxx(k − p) + σe,x (5.12)

where the last term σe,x is the covariance between the noise and the signal. But

as the noise is assumed to be independent from the signal σe,x = 0. If we now

divide every term by the signal variance we get a relation between the correlations

at different lags

rxx(k) = a1rxx(k − 1) + a2rxx(k − 2) + ...+ aprxx(k − p) (5.13)
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This holds for all lags. For an AR(p) model we can write this relation out for

the first p lags. For p = 4
rxx(1)

rxx(2)

rxx(3)

rxx(4)

 =

rxx(0) rxx(−1) rxx(−2) rxx(−3)
rxx(1) rxx(0) rxx(−1) rxx(−2)
rxx(2) rxx(1) rxx(0) rxx(−1)
rxx(3) rxx(2) rxx(1) rxx(0)



a1
a2
a3
a4

 (5.14)

which can be compactly written as

r = Ra (5.15)

where r is the autocorrelation vector and R is the autocorrelation matrix. The

above equations are known, after their discoverers, as the Yule-Walker relations.

They provide another way to estimate AR coefficients

a = R−1r (5.16)

This leads to a more efficient algorithm than the general method for multivari-

ate linear regression (equation 5.7) because we can exploit the structure in the

autocorrelation matrix. By noting that rxx(k) = rxx(−k) we can rewrite the
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correlation matrix as

R =


1 rxx(1) rxx(2) rxx(3)

rxx(1) 1 rxx(1) rxx(2)

rxx(2) rxx(1) 1 rxx(1)

rxx(3) rxx(2) rxx(1) 1

 (5.17)

Because this matrix is both symmetric and a Toeplitz matrix (the terms along

any diagonal are the same) we can use a recursive estimation technique known

as the Levinson-Durbin algorithm.

5.3.3 Relation to partial autocorrelation

The partial correlation coefficients in an AR model are known as reflection coef-

ficients. At lag m, the partial correlation between xt−m and xt, is written as km;

the mth reflection coefficient. It can be calculated as the relative reduction in

prediction error

km =
Em−1 − Em
Em−1

(5.18)

where Em is the prediction error from an AR(m) model. The reflection coeffi-

cients are to the AR coefficients what the correlation is to the slope in a univariate

89



AR model; if the mth reflection coefficient is significantly non-zero then so is the

mth AR coefficient and vice-versa. This enables an intelligent selection of the

order of the model.

The Levinson-Durbin algorithm computes reflection coefficients as part of a

recursive algorithm for computing the AR coefficients. It finds k1 and from it

calculates the AR coefficient for an AR(1) model, a1. It then computes k2 and

from it calculates the AR coefficients for an AR(2) model (a2 is computed afresh

and a1 is re-estimated from a1 for the AR(1) model - as it will be different).

The algorithm continues by calculating km and the coefficients for AR(m) from

AR(m − 1).

5.4 Moving Average Models

A Moving Average (MA) model of order q is defined as

xt =

q∑
i=0

biet−i (5.19)

where et is Gaussian random noise with zero mean and variance σ
2
e . They are a

type of FIR filter. These can be combined with AR models to get Autoregressive
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Moving Average (ARMA) models

xt =

p∑
i=1

aixt−i +

q∑
i=0

biet−i (5.20)

which can be described as an ARMA(p,q) model. They are a type of IIR filter.

Usually, however, FIR and IIR filters have a set of fixed coefficients which

have been chosen to give the filter particular frequency characteristics. In MA or

ARMA modelling the coefficients are tuned to a particular time series so as to

capture the spectral characteristics of the underlying process.

5.5 Spectral Estimation

Autoregressive models can also be used for spectral estimation. An AR(p) model

predicts the next value in a time series as a linear combination of the p previous

values

xt = −
p∑
k=1

akxt−k + et (5.21)

where ak are the AR coefficients and et is IID Gaussian noise with zero mean and

variance σ2.
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The above equation can be solved by using the z-transform. This allows the

equation to be written as

apz
t−p + ap−1z

t−(p−1) + ...+ z t = et (5.22)

It can then be rewritten in terms of the pulse transfer function

H(z) =
et

1 +
∑p

k=1 akz
−k (5.23)

Given that any complex number can be written in exponential form

z = exp(i2πuTs) (5.24)

where u is frequency and Ts is the sampling period we can see that the frequency

domain characteristics of an AR model are given by

P (f ) =
σ2eTs

|1 +
∑p

k=1 ak exp(−ik2πuTs)|2
(5.25)

An AR(p) model can provide spectral estimates with p/2 peaks; therefore if

you know how many peaks you’re looking for in the spectrum you can define the

AR model order. Alternatively, AR model order estimation methods should auto-

matically provide the appropriate level of smoothing of the estimated spectrum.
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Figure 5.5: Power spectral estimates of two sinwaves in additive noise using (a) Discrete Fourier transform

method and (b) autoregressive spectral estimation.

AR spectral estimation has two distinct advantages over methods based on

the Fourier transform (i) power can be estimated over a continuous range of

frequencies (not just at fixed intervals) and (ii) the power estimates have less

variance.
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Lecture 6 - Multi-variate systems

6.1 Introduction

We now consider the situation where we have a number of time series and wish to

explore the relations between them. We first look at the relation between cross-

correlation and multivariate autoregressive models and then at the cross-spectral

density and coherence.

6.2 Cross-correlation

Given two time series xt and yt we can delay xt by T samples and then calculate

the cross-covariance between the pair of signals. That is

σxy(T ) =
1

N − 1

N∑
t=1

(xt−T − µx)(yt − µy) (6.26)
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where µx and µy are the means of each time series and there are N samples

in each. The function σxy(T ) is the cross-covariance function. The cross-

correlation is a normalised version

rxy(T ) =
σxy(T )√

σxx(0)σyy(0)
(6.27)

where we note that σxx(0) = σ2x and σyy(0) = σ2y are the variances of each

signal. Note that

rxy(0) =
σxy
σxσy

(6.28)

which is the correlation between the two variables. Therefore unlike the autocor-

relation, rxy is not equal to 1 even at zero lag/lead. Figure 6.1 shows two time

series and their cross-correlation.

95



0 20 40 60 80 100
−2

−1

0

1

2

3

4

Figure 6.1: Signals xt (top) and yt (bottom).
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Figure 6.2: Cross-correlation function rxy(T ) for the data in Figure 6.1. A lag of T denotes the top series, x ,

lagging the bottom series, y . Notice the big positive correlation at a lag of 25. Can you see from Figure 6.1

why this should occur ?
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6.2.1 Cross-correlation is asymmetric

First, we re-cap as to why the auto-correlation is a symmetric function. The

autocovariance, for a zero mean signal, is given by

σxx(T ) =
1

N − 1

N∑
t=1

xt−Txt (6.29)

This can be written in the shorthand notation

σxx(T ) = 〈xt−Txt〉 (6.30)

where the angled brackets denote the average value or expectation. Now, for

negative lags

σxx(−T ) = 〈xt+Txt〉 (6.31)

Subtracting T from the time index (this will make no difference to the expecta-

tion) gives

σxx(−T ) = 〈xtxt−T 〉 (6.32)

which is identical to σxx(T ), as the ordering of variables makes no difference to

the expected value. Hence, the autocorrelation is a symmetric function.

The cross-correlation is a normalised cross-covariance which, assuming zero

mean signals, is given by

σxy(T ) = 〈xt−Tyt〉 (6.33)
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and for negative lags

σxy(−T ) = 〈xt+Tyt〉 (6.34)

Subtracting T from the time index now gives

σxy(−T ) = 〈xtyt−T 〉 (6.35)

which is different to σxy(T ). To see this more clearly we can subtract T once

more from the time index to give

σxy(−T ) = 〈xt−Tyt−2T 〉 (6.36)

Hence, the cross-covariance, and therefore the cross-correlation, is an asymmetric

function.

To summarise: moving signal A right (forward in time) and multiplying with

signal B is not the same as moving signal A left and multiplying with signal B;

unless signal A equals signal B.

6.2.2 Windowing

When calculating cross-correlations there are fewer data points at larger lags than

at shorter lags. The resulting estimates are commensurately less accurate. To

take account of this the estimates at long lags can be smoothed using various

window operators.
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6.2.3 Time-Delay Estimation

If we suspect that one signal is a, possibly noisy, time-delayed version of another

signal then the peak in the cross-correlation will identify the delay. For example,

figure 6.1 suggests that the top signal lags the bottom by a delay of 25 samples.

Given that the sample rate is 125Hz this corresponds to a delay of 0.2 seconds.

6.3 Multivariate Autoregressive models

A multivariate autoregressive (MAR) model is a linear predictor used for modelling

multiple time series. An MAR(p) model predicts the next vector value in a d-

dimensional time series, xt (a row vector) as a linear combination of the p previous

vector values of the time series

x(t) =

p∑
k=1

x(t − k)a(k) + et (6.37)

where each ak is a d−by−d matrix of AR coefficients and et is an IID Gaussian
noise vector with zero mean and covariance C. There are a total of np = p×d×d
AR coefficients and the noise covariance matrix has d × d elements. If we write
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the lagged vectors as a single augmented row vector

x̃(t) = [x(t − 1), x(t − 2), ..., x(t − p)] (6.38)

and the AR coefficients as a single augmented matrix

A = [a(1), a(2), ..., a(p)]T (6.39)

then we can write the MAR model as

x(t) = x̃(t)A+ e(t) (6.40)

The above equation shows the model at a single time point t.

The equation for the model over all time steps can be written in terms of the

embedding matrix, M̃, whose tth row is x̃(t), the error matrix E having rows

e(t + p + 1) and the target matrix X having rows x(t + p + 1). This gives

X = M̃A+ E (6.41)

which is now in the standard form of a multivariate linear regression problem. The

AR coefficients can therefore be calculated from

Â =
(
M̃TM̃

)−1
M̃TX (6.42)

and the AR predictions are then given by

x̂(t) = x̃(t)Â (6.43)
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The predicion errors are

e(t) = x(t)− x̂(t) (6.44)

and the noise covariance matrix is estimated as

C =
1

N − np
eT (t)e(t) (6.45)

The denominator N − np arises because np degrees of freedom have been used
up to calculate the AR coefficients (and we want the estimates of covariance to

be unbiased).

6.3.1 Example

Given two time series and a MAR(3) model, for example, the MAR predictions

are

x̂(t) = x̃(t)A

x̂(t) = [x(t − 1), x(t − 2), x(t − 3)]

 a(1)a(2)
a(3)
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[
x̂1(t)x̂2(t)

]
(6.46)

=
[
x1(t − 1), x2(t − 1), x1(t − 2), x2(t − 2), x1(t − 3), x2(t − 3)

]


â11(1) â12(1)

â21(1) â22(1)

â11(2) â12(2)

â21(2) â22(2)

â11(3) â12(3)

â21(3) â22(3)


Applying an MAR(3) model to our data set gave the following estimates for

the AR coefficients, ap, and noise covariance C, which were estimated from

equations 6.42 and 6.45

a1 =

[
−1.2813 −0.2394
−0.0018 −1.0816

]

a2 =

[
0.7453 0.2822

−0.0974 0.6044

]

a3 =

[
−0.3259 −0.0576
−0.0764 −0.2699

]
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C =

[
0.0714 0.0054

0.0054 0.0798

]
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Figure 6.3: Signals x1(t) (top) and x2(t) (bottom) and predictions from MAR(3) model.
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6.4 Cross Spectral Density

Just as the Power Spectral Density (PSD) is the Fourier transform of the auto-

covariance function we may define the Cross Spectral Density (CSD) as the

Fourier transform of the cross-covariance function

P12(ω) =

∞∑
n=−∞

σx1x2(n) exp(−iωn) (6.47)

Note that if x1 = x2, the CSD reduces to the PSD. Now, the cross-covariance

of a signal is given by

σx1x2(n) =

∞∑
l=−∞

x1(l)x2(l − n) (6.48)

Substituting this into the earlier expression gives

P12(ω) =

∞∑
n=−∞

∞∑
l=−∞

x1(l)x2(l − n) exp(−iωn) (6.49)

By noting that

exp(−iωn) = exp(−iωl) exp(iωk) (6.50)
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where k = l −n we can see that the CSD splits into the product of two integrals

P12(ω) = X1(ω)X2(−ω) (6.51)

where

X1(ω) =

∞∑
l=−∞

x1(l) exp(−iωl) (6.52)

X2(−w) =
∞∑

k=−∞
x2(k) exp(+iωk)

For real signals X∗2(ω) = X2(−ω) where * denotes the complex conjugate.
Hence, the cross spectral density is given by

P12(ω) = X1(ω)X
∗
2(ω) (6.53)

This means that the CSD can be evaluated in one of two ways (i) by first

estimating the cross-covariance and Fourier transforming or (ii) by taking the

Fourier transforms of each signal and multiplying (after taking the conjugate of

one of them). A number of algorithms exist which enhance the spectral estimation

ability of each method.
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The CSD is complex

The CSD is complex because the cross-covariance is asymmetric (the PSD is

real because the auto-covariance is symmetric; in this special case the Fourier

transorm reduces to a cosine transform).

6.4.1 More than two time series

The frequency domain characteristics of a multivariate time-series may be sum-

marised by the power spectral density matrix. For d time series

P(ω) =


P11(ω) P12(ω) · · · P1d(ω)
P21(ω) P22(ω) · · · P2d(ω)
. . . . . . . . . . . . . . . . . . . . . . . . . .

Pd1(ω) Pd2(ω) · · · Pdd(ω)

 (6.54)

where the diagonal elements contain the spectra of individual channels and the

off-diagonal elements contain the cross-spectra. The matrix is called a Hermitian

matrix because the elements are complex numbers.
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6.4.2 Coherence and Phase

The complex coherence function is given by

ri j(ω) =
Pi j(ω)√

Pi i(ω)
√
Pj j(ω)

(6.55)

The coherence, or magnitude squared coherence (MSC), between two channels

is given by

MSCi j(ω) =| ri j(ω) |2 (6.56)

The phase spectrum, between two channels is given by

θi j(ω) = tan
−1

[
Im(ri j(ω))

Re(ri j(ω))

]
(6.57)

The MSC measures the linear correlation between two time series at each fre-

quency and is directly analagous to the squared correlation coefficient in linear

regression. As such the MSC is intimately related to linear filtering, where one

signal is viewed as a filtered version of the other. This can be interpreted as a

linear regression at each frequency. The optimal regression coefficient, or linear

filter, is given by

H(ω) =
Pxy(ω)

Pxx(ω)
(6.58)
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This is analagous to the expression for the regression coefficient a = σxy/σxx .

The MSC is related to the optimal filter as follows

r 2xy(ω) = |H(ω)|2
Pxx(ω)

Pyy(ω)
(6.59)

which is analagous to the equivalent expression in linear regression r 2 = a2(σxx/σyy).

At a given frequency, if the phase of one signal is fixed relative to the other,

then the signals can have a high coherence at that frequency. This holds even if

one signal is entirely out of phase with the other (note that this is different from

adding up signals which are out of phase; the signals cancel out. We are talking

about the coherence between the signals).

At a given frequency, if the phase of one signal changes relative to the other

then the signals will not be coherent at that frequency. The time over which the

phase relationship is constant is known as the coherence time.

6.4.3 Welch’s method for estimating coherence

Algorithms based on Welch’s method (such as the cohere function in the matlab

system identification toolbox) are widely used. The signal is split up into a number

of segments, N, each of length T and the segments may be overlapping. The
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complex coherence estimate is then given as

r̂i j(ω) =

∑N
n=1X

n
i (ω)(X

n
j (ω))

∗√∑N
n=1X

n
i (ω)

2

√∑N
n=1X

n
j (ω)

2

(6.60)

where n sums over the data segments. This equation is exactly the same form

as for estimating correlation coefficients. Note that if we have only N = 1 data

segment then the estimate of coherence will be 1 regardless of what the true

value is (this would be like regression with a single data point). Therefore, we

need a number of segments.

Note that this only applies to Welch-type algorithms which compute the CSD

from a product of Fourier transforms. We can trade-off good spectral resolution

(requiring large T ) with low-variance estimates of coherence (requiring large N

and therefore small T ). To an extent, by increasing the overlap between segments

(and therefore the amount of computation, ie. number of FFTs computed) we

can have the best of both worlds.
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6.4.4 Multivariate Autoregressive (MAR) models

Just as the PSD can be calculated from AR coefficients so the PSD’s and CSD’s

can be calculated from MAR coefficients. First we compute

A(ω) = I+

p∑
k

ak exp(−ikωT ) (6.61)

where I is the identity matrix, ω is the frequency of interest and T is the sampling

period. A(ω) will be complex. This is analagous to the denominator in the

equivalent AR expression (1 +
∑p

k=1 ak exp(−ikωt)). Then we calculate the
PSD matrix as follows

PMAR(ω) = T [A(ω)]
−1C

[
A(ω)∗T

]−1
(6.62)

where C is the residual covariance matrix. Once the PSD matrix has been

calculated, we can calculate the coherences of interest using equation 6.56.

6.5 Example

To illustrate the estimation of coherence we generated two signals. The first,

x , being a 10Hz sine wave with additive Gaussian noise of standard deviation
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Figure 6.4: Coherence estimates from (a) Fourier transform method and (b) Multivariate Autoregressive

model.

0.3 and the second y being equal to the first but with more additive noise of

the same standard deviation. Five seconds of data were generated at a sample

rate of 128Hz. We then calculated the coherence using (a) Welch’s modified

periodogram method with N = 128 samples per segment and a 50% overlap

between segments and smoothing via a Hanning window and (b) an MAR(8)

model.
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Ideally, we should see a coherence near to 1 at 10Hz and zero elsewhere.

However, the coherence is highly non-zero at other frequencies. This is because

due to the noise component of the signal there is power (and some cross-power)

at all frequencies. As coherence is a ratio of cross-power to power it will have a

high variance unless the number of data samples is large. You should therefore

be careful when interpreting coherence values.
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Lecture 7 – Non-linear filters

7.1 Order statistic filters – the median filter

Consider a set of p digital samples from f [n− p + 1] : f [n]. Order the set from
smallest to largest, and let this sample set be z [1] : z [p]. Order statistic filters

thence perform linear filtering on this ordered set, rather than the original.

What use might this be? Consider a signal, corrupted by spiking noise, as in

Fig 7.1.
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Figure 7.1: (top) Spiky signal. (bottom) median filtered output, p = 5
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We see that the signal (a sine wave) is corrupted by impulsive noise. The

effect of this noise is that the maximal and minimal values we observe in any

small window on the data are likely to be caused by the noise process, not from

the signal.

If we apply a filter mask to the ordered set z [k ] such that the output of the

filter is just the middle value in the set (I assume that p is odd). This value is the

median of the values and the filter is refered to as the median filter. How well it

does at removing impulsive noise is shown in the lower plot of the figure.

7.2 Mathematical morphology

In general, such order statistic filters can be generalised to a set of filter operations

which respond to the ‘shape’ of the data. Mathematical Morphological filters

allow both 1-d and 2-d (images in grey-scale and binary images) filtering using

this idea.

• Algebraic system of operators acting on complex shapes

• Decompose into meaningful parts

• Separate from extraneous parts
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• ‘Optimal’ reconstruction from distorted, noisy forms

Example of non-morphological algebraic system – convolution & its frequency

domain representation. We may describe any function as a sum of harmonic

components. This enables the ‘undoing’ of noise corruption etc. by filtering i.e.

convolving with some kernel function.

What the algebra of convolution does for linear systems, so the algebra of math-

ematical morphology does for shape.

• Shape is a primary carrier of information in machine vision and in many signal
processing applications.

• Identification & decomposition of objects

• Binary morphology

• Grey-scale morphology

• Set theory
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• Apply to sets in any dimension
(signals & binary vision d = 2, grey-scale d = 3)

7.3 Primary morphological operations

• Dilation

• Erosion

7.3.1 Dilation

• Combinations of two sets

• Vector addition of set elements
If A,B are sets in N-space (EN) with element sets a = {a1, ..., aN} and b =
{b1, ..., bN} then the dilation of A by B is defined as

A⊕ B = {c ∈ EN | c = a + b for all [a ∈ A, b ∈ B]}
This operation may be more simply regarded as a translation operation. If Ba
represents a translation such that the origin of B now lies on point a of A, then

A⊕ B =
⋃
a∈A

Ba
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The following figure illustrates this

A

B

A B

Figure 7.2: Binary dilation

• Commutative, A⊕ B = B ⊕ A

• A⊕ B =
⋃
b∈B

Ab

• A represents image, B the structuring element
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• O ∈ B or not? (see figure)

• Dilation is associative

(A⊕ B)⊕ C = A⊕ (B ⊕ C)

i.e. a chain rule

A A B

B

Figure 7.3: O ∈ B or not?
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Figure 7.4: Dilation. Empty (blank) squares are now coloured dark, and binary 1 squares are white. (left)

Original data, (middle) Structure element with origin at middle left and (right) resultant dilation.

Figure 7.5: Dilation. (left) data, (middle) structure element with origin at centre and (right) dilated data.
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What do different structure elements do?

• Dilation by a disk – isotropic expansion

• Dilation by a rod – row or column expansion
Example : ‘noise’ removal by dilation. Consider

J = I
⋂
(I ⊕ N4)

If a pixel has any 4-neighbours then it will be in I ⊕ N4, if not then it won’t. So
I
⋂
(I ⊕ N4) gives only those points which are 4-connected.

Some other points

• If Bt is a translated structure element, then
A⊕ Bt = (A⊕ B)t

• (B
⋃
C)⊕ A = (B ⊕ A)

⋃
(C ⊕ A)

• If J = A⊕ B where origin ∈ B then A ⊂ J – this is known as an extensive
operator

• If A ⊆ B then
A⊕K ⊆ B ⊕K
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Figure 7.6: Noise removal by intersection with dilated image. (top left) data, (top right) structure element,

origin in centre, (bottom left) dilation and (bottom right) output of intersection.
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7.4 Binary erosion

• Morphological dual to dilation

A	 B = {x ∈ EN | x + b ∈ A for all b ∈ B}
i.e. this may be regarded as a ‘search’ for B in A.

Figure 7.7: Binary erosion. (left) data, (middle) structure element, origin in centre, (right) eroded output.

Figure 7.8: Binary erosion. (left) data, (middle) structure element, origin in centre, (right) eroded output.
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• Dilation regarded as a union of translates

• Erosion regarded as an intersection of negative translates

A	 B =
⋂
b∈B

A−b

• Like dilation, erosion is increasing so if A ⊆ B then A	K ⊆ B 	K

• Eroding with a larger element gives a smaller result

Dilation & erosion bear a foreground/background relationship. This is formally

represented as a duality relationship.

For example, de Morgan’s laws for binary sets are have dual relationships be-

tween and and or functions.

(A
⋃
B)c = Ac

⋂
Bc

For binary images, there are two complement operators

• Logical – negation, A 7→ Ac

• Geometric – reflection about the origin, A 7→ AR
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(A	 B)c = Ac ⊕ BR

and

(A⊕ B)c = Ac 	 BR

• Erosion is not associative, i.e.

(A	 B)	 C 6= A	 (B 	 C)

• Any large erosion can be accomplished using a series of smaller ones

• Duality does not imply cancellation
if A = B 	 C

A⊕ C = (B 	 C)⊕ C 6= B

127



7.5 Uses

There are many uses of erosion / dilation, for example

• Use of erosion to calculate the genus of a binary image (the number of
connected components minus the number of holes)

• The ‘hit-and-miss’ transform (HaM). This Selects out pixels which have
certain geometric properties (e.g. corner points).

• Thickening and thinning

• Template matching – let the template be set T contained in a window W .
Look at all x in I for T and for W − T in Ic

Tx ⊆ I and (W − T )x ⊆ Ic

or, in terms of the HaM transform

I ⊗ (T, [W − T ])

128



7.6 Opening and Closing

• Perform morphological (shape) filtering. Analogous to bandpass/stop filters
in frequency domain

• Can select sub & super shapes of an image

• Opening / closing – like ideal BPFs. Once performed, repeated application
changes nothing (images are then said to be open or closed with respect to

some structure element)
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Opening

The opening of image A with stucture element K is defined, in terms of ero-

sion/dilation as :

A ◦K = (A	K)⊕K
If we let B = A	K then the above becomes

A ◦K = B ⊕K

Remembering that the set-element definition of dilation is the union of translates,

i.e.

B ⊕K =
⋃
b∈B

Kb

hence

A ◦K =
⋃

y∈A	K
Ky

and as the erosion A	K ⊆ A so

A ◦K =
⋃
Ky⊆A

Ky

This means that we can picture opening as sweeping K over A from the inside,

never allowing any part of K to go outside the boundary of A.
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K =

A

A   K

Figure 7.9: Opening – sweeping of element inside the image
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7.6.1 An example of shape extraction

A   K

A   K

r

w

A K

A - ( )

Figure 7.10: Shape extraction using opening

In morphological shape extraction, the order is important

• Apply the larger primitive first

• Eliminate the small structures first
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7.7 Closing

Opening sweeps over the inside of a binary object. Consider now the case of

complementing the image A 7→ Ac .

• Open this shape with element KR (the reflection of K)

• This sweeps over the inside of Ac

• Any small gaps between structures in A are small links in Ac and are removed

• Complement the resultant image

(Ac ◦KR)c

This is defined as the closing of A by K. We may think of this as sweeping the

outside of A using a structure element, KR.

• a duality exists (this can be proved from the dilation-erosion dualities also)
between opening and closing

(A ◦K)c = Ac •KR

(A •K)c = Ac ◦KR
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K =

A

A   K

R

Figure 7.11: Closing – sweeping of element outside the image
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Some more identities...

A⊕K = (A⊕K) ◦K
A	K = (A	K) •K
(A ◦K) ◦K = A ◦K
(A •K) •K = A •K

There are a variety of uses that morphological processing is put to, for example,

to enhance fine details in an image or to remove noise.
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7.7.1 The top hat transform

The THT is defined as

T = A− (A ◦K)
the resultant image, T , hence consists of those pixels in A whose local distribution

is smaller than that of the structure element K. We may thus think of the THT

as a kind of morphological ‘high-pass filter’.

Figure 7.12: Original, binary image, opened image, THT image. Structure element is 5 pixel square.
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7.7.2 Removing noise

There are many types of noise in grey-scale images, if we concentrate on bi-

nary images then noise is ‘salt-and-pepper’ (a.k.a. drop-out), where pixels are

randomly complemented. One strategy for removing such noise is to open then

close with a disk element, D, where the radius of D is small compared to the

local boundary curvature of components in the image, but is larger than the local

noise (which is pixel-by-pixel). A good choice may be r = 3 pixels, say.

• Perform (I ◦D) •D

• Opening removes impulsive noise in the background

• Closing removes dropout noise in objects

• Trade-off between noise removal and boundary changing

• At high noise levels, noise may by chance ‘floc’ into clumps which are not
removed by a small disk. But a larger disk smooths the object boundaries...
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7.8 Grey-scale Morphology

We have concentrated so far on binary images – often we want to directly process

the grey-scale original. G-S morphology lets us operate on shapes defined by their

grey-scale levels and spatial attributes (i.e. the image ‘space’ is now 3-D not 2-

D). We can then consider a grey-scale image with only one row - which is just a

signal - and then apply the same theory to obtain operators for signal processing.

7.8.1 The top surface & the umbra

Consider a grey-scale scan line (a row of an image, say) as shown in the figure.

The umbra (shadow) is defined by the G-S space lying below the scan line, fc ,

and is denoted as U[fc ], each point on the G-S line fc generates a set of umbra

points, {ui ,c}

The top of an umbra set is the set of maximum values of {ui ,c} at for each
column co-ordinate, i.e.

Tc = max{ui ,c}
so top and umbra are inverse operators,

T{U[f ]} = f
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c

U[ ]

fc

c

Figure 7.13: The top and umbra operations.
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7.9 Grey-scale dilation & erosion

G-S dilation is defined as

f ⊕ k = T{U[f ]⊕ U[k ]}

i.e. the ‘binary’ dilation of the two umbra functions.

In the same way we may define the G-S erosion as

f 	 k = T{U[f ]	 U[k ]}

We note that, like the binary versions, G-S erosion and dilation are order

independant.

f 	 k = k 	 f
f ⊕ k = k ⊕ f
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7.10 Grey-scale opening and closing

By the definitions of opening and closing in terms of erosions and dilations so :

f ◦ k = (f 	 k)⊕ k

f • k = (f ⊕ k)	 k
And a duality relationship holds; remember that for binary operators

(A ◦K)c = Ac •KR

for G-S

−(f ◦ k) = (−f ) • kR

Note that the G-S equivalent of complementing is inversion.

But, how do we interpret the G-S opening and closing more easily?

Using the definitions for G-S erosion & dilation :

f ◦ k = (f 	 k)⊕ k
= (T{U[f ]	 U[k ]})⊕ k
= T {U [T{U[f ]	 U[k ]}]⊕ U[k ]}
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and as T{U[f ]} = f so

f ◦ k = T{(U[f ]	 U[k ])⊕ U[k ]}

The operation on the umbrae in the above is equivalent to a binary opening

between U[f ] and U[k ], hence

f ◦ k = T{U[f ] ◦ U[k ]}

Remember that binary opening was thought of as the ‘sweeping’ of an element

round the inside boundary of an image structure.

We may thus interpret the G-S opening as the top surface of what remains of

U[f ] after sweeping U[k ] along the underside of f .

By application of the duality between opening and closing, we may interpret

G-S closing as sweeping the reflection of U[k ], U[k ]R, over the topside of f .

• Opening smooths from the underside

• Closing smooths from the topside

• Concepts of open, closed to an element hold

• (f ◦ k) ◦ k = f ◦ k

• (f • k) • k = f • k
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• Can perform, for example, a top-hat transform or noise cleaning

Going from a set of scan lines to a 3-D image (G-S) is easy :

• Opening sweeps the umbra of the structure element under the G-S surface,
smoothing from below

• Closing sweeps the inverted umbra of the element over the G-S surface,
smoothing from above

• Choice of structure element... Ball, paraboloid are commonly used
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Figure 7.14: Grey-scale opening
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Figure 7.15: Grey-scale closing
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Figure 7.16: Grey-scale morphological operations. Original, dilation and erosion
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Figure 7.17: Grey-scale morphological operations. Opening and closing.
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7.10.1 Signals

Applying the previous theory to signals is straightforward given that we can con-

sider an N point signal as just a 1 × N grey-scale image. We may apply all
the same operations - the examples below shows hoe the shape of the signal is

changed and how easily noise components may be removed.
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Figure 7.18: Simple signal structure element
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Figure 7.19: (a) Dilation, (b) Erosion, (c) Closing and (d) Opening of signal.
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Figure 7.20: (a) Closing and (b) Opening of noisy sine signal.
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Lecture 8 – Compression & coding

Why do we want to compress signals and images?

• Storage

• Bandwidth of transmission

When we consider compression, we rely on the fact that there is redundency

in the data.

Example PAL colour video 768 x 576 pixels at 25 frames per second = 33 Mbytes

per second. Hence a 2hour video = 238 Gbytes (cf CD holds 0.7 Gbytes, a DVD

holds 7 Gbytes). So we need compression!

Lossless or lossy? Lossless compression has no errors in reconstruction. Examples

include gzip, zip and winzip. Typical compression is of order 2:1 to 3:1.
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Lossy compression can achieve much better compression ratios, at the loss of

some detail. Achieved rates can be 10:1 to 50:1 and still have no preceivable

difference! For example...

ORIGINAL JPEG COMPRESSION 16:1
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8.1 Lossless compression

Let’s look at an image of a really simple object - a blob in an image...

There is a lot of redundency here. We can use a coding which tells us that at

particular pixels, as we scan from top left to bottom right, change their value.
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Hence

[0], [218,+1], [223,−1], [0]
tells us all we need to know about this image.

Consider the signal:
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It is clear that if we only describe changes to the data then we need less storage
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and so achieve compression!

Although very clever lossless compression schemes exist, much better com-

pression ratios can be achieved if we are prepared to lose some information.

8.2 Lossy compression

Let’s look at the intensity histogram.
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USE LONG CODE

USE SHORT CODE

We can save by using short codes for the intensity values that are very frequently

used, such as around 200, and long codes for the ones that are hardly used, such
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as around 150 or close to 0. Optimally it turns out that the code length

codelength ∝ − log p(intensity)
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If we took this approach we would end up with lossless compression, but we

could go even further and quantise little used values more coarsely. Doing this

kind of compression on the original signal or image is not the easiest way though.

We can represent the data in a basis format first.

8.2.1 Representations, DFT, DCT

f (x) =
∑
i

wiφi(x)

is a general linear basis. We can see that the Discrete Fourier Transform is of

this form.

F (u, v) =
1

M

1

N

M−1∑
x=0

N−1∑
y=0

f (x, y) exp[−i2π(ux/M + vy/N)]

It turns out that it is simpler to use a cosine expansion, as it saves on coding.

This is the Discrete Cosine Transform (DCT) and it is defined as

F (u, v) =
4c(u)c(v)

MN

M−1∑
x=0

N−1∑
y=0

f (x, y) cos
( π
M
u(x + 1/2)

)
cos

(π
N
v(y + 1/2)

)
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where

c(a) =
1√
(2)
for a = 0

= 1 for a = 1, 2, ...

The inverse DCT is defined as

f (x, y) =

M−1∑
u=0

N−1∑
v=0

c(u)c(v)F (u, v) cos
( π
M
u(x + 1/2)

)
cos

(π
N
v(y + 1/2)

)
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14:1 COMPRESSION 
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TRUNCATE 

20:1 COMPRESSION 
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8.2.2 JPEG

The Joint Photographics Experts Group (JPEG) compression scheme uses lossy

and lossless compression. The JPEG method

• World standard for compression of general images

• Allows progressive display of images (ie from low quality to high)

Rather than apply a transform to the entire image in one go, it uses the fact

that information is local and so divides the image into 8× 8 blocks on which the
DCT is performed.

DCT

Decode
coefficiends

Divide image
8 x 8 blocks

(lossy step)
coefficients

Quantise DCT Lossless code
coefficients

Reconstruct each
block from its

DCT coefficients
Recompose image
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log (abs(J)+1)

Truncated at J = 100

60:1 COMPRESSION
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The quantisation consists of two parts:

Weighting matrix The human eye does not have the same sensitivity to all frequen-

cies. Therefore, a coarse quantisation of the DCT coefficients corresponding to

high frequencies is less annoying for the human being than the same quantisation

applied to low frequencies. Hence, to obtain a minimal perceptual distortion;

each coefficients should be individually weighted: This is achieved by the use of

a weighting matrix which is sent as side information:

BASIS Z(u, v)

out(u, v) = round[F (u, v)/Z(u, v)]
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• Z(u, v) is chosen to weight coefficients which are visually salient

• we can scale Z(u, v) to alter compression quality

Uniform quantisation factor In addition to this weighting matrix. a uniform quantisa-

tion factor can be applied to the entire image. This will quantise into a set of M

levels. The more M the greater the number of coefficients that are not set to

zero and so the lower the compression. The resultant quantised coefficients are

then de-normalised by multiplication by Z(u, v).

Differential coding of DC coefficients The DC DCT coefficient of each block can be-

come quite large. Therefore only the difference between the DCT coefficient of

the current and the previous block is coded and transmitted.
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Figure 8.1: JPEG performance.
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8.3 Wavelets

The WT is an operation that forms a signal representation that, unlike the Fourier

transform for example, is local in both time and frequency domains. The WT

relies upon smoothing the time-domain signal at different scales; thus if ψs(x)

represents a wavelet at scale s , then the WT of a function f (x) ∈ L2(<) is
defined as a convolution given by :

Wf (s, x) = f ∗ ψs(x) (8.63)

Moreover, the signal f (x) may be reconstructed to a good approximation from

a knowledge of the modulus maxima of the WT alone, and hence these maxima

offer a compact representation ideal for noise removal. The scaled wavelets are

constructed from a ‘mother’ wavelet, ψ(x), such that :

ψs(x) = (1/s)ψ(x/s) (8.64)

with the function ψ(x) chosen to be a derivative of a smoothing function.

Just as a simple example we choose this smoothing function to be a Gaussian,

G(x), and define the ‘mother’ wavelet as :

ψ(x) =
dG(x)

dx
(8.65)

167



−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

We can allow the scale to vary - it turns out that we can just retain decimatation

by a constant factor, normally 2.

sn = 2sn−1 hence sn = 2
nso
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We note that as these wavelets are to be represented as a digital sequence,

the smallest wavelet requires at least 4 sample points for definition. This implies

that the wavelet decomposition has a high-frequency cut-off at fsamp/4.

Wavelets can be thought of (explicitely) as a filter bank whose frequencies are

in a scale-space.
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8.3.1 JPEG-2000

This new version of JPEG uses a similar approach to the original JPEG but

instead of DCT coding, wavelets are used instead. This gives a big improvement

in compression quality at the same compression levels.
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