
DigitalRebar Provision Documentation
Release v3.9

RackN team

Sep 13, 2018

Contents

1 Community Resources from https://rebar.digital 3

2 Install & Quick Start 5

3 Table of Contents 7

4 License 325

i

ii

DigitalRebar Provision Documentation, Release v3.9

simple, fast and open API-driven server provisioning.

Digital Rebar Provision (DRP) is a APLv2 simple Golang executable that provides a simple yet complete API-driven
DHCP/PXE/TFTP provisioning and workflow system.

DRP is designed to be a complete data center provisioning, content scaffolding and infrastructure workflow platform
with a cloud native architecture that completely replaces Cobbler, Foreman, MaaS or similar technologies. DRP offers
a single golang binary (less than 30MB) with no dependencies capable of installation on a laptop, RPi or switch
supporting both bare metal and virtualized infrastructure.

Key Features:

• API-driven infrastructure-as-code automation

• Multi-boot workflows using composable and reusable building blocks

• Event driven actions via Websockets API

• Extensible Plug-in Model for public, vendor and internal enhancements

• Supports ALL orchestration tools including Chef, Puppet, Ansible, SaltStack, Bosh, Terraform, etc

• RAID, IPMI, and BIOS Configuration (via commercial plugins)

Contents 1

https://rebar.digital
https://raw.githubusercontent.com/digitalrebar/provision/master/LICENSE
https://github.com/digitalrebar/provision

DigitalRebar Provision Documentation, Release v3.9

2 Contents

CHAPTER 1

Community Resources from https://rebar.digital

• Mailing List

• Chat/messaging via the Digital Rebar #community channel is our preferred communication method. If you
do not have a Slack invite to our channel, you can Request a Slack Invite

• Alternate chat vi Gitter Live Chat (Gitter.im) and IRC on Freenode #DigitalRebar

• Issues and Features

• Full Documentation (Github /doc sources are updatable via pull request).

• Videos on the DR Provision Playlist provide both specific and general background information.

3

https://travis-ci.org/digitalrebar/provision
https://codecov.io/gh/digitalrebar/provision
https://goreportcard.com/report/github.com/digitalrebar/provision
https://godoc.org/github.com/digitalrebar/provision
http://provision.readthedocs.io/en/stable/?badge=stable
http://provision.readthedocs.io/en/latest/?badge=latest
http://bit.ly/digitalrebarlist
http://www.rackn.com/support/slack/
https://gitter.im/digitalrebar/core?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
https://github.com/digitalrebar/provision/issues
http://provision.readthedocs.io/en/stable/
https://github.com/digitalrebar/provision/tree/master/doc
https://www.youtube.com/playlist?list=PLXPBeIrpXjfilUi7Qj1Sl0UhjxNRSC7nx

DigitalRebar Provision Documentation, Release v3.9

4 Chapter 1. Community Resources from https://rebar.digital

CHAPTER 2

Install & Quick Start

Note: We HIGHLY recommend using the latest version of the documentation, as it contains the most up to date
information. Use the version selector in the lower right corner of your browser.

Our Stable Quick Start has fast play-with-it steps. Don’t worry, they are very simple and take 10 to 20 minutes.

Want the Latest Quick Start? You’ll have access to the newest features in tested work for the next release. This is NOT
the bleeding edge!

Regular Install for more details on the install steps. These include production options. (Previous Version Docs)

5

http://provision.readthedocs.io/en/stable/doc/quickstart.html
http://provision.readthedocs.io/en/tip/doc/quickstart.html
http://provision.readthedocs.io/en/latest/doc/install.html
http://provision.readthedocs.io/en/latest/doc/quickstart.html

DigitalRebar Provision Documentation, Release v3.9

6 Chapter 2. Install & Quick Start

CHAPTER 3

Table of Contents

Reading on Github? Visit Generated Docs for a generated ToC.

3.1 Quick Start

Note: We HIGHLY recommend using the latest version of the documentation, as it contains the most up to date
information. Use the version selector in the lower right corner of your browser.

This quick start guide provides a basic installation and start point for further exploration. The guide has been designed
for UNIX systems: Mac OS, Linux OS, Linux VMs and Linux Packet Servers. While it is possible to install and
run Digital Rebar Provision on a Windows instance, we do not cover that here. The guide employs Curl and Bash
commands which are not typically considered safe, but they do provide a simple and quick process for start up.

It is possible to install on hypervisors and in virtualized environments (eg. VirtualBox, VMware Workstation/Fusion,
KVM, etc.). Each of these environments requires careful setup up of your network environment and consideration
with regard to competing DHCP services. The setup of these environments is outside the scope of this document.

For a full install, please see Install

3.1.1 Overview

• Read Preparation steps below

• Install DRP Endpoint (in “isolated” mode)

• Start Digital Rebar Provision service daemon

• Install Boot Environments (bootenvs) (OS media for installation)

• Configure a Subnet to answer DHCP requests

• Create a Workflow

7

http://provision.readthedocs.io/en/stable/README.html#rs_toc

DigitalRebar Provision Documentation, Release v3.9

• Set The Defaults for defaultBootEnv, defaultStage, unknownBootEnv, and defaultWorkflow

• boot your first Machine and Install your first Machine an OS on it

This document refers to the drpcli command line tool for manipulating the dr-provision service. We do not
specify any paths in the documentation. However, in our default quickstart for isolated mode, the drpcli tool will
NOT be installed in any system PATH locations. You must do this, or you may use the local setup symbolic link. For
example - simply change drpcli to ./drpcli in the documentation below. Or . . . copy the binary to a PATH
location.

You can perform all of the actions outlined in this document via the hosted web UX Portal. If you choose to use
the web Portal, please ensure the setup is completed by reviewing the output of the Info & Preferences panel
named System Wizard are completed successfully. Basic documentation on the Web Portal UX is available.

3.1.2 Preparation

Please make sure your environment doesn’t have any conflicts or issues that might cause PXE booting to fail. Some
things to note:

• only one DHCP server on a local subnet

• your Machines should be set to PXE boot the correct NIC (on the correct provisioning network interface)

• if you customize Reservations - you must also add all of the correct PXE boot options (see Creating a Reserva-
tion)

• you need the network information for the subnet that your target Machines will be on

• Mac OSX may require additional setup (see notes below)

• we rely heavily on the jq tool for use with the Command Line tool (drpcli) - install it if you don’t have it
already

3.1.3 Install

To begin, execute the following commands in a shell or terminal:

mkdir drp ; cd drp
curl -fsSL get.rebar.digital/stable | bash -s -- --isolated install

Note: If you want to try the latest code, you can checkout the development tip using curl -fsSL get.rebar.
digital/tip | bash -s -- --isolated --drp-version=tip install

The command will pull the stable dr-provision bundle and checksum from github, extract the files, verify pre-
requisites are installed, and create some initial directories and links.

Note: By default the installer will pull in the default Community Content packages. If you are going to add your own
or different (eg RackN registered content), append the --nocontent flag to the end of the install command.

Note: The “install.sh” script that is executed (either via ‘stable’ or ‘tip’ in the initial ‘curl’ command), has it’s own
version number independent of the Digital Rebar Provision endpoint version that is installed (also typically called ‘tip’
or ‘stable’). It is NOT recommend to “mix-n-match” the installer and endpoint version that’s being installed.

8 Chapter 3. Table of Contents

http://provision.readthedocs.io/en/tip/doc/ux/portal/systemux.html#machines

DigitalRebar Provision Documentation, Release v3.9

For reference, you can download the installer (install.sh), and observe what the shell script is going to do (highly recommended as a prudent security caution), to do so simply:

curl -fsSL get.rebar.digital/stable -o install.sh

Once the installer is downloaded, you can execute it with the appropriate install options (try bash ./install.
sh --help for details).

It is recommended that directory is used for this process. The mkdir drp ; cd drp command does this as the
drp directory. The directory will contain all installed and operating files. The drp directory can be anything.

Even for production installs (without --isolated), it is recommended to run the install.sh script in a directory
to contain all the install files for easy clean-up and removal if Digital Rebar Provision needs to be removed from the
system.

3.1.4 Start Digital Rebar Provision service

Our quickstart uses isolated mode install, and the dr-provision service is not installed in the system path. You
need to manually start dr-provision each time the system is booted up. The production mode installation (do
not specify the --isolated install flag) will install in to system directories, and provide helpers to setup init,
systemd, etc. start up scripts for the service.

Once the install has completed, your terminal should then display something like this (please use the output from
YOUR install version, the below is just an example that may be out of date with the current versions output):

Run the following commands to start up dr-provision in a local isolated
→˓way.
The server will store information and serve files from the ./drp-data
→˓directory.

sudo ./dr-provision --base-root=`pwd`/drp-data --local-content="" --default-
→˓content="" > drp.log 2>&1 &

Note: On MAC DARWIN there is one additional step. You may have to add a route for broadcast addresses to
work. This can be done with following command sudo route -n add -net 255.255.255.255 192.
168.100.1 In this example, the 192.168.100.1 is the IP address of the interface that you want to send messages
through. The install script should make suggestions for you.

The next step is to execute the sudo command which will start an instance of Digital Rebar Provision service that uses
the drp-data directory for object and file storage.

Note: Before trying to install a BootEnv, please verify that the installed BootEnvs matches the above BootEnv Names
that can be installed: drpcli bootenvs list | jq '.[].Name'

You may also use the RackN Portal UX by pointing your web browser to:

https://<ip_address_of_your_endpoint>:8092/

Please note that your browser will be redirected to the RackN Portal, pointing at your newly installed Endpoint. Use
the below username/password pair to authenticate to the DRP Endpoint. Additional capabilities and features can be
unlocked by also using the RackN Portal Login (upper right “Login” blue button).

The default username & password used for administering the dr-provision service is:

3.1. Quick Start 9

DigitalRebar Provision Documentation, Release v3.9

username: rocketskates
password: r0cketsk8ts

3.1.5 Install Boot Environments (bootenvs)

With Digital Rebar Provision running; it is now time to install the specialized Digital Rebar Provision content, and the
required boot environments (BootEnvs). We generally refer to this as “content”.

Note: This documentation assumes you are using the default drp-community-content pack.

During the install step above, the installer output a message on how to install install BootEnvs. You must install the sledgehammer BootEnv for Discovery and Workflow. You may selectively choose to install one of the Community Content BootEnvs that you wish to install to your Machines. To obtain a full list of Community Content supported BootEnvs, do:

drpcli bootenvs list | jq '.[].Name'

1. install the sledgehammer Boot Environment, used for discovery and provisioning workflow

2. install the CentOS Boot Environment <optional>

3. install the Ubuntu Boot Environment <optional>

These steps should be performed from the newly installed dr-provision endpoint (or via remote drpcli binary with the
use of the --endpoint flag):

drpcli bootenvs uploadiso sledgehammer
drpcli bootenvs uploadiso ubuntu-16.04-install
drpcli bootenvs uploadiso centos-7-install

The uploadiso command will fetch the ISO image as specified in the BootEnv JSON spec, download it, and then
“explode” it in to the drp-data/tftpboot/ directory for installation use. You may optionally choose one or both
of the CentOS and Ubuntu BootEnvs (or any other Community Content supported BootEnv) to install; depending on
which Operating System and Version you wish to test or use.

3.1.6 Configure a Subnet

A Subnet defines a network boundary that the DRP Endpoint will answer DHCP queries for. In this quickstart, we
assume you will use the local network interface as a subnet definition, and that your Machines are all booted from
the local subnet (layer 2 boundary). A Subnet specification must include all of the necessary DHCP boot options to
correctly PXE boot a Machine.

Note: DRP supports the use of external DHCP servers, DHCP Proxy, etc. However, this is considered an advanced
topic, and not discussed in the QuickStart.

Starting with Stable release v3.7.0 and newer, Digital Rebar Provision supports “magic” DHCP Boot Options for next-
server and bootfile (option code 67). This means that these options should work “magically” for you without needing
to be set.

HOWEVER - VirtualBox has a broken iPXE implementation.

If you are creating a subnet for an older version (before v3.7.0) of Digital Rebar Provision, you must set the next-server
to your DRP Endpoint IP Address, and set the Option 67 value to lpxelinux.0 for Legacy BIOS mode Machines.

10 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

If you are using VirtualBox, you must set the next-server value to the DRP Endpoint IP address _and_ the DHCP
Option 67 value to lpxelinux.0

Note: The UX will create a Subnet based on an interface of the DRP Endpoint with sane defaults - it is easier to
create a subnet via the UX.

If you are using a VirtualBox environment, and if you set the Name of the Subnet to vboxnet0, the UX will auto-
matically correct the Option 67 bootfile value to support the broken iPXE environment for VirtualBox networks.

You must still set all of the remaining network values correctly in your Subnet specification, even in the UX.

To create a basic Subnet from command line we must create a JSON blob that contains the Subnet and DHCP defini-
tions. Below is a _sample_ you can use. PLEASE ENSURE you modify the network parameters accordingly. Ensure
you change the network parameters according to your environment.

###
EXAMPLE - please modify the below values according to your environment !!
→˓!
###

echo '{
"Name": "local_subnet",
"Subnet": "10.10.16.10/24",
"ActiveStart": "10.10.16.100",
"ActiveEnd": "10.10.16.254",
"ActiveLeaseTime": 60,
"Enabled": true,
"ReservedLeaseTime": 7200,
"Strategy": "MAC",
"Options": [

{ "Code": 3, "Value": "10.10.16.1", "Description": "Default Gateway" },
{ "Code": 6, "Value": "8.8.8.8", "Description": "DNS Servers" },
{ "Code": 15, "Value": "example.com", "Description": "Domain Name" }

]
}' > /tmp/local_subnet.json

edit the above JSON spec to suit your environment
#
for v3.6.0 and older:
add a next-server after "Name" with the IP address of your DRP Endpoint,
→˓like:
NextServer": "10.10.16.10",
#
for v3.6.0 and older:
add DHCP Option 67 to the Options map, like:
{ "Code": 67, "Value": "lpxelinux.0", "Description": "Bootfile" },
#
vim /tmp/local_subnet.json

drpcli subnets create - < /tmp/local_subnet.json

Note: Option 67 (bootfile name) specifies the PXE boot file. The lpxelinux.0 boot file is for Legacy BIOS machines. If
you are booting a UEFI system, you will need to make more advanced changes to support UEFI boot mode. Please see
the FAQ on UEFI Boot Support - Option 67. DRP v3.7.0 and newer has magic helpers to try and set the Legacy/UEFI
bootfile for you, but custom usage or custom/unique PXE implementations may require changes.

3.1. Quick Start 11

DigitalRebar Provision Documentation, Release v3.9

3.1.7 Create a Workflow

Workflows define a series of Stages that a Machine transitions through, driven by Digital Rebar Provision. Not only do
the drive basic Operating System installation, but they also allow for advanced application installation and configura-
tion if desired. Workflows also allow for some basic power management functions for hardware that does not support
IPMI-like functions.

For our QuickStart use case, we’ll create two simple Workflows:

1. Discovery

2. Operating System Install

1. Create the Discovery Workflow

you must have installed the 'sledgehammer' ISO (see steps above)
drpcli workflows create '{ "Name": "discovery", "Stages": ["discover",
→˓"sledgehammer-wait"] } '

for packet.net environment, insert: "packet-discover",
between discover and sledgehammer-wait stages
requires 'packet-ipmi' plugin provider installed and plugin configured

2. Now we will create the Installation workflow. You can select any OS that is supported in the
drp-community-content package. Simply change the Name and the initial install Stage accordingly - use
the following jq command to filter the list of Available BootEnvs for installation:

drpcli stages list | jq '.[] | select(.Available==true) | .Name' | grep "\-
→˓install"

Using one of the Available BootEnvs as listed above, create, the OS install Workflow:

example for CentOS 7
drpcli workflows create '{ "Name": "centos7", "Stages": ["centos-7-install",
→˓ "complete"] } '

example for Ubuntu 18.04
drpcli workflows create '{ "Name": "ubuntu18", "Stages": ["ubuntu-18.04-
→˓install", "complete"] } '

example for Debian 8
drpcli workflows create '{ "Name": "debian9", "Stages": ["debian-9-install",
→˓ "complete"] } '

in all cases for packet.net environemnt, insert: "packet-ssh-keys",
between the "install" and "complete" stages
requires 'packet-ipmi' plugin provider installed and plugin configured

Note: You should receive a JSON blob back with the results of the command. It is important you check the Errors
field for any messages. For example, if you see:

"Stage debian-9-install is not available"

Then the BootEnv debian-9-install is not installed or available, and this Workflow will not install an Operating System.
Verify you successfully completed the drpcli bootenvs uploadiso ... steps outlined above.

12 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.1.8 Set The Defaults

One of the basic safety mechanisms for newly installed DRP Endpoints, is to prevent accidental Installation of a
Machine, if it should PXE boot against a DRP Endpoint . . . before you are ready for that to happen!! So we must first
set the default actions for a few system wide preferences. One of those defaults will point to our Discovery Workflow
(see Create a Workflow).

Any Machine that boots will by default be placed in to the Discovery Workflow, which will NOT install an Operating
System, but will enroll the machine for management by Digital Rebar Provision

Define the default Workflow, Default Stage, Default BootEnv, and the Unknown BootEnv:

make sure you use the 'Name' specified in the Discovery Workflow,
if you changed it from the default we specified
drpcli prefs set defaultWorkflow discovery unknownBootEnv discovery
→˓defaultBootEnv sledgehammer defaultStage discover

Now any “unknown” or new Machines that boot against the DRP Endpoint will be discovered and sit idly by waiting
(sledgehammer-wait) for your next commands (eg. install an operating system).

3.1.9 Install your first Machine

Content configuration is the most complex topic with Digital Rebar Provision. The basic provisioning setup with the
above “ISO” uploads, default preferences, and simple workflows will allow you to install an operating system on the
Machine with manual power management (on/off/reboot etc) transitions.

More advanced workflows and plugin_providers will allow for complete automation workflows with complex stages
and state transitions. To keep things “quick”, the below are just bare basics, for more details and information, please
see the Content documentation section.

1. PXE Boot your Machine

• ensure your test Machine is on the same Layer 2 subnet as your DRP endpoint, or that
you’ve configured your networks IP Helper to forward your DHCP requests to your DRP
Endpoint

• the Machine should be in the same subnet as defined in the Subnets section above (not
strictly required, but this is a simplified quickstart environment!)

• set your test machine or VM instance to PXE boot

• power the Machine on (or reboot it) and verify from the console that the NIC begins the
PXE boot process

• verify that the DRP Endpoint responds with a DHCP lease to the Machine

The Machine should boot in to the Sledgehammer BootEnv - which will bring the console to a
prompt that looks like (the version signature may differ):

Digital Rebar: Sledgehammer
→˓6122f34b46b5b74b668d6779e33f5fcd0f44a8cc
Kernel 3.10.0-693.21.1.el7.x86_64 on an x86_64

d0c-c4-7a-e5-48-b6 login:

2. Get your Machines UUID so you can set the Workflow for it

• once your machine has booted, and received DHCP from the DRP Endpoint, it will now
be “registered” with the Endpoint for installation

3.1. Quick Start 13

DigitalRebar Provision Documentation, Release v3.9

• by default, DRP will NOT attempt an OS install unless you explicitly direct it to (for
safety’s sake!)

• obtain your Machine’s ID, you’ll use it to define your BootEnv (see Filter Out gohai-
inventory for more detailed/cleaner syntax)

drpcli machines list | jq '.[].Uuid'

3. Set the Workflow to to your Operating System Workflow you defined above; replace <UUID> with
your machines ID from the above command:

example for CentOS 7 workflow
drpcli machines update <UUID> '{ "Workflow": "centos7" }'

example for Debian 9 workflow
drpcli machines update <UUID> '{ "Workflow": "debian9" }'

example for Ubuntu 18.04 workflow
drpcli machines update <UUID> '{ "Workflow": "ubuntu18" }'

4. Reboot your Machine - it should now kick off a BootEnv install as you specified above.

• watch the console, and you should see the appropriate installer running

• the machine should reboot in to the Operating System you specified once install is completed

Note: Digital Rebar Provision is capable of automated workflow management of the boot process, power control, and
much more. This quickstart walks through the simplest process to get you up and running with a single test install.
Please review the rest of the documentation for further configuration details and information on automation of your
provisioning environment.

3.1.10 More Advanced Workflow

The above procedure uses manual reboot of Machines, and manual application of the BootEnv definition to the Ma-
chine for final installation. A simple workflow can be used to achieve the same effect, but it is a little more complex
to setup. See the Digital Rebar Provision Operations documentation for further details.

3.1.11 Machine Power Management

Fully automated provisioning control requires use of advanced RackN features (plugins) for Power Management ac-
tions. These are done through the IPMI subsystem, with a specific IPMI plugin for a specific environments. Some
existing plugins exist for environments like:

• bare metal - hardware based BMC (baseboard management controller) functions that implement the IPMI pro-
tocol

• Virtual Box

• Packet bare metal hosting provider (https://www.packet.net/)

• Advanced BMC functions are supported for some hardware vendors (eg Dell, HP, IBM, etc)

Contact RackN for additional details and information.

14 Chapter 3. Table of Contents

https://www.packet.net/
https://www.rackn.com/company/contact-us/

DigitalRebar Provision Documentation, Release v3.9

3.1.12 Isolated vs Production Install Mode

The quickstart guide does NOT create a production deployment and the DRP Endpoint service will NOT restart on
failure or reboot. You will have to start the dr-provision service on each system reboot (or add appropiate startup
scripts).

A production mode install will install to /var/lib/dr-provision directory (by default), while an isolated install
mode will install to $PWD/drp-data.

For more detailed installation information, see: Install

3.1.13 Clean Up

Once you are finished exploring Digital Rebar Provision in isolated mode, the system can cleaned by removing the
directory containing the isolated install. In the previous sections, we used ‘’drp” as the directory containing the isolated
install. Removing this directory will clean up the installed files.

For production deployments, the install.sh script can be run with the remove argument instead of the install
argument to clean up the system. This will not remove the data files stored in /var/lib/dr-provision, /etc/
dr-provision, or /usr/share/dr-provision. The tools/install.sh script is in the directory where
you ran the install.sh script the first time. The script can be also redownloaded and run through curl | bash.

tools/install.sh remove

To additionally remove the data files, run instead:

tools/install.sh --remove-data remove

3.1.14 Ports

The Digital Rebar Provision endpoint service requires specific TCP Ports be accessible on the endpoint. Please see
Ports for more detailed information.

If you are running in a Containerized environment, please ensure you are forwarding all of the ports appropriately in
to the container. If you have a Firewall or packet filtering service on the node running the DRP Endpoint - ensure the
appropriate ports are open.

3.1.15 Videos

We constantly update and add videos to the DR Provision Playlist so please check to make sure you have the right
version!

3.2 Install

The install script does the following steps (in a slightly different order). See Quick Start for details about the script.

3.2.1 Get Code

The code is delivered by zip file with a sha256sum to validate contents. These are in github under the releases tab for
the Digital Rebar Provision project.

There are at least 3 releases to choose from:

3.2. Install 15

https://www.youtube.com/playlist?list=PLXPBeIrpXjfilUi7Qj1Sl0UhjxNRSC7nx
https://github.com/digitalrebar/provision/releases

DigitalRebar Provision Documentation, Release v3.9

• tip - This is the most recent code. This is the latest build of master. It is bleeding edge and while the project
attempts to be very stable with master, it can have issues.

• stable - This is the most recent stable code. This is a tag that tracks the version-based tag.

• v3.0.0 - There will be a set of Semantic Versioning (aka semver) named releases.

Previous releases will continue to be available in tag/release history. For additional information, see Releases.

When using the install.sh script, the version can be specified by the –drp-version flag, e.g. –drp-version=v3.0.0.

An example command sequence for Linux would be:

mkdir dr-provision-install
cd dr-provision-install
curl -fsSL https://github.com/digitalrebar/provision/releases/download/tip/
→˓dr-provision.zip -o dr-provision.zip
curl -fsSL https://github.com/digitalrebar/provision/releases/download/tip/
→˓dr-provision.sha256 -o dr-provision.sha256
sha256sum -c dr-provision.sha256
unzip dr-provision.zip

At this point, the install.sh script is available in the tools directory. It can be used to continue the process or continue
following the steps in the next sections. tools/install.sh –help will provide help and context information.

3.2.2 Configuration Options

Using dr-provision --help will provide the most complete list of configuration options. The following com-
mon items are provided for reference. Please note these may change from version to version, check the current scripts
options with the --help flag to verify current options.

--version Print Version and exit
--disable-provisioner Disable provisioner
--disable-dhcp Disable DHCP
--static-port= Port the static HTTP file server should listen on
→˓(default: 8091)
--tftp-port= Port for the TFTP server to listen on (default: 69)
--api-port= Port for the API server to listen on (default: 8092)
--dhcp-port= Port for the DHCP server to listen on (default: 67)
--backend= Storage backend to use. Can be either 'consul' or
→˓'directory' (default: directory)
--data-root= Location we should store runtime information in
→˓(default: /var/lib/dr-provision)
--static-ip= IP address to advertise for the static HTTP file
→˓server (default: 192.168.124.11)
--file-root= Root of filesystem we should manage (default: /var/
→˓lib/tftpboot)
--dhcp-ifs= Comma-seperated list of interfaces to listen for
→˓DHCP packets
--debug-bootenv= Debug level for the BootEnv System - 0 = off, 1 =
→˓info, 2 = debug (default: 0)
--debug-dhcp= Debug level for the DHCP Server - 0 = off, 1 = info,
→˓ 2 = debug (default: 0)
--debug-renderer= Debug level for the Template Renderer - 0 = off, 1
→˓= info, 2 = debug (default: 0)
--tls-key= The TLS Key File (default: server.key)
--tls-cert= The TLS Cert File (default: server.crt)

16 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.2.3 Prerequisites

dr-provision requires two applications to operate correctly, bsdtar and 7z. These are used to extract the contents of
iso and tar images to be served by the file server component of dr-provision. The install.sh script will attempt
to ensure these packages are installed by default. However, if you are installing via manual process or baking your
own installer, you must ensure these prerequisistes are met.

For Linux, the bsdtar and p7zip packages are required.

ubuntu

sudo apt-get install -y bsdtar p7zip-full

centos/redhat

sudo yum install -y bsdtar p7zip

Darwin

The new package, p7zip is required, and tar must also be updated. The tar program on Darwin is already bsdtar

• 7z - install from homebrew: brew install p7zip

• libarchive - update from homebrew to get a functional tar: brew install libarchive --force ;
brew link libarchive --force

At this point, the server can be started.

Note: In a future release, the required packages may be removed, which will help ensure cross-platform compatibility
without relying on these external dependencies.

3.2.4 Running The Server

Additional support materials in FAQ / Troubleshooting.

The install.sh script provides two options for running dr-provision.

The default values install the server and cli in /usr/local/bin. It will also put a service control file in place. Once that
finishes, the appropriate service start method will run the daemon. The install.sh script prints out the command to run
and enable the service. The method described in the Quick Start can be used to deploy this way if the –isolated flag is
removed from the command line. Look at the internals of the install.sh script to see what is going on.

Note: The default location for storing runtime information is /var/lib/dr-provision unless overridden by
--data-root

Alternatively, the install.sh script can be passed the –isolated flag and it will setup the current directory as an isolated
“test drive” environment. This will create a symbolic link from the bin directory to the local top-level directory for the
appropriate OS/platform, create a set of directories for data storage and file storage, and display a command to run.
This is what the Quick Start method describes.

The default username & password used for administering the dr-provision service is:

3.2. Install 17

DigitalRebar Provision Documentation, Release v3.9

username: rocketskates
password: r0cketsk8ts

Please review –help for options like disabling services, logging or paths.

Note: sudo may be required to handle binding to the TFTP and DHCP ports.

Once running, the following endpoints are available:

• https://127.0.0.1:8092/swagger-ui - swagger-ui to explore the API

• https://127.0.0.1:8092/swagger.json - API Swagger JSON file

• https://127.0.0.1:8092/api/v3 - Raw api endpoint

• https://127.0.0.1:8092/ux - Redirects to Community Portal (maintained by RackN)

• http://127.0.0.1:8091 - Static files served by http from the test-data/tftpboot directory

• udp 69 - Static files served from the test-data/tftpboot directory through the tftp protocol

• udp 67 - DHCP Server listening socket - will only serve addresses when once configured. By default, silent.

• udp 4011 - BINL Server listening socket - will only serve bootfiles when once configured. By default, silent.

The API, File Server, DHCP, BINL, and TFTP ports can be configured, but DHCP, BINL, and TFTP may not function
properly on non-standard ports.

If the SSL certificate is not valid, then follow the Generate Certificate steps.

Note: On MAC DARWIN there is one additional step. You may have to add a route for broadcast addresses to work.
This can be done with the following comand. The 192.168.100.1 is the IP address of the interface that you want to
send messages through. The install script will make suggestions for you.

sudo route add 255.255.255.255 192.168.100.1

3.2.5 Production Deployments

The following items should be considered for production deployments. Recommendations may be missing so operators
should use their best judgement.

Start DRP Without Root (or sudo)

If you are using DHCPD and TFTPD services of DRP, you will need to be able to bind to port 67 and 69 (respectively).
Typically Unix/Linux systems require root privileges to do this. DRP doesn’t start as root, and then drop privileges
with a fork() to another less privileged user by default.

To enable DRP endpoint to run as a non-privileged user and ensure a higher level of security, it’s possible to use the
Linux “setcap” (Capabilities) system to assign rights for the dr-provision binary to open low numbered (privileged)
ports. The process is relatively simple, but does (clearly/obviously) require root permissions initially to enable the
capabilities for the binary. Once the capabilities have been set, the dr-provision binary can be run as a standard user.

To enable any non-privileged user to start up the dr-provision binary and bind to privileged ports 67 and 69, do the
following:

in “isolated” mode, as the user you installed DRP as:

18 Chapter 3. Table of Contents

https://127.0.0.1:8092/swagger-ui
https://127.0.0.1:8092/swagger.json
https://127.0.0.1:8092/api/v3
https://127.0.0.1:8092/ux
http://127.0.0.1:8091

DigitalRebar Provision Documentation, Release v3.9

sudo setcap "cap_net_raw,cap_net_bind_service=+ep" $HOME/bin/linux/amd64/dr-
→˓provision

or, in “production” mode:

sudo setcap "cap_net_raw,cap_net_bind_service=+ep" /usr/local/bin/dr-provision

Start the “dr-provision” binary as an ordinary user, and now it will have permission to bind to privileged ports 67 and
69.

Note: The setcap command must reference the actual binary itself, and can not be pointed at a symbolic link.
Additional refinement of the capabilities may be possible. For extremely security conscious setups, you may want
to refer to the StackOverflow discussion (eg setting capabilities on a per-user basis, etc.): https://stackoverflow.com/
questions/1956732/is-it-possible-to-configure-linux-capabilities-per-user

System Logs

The Digital Rebar Provision service logs by sending output to standard error. To capture system logs, SystemD (or
Docker) should be configured to direct this output to the desired log management infrastructrure.

Job Log Rotation

If you are using the jobs system, Digital Rebar Provision stores job logs based on the directory configuration of the
system. This data is considered compliance related information; consequently, the system does not automatically
remove these records.

Operators should set up a job log rotation mechanism to ensure that these logs to not exhaust available disk space.

Removal of Digital Rebar Provision

To remove Digital Rebar Provision, you can use the tools/install.sh script to remove programs for a production
installs. The tools/install.sh script should be run as root or under sudo unless the setcap process was used.

tools/install.sh remove

To remove programs and data use.

tools/install.sh --remove-data remove

For iolated installs, remove the directory used to contain the isolated install. In the example above, the directory
dr-provision-install was used to isolate the install process. A command like this would clean up the system.

sudo rm -rf dr-provision-install

3.3 Environment Setup Instructions

This document indexes resources for setting up specific environments for use or testing of Digital Rebar Provision
with various tools.

• rs_setup_packet

3.3. Environment Setup Instructions 19

https://stackoverflow.com/questions/1956732/is-it-possible-to-configure-linux-capabilities-per-user
https://stackoverflow.com/questions/1956732/is-it-possible-to-configure-linux-capabilities-per-user

DigitalRebar Provision Documentation, Release v3.9

• VirtualBox _(not completed yet)_

• Local KVM _(not completed yet)_

3.4 Key Features

Digital Rebar Provision is a new generation of data center automation designed for operators with a cloud-first ap-
proach. Data center provisioning is surprisingly complex because it’s caught between cutting edge hardware and
arcane protocols embedded in firmware requirements that are still very much alive.

3.4.1 Swagger REST API & CLI

Cloud-first means having a great, tested API. Years of provisioning experience went into this 3rd generation design
and it shows. That includes a powerful API-driven DHCP server.

3.4.2 Security & Authenticated API

Not an afterthought, we use both HTTPS and user authentication for the API. Our mix of basic and bearer token
authentication recognizes that both users and automation will use the API. This brings a new level of security and
control to data center provisioning.

3.4.3 Stand-alone multi-architecture Golang binary

There are no dependencies or prerequisites, plus upgrades are drop in replacements. That allows users to experiment
isolated on their laptop and then easily register it as a SystemD service.

3.4.4 Nested Template Expansion

In Digital Rebar Provision, Boot Environments are composed of reusable template snippets. These templates can
incorporate global, profile or machine specific properties that enable users to set services, users, security or scripting
extensions for their environment. Configuration at Global, Group/Profile and Node level. Properties for templates can
be managed in a wide range of ways that allows operators to manage large groups of servers in consistent ways.

3.4.5 Multi-mode (but optional) DHCP

Network IP allocation is a key component of any provisioning infrastructure; however, DHCP needs are highly site
dependent. Digital Rebar Provision works as a multi-interface DHCP listener and can also resolve addresses from
DHCP forwarders. It can even be disabled if the environment already has a DHCP service that can configure a the
“next boot” provider.

3.4.6 Dynamic Provisioner templates for TFTP and HTTP

For security and scale, Digital Rebar Provision builds provisioning files dynamically based on the Boot Environment
Template system. This means that critical system information is not written to disk and files do not have to be
synchronized. Of course, when a file needs to be served it works too.

20 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.4.7 Node Discovery Bootstrapping

Digital Rebar’s long-standing discovery process is enabled in the Provisioner with the included discovery boot envi-
ronment. That process includes an integrated secure token sequence so that new machines can self-register with the
service via the API. This eliminates the need to pre-populate the Digital Rebar Provision system.

3.4.8 Multiple Seeding Operating Systems

Digital Rebar Provision comes with a long list of Boot Environments and Templates including support for many Linux
flavors, Windows, ESX and even LinuxKit. Our template design makes it easy to expand and update templates even
on existing deployments.

3.4.9 Two-stage TFTP/HTTP Boot

Our specialized Sledgehammer and Discovery images are designed for speed with optimized install cycles the improve
boot speed by switching from PXE TFTP to IPXE HTTP in a two stage process. This ensures maximum hardware
compatibility without creating excess network load.

3.5 Server Architecture

Digital Rebar Provision is provided by a single binary that contains tools and images needed to operate. These are
expanded on startup and made available by the file server services.

3.5.1 Services

Provisioning requires handoffs between multiple services as described in the Digital Rebar Provision Workflows sec-
tion. Since several of services are standard protocols (DHCP, TFTP, HTTP), it may be difficult to change ports without
breaking workflow.

The figure below illustrates the three core Digital Rebar Provision services including protocols and default ports. The
services are:

1. Web - These services provide control for the other services

(a) API: REST endpoints with Swagger definition

(b) UI: User interface and Swagger helpers

2. DHCP: Address management includes numerous additional option fields used to tell systems how to interact
with other data center services such as provisioning, DNS, NTP and routing.

3. Provision: sends files on request during provisioning process based on a template system:

(a) TFTP: very simple (but slow) protocol that’s used by firmware boot processes because it is very low
overhead.

(b) HTTP: faster file transfer protocol used by more advanced boot processes

3.5.2 Ports

The table describes the ports that need to be available to run Digital Rebar Provision. Firewall rules may need to be
altered to enable these services. The feature column indicates when the port is required. For example, the DHCP
server can be turned off and that port is no longer required.

3.5. Server Architecture 21

DigitalRebar Provision Documentation, Release v3.9

22 Chapter 3. Table of Contents

https://docs.google.com/drawings/d/1SVGGwQZxopiVEYjIM3FXC92yG4DKCCejRBDNMsHmxKE/edit?usp=sharing

DigitalRebar Provision Documentation, Release v3.9

Ports Feature Usage
67/udp DHCP DHCP Port
69/udp PROV TFTP Port
4011/udp BINL PXE/BINL port
8091/tcp PROV HTTP-base File Server
8092/tcp Always API and Swagger-UI

All default ports can be changed at start up time of the dr-provision service. NOTE that changing DHCP and
TFTP ports has wide ranging implications and is likely not a good idea (many firmware implementations can not be
changed to use alternate port numbers).

Port access requirements:

In all usage cases (67, 69, 4011, 8091, and 8092) the ports from the Machines being provisioned to the DRP Endpoint
must be accessible. The DRP Endpont must be able to reach the Machines being provisioned on port 67 for In
addition, the API and Swagger-UI port must be accessible to any operator/administrator workstations or systems that
are controlling and managing the DRP Endpoint service. Additionally any services or integrations that interact with
the DRP Endpoint (eg IPAM, DCIM, Asset Management, CMS, CMDB, etc) may need access to the API port.

3.6 Configuring the Server

Digital Rebar Provision provides both DHCP and Provisioning services but can be run with either disabled. This
allows users to work in environments with existing DHCP infrastructure or to use Digital Rebar Provision as an API
driven DHCP server.

3.6.1 DHCP Server (subnets)

The DHCP server is configured to enable Subnets that serve IPs and/or additional configuration information. It is
possible to run the DHCP server using only predefined IP Reservations or allow the DHCP server to create IP Leases
dynamically.

The DHCP server has three primary models

1. DHCP Listeners can be set on an IP for each server interface. These listeners will respond to DHCP broadcasts
on the matching network(s). Operators should ensure that no other DHCP servers are set up on the configured
subnets.

2. DHCP Relay allows other DHCP listeners to forward requests to the Digital Rebar Provision server. In this
mode, the server is passive and can easily co-exist with other DHCP servers. This mode works with the Provi-
sioner by setting the many optional parameters (like next boot) that are needed for PXE boot processes.

3. Proxy DHCP Mode - this allows for other DHCP servers to forward requests to the DRP Endpoint, and fillin nec-
essary PXE related options that may be missing from the original DHCP request options. In some environments,
very limited DHCP servers may be in use (which do not support the appropriate Options), or a DRP Endpoint
user may not have administrative authority over the initial DHCP server in use. In this case, the rs_model_subnet
should include the following configuration to enable Proxy DHCP mode:

drpcli subnets update mysubnet '{ "Proxy": true }'

3.6. Configuring the Server 23

DigitalRebar Provision Documentation, Release v3.9

3.6.2 Provisioner (bootenvs)

The Provisioner is a combination of several services and a template expansion engine. The primary model is a boot
environment (BootEnv) that contains critical metadata to describe an installation process. This metadata includes
templates that are dynamically expanded when machines boot.

Digital Rebar Provision CLI has a process that combines multiple calls to install BootEnvs. The following steps will
configure a system capable to Provision O/S on Discovered Systems.

drpcli bootenvs uploadiso sledgehammer
drpcli prefs set defaultStage "discover" unknownBootEnv "discovery"
→˓defaultBootEnv "sledgehammer"

In addition to the basic discovery capability provided by the sledgehammer BootEnv, you will most likely want to
install an Operating System related BootEnv. Basic example for this is as follows:

drpcli bootenvs uploadiso centos-7-install
drpcli bootenvs uploadiso ubuntu-16.04-install

Each content pack has various supported operating system BootEnv definitions. The default drp-community-content
pack contains the following BootEnvs:

1. centos-7-install: CentOS 7 (most recent released version)

2. centos-7.4.1708-install: Centos 7.4.1708 (this may change as new versions are released)

3. ubuntu-16.04-install: Ubuntu 16.04

4. debian-8: Debian 8 (Jessie) version

5. debian-9: Debian 9 (Sarge) version

Additional Operating System versions are available via registered RackN content pack add-ons.

3.6.3 Default Template Identity

These settings apply to TEMPLATES only not the API.

The default password for the default o/s templates is RocketSkates

The default user for the default ubuntu/debian templates is rocketskates

3.7 Releases

3.7.1 Version Scheme

There are two named releases and many semantic versioned releases.

• tip - This is the currently built master code. It follows the bleeding edge of the trees.

• stable - This is the default release used by install. It follows to most recently released code.

The other releases follow the v<Major>.<Minor>.<Patch> format. e.g. v3.0.0

The Install process will default to stable but can be modified to use other releases.

Docs are also generated for these as well.

The full version string generated by the build tool looks like this:

24 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• v3.0.0-tip-galthaus-dev-19-d012b1d6ba892c96c81c24ee93b668591663ca5c

• v3.0.0-tip-16-e1fa235dc28f7d278bc34a0d4db87c306d9d3ba8

• v3.0.0-0-821108c416dfc1486919baa52dae284975d2ad8b

The base form is base semver tag, extra pieces, gits ahead of that base, and the actual git commit checksum.

The extra pieces is either -tip to indicate that the build comes from the tip of the tree or -tip-<username>-dev where
the username is who built the custom build that is ahead of tip at the time.

The dr-provision server reports its version on start-up or can be queried by running:

dr-provision --version

The drpcli client reports its version by running:

drpcli version

3.7.2 Release Process

The team will regularly move the tip tag to track the leading edge of the master branch. This will make the resulting
build available in the releases tab.

Additionally, as releases cut at stable points, the stable tag will be set to the new most recent milestone. Release notes
and comments will be added to the github release page.

3.7.3 Release Notes

Each of the release specific changes are annotated in the Release Notes documentation. You can find the release notes
at:

https://github.com/digitalrebar/provision/releases

3.8 Upgrade

While not glamorous, existing code can be overwritten by a new install and restart. That is about it. Here are a few
more details.

We recommend that you backup your existing install as a safey measure.

3.8.1 Backup

It’s always a good policy to backup any important data, configuration, and content information that may be related
to an application before an upgrade. We strongly encourage you to backup your content prior to doing any upgrade
activity.

Isolated Install

For “isolated” modes (eg. originally installed with something like install.sh | bash -s -- install
--isolated) , perform the following tasks:

1. log in to your Provision server as the user you performed the original install as

3.8. Upgrade 25

https://github.com/digitalrebar/provision/releases
https://github.com/digitalrebar/provision/releases

DigitalRebar Provision Documentation, Release v3.9

2. copy the drp-data directory to a backup location:

D=`date +%Y%m%d-%H%M%S`
cp -r drp-data drp-data.backup.$D

Production Install

For “production” install modes (no --isolated flag provided to install.sh), perform the following tasks

1. log in to your Digital Rebar Provision server

2. for DRP version 3.0.5 or older:

D=`date +%Y%m%d-%H%M%S`
mkdir backups
sudo cp -r /var/lib/dr-provision backups/dr-provision.backup.$D
sudo cp -r /var/lib/tftpboot backups/dr-provision.backup.$D

3. for DRP version 3.1.0 or newer:

D=`date +%Y%m%d-%H%M%S`
mkdir backups
sudo cp -r /var/lib/dr-provision backups/dr-provision.backup.$D

3.8.2 Upgrade Steps

The basic steps are the same for both Isolated and Production install modes:

1. stop the existing service

2. run the installer with the “upgrade” flag

3. restart the service

Isolated Install

For isolated Install, update this way:

1. Stop dr-provision:

killall dr-provision

2. Return to the install directory

3. Run the install again

Remember to use --drp-version to set a version other than stable if desired
Curl/Bash from quickstart if desired, or this:
tools/install.sh upgrade --isolated

4. Restart dr-provision, as stated by the tools/install.sh output.

26 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Production Install

For non-isolated (aka “production mode”) Install, update this way:

1. Stop dr-provision, using the system method of choice

systemctl stop dr-provision

or

service dr-provision stop

2. Install new code - Use the same install technique as the first install, but change install to upgrade option.
Install

tools/install.sh upgrade --isolated

3. Start up dr-provision

systemctl start dr-provision

or

service dr-provision start

3.8.3 Version to Version Notes

In this section, notes about migrating from one release to another will be added.

Release Notes for each version can be found at: https://github.com/digitalrebar/provision/releases

v3.0.0 to v3.0.1

If parameters were added to machines or global, these will need to be manually re-added to the machine or global
profile, respectively. The machine’s parameter setting cli is unchanged. The global parameters will need to be changed
to a profiles call.

drpcli parameters set fred greg

to

drpcli profiles set global fred greg

v3.0.1 to v3.0.2

There are changes to templates and bootenvs. Upgrade will not update these automatically, because they may be in
use and working properly. it is necessary to restart by removing the bootenvs and templates directory in the data
store directory (usually drp-data/digitalrebar or /var/lib/dr-provision/digitalrebar) and re-uploading the bootenvs and
templates (tools/discovery-load.sh). Additionally, templates and bootenvs can be manually added and updated, with
drpcli.

v3.0.2 to v3.0.3

This is a quick turn release to address the issue with updating bootenvs. This is a CLI code and docs only change.

3.8. Upgrade 27

https://github.com/digitalrebar/provision/releases

DigitalRebar Provision Documentation, Release v3.9

v3.0.3 to v3.0.4

Nothing needs to be done.

v3.0.4 to v3.0.5

Nothing needs to be done.

v3.0.5 to v3.1.0

Release Notes for v3.1.0

The v3.1.0 install.sh script now supports an --upgrade flag. Depending on your installation method (eg
isolated or production mode), the behavior of the flag will alter the installation process slightly. Please ensure
you Backup your content and configurations first just in case.

For isolated mode:

install.sh --upgrade --isolated install

Note: You must be in the same directory path that you performed the initial install from for the upgrade to be
successful.

For production mode:

The production mode update process will move around several directories and consolidate them to a single lo-
cation. In previous versions (v3.0.5 and older), the following two default directories were used in production
mode:

/var/lib/dr-provision - Digital Rebar Provision configurations and
→˓information
/var/lib/tftpboot - TFTP boot root directory for serving content when TFTPD
→˓service enabled

In DRP v3.1.0 and newer, the content will be moved by the --upgrade function as follows:

/var/lib/dr-provision/digitalrebar - old "dr-provision" directory
/var/lib/dr-provision/tftpboot - old "tftpboot" directory

Note: Digital Rebar Provision version 3.1.0 introduced a new behavior to the subnets definitions. subnets may
now be enabled or disableed to selectively turn on/off provisioning for a given subnet. By default, a subnet
witll be disabled. After an upgrade, you MUST enable the subnet for it to function again. See Subnet Enabled for
additional details.

Subnet Enabled

Starting in v3.1.0, subnet objects have an enabled flag that allows for subnets to be turned off without deleting them.
This value defaults to false (off). To enable existing subnets, you will need to do the following for each subnet in your
system:

28 Chapter 3. Table of Contents

https://github.com/digitalrebar/provision/releases/tag/v3.1.0

DigitalRebar Provision Documentation, Release v3.9

drpcli subnets update subnet1 '{ "Enabled": true }'

Replace subnet1 with the name of your subnet. You may obtain a list of configured subnets with:

drpcli subnets list | jq -r '.[].Name'

v3.1.0 to v3.2.0

Release Notes for v3.2.0

There are fairly significant updates to the DRP Contents structure and layout in v3.2.0. If you are upgrading to v3.2.0
you must remove any Digital Rebar and RackN content that you have installed in your Provisioning endpoint. The
following outline will help you understand the necessary steps. If you have any issues with the upgrade process, please
drop by the Slack #community channel for additional help.

Please read the steps through carefully, and make note of the current contents/plugins you currently have installed.
You will have to re-add these elements again. You absolutely should backup your existing install prior to this upgrade.

1. Overview

Overiew of the update steps necessary, you should do in the following order.

1. Update DRP to “stable” (v3.2.0)

2. Remove Old Content

3. Add Content back that was removed

4. Update plugins

5. Fix up things

2. Updating DRP Endpoint

If you are running isolated, do this (remove --isolated if you are not using isolated mode):

curl -fsSL get.rebar.digital/stable | bash -s -- upgrade --isolated

This will force the update of the local binaries to v3.2.0 stable. Make sure you
stop DRP process (sudo killall dr-provision, or sudo systemctl stop
dr-provision.service).

Verify that your /etc/systemd/services/dr-provision start up file is still correct
for your environment, if running a production install type.

Restart DRP (follow --isolated mode start steps if in isolated mode; or sudo
systemctl start dr-provision.service)

If in --isolated mode, don’t forget to copy drpcli and/or dr-provision binaries to
where you prefer to keep them (eg $HOME/bin or /usr/local/bin, etc. . . .

3. Remove old content

With the rework of content, you need to remove the following content packages if they were
previously installed.

os-linux
os-discovery
drp-community-content (if you are really behind, Digital Rebar
→˓Community Content).
ipmi

(continues on next page)

3.8. Upgrade 29

https://github.com/digitalrebar/provision/releases/tag/v3.2.0

DigitalRebar Provision Documentation, Release v3.9

(continued from previous page)

packet
virtualbox

4. Put the content back

Install the new v3.2.0 content packs. Note that the names have changed, and the mix
of “ce-” and non-Community Content names has gone away. For example; what origi-
nally was drp-community-content which included things like ce-sledgehammer
is now moved to just sledgehammer. The RackN registered content of os-linux and
os-discovery have now been folded in to the below content packs.

drp-community-content - it is a must just get it.
task-library - New RackN library of services for doing interesting
→˓things.
drp-community-contrib - this is old or experimental things like
→˓centos6 or SL6.

5. Update the plugins

If you have any plugins installed, update them now.

To facilitate version tracking, plugins provide their own content as a injected content from the
plugin. When the plugin is added, it will also add a content layer that will show up in the
content packages section.

Previously, a plugin-provider was installed separately from a Content of the same name.

6. Fix things up

This is mainly if you were using the Community Content version of things
(drp-community-content, and BootEnvs with a prefix of ce-). The BootEnvs names
change, by removing the prefix of “ce-” from the name.

Make sure all the bootenvs are up to date and available. This is a task you should always do
after updating content. If the BootEnv is marked with an “X” in the UX, or "Available":
false from the CLI/API, you’ll need to reload the ISO for the BootEnv.

Then go to Info & Preferences and make sure your default stage and bootenvs are still valid.

• This is where ce-sledgehammer becomes sledgehammer and ce-discovery
becomes discovery

• The same with ce-ubuntu-16.04-install becomes ubuntu-16.
04-install.

• The same with ce-centos-7.4.1708-install becomes centos-7-install.

Example pseudo-script to make changes:

Please carefully read through this script and make sure it correlates to your installed content. It
is provided only as an example, and will absolutely require (possibly just minor) modifications
for your environment.

YOU MUST MODIFY THE RACK_AUTH variable appropriately for the download authenti-
cation to work correctly.

see all contents
drpcli contents list

list JUST the names of the contents - note what you have installed,

(continues on next page)

30 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

(continued from previous page)

you may need to re-install it below
drpcli contents list | jq -r '.[].meta.Name' | egrep -v
→˓"BackingStore|BasicStore"

list which plugins you have installed - note it, you may need to
→˓install
it below
drpcli plugin_providers list | jq '.[].Name'

go to RackN UX - log in, go to Hamburger menu (upper left, 3
→˓horizontal lines)
go to Organization - User Profile - copy your UUID for Unique User
→˓Identity
export RACKN_AUTH="?username=<UUID_Unique_User_Identity>"
export CATALOG="https://qww9e4paf1.execute-api.us-west-2.amazonaws.
→˓com/main/catalog"

get raw output of just the content packs
for CONTENT in `drpcli contents list | jq -r '.[].meta.Name' | egrep
→˓-v "BackingStore|BasicStore"`
do

echo "remove content: $CONTENT"
drpcli contents destroy $CONTENT

done

install content
for CONTENT in drp-community-content task-library drp-community-
→˓contrib
do

echo "install content: $CONTENT"
curl -s $CATALOG/content/${CONTENT}${RACKN_AUTH} -o $CONTENT.json
drpcli contents create -< $CONTENT.json

done

change "plug1", "plug2", etc... to the plugin provider names you
→˓need
examples: "slack", "packet-ipmi", "ipmi"
for PLUGIN in plug1 plug2 plug3
do

echo "install plugin: $PLUGIN"
curl -s $CATALOG/plugin/${PLUGIN}${RACKN_AUTH} -o $PLUGIN.json
drpcli contents create -< $PLUGIN.json

done

Ensure the Stage, Default, and Unknown BootEnv are set to valid
→˓values
adjust these as appropriate
drpcli prefs set defaultStage discover defaultBootEnv sledgehammer
→˓unknownBootEnv discovery

Again - make sure you modify things appropriately in the above scriptlet. YOU MUST MOD-
IFY THE RACK_AUTH variable appropriately for the download authentication to work cor-
rectly.

3.8. Upgrade 31

DigitalRebar Provision Documentation, Release v3.9

v3.2.0 to v3.3.0

Release Notes for v3.3.0

No aditional steps required.

v3.3.0 to v3.4.0

Release Notes for v3.4.0

Content Changes

Prior to restart Digital Rebar Provision endpoint - you may need to fix the Machines JSON entries for the Meta field. It used to be an optional field, but is now required. If your Meta field is set to null, or non-existent, DRP will not startup correctly. You will receive the following error message on start:

dr-provision2018/01/07 15:14:01.275082 Extracting Default Assets
panic: assignment to entry in nil map

To correct the problem, you will need to edit your JSON configuration files for your Machines. You can find your
Machines spec files in /var/lib/dr-provision/digitalrebar/machines if you are running in produc-
tion mode install. If you are running in isolated mode, you will need to locate your drp-data directory which is in
the base directory where you performed the install at; the machines directory will be drp-data/digitalrebar/
machines.

There may be two Meta tags. You do NOT need to modify the Meta tag that is located in the Params section.

Change the first Meta tag as follows:

from:
"Meta":null,

to something like:
"Meta":{"feature-flags":"change-stage-v2"},

It is entirely possible that the Meta field is completely missing. If so - inject the full Meta field as specified above.

drpcli changes

Please see the Release Notes for information related to the drpcli command line changes. The most notable changes
that may impact your use (eg in existing scripts) of the tool:

1. Plugin upload method changed:

prior to v3.4.0
drpcli plugin_providers upload $PLUGIN as $PLUG_NAME

v3.4.0 and newer version method:
drpcli plugin_providers upload $PLUG_NAME from $PLUGIN

2. Many commands now have new helper capabilities. See each command outputs relevant help statement.

32 Chapter 3. Table of Contents

https://github.com/digitalrebar/provision/releases/tag/v3.3.0
https://github.com/digitalrebar/provision/releases/tag/v3.4.0
https://github.com/digitalrebar/provision/releases/tag/v3.4.0

DigitalRebar Provision Documentation, Release v3.9

v3.4.0 to v3.5.0

Release Notes for v3.5.0

No additional changes necessary.

v3.5.0 to v3.6.0

Release Notes for v3.6.0

No additional changes necessary.

v3.6.0 to v3.7.0

Release Notes for v3.7.0

The plugin system has been updated to a new version. All plugins have been updated to use the new version. After
updating to v3.7.0, all plugins must be updated to function. The system will start after update, but the plugin-providers
will not load until they are udpated. Use the RackN UX to get the updates for the plugins.

The Task subsystem has been updated to default to sane-exit-codes. This is a change from the default of original-exit-
codes. This was done to address the need of task authors to match some basic assumptions about exit codes. 1 should
be a fail and not reboot your box.

Additionally, the default UX redirect has changed to the stable portal. This will result in more stable UX experience.

v3.7.0 to v3.8.0

Release Notes for v3.8.0

No additional changes necessary.

v3.8.0 to v3.9.0

Release Notes for v3.9.0

No additional changes necessary.

3.9 Local UI Removed

The old UI has been removed and a redirect to the RackN Portal UI is present instead. The UI loads into the browswer
and then uses the API to access the Endpoint. The DRP endpoint does not talk to the internet. The browser acts as a
bridge for content transfers. The only requirement is that the browser has access to the Endpoint and HTTPS-based
access to the internet. The HTTPS-based access can be through a web proxy.

3.10 Install Script Changed

There are minor changes to the install script for isolated mode. Production mode installs are still done and updated
the same way. For isolated, there are some new flags and options. Please see the commands output for more details or
check the updated Quick Start.

For current install.sh script usage information, please run:

3.9. Local UI Removed 33

https://github.com/digitalrebar/provision/releases/tag/v3.5.0
https://github.com/digitalrebar/provision/releases/tag/v3.6.0
https://github.com/digitalrebar/provision/releases/tag/v3.7.0
https://portal.rackn.io
https://github.com/digitalrebar/provision/releases/tag/v3.8.0
https://github.com/digitalrebar/provision/releases/tag/v3.9.0

DigitalRebar Provision Documentation, Release v3.9

install.sh --help

For complete details.

3.11 Digital Rebar Provision Workflows

PXE Provisioning requires hand-offs between multiple services and the nodes. Generally, these flows start with
network discovery (DHCP) providing a “next boot” instruction to the server’s pre-execution environment (PXE) that
can download a very limited operating system using a very simple file transfer protocol (TFTP). That next operating
system can then take more complex actions including using HTTP to download further files.

Note: Digital Rebar Provision does not provide out-of-band management or orchestration in the Open Source version.
See the RackN based advanced plugins for power management capabilities.

In the flow graphics, green steps indicate user actions.

3.11.1 Basic Discovery

The basic discovery flow uses the specialized Discovery and Sledgehammer Boot Environments (BootEnvs). These
BootEnvs work with the default next boot to self-register machines with Digital Rebar Provision using the Machines
API.

This recommended process allows operators to start with minimal information about the environment so they can
Provision O/S on Discovered Systems. Without discovery, operators must create machines in advance following the
Provision O/S on Known Systems process.

3.11.2 Provision O/S on Discovered Systems

Once systems have been discovered using Basic Discovery, their machine BootEnv can be set to an O/S installation
image. The recommended BootEnvs for these images includes an automatic machines API call that sets the machine
to boot to local disk (BootEnv = local).

3.11.3 Provision O/S on Known Systems

note This workflow requires users to know their machine information in advance.

This is the typical workflow for Cobbler users in which machine definitions are determined in advance using spread
sheets, stone tablets, Ouija boards or other 1990s data center inventory management techniques.

Two advantages to this approach is that it skips the discovery boot process; consequently, it is faster and can be run
without DHCP.

3.12 Deployment Options

Digital Rebar Provision is intended to be deployed as both a DHCP server and a Provisioner. There are cases where
one or the other are desired. Each feature can be disabled by command line flags.

• –disable-dhcp - Turns off the DHCP server

34 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.12. Deployment Options 35

https://docs.google.com/a/rackn.com/drawings/d/1FPI8JAyXDHqI9A5pmZd3NVyVdBcSRWeJAzjb_4OWpfI/edit?usp=sharing

DigitalRebar Provision Documentation, Release v3.9

36 Chapter 3. Table of Contents

https://docs.google.com/a/rackn.com/drawings/d/1vDs8_LYIRE6We-Y97Uh5uk639TSQMC866CLxJ2S58VE/edit?usp=sharing

DigitalRebar Provision Documentation, Release v3.9

3.12. Deployment Options 37

https://docs.google.com/drawings/d/1z3QJh1-3jQ8_hg2KmTIc1m85bwLdICDoJ0gJe3XVjtk/edit?usp=sharing

DigitalRebar Provision Documentation, Release v3.9

• –disable-provisioner - Turns off the Provisioner servers (TFTP and HTTP)

The Digital Rebar Provision API doesn’t change based upon these flags, only the services being provided.

3.12.1 DHCP Disabled

If a DHCP environment already exists or a more declarative mode is more desirable, there are a couple of things in
each case to be aware of. For either case, the underlying assumption is that something will direct the node to use the
provisioner as its NextBoot server.

Declarative Mode

Each machine must be declared through the Digital Rebar Provision Command Line Interface (CLI) or the Digital
Rebar Provision API. The IP address in the rs_model_machine will be used to populate the rs_model_bootenv infor-
mation. The provisioner will provide these files through TFTP and HTTP. It is left to the admin to figure out how to
get the node to reference them.

External DHCP

With DHCP disabled, the admin can provide a DHCP server for distributing addresses. The DHCP will need to do the
following:

• Set NextServer to an IP that routes to Digital Rebar Provision

• Set Option 67 (bootfile) to lpxelinux.0 for legacy bios boots. Other options are available for other. See:
rs_model_subnet

• Set Option 15 (dns domain) - This is needed for discovery boots to construct a meaningful FQDN for the node.

• Set Option 6 (dns server) - This is optional, but often useful in conjunction with Option 15.

• Set Option 3 (gateway) - This is optional, but may be required depending on the network routing.

3.12.2 Provisioner Disabled

In this mode, Digital Rebar Provision acts as a DHCP server only. The rs_dhcp_models describe how to use the server.
Set the DHCP options that will direct to the next boot servers and other needs.

3.13 Digital Rebar Provision Operations

This section will attempt to describe common operations and actions that can be done. We will assume that drpcli
is already somewhere in the path and have setup the environment variables to access Digital Rebar Provision. See,
Digital Rebar Provision Command Line Interface (CLI).

Some of these operations are in the User Interface (UI), but not all. This will focus on CLI usage for now. See the
User Interface (UI) section for UI usage.

Note: drpcli normally spits out JSON formatted objects or an array of objects. To help with some of the command
line functions, we use the jq tool. This is available for both Linux and Darwin. You can specify output format to be
YAML, with the --format=yaml flag.

38 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.13.1 Using the drpcli tool

The drpcli tool is designed to provide a single, easy to use compiled stand alone binary. It very closely mimics the
API call parameters and usage, and allows for easy “transition” between the use of the CLI binary, and the use of the
API calls.

We assume that you have the binary in your PATH somewhere (/usr/local/bin/drpcli in “production” mode
by default). If you are using an “isolated” install mode, you will need to link the correct binary in to an apprpriate
directory in your PATH. For example:

ln -s $HOME/bin/linux/amd64/dr-provision $HOME/bin/
ln -s $HOME/bin/linux/amd64/drpcli $HOME/bin/

drpcli is a self documenting binary file. At any point you can can simply hit <Enter> to see the current contextual
help output. Some examples:

drpcli <Enter> Prints usage for the top-level resources that may be manipulated.

drpcli templates <Enter> Prints the resources that may be executed for the templates level.

drpcli templates create <Enter> Will display the commands associated with just
templates/create/

Note that the CLI syntax closely follows the API calls. For example:

drpcli templates create -< some_file.json

Would be equivalent to the HTTP REST API resource as follows:

https://127.0.0.1:8092/api/v3/templates/ereate

Note: See the Turn on autocomplete for the CLI for BASH shell auto completion.

3.13.2 Preference Setting

By default Digital Rebar Provision (DRP) attempts to “do no harm”. This means that by default, any system that
receives a DHCP lease from the DRP Endpoint, will by default, be set to local mode, which means boot from local
disks. You must explicitly change this behavior to enable provisioning activities of Machines.

It is necessary to get or set the preferences for the system, to enable OS Installs (BootEnvs).

Show the current preference settings
drpcli prefs list

Or get a specific one
drpcli prefs get unknownBootEnv

Set preference(s):

Set a preference
drpcli prefs set unknownBootEnv discovery

or chain multiples as pairs
drpcli prefs set unknownBootEnv discovery defaultBootEnv sledgehammer
→˓defaultStage discover

The system does validate values to make sure they are sane, so watch for errors.

3.13. Digital Rebar Provision Operations 39

DigitalRebar Provision Documentation, Release v3.9

3.13.3 BootEnv Operations

A rs_model_bootenv is the primary component for an Operating System installation definition. A rs_model_bootenv
is comprised of two primary pieces:

1. A rs_model_bootenv JSON/YAML specification

2. (usually) an ISO Image that installs that rs_model_bootenv

The JSON/YAML specification will contain a set of definitions for the ISO image. The default distributed
rs_model_bootenv specs use the public mirror repos for the ISO images. You can create a customer rs_model_bootenv
with a pointer to your own hosted ISO images. An example looks something like:

root@demo:~$ drpcli bootenvs show ubuntu-16.04-install
{
"Available": true,
"Name": "ubuntu-16.04-install",
"OS": {
"Family": "ubuntu",
"IsoFile": "ubuntu-16.04.3-server-amd64.iso",
"IsoSha256":

→˓"a06cd926f5855d4f21fb4bc9978a35312f815fbda0d0ef7fdc846861f4fc4600",
"IsoUrl": "http://mirrors.kernel.org/ubuntu-releases/16.04/ubuntu-16.04.3-

→˓server-amd64.iso",
"Name": "ubuntu-16.04",

<...snip...>

This stanza shows the Ubuntu 16.04 rs_model_bootenv along with the associated Mirror HTTP location the ISO will
be installed from.

Installing a “Canned” BootEnv

Manipulating rs_model_bootenv and rs_model_template are handled by their own commands. There are some addi-
tional helpers especially when following the layout of the initial Install.

To install a provided rs_model_bootenv, do the following from the install location.

drpcli bootenvs uploadiso ubuntu-16.04-install

This is a CLI helper that is not in the API that will read the provided YAML rs_model_bootenv file, upload the included
or referenced rs_model_template files (from the templates peer directory), upload the rs_model_bootenv, and check
for an existing ISO in the ISO repository. If an ISO is not present in the already uploaded list, it will check a local isos
directory for the file. If that is not present and the rs_model_bootenv contains a URL for the ISO, the ISO will attempt
to be downloaded to the local isos directory and then uploaded into Digital Rebar Provision. Once upload, the ISO is
“exploded” for access by machines in the file server file system space.

Listing Installed BootEnvs

A list of all existing rs_model_bootenv installed on the DRP Endpoint can be obtained with the list command. How-
ever, you usually do not wish to see all of the JSON values, and a simple jq filter can help output just the keys you
are interested in, as follows:

drpcli bootenvs list | jq -r '.[].Name'

Outputs:
centos-7-install

(continues on next page)

40 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

(continued from previous page)

centos-7.4.1708-install
debian-8-install
debian-9-install
discovery
ignore
local
sledgehammer
ubuntu-16.04-install

Cloning a BootEnv

Sometimes there is a rs_model_bootenv but it is necessary to make changes. These can be handled by
rs_model_template inclusion, but for now let’s just focus on basic “cut and paste” style editing.

drpcli bootenvs show ubuntu-16.04-install --format yaml > new-file.yaml
Edit the file
change the Name field to something new. *MUST DO THIS*
change the OS->Name field to something new to avoid sharing an iso
→˓directory.
Edit other parameters as needed
drpcli bootenvs create - < new-file.yaml

This is a shallow clone. It will reuse the templates unless they are explicitly modified. It is possible to use the install
command, but any new templates would need to be added to a templates directory in the current directory.

Creating a BootEnv

It might be necessary to create an empty rs_model_bootenv by doing the following:

drpcli bootenvs create emtpy_bootenv

This rs_model_bootenv will not be Available, but will allow for additional editing.

Editing a BootEnv

It might be necessary to edit a rs_model_bootenv. To do this, get the latest copy with the show command. Edit the
file as needed. Then using the update command, put the value back. The –format=yaml is optional, but I find YAML
easier to edit.

drpcli bootenvs show discovery --format=yaml > discovery.yaml
Edit the discovery.yaml as needed
drpcli bootenvs update discovery - < discovery.yaml

3.13.4 Subnet Operations

Subnet definitions provide the necessary information for DHCP IP Address lease assignments, and allows Machines
to be enrolled/discovered by a DRP Endpoint. For any Layer 2 subnet/network that you wish to install Machines from,
you must also specify a Subnet definition for. In some environments, a Subnet definition may not be needed to allow
Machines to be discovered.

3.13. Digital Rebar Provision Operations 41

DigitalRebar Provision Documentation, Release v3.9

Cloning a Subnet

It might be necessary to create a new subnet from an existing one. To do this, do the following:

drpcli subnets show eth0 | jq -r > new_subnet.json
edit the new_subnet.json file with the new information
drpcli subnets create -< new_subnet.json

Creating a new Subnet

A new subnet can be created from a JSON specification. It is necessary to use all of the following JSON keys to
successfully create a new Subnet that can be immediately used to manage machines – the rest of the keys will be
autofilled with reasonable defaults.

echo '
{
"Name": "local_subnet",
"Subnet": "10.10.16.10/24",
"ActiveStart": "10.10.16.100",
"ActiveEnd": "10.10.16.254",
"ActiveLeaseTime": 60,
"Enabled": true,
"ReservedLeaseTime": 7200,
"Strategy": "MAC",
"Options": [

{ "Code": 3, "Value": "10.10.16.1", "Description": "Default Gateway" },
{ "Code": 6, "Value": "8.8.8.8", "Description": "DNS Servers" },
{ "Code": 15, "Value": "example.com", "Description": "Domain Name" }

]
} ' > /tmp/local_subnet.json

drpcli subnets create -< /tmp/local_subnet.json

Note that the “Description” is purely cosmetic and not used - however, it can be safely specified as it’ll be ignored (it’s
added here for the readers reference). You must provide the minimum DHCP Options as specified above. You can find
a complete set of DHCP Options at:

https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml

For complete documentation and information you can find the DHCP Options officially documented in RFC2132

Updating a Subnet

From time to time, you may need to modify an existing Subnet definition. Depending on your changes, you have a
couple of options.

Set the NTP Server pool via DHCP Option 42 for subnet “local_subnet”:

drpcli subnets set local_subnet option 42 to "0.pool.ntp.org"

Set the DHCP IP assignment from the following pick list for subnet “local_subnet”. See rs_model_pickers for a detailed description of the available Picker types:

drpcli subnets pickers local_subnet hint,nextFree,mostExpired

Set the nextserver for PXE operation for subnet “local_subnet”:

42 Chapter 3. Table of Contents

https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
https://tools.ietf.org/html/rfc2132

DigitalRebar Provision Documentation, Release v3.9

drpcli subnets nextserver local_subnet 10.16.167.10

Set the subnet DHCP range of IP addresses for subnet “local_subnet”:

drpcli subnets range local_subnet 192.168.45.100 192.168.45.255

Set Active lease to 60 mins, and reserved lease to 7200 mins for subnet “local_subnet”:

drpcli subnets leasetimes local_subnet 60 7200

Update a subnet to set it to disabled (do not discover, and do not provision on this subnet, for subnet “local_subnet”:

drpcli subnets update local_subnet '{ "Enabled": false }'

Update a subnet with the contents of the specified JSON file, for subnet “local_subnet”:

drpcli subnets update local_subnet -< update-local_subnet.json

Deleting a Subnet

To remove a Subnet and subsequently cease PXE provisioning operations for that Subnet, perform the following:

drpcli subnets destroy local_subnet

List and Show Subnets

Viewing configuration for all subnets can be done with the list command as follows:

drpcli subnets list

To show an individual subnet, you will need the subnet name. To show just the subnet names, you can use jq to filter the output, as follows:

drpcli subnets list | jq '.[].Name'

Once you have determined which subnet you’d like to show specific information for, you can do so with the following command:

show the YAML formatted output for 'local_subnet' subnet
drpcli subnets show local_subnet --format=yaml

3.13.5 Template Operations

Templates are reusable blocks of code, that are dynamically expanded when used. This allows for very sophisticated
and complex operations. It also allows for carefully crafted Templates to be re-usable across a broad set of use cases.

Cloning a Template

It might be necessary to create a new template from an existing one. To do this, do the following:

3.13. Digital Rebar Provision Operations 43

DigitalRebar Provision Documentation, Release v3.9

drpcli templates show net_seed.tmpl | jq -r .Contents > new.tmpl
Edit the new.tmpl to be what is required
drpcli templates upload new.tmpl as new_template

In this case, we are using jq to help us out. jq is a JSON processing command line filter. JSON can be used to
retrieve the required data. In this case, we are wanting the Contents of the template. We save that to file, edit it, and
upload it as a new template, new_template.

It is possible to use the create subcommand of template, but often times upload is easier.

Note: Remember to add the new template to a rs_model_bootenv or another rs_model_template as an embedded
template.

Updating a Template

It might be necessary to edit an existing template. To do this, do the following:

drpcli templates show net_seed.tmpl | jq -r .Contents > edit.tmpl
Edit the edit.tmpl to be what is desired
drpcli templates upload edit.tmpl as net_seed.tmpl

We use jq to get a copy of the current template, edit it, and use the upload command to replace the template. If there
already is a template present, then it can be replaced with the upload command.

3.13.6 Param Operations

rs_model_param are simply key/value pairs. However, DRP provides a strong typing model to enforce a specific type
to a given Param. This ensures that Param values are valid elements as designed by the operator.

Creating a Param

It might be necessary to create a new rs_model_param, an empty Param may be created by doing the following:

drpcli params create '{ "Name": "fluffy" }'

or

drpcli params create fluffy

The system will attempt to use any sent string as the Name of the Param. To be complete, it is required to also speciy
the Type that param must be:

drpcli params create '{ "Description": "DNS domainname", "Name": "domainname
→˓", "Schema": { "type": "string" } }'

In this example, the type string was defined for the param.

Deleting a Param

It might be necessary to delete a rs_model_param.

44 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

drpcli params destroy fluffy

Note: The destroy operation will fail if the param is in use.

Editing a Param

It might be necessary to update a Param. An example to add a type of string to our fluffy param above would
be:

drpcli params update fluffy '{ "Schema": { "type": "string" } }'

3.13.7 Profile Operations

rs_model_profile are simply collections of rs_model_param - they conveniently group multiple rs_model_param for
easy consumption by other elements of the provisioning service.

Creating a Profile

It might be necessary to create a rs_model_profile. An empty profile can be created by doing the following:

drpcli profiles create '{ "Name": "myprofile" }'

or

drpcli profiles create myprofile

The system will attempt to use any sent string as the Name of the profile.

Additionally, JSON can be provided to fill in some default values.

drpcli profiles create '{ "Name": "myprofile", "Params": { "string_param1":
→˓"string", "map_parm1": { "key1": "value", "key2": "value2" } } }'

Alternatively, you can create profiles from an existing file containing JSON, as follows:

echo '{ "Name": "myprofile", "Params": { "string_param1": "string", "map_
→˓parm1": { "key1": "value", "key2": "value2" } } }' > my_profile.json
drpcli profiles create -< my_profile.json

Deleting a Profile

It might be necessary to delete a rs_model_profile. It is possible to use the destroy command in the profile CLI, but
the rs_model_profile must not be in use. Use the following:

drpcli profiles destroy myprofile

3.13. Digital Rebar Provision Operations 45

DigitalRebar Provision Documentation, Release v3.9

Altering an Existing Profile (including the global profile)

It might be necessary to update an existing rs_model_profile, including global. parameter values can be set by doing
the following:

drpcli profiles set myprofile param crazycat to true
These last two will show the value or the whole profile.
drpcli profiles get myprofile param crazycat
drpcli profiles show myprofile

Note: Setting a parameter’s value to null will clear it from the structure.

Alternatively, the update command can be used to send raw JSON similar to create.

drpcli profiles update myprofile '{ "Params": { "string_param1": "string",
→˓"map_parm1": { "key1": "value", "key2": "value2" }, "crazycat": null } }'

Update is an additive operation by default. So, to remove items, null must be passed as the value of the key to be
removed.

3.13.8 Machine Operations

A rs_model_machine is typically a physical bare metal server, as DRP is intended to operate on bare metal infrastruc-
ture. However, it can represent a Virtual Machine instance and provision it equally. DRP does not provide control
plane activities for virtualized environments (eg VM Create, etc. operations).

Creating a Machine

It might be necessary to create a rs_model_machine. Given the IP that the machine will boot as all that is required is
to create the machine and assign a rs_model_bootenv. To do this, do the following:

drpcli machine create '{ "Name": "greg.rackn.com", "Address": "1.1.1.1" }'

This would create the rs_model_machine named greg.rackn.com with an expected IP Address of 1.1.1.1. dr-provision
will create the machine, create a UUID for the node, and assign the rs_model_bootenv based upon the defaultBootEnv
rs_model_prefs.

drpcli machine create '{ "Name": "greg.rackn.com", "Address": "1.1.1.1",
→˓"BootEnv": "ubuntu-16.04-install" }'

This would do the same thing as above, but would create the rs_model_machine with the ubuntu-16.04-install
rs_model_bootenv.

Note: The rs_model_bootenv MUST exist or the create will fail.

To create an empty rs_model_machine, do the following:

drpcli machine create jill.rackn.com

This will create an empty rs_model_machine named jill.rackn.com.

46 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Note: The defaultBootEnv rs_model_bootenv MUST exist or the create will fail.

Adding or Removing a Profile to a Machine

It might be necessary to add or remove a rs_model_profile to or from a rs_model_machine. To add a profile, do the
following:

drpcli machines addprofile "dff3a693-76a7-49ce-baaa-773cbb6d5092" myprofile

To remove a profile, do the following:

drpcli machines removeprofile "dff3a693-76a7-49ce-baaa-773cbb6d5092"
→˓myprofile

The rs_model_machine update command can also be used to modify the list of rs_model_profile.

Changing BootEnv on a Machine

It might be necessary to change the rs_model_bootenv associated with a rs_model_machine. To do this, do the fol-
lowing:

drpcli machines bootenv drpcli "dff3a693-76a7-49ce-baaa-773cbb6d5092"
→˓mybootenv

Note: The rs_model_bootenv MUST exists or the command will fail.

Rename a Machine

By default, machines are given names based on the machines primary network MAC address. Most infrastructure
environments need to rename machines to fall in line with a naming scheme in use with the company. To do that
safely, we will use the existing Machins object information as a baseline to apply a Patch operation to the JSON. This
is a two step process that is completed in the following example:

First lets define the Machine (UUID) that we’re going to operate on, and lets get the current name of the machine for reference (fred in this case).

get our machine to operate on
export UUID="f6ca7bb6-d74f-4bc1-8544-f3df500fb15e"

our reference starting point for 'Name'
drpcli machines show $UUID | jq '.Name'
"fred"

We now need to obtain the Machine object JSON tha we are going to apply the patch against.

get current machine object that we want to reference the change against
drpcli machines show $UUID > /tmp/machine.json

Now that we have our reference Machine object, we’ll use the update option to the machines manipulation.

3.13. Digital Rebar Provision Operations 47

DigitalRebar Provision Documentation, Release v3.9

set the name using the reference JSON object
drpcli machines update $UUID '{ "Name": "wilma" }' --ref /tmp/machine.json

outputs
{
"Address": "147.75.66.137",
<...snip...>
"Name": "wilma",
<...snip...>

Here is a single command example (using our $UUID variable above) that does not require temporary files.

drpcli machines update $UUID '{ "Name": "barney" }' --ref "$(drpcli machines show
→˓$UUID)"

You can update “unsafely”, but if multiple updates occur, you can’t guarantee that you’re changing what you expected to (eg. someone/thing else beat you to the punch). It is almost always a better pattern to ensure you make a Machine name change with the use of the --ref Macine Object.

this is a BAD way to do it - as it does not guarantee atomicity
drpcli machines update $UUID '{ "Name": "betty" }'

outputs
{
"Address": "147.75.66.137",
<...snip...>
"Name": "betty",
<...snip...>

3.13.9 DHCP Operations

Creating a Reservation

It might be necessary to create a rs_model_reservation. This would be to make sure that a specific MAC Address
received a specific IP Address. Here is an example command.

drpcli reservations create '{ "Addr": "1.1.1.1", "Token": "08:00:27:33:77:de
→˓", "Strategy": "MAC" }'

Additionally, it is possible to add DHCP options or the Next Boot server.

drpcli reservations create '{ "Addr": "1.1.1.5", "Token": "08:01:27:33:77:de
→˓", "Strategy": "MAC", "NextServer": "1.1.1.2", "Options": [{ "Code": 44,
→˓"Value": "1.1.1.1" }] }'

Remember to add an option 1 (netmask) if a subnet is not being used to fill the default options.

3.13.10 Advanced Workflow

Placeholder for Advanced Workflow overview.

Stages

Placeholder for Stages information.

48 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Stage Maps

Placeholder for Stage Map information.

Tasks

Placeholder for Tasks information.

Jobs

Placeholder for Jobs information.

3.13.11 User Operations

Creating a User

It might be necessary to create a rs_model_user. By default, the user will be created without a valid password. The
user will only be able to access the system through granted tokens.

To create a user, do the following:

drpcli users create fred

Note: This rs_model_user will NOT be able to access the system without additional admin action.

Granting a User Token

Sometimes as an administrator, it may be necessary to grant a limited use and scope access token to a user. To grant a
token, do the following:

drpcli users token fred

This will create a token that is valid for 1 hour and can do anything. Additionally, the CLI can take additional
parameters that alter the token’s scope (model), actions, and key.

drpcli users token fred ttl 600 scope users action password specific fred

This will create a token that is valid for 10 minutes and can only execute the password API call on the rs_model_user
object named fred.

To use the token in with the CLI, use the -T option.

drpcli -T <token> bootenvs list

Deleting a User

It might be necessary to remove a reset from the system. To remove a user, do the following:

drpcli users destroy fred

3.13. Digital Rebar Provision Operations 49

DigitalRebar Provision Documentation, Release v3.9

Revoking a User’s Password

To clear the password from a rs_model_user, do the following:

drpcli users update fred '{ "PasswordHash": "12" }'

This basically creates an invalid hash which matches no passwords. Issued tokens will still continue to function until
their times expire.

Secure User Creation Pattern

A secure pattern would be the following:

• Admin creates a new account

drpcli users create fred

• Admin creates a token for that account that only can set the password and sends that token to new user.

drpcli users token fred scope users action password ttl 3600

• New user uses token to set their password

drpcli -T <token> users password fred mypassword

3.14 OS Support

Digital Rebar Provision, through its rs_model_bootenv, provides the ability to use and install many types of operating
systems.

The default installation includes an assets directory that contain pre-existing bootenvs and templates. Example Ubuntu,
CentOS, and other operating systems are available to start from.

This section of the docs provides some hints and gotchas for the various platforms.

3.14.1 LinuxKit

1. linuxkit

3.15 LinuxKit

LinuxKit is one of Docker’s latest creations to provide an immutable simple OS that can run containers and other
container platforms. The goal is to provide a simple to update, secure, and maintain OS that can facilitate container
deployments.

It turns out that Digital Rebar Provision can easily deploy LinuxKit images. The example assets provided with Digital
Rebar Provision contains some examples of LinuxKit deployments.

There are three currently available. Though they are really simple and easily cloned.

• lk-sshd - the example sshd

• lk-k8s-master - the k8s project master image

50 Chapter 3. Table of Contents

https://github.com/linuxkit/linuxkit
https://github.com/linuxkit/linuxkit

DigitalRebar Provision Documentation, Release v3.9

• lk-k8s-node - the k8s project node image

Here are the following steps that work on an Ubuntu 16.04 desktop with KVM already setup. The basic overview is:

• Get and start dr-provision

• Configure dr-provision to handle KVM network

• Get and build LinuxKit

• Make some ISOs

• Install BootEnvs

• Run Nodes

Let’s hit each of the steps. For a simple play with it trial, create a directory for both Digital Rebar Provision and
LinuxKit.

Also, there is a video of these steps.

3.15.1 Get, Start, and Configure Digital Rebar Provision

There are already many pages for this, Quick Start and Install. The main thing is to use the tip version at the moment.
It is best to include the discovery and sledgehammer images. The KVM system used (the Digital Rebar test tool,
kvm-slave) always PXE boots and machines can be easily added just by starting them.

For a simple trail, use the install process with the –isolated flag.

Something like:

mkdir -p lk-dr-trial/dr-provision
cd lk-dr-trial/dr-provision
curl -fsSL https://raw.githubusercontent.com/digitalrebar/provision/master/
→˓tools/install.sh | bash -s -- --isolated --drp-version=tip install
Follow the instructions at the end of the script

3.15.2 Get and Build LinuxKit

First, create a directory for everything, clone LinuxKit, and build it. This assumes that go install was executed.

cd lk-dr-trial
git clone https://github.com/linuxkit/linuxkit.git
cd linuxkit
make

After a few minutes, there should be a bin directory with moby ready to go.

3.15.3 Make some ISOs

The provided rs_model_bootenv deploying the sshd example and k8s project. To build these, we need to do a couple
of things.

• Edit the examples/sshd.yml

– Replace the “#your ssh key here” line with the contents of the SSH public key. e.g. ~/.ssh/id_rsa.pub

• Run the moby build command

3.15. LinuxKit 51

https://youtu.be/kITojfeYaPQ

DigitalRebar Provision Documentation, Release v3.9

edit files
bin/moby build -output iso-bios examples/sshd.yml

This will generate an ISO, sshd.iso. Copy this file into the assets/isos directory (creating it if it doesn’t exist) in the
dr-provision install directory.

Additionally, we can build the Kubernetes images. We still need to edit a couple of files.

• cd projects/kubernetes

• Edit the k8s-master.yml

– Replace the “#your ssh key here” line with the contents of the SSH public key. e.g. ~/.ssh/id_rsa.pub

• Edit the k8s-node.yml

– Replace the “#your ssh key here” line with the contents of the SSH public key. e.g. ~/.ssh/id_rsa.pub

• Edit the Makefile

– Add -output iso-bios to the moby build lines. This will make sure to make ISOs.

– E.g. ../../bin/moby build -output iso-bios -name kube-master kube-master.yml

– E.g. ../../bin/moby build -output iso-bios -name kube-node kube-node.yml

• Run the make command

cd projects/kubernetes
edit files
make

This will generate two ISO images, kube-master.iso and kube-node.iso. Copy these files into the assets/iso directory
in the dr-provision install directory.

3.15.4 Install BootEnvs

At this point, we can add the rs_model_bootenv to Digital Rebar Provision.

• Change to the Digital Rebar Provision directory and then to the assets directory.

• Run the following

cd lk-dr-trial/dr-provision/assets
export RS_KEY=rocketskates:r0cketsk8ts # or whatever it is it set to.
../drpcli bootenvs install bootenvs/lk-sshd.yml
../drpcli bootenvs install bootenvs/lk-k8s-master.yml
../drpcli bootenvs install bootenvs/lk-k8s-node.yml

This will make all three rs_model_bootenv available for new nodes.

3.15.5 Run Nodes

At this point, it is possible to boot some nodes and run them. They can have pre-existing nodes or discovered nodes.
This will use discovered nodes.

First, start some nodes. The Digital Rebar team prefers kvm-slave tool that starts KVM on my Digital Rebar Provision
network. .e.g. tools/kvm-slave Anything that PXEs and can three will work.

Once they are discovered, something like this from drpcli machines list should appear:

52 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

[
{

"Address": "192.168.124.21",
"BootEnv": "sledgehammer",
"Errors": null,
"Name": "d52-54-54-07-00-00.example.com",
"Uuid": "4cc8678e-cdc0-48ee-b898-799103840d7f"

},
{

"Address": "192.168.124.23",
"BootEnv": "sledgehammer",
"Errors": null,
"Name": "d52-54-55-00-00-00.example.com",
"Uuid": "c22a3db3-dba8-4138-8375-7a546c8097e8"

},
{

"Address": "192.168.124.22",
"BootEnv": "sledgehammer",
"Errors": null,
"Name": "d52-54-54-7d-00-00.example.com",
"Uuid": "d8d5b78a-976b-41c6-a968-31c73ba2b8a4"

}
]

At this point, the BootEnv field should be changed to the environment of choice.

cd lk-dr-trial/dr-provision
./drpcli machines bootenv "4cc8678e-cdc0-48ee-b898-799103840d7f" lk-sshd
./drpcli machines bootenv "d8d5b78a-976b-41c6-a968-31c73ba2b8a4" lk-k8s-
→˓master
./drpcli machines bootenv "c22a3db3-dba8-4138-8375-7a546c8097e8" lk-k8s-node

Now, reboot those kvm instances (close the KVM console window or kill the qemu process). Once the systems boot
up, it should be possible to ssh into them from the account the ssh key is from (as root).

And that is all for the sshd image.

For Kubernetes, a few more steps are required. In this example, 192.168.124.22 is the master. We need to SSH into its
kubelet container and start kubeadm. Something like this:

ssh root@192.168.124.22
nsenter --mount --target 1 runc exec --tty kubelet sh
kubeadm-init.sh

This will run for a while and start up the master. It will output a line that looks like this:

kubeadm join --token bb38c6.117e66eabbbce07d 192.168.65.22:6443

This will need to run on each k8s-node. It is necessary to SSH into the kubelet on the k8s node. Something like this:

ssh root@192.168.124.23
nsenter --mount --target 1 runc exec --tty kubelet sh
kubeadm join --token bb38c6.117e66eabbbce07d 192.168.65.22:6443

Now, wait for a while and if the KVM instances have Internet access, then kubernetes will be up. The default access
for this cluster is through the kubelet container though others are probably configurable.

3.15. LinuxKit 53

DigitalRebar Provision Documentation, Release v3.9

ssh root@192.168.124.22
nsenter --mount --target 1 runc exec --tty kubelet sh
kubectl get nodes

There are ssh helper scripts in the linuxkit/projects/kubernetes directory, but they do not always work with the latest
k8s containers.

3.16 User Interface (UI)

The Digital Rebar Provision UI is intended to help users with basic operational needs. Advanced users should review
the API documentation or consider using Digital Rebar for integration and workflow capabilities.

3.16.1 Subnets

Configuring Subnets is a critical first step in Digital Rebar Provision operation. The basic UI will show all configured
subnets and provide an easy way to add broadcast subnets based on the known interfaces.

To edit or delete a subnet, click on the name of the subnet to populate the editing area below the list. To create a relay
subnet, click on the add subnet link. To create a broadcast subnet, click on the link provided after the name of the
unassigned interfaces.

There are two primary types of subnets: broadcast and relay:

• Broadcast subnets are associated with the addresses provided by the Digital Rebar Provision host system. Digital
Rebar Provision can have multiple DHCP ranges; however, only one subnet can be assigned per interface _and_
the subnet CIDR must include the IP of the interface (the range should NOT). By convention, subnets associated
with an interface will be named as the interface.

• Relay subnets answer requests forwarded from DHCP relays such as those provided by switches. These can
be any suitable IP range. Since the Relay subnets are not broadcast, they do not conflict with existing DHCP
servers in the environment.

Digital Rebar Provision can operate in a permissive reservation mode or require users to whitelist systems before they
are serviced. The OnlyReservations flag will operate as a reservations required (whitelist) mode when true; otherwise,
Digital Rebar Provision permissive reservation mode will give out addresses to any valid DHCP request.

In additional to serving IPs, DHCP servers provide critical configuration (aka DHCP Options) information to the
clients. Setting Option 67, Next Boot, is essential for Digital Rebar Provision to operate as a Provisioner. This
information includes next boot (67), gateway (3), domain name (15), DNS (6) and other important information. It is
encoded in the responses according to IETF RFC 2132

Consult the Godocs for more details about the specific fields.

3.16.2 Boot Environments (bootenvs)

Configuring at least one Boot Environment is a critical first step in Digital Rebar Provision operation. The Digital
Rebar CentOS based in-memory discovery image, Sledgehammer, will be installed on first use by default.

The UI will show a complete list of potential Boot Environments;

54 Chapter 3. Table of Contents

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://tools.ietf.org/html/rfc2132
https://godoc.org/github.com/digitalrebar/provision/backend#Subnet

DigitalRebar Provision Documentation, Release v3.9

3.16.3 Machines

Machines are central to the provisioning process, as they connect Boot Environments to incoming IP addresses. De-
sired BootEnvs can be assigned to machines from this page.

If a machine is not given a BootEnv, it will use the BootEnv listed as defaultBootEnv on the BootEnvs Preferences
page.

Profiles can also be bound to machines from this view. Machines will relay the parameters of a profile to the templates
provided by the selected BootEnv.

3.16.4 Profiles

Profiles provide a convenient way to apply sets of parameters to a machine. Multiple profiles can be assigned to one
machine, and will be referenced in the order they are listed.

Parameters can be linked to specific profiles through the profiles page, which can then be attached to machines through
the machines UI.

3.16.5 Templates

Templates contain important instructions for the provisioning process, and are comprised of golang text/template
strings. Once templates are rendered along with any assigned parameters, they are used by the BootEnv to boot the
target machine.

Templates may contain other templates, known as sub-templates.

3.16.6 Parameters (params)

Parameters are passed to a template from a machine, and help to drive the template’s functions. They consist of
key/value pairs that provide configuration to the renderer.

Profiles allow params to be applied in bulk, or they can be attached to templates individually.

3.16.7 Reservations

Reservations link tokens to specific IP addresses. This view shows a list of existing reservations along with tokens and
strategies associated with each. Currently, MAC is the only available strategy.

Reservations may contain options to be applied to connected servers, which are also visible through the UI.

3.16.8 Leases

Leases show individual links between tokens and addresses, created through reservation or subnet strategies. Leases
remain valid for short periods of time, and cannot be edited.

The expiration time of each lease is visible through the UI. Once a lease has expired, it may be removed.

3.16. User Interface (UI) 55

https://golang.org/pkg/text/template/#hdr-Actions

DigitalRebar Provision Documentation, Release v3.9

3.16.9 Tasks

During the boot process, tasks provide additional configuration to machines in the form of templates. BootEnvs will
use these sets of templates to construct specific jobs for a machine.

Within a task, templates are processed in the order they are assigned, so it’s important to check that templates are
attached correctly to a task.

3.16.10 Jobs

A job defines a machine’s current step in its boot process. After completing a job, the machine creates a new job from
the next instruction in the machine’s task list.

Machines will only process one job at a time, and jobs aren’t created until the instant they are required.

3.17 RackN Portal

The RackN Portal provides a complete graphical solution to manage Digital Rebar Provision.

3.17.1 Home Page

The RackN Portal home page has an option in the upper left corner to select the three lines providing three groupings
of information.

Registered Endpoints

The Registered Endpoints contain the IP addresses of previously installed Digital Rebar Provision for a specific user.

Organization

This section provides information about your account with RackN.

User Profile

This section contains the following information:

• Support - Complete the Message Subject and Message Body to send a RackN administrator a support question.

• Security - Manage your account security

– Account ID of the User

– Email Address

– Phone Number (Verify Phone option)

– Log out of the System

– Change your Password

– Delete the Account

56 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Members

This section provides information about the membership organization (Group) the user is connected to.

The following information is provided:

• Email Address

• Assigned User GUID (Group User ID)

• Group Rights:

– Edit Members (Y/N)

– Edit the Catalog (Y/N)

– Edit Endpoints

Subscriptions

This section provides a list of all community (free) and RackN paid services actively used by the User.

The following three types of features are listed:

• Content - YAML or JSON processes for Digital Rebar Provision to execute during the provisioning process

• Plugin - Binary packages extending the basic functionality of Digital Rebar Provision. These are installed via
the UX and then configured by the user.

• Interface Features - Advanced UX technology available for purchase from RackN.

Endpoints

This section provides a list of Endpoints available to the user from the membership organization (Group) the user is
connect to. There is an option to change the Icons used in the RackN Portal.

For each Endpoint listed the following data is shown:

• Endpoint ID

• IP Address

• Name of the Endpoint (Default is IP Address:8092)

• Owner of the Endpoint (Email Address)

Catalog

This section contains a list of all available community and RackN features, plugins and interface features. Users can
select services required for their Digital Rebar Provision solution.

Content

This is a list of content packages currently available to your Digital Rebar Provision service. This packages contain the
instructions for DRP to perform an operation such as kubespray which installs Kubernetes via Kubespray playbooks.

3.17. RackN Portal 57

DigitalRebar Provision Documentation, Release v3.9

Plugins

This is a list of Plugins currently available to your Digital Rebar Provision service. These packages enable DRP to
provide additional provisioning offerings such as immutable image deployment or Windows provisioning. Some of
these Plugins are freely available to all community members and some are only available from RackN for a fee.

Interface Features

This is a list of UX technology available for purchase from RackN.

3.17.2 System

This part of the RackN Portal contains a quick overview of key activities being managed by Digital Rebar Provision
including all machines, machine stages, machine activity, bulk actions on those machines, plugins, and the Information
and Preferences screen. The Information and Preferences screen is the default home page at login.

Video: Why RackN built the Portal https://youtu.be/levzBw5t7gc.

Overview

The Overview page shows a live view of all the active machine stages running via the RackN Portal including their
State and BootEnv settings. The page also shows the running machines activity.

The top of the page offers the following services via a single blue button for each action:

• Refresh - Refresh the content on the active page

• Add Machine - Add a new machine via the RackN Portal

• Add Stage - Add a new stage into the Workflow process

• Add Profile - Add a new profile to the RackN Portal

Machines

The Machines page highlights the following information for all machines/nodes the Digital Rebar Provision endpoint
is currently aware of. Information shown for each machine:

• Machine Status (Active/Standby)

• Name of the Machine

• UUID

• IP Address

• Workflow Stage

• BootEnv

Selecting a machine name will provide additional information in a new screen:

• Name of the Machine

• UUID

• Description

• IP Address

58 Chapter 3. Table of Contents

https://youtu.be/levzBw5t7gc

DigitalRebar Provision Documentation, Release v3.9

• Boot Environment (local/)

• Workflow Stage

• Tasks

• Profiles

• Additional Parameters

The top of the page offers the following services via a single button for each action:

• Refresh - Refesh the content on the page to show all machines managed by the RackN Portal

• Filter - Allows the user to show a specific set of machines based on a variety of filters including IP Address,
BootEnv, Key, Name, Stage, UUID, Workflow,etc

• Add - Add a new machine via the RackN Portal

• Clone - Clone a machine by selecting a machine listed

• Delete - Delete a machine by selecting a machine listed

• Show - This will show additional features for each machine including Plugin, RAM, NICs, CPUs, Make, and
Family

Bulk Actions

The Bulk Actions page allows the operator to perform a series of changes to a selected machine or group of machines.
Available options for machine manipulation include:

• Runnable - Select a machine or a set of machines to make them able to run or stop an active process

• Profiles - Select a machine or a set of machines to assign a specific profile for processing

• Workflows - Select a machine or a set of machines to assign a specific workflow for processing

• Stages - Select a machine or a set of machines to assign a specific stage for processing

• Actions - Select a machine or a set of machines to perform an action such as poweron, poweroff, powercycle,
createVM, startVM, stop VM, destroyVM, nextbootpxe or nextbootdisk

The top of the page offers the following services via a single button for each action:

• Refresh - Refresh the content on the page

• Filter - Allows the user to show a specific set of machines based on a variety of filters including IP Address,
BootEnv, Key, Name, Stage, UUID, Workflow,etc

• Delete - Delete a machine by selecting a machine listed

• Bulk Actions

• Force

Plugins

The Plugin page lists all currently available plugins in the RackN Portal. For each plugin listed the following is
included:

• Lock - The plugin is available or disabled/locked for your use

• Name - The name of the plugin

• Description - Details about the plugin

3.17. RackN Portal 59

DigitalRebar Provision Documentation, Release v3.9

• Provider - The name of the Profile that allows a machine to use the plugin

The top of the page offers the following services via a single button for each action:

• Refresh - Refresh the content on the page

• Filter - Allows the user to show a specific set of plugins based on a variety of filters including Available, Key,
Name, Provider, Read Only and Valid

• Add - Select a new plugin to add from the Select Plugin Provider page

• Clone - Make a duplicate of a specific plugin or set of plugins

• Delete - Remove a plugin or set of plugins from the RackN Portal

Info & Preferences

The System Info and Preferences page gives a complete high level overview of all activities in the RackN Portal. It is
divided into four sections:

• System Wizard

• Version Inspection

• System Preferences

• System Diagnostics

System Wizard This section contains status information on the availability of the RackN Portal to function. All
sections should have a green checkmark unless you are working with a Packet.net or other external environment where
a network is not required in which case Subnets will have a red X.

These items are given status for availability:

• Content

• Boot Environment

• Subnets

• ISOs

• Preferences

• Workflows

• Machines

Version Inspection This section contains a list of plugins currently available to the RackN Portal for usage. A Refresh
button is available to have the system recheck this information.

System Preferences This section allows the operator to set a variety of global properties for the RackN Portal. A Save
button is available to ensure all changes are saved to the system.

These are the properties available for updates:

• Default Workflow

• Default Stage

• Default BootEnv

• Known Token Timeout

• Unknown Token Timeout

• Unknown BootEnv

60 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• BootEvn Logs

• DHCP Logs

• Renderer Logs

• Debug Frontend

• Debug Plugins

• Default Log Level

System Diagnostics This section contains information the system itself including:

• Version tip - Build # of the Digital Rebar Provision being operated by the RackN Portal

• Feature Flags - The list of features supported in the RackN Portal for the connected Digital Rebar Provision
instance.

• Endpoint MAC Address and API Port - Machine information on the DRP Endpoint the RackN Portal is con-
nected to

• OS and Architecture - The Operating System and Processor of the Endpoint machine

The top of the page offers the following services via a single button for each action:

• Refresh - Refresh the content on the page

3.17.3 Networking

This section contains information to the DRP endpoint about all networking settings within the available infrastructure.

Switches

This section lists all LLDP discovered switches.

The blue Refresh button will update the list ensuring you have the latest switch information on the network.

Subnets

This section lists all Subnets discovered in the network.

Each Subnet contains the following information:

• Locked or Unlocked

• Name

• Subnet Address

• Start IP Address Range

• End IP Address Range

• Active Time

• Reserve Time

The top of the page contains a series of blue buttons for additional actions:

• Refresh - Refresh the list of Subnets should a new Subnet be in the system

3.17. RackN Portal 61

DigitalRebar Provision Documentation, Release v3.9

• Filter - Select a specific set of Subnets based on the following options: Active Address, Address Available,
Enabled, Key, Name, NextServer, Proxy, ReadOnly, Strategy, Subnet CIDR Address, Valid Subnet

• Add - Add a new Subnet to the system

• Clone - Clone a selected Subnet to add to the system

• Delete - Remove all the selected Subnets

Configure Subnets

Configuring Subnets is a critical first step in Digital Rebar Provision operation. The basic UI will show all configured
subnets and provide an easy way to add broadcast subnets based on the known interfaces.

To edit or delete a subnet, click on the name of the subnet to populate the editing area below the list. To create a relay
subnet, click on the add subnet link. To create a broadcast subnet, click on the link provided after the name of the
unassigned interfaces.

There are two primary types of subnets: broadcast and relay:

• Broadcast subnets are associated with the addresses provided by the Digital Rebar Provision host system. Digital
Rebar Provision can have multiple DHCP ranges; however, only one subnet can be assigned per interface _and_
the subnet CIDR must include the IP of the interface (the range should NOT). By convention, subnets associated
with an interface will be named as the interface.

• Relay subnets answer requests forwarded from DHCP relays such as those provided by switches. These can
be any suitable IP range. Since the Relay subnets are not broadcast, they do not conflict with existing DHCP
servers in the environment.

Digital Rebar Provision can operate in a permissive reservation mode or require users to whitelist systems before they
are serviced. The OnlyReservations flag will operate as a reservations required (whitelist) mode when true; otherwise,
Digital Rebar Provision permissive reservation mode will give out addresses to any valid DHCP request.

In additional to serving IPs, DHCP servers provide critical configuration (aka DHCP Options) information to the
clients. Setting Option 67, Next Boot, is essential for Digital Rebar Provision to operate as a Provisioner. This
information includes next boot (67), gateway (3), domain name (15), DNS (6) and other important information. It is
encoded in the responses according to IETF RFC 2132

Consult the Godocs for more details about the specific fields.

Leases

Leases show individual links between tokens and addresses, created through reservation or subnet strategies. Leases
remain valid for short periods of time, and cannot be edited. The expiration time of each lease is visible through the
UI. Once a lease has expired, it may be removed.

This page shows a list of Leases available in the system.

Reservations

Reservations link tokens to specific IP addresses. This view shows a list of existing reservations along with tokens and
strategies associated with each. Currently, MAC is the only available strategy. Reservations may contain options to be
applied to connected servers, which are also visible through the UI.

This page shows a list of Reservations available in the system.

62 Chapter 3. Table of Contents

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol#DHCP_options
https://tools.ietf.org/html/rfc2132
https://godoc.org/github.com/digitalrebar/provision/backend#Subnet

DigitalRebar Provision Documentation, Release v3.9

3.17.4 Provision

This section contains the setup information to provision a machine. The workflow process uses this information when
configuring and deploying a new machine.

Boot Environments

Configuring at least one Boot Environment is a critical first step in Digital Rebar Provision operation. The Digital
Rebar CentOS based in-memory discovery image, Sledgehammer, will be installed on first use by default.

The UI will show a complete list of potential Boot Environments with the following information:

• Locked or Unlocked

• Name - The name of the Boot Environment.

• D/L

• ISO - ISO or TAR Image involved with the named Boot Environment

• Description - More information about the specific Boot Environment

The top of the page includes a set of additional actions:

• Refresh - Refresh the list of available Boot Environments for the Endpoint to use

• Filter - Refine the list of Boot Environments based on these options: Available, Key, Name, OnlyUnknown,
OSName, ReadOnly, Valid

• Add - Add a new Boot Environment

• Clone - Clone a selected Boot Environment

• Delete - Remove a selected Boot Environment

Templates

Templates contain important instructions for the provisioning process, and are comprised of golang text/template
strings. Once templates are rendered along with any assigned parameters, they are used by the BootEnv to boot the
target machine. Templates may contain other templates, known as sub-templates.

The UI will show a complete list of Templates with the following information:

• Locked or Unlocked

• ID - Template name

• Preview - Description of what the Template does

The top of the page includes a set of additional actions:

• Refresh - Refresh the list of available Templates for the Endpoint to use

• Filter - Refine the list of Templates based on these options: Available, ID, Key, ReadOnly, Valid

• Add - Add a new Template

• Clone - Clone a selected Template

• Delete - Remove a selected Template

3.17. RackN Portal 63

DigitalRebar Provision Documentation, Release v3.9

Params

Parameters are passed to a template from a machine, and help to drive the template’s functions. They consist of
key/value pairs that provide configuration to the renderer. Profiles allow params to be applied in bulk, or they can be
attached to templates individually.

The UI will show a complete list of Params with the following information:

• Locked or Unlocked

• Name - Name of the Param

• Type - Value of the Param; e.g. Object, String, Array, etc

• Description - Additional information about the Param

The top of the page includes a set of additional actions:

• Refresh - Refresh the list of available Params for the Endpoint to use

• Filter - Refine the list of Params based on these options: Available, Key, Name, ReadOnly, Valid

• Add - Add a new Param

• Clone - Clone a selected Param

• Delete - Remove a selected Param

Profiles

Profiles provide a convenient way to apply sets of parameters to a machine. Multiple profiles can be assigned to one
machine, and will be referenced in the order they are listed. Parameters can be linked to specific profiles through the
profiles page, which can then be attached to machines through the machines UI.

The UI will show a complete list of Profiles with the following information:

• Locked or Unlocked

• Name - Name of the Profiles

• Description - Additional information about the Profiles

The top of the page includes a set of additional actions:

• Refresh - Refresh the list of available Profiles for the Endpoint to use

• Filter - Refine the list of Params based on these options: Available, Key, Name, ReadOnly, Valid

• Add - Add a new Profile

• Clone - Clone a selected Profile

• Delete - Remove a selected Profile

• Ansible - Present information about the Ansible Inventory Grid

3.17.5 Control

This section of the UX contains critical information for managing the provisioning of nodes within Digital Rebar.
Workflows are the high level instruction path necessary for DRP to perform a provision. Workflows are composed of
individual stages which accomplish a specific task.

64 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Workflow

This section lists all available Workflows currently available to execute. Each Workflow has the following details:

• Lock/Unlock

• Name

• Description

• Stages

To the right is a list of ALL available stages that can be used to build a new Workflow.

At the top of the screen are a series of blue boxes offering additional functionality:

• Switch to Change/Stage Map - This screen shows the Workflow processes available and how the process order
from one state to the next. Steps can be added to Workflows and a Workflow Wizard is available to create a new
Workflow.

• Refresh - Update the Workflow list with the latest available Workflows

• Filter - Select which Workflow to list by Available, Key, Name, ReadOnly, and Valid

• Add - Add a new Workflow

• Clone - Clone a Workflow

• Delete - Delete a Workflow

For more details Digital Rebar Provision Workflows

Stages

This section lists all available Stages within the DRP system. Each Stage has the following details:

• Lock/Unlock

• Name

• Boot Environment

• Description

At the top of the screen are a series of blue boxes offering additional functionality:

• Refresh - Update the Stages list with the latest available Stages

• Filter - Select which Stage to list by Available, BootEnv, Key, Name, ReadOnly, Reboot and Valid

• Add - Add a new Stage

• Clone - Clone a Stage

• Delete - Delete a Stage

For more details Stage

Tasks

This section lists all available Tasks within the DRP system. Each Task has the following details:

• Lock/Unlock

• Name

3.17. RackN Portal 65

DigitalRebar Provision Documentation, Release v3.9

• Description

At the top of the screen are a series of blue boxes offering additional functionality:

• Refresh - Update the Task list with the latest available Stages

• Filter - Select which Task to list by Available, Key, Name, ReadOnly, and Valid

• Add - Add a new Task

• Clone - Clone a Task

• Delete - Delete a Task

Task Details

During the boot process, tasks provide additional configuration to machines in the form of templates. BootEnvs will
use these sets of templates to construct specific jobs for a machine.

Within a task, templates are processed in the order they are assigned, so it’s important to check that templates are
attached correctly to a task.

For more details Task

Jobs

This section lists all available Jobs within the DRP system. Each Job has the following details:

• State

• Start Time

• Run Time

• Job UUID

• Machine

• Stage

• Task

At the top of the screen are a series of blue boxes offering additional functionality:

• Refresh - Update the Jobs list with the latest available Jobs

• Filter - Select which Task to list by Archived, Available, BootEnv, Current, EndTime, Key, Machine, Previous,
ReadOnly, Stage, StartTime, State, Task, Uuid, Workflow, and Valid

• Delete - Delete a Job

Job Details

A job defines a machine’s current step in its boot process. After completing a job, the machine creates a new job from
the next instruction in the machine’s task list.

Machines will only process one job at a time, and jobs are not created until the instant they are required.

For more details Job

66 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.17.6 Synchronize and Upload

This section contains information on the available content packages, ISOs, and Plugins available in the current DRP
as well as tools not yet installed on this specific endpoint.

Content Packages

Two separate tables are shown containing the following information:

• Endpoint Content - Manage all the installed content packages on the DRP endpoint : An Upgrade button indi-
cates if the content packages have been updated and a new version needs to be downloaded

• Community & User Name Content - Additional content packages available to the user but not on the DRP
endpoint

Content Package Information

• Preview - Provide a complete look into the Content Packag including its Boot Envs, Params, Profiles, Stages,
Tasks, and Templates. An option to see the raw JSON is also available

• Diff - Show the latest changes between the current and most recent version of the Content Package

• Upgrade - Upgrade the Content Package to its latest version

• Remove - Remove the Content Package from the current DRP endpoint

The top of the page has a set of blue boxes for additional information:

• Catalog - Gives a complete list of all possible content packages for the DRP endpoint

• Refresh - Update the current list of information on the page

• Show All - Show all options installed and not installed for the DRP endpoint

Boot ISOs

This page shows all available Boot ISOs and Images for the DRP endpoint to use.

The top of the page has a set of blue boxes for additional information:

• Refresh - Update the current list of ISOs

• Upload - Add a new ISO image to the DRP endpoint

• Delete - Remove an ISO image from the DRP endpoint

Plugin Providers

This section contains two separate tables showing Plugins available for the DRP endpoint.

• Endpoint Plugin Providers - Manage all the installed Plugins on the DRP endpoint.

• Organization Plugin Providers - Additional Plugins my organization can run however are not yet installed on
my DRP endpoint

Plugin Information

• Plugin Name

• Upgrade - Get the latest code for a specific Plugin on the DRP endpoint

3.17. RackN Portal 67

DigitalRebar Provision Documentation, Release v3.9

• Remove - Remove the Plugin from the DRP endpoint which will have it appear on the Organization Plugin
Providers list

• Transfer - Move the Plugin to the DRP endpoint from the Organization Plugin Providers list

The top of the page has a set of blue boxes for additional information:

• Catalog - Gives a complete list of all possible Plugins for the DRP endpoint

• Upload - Add a new Plugin to the DRP endpoint

• Refresh - Update the current list of information on the page

Support Files

These files are located on the DRP webserver and are available via TFTP to start the PXE boot on new machines.

3.17.7 Endpoint Admin

This section provides information on all the endpoint activity including users and logs as well as a generic Log Out
button to exit the RackN Portal.

Users

This section provides a list of all Users currently on the DRP endpoint. Each User has the following information:

• Lock/Unlock

• Name

Additional functionality is available from a series of blue boxes on the top of the page:

• Refresh - Update the list of Users showing on the page

• Filter - List the Users based on the following options: Available, Key, Name, ReadOnly, and Valid

• Add - Add a new User to the DRP endpoint

• Clone - Clone an existing User on the DRP endpoint

• Delete - Delete an existing User on the DRP endpoint

Logs

This section provides a list of all activity on the DRP endpoint via a Log file.

Additional functionality is available from a series of blue boxes on the top of the page:

• Refresh - Update the log data being shown to include the latest new logs

Logout

Press this button to logout of the DRP endpoint.

68 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.18 Swagger UI

The Digital Rebar Provision UI includes Swagger to allow exploration and testing of the Digital Rebar Provision API.

To access the Swagger web interface, point your web browser at your DRP Endpoint IP addres, at the following URL:

https://<IP_ADDRESS>:8092/swagger-ui

Ensure that the input form contains the same IP_ADDRESS reference as your DRP Endpoint. Click the Authorize
button to obtain an API Token from the Username/Password authentication.

See Default Template Identity for default credentials.

Note: Due to the limitations of the Swagger specification, there are important API optimizations that are not exposed
in the swagger.json. Please review the Digital Rebar Provision API for the complete capabilities.

3.19 Digital Rebar Provision Command Line Interface (CLI)

The Digital Rebar Provision Command Line Interface (drpcli) provides a simplified way to interact with the Digital
Rebar Provision API. The command line tool (drpcli) is auto-generated from source code via reference of the API.
This means the CLI should implement 100% coverage of the API.

3.19.1 Overview

The CLI provides help for commands and follows a pattern of chained parameters with a few flags for additional
modifications.

Some examples are:

drpcli bootenvs list
drpcli subnets get mysubnet
drpcli preferences set defaultBootEnv discovery

The drpcli has help at each layer of command and is the easiest way to figure out what can and can not be done.

drpcli help
drpcli bootenvs help

Each object in the rs_data_architecture has a CLI subcommand.

Note: VERY IMPORTANT - the update commands use the PATCH operation for the objects in the Digital Rebar
Provision API. This has the implication that for map like components (Params sections of rs_model_machine and
rs_model_profile) the contents are merged with the existing object. For the Params sections specifically, use the
subaction params to replace contents.

By default, the CLI will attempt to access the dr-provision API endpoint on the localhost at port 8092 with the username
and password of rocketskates and r0cketsk8ts, respectively. All three of these values can be provided by environment
variable or command line flag.

3.18. Swagger UI 69

DigitalRebar Provision Documentation, Release v3.9

Option Environment Vari-
able

Flag Format

User-
name

RS_KEY -P or –pass-
word

String, but when part of RS_KEY it is: user-
name:password

Password RS_KEY -U or –user-
name

String, but when part of RS_KEY it is: user-
name:password

Token RS_TOKEN N/A Base64 encoded string from a generate token API call.
Endpoint RS_ENDPOINT -E or –endpoint URL for access, https://IP:PORT. e.g. https://127.0.0.1:

8092

Note: It is necessary to specify either a username and password or a token.

Another useful flag is –format. this will change the tool output to YAML instead of JSON. This can be helpful when
editing files by hand. e.g. –format yaml

For Bash users, the drpcli can generate its own bash completion file. Once generated, it is necessary to restart the
terminal/shell or reload the completions.

linux

sudo drpcli autocomplete /etc/bash_completion.d/drpcli
. /etc/bash_completion

Darwin

Assuming that Brew is in use to update and manage bash and bash autocompletion.

sudo drpcli autocomplete /usr/local/etc/bash_completion.d/drpcli
. /usr/local/etc/bash_completion

3.19.2 Command Line Reference

rs_cli_command

3.20 Digital Rebar Provision API

In general, the Digital Rebar Provision API is documented via the Swagger spec and introspectable for machines via
/swagger.json and for humans via /swagger-ui.

All API calls are available under /api/v3 based on the Digital Rebar API convention.

3.20.1 API Filters

The API includes index driven filters for large deployments that can be used to pre-filter requests from the API.

The list of available indexes is provided by the /api/v3/indexes and /api/v3/indexes/[model] calls.
These hashs provide a list of all keys that can be used for filters with some additional metadata.

70 Chapter 3. Table of Contents

https://IP:PORT
https://127.0.0.1:8092
https://127.0.0.1:8092

DigitalRebar Provision Documentation, Release v3.9

To use the index, simply include one or more indexs and values on the request URI. For example:

/api/v3/machines?Runnable=true&Available=true

The filter specification allows more complex filters using functions:

• Key=Eq(Value) (that is the same as Key=Value)

• Lt(Value)

• Lte(Value)

• Gt(Value)

• Gte(Value)

• Ne(Value)

• Ranges: * Between(Value1,Value2) (edited) * Except(Value1,Value2)

The query string applies ALL parameters are to be applied (as implied by the & separator). All must match to be
returned.

3.20.2 Filtering by Param Value

The API includes specialized filter behavior for Params that allows deep searching models for Param values.

To filter Machines or Profiles by Param values, pass the Param name and value using the normal Field filter specifi-
cation. When the Field is not found, the backend will search model’s Params keys and evalute the filter against the
Param value.

3.20.3 Payload Reduction (slim)

Since Params and Meta may contain a lot of data, the API supports the ?slim=[Params,Meta] option to allow
requests to leave these fields unpopulated. If this data is needed, operators will have to request the full object or
object’s Params or Meta in secondary calls.

/api/v3/machines?slim=Params,Meta

Only endpoints that offer the slim-objects feature flag (v3.9+) will accept this flag.

3.20.4 API Exception & Deprecation Notes

There are times when the API and models have exceptions or changes that do not follow the normal pattern. This
section is designed to provide a reference for those exceptions.

This section is intended to provide general information about and functional of the API. We maintain this section for
legacy operators, when possible avoid using deprecated features!

Machines.Profile (deprecated by flag: profileless-machine) What would otherwise be Machine.Params is actually
embedded under Machines.Profile.Params. This deprecated composition simplifies that precedence calculation
for Params by making Machines the top of the Profiles stack. All the other fields in the Machines.Profile are
ignored.

3.20. Digital Rebar Provision API 71

DigitalRebar Provision Documentation, Release v3.9

Methods

System

GET /system/actions

List system actions System

• Description: List System actions

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoSystemResponse
401 NoSystemResponse

POST /system/actions/{cmd}

Call an action on the system.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoSystemResponse
401 NoSystemResponse
400 ErrorResponse
409 ErrorResponse

GET /system/actions/{cmd}

72 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

List specific action for System

• Description: List specific {cmd} action for System

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoSystemResponse
401 NoSystemResponse
400 ErrorResponse

PluginProviders

POST /plugin_providers/{name}

Upload a plugin provider to a specific {name}.

• Produces: [u’application/json’]

• Consumes: [u’application/octet-stream’]

Parameters

Name Position Description Type
name* path string
Body body Raw Octet Stream

Responses

Code Type
201 PluginProviderInfoResponse
415 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
507 ErrorResponse
409 ErrorResponse

DELETE /plugin_providers/{name}

3.20. Digital Rebar Provision API 73

DigitalRebar Provision Documentation, Release v3.9

Delete a plugin provider

• Description: The plugin provider will be removed from the system.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
422 ErrorResponse
404 ErrorResponse
403 NoContentResponse
204 NoContentResponse
401 NoContentResponse

HEAD /plugin_providers/{name}

See if a Plugin Provider exists

• Description: Return 200 if the Plugin Provider specified by {name} exists, or return NotFound.

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

GET /plugin_providers/{name}

Get a specific plugin with {name}

• Produces: [u’application/json’]

• Description: Get a specific plugin specified by {name}.

Parameters

Name Position Description Type
name* path string

Responses

74 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 PluginProviderResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

HEAD /plugin_providers

• Produces: [u’application/json’]

• Description: Stats of the list of plugin_provider on the system to create plugins

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 PluginProvidersResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse
406 ErrorResponse

GET /plugin_providers

• Produces: [u’application/json’]

• Description: Lists possible plugin_provider on the system to create plugins

Responses

Code Type
200 PluginProvidersResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

Indexes

GET /indexes

• Produces: [u’application/json’]

• Description: List all static indexes for objects

3.20. Digital Rebar Provision API 75

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 IndexesResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

GET /indexes/{prefix}

• Produces: [u’application/json’]

• Description: Get static indexes for a specific object type

Parameters

Name Position Description Type
prefix* path string

Responses

Code Type
200 IndexResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

GET /indexes/{prefix}/{param}

Get information on a specific index for a specific object type.

• Produces: [u’application/json’]

• Description: Unlike the other routes, you can probe for parameter-defined indexes using this route.

Parameters

Name Position Description Type
prefix* path string
param* path string

Responses

Code Type
200 IndexResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

76 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Params

POST /params

Create a Param

• Description: Create a Param from the provided object

Parameters

Name Position Description Type
Body* body Param

Responses

Code Type
201 ParamResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /params

Stats of the List Params filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred.

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

3.20. Digital Rebar Provision API 77

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /params

Lists Params filtered by some parameters.

• Description: This will show all Params by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred.

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 ParamsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

PUT /params/{name}

Put a Param

• Description: Update a Param specified by {name} using a JSON Param

78 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Body* body Param
name* path string

Responses

Code Type
200 ParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /params/{name}

Patch a Param

• Description: Update a Param specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

Code Type
200 ParamResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /params/{name}

See if a Param exists

• Description: Return 200 if the Param specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

3.20. Digital Rebar Provision API 79

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /params/{name}

Delete a Param

• Description: Delete a Param specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 ParamResponse
404 ErrorResponse
403 NoContentResponse
422 ErrorResponse
401 NoContentResponse

GET /params/{name}

Get a Param

• Description: Get the Param specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 ParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

80 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Prefs

POST /prefs

Create a Pref

• Description: Create a Pref from the provided object

Parameters

Name Position Description Type
Body body map of strings to string

Responses

Code Type
201 PrefsResponse
422 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse

GET /prefs

Lists Prefs

• Description: This will show all Prefs by default

Responses

Code Type
200 PrefsResponse
403 NoContentResponse
401 NoContentResponse

Events

POST /events

Create an Event

• Description: Create an Event from the provided object

Parameters

Name Position Description Type
Body body Event

Responses

3.20. Digital Rebar Provision API 81

DigitalRebar Provision Documentation, Release v3.9

Code Type
422 ErrorResponse
403 NoContentResponse
204 NoContentResponse
401 NoContentResponse
400 ErrorResponse

Templates

POST /templates/{id}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
id* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoTemplateResponse
401 NoTemplateResponse
400 ErrorResponse
409 ErrorResponse

GET /templates/{id}/actions/{cmd}

List specific action for a template Template

• Description: List specific {cmd} action for a Template specified by {id}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
id* path string
cmd* path string
plugin query string

Responses

82 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 ActionResponse
404 ErrorResponse
403 NoTemplateResponse
401 NoTemplateResponse
400 ErrorResponse

PUT /templates/{id}

Put a Template

• Description: Update a Template specified by {id} using a JSON Template

Parameters

Name Position Description Type
Body* body Template
id* path string

Responses

Code Type
200 TemplateResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /templates/{id}

Patch a Template

• Description: Update a Template specified by {id} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
id* path string

Responses

3.20. Digital Rebar Provision API 83

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 TemplateResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /templates/{id}

See if a Template exists

• Description: Return 200 if the Template specifiec by {id} exists, or return NotFound.

Parameters

Name Position Description Type
id* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /templates/{id}

Delete a Template

• Description: Delete a Template specified by {id}

Parameters

Name Position Description Type
id* path string

Responses

Code Type
200 TemplateResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

84 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

GET /templates/{id}

Get a Template

• Description: Get the Template specified by {id} or return NotFound.

Parameters

Name Position Description Type
id* path string

Responses

Code Type
200 TemplateResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /templates/{id}/actions

List template actions Template

• Description: List Template actions for a Template specified by {id}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
id* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoTemplateResponse
401 NoTemplateResponse

POST /templates

Create a Template

• Description: Create a Template from the provided object

Parameters

3.20. Digital Rebar Provision API 85

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
Body* body Template

Responses

Code Type
201 TemplateResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /templates

Stats of the List Templates filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: ID = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: ID=fred - returns items named fred ID=Lt(fred) - returns items that alphabetically less than fred.

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
ID query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /templates

86 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Lists Templates filtered by some parameters.

• Description: This will show all Templates by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: ID = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: ID=fred - returns items named fred ID=Lt(fred) - returns items that alphabetically less than fred.

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
ID query string

Responses

Code Type
200 TemplatesResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

Subnets

PUT /subnets/{name}

Put a Subnet

• Description: Update a Subnet specified by {name} using a JSON Subnet

Parameters

Name Position Description Type
Body* body Subnet
name* path string

Responses

3.20. Digital Rebar Provision API 87

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 SubnetResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /subnets/{name}

Patch a Subnet

• Description: Update a Subnet specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

Code Type
200 SubnetResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /subnets/{name}

See if a Subnet exists

• Description: Return 200 if the Subnet specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

88 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /subnets/{name}

Delete a Subnet

• Description: Delete a Subnet specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 SubnetResponse
404 ErrorResponse
403 NoContentResponse
422 ErrorResponse
401 NoContentResponse

GET /subnets/{name}

Get a Subnet

• Description: Get the Subnet specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 SubnetResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /subnets/{name}/actions

List subnet actions Subnet

3.20. Digital Rebar Provision API 89

DigitalRebar Provision Documentation, Release v3.9

• Description: List Subnet actions for a Subnet specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoSubnetResponse
401 NoSubnetResponse

POST /subnets/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoSubnetResponse
401 NoSubnetResponse
400 ErrorResponse
409 ErrorResponse

GET /subnets/{name}/actions/{cmd}

List specific action for a subnet Subnet

• Description: List specific {cmd} action for a Subnet specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

90 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoSubnetResponse
401 NoSubnetResponse
400 ErrorResponse

POST /subnets

Create a Subnet

• Description: Create a Subnet from the provided object

Parameters

Name Position Description Type
Body* body Subnet

Responses

Code Type
201 SubnetResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /subnets

Stats of the List Subnets filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string NextServer = IP Address Subnet = CIDR Address Strategy = string Available
= boolean Valid = boolean ReadOnly = boolean Enabled = boolean Proxy = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value

3.20. Digital Rebar Provision API 91

DigitalRebar Provision Documentation, Release v3.9

Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Strategy query string
NextServer query string
Subnet query string
Name query string
Enabled query string
Proxy query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /subnets

Lists Subnets filtered by some parameters.

• Description: This will show all Subnets by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string NextServer = IP Address Subnet = CIDR Address Strategy = string Available
= boolean Valid = boolean ReadOnly = boolean Enabled = boolean Proxy = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

92 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Strategy query string
NextServer query string
Subnet query string
Name query string
Enabled query string
Proxy query string

Responses

Code Type
200 SubnetsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

Jobs

POST /jobs/{uuid}/plugin_actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
uuid* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoJobResponse
401 NoJobResponse
400 ErrorResponse
409 ErrorResponse

3.20. Digital Rebar Provision API 93

DigitalRebar Provision Documentation, Release v3.9

GET /jobs/{uuid}/plugin_actions/{cmd}

List specific action for a job Job

• Description: List specific {cmd} action for a Job specified by {uuid}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
uuid* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoJobResponse
401 NoJobResponse
400 ErrorResponse

GET /jobs/{uuid}/plugin_actions

List job plugin_actions Job

• Description: List Job plugin_actions for a Job specified by {uuid}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
uuid* path string
plugin query string
os query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoJobResponse
401 NoJobResponse

POST /jobs

Create a Job

94 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• Description: Create a Job from the provided object, Only Machine and UUID are used.

Parameters

Name Position Description Type
Body* body Job

Responses

Code Type
201 JobResponse
202 JobResponse
204 NoContentResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /jobs

Stats of the List Jobs filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Uuid = string Stage = string Task = string State = string Machine = string Archived = boolean
StartTime = datetime EndTime = datetime Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Uuid=fred - returns items named fred Uuid=Lt(fred) - returns items that alphabetically less than fred.
Uuid=Lt(fred)&Archived=true - returns items with Uuid less than fred and Archived is true

Parameters

3.20. Digital Rebar Provision API 95

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Uuid query string
Stage query string
Task query string
State query string
Machine query string
Archived query string
StartTime query string
EndTime query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /jobs

Lists Jobs filtered by some parameters.

• Description: This will show all Jobs by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Uuid = string Stage = string Task = string State = string Machine = string Archived = boolean
StartTime = datetime EndTime = datetime Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Uuid=fred - returns items named fred Uuid=Lt(fred) - returns items that alphabetically less than fred.
Uuid=Lt(fred)&Archived=true - returns items with Uuid less than fred and Archived is true

Parameters

96 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Uuid query string
Stage query string
Task query string
State query string
Machine query string
Archived query string
StartTime query string
EndTime query string

Responses

Code Type
200 JobsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

PUT /jobs/{uuid}

Put a Job

• Description: Update a Job specified by {uuid} using a JSON Job

Parameters

Name Position Description Type
Body* body Job
uuid* path string

Responses

Code Type
200 JobResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse

PATCH /jobs/{uuid}

Patch a Job

3.20. Digital Rebar Provision API 97

DigitalRebar Provision Documentation, Release v3.9

• Description: Update a Job specified by {uuid} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
uuid* path string

Responses

Code Type
200 JobResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse

HEAD /jobs/{uuid}

See if a Job exists

• Description: Return 200 if the Job specifiec by {uuid} exists, or return NotFound.

Parameters

Name Position Description Type
uuid* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /jobs/{uuid}

Delete a Job

• Description: Delete a Job specified by {uuid}

Parameters

Name Position Description Type
uuid* path string

Responses

98 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 JobResponse
404 ErrorResponse
403 NoContentResponse
422 ErrorResponse
401 NoContentResponse

GET /jobs/{uuid}

Get a Job

• Description: Get the Job specified by {uuid} or return NotFound.

Parameters

Name Position Description Type
uuid* path string

Responses

Code Type
200 JobResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /jobs/{uuid}/actions

List job plugin_actions Job

• Description: List Job plugin_actions for a Job specified by {uuid}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
uuid* path string
plugin query string
os query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoJobResponse
401 NoJobResponse

3.20. Digital Rebar Provision API 99

DigitalRebar Provision Documentation, Release v3.9

PUT /jobs/{uuid}/log

Append the string to the end of the job’s log.

• Produces: [u’application/json’]

• Consumes: [u’application/octet-stream’]

Parameters

Name Position Description Type
Body* body Raw Octet Stream
uuid* path string

Responses

Code Type
204 NoContentResponse
415 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
500 ErrorResponse

GET /jobs/{uuid}/log

Get the log for this job

• Produces: [u’application/octet-stream’, u’application/json’]

• Description: Get log for the Job specified by {uuid} or return NotFound.

Parameters

Name Position Description Type
uuid* path string

Responses

Code Type
200 JobLogResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

Users

100 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

PUT /users/{name}

Put a User

• Description: Update a User specified by {name} using a JSON User

Parameters

Name Position Description Type
Body* body User
name* path string

Responses

Code Type
200 UserResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /users/{name}

Patch a User

• Description: Update a User specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

Code Type
200 UserResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /users/{name}

See if a User exists

3.20. Digital Rebar Provision API 101

DigitalRebar Provision Documentation, Release v3.9

• Description: Return 200 if the User specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /users/{name}

Delete a User

• Description: Delete a User specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 UserResponse
404 ErrorResponse
403 NoContentResponse
422 ErrorResponse
401 NoContentResponse

GET /users/{name}

Get a User

• Description: Get the User specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

102 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 UserResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /users/{name}/token

Get a User Token

• Description: Get a token for the User specified by {name} or return error

Parameters

Name Position Description Type
name* path string
ttl query integer
roles query string

Responses

Code Type
200 UserTokenResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse

GET /users/{name}/actions

List user actions User

• Description: List User actions for a User specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoUserResponse
401 NoUserResponse

3.20. Digital Rebar Provision API 103

DigitalRebar Provision Documentation, Release v3.9

POST /users/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoUserResponse
401 NoUserResponse
400 ErrorResponse
409 ErrorResponse

GET /users/{name}/actions/{cmd}

List specific action for a user User

• Description: List specific {cmd} action for a User specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoUserResponse
401 NoUserResponse
400 ErrorResponse

PUT /users/{name}/password

Set the password for a user.

104 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• Description: Update a User specified by {name} using a JSON User

Parameters

Name Position Description Type
Body* body UserPassword
name* path string

Responses

Code Type
200 UserResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

POST /users

Create a User

• Description: Create a User from the provided object

Parameters

Name Position Description Type
Body* body User

Responses

Code Type
201 UserResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /users

Stats of the List Users filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean

3.20. Digital Rebar Provision API 105

DigitalRebar Provision Documentation, Release v3.9

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred.

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /users

Lists Users filtered by some parameters.

• Description: This will show all Users by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred.

Parameters

106 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 UsersResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

Interfaces

GET /interfaces

• Produces: [u’application/json’]

• Description: Lists possible interfaces on the system to serve DHCP

Responses

Code Type
200 InterfacesResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

GET /interfaces/{name}

Get a specific interface with {name}

• Produces: [u’application/json’]

• Description: Get a specific interface specified by {name}.

Parameters

Name Position Description Type
name* path string

Responses

3.20. Digital Rebar Provision API 107

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 InterfaceResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

Isos

GET /isos

Lists isos in isos directory

• Description: Lists the isos in a directory under /isos.

Responses

Code Type
200 IsosResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

POST /isos/{path}

Upload an iso to a specific {path} in the tree under isos.

• Produces: [u’application/json’]

• Description: The iso will be uploaded to the {path} in /isos. The {path} will be created.

• Consumes: [u’application/octet-stream’]

Parameters

Name Position Description Type
path* path string
Body body Raw Octet Stream

Responses

Code Type
201 IsoInfoResponse
415 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
507 ErrorResponse
409 ErrorResponse

108 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

DELETE /isos/{path}

Delete an iso to a specific {path} in the tree under isos.

• Description: The iso will be removed from the {path} in /isos.

Parameters

Name Position Description Type
path* path string

Responses

Code Type
422 ErrorResponse
404 ErrorResponse
403 NoContentResponse
204 NoContentResponse
401 NoContentResponse

GET /isos/{path}

Get a specific Iso with {path}

• Produces: [u’application/octet-stream’, u’application/json’]

• Description: Get a specific iso specified by {path} under isos.

Parameters

Name Position Description Type
path* path string

Responses

Code Type
200 IsoResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

Workflows

POST /workflows

Create a Workflow

• Description: Create a Workflow from the provided object

3.20. Digital Rebar Provision API 109

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Body* body Workflow

Responses

Code Type
201 WorkflowResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /workflows

Stats of the List Workflows filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string
Reboot query string
BootEnv query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

110 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

GET /workflows

Lists Workflows filtered by some parameters.

• Description: This will show all Workflows by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string
Reboot query string
BootEnv query string

Responses

Code Type
200 WorkflowsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /workflows/{name}/actions

List workflow actions Workflow

• Description: List Workflow actions for a Workflow specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

3.20. Digital Rebar Provision API 111

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoWorkflowResponse
401 NoWorkflowResponse

POST /workflows/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoWorkflowResponse
401 NoWorkflowResponse
400 ErrorResponse
409 ErrorResponse

GET /workflows/{name}/actions/{cmd}

List specific action for a workflow Workflow

• Description: List specific {cmd} action for a Workflow specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

112 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 ActionResponse
404 ErrorResponse
403 NoWorkflowResponse
401 NoWorkflowResponse
400 ErrorResponse

PUT /workflows/{name}

Put a Workflow

• Description: Update a Workflow specified by {name} using a JSON Workflow

Parameters

Name Position Description Type
Body* body Workflow
name* path string

Responses

Code Type
200 WorkflowResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /workflows/{name}

Patch a Workflow

• Description: Update a Workflow specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

3.20. Digital Rebar Provision API 113

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 WorkflowResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /workflows/{name}

See if a Workflow exists

• Description: Return 200 if the Workflow specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /workflows/{name}

Delete a Workflow

• Description: Delete a Workflow specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 WorkflowResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

114 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

GET /workflows/{name}

Get a Workflow

• Description: Get the Workflow specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 WorkflowResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

Leases

POST /leases/{address}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
address* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoLeaseResponse
401 NoLeaseResponse
400 ErrorResponse
409 ErrorResponse

GET /leases/{address}/actions/{cmd}

3.20. Digital Rebar Provision API 115

DigitalRebar Provision Documentation, Release v3.9

List specific action for a lease Lease

• Description: List specific {cmd} action for a Lease specified by {address}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
address* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoLeaseResponse
401 NoLeaseResponse
400 ErrorResponse

GET /leases/{address}/actions

List lease actions Lease

• Description: List Lease actions for a Lease specified by {address}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
address* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoLeaseResponse
401 NoLeaseResponse

HEAD /leases

Stats of the List Leases filtered by some parameters.

• Description: This return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

116 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Functional Indexs: Addr = IP Address Token = string Strategy = string ExpireTime = Date/Time Available =
boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Addr query string
Token query string
Strategy query string
ExpireTime query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /leases

Lists Leases filtered by some parameters.

• Description: This will show all Leases by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Addr = IP Address Token = string Strategy = string ExpireTime = Date/Time Available =
boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

3.20. Digital Rebar Provision API 117

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Addr query string
Token query string
Strategy query string
ExpireTime query string

Responses

Code Type
200 LeasesResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

HEAD /leases/{address}

See if a Lease exists

• Description: Return 200 if the Lease specifiec by {address} exists, or return NotFound.

Parameters

Name Position Description Type
address* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /leases/{address}

Delete a Lease

• Description: Delete a Lease specified by {address}

Parameters

Name Position Description Type
address* path string

Responses

118 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 LeaseResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

GET /leases/{address}

Get a Lease

• Description: Get the Lease specified by {address} or return NotFound.

Parameters

Name Position Description Type
address* path string

Responses

Code Type
200 LeaseResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse

Info

GET /info

Return current system info.

• Produces: [u’application/json’]

Responses

Code Type
200 InfoResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

3.20. Digital Rebar Provision API 119

DigitalRebar Provision Documentation, Release v3.9

Files

GET /files

Lists files in files directory or subdirectory per query parameter

• Description: Lists the files in a directory under /files. path=<path to return> Path defaults to /

Parameters

Name Position Description Type
path query string

Responses

Code Type
200 FilesResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

POST /files/{path}

Upload a file to a specific {path} in the tree under files.

• Produces: [u’application/json’]

• Description: The file will be uploaded to the {path} in /files. The {path} will be created.

• Consumes: [u’application/octet-stream’]

Parameters

Name Position Description Type
path* path string
Body body Raw Octet Stream

Responses

Code Type
201 FileInfoResponse
415 ErrorResponse
404 ErrorResponse
403 ErrorResponse
401 NoContentResponse
400 ErrorResponse
507 ErrorResponse
409 ErrorResponse

DELETE /files/{path}

120 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Delete a file to a specific {path} in the tree under files.

• Description: The file will be removed from the {path} in /files.

Parameters

Name Position Description Type
path* path string

Responses

Code Type
422 ErrorResponse
404 ErrorResponse
403 NoContentResponse
204 NoContentResponse
401 NoContentResponse

GET /files/{path}

Get a specific File with {path}

• Produces: [u’application/octet-stream’, u’application/json’]

• Description: Get a specific file specified by {path} under files.

Parameters

Name Position Description Type
path* path string

Responses

Code Type
200 FileResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

Roles

POST /roles/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

3.20. Digital Rebar Provision API 121

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoRoleResponse
401 NoRoleResponse
400 ErrorResponse
409 ErrorResponse

GET /roles/{name}/actions/{cmd}

List specific action for a role Role

• Description: List specific {cmd} action for a Role specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoRoleResponse
401 NoRoleResponse
400 ErrorResponse

POST /roles

Create a Role

• Description: Create a Role from the provided object

Parameters

Name Position Description Type
Body* body Role

122 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
201 RoleResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /roles

Stats of the List Roles filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /roles

Lists Roles filtered by some parameters.

3.20. Digital Rebar Provision API 123

DigitalRebar Provision Documentation, Release v3.9

• Description: This will show all Roles by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 RolesResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

PUT /roles/{name}

Put a Role

• Description: Update a Role specified by {name} using a JSON Role

Parameters

Name Position Description Type
Body* body Role
name* path string

Responses

124 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 RoleResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /roles/{name}

Patch a Role

• Description: Update a Role specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

Code Type
200 RoleResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /roles/{name}

See if a Role exists

• Description: Return 200 if the Role specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

3.20. Digital Rebar Provision API 125

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /roles/{name}

Delete a Role

• Description: Delete a Role specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 RoleResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

GET /roles/{name}

Get a Role

• Description: Get the Role specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 RoleResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /roles/{name}/actions

126 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

List role actions Role

• Description: List Role actions for a Role specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoRoleResponse
401 NoRoleResponse

Profiles

PUT /profiles/{name}

Put a Profile

• Description: Update a Profile specified by {name} using a JSON Profile

Parameters

Name Position Description Type
Body* body Profile
decode query string
name* path string

Responses

Code Type
200 ProfileResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse

PATCH /profiles/{name}

Patch a Profile

• Description: Update a Profile specified by {name} using a RFC6902 Patch structure

3.20. Digital Rebar Provision API 127

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Body* body Patch
decode query string
name* path string

Responses

Code Type
200 ProfileResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /profiles/{name}

See if a Profile exists

• Description: Return 200 if the Profile specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /profiles/{name}

Delete a Profile

• Description: Delete a Profile specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string

128 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 ProfileResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

GET /profiles/{name}

Get a Profile

• Description: Get the Profile specified by {name} or return NotFound.

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 ProfileResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /profiles/{name}/actions

List profile actions Profile

• Description: List Profile actions for a Profile specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoProfileResponse
401 NoProfileResponse

3.20. Digital Rebar Provision API 129

DigitalRebar Provision Documentation, Release v3.9

POST /profiles/{name}/params/{key}

• Description: Set as single Parameter {key} for a profile specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string
key* path string
Body* body Raw Octet Stream

Responses

Code Type
200 ProfileParamResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

GET /profiles/{name}/params/{key}

Delete a single profile parameter

• Description: Delete a single parameter {key} for a Profile specified by {uuid}

Parameters

Name Position Description Type
decode query string
name* path string
key* path string

Responses

Code Type
200 ProfileParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

POST /profiles

Create a Profile

• Description: Create a Profile from the provided object

130 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Body* body Profile

Responses

Code Type
201 ProfileResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /profiles

Stats of the List Profiles filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred.

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

3.20. Digital Rebar Provision API 131

DigitalRebar Provision Documentation, Release v3.9

GET /profiles

Lists Profiles filtered by some parameters.

• Description: This will show all Profiles by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred.

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 ProfilesResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

POST /profiles/{name}/params

• Description: Sets parameters for a profile specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string
Body* body map of strings to object

Responses

132 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 ProfileParamsResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

PATCH /profiles/{name}/params

• Description: Update params for Profile {name} with the passed-in patch

Parameters

Name Position Description Type
Body* body Patch
decode query string
name* path string

Responses

Code Type
200 ProfileParamsResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

GET /profiles/{name}/params

List profile params Profile

• Description: List Profile parms for a Profile specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 ProfileParamsResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

3.20. Digital Rebar Provision API 133

DigitalRebar Provision Documentation, Release v3.9

GET /profiles/{name}/pubkey

Get the public key for secure params on a profile

• Description: Get the public key for a Profile specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 PubKeyResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

POST /profiles/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoProfileResponse
401 NoProfileResponse
400 ErrorResponse
409 ErrorResponse

GET /profiles/{name}/actions/{cmd}

List specific action for a profile Profile

134 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• Description: List specific {cmd} action for a Profile specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoProfileResponse
401 NoProfileResponse
400 ErrorResponse

DELETE /profiles/{uuid}/params/{key}

Delete a single profile parameter

• Description: Delete a single parameter {key} for a Profile specified by {uuid}

Parameters

Name Position Description Type
decode query string
name* path string
key* path string

Responses

Code Type
200 ProfileParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

Stages

POST /stages/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

3.20. Digital Rebar Provision API 135

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoStageResponse
401 NoStageResponse
400 ErrorResponse
409 ErrorResponse

GET /stages/{name}/actions/{cmd}

List specific action for a stage Stage

• Description: List specific {cmd} action for a Stage specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoStageResponse
401 NoStageResponse
400 ErrorResponse

POST /stages

Create a Stage

• Description: Create a Stage from the provided object

Parameters

136 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
Body* body Stage

Responses

Code Type
201 StageResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /stages

Stats of the List Stages filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string
Reboot query string
BootEnv query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

3.20. Digital Rebar Provision API 137

DigitalRebar Provision Documentation, Release v3.9

GET /stages

Lists Stages filtered by some parameters.

• Description: This will show all Stages by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string
Reboot query string
BootEnv query string

Responses

Code Type
200 StagesResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

PUT /stages/{name}

Put a Stage

• Description: Update a Stage specified by {name} using a JSON Stage

Parameters

Name Position Description Type
Body* body Stage
name* path string

Responses

138 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 StageResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /stages/{name}

Patch a Stage

• Description: Update a Stage specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

Code Type
200 StageResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /stages/{name}

See if a Stage exists

• Description: Return 200 if the Stage specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

3.20. Digital Rebar Provision API 139

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /stages/{name}

Delete a Stage

• Description: Delete a Stage specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 StageResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

GET /stages/{name}

Get a Stage

• Description: Get the Stage specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 StageResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /stages/{name}/actions

140 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

List stage actions Stage

• Description: List Stage actions for a Stage specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoStageResponse
401 NoStageResponse

Tenants

POST /tenants/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoTenantResponse
401 NoTenantResponse
400 ErrorResponse
409 ErrorResponse

GET /tenants/{name}/actions/{cmd}

List specific action for a tenant Tenant

3.20. Digital Rebar Provision API 141

DigitalRebar Provision Documentation, Release v3.9

• Description: List specific {cmd} action for a Tenant specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoTenantResponse
401 NoTenantResponse
400 ErrorResponse

POST /tenants

Create a Tenant

• Description: Create a Tenant from the provided object

Parameters

Name Position Description Type
Body* body Tenant

Responses

Code Type
201 TenantResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /tenants

Stats of the List Tenants filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

142 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /tenants

Lists Tenants filtered by some parameters.

• Description: This will show all Tenants by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Reboot = boolean BootEnv = string Available = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

3.20. Digital Rebar Provision API 143

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 TenantsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

PUT /tenants/{name}

Put a Tenant

• Description: Update a Tenant specified by {name} using a JSON Tenant

Parameters

Name Position Description Type
Body* body Tenant
name* path string

Responses

Code Type
200 TenantResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /tenants/{name}

Patch a Tenant

• Description: Update a Tenant specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

144 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 TenantResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /tenants/{name}

See if a Tenant exists

• Description: Return 200 if the Tenant specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /tenants/{name}

Delete a Tenant

• Description: Delete a Tenant specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 TenantResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

3.20. Digital Rebar Provision API 145

DigitalRebar Provision Documentation, Release v3.9

GET /tenants/{name}

Get a Tenant

• Description: Get the Tenant specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 TenantResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /tenants/{name}/actions

List tenant actions Tenant

• Description: List Tenant actions for a Tenant specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoTenantResponse
401 NoTenantResponse

Tasks

PUT /tasks/{name}

Put a Task

• Description: Update a Task specified by {name} using a JSON Task

146 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Body* body Task
name* path string

Responses

Code Type
200 TaskResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /tasks/{name}

Patch a Task

• Description: Update a Task specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

Code Type
200 TaskResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /tasks/{name}

See if a Task exists

• Description: Return 200 if the Task specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

3.20. Digital Rebar Provision API 147

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /tasks/{name}

Delete a Task

• Description: Delete a Task specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 TaskResponse
404 ErrorResponse
403 NoContentResponse
422 ErrorResponse
401 NoContentResponse

GET /tasks/{name}

Get a Task

• Description: Get the Task specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 TaskResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

POST /tasks/{name}/actions/{cmd}

148 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoTaskResponse
401 NoTaskResponse
400 ErrorResponse
409 ErrorResponse

GET /tasks/{name}/actions/{cmd}

List specific action for a task Task

• Description: List specific {cmd} action for a Task specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoTaskResponse
401 NoTaskResponse
400 ErrorResponse

POST /tasks

Create a Task

• Description: Create a Task from the provided object

3.20. Digital Rebar Provision API 149

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Body* body Task

Responses

Code Type
201 TaskResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /tasks

Stats of the List Tasks filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Provider = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

150 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

GET /tasks

Lists Tasks filtered by some parameters.

• Description: This will show all Tasks by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Provider = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string

Responses

Code Type
200 TasksResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /tasks/{name}/actions

List task actions Task

• Description: List Task actions for a Task specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

3.20. Digital Rebar Provision API 151

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoTaskResponse
401 NoTaskResponse

Logs

GET /logs

• Produces: [u’application/json’]

• Description: Return current contents of the log buffer

Responses

Code Type
200 LogResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

Reservations

POST /reservations/{address}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
address* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoReservationResponse
401 NoReservationResponse
400 ErrorResponse
409 ErrorResponse

152 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

GET /reservations/{address}/actions/{cmd}

List specific action for a reservation Reservation

• Description: List specific {cmd} action for a Reservation specified by {address}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
address* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoReservationResponse
401 NoReservationResponse
400 ErrorResponse

POST /reservations

Create a Reservation

• Description: Create a Reservation from the provided object

Parameters

Name Position Description Type
Body* body Reservation

Responses

Code Type
201 ReservationResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /reservations

Stats of the List Reservations filtered by some parameters.

3.20. Digital Rebar Provision API 153

DigitalRebar Provision Documentation, Release v3.9

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Addr = IP Address Token = string Strategy = string NextServer = IP Address Available =
boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Addr query string
Token query string
Strategy query string
NextServer query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /reservations

Lists Reservations filtered by some parameters.

• Description: This will show all Reservations by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Addr = IP Address Token = string Strategy = string NextServer = IP Address Available =
boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

154 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Addr query string
Token query string
Strategy query string
NextServer query string

Responses

Code Type
200 ReservationsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /reservations/{address}/actions

List reservation actions Reservation

• Description: List Reservation actions for a Reservation specified by {address}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
address* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoReservationResponse
401 NoReservationResponse

PUT /reservations/{address}

Put a Reservation

• Description: Update a Reservation specified by {address} using a JSON Reservation

3.20. Digital Rebar Provision API 155

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Body* body Reservation
address* path string

Responses

Code Type
200 ReservationResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /reservations/{address}

Patch a Reservation

• Description: Update a Reservation specified by {address} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
address* path string

Responses

Code Type
200 ReservationResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /reservations/{address}

See if a Reservation exists

• Description: Return 200 if the Reservation specific by {address} exists, or return NotFound.

Parameters

Name Position Description Type
address* path string

156 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /reservations/{address}

Delete a Reservation

• Description: Delete a Reservation specified by {address}

Parameters

Name Position Description Type
address* path string

Responses

Code Type
200 ReservationResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse

GET /reservations/{address}

Get a Reservation

• Description: Get the Reservation specified by {address} or return NotFound.

Parameters

Name Position Description Type
address* path string

Responses

Code Type
200 ReservationResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse

3.20. Digital Rebar Provision API 157

DigitalRebar Provision Documentation, Release v3.9

BootEnvs

PUT /bootenvs/{name}

Put a BootEnv

• Description: Update a BootEnv specified by {name} using a JSON BootEnv

Parameters

Name Position Description Type
Body* body BootEnv
name* path string

Responses

Code Type
200 BootEnvResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /bootenvs/{name}

Patch a BootEnv

• Description: Update a BootEnv specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
name* path string

Responses

Code Type
200 BootEnvResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

158 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

HEAD /bootenvs/{name}

See if a BootEnv exists

• Description: Return 200 if the BootEnv specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /bootenvs/{name}

Delete a BootEnv

• Description: Delete a BootEnv specified by {name}

Parameters

Name Position Description Type
name* path string

Responses

Code Type
200 BootEnvResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

GET /bootenvs/{name}

Get a BootEnv

• Description: Get the BootEnv specified by {name} or return NotFound.

Parameters

Name Position Description Type
name* path string

3.20. Digital Rebar Provision API 159

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 BootEnvResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

POST /bootenvs

Create a BootEnv

• Description: Create a BootEnv from the provided object

Parameters

Name Position Description Type
Body* body BootEnv

Responses

Code Type
201 BootEnvResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /bootenvs

Stats of the List BootEnvs filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean OnlyUnknown =
boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

160 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
OnlyUnknown query string
Name query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /bootenvs

Lists BootEnvs filtered by some parameters.

• Description: This will show all BootEnvs by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Available = boolean Valid = boolean ReadOnly = boolean OnlyUnknown =
boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
OnlyUnknown query string
Name query string

Responses

3.20. Digital Rebar Provision API 161

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 BootEnvsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

POST /bootenvs/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
409 ErrorResponse

GET /bootenvs/{name}/actions/{cmd}

List specific action for a bootenv BootEnv

• Description: List specific {cmd} action for a BootEnv specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

162 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 ActionResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse

GET /bootenvs/{name}/actions

List bootenv actions BootEnv

• Description: List BootEnv actions for a BootEnv specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

Meta

PATCH /meta/{type}/{id}

Patch metadata on an Object of {type} with an ID of {id}

• Description: Update metadata on a specific Object using a RFC6902 Patch structure

Parameters

Name Position Description Type
type* path string
id* path string

Responses

3.20. Digital Rebar Provision API 163

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 MetasResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

GET /meta/{type}/{id}

Get Metadata for an Object of {type} idendified by {id}

• Description: Get the appropriate Metadata or return NotFound.

Parameters

Name Position Description Type
type* path string
id* path string

Responses

Code Type
200 MetaResponse
403 NoContentRespons
401 NoContentResponse

Machines

PUT /machines/{uuid}

Put a Machine

• Description: Update a Machine specified by {uuid} using a JSON Machine

Parameters

Name Position Description Type
force query string
Body* body Machine
uuid* path string

Responses

164 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 MachineResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /machines/{uuid}

Patch a Machine

• Description: Update a Machine specified by {uuid} using a RFC6902 Patch structure

Parameters

Name Position Description Type
force query string
Body* body Patch
uuid* path string

Responses

Code Type
200 MachineResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /machines/{uuid}

See if a Machine exists

• Description: Return 200 if the Machine specifiec by {uuid} exists, or return NotFound.

Parameters

Name Position Description Type
uuid* path string

Responses

3.20. Digital Rebar Provision API 165

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /machines/{uuid}

Delete a Machine

• Description: Delete a Machine specified by {uuid}

Parameters

Name Position Description Type
uuid* path string

Responses

Code Type
200 MachineResponse
404 ErrorResponse
403 NoContentResponse
422 ErrorResponse
401 NoContentResponse

GET /machines/{uuid}

Get a Machine

• Description: Get the Machine specified by {uuid} or return NotFound.

Parameters

Name Position Description Type
uuid* path string

Responses

Code Type
200 MachineResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /machines/{uuid}/actions

List machine actions Machine

166 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• Description: List Machine actions for a Machine specified by {uuid}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
uuid* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /machines/{uuid}/pubkey

Get the public key for secure params on a machine

• Description: Get the public key for a Machine specified by {uuid}

Parameters

Name Position Description Type
uuid* path string

Responses

Code Type
200 PubKeyResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

POST /machines

Create a Machine

• Description: Create a Machine from the provided object

Parameters

Name Position Description Type
force query string
Body* body Machine

Responses

3.20. Digital Rebar Provision API 167

DigitalRebar Provision Documentation, Release v3.9

Code Type
201 MachineResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /machines

Stats of the List Machines filtered by some parameters.

• Description: This will return headers with the stats of the list.

X-DRP-LIST-COUNT - number of objects in the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Uuid = UUID string Name = string BootEnv = string Address = IP Address Runnable =
true/false Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Uuid query string
Name query string
BootEnv query string
Address query string
Runnable query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

168 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

GET /machines

Lists Machines filtered by some parameters.

• Description: This will show all Machines by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Uuid = UUID string Name = string BootEnv = string Address = IP Address Runnable =
true/false Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Uuid query string
Name query string
BootEnv query string
Address query string
Runnable query string

Responses

Code Type
200 MachinesResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

POST /machines/{uuid}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

3.20. Digital Rebar Provision API 169

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
uuid* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
409 ErrorResponse

GET /machines/{uuid}/actions/{cmd}

List specific action for a machine Machine

• Description: List specific {cmd} action for a Machine specified by {uuid}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
uuid* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse

POST /machines/{uuid}/params

• Description: Sets parameters for a machine specified by {uuid}

Parameters

Name Position Description Type
Body* body map of strings to object
uuid* path string

170 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 MachineParamsResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

PATCH /machines/{uuid}/params

• Description: Update params for Machine {uuid} with the passed-in patch

Parameters

Name Position Description Type
Body* body Patch
uuid* path string

Responses

Code Type
200 MachineParamsResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

GET /machines/{uuid}/params

List machine params Machine

• Description: List Machine parms for a Machine specified by {uuid}

Parameters

Name Position Description Type
aggregate query string
decode query string
uuid* path string

Responses

Code Type
200 MachineParamsResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

3.20. Digital Rebar Provision API 171

DigitalRebar Provision Documentation, Release v3.9

POST /machines/{uuid}/params/{key}

• Description: Set as single Parameter {key} for a machine specified by {uuid}

Parameters

Name Position Description Type
Body* body Raw Octet Stream
uuid* path string
key* path string

Responses

Code Type
200 MachineParamResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

DELETE /machines/{uuid}/params/{key}

Delete a single machine parameter

• Description: Delete a single parameter {key} for a Machine specified by {uuid}

Parameters

Name Position Description Type
aggregate query string
decode query string
uuid* path string
key* path string

Responses

Code Type
200 MachineParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /machines/{uuid}/params/{key}

Delete a single machine parameter

• Description: Delete a single parameter {key} for a Machine specified by {uuid}

Parameters

172 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
aggregate query string
decode query string
uuid* path string
key* path string

Responses

Code Type
200 MachineParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

Plugins

POST /plugins

Create a Plugin

• Description: Create a Plugin from the provided object

Parameters

Name Position Description Type
Body* body Plugin

Responses

Code Type
201 PluginResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /plugins

Stats of the List Plugins filtered by some parameters.

• Description: This will return headers with the stats of the list.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Provider = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value

3.20. Digital Rebar Provision API 173

DigitalRebar Provision Documentation, Release v3.9

Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string
Provider query string

Responses

Code Type
200 NoContentResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

GET /plugins

Lists Plugins filtered by some parameters.

• Description: This will show all Plugins by default.

You may specify: Offset = integer, 0-based inclusive starting point in filter data. Limit = integer, number of
items to return

Functional Indexs: Name = string Provider = string Available = boolean Valid = boolean ReadOnly = boolean

Functions: Eq(value) = Return items that are equal to value Lt(value) = Return items that are less than value
Lte(value) = Return items that less than or equal to value Gt(value) = Return items that are greater than value
Gte(value) = Return items that greater than or equal to value Between(lower,upper) = Return items that are
inclusively between lower and upper Except(lower,upper) = Return items that are not inclusively between lower
and upper

Example: Name=fred - returns items named fred Name=Lt(fred) - returns items that alphabetically less than
fred. Name=Lt(fred)&Available=true - returns items with Name less than fred and Available is true

Parameters

174 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
offset query integer
limit query integer
Available query string
Valid query string
ReadOnly query string
Name query string
Provider query string

Responses

Code Type
200 PluginsResponse
403 NoContentResponse
401 NoContentResponse
406 ErrorResponse

POST /plugins/{name}/params/{key}

• Description: Set as single Parameter {key} for a plugin specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string
key* path string
Body* body Raw Octet Stream

Responses

Code Type
200 PluginParamResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

GET /plugins/{name}/params/{key}

Delete a single plugin parameter

• Description: Delete a single parameter {key} for a Plugin specified by {uuid}

Parameters

Name Position Description Type
decode query string
name* path string
key* path string

3.20. Digital Rebar Provision API 175

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 PluginParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

POST /plugins/{name}/params

• Description: Sets parameters for a plugin specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string
Body* body map of strings to object

Responses

Code Type
200 PluginParamsResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

PATCH /plugins/{name}/params

• Description: Update params for Plugin {name} with the passed-in patch

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 PluginParamsResponse
404 ErrorResponse
403 NoContentResponse
409 ErrorResponse
401 NoContentResponse

176 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

GET /plugins/{name}/params

List plugin params Plugin

• Description: List Plugin parms for a Plugin specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 PluginParamsResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /plugins/{name}/pubkey

Get the public key for secure params on a plugin

• Description: Get the public key for a Plugin specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 PubKeyResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

DELETE /plugins/{uuid}/params/{key}

Delete a single plugin parameter

• Description: Delete a single parameter {key} for a Plugin specified by {uuid}

Parameters

3.20. Digital Rebar Provision API 177

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
decode query string
name* path string
key* path string

Responses

Code Type
200 PluginParamResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

PUT /plugins/{name}

Put a Plugin

• Description: Update a Plugin specified by {name} using a JSON Plugin

Parameters

Name Position Description Type
Body* body Plugin
decode query string
name* path string

Responses

Code Type
200 PluginResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

PATCH /plugins/{name}

Patch a Plugin

• Description: Update a Plugin specified by {name} using a RFC6902 Patch structure

Parameters

Name Position Description Type
Body* body Patch
decode query string
name* path string

178 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Responses

Code Type
200 PluginResponse
406 ErrorResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
400 ErrorResponse
422 ErrorResponse
409 ErrorResponse

HEAD /plugins/{name}

See if a Plugin exists

• Description: Return 200 if the Plugin specifiec by {name} exists, or return NotFound.

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 NoContentResponse
404 NoContentResponse
403 NoContentResponse
401 NoContentResponse

DELETE /plugins/{name}

Delete a Plugin

• Description: Delete a Plugin specified by {name}

Parameters

Name Position Description Type
decode query string
name* path string

Responses

3.20. Digital Rebar Provision API 179

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 PluginResponse
404 ErrorResponse
403 NoContentResponse
422 ErrorResponse
401 NoContentResponse

GET /plugins/{name}

Get a Plugin

• Description: Get the Plugin specified by {name} or return NotFound.

Parameters

Name Position Description Type
decode query string
name* path string

Responses

Code Type
200 PluginResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse

GET /plugins/{name}/actions

List plugin actions Plugin

• Description: List Plugin actions for a Plugin specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
plugin query string

Responses

Code Type
200 ActionsResponse
404 ErrorResponse
403 NoPluginResponse
401 NoPluginResponse

180 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

POST /plugins/{name}/actions/{cmd}

Call an action on the node.

• Description: Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string
Body* body map of strings to object

Responses

Code Type
200 ActionPostResponse
404 ErrorResponse
403 NoPluginResponse
401 NoPluginResponse
400 ErrorResponse
409 ErrorResponse

GET /plugins/{name}/actions/{cmd}

List specific action for a plugin Plugin

• Description: List specific {cmd} action for a Plugin specified by {name}

Optionally, a query parameter can be used to limit the scope to a specific plugin. e.g. ?plugin=fred

Parameters

Name Position Description Type
name* path string
cmd* path string
plugin query string

Responses

Code Type
200 ActionResponse
404 ErrorResponse
403 NoPluginResponse
401 NoPluginResponse
400 ErrorResponse

3.20. Digital Rebar Provision API 181

DigitalRebar Provision Documentation, Release v3.9

Contents

POST /contents

• Description: Create content into Digital Rebar Provision

Parameters

Name Position Description Type
Body body Content

Responses

Code Type
201 ContentSummaryResponse
415 ErrorResponse
404 ErrorResponse
403 ErrorResponse
500 ErrorResponse
401 NoContentResponse
400 ErrorResponse
507 ErrorResponse
422 ErrorResponse
409 ErrorResponse

GET /contents

• Produces: [u’application/json’]

• Description: Lists possible contents on the system to serve DHCP

Responses

Code Type
200 ContentsResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

PUT /contents/{name}

• Description: Replace content in Digital Rebar Provision

Parameters

Name Position Description Type
Body body Content
name* path string

Responses

182 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 ContentSummaryResponse
415 ErrorResponse
404 ErrorResponse
403 ErrorResponse
500 ErrorResponse
401 NoContentResponse
400 ErrorResponse
507 ErrorResponse
422 ErrorResponse
409 ErrorResponse

DELETE /contents/{name}

Delete a content set.

Parameters

Name Position Description Type
name* path string

Responses

Code Type
204 NoContentResponse
404 ErrorResponse
403 NoContentResponse
401 NoContentResponse
422 ErrorResponse
409 ErrorResponse

GET /contents/{name}

Get a specific content with {name}

• Produces: [u’application/json’]

• Description: Get a specific content specified by {name}.

Parameters

Name Position Description Type
name* path string

Responses

3.20. Digital Rebar Provision API 183

DigitalRebar Provision Documentation, Release v3.9

Code Type
200 ContentResponse
404 ErrorResponse
403 NoContentResponse
500 ErrorResponse
401 NoContentResponse

Responses

ReservationsResponse

ReservationsResponse

• Description: ReservationsResponse returned on a successful GET of all the reservations

Parameters

Name Position Description Type
Payload Body array of Reservation

IsoResponse

IsoResponse

• Description: IsoResponse returned on a successful GET of an iso

Parameters

Name Position Description Type
Payload Body Raw Octet Stream

PluginParamsResponse

PluginParamsResponse

• Description: PluginParamsResponse return on a successful GET of all Plugin’s Params

Parameters

Name Position Description Type
Payload Body map of strings to object

184 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

FileInfoResponse

FileInfoResponse

• Description: FileInfoResponse returned on a successful upload of a file

Parameters

Name Position Description Type
Payload Body BlobInfo

IsosResponse

IsosResponse

• Description: IsosResponse returned on a successful GET of isos

Parameters

Name Position Description Type
Payload Body IsoPaths

ActionResponse

ActionResponse

• Description: ActionResponse return on a successful GET of a single Action

Parameters

Name Position Description Type
Payload Body AvailableAction

RoleResponse

RoleResponse

• Description: RoleResponse returned on a successful GET, PUT, PATCH, or POST of a single role

Parameters

Name Position Description Type
Payload Body Role

3.20. Digital Rebar Provision API 185

DigitalRebar Provision Documentation, Release v3.9

PrefsResponse

PrefsResponse

• Description: PrefsResponse returned on a successful GET of all preferences

Parameters

Name Position Description Type
Payload Body map of strings to string

IndexesResponse

IndexesResponse

• Description: IndexesResponse lists all the static indexes for all the object types

Parameters

Name Position Description Type
Payload Body map of strings to object

ParamResponse

ParamResponse

• Description: ParamResponse returned on a successful GET, PUT, PATCH, or POST of a single param

Parameters

Name Position Description Type
Payload Body Param

IndexResponse

IndexResponse

• Description: IndexResponse lists all of the static indexes for a specific type of object

Parameters

Name Position Description Type
Payload Body map of strings to Unknown

186 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

PluginProviderInfoResponse

PluginProviderInfoResponse

• Description: PluginProviderInfoResponse returned on a successful upload of an iso

Parameters

Name Position Description Type
Payload Body PluginProviderUploadInfo

LeaseResponse

LeaseResponse

• Description: LeaseResponse returned on a successful GET, PUT, PATCH, or POST of a single lease

Parameters

Name Position Description Type
Payload Body Lease

ActionsResponse

ActionsResponse

• Description: ActionsResponse return on a successful GET of all Actions

Parameters

Name Position Description Type
Payload Body array of AvailableAction

UsersResponse

UsersResponse

• Description: UsersResponse returned on a successful GET of all the users

Parameters

Name Position Description Type
Payload Body array of User

3.20. Digital Rebar Provision API 187

DigitalRebar Provision Documentation, Release v3.9

JobsResponse

JobsResponse

• Description: JobsResponse return on a successful GET of all Jobs

Parameters

Name Position Description Type
Payload Body array of Job

TasksResponse

TasksResponse

• Description: TasksResponse return on a successful GET of all Tasks

Parameters

Name Position Description Type
Payload Body array of Task

RolesResponse

RolesResponse

• Description: RolesResponse returned on a successful GET of all the roles

Parameters

Name Position Description Type
Payload Body array of Role

ErrorResponse

ErrorResponse

• Description: ErrorResponse is returned whenever an error occurs

188 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Payload Body Error

MachineResponse

MachineResponse

• Description: MachineResponse return on a successful GET, PUT, PATCH or POST of a single Machine

Parameters

Name Position Description Type
Payload Body Machine

ReservationResponse

ReservationResponse

• Description: ReservationResponse returned on a successful GET, PUT, PATCH, or POST of a single reservation

Parameters

Name Position Description Type
Payload Body Reservation

StagesResponse

StagesResponse

• Description: StagesResponse returned on a successful GET of all the stages

Parameters

Name Position Description Type
Payload Body array of Stage

3.20. Digital Rebar Provision API 189

DigitalRebar Provision Documentation, Release v3.9

PluginParamResponse

PluginParamResponse

• Description: PluginParamResponse return on a successful GET of one Plugin’s Param

Parameters

Name Position Description Type
Payload Body Raw Octet Stream

ProfilesResponse

ProfilesResponse

• Description: ProfilesResponse returned on a successful GET of all the profiles

Parameters

Name Position Description Type
Payload Body array of Profile

BootEnvsResponse

BootEnvsResponse

• Description: BootEnvsResponse returned on a successful GET of all the bootenvs

Parameters

Name Position Description Type
Payload Body array of BootEnv

PluginsResponse

PluginsResponse

• Description: PluginsResponse return on a successful GET of all Plugins

Parameters

190 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Position Description Type
Payload Body array of Plugin

InterfacesResponse

InterfacesResponse

• Description: InterfacesResponse returned on a successful GET of all interfaces

Parameters

Name Position Description Type
Payload Body array of Interface

ParamParamsResponse

ParamParamsResponse

• Description: ParamParamsResponse return on a successful GET of all Param’s Params

Parameters

Name Position Description Type
Payload Body map of strings to object

WorkflowResponse

WorkflowResponse

• Description: WorkflowResponse returned on a successful GET, PUT, PATCH, or POST of a single workflow

Parameters

Name Position Description Type
Payload Body Workflow

3.20. Digital Rebar Provision API 191

DigitalRebar Provision Documentation, Release v3.9

SubnetResponse

SubnetResponse

• Description: SubnetResponse returned on a successful GET, PUT, PATCH, or POST of a single subnet

Parameters

Name Position Description Type
Payload Body Subnet

PubKeyResponse

PubKeyResponse

• Description: PubKeyResponse is returned on a successful GET of a Paramer public key for secure params.

Parameters

Name Position Description Type
Payload Body No Data Returned

JobParamsResponse

JobParamsResponse

• Description: JobParamsResponse return on a successful GET of all Job’s Params

Parameters

Name Position Description Type
Payload Body map of strings to object

ProfileResponse

ProfileResponse

• Description: ProfileResponse returned on a successful GET, PUT, PATCH, or POST of a single profile

Parameters

Name Position Description Type
Payload Body Profile

192 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

PluginResponse

PluginResponse

• Description: PluginResponse return on a successful GET, PUT, PATCH or POST of a single Plugin

Parameters

Name Position Description Type
Payload Body Plugin

ProfileParamsResponse

ProfileParamsResponse

• Description: ProfileParamsResponse return on a successful GET of all Profile’s Params

Parameters

Name Position Description Type
Payload Body map of strings to object

JobActionsResponse

JobActionsResponse

• Description: JobActionsResponse return on a successful GET of a Job’s actions

Parameters

Name Position Description Type
Payload Body JobActions

LeasesResponse

LeasesResponse

• Description: LeasesResponse returned on a successful GET of all the leases

Parameters

Name Position Description Type
Payload Body array of Lease

3.20. Digital Rebar Provision API 193

DigitalRebar Provision Documentation, Release v3.9

MachineParamResponse

MachineParamResponse

• Description: MachineParamResponse return on a successful GET of a single Machine param

Parameters

Name Position Description Type
Payload Body Raw Octet Stream

ContentResponse

ContentResponse

• Description: ContentsResponse returned on a successful GET of a contents

Parameters

Name Position Description Type
Payload Body Content

ContentSummaryResponse

ContentSummaryResponse

• Description: ContentSummaryResponse returned on a successful Post of a content

Parameters

Name Position Description Type
Payload Body ContentSummary

TemplatesResponse

TemplatesResponse

• Description: TemplatesResponse return on a successful GET of all templates

194 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Payload Body array of Template

MachinesResponse

MachinesResponse

• Description: MachinesResponse return on a successful GET of all Machines

Parameters

Name Position Description Type
Payload Body array of Machine

TenantsResponse

TenantsResponse

• Description: TenantsResponse returned on a successful GET of all the tenants

Parameters

Name Position Description Type
Payload Body array of Tenant

ProfileParamResponse

ProfileParamResponse

• Description: ProfileParamResponse return on a successful GET of a single Param for a Profile

Parameters

Name Position Description Type
Payload Body Raw Octet Stream

3.20. Digital Rebar Provision API 195

DigitalRebar Provision Documentation, Release v3.9

UserTokenResponse

UserTokenResponse

• Description: UserTokenResponse returned on a successful GET of user token

Parameters

Name Position Description Type
Payload Body UserToken

InfoResponse

InfoResponse

• Description: InfosResponse returned on a successful GET of an info

Parameters

Name Position Description Type
Payload Body Info

SubnetsResponse

SubnetsResponse

• Description: SubnetsResponse returned on a successful GET of all the subnets

Parameters

Name Position Description Type
Payload Body array of Subnet

FilesResponse

FilesResponse

• Description: FilesResponse returned on a successful GET of files

Parameters

Name Position Description Type
Payload Body FilePaths

196 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

ParamsResponse

ParamsResponse

• Description: ParamsResponse returned on a successful GET of all the params

Parameters

Name Position Description Type
Payload Body array of Param

TemplateResponse

TemplateResponse

• Description: TemplateResponse return on a successful GET, PUT, PATCH or POST of a single Template

Parameters

Name Position Description Type
Payload Body Template

BootEnvResponse

BootEnvResponse

• Description: BootEnvResponse returned on a successful GET, PUT, PATCH, or POST of a single bootenv

Parameters

Name Position Description Type
Payload Body BootEnv

MachineParamsResponse

MachineParamsResponse

• Description: MachineParamsResponse return on a successful GET of all Machine’s Params

3.20. Digital Rebar Provision API 197

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Payload Body map of strings to object

PluginProvidersResponse

PluginProvidersResponse

• Description: PluginProvidersResponse returned on a successful GET of all plugin_provider

Parameters

Name Position Description Type
Payload Body array of PluginProvider

NoContentResponse

NoContentResponse

• Description: NoContentResponse is returned for deletes and auth errors

Parameters

Name Position Description Type
Payload Body No Data Returned

JobResponse

JobResponse

• Description: JobResponse return on a successful GET, PUT, PATCH or POST of a single Job

Parameters

Name Position Description Type
Payload Body Job

198 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

UserResponse

UserResponse

• Description: UserResponse returned on a successful GET, PUT, PATCH, or POST of a single user

Parameters

Name Position Description Type
Payload Body User

TaskParamsResponse

TaskParamsResponse

• Description: TaskParamsResponse return on a successful GET of all Task’s Params

Parameters

Name Position Description Type
Payload Body map of strings to object

JobLogResponse

JobLogResponse

• Description: This is a HACK - I can’t figure out how to get swagger to render this a binary. So we lie. We also
override this object from the server directory to have a binary format which turns it into a stream.

JobLogResponse returned on a successful GET of a log

Parameters

Name Position Description Type
Payload Body string

WorkflowsResponse

WorkflowsResponse

• Description: WorkflowsResponse returned on a successful GET of all the workflows

3.20. Digital Rebar Provision API 199

DigitalRebar Provision Documentation, Release v3.9

Parameters

Name Position Description Type
Payload Body array of Workflow

TenantResponse

TenantResponse

• Description: TenantResponse returned on a successful GET, PUT, PATCH, or POST of a single tenant

Parameters

Name Position Description Type
Payload Body Tenant

InterfaceResponse

InterfaceResponse

• Description: InterfacesResponse returned on a successful GET of an interfaces

Parameters

Name Position Description Type
Payload Body Interface

IsoInfoResponse

IsoInfoResponse

• Description: IsoInfoResponse returned on a successful upload of an iso

Parameters

Name Position Description Type
Payload Body BlobInfo

200 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

StageResponse

StageResponse

• Description: StageResponse returned on a successful GET, PUT, PATCH, or POST of a single stage

Parameters

Name Position Description Type
Payload Body Stage

ContentsResponse

ContentsResponse

• Description: ContentsResponse returned on a successful GET of all contents

Parameters

Name Position Description Type
Payload Body array of ContentSummary

PluginProviderResponse

PluginProviderResponse

• Description: PluginProvidersResponse returned on a successful GET of an plugin_provider

Parameters

Name Position Description Type
Payload Body PluginProvider

ActionPostResponse

ActionPostResponse

• Description: ActionPostResponse return on a successful POST of action

Parameters

Name Position Description Type
Payload Body Raw Octet Stream

3.20. Digital Rebar Provision API 201

DigitalRebar Provision Documentation, Release v3.9

LogResponse

LogResponse

• Description: LogResponse is returned in response to a log dump request.

Parameters

Name Position Description Type
Payload Body array of Line

TaskResponse

TaskResponse

• Description: TaskResponse return on a successful GET, PUT, PATCH or POST of a single Task

Parameters

Name Position Description Type
Payload Body Task

SingleIndexResponse

SingleIndexResponse

• Description: SingleIndexResponse tests to see if a single specific index exists. Unlike the other index API
endpoints, you can probe for dynamic indexes this way.

Parameters

Name Position Description Type
Payload Body Index

FileResponse

FileResponse

202 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• Description: This is a HACK - I can’t figure out how to get swagger to render this a binary. So we lie. We also
override this object from the server directory to have a binary format which turns it into a stream.

FileResponse returned on a successful GET of a file

Parameters

Name Position Description Type
Payload Body string

Definitions

Index

Index

• Description: Index holds details on the index

Fields

Name Description Type
Unique Unique tells you whether there can be mutiple entries in the index for the same key that refer to

different items.
boolean

Type Type gives you a rough idea of how the string used to query this index should be formatted. string

JobAction

JobAction

• Description: If path is specified, then the runner will place the contents into that location. If path is not specified,
then the runner will attempt to bash exec the contents.

Fields

Name Description Type
Content* string
Path* string
Meta* map of strings to string
Name* string

Subnet

Subnet

• Description: Subnet represents a DHCP Subnet

3.20. Digital Rebar Provision API 203

DigitalRebar Provision Documentation, Release v3.9

Fields

204 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

NameDescription Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Sub-
net*

Subnet is the network address in CIDR form that all leases acquired in its range will use for options,
lease times, and NextServer settings by default

string

Er-
rors

If there are any errors in the validation process, they will be available here. ar-
ray
of
string

De-
scrip-
tion

A description of this Subnet. This should tell what it is for, any special considerations that should be
taken into account when using it, etc.

string

Pick-
ers*

Pickers is list of methods that will allocate IP addresses. Each string must refer to a valid address
picking strategy. The current ones are:
“none”, which will refuse to hand out an address and refuse to try any remaining strategies.
“hint”, which will try to reuse the address that the DHCP packet is requesting, if it has one. If the
request does not have a requested address, “hint” will fall through to the next strategy. Otherwise, it
will refuse to try any remaining strategies whether or not it can satisfy the request. This should force
the client to fall back to DHCPDISCOVER with no requsted IP address. “hint” will reuse expired
leases and unexpired leases that match on the requested address, strategy, and token.
“nextFree”, which will try to create a Lease with the next free address in the subnet active range. It
will fall through to the next strategy if it cannot find a free IP. “nextFree” only considers addresses
that do not have a lease, whether or not the lease is expired.
“mostExpired” will try to recycle the most expired lease in the subnet’s active range.
All of the address allocation strategies do not consider any addresses that are reserved, as lease cre-
ation will be handled by the reservation instead.
We will consider adding more address allocation strategies in the future.

ar-
ray
of
string

On-
lyReser-
va-
tions*

OnlyReservations indicates that we will only allow leases for which there is a preexisting reservation. boolean

Val-
i-
dated

Validated tracks whether or not the model has been validated. boolean

Doc-
u-
men-
ta-
tion

Documentation of this subnet. This should tell what the subnet is for, any special considerations that
should be taken into account when using it, etc. in rich structured text (rst).

string

En-
abled*

Enabled indicates if the subnet should hand out leases or continue operating leases if already running. boolean

Op-
tions

ar-
ray
of
DhcpOp-
tion

Re-
servedLease-
Time*

ReservedLeasTime is the default lease time we will hand out to leases created from a reservation in
our subnet.

in-
te-
ger

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Ac-
tive-
Lease-
Time*

ActiveLeaseTime is the default lease duration in seconds we will hand out to leases that do not have
a reservation.

in-
te-
ger

Proxy*Proxy indicates if the subnet should act as a proxy DHCP server. If true, the subnet will not manage
ip addresses but will send offers to requests. It is an error for Proxy and Unmanaged to be true.

boolean

Un-
man-
aged*

Unmanaged indicates that dr-provision will never send boot-related options to machines that get
leases from this subnet. If false, dr-provision will send whatever boot-related options it would nor-
mally send. It is an error for Unmanaged and Proxy to both be true.

boolean

NextServer*NextServer is the address of the next server in the DHCP/TFTP/PXE chain. You should only set this
if you want to transfer control to a different DHCP or TFTP server.

string

Ac-
tiveEnd*

ActiveEnd is the last non-reserved IP address we will hand non-reserved leases from. string

Strat-
egy*

Strategy is the leasing strategy that will be used determine what to use from the DHCP packet to
handle lease management.

string

Ac-
tiveS-
tart*

ActiveStart is the first non-reserved IP address we will hand non-reserved leases from. string

Name*Name is the name of the subnet. Subnet names must be unique string

3.20. Digital Rebar Provision API 205

DigitalRebar Provision Documentation, Release v3.9

Section

Section

map of strings to object

Param

Param

• Description: Specifically, it contains a description of what the information is for, detailed documentation about
the param, and a JSON schema that the param must match to be considered valid.

Fields

Name Description Type
Available Available tracks whether or not the model passed validation. boolean
Errors If there are any errors in the validation process, they will be available here. array of string
Description Description is a one-line description of the parameter. string
Documenta-
tion

Documentation details what the parameter does, what values it can take, what it
is used for, etc.

string

ReadOnly ReadOnly tracks if the store for this object is read-only boolean
Secure* Secure implies that any API interactions with this Param will deal with Secure-

Data values.
boolean

Schema* Schema must be a valid JSONSchema as of draft v4. Raw Octet
Stream

Validated Validated tracks whether or not the model has been validated. boolean
Name* Name is the name of the param. Params must be uniquely named. string

Content

Content

• Description: Files??

Fields

Name Description Type
meta* ContentMetaData
sections Sections

206 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Role

Role

Fields

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Errors If there are any errors in the validation process, they will be available here. array of
string

De-
scrip-
tion

Description of role string

Docu-
menta-
tion

Documentation of this role. This should tell what the role is for, any special considerations
that should be taken into account when using it, etc. in rich structured text (rst).

string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Claims Claims that the role support. array of
Claim

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name* Name is the name of the user string

BlobInfo

BlobInfo

Fields

Name Description Type
Path string
Size integer

Template

Template

• Description: Template represents a template that will be associated with a boot environment.

Fields

3.20. Digital Rebar Provision API 207

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Available Available tracks whether or not the model passed validation. boolean
Errors If there are any errors in the validation process, they will be available here. array of string
Descrip-
tion

A description of this template string

ReadOnly ReadOnly tracks if the store for this object is read-only boolean
Validated Validated tracks whether or not the model has been validated. boolean
ID* ID is a unique identifier for this template. It cannot change once it is set. string
Contents* Contents is the raw template. It must be a valid template according to text/template. string

JobActions

JobActions

array of JobAction

BootEnv

BootEnv

• Description: BootEnv encapsulates the machine-agnostic information needed by the provisioner to set up a
boot environment.

Fields

208 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Boot-
Params*

A template that will be expanded to create the full list of boot parameters for the environment. string

Er-
rors

If there are any errors in the validation process, they will be available here. array
of
string

De-
scrip-
tion

A description of this boot environment. This should tell what the boot environment is for, any
special considerations that should be taken into account when using it, etc.

string

Ker-
nel*

The partial path to the kernel for the boot environment. This should be path that the kernel is
located at in the OS ISO or install archive.

string

Ini-
trds*

Partial paths to the initrds that should be loaded for the boot environment. These should be paths
that the initrds are located at in the OS ISO or install archive.

array
of
string

Doc-
u-
men-
ta-
tion

Documentation of this boot environment. This should tell what the boot environment is for, any
special considerations that should be taken into account when using it, etc. in rich structured text
(rst).

string

Tem-
plates*

The templates that should be expanded into files for the boot environment. array
of
Tem-
plate-
Info

Op-
tion-
al-
Params

The list of extra optional parameters for this bootstate. They can be present as Machine.Params
when the bootenv is applied to the machine. These are more other consumers of the bootenv to
know what parameters could additionally be applied to the bootenv by the renderer based upon
the Machine.Params

array
of
string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Re-
quired-
Params*

The list of extra required parameters for this bootstate. They should be present as Ma-
chine.Params when the bootenv is applied to the machine.

array
of
string

On-
lyUn-
known*

OnlyUnknown indicates whether this bootenv can be used without a machine. Only bootenvs
with this flag set to ‘true‘ be used for the unknownBootEnv preference.

boolean

OS Os-
Info

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name* The name of the boot environment. Boot environments that install an operating system must end
in ‘-install’.

string

Sections

Sections

3.20. Digital Rebar Provision API 209

DigitalRebar Provision Documentation, Release v3.9

map of strings to Unknown

Lease

Lease

Fields

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Er-
rors

If there are any errors in the validation process, they will be available here. array of
string

Addr* Addr is the IP address that the lease handed out. string
Skip-
Boot

SkipBoot indicates that the DHCP system is allowed to offer boot options for whatever boot
protocol the machine wants to use.

boolean

State* State is the current state of the lease. This field is for informational purposes only. string
Strat-
egy*

Strategy is the leasing strategy that will be used determine what to use from the DHCP packet
to handle lease management.

string

Ex-
pire-
Time*

ExpireTime is the time at which the lease expires and is no longer valid The DHCP renewal
time will be half this, and the DHCP rebind time will be three quarters of this.

string

NextServerNextServer is the IP address that we should have the machine talk to next. In most cases,
this will be our address.

string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Via Via is the IP address used to select which subnet the lease belongs to. It is either an address
present on a local interface that dr-provision is listening on, or the GIADDR field of the
DHCP request.

string

To-
ken*

Token is the unique token for this lease based on the Strategy this lease used. string

Dura-
tion

Duration is the time in seconds for which a lease can be valid. ExpireTime is calculated from
Duration.

integer

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Op-
tions

Options are the DHCP options that the Lease is running with. array of
DhcpOp-
tion

Profile

Profile

• Description: There is one special profile named ‘global’ that acts as a global set of parameters for the system.

These can be assigned to a machine’s profile list.

Fields

210 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Errors If there are any errors in the validation process, they will be available here. array of
string

De-
scrip-
tion

A description of this profile. This can contain any reference information for humans you
want associated with the profile.

string

Docu-
menta-
tion

Documentation of this profile. This should tell what the profile is for, any special con-
siderations that should be taken into account when using it, etc. in rich structured text
(rst).

string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Params Any additional parameters that may be needed to expand templates for BootEnv, as doc-
umented by that boot environment’s RequiredParams and OptionalParams.

map of
strings to
object

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name* The name of the profile. This must be unique across all profiles. string

Stat

Stat

Fields

Name Description Type
count* integer
name* string

OsInfo

OsInfo

• Description: OsInfo holds information about the operating system this BootEnv maps to. Most of this informa-
tion is optional for now.

Fields

Name Description Type
Name* The name of the OS this BootEnv has. It should be formatted as family-version. string
IsoFile The name of the ISO that the OS should install from. string
IsoUrl The URL that the ISO can be downloaded from, if any. string
Version The version of the OS, if any. string
Family The family of operating system (linux distro lineage, etc) string
IsoSha256 The SHA256 of the ISO file. Used to check for corrupt downloads. string
Codename The codename of the OS, if any. string

3.20. Digital Rebar Provision API 211

DigitalRebar Provision Documentation, Release v3.9

Workflow

Workflow

Fields

Name Description Type
Available Available tracks whether or not the model passed validation. boolean
Errors If there are any errors in the validation process, they will be available here. array of string
Description string
Documentation string
ReadOnly ReadOnly tracks if the store for this object is read-only boolean
Stages array of string
Validated Validated tracks whether or not the model has been validated. boolean
Name string

PluginProvider

PluginProvider

• Description: Plugin Provider describes the available functions that could be instantiated by a plugin.

Fields

Name Description Type
Op-
tional-
Params

array of
string

HasPub-
lish

boolean

Name string
Docu-
menta-
tion

Documentation of this plugin provider. This should tell what the plugin provider is for,
any special considerations that should be taken into account when using it, etc. in rich
structured text (rst).

string

Content Content Bundle Yaml string - can be optional or empty string
Plugin-
Version

This is used to indicate what version the plugin is built for integer

Version string
Avail-
ableAc-
tions

array of
Available-
Action

Re-
quired-
Params

array of
string

212 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Plugin

Plugin

• Description: This contains the configuration need to start this plugin instance.

Fields

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Errors If there are any errors in the validation process, they will be available here. array of
string

De-
scrip-
tion

A description of this plugin. This can contain any reference information for humans you
want associated with the plugin.

string

Docu-
menta-
tion

Documentation of this plugin. This should tell what the plugin is for, any special con-
siderations that should be taken into account when using it, etc. in rich structured text
(rst).

string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Params Any additional parameters that may be needed to configure the plugin. map of
strings to
object

Provider* The plugin provider for this plugin string
Plugin-
Errors

Error unrelated to the object validity, but the execution of the plugin. array of
string

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name* The name of the plugin instance. THis must be unique across all plugins. string

DhcpOption

DhcpOption

Fields

Name Description Type
Code* Code is a DHCP Option Code. inte-

ger
Value* Value is a text/template that will be expanded and then converted into the proper format for the

option code
string

ContentSummary

ContentSummary

3.20. Digital Rebar Provision API 213

DigitalRebar Provision Documentation, Release v3.9

Fields

Name Description Type
Counts map of strings to integer
meta ContentMetaData
Warnings array of string

Job

Job

Fields

214 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Ma-
chine*

The machine the job was created for. This field must be the UUID of the machine. string

Archived* boolean
Errors If there are any errors in the validation process, they will be available here. array of

string
Uuid* The UUID of the job. The primary key. string
Work-
flow

The workflow that the task was created in. string

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

State* The state the job is in. Must be one of “created”, “running”, “failed”, “finished”, “incom-
plete”

string

Exit-
State

The final disposition of the job. Can be one of “reboot”,”poweroff”,”stop”, or “complete”
Other substates may be added as time goes on

string

Cur-
rent*

Whether the job is the “current one” for the machine or if it has been superceded. boolean

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Task The task the job was created for. This will be the name of the task. string
Nex-
tIn-
dex*

The next task index that should be run when this job finishes. It is used in conjunction with
the machine CurrentTask to implement the server side of the machine agent state machine.

integer

Cur-
rentIn-
dex*

The current index is the machine CurrentTask that created this job. integer

Start-
Time

The time the job entered running. No Data
Re-
turned

BootEnv The bootenv that the task was created in. string
End-
Time

The time the job entered failed or finished. No Data
Re-
turned

Stage The stage that the task was created in. string
Previ-
ous

The UUID of the previous job to run on this machine. string

User

User

• Description: User is an API user of DigitalRebar Provision

Fields

3.20. Digital Rebar Provision API 215

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Errors If there are any errors in the validation process, they will be available here. array
of
string

De-
scrip-
tion

Description of user string

Roles Roles is a list of Roles this User has. array
of
string

Pass-
word-
Hash

PasswordHash is the scrypt-hashed version of the user’s Password. array
of
integer

Secret Token secret - this is used when generating user token’s to allow for revocation by the grantor
or the grantee. Changing this will invalidate all existing tokens that have this user as a user or
a grantor.

string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name* Name is the name of the user string

Interface

Interface

Fields

Name Description Type
Index Index of the interface integer
Addresses* A List of Addresses on the interface (CIDR) array of

string
DnsDomain Possible DNS for domain for this interface string
DnsServers Possible DNS for this interface array of

string
ReadOnly ReadOnly tracks if the store for this object is read-only boolean
ActiveAd-
dress

The interface to use for this interface when advertising or claiming access
(CIDR)

string

Gateway Possible gateway for this interface string
Name* Name of the interface string

Reservation

Reservation

216 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Fields

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Subnet Subnet is the name of the Subnet that this Reservation is associated with. This property is
read-only.

string

Errors If there are any errors in the validation process, they will be available here. array of
string

Addr* Addr is the IP address permanently assigned to the strategy/token combination. string
Docu-
menta-
tion

Documentation of this reservation. This should tell what the reservation is for, any special
considerations that should be taken into account when using it, etc. in rich structured text
(rst).

string

Token* Token is the unique identifier that the strategy for this Reservation should use. string
Strat-
egy*

Strategy is the leasing strategy that will be used determine what to use from the DHCP
packet to handle lease management.

string

NextServerNextServer is the address the server should contact next. You should only set this if you
want to talk to a DHCP or TFTP server other than the one provided by dr-provision.

string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Scoped* Scoped indicates that this reservation is tied to a particular Subnet, as determined by the
reservation’s Addr.

boolean

Dura-
tion

Duration is the time in seconds for which a lease can be valid. ExpireTime is calculated
from Duration.

integer

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Op-
tions

Options is the list of DHCP options that apply to this Reservation array of
DhcpOp-
tion

De-
scrip-
tion

A description of this Reservation. This should tell what it is for, any special considerations
that should be taken into account when using it, etc.

string

Line

Line

Fields

3.20. Digital Rebar Provision API 217

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Group Group is an abstract number used to group Lines together integer
Service Service is the name of the log. string
Seq Seq is the sequence number that the Line was emitted in. Sequence numbers

are globally unique.
integer

Level Level
Ignore-
Publish

Should the line be published or not as an event. boolean

File File is the source file that generated the line string
Time Time is when the Line was created. No Data Returned
Line Line is the line number of the line that generated the line. integer
Data Data is any auxillary data that was captured. array of Raw Octet

Stream
Message Message is the message that was logged. string
Principal Principal is the user or system that caused the log line to be emitted string

AvailableAction

AvailableAction

• Description: Plugins can provide actions for machines Assumes that there are parameters on the call in addition
to the machine.

Fields

Name Description Type
OptionalParams array of string
Model string
RequiredParams array of string
Command string
Provider string

TemplateInfo

TemplateInfo

• Description: TemplateInfo holds information on the templates in the boot environment that will be expanded
into files.

Fields

218 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Path* A text/template that specifies how to create the final path the template should be written

to.
string

Meta Metadata for the TemplateInfo. This can be used by the job running system and the
bootenvs to handle OS, arch, and firmware differences.

map of strings
to string

ID The ID of the template that should be expanded. Either this or Contents should be set string
Con-
tents

The contents that should be used when this template needs to be expanded. Either this
or ID should be set.

string

Name* Name of the template string

Tenant

Tenant

Fields

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Errors If there are any errors in the validation process, they will be available here. array of
string

De-
scrip-
tion

string

Docu-
menta-
tion

Documentation of this tenant. This should tell what the tenant is for, any special con-
siderations that should be taken into account when using it, etc. in rich structured text
(rst).

string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Mem-
bers

map of
strings to
array

Users array of
string

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name string

Stage

Stage

• Description: Stage encapsulates a set of tasks and profiles to apply to a Machine in a BootEnv.

Fields

3.20. Digital Rebar Provision API 219

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Tem-
plates*

The templates that should be expanded into files for the stage. array
of
Tem-
plate-
Info

Er-
rors

If there are any errors in the validation process, they will be available here. array
of
string

De-
scrip-
tion

A description of this stage. This should tell what it is for, any special considerations that should
be taken into account when using it, etc.

string

Doc-
u-
men-
tation

Documentation of this stage. This should tell what the stage is for, any special considerations
that should be taken into account when using it, etc. in rich structured text (rst).

string

Re-
boot

Flag to indicate if a node should be PXE booted on this transition into this Stage. The nextboot-
pxe and reboot machine actions will be called if present and Reboot is true

boolean

Pro-
files

The list of profiles a machine should use while in this stage. These are used after machine
profiles, but before global.

array
of
string

Op-
tion-
al-
Params

The list of extra optional parameters for this stage. They can be present as Machine.Params
when the stage is applied to the machine. These are more other consumers of the stage to
know what parameters could additionally be applied to the stage by the renderer based upon the
Machine.Params

array
of
string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Tasks The list of initial machine tasks that the stage should run array
of
string

BootEnv*The BootEnv the machine should be in to run this stage. If the machine is not in this bootenv,
the bootenv of the machine will be changed.

string

Re-
quired-
Params*

The list of extra required parameters for this stage. They should be present as Machine.Params
when the stage is applied to the machine.

array
of
string

Run-
ner-
Wait

This flag is deprecated and will always be TRUE. boolean

Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name* The name of the stage. string

Info

Info

Fields

220 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
binl_port* integer
scopes map of strings to object
stats* array of Stat
features array of string
License LicenseBundle
tftp_port* integer
os* string
address* IP
dhcp_enabled* boolean
tftp_enabled* boolean
api_port* integer
version* string
file_port* integer
binl_enabled* boolean
dhcp_port* integer
arch* string
id* string
prov_enabled* boolean

Machine

Machine

• Description: Machine represents a single bare-metal system that the provisioner should manage the boot envi-
ronment for.

Fields

3.20. Digital Rebar Provision API 221

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Avail-
able

Available tracks whether or not the model passed validation. boolean

Pro-
file

Profile

Er-
rors

If there are any errors in the validation process, they will be available here. array of
string

De-
scrip-
tion

A description of this machine. This can contain any reference information for humans you
want associated with the machine.

string

Tasks The tasks this machine has to run. array of
string

Work-
flow*

Workflow is the workflow that is currently responsible for processing machine tasks. string

Se-
cret

Secret for machine token revocation. Changing the secret will invalidate all existing tokens
for this machine

string

Cur-
ren-
tJob

The UUID of the job that is currently running on the machine. string

Cur-
rent-
Task*

integer

Pro-
files

An array of profiles to apply to this machine in order when looking for a parameter during
rendering.

array of
string

Read-
Only

ReadOnly tracks if the store for this object is read-only boolean

Runnable*Indicates if the machine can run jobs or not. Failed jobs mark the machine not runnable. boolean
Params Replaces the Profile. map of

strings
to object

Hard-
wareAd-
drs

HardwareAddrs is a list of MAC addresses we expect that the system might boot from. array of
string

Ad-
dress

The IPv4 address of the machine that should be used for PXE purposes. Note that this field
does not directly tie into DHCP leases or reservations – the provisioner relies solely on this
address when determining what to render for a specific machine.

string

Uuid* The UUID of the machine. This is auto-created at Create time, and cannot change afterwards. string
BootEnv The boot environment that the machine should boot into. This must be the name of a boot

environment present in the backend. If this field is not present or blank, the global default
bootenv will be used instead.

string

Stage An optional value to indicate tasks and profiles to apply. string
OS OS is the operating system that the node is running in string
Vali-
dated

Validated tracks whether or not the model has been validated. boolean

Name* The name of the machine. THis must be unique across all machines, and by convention it is
the FQDN of the machine, although nothing enforces that.

string

Task

222 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Task

Fields

Name Description Type
Available Available tracks whether or not the model passed validation. boolean
Tem-
plates*

Templates lists the templates that need to be rendered for the Task. array of Tem-
plateInfo

Errors If there are any errors in the validation process, they will be available here. array of
string

Descrip-
tion

Description is a one-line description of this Task. string

Documen-
tation

Documentation should describe in detail what this task should do on a machine. string

Optional-
Params*

OptionalParams are extra optional parameters that a template rendered for the Task
may use.

array of
string

ReadOnly ReadOnly tracks if the store for this object is read-only boolean
Required-
Params*

RequiredParams is the list of parameters that are required to be present on Ma-
chine.Params or in a profile attached to the machine.

array of
string

Validated Validated tracks whether or not the model has been validated. boolean
Name* Name is the name of this Task. Task names must be globally unique string

License

License

Fields

Name Description Type
StartDate No Data Returned
Version string
Name string
PurchaseDate No Data Returned
SoftExpireDate No Data Returned
LongLicense string
ShortLicense string
HardExpireDate No Data Returned
Active boolean
Data Raw Octet Stream

Level

Level

integer

3.20. Digital Rebar Provision API 223

DigitalRebar Provision Documentation, Release v3.9

IP

IP

• Description: Note that in this documentation, referring to an IP address as an IPv4 address or an IPv6 address
is a semantic property of the address, not just the length of the byte slice: a 16-byte slice can still be an IPv4
address.

array of integer

UserPassword

UserPassword

Fields

Name Description Type
Password string

ContentMetaData

ContentMetaData

• Description: All fields must be strings

Fields

Name Description Type
Description string
Documentation Optional fields string
Writable Informational Fields boolean
Source string
RequiredFeatures string
Version string
Type string
Overwritable boolean
Name* string

Error

Error

Fields

224 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Name Description Type
Type string
Model string
Code code is the HTTP status code that should be used for this Error integer
Messages Messages are any additional messages related to this Error array of string
Key string

UserToken

UserToken

Fields

Name Description Type
Info Info
Token string

Patch

Patch

array of Operation

IsoPaths

IsoPaths

array of string

Claim

Claim

• Description: User is an API user of DigitalRebar Provision

Fields

Name Description Type
action string
scope string
specific string

3.20. Digital Rebar Provision API 225

DigitalRebar Provision Documentation, Release v3.9

UUID

UUID

• Description: A UUID is a 128 bit (16 byte) Universal Unique IDentifier as defined in RFC 4122.

array of integer

LicenseBundle

LicenseBundle

Fields

Name Description Type
OwnerEmail string
Grantor string
GrantorEmail string
ContactEmail string
Owner string
ContactId string
Contact string
Licenses array of License
OwnerId string
GenerationVersion string

FilePaths

FilePaths

array of string

PluginProviderUploadInfo

PluginProviderUploadInfo

Fields

Name Description Type
path string
size integer

226 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Operation

Operation

• Description: operation represents a valid JSON Patch operation as defined by RFC 6902

Fields

Name Description Type
path Path is a JSON Pointer as defined in RFC 6901 All Operations must have a Path string
from From is a JSON pointer indicating where a value should be copied/moved from. From is

only used by copy and move operations.
string

value Value is the Value to be used for add, replace, and test operations. Raw Octet
Stream

op Op can be one of: “add” “remove” “replace” “move” “copy” “test” All Operations must
have an Op.

string

Event

Event

• Description: In general, the event generates for a subject of the form: type.action.key

Fields

Name Description Type
Object Object - the data of the object. Raw Octet Stream
Key Key - the id of the object string
Time Time of the event. string
Action Action - what happened string
Type Type - object type string
Principal Principal - the user or subsystem that caused the event to be emitted string

3.21 Developer Environment

This page is intended for people who are building Digital Rebar Provision from sources or contributing to the code
base. We maintain inline documentation and test environment and contributors are expected to participate in mainte-
nance of those efforts.

Note: Prerequisites: go version 1.8 or better. These documents expect ability to both install and update Golang.

3.21.1 Developer Quick Start

To get started quickly, all the installation steps are rolled into a script. The script can be run directly from Github by
copying the following lines:

3.21. Developer Environment 227

DigitalRebar Provision Documentation, Release v3.9

curl -fsSL https://raw.githubusercontent.com/digitalrebar/provision/master/
→˓tools/build.sh | bash

The script will use the current GOPATH variable for placing the code. If GOPATH isn’t set, it will be set to
$HOME/go.

Once the script is complete, it is possible to change the directory to the source area and continue development.

export GOPATH=${GOPATH:-$HOME/go}
cd "$GOPATH/src/github.com/digitalrebar/provision"

If more details on how to run the result are needed, consult the Install section. The install.sh script can be used to
install from the source directory after a build.

3.21.2 Building The Server

After the code and assets have been obtained once, the process can be repeated from the project root with the following
command:

tools/build.sh

Another reason to use the tools/build.sh script is that it will inject version information into the built binaries to make
it easier to track what version is deployed. Developer builds and production builds will be identifiable through the
version command on both the server and the cli.

3.21.3 Serving UI from File System

When working on the Digital Rebar Provision UI, it is possible to skip the generate steps by using the --dev-ui
flag. Generally, this is started using --dev-ui ./embedded/assets/ui/public.

Brunch (npm install brunch -g) is required to build new versions of the ui. use brunch build
--production to use minify javascript.

3.21.4 Running the Tests

Digital Rebar Provision uses the Golang test libraries and the development team works hard to maintain test coverage.

The tools/test.sh in the provision root directory is the main way to test the entire code base.

To test individual modules from their subdirectories run: go test

3.21.5 How to get Swagger-Ui

DigiatlRebar Provision uses Swagger to generate interactive help for the API. This is in the tree by default. If an
update is needed, do the following:

• git clone https://github.com/swagger-api/swagger-ui

• cp -r swagger-ui/dist/* embedded/assets/swagger-ui

• change in embedded/assets/swagger-ui/index.html:

228 Chapter 3. Table of Contents

https://github.com/swagger-api/swagger-ui

DigitalRebar Provision Documentation, Release v3.9

@@ -38,7 +38,7 @@
if (url && url.length > 1) {
url = decodeURIComponent(url[1]);

} else {
- url = "http://petstore.swagger.io/v2/swagger.json";
+ url = "https://127.0.0.1:8092/swagger.json";

}

hljs.configure({

• Rebuild the world (tools/build.sh)

3.21.6 Packaging the Code

Once the code is built, the code can be package for storage in Github or for use by the install.sh script.

Running the tools/package.sh script will generate a dr-provision.zip and dr-provision.sha256 file. These files can
be used with the Install process.

3.22 Developing the Command Line Interface (CLI)

Using the build.sh process for the server will generate the files needed to build the cli.

It generates the following directories:

• client

• models

The cli uses those client files to access the server. The editable cli code lives in:

• cli

The hope is that the CLI will use a generated client library based upon the generated swagger.json file. This will help
ensure that we are building a valid and viable swagger.json file. The build.sh tool generates all the components need
for the cli and also builds multiple instances of it.

3.22.1 Building Client

While a single go build command will generate the cli, it is safer to use the build.sh script to ensure that all the parts
are accurately generated.

• tools/build.sh

The results are stored in the bin directory based upon OS and platform. We currently build windows, linux, and darwin
for amd64.

3.22.2 Running Client

After building the code, use the tools/install.sh script to get a cli and dr-provision binary in the top-level directory for
the platform.

• tools/install.sh –isolated install

3.22. Developing the Command Line Interface (CLI) 229

DigitalRebar Provision Documentation, Release v3.9

Once that has been done a single time, symbolic links are created so that running commands from the top-level
directory should work.

• ./drpcli

For more information, see Install.

3.23 Developing Documentation

As an open source project, we encourage community feedback and involvement. Docs can be updated by pull requests
against the github repository either from a private tree or directly against the tree.

A couple of notes about consistency.

1. Digital Rebar is the name of the parent project and can be abbreviated DR.

2. Digital Rebar Provision or DR Provision or DRP can be used to reference this part of the project.

3. API docs generated from the go files as part of swagger annotations of the godoc comments. Update there,
please.

4. CLI docs generated from the cli files as part of cobra structures. The tools generate those. Update there, please.

Otherwise, try and find a good place for what needs to be added. And Thanks!

3.23.1 Documentation Tooling

There are a lot of ways to work with ReStructuredText. . . Below is only one possible way of setting up a working
environment to ensure you are writing clean RST based documentation. This method is designed to be as lightlweight
as possible, while still being as accurate as possible with the final rendered doc changes. There are a lot of editors
tha will render RST formatted markup, but very few of them render it the same way, or similar enough to the final
rendered documentation styles to be correct.

This process uses the following elements:

1. Install Sphinx to correctly render the RST markup text to HTML

2. Edit the doc in any text editor of your preference (eg vim, atom, emacs, etc.)

3. Use a terminal window with a watch function to rebuild the HTML document tree

4. Use a web browser with an auto-refresh extension to view the rendered HTML

Install and Setup Sphinx and Swagger

These setup steps were tested and verified on a Mac platform. However, they should be the same for Linux.

1. Pre-requirement is to have pip installed:

sudo easy_install pip

2. Install Sphinx:

pip install Sphinx

230 Chapter 3. Table of Contents

https://github.com/digitalrebar/provision

DigitalRebar Provision Documentation, Release v3.9

Note: for more detailed information, please review the Sphinx website on how to install it, at: http://www.sphinx-doc.
org/en/stable/tutorial.html#install-sphinx

3. Install SwaggerDoc Library

sudo -H pip install -r requirements.txt

Note:

If you receive an error message on your first HTML tree build (when you run make html) similar to:

sphinx-build -b html -d _build/doctrees . _build/html
Running Sphinx v1.6.5
Extension error:
Could not import extension sphinxcontrib.swaggerdoc (exception: No module named
→˓swaggerdoc)
make: *** [html] Error 1

You will need to build and install the swaggerdoc components manually. To do so, do the following:

git clone https://github.com/galthaus/sphinx-swaggerdoc
cd sphinx-swaggerdoc/
sudo python setup.py install
cd ..
rm -rf spinx-swaggerdoc/

Edit the Docs

• Checkout/clone the Digital Rebar Provision repo from Github

• Modify the doc(s) as appropriate

• Verify the modifications are rendered correctly

• Create a branch

• Submit a pull request for your changes

Rebuild the HTML Rendered Docs

To assist with editing/reviewing your changes, you will want to rebuild the RST format documentation to rendered
HTMl. The Sphinx package is used to do this. Generally, you simply change to the base git cloned Provision directory,
and do:

make html

If you are making a lot of changes, you will want to use a file watching utility to see watch for file writes, and
automatically kick the make html process off for you.

On Mac OS X - you can install the fswatch package:

brew install fswatch

An example use would be:

3.23. Developing Documentation 231

http://www.sphinx-doc.org/en/stable/tutorial.html#install-sphinx
http://www.sphinx-doc.org/en/stable/tutorial.html#install-sphinx

DigitalRebar Provision Documentation, Release v3.9

cd to the base Provision git directory
fswatch -o -0 -r doc | xargs -0 -n 1 -I {} make html

Now, any time any changes are made to the files in the doc/ directory, the make html process will be automatically
kicked off for you. You should run this in a separate terminal window.

View Your Doc Edits Locally

Once you’ve run make html as above, the _RSTr_ format files will be built into _HTML_ generated versions. You
can view the effects of your changes by opening your web browser up, and navigating to the _HTML_ generated docs
on your local disk. The below path example references my home directory, and github path location. You’ll have to
modify this to your local User and location where you’ve stored your github clone.

Point your browser to the on-disk rendered location (which is the _build/ directory in the base git repo on disk).
For example:

file:///Users/shane/github/digitalrebar/provision/_build/html/doc/
dev/dev-docs.html

Auto-Refresh Browser

The last piece of the puzzle, you will want to set your web browser to auto-refresh a given tab or window. This way,
the HTML rendered documentation will be refreshed in the browser. There are several add-ons/extensions that will do
this for you. Here at RackN we have used the following extensions:

Chrome Auto Refresh Plus extension: https://chrome.google.com/webstore/detail/auto-refresh-plus/
hgeljhfekpckiiplhkigfehkdpldcggm

Firefox Tab Reloader add-on (works on Chrome, Firefox, and Opera; but limited to 10 second reloads as minimum reload time):
https://add0n.com/tab-reloader.html

Simply set your browser tab to refresh every 5 or so seconds.

3.24 FAQ / Troubleshooting

The following section is designed to answer frequently asked questions and help troubleshoot Digital Rebar Provision
installs.

Want ligher reading? Checkout our rs_fun.

3.24.1 Bind Error

Digital Rebar Provision will fail if it cannot attach to one of the required ports.

• Typical Error Message: “listen udp4 :67: bind: address already in use”

• Additional Information: The conflicted port will be included in the error between colons (e.g.: :67:)

• Workaround: If the conflicting service is not required, simply disable that service

• Resolution: Stop the offending service on the system. Typical corrective actions are:

– 67 - dhcp. Correct with sudo pkill dnsmasq

See the port mapping list on start-up for a complete list.

232 Chapter 3. Table of Contents

https://chrome.google.com/webstore/detail/auto-refresh-plus/hgeljhfekpckiiplhkigfehkdpldcggm
https://chrome.google.com/webstore/detail/auto-refresh-plus/hgeljhfekpckiiplhkigfehkdpldcggm
https://add0n.com/tab-reloader.html

DigitalRebar Provision Documentation, Release v3.9

3.24.2 TFTP Error

In the dr-provision logfiles you may occassionally see error messages relating to TFTP Aborted. These errors are
(typically) benign and expected behavior. The TFTP protocol does not specify a mechanism to obtain the size of a
file to transfer for calculating completed transfer; without first requesting the file. Digital Rebar Provision initiates the
transfer request an then immediately aborts it. This obtains the file size for the next transfer to validate the file was
served correctly.

Simply ignore these errors. If you receive these errors and you believe you should be provisioning correctly, check
that you have correctly specified the default/unknown BootEnv, default Stage, and default Workflow are set correctly.

error messages may appear similarly to:

May 24 13:48:22 ubuntu dr-provision[7092]: dr-provision2018/05/24 20:48:22.
→˓006224 [280:13]static [error]: /home/travis/gopath/src/github.com/
→˓digitalrebar/provision/midlayer/tftp.go:82
May 24 13:48:22 ubuntu dr-provision[7092]: [280:13]TFTP: lpxelinux.0:
→˓transfer error: sending block 0: code=0, error: TFTP Aborted

3.24.3 Generate Certificate

Sometimes the cert/key pair in the github tree is corrupt or not sufficient for the environment. The following command
can be used to rebuild a local cert/key pair.

sudo openssl req -new -x509 -keyout server.key -out server.crt -days 365 -
→˓nodes

It may be necessary to install the openssl tools.

3.24.4 Add SSH Keys to Authorized Keys

VIDEO TUTORIAL: https://www.youtube.com/watch?v=StQql8Xn08c

To have provisioned operating systems (including discovery/sledgehammer) add SSH keys, you should set the
access-keys parameter with a hash of the desired keys. This Param should be applied to the Machines you wish to
update, either directly via adding the Param to the Machines, or by adding the Param to a Profile that is subsequently
added to the Machines. NOTE that the global Profile applies to all Machines, and you can add it to global should
you desire to add the set of keys to ALL Machines being provisioned.

The below example adds User1 and User2 SSH keys to the profile my-profile. Change appropriately for your enviorn-
ment.

cat << END_KEYS > my-keys.json
{
"Params": {

"access-keys": {
"user1": "ssh-rsa user_1_key user1@krib",
"user2": "ssh-rsa user_2_key user2@krib"

}
}

}
END_KEYS

drpcli profiles update my-profile -< keys.json

3.24. FAQ / Troubleshooting 233

https://www.youtube.com/watch?v=StQql8Xn08c

DigitalRebar Provision Documentation, Release v3.9

3.24.5 Example Docker Volume Usage

Digital Rebar Provision writes content in the Docker Container to the /provision/drp-data directory by default.
Most DRP Endpoint provisioning systems will want to have persistent data across the container runtimes. For this you
need to add a Docker Volume. The below example shows you how to use the locak Docker host as the backing store
for the volume. You can also use any of the container based networked storage solutions to back your volume in.

1. Create a volume for the container

export VOL="drp-data"

create a Docker volume
docker volume create $VOL

2. Lets verify that the volume is currently empty

docker volume inspect $VOL | jq '.[].Mountpoint'
outputs:
"/docker/volumes/drp-data/_data"

show the contents of the current (empty) volume
ls -la $(docker volume inspect $VOL | jq -r '.[].Mountpoint')
total 0
drwxr-xr-x. 2 root root 40 Aug 21 00:41 .
dr-xr-x---. 1 root root 180 Aug 21 00:41 ..

3. Lanch DRP, using our newly created volume:

now run DRP with our volume mapped to /provision/drp-data:
docker run --volume $VOL:/provision/drp-data --name drp -itd --net host
→˓digitalrebar/provision:stable

4. Verify that DRP extracted the assets on the host in the mounted volume location:

when DRP starts up, it extracts and builds the default assets
in the writable backing store (directory structure):
ls $(docker volume inspect drp-data | jq -r '.[].Mountpoint')
outputs:
digitalrebar job-logs plugins replace saas-content secrets tftpboot
→˓ux

3.24.6 Set SSH Root Mode

The Param access-ssh-root-mode defines the login policy for the root user. The default vaule is
without-password which means the remote SSH root user must access must be performed with SSH keys (see
Add SSH Keys to Authorized Keys). Possible values are:

value definition
without-password require SSH public keys for root login, no forced commands
yes allow SSH root user login with password
no do not allow SSH root user login at all
forced-commands-only only allow forced commands to run via remote login

234 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.24.7 What are the default passwords?

When using the community BootEnvs for installation, the password is set to a variant of RocketSkates. See
Default Template Identity for complete details.

We strongly recommend changing this default or, better, using SSH without-password options as per Set SSH
Root Mode above.

3.24.8 Turn on autocomplete for the CLI

The DRP CLI has built in support to generate autocomplete (tab completion) capabilities for the BASH shell. To
enable, you must generate the autocomplete script file, and add it to your system. This can also be added to your
global shell rc files to enable autocompletion every time you log in. NOTE that most Linux distros do this slightly
differently. Select the method that works for your distro.

You must specify a filename as an argument to the DRP CLI autocomplete command. The filename will be created
with the autocomplete script. If you are writing to system areas, you need root access (eg via sudo).

For Debian/Ubuntu and RHEL/CentOS distros:

sudo drpcli autocomplete /etc/bash_completion.d/drpcli

For Mac OSX (Darwin):

sudo drpcli autocomplete /usr/local/etc/bash_completion.d/drpcli

Once the autocomplete file has been created, either log out and log back in, or source the created file to enable autocomplete in the current shell session (example for Linux distros, adjust accordingly):

source /etc/bash_completion.d/drpcli

Note:

If you receive an error message when using autocomplete similar to:

bash: _get_comp_words_by_ref: command not found

Then you will need to install the bash-completion package (eg. sudo yum -y install
bash-completion or sudo apt -y install bash-completion).

You will also need to log out and then back in to your shell account to correct the bash_completion issue.

3.24.9 Turn Up the Debug

To get additional debug from dr-provision, set debug preferences to increase the logging. See rs_model_prefs.

3.24.10 Missing VBoxNet Network

Virtual Box does not add host only networks until a VM is attempting to use them. If you are using the interfaces
API (or UX wizard) to find available networks and vboxnet0 does not appear then start your VM and recreate the
address.

3.24. FAQ / Troubleshooting 235

DigitalRebar Provision Documentation, Release v3.9

Virtual Box may also fail to allocate an IP to the host network due to incomplete configuration. In this case, ip addr
will show the network but no IPv4 address has been allocated; consequently, Digital Rebar will not report this as a
working interface.

3.24.11 Debug Sledgehammer

If the sledgehammer discovery image should fail to launch Runner jobs successfully, or other issues arise with the start up sequences, you can debug start up via the systemd logging. Log in to the console of the Machine in question (or if SSH is running and you have access-keys setup, you can SSH in), and run the following command to output logging:

journalctl -u sledgehammer

3.24.12 Convert Isolated Install to Production Mode

There currently is no officually supported migration tool to move from an Isolated to Production install mode.
However, any existing customizations, Machines, Leases, Reservations, Contents, etc. can be moved over from the
Isolated install directory structure to a Production install directory, and you should be able to retain your Isolated mode
environment.

All customized content is stored in subdirectories as follows:

Isolated: in drp-data/ in the Current Working Directory the installation was performed in Production:
in /var/lib/dr-provision

The contents and structure of these locations is the same. Follow the below procedure to safely move from Isolated to
Production mode.

1. backup your current drp-data directory (eg tar -czvf /root/drp-isolated-backup.tgz
drp-data/)

2. pkill dr-provision service

3. perform fresh install on same host, without the --isolated flag

4. follow the start up scripts setup - BUT do NOT start the dr-provision service at this point

5. copy the drp-data/* directories recursively to /var/lib/dr-provision (eg: unalias cp; cp
-ra drp-data/* /var/lib/dr-provision/)

6. make sure your startup scripts are in place for your production mode (eg: /etc/systemd/system/
dr-provision.service)

7. start the new production version with systemctl start dr-provision.service

8. verify everything is running fine

9. delete the drp-data directory (suggest retaining the backup copy for later just in case)

Note: WARNING: If you install a new version of the Digital Rebar Provision service, you must verify that there are
no Contents differences between the two versions. Should the dr-provision service fail to start up; it’s entirely
likely that there may be some content changes that need to be addressed in the JSON/YAML files prior to the new
version being started. See the Upgrade notes for any version-to-version specific documentation.

3.24.13 Custom Kickstart and Preseeds

Starting with drp-community-content version 1.5.0 and newer, you can now define a custom Kickstart or Preseed (aka kickseed) to override the defaults in the selected BootEnv. You simply need to only define a single Param (select-kickseed) with the name of the Kickstart or Preseed you wish to override the default value.

236 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

export UUID="f6ca7bb6-d74f-4bc1-8544-f3df500fb15e"
drpcli machines set $UUID param select-kickseed to "my_kickstart.cfg"

Of course, you can apply a Param to a Profile, and apply that Profile to a group of Machines if desired.

Note: The Digital Rebar default kickstart and preseeds have Digital Rebar specific interactions that may be necessary
to replicate. Please review the default kickstart and preseeds for patterns and examples you may need to re-use. We
HIGHLY recommend you start with a clone operation of an existing Kickstart/Preseed file; and making appropriate
modifications from that as a baseline.

3.24.14 Download RackN Content via Command Line

If you need to download RackN content requiring authentication, you can do this via the command line by adding
Auth Token to the download URL. Your Auth Token is your RackN UserID (UUID) found after logging in to the
RackN Portal User Management panel.

Here is an example download using our Auth Token, and using the Catalog to locate the correct download URL based on our DRP Endpoint OS and Architecture:

Set our RACKN_AUTH token to our UUID
export RACKN_AUTH="?username=<rackn_username_uuid>"

set our DRP OS and ARCH type
export DRP_ARCH="amd64"
export DRP_OS="linux"

set our catalog location
PACKET_URL="https://qww9e4paf1.execute-api.us-west-2.amazonaws.com/main/catalog/
→˓plugins/packet-ipmi${RACKN_AUTH}"

obtain our parts for the final plugin download
PART=`curl -sfSL $PACKET_URL | jq -r ".$DRP_ARCH.$DRP_OS"`
BASE=`curl -sfSL $PACKET_URL | jq -r '.base'`

download the plugin - AWS cares about extra slashes ... blech
curl -s ${BASE}${PART}${RACKN_AUTH} -o drp-plugin-packet-ipmi

3.24.15 Update Community Content via Command Line

Here’s a brief example of how to upgrade the Community Content installed in a DRP Endpoint using the command
line. Please note that some RackN specific content requires authentication to download, while community content
does not. See Download RackN Content via Command Line for additional steps with RackN content.

Perform the following steps to obtain new content.

View our currently installed Content version:

$ drpcli contents show drp-community-content | jq .meta.Version
"v1.4.0-0-ec1a3fa94e41a2d6a83fe8e6c9c0e99c5a039f79"

Get our new version (in this example, explicitly set version to v1.5.0. However, you may also specify stable, or tip, and do not require specific version numbers for those.

3.24. FAQ / Troubleshooting 237

https://portal.rackn.io/#/user/

DigitalRebar Provision Documentation, Release v3.9

export VER="v1.5.0"
curl -sfL -o drp-cc.yaml https://github.com/digitalrebar/provision-content/
→˓releases/download/${VER}/drp-community-content.yaml

It is suggested that you view this file and ensure it contains the content/changes you are expecting.

Now update the content.

Note: Content that is marked writable (field "ReadOnly": false) may need to be destroyed, and recreated if
it’s currently in use on other objects. For read only content you can safely update the content.

$ drpcli contents update drp-community-content -< drp-cc.yaml
{
"Counts": {

"bootenvs": 7,
"params": 18,
"profiles": 1,
"stages": 13,
"tasks": 7,
"templates": 15

<...snip...>

Now verify that our installed content matches the new vesion we expected . . .

$ drpcli contents show drp-community-content | jq .meta.Version
"v1.5.0-0-13f1aff688b53d5dfdab9a1a0c1098bd3c6dc76c"

3.24.16 Nested Templates (or “Sub-templates”)

The Golang templating language does not provide a call-out to include another template. However, at RackN, we’ve added the ability to include nested templates (sometimes referred to as sub-templates). In any content piece that is valid to use the templating capabilities, simply use the following Template construct to refer to another template. The template referred to will be expanded inline in the calling template. The nested template example below calls the template named (oddly enough) nested. tmpl.

{{template "nested.tmpl" .}}

or alternatively:

{{$templateName := (printf "part-seed-%s.tmpl" (.Param "part-scheme")) -}}
{{.CallTemplate $templateName .}}

The template construct is a text string that refers to a given template name which exists already.

The CallTemplate construct can be a variable or expression that evaluates to a string.

3.24.17 How Can I manipulate values during Golang Template rendering?

The Digital Rebar Provision integrates most of the Sprig Function Library in the Golang Template rendering opera-
tions. That means that you may include their string, math and flow functions into your pipelines.

For example: {{.Param “noCamelCase/hashiCorp” | snakecase }} or {{.Param “cool/tech” | regexMatch
“([DRP]*)”}}

Please consult the Sprig website for a full list of functions.

Note: Digital Rebar Provision blocks functions that could be used to operate on the endpoint outside of DRP template
rendering for security reasons.

238 Chapter 3. Table of Contents

_http://masterminds.github.io/sprig/

DigitalRebar Provision Documentation, Release v3.9

3.24.18 Change a Machines Name

If you wish to update/change a Machine Name, you can do:

export UUID="abcd-efgh-ijkl-mnop-qrst"
drpcli machines update $UUID '{ "Name": "foobar" }'

Note: Note that you can NOT use the drpcli machines set ... construct as it only sets Param values.
The Machines name is a Field, not a Parameter. This will NOT work: drpcli machines set $UUID param
Name to foobar.

3.24.19 Set hostname in a DHCP Reservation

If you create a DHCP Reservation for a system (or convert an active Lease to Reservation), you can also set the
Hostname for the Machine. If you are pre-creating Reservations, this will allow you to have a pre-set hostname when
the Machine first comes up. Additionally, if you create/destroy your machine objects, but would like a hostname to
persist with the Machine Reservation when the machine returns, you can do this.

Note: The UX version (at least as of v1.2.1 and older) does not support setting DHCP options to the Reservation.
You will have to perform these actions using either the CLI or API. The CLI method is outlined below.

This procedure assumes you have a Reservation created already, and we are going to update the existing Reservation.
You can combine this procedure with creating a new Reservation, but only if you perform the operation via the CLI or
API.

show the current Reservation:
drpcli reservations show 192.168.8.100

create a Hostname specification in the DHCP Options section of the
→˓reservation:
drpcli reservations update 192.168.8.100 '{ "Options": [{ "Code": 12, "Value
→˓": "pxe-client-8-100" }] }'

In the above exmaple, we are assuming our DHCP Reservation is for a Reservation identified by the IP Address
192.168.8.100, and that we are setting the hostname (DHCP Option 12) to pxe-client-8-100.

3.24.20 UEFI Boot Support - Option 67

Starting with v3.7.1 and newer, a DHCP Subnet specification will try to automatically determine the correct values for
the next-server and DHCP Option 67 values. In most cases, you shouldn’t need to change this. Older versions of
DRP may need the next-boot and/or the DHCP Option 67 values set to work correctly. This is especially true of
Virtualbox environments prior to v3.7.1. You will need to force the DHCP Option 67 to lpxelinux.0.

The DHCP service in Digital Rebar Provision can support fairly complex boot file service. You can use advanced logic
to ensure you send the right PXE boot file to a client, based on Legacy BIOS boot mode, or UEFI boot mode. Note
that UEFI boot mode can vary dramatically in implementations, and some (sadly; extensive) testing may be necessary
to get it to work for your system. We have several reports of field deployments with various UEFI implementations
working with the new v3.7.0 and newer “magic” Option 67 values.

Here is an example of an advanced Option 67 parameter for a DHCP Subnet specification:

3.24. FAQ / Troubleshooting 239

DigitalRebar Provision Documentation, Release v3.9

{{if (eq (index . 77) "iPXE") }}default.ipxe{{else if (eq (index . 93) "0")}}
→˓lpxelinux.0{{else}}bootx64.efi{{end}}

If you run in to issues with UEFI boot support - please do NOT hesitate to contact us on the Slack Channel as we may
have updated info to help you with UEFI boot support.

An example of adding this to your Subnet specification might look something like:

assumes your subnet name is "eth1" - change it to match your Subnet name:
you may need to delete the existing value if there is one, first, by doing:
drpcli subnets set eth1 option 67 to null # The setting to null is not needed
→˓with v3.7.1 and beyond.
drpcli subnets set eth1 option 67 to '{{if (eq (index . 77) "iPXE") }}default.ipxe
→˓{{else if (eq (index . 93) "0")}}lpxelinux.0{{else}}bootx64.efi{{end}}'

3.24.21 lpxelinux.0 error: no such file or directory

After TFTPing lpxelinux.0, logs (or network packet traces) may show an error similar to:

477 0.378296662 10.10.20.76 10.10.31.96 TFTP 159 Error Code,
→˓Code:
File not found, Message: open /var/lib/dr-provision/tftpboot/pxelinux.cfg/
→˓16089a59-9abd-48c2-850a-2ac3bc134935: no such file or directory``

This is expected behavior that is standard PXE waterfall searching for a valid filename to boot from. For full reference,
please see the syslinux reference documentation, at:

http://www.syslinux.org/wiki/index.php?title=PXELINUX#Configuration

The expected behavior is for a client to attempt to download files in the following order:

1. client id (DRP does not use this option, which is what generates the error)

2. mac address (in the form of 01-88-99-aa-bb-cc-dd)

3. ip address in uppercase Hexadecimal format, stepping through IP, subnet, and classful boundaries

4. fall back to the default defined file

Due to this behavior, filenames will be specified that do not exist, and the error message related to that probe request
is a normal message. This is NOT an indicator that provisioning is broken in your environment.

3.24.22 Render a Kickstart or Preseed

Kickstart and Preseed files only created by request and are not stored on a filesystem that is viewable. They are
dynamically generated on the fly, and served from the virtual Filesystem space of the Digital Rebar HTTP server (on
port 8091 by default). However, it is possible to render a kickstart or preseed to evaluate how it is going to operate, or
troubleshoot issues with your config files.

When a machine is in provisioning status, you can view the dynamically generated preseed or kickstart from the TFTP
server (or via the HTTP gateway). Provisioning status means the Machine has been plaed in to an installable BootEnv
via a Stage. If (for exaxmple) placed in to centos-7-install Stage, the compute.ks can be rendered for the
machine. Or, if placed in to ubuntu-16.04-install Stage, the seed can be rendered for the machine.

Get the Machine ID, then use the following constructed URL:

240 Chapter 3. Table of Contents

https://www.rackn.com/support/slack
http://www.syslinux.org/
http://www.syslinux.org/wiki/index.php?title=PXELINUX#Configuration

DigitalRebar Provision Documentation, Release v3.9

MID="7f65279a-7e5c-4e69-af40-dd01af4c5667"
DRP="10.10.10.10"
TYPE="seed" # seed for ubuntu, or compute.ks for centos

http://${DRP}:8091/machines/${MID}/${TYPE}

Example URLs:

ubuntu/debian: http://10.10.10.10:8091/machines/7f65279a-7e5c-4e69-af40-dd01af4c5667/seed

centos/redhat: http://10.10.10.10:8091/machines/7f65279a-7e5c-4e69-af40-dd01af4c5667/compute.ks

Note: A simple trick . . . you can create a non-existent Machine, and place that machine in different BootEnvs to ren-
der provisioning files for testing purposes. For example, put the non-existent Machine in the centos-7-install
Stage, then render the compute.ks kickstart URL above.

3.24.23 Booting Ubunutu Without External Access

Default Ubuntu ISOs will attempt to check internet repositories, this can cause problems during provisioning if your
environment does not have outbound access.

To workaround this problem, you need to supply a DNS and gateway for your subnet. There are several ways to do
this:

1. Internal to Digital Rebar: Define Options 3 (Gateway) and 6 (DNS) for your machines’ Subnet.

2. External to Digital Rebar: Adding default_route=true to the boot parameters and include a DNS server
on the local subnet in DHCP.

3.24.24 Kubernetes Dashboard

For rs_krib, the admin.conf files is saved into the krib/cluster-admin-conf profile parameter and can
be downloaded after installation is complete. Using this file kubectl --kubeconfig=admin.conf allows
autheticated access to the cluster. Please see the KRIB documentation for more details.

For other deployments such as Ansible Kubespray or the Kubeadm deployments of Kubernetes are all maintained
by the respective Kubernetes communities. Digital Rebar simply implements a basic version of those configurations.
Access to the Kubernetes Dashboard is often changing, and being updated by the community. Please check with the
respective communities about how to correctly access the Dashboard.

Some things to note in general:

• Access is restricted; as well it should

• You must configure/enable access to the Dashboard

• Our implmentations usually have a mechanism configured, but this changes over time

Some things that have worked in the past:

• kubectl proxy - enabled Proxy access to the Kubernetes Master to get to the Dashboard

• try stopping the Proxy container, and running kubectl proxy --address 0.0.0.0 --accept-hosts '.*'

– carefully consider this implication - you are enable access from all hosts !!!

• any other solutions, please let us know. . . we’ll add them here

3.24. FAQ / Troubleshooting 241

http://10.10.10.10:8091/machines/7f65279a-7e5c-4e69-af40-dd01af4c5667/seed
http://10.10.10.10:8091/machines/7f65279a-7e5c-4e69-af40-dd01af4c5667/compute.ks

DigitalRebar Provision Documentation, Release v3.9

3.24.25 Expand Templates from Failed Job

If you have a task/template that has failed, once it’s been run by the Job system, you can collect the rendered template.
The rendered template will be in JSON format, so it may be hard to parse.

set Endpoint and User/Pass appropriately for your environment
export RS_ENDPOINT="https://127.0.0.1:8092"
export RS_KEY="rocketskates:r0cketsk8ts"

get your Job ID from the failed job, and set accordingly:
JOBID="abcdefghijklmnopqrstuvwxyz"
curl -k -u $RS_KEY $RS_ENDPOINT/api/v3/jobs/$JOBID/actions > $JOBID.json

optional - if you have the remarshal tools installed:
json2yaml $JOBID.json > $JOBID.yaml

3.24.26 RBAC - Limit Users to Just Poweron and Poweroff IPMI Controls

The Role Base Access and Controls subsystem allows an operator to construct user account permissions to limit the
scope that a user can impact the Digital Rebar Provision system. Below is an example of how to create a Claim that
assigns the Role named prod-role that limits t to only allow IPMI poweron and ‘‘poweroff‘ actions. These
permissions are applied to the _specific_ set of _scope_ Machines:

drpcli roles update prod-role '"Claims": [{"action": "action:poweron,
→˓action:poweroff", "scope": "machines", "specific": "*"}]'

Now simply assign this Role to the given users you wish to limit their permissions on.

3.24.27 JQ Usage Examples

JQ Raw Mode

Raw JSON output is usefull when passing the results of one jq command in to another for scripted interaction. Be sure to specify “Raw” mode in this case - to prevent colorization and extraneous quotes being wrapped around Key/Value data output.

<some command> | jq -r ...

Filter Out gohai-inventory

The gohai-inventory module is extremely useful for providing Machine classification information for use by
other stages or tasks. However, it is very long and causes a lot of content to be output to the console when listing
Machine information. Using a simple jq filter, you can delete the gohai-inventory content from the output
display.

Note that since the Param name is gohai-inventory, we have to provide some quoting of the Param name, since the dash (-) has special meaning in JSON parsing.

drpcli machines list | jq 'del(.[].Params."gohai-inventory")'

Subsequently, if you are listing an individual Machine, then you can also filter it’s gohai-inventory output as well, with:

242 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

drpcli machines show <UUID> | jq 'del(.Params."gohai-inventory")'

List BootEnv Names

Get list of bootenvs available in the installed content, by name:

drpcli bootenvs list | jq '.[].Name'

Reformat Output With Specific Keys

Get list of machines, output “Name:Uuid” pairs from the the JSON output:

drpcli machines list | jq -r '.[] | "\(.Name):\(.Uuid)"'

Output is printed as follows:

machine1:05abe5dc-637a-4952-a1be-5ec85ba00686
machine2:0d8b7684-9d0e-4c3e-9f89-eded02357521

You can modify the output separator (colon in this example) to suit your needs.

Extract Specific Key From Output

jq can also pull out only specific Keys from the JSON input. Here is an example to get ISO File name for a bootenv:

drpcli contents show os-discovery | jq '.sections.bootenvs.discovery.OS.IsoFile'

Display Job Logs for Specific Machine

The Job Logs provide a lot of information about the provisioning process of your DRP Endpoint. However, you often only want to see Job Logs for a specific Machine to evaluate provisioning status. To get specific Jobs from the job list - based on Machine UUID, do:

export UUID=`abcd-efgh-ijkl-mnop-qrps"
drpcli jobs list | jq ".[] | select(.Machine==\"$UUID\")"

List Machines with a Given Profile Added to Them

Starting sometime after v3.9.0 the API will allow you to filter Machines that have a given Profile applied to them. If you don’t have this version, you can use jq to list all Machines with a specified Profile by using the following construct:

set the PROFILE variable to the name you want to match
export PROFILE=foobar
drpcli machines list | jq -r ".[] | select(.Profiles[] == \"$PROFILE\") | \"\(.
→˓Name)\""

In this case, we simply list the output of the Machines Name. You can change the final \(.Name) to any valid JSON
key(s) on the Machine Object.

3.24. FAQ / Troubleshooting 243

DigitalRebar Provision Documentation, Release v3.9

3.25 Architecture Reference

This section is intended to act as a reference to the internals of dr-provision for developers and power users.

3.25.1 Architecture Overview

Architecturally, dr-provision is split into several different packages:

backend is responsible for making sure that all the data is valid and gets written to the persistent store whenever things
get updated, along with storing any non-persistent runtime data we need to keep track of.

midlayer is where the TFTP, static HTTP, and DHCP services live, along with the plugin management code.

frontend is responsible for providing the REST API.

models define the data models that the other packages use, along with some common functionality that can be shared
between the client and server side.

api defines a client-side Go API for interacting with dr-provision.

cli provides our default CLI for interacting with dr-provision.

plugin implements the core client code that all plugins should use to act as a dr-provision plugin.

backend

In Memory Database

All operating data lives in memory all the time. The only time dr-provision reads information from persistent storage is
when it is starting up, otherwise we treat the persistent store as write-only. The only exception to this design principle
is streaming log data from job execution. We may revisit this design principle if memory pressure becomes a real
constraint.

The backend provides a DataTracker that is responsible for holding all of the persistible data. DataTracker also
implements indexing mechanism that the other layers use to ensure that the other layers can quickly find what they
need, along with a locking scheme to ensure that the data stays consistent. The backend also provides a RequestTracker
to ensure that logging and locking on a per-request basis is consistent.

Pluggable Storage

The mechanism for storing persistent data should be pluggable, and only rely on basic key/value store semantics in
the absence of transactions. The backend relies on an external Go package (https://github.com/digitalrebar/store) to
abstract some basic behaviour on top of various key-value type stores. Adding support for new storage types will be a
matter of adding them to that package, not to dr-provison itself.

Single Point of Validation

To the extent that it is feasible, all object validation happenS in the backend. Since the backend is responsible for
writing data to the persistent store, it is also the best place to implement all data validation.

244 Chapter 3. Table of Contents

https://github.com/digitalrebar/store

DigitalRebar Provision Documentation, Release v3.9

Static FS with Dynamic Overlay

A large part of what dr-provision does boils down to rendering templates and making them available in the right
place at the right time. Whenever a machine, bootenv, or stage changes, there are generally templates that have to be
rerendered and made available via static HTTP and TFTP to ensure that machines boot to the corrent environment over
the network, have the right OS installation templates, load the proper credentials, etc. We already serve static HTTP
and TFTP content from a user-configurable location to provide basic files needed to PXE boot a system and provide
all the packages and files needed to install an OS.

For dynamic content, however, we don’t always want to write files to a filesystem where anyone with a web browser
can discover them, and where we have to worry about cleaning up dynamic content whenever something changes.
To that end, we provide a static FS implementation that can register for callbacks to be involed whenever someone
accesses a file via TFTP or HTTP. That allows us to defer template rendering until the files are actually requested,
and it allows us to transparently proxy requests to remote repositories when we don’t actually have a file tree present
locally.

Dynamic Remote IP to Local IP Caching

dr-provision is designed to work seamlessly on a multi-homed system and to deal with complex local network config-
urations. To that end, every other subsystem that listens for packets is instrumented to capture the IP where the request
originated and the local IP address that the request came in on. Template rendering and DHCP request handling use
this information to make sure that we supply the best IP address that a client should use to contact dr-provision at for
any future communication.

midlayer

The midlayer package handles some basic services that DRP provides as well as the content package management
system.

TFTP Service

The TFTP service ties together the pin TFTP handling package and the static FS that the backend provides to handle
TFTP requests. We only allow clients to get files, uploading them is not allowed. Remote and local IP addresses for
each connection are cached

Static HTTP Service

The Static HTTP service implements a simple high-performance HTTP server that serves files using the static FS that
the backend provides. Remove and local IP addresses for each connection are cached.

DHCP Service

The DHCP service built in to dr-provision is designed to be fully API driven and to provide all the features needed to
manage system IP address assignments through the complete provisioning lifecycle. As such, it has a few interesting
features that other DHCP servers may not have:

• The ability to have different ways of determining what unique attribute in a DHCP packet to use to allocate an
IP address. When you see references to Strategy and Token in the DHCP models, Strategy refers to the unique
attribute the DHCP server should use, and Token refers to the value that the Stategy picked.

3.25. Architecture Reference 245

https://github.com/pin/tftp

DigitalRebar Provision Documentation, Release v3.9

For now, the only implemented Strategy is MAC, which has the DHCP server use the MAC address of the
network adaptor of the network interface as the unique value of the Token.

• The DHCP server is fully API driven. You can add, remove, and modify Reservations and Subnets on the fly,
and changes take effect immediately.

• Built-in ProxyDHCP support, on a subnet by subnet basis. dr-provision can coexist with other DHCP servers to
only provide PXE support for specific address ranges, leaving address management to your preexisting DHCP
infrastructure.

Plugin Management

dr-provision can add extended functionality via external plugins. The midlayer implements all of the functionality
needed to accept plugin uploads, interrogate them to discover what functionality they implement, import any content
built in to the plugin, and hand off requests and events to the plugin for further processing.

Content Package Management

The Content Package Management system builds a stack of content layers that are provided to the backend to provide
objects to the rest of the system. The data stack has the following layers used in this order:

Table 1: Definitions
Heading Definition
Layer Type Type of layer in the data stack as reported in the content layer meta data
Overwritable Can layers above overwrite content packages at this layer.
Can Override Can a content package at this layer override lower layers.
Writable Can the system receive written objects
Many Can multiple content packages be added to this layer
Use Who provideds and its use

Table 2: Content Package Management
Layer OverwritableCan

Over-
ride

Writable Many Use

writable yes no yes no Persistent layer
local yes yes no no Layer providing content from local filesystem,

/etc/dr-provision directory
dynamic no yes no yes Layer providing dynamic content packages pro-

vided by the API
default yes yes no no Layer providing default content that is always

present, but replaceable.
plugin no yes no yes Layer providing plugin provided content pack-

ages.
basic yes yes no no Layer providing mandatory DRP model objects.

When an object is looked up, the look up code will start walking down the stack until the object is found and it will
be returned. When an object is to be updated or created, the Writable aspect of the layer will be checked to see if the
object can be updated or created. If the object can be stored in a layer, it will be used. The content layer stack places
the wriable store at the top of the stack.

The simplified view of the stack from the API can be boiled down to:

246 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• Create - Created object’s key must not exist in the stack.

• Read - Object will be searched from the top down until it is found.

• Update - Updated object must exist only in the writable layer.

• Delete - Deleted Object must exist only in the writable layer.

frontend

The DRP frontend implements a REST + JSON API for others to interact with and manage dr-provision. The dr-
provision API is available via HTTPS, and we will upgrade to HTTP v2 opportunistically.

Threaded Logging

Each individual request to the API is logged using a unique ID, and that ID is threaded through to all the code paths
that the request affects. Detailed logging along with an arbitrary token can also be enabled on a per-request basis to
aid in debugging and audit purposes.

Basic and JWT Token Authentication

You can authenticate to the dr-provision API via basic auth and via time-limited JWT tokens. We also provide means
to invalidate tokens globally and on a per-user basis.

Websocket-based Event Delivery

Authenticated users can open a websocket and arrange for a variety of different events to be watched for. This elimi-
nates the need to poll in a loop for a wide variety of different situations.

models

Every valid dr-provision object has a Model that is implemented in this package. These models are authoritative, and
their JSON serialization in Go is the canonical wire format.

api

The API package implements the reference Go client API for dr-provision. You should consult the go docs for the API
at https://godoc.org/github.com/digitalrebar/provision/api for in-depth discussion on how to use the client API.

cli

The CLI package implements the reference Go client CLI for dr-provision. The main program for drpcli includes this
set of functions.

plugin

The plugin package implements the Go core functions needed to create a dr-provision plugin.

3.25. Architecture Reference 247

https://godoc.org/github.com/digitalrebar/provision/api

DigitalRebar Provision Documentation, Release v3.9

3.25.2 Data Models

Digital Rebar Provision uses several different data models to manage the task of discovering and provisioning machines
in a data center.

Common Model Fields

Model Metadata

Virtually every model contains some embedded metadata, available under the Meta field. This data, which consists of
a map of string -> string pairs, is ignored by the dr-provision server. The most common metadata fields you will see
are:

icon The icon that the UX will use to display instances of this model. Users can choose icons from http://fontawesome.
io/icons/.

color The color the icon will be displayed as

title The full name that the UX will use.

feature-flags A comma-seperated list of strings that indicate which features are available for a model. Provision
uses feature flags to help the various components and content layers to converge on a supported set of avaiable
features.

Model Validation

Models also contain common fields that track the validity and availability of individual objects. These fields are:

• Validated: a boolean value that indicates whether a given object is semantically valid or not. Semantically
invalid objects will never be saved, and if one is returned via the API the Errors field will be populated with a
list of messages indicating what is invalid.

• Available: a boolean value that indicates whether the object is available to be used, not whether it is semantically
valid – an object that is invaild can never be available, while an object that is not available can be semantically
valid.

• Errors: a list of strings that contain any error messages that occurred in the process of checking whether a given
object is valid and available. Error messages are designed to be human readable.

Objects are checked for validity and availability on initial startup of dr-provision (when they are all loaded into mem-
ory), and thereafter every time they are updated. You must check each object returned from an API interaction to
ensure that it is valid and available before using it.

Other Common Model Fields

Models can contain other common fields that may be present for user edification and API tracking purposes, but that
do not affect how dr-provision will use or interpret changes to the objects. These extra fields are:

• ReadOnly: a boolean value that indicates whether the object can be modified via the API. This field is set to
True if the object was loaded from a read-only content layer.

• Description: A brief description of what the object is for, how it should be used, etc. Descriptions should be one
line long.

• Documentation: A longer description of what the object is for and how it should be used, generally a few lines
to a few paragraphs long. For now, only Params and Tasks have a Documentation field, but other models may
add them as situations demand.

248 Chapter 3. Table of Contents

http://fontawesome.io/icons/
http://fontawesome.io/icons/

DigitalRebar Provision Documentation, Release v3.9

3.25.3 Authentication Models

These models work together to manage authentication, authorization, and other access control mechanisms in dr-
provision.

User

Users keep track of who is allowed to talk to drp-provision, and what actions they are allowed to take in the system.
User objects contain the following fields:

• Name: A unique name for the user. It cannot be changed after the user is created.

• PasswordHash: The scrypt hashed version of the user’s Password. This field is always empty when accessed
via the API. Changing the Password will also rotate the Secret field.

• Secret: A random string used to generate and validate access tokens. Changing this field will invalidate any
existing tokens, and replace Secret with a new random value.

• Roles: A list of Role names that the User has been assigned.

In addition to the roles asigned to the User, all Users also get a claim that allows them to get themself, change their
passwords, and get a Token for themselves.

Claim

Claims grant the ability to perform specific actions against specific objects. Claims have the following fields:

• Scope: The API top-level path or object type the Claim pertains to. Object IDs referenced in the Specific field
must be unique in this Scope. This field may be one of the following values:

– *, which refers to all top-level Scopes.

– A single top-level object type or API path component.

– A comma-seperated list of top-level object types or API components.

• Specific: The specific object instances referred to by the Scope. This field may have one of the following values:

– *, which refers to all Objects in Scope.

– A single unique ID for the Scope. This ID must refer to the field by which the object is natively referred
to in the API.

– A comma-seperated list of unique IDs.

• Action: The action being performed. Common actions include “get”, “list”,”update”, and “delete”, and different
object types can have other actions. This field may have one of the following values:

– *, which refers to all Actions valid in the Scope under consideration,

– A single Action.

– A comma-seperated list of Actions

Two actions have specialized semantics:

– action By itself, action gives permission for all valid plugin-provided actions. action:actionName gives
permission for the specific actionName. If you want to give access to more than one plugin-provided
action, you can specify multiple action:actionName instances in the comma-seperated list of Actions.

3.25. Architecture Reference 249

DigitalRebar Provision Documentation, Release v3.9

– update By itself, update gives permission to update any field (including Params, if the final Object has
them). You may also give permission to update a specific field in an Object by specifying an update:/Field
specifier. The /Field part after the colon must be a valid RFC6901 JSON Pointer to the field you want to
allow to be updated. This will allow updated to that field and any subfields it might have. This level of
access control works on the JSON representation of the Object.

Claims are partially ordered by the access they grant, with the superuser claim `{Scope:"*" Action:"*"
Specific:"*"}` granting access to everything and the empty claim `{Scope:"" Action:""
Specific:""}` granting access to nothing. If you have two claims a and b, claim a is said to contain
claim b if a is capable of satisfying every authentication request b is.

Role

Roles are licensed features – to perform any interaction with a Role besides listing them and getting them, you must
have a license with the rbac feature enabled.

Roles are named lists of Claims that can be assigned to a User. Roles have the following fields:

• Name: The unique name of the Role.

• Claims: A list of Claims that the Role provides.

Roles are also partially ordered by the access they grant based on their Claims. Role a is said to contain role b if every
claim b contains can be satisfied by a claim on a

dr-provision provides a default superuser role that contains just the superuser claim. By default, the rocketskates user
will be assigned this role.

Collectively, Roles and Claims control what a caller can do with the API.

Tenants

Tenants are licensed features – to perform any interaction with a Tenant besides listing them and getting them, you
must have a license with the rbac feature enabled.

Tenants control what objects a user can see via the dr-provision API. Tenants have the following fields:

• Name: The unique name of the Tenant.

• Users: The list of Users that are in this Tenant. Users can be in at most one Tenant at a time.

• Members: The objects that are in the Tenant. This field is structured as a JSON object whose keys specify the
Scope of the objects, and whose values are lists of object indentifiers. Access is only restricted if the Scope
of the object is present in the Members field of the tenant – objects whose Scope is not present do not have
restricted visibility.

Object visibility restrictions based on a Tenant are processed before Roles are processsed, which means that a Role
granting access to an object that is not allowed by the Tenant will be ignored.

By default, Users are not members of a Tenant, and can therefore potentially see everything via the API (subject to
Role based restrictions, of course.)

3.25.4 How Authentication Works

User Tokens

User tokens are created by accessing GET /api/v3/users/:username/token. By default, a token created using this method
can act on behalf of user. This includes rights for the user to get information about themself, change their password,

250 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

and fetch a token for themselves, and any access granted by additional roles the user has. Users can restrict access that
a token generated in this method by passing an optional comma-seperated list of Roles as a parameter during the API
request, and any requested Roles that would increase the scope of the allowed Claims will be silently dropped.

Machine Tokens

Certain common machine usage patterns (discovery, running tasks, etc) also need to interact with the API, and hence
need a Token that authorizes them to perform those actions. These tokens have a fixed set of permissions:

• Machine Discovery: This token has the ability to create and get Machines, and nothing else. It is needed to
allow Sledgehammer to create a machine for itself during initial system discovery.

• Machine Operations: This token gives a Machine the ability to modify itself, get stages and tasks, create events,
create a reservation and modify a reservation for the machine’s address, and create and manage Jobs for itself.

These machine tokens are generated as part of template expansion via the .GenerateToken command (which generates
tokens that expire according to the unknownTokenTimeout and knownTokenTimeout preferences), and the .Generate-
InfiniteToken command, which generates a Machine Operations token that expires in 3 years and is intended to grant
long-term access for the task runner. These tokens cannot be generated by any other means.

How Tokens Are Checked

1. A request is made to the API. If the request contains Authorization: Bearer, that token is used. If the request
contains Authorization: Basic, the contained username/password is checked and used to create a one-use Token.

2. Claims are created based on the API path requested and the HTTP method. For example, a GET /api/v3/users
request creates a Claim of `{Scope: "users",Action:"list",Specific: ""}`, a GET
/api/v3/users/bob creates a Claim of `{Scope: "users", Action: "get" ,Specific:
"bob"}`, a PATCH /api/v3/bootenvs/fred that wants to patch OS.Name and OS.IsoName generates
`{Scope: "bootenvs", Action: "update:/OS/Name", Specific: "fred"}` and
`{Scope: "bootenvs", Action: "update:/OS/IsoName", Specific: "fred"}`,
and so on.

3. The token is checked to make sure it is still valid based on the system Secret, the user Secret, and the grantor
Secret. If any of these have changed, or the token has expired, the API will return a 403.

4. The list of created Claims is tested to see if it is contained by any one of the Roles contained in the Token, or by
any direct Claims contained in the Token. If all of the created Claims are satisfied, the request is considered to
be authorized, otherwise the API will return a 403.

5. The API carries out the request and returns an appropriate response.

3.25.5 Provisioning Models

These models work together to manage any and all lifecycle needs for managing Machines in dr-provision. This
includes:

• Keeping track of what machines are being managed by dr-provision.

• Controlling what OS environment any given Machine will boot to over the network.

• Managing the order in which Tasks will be run on Machines.

• Making sure that any files that are needed to complete the provisioning process are available and valid.

3.25. Architecture Reference 251

DigitalRebar Provision Documentation, Release v3.9

Template

Template expansion underlies just about everything that DigitalRebar Provision does. All template expansion in
dr-provision happens accroding to the rules defined by the golang text/template package, which (along with this
document) is required reading if you want to build content for dr-provision. Template objects define common template
content that different parts of dr-provision can reuse as they see fit. Template objects contain the following fields:

• ID: A unique identifier for the Template.

• Contents: The contents of the Template. It must be parseable as a go text/template.

TemplateInfo

Closely related to the Template is the TemplateInfo object, which is included as part of the BootEnv, Stage, and Task
objects. TemplateInfo objects have the following fields:

• Name: The name of this TemplateInfo.

• Path: A string that will be expanded as if it were a Template to generate a path for the template.

• Contents: If present, a string that will be expanded as if it were a Template to generate the file that will be made
available at the location indicated by the Path field. Contents must be empty or not present if ID is set.

• ID: If present, the ID of the Template that will be used to generated the file that will be made available at the
location indicated by the Path field. ID must be empty or not present if Contents is set.

Rendering Templates

Whenever dr-provision needs to render something as a template (whether or not it is a Template object, a TemplateInfo
object, or just a string that might contain a template), it always does so in the context of a RenderData object, which
provides a slew of useful helper functions along with references to the applicable objects. RenderData is what dr-
provision uses for dot or {{ . }} when executing a template. RenderData has the following fields:

• Machine: the Machine that we are rendering templates for. Except for rendering the unknownBootEnv, all
template rendering that dr-provision does happens against a machine and one of a BootEnv, a Task, or a Stage.
If Machine is present, the following helpers are present on RenderData:

– .Machine.Path returns a machine-specific Path fragment (based on the Machine UUID) that can be used
to store or refer to machine specific information via the static file server or via TFTP. It is particularly
useful for ensuring that templates are expanded into a unique file space for each machine by using it in a
TemplateInfo Path field.

– .Machine.Address returns the IP address of the Machine as recorded in the Lease or Reservation.

– .Machine.HexAddress returns the IP address of the Machine in hex format, suitable for use by anything
expecting a hex encoded IP address.

– .Machine.Url returns a machine specific http URL that can be used to access machine specific information
via http.

– .ParamExists <key> returns true if the specified key is a valid parameter available for this rendering.

– .Param <key> returns the value for the specified key for this rendering. .Param and .ParamExists always
look parameters up in the following order:

1. Params set directly on a Machine.

2. Params set on the Profiles that have been added to a Machine, in the order of that Machine’s Profiles
list.

252 Chapter 3. Table of Contents

https://golang.org/pkg/text/template/#hdr-Actions

DigitalRebar Provision Documentation, Release v3.9

3. Params set on the Profiles added to the Stage that the Machine is currently in, in the order of that
Stage’s Profile list.

4. The current default Profile.

5. The default value defined as part of the JSON schema for the Param.

Param returns values as simple strings! For complex output, look at .ParamAsJSON and .ParamAsYAML
below.

– .ParamAsJSON <key> returns the value for the specified key for this rendering preserved in JSON for-
matting. This is important for templates that rely on jq or other commands that need consistent formatting

Note: .ParamAsJSON will use the .Param lookup order above.

– .ParamAsYAML <key> returns the value for the specified key for this rendering preserved in YAML
formatting. This is important for configuration files and templates that need consistent formatting

Note: .ParamAsYAML will use the .Param lookup order above.

– .Repos <tag>, <tag>,. . . returns Repos (as defined by the package-repositories param currently in scope)
with the matching tags.

– .MachineRepos will return a list of OS package repositories that can be used to install packages on the
Machine. The repos returned will be for .Machine.OS

– .InstallRepos will return at most one OS package repository that can be used to install an OS from, and at
most one OS package repository that contains security updates to apply during OS install.

– [Sprig functions] are string, math, file and flow functions for golang templates from the Sprig Function
Library. They can be added to pipeline evaluation to perform useful template rendering operations.

• Env: The BootEnv that we are rendering templates for, if applicable. Unless the BootEnv has the OnlyUnknown
flag set, RenderData will also include a Machine. If Env is present, the following helpers will also be present on
RenderData:

– .Env.PathFor <proto> <partial> is a helper that makes it easier to build paths that the client side shuld
expect. proto should be either http or tftp, and partial is a partial path relative to the root of a package
repository.

– .Env.JoinInitrds <proto> joins together a list of initrds in a way that is applicable for the passed in proto.

– .BootParams returns a rendered version of .Env.BootParams. It will be rendered against the current Ren-
derData.

– .Env.OS.FamilyName: The contents of .Env.OS.Family if present, otherwise the result of splitting
.Env.OS.Name by hyphens and taking the first part.

– .Env.OS.FamilyVersion: The contents of .Env.OS.Version if present, otherwise the result of splitting
.Env.OS.Name by hyphens and taking the second part.

– .Env.OS.FamilyType: The type of .Env.OS.FamilyName. rhel for distros based on RHEL, debian for
distros based on Debian, otherwise the same as .Env.OS.FamilyName. More return types will be added
upon request.

– .Env.OS.VersionEq <testVersion>: Splits testVersion and .Env.OS.FamilyVersion into pieces seperated
by a period. Returns true if .Env.OS.FamilyVersion has at least as many pieces as testVersion and all the
pieces they have in common are numerically equal.

• Task: the Task we are rendering templates for, if applicable. RenderData will include a Machine.

• Stage: the Stage we are rendering templates for, if applicable. RenderData will include a Machine.

RenderData includes the following helper methods:

3.25. Architecture Reference 253

_http://masterminds.github.io/sprig/
_http://masterminds.github.io/sprig/

DigitalRebar Provision Documentation, Release v3.9

• .ProvisionerAddress returns an IP address that is on the provisioner that is the most direct access to the machine.

• .ProvisionerURL returns an HTTP URL to access the base file server root

• .ApiURL returns an HTTPS URL to access the Digital Rebar Provision API

• .GenerateToken generates either a known token or an unknown token for use by the template to update objects
in Digital Rebar Provision. The tokens are valid for a limited time as defined by the knownTokenTimeout and
unknownTokenTimeout rs_model_prefs respectively. The tokens are also restricted to the function the can
perform. The known token is limited to only reading and updating the specific machine the template is being
rendered for. If a machine is not present during the render, an unknown token is generated that has the ability
to query and create machines. These are used by the install process to indicate that the install is finished and
that the local BootEnv should be used for the next boot and during the discovery process to create the newly
discovered machine.

• .GenerateInfiniteToken works like .GenerateToken, but creates a token with a 3 year timeout.

• .ParseURL <segment> <url> parses the specified URL and return the segment requested.

• template <string> . includes the template specified by the string. String can NOT be a variable and note that
template does NOT have a dot (.) in front.

• .CallTemplate <string> . works like template but allows for template expansion inside the string to allow for
dynamic template references. Note that CallTemplate does have dot (.) in frount.

Param

Params are how dr-provision provides validation and a last-ditch default value for data that we use during template
expansion. Strictly speaking, you do not have to define a Param in order to use it during template expansion, but
dr-provision will not be able to enforce that param data is syntactically valid. A Param object has the following fields:

• Name: The unique name of the Param. Any time you update a Profile or add, remove, or change a parameter
value on another object, dr-provision will check to see if a Param exists for the corresponding parameter key.

• Schema: A JSON object that contains a valid JSONSchema (draft v4 or higher) that describes what a valid
value for the Param looks like. You may also provide a default value for the Param using the default stanza in
the JSON schema.

• Secure: Data managed in this param must be handled in a secure fashion. It will never be passed in cleartext
over the API without proper Role based authorization, will be stored in an encrypted wrapper, and will only
be made available in an unencrypted form for schema validation on the server, performing plugin actions, and
running Tasks on a machine.

Secure Params

Secure param management is a licensed feature. You must have a license with the secure-params feature enabled to be
able to create and retrieve secure param values. SecureData uses a simple encryption mechanism based on the NACL
Box API (as implemented by libsodium, golang.org/x/crypto/nacl/box, tweetnacl-js, PyNaCl, and many others), using
curve25519 and xsalsa20 for crypto, and poly1305 for message verification.

Secure params are handled by the API and stored on the backend using a SecureData struct, which has the following
fields:

• Payload: The encrypted payload. When marshalled to JSON, this should be converted to a base64 encoded
string.

• Nonce: 24 cryptographically random bytes. When marshalled to JSON, this should be converted into a base64
encoded string.

254 Chapter 3. Table of Contents

http://json-schema.org/

DigitalRebar Provision Documentation, Release v3.9

• Key: a 32 byte curve25519 ephemeral public key. When marshalled to JSON, this should be converted to a
base64 encoded string.

When a Param has the Secure flag, the following additional steps must be taken to set and get values for this param on
objects that hold params.

Setting Secure Param Values

1. Get the peer public key for the object you want to set a secure param on from its pubkey endpoint. These
endpoints are at /api/v3/<objectType>/<objectID>/pubkey – as an example, the pubkey endpoint for the global
profile is /api/v3/profiles/global/pubkey. Access to these API endpoints requires an appropriate Claim with the
updateSecure action. These API endpoints return a JSON string containing the base64 encoding of an array
containing 32 bytes.

2. Generate local ephemeral curve25519 public and private keys using a cryptographically secure random number
source.

3. Generate a 24 byte nonce using a cryptographically secure random number source.

4. Encrypt the JSON-marshalled param using the nonce, the peer public key, and the ephemeral private key.

5. Generate a SecureData struct with Key set to the ephemeral public key, Nonce set to the generated nonce, and
Payload set to the encrypted data.

6. Use the SecureData struct in place of the raw param value when making API calls to add, set, or update params.

Retrieving Decrypted Secure Data Values

In order to retrieve decrypted secure data values, you must have an appropriate Claim with the getSecure action. That
will allow you to make GET requests to the params API endpoints for param-carrying objects with the decode=true
query parameter. That will cause the frontend to decrypt any encryped parameter values before returning from the API
call.

Task

Tasks in dr-provision represent the smallest discrete unit work that the machine agent can use to perform work on
a specific machine. The machine agent creates and executes a Job for each Task on the machine. Tasks have the
following fields:

• Name: The unique name of the task.

• RequiredParams: A list of parameters that are required to be present (directly or indirectly) on a Machine to
use this Task. It is used to verify that a Machine has all the parameters it needs to be able to execute this Task.

• OptionalParams: A list of parameters that the Task may use if present (directly or indirectly) on a Machine.

• Templates: A list of TemplateInfos that will be rendered into Job Actions when the machine agent starts exeut-
ing this Task as a Job.

Rendering a Task for a Machine

The Templates for a Task are rendered for a specific Machine whenever the Actions for the Job for that particular
task/machine combo are requested.

All referenced templates can refer to each other by their ID (if referring to a Template object directly), or by the
TemplateInfo Name (if the TemplateInfo object), in addition to all the Template objects by ID.

3.25. Architecture Reference 255

DigitalRebar Provision Documentation, Release v3.9

Profile

Profiles are named collections of parameters that can be used to provide common sets of parameters across multiple
Machines. Profile objects have the following fields:

• Name: The unique name of the Profile.

• Params: a map of param name -> param value pairs for this Profile.

Stage

Stages are used to define a set of Tasks that must be run in a specific order, potentially in a specific BootEnv. Stages
contain the following fields:

• Name: The unique name of the Stage.

• Templates: A list of TemplateInfos that will be template-expanded for a Machine whenever it transitions to a
new Stage.

• RequiredParams: A list of parameters that are required to be present (directly or indirectly) on a Machine to
use this Stage. It is used to verify that a Machine has all the parameters it needs to be able to boot using this
Stage.

• OptionalParams: A list of parameters that the Stage may use if present (directly or indirectly) on a Machine.

• BootEnv: The boot environment that the Stage must run in. If this field is empty or blank, the assumption is
that the Stage will function no matter what environment the machine was booted in. Changing the Stage of a
Machine will always change the boot environment of the machine to the one that the stage needs, if any.

• Profiles: This is a list of Profile names that will be used for param resolution at template expansion time. These
profiles have a higher priority than the default profile,and a lower priority than profiles attached to a Machine
directly.

• Tasks: This is a list of Task names that will replace the Tasks list on a Machine whenever the Machine switches
to using this Stage.

• Reboot: DEPRECATED. This flag indicates whether or not the Machine must be rebooted if a Machine switches
to this Stage. Generally, if this flag is set the Stage will also have a specific BootEnv defined as well. While this
flag is still honored, the runner will automatically reboot the machine as needed to satisfy the BootEnv of the
Stage.

• RunnerWait: DEPRECATED. This flag used to indicate that the machine agent should wait for more Tasks to
be added to the Machine once it finishes runnning the Tasks for this Stage. The runner will currently always
wait unless it is explicitly told to exit by an entry in the change-stage/map (also deprecated), or by the exit status
of a Task.

Rendering a Stage for a Machine

The Stage for a Machine is rendered dr-provision starts up, whenever a Machine changes to a different Stage, or
whenever a Stage referred to by a machine changes.

All of the templates referred to by the Templates section of the Stage will be rendered as static files available over the
http and tftp services of the provisioner at the paths indicated by each entry in the Templates section. All referenced
templates can refer to each other by their ID (if referring to a Template object directly), or by the TemplateInfo Name
(if the TemplateInfo object), in addition to all the Template objects by ID.

256 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

BootEnv

Boot Environments (or BootEnv for short) are what DigitalRebar Provision uses to model a network boot environment.
Each BootEnv contains the following fields:

• Name: The name of the boot environment. Each bootenv must have a unique name, and bootenvs that are
responsible for booting into an environment that will install an OS on a machine must end in -install.

• OnlyUnknown: a boolean value indicating that this boot environment is tailored for use by unknown machines.
Most boot environments will not have this flag.

• OS: an embedded structure that contains some basic information on the OS that this BootEnv will boot into, if
applicable. OS contains the following fields:

– Name: the name of the OS this BootEnv will boot into or install. It must be in the format of distro-version.
centos-7, debian-8, windows-2012r2, ubuntu-16.04 are all examples of what an OS name should look like.

– Family: The family of the OS, if any.

– Codename: The codename of the OS, if any. Generally only really used by Debian, Ubuntu, and realted
Linux distributions.

– Version: The version of the OS, if any.

– IsoFile: As an install convienence, DigitalRebar Provision contains built-in ISO expansion functionality
that can be used to provide a local mirror for installing operating systems. This field indicates the name of
an install archive (usually a .iso file) that should be expanded to provide a local install repo for an operating
system.

– IsoSha256: If present, the SHA256sum that IsoFile should have.

– IsoUrl: The URL that IsoFile can be downloaded from.

• Kernel: If present, a partial path to the kernel that should be used to boot a machine over the network. The
kernel must be specified as a relative path – no leading / or .. characters are allowed. As an example, the
Kernel parameter for the community provided ubuntu-16.04-install boot environment is install/netboot/ubuntu-
installer/amd64/linux, the path to the kernel relative to the root of the Ubuntu install ISO.

• Initrds: If present, a list of partial paths to initrds that should be loaded along with the Kernel when booting a
machine over the network. Initrd paths follow the same rules as kernel paths.

• BootParams: If present, a string that will undergo template expansion as if it were a Template, and passed as
arguments to the kernel when it boots.

• RequiredParams: A list of parameters that are required to be present (directly or indirectly) on a Machine to
use this BootEnv. Only applicable to bootenvs that do not have the OnlyUnknown flag set. It is used to verify
that a Machine has all the parameters it needs to be able to boot using this BootEnv.

• OptionalParams: A list of parameters that the BootEnv may use if present (directly or indirectly) on a Machine.

• Templates: A list of templates that will be expanded and made available via static HTTP and TFTP for this
BootEnv. Each entry in this list must have the following fields:

All bootenvs should include entries in their Templates list for the pxelinux, elilo, and ipxe bootloaders. If the
OnlyUnknown flag is set, their Paths should expand to an appropriate location to be loaded as the fallback config
file for each bootloader type, otherwise their Paths should expand to an approriate location to be used as a boot
file for the loader based on the IP address of the machine. Good examples for each are the discovery and the
sledgehammer bootenvs.

3.25. Architecture Reference 257

https://github.com/digitalrebar/provision-content/blob/master/content/bootenvs/discovery.yml
https://github.com/digitalrebar/provision-content/blob/master/content/bootenvs/sledgehammer.yml

DigitalRebar Provision Documentation, Release v3.9

Rendering the unknownBootEnv

The BootEnv for the unknownBootEnv preference is rendered whenever dr-provision starts up or the BootEnv for the
preference is changed. It is the only time that templates are rendered without a Machine being referenced, which is
why BootEnvs that can be rendered this way must have the OnlyUnknown flag set.

All of the templates referred to by the Templates section of the BootEnv will be rendered as static files available over
the http and tftp services of the provisioner at the paths indicated by each entry in the Templates section. All referenced
templates can refer to each other by their ID (if referring to a Template object directly), or by the TemplateInfo Name
(if the TemplateInfo object), in addition to all the Template objects by ID.

Rendering a BootEnv for a Machine

The BootEnv for a Machine is rendered whenever dr-provision starts up, whenever a Machine changes to a different
boot environment, or whenever a boot environment referred to by a machine changes.

All of the templates referred to by the Templates section of the BootEnv will be rendered as static files available over
the http and tftp services of the provisioner at the paths indicated by each entry in the Templates section. All referenced
templates can refer to each other by their ID (if referring to a Template object directly), or by the TemplateInfo Name
(if the TemplateInfo object), in addition to all the Template objects by ID.

Workflow

A Workflow defines a series of Stages that a Machine should go through. It replaces the old change-stage/map mech-
anism of orchestrating stage changes, which had the following drawbacks:

• change-stage/map is implemented as a map of currentStage -> nextStage:Action pairs. This make it impossible
for a machine to go through the same stage twice when going through a workflow.

• It was very easy to get the Action that the runner should perform wrong, leading to unexpected reboots or
apparent hangs while walking through the Stages. This has been replaced by making the Runner be smart
enough to know that it must reboot on BootEnv changes to a machine, and by having the runner always wait for
more tasks unless it is in an OS install BootEnv, or the Runner is directed to exit by a Task exit state.

• The Machine Tasks field only contained tasks for the current Stage, making it hard to see at a glance what Tasks
will be executed for the entire workflow.

Workflows have the following fields:

• Name: The unique Name of the workflow.

• Stages: A list of Stages that any machine with this Workflow must go through.

When the Workflow field on a machine is set, the current task list on the machine is replaced with the results of
expanding each Stage in the Workflow using the following items:

• stage:stageName

• bootenv:bootEnvName (if the stage has a non-empty BootEnv field)

• task0. . . taskN (the content of the Stage Tasks field)

Additionally, the Stage and BootEnv fields of the Machine become read-only, as Stage and BootEnv transitions will
occurr as dictated by the machine Task list, and when the Stage changes it does not affect the Task list.

258 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Machine

Machines are what DigitalRebar Provison uses to model a system as it goes through the various stages of the provi-
sioning process. As such, Machine objects have many fields used for different tasks:

• Name: A user-chosen name for the machine. It must be unique, although it can be updated at any point via the
API. It is a good idea for the Name field to be the same as the FQDN of the Machine in DNS, although nothing
enforces that convention.

• Uuid: A randomly-chosen v4 UUID that uniquely identifies the machine. It cannot be changed, and it what
everything else in dr-provison will use to refer to a machine.

• Address: The IPv4 address that third-party systems should expect to be able to use to access the Machine.
dr-provision does not manage this field – specifically, this does not have to be the same as an existing Lease or
Reservation.

• BootEnv: The boot environment the Machine should PXE boot to the next time it reboots. When you change
the BootEnv field on a machine or change the BootEnv that a Machine wants to use, all relavent templates on
the provisioner side are rerendered to reflect the updates. The BootEnv field is read-only if the Workflow field
is set.

• Params: A map containing parameter names and their associated values. Params set directly on a machine
override params from any other source when templates using those params are rendered.

• Profiles: An ordered list of profile names that the template render process will use to look up values for Params.
At render time, Profiles on a machine are looked at in the order that they appear in this list, and the first one that
is found wins (assuming the Param in question is not provided directly on the Machine).

• OS: The operating system that the Machine is running. It is only set by dr-provision when the Machine is moved
into a BootEnv that has -install in the name.

• Secret: A random string used when generating auth tokens for this machine. Changing this field will invalidate
any existing auth tokens for this machine.

• Runnable: A flag that indicates whether the machine agent is allowed to create and execute Jobs against this
Machine.

• Workflow: The name of the Workflow that the Machine is going through. If the Workflow field is not empty,
the Stage and BootEnv fields are read-only.

• Tasks: The list of tasks that the Machine should run or that have run. You can add and remove Tasks from this
list as long as they have not already run, they are not the current running Task, or they are beyond the next Stage
transition present in the Tasks list.

• CurrentTask: The index in Tasks of the current running task. A CurrentTask of -1 indicates that none of the
Tasks in the current Tasks list have run, and a CurrentTask that is equal to the length of the Tasks list indicates
that all of the Tasks have run. The machine agent always creates Jobs based on the CurrentTask. If the Workflow
field is non-empty, setting this field to -1 will instead set this field to the most recent Stage in the Tasks list that
did not initiate a BootEnv change.

• Stage: The current Stage the Machine is in. Changing the Stage of a Machine has the following effects:

– If the new Stage has a new BootEnv, the Machine Runnable flags will be set to False and the BootEnv on
the Machine will change.

– If the Machine Workflow field is empty, the Machine Tasks list will be replaced by the task list from the
new Stage, and CurrentTask will be set back to -1.

Note that the Stage field is read-only when the Workflow field is non-empty.

3.25. Architecture Reference 259

DigitalRebar Provision Documentation, Release v3.9

Job

Jobs are what dr-provision uses to track the state of running individual Tasks on a Machine. There can be at most one
current Job for a Machine at any given time. Job objects have the following fields:

• Uuid: The randomly generated UUID of the Job.

• Previous: The UUID of the Job that ran prior to this one. The Job history of a Machine can be traced by
following the Previous UUIDs until you get to the all-zeros UUID.

• Machine: The UUID of the Machine that the job was created for.

• Task: The name of the Task that the job was created for.

• Workflow: The name of the Workflow that the job was created in

• Stage: The name of the Stage that the job was created in.

• BootEnv: The name of the BootEnv that the job was created in.

• State: The state of the Job. State must be one of the following:

– created: this is the state that all freshly-created jobs start at.

– running: Jobs are automatically transitioned to this state by the machine agent when it starts executing
this job’s Actions.

– failed: Jobs are transitioned to this state when they fail for any reason.

– finished: Jobs are transitioned to this state when all their Actions have completed successfully.

– incomplete: Jobs are transitioned to this state when an Action signals that the job must stop and be
restarted later as part of its action.

• ExitState: The final disposition of the Job. Can be one of the following:

– reboot: Indicates that the job stopped executing due to the machine needing to be rebooted.

– poweroff: Indicates that the job stopped executing because the machine needs to be powered off.

– stop: Indicates that the job stopped because an action indicated that it should stop executing.

– complete: Indicates that the job finished.

• StartTime: The time the job entered the running state.

• EndTime: The time the Job entered the finished or failed state.

• Archived: Whether it is possible to retrieve the log the Job generated while running.

• Current: Whether this job is the most recent for a machine or not.

• CurrentIndex: The value of the Machine CurrentTask field when this Job was created.

• NextIndex: CurrentIndex++

Job Actions

Once a Job has been created and transitioned to the running state, the machine agent will request that the Templates in
the Task for the job be rendered for the Machine and placed into JobActions. JobActions have the following fields:

• Name: The name of the JobAction. It is present for informational and troubleshooting purposes, and the name
does not effect how the JobAction is handled.

• Content: The result of rendering a specific Template from a Task against a Machine.

260 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• Path: If present, the Content will be written to the location indicated by this field, replacing any previous file at
that location. If Path is not present or empty, then the Contents will be treated as a shell script and be executed.

3.25.6 DHCP Models

These models manage how the DHCP server built into dr-provision. They determines what IP addresses it can hand
out to which systems, what values to set for DHCP options, and how to handle DHCP requests at various points in the
lifecycle of any given DHCP lease.

Interface

Interface objects are provided by dr-provision as an easy means for the UX and the CLI to enumerate the network
interfaces on the dr-provision server and provide some basic information for building local subnets. Interface objects
have the following fields:

• Name: the name of the interface that the OS assigned.

• Index: The index of the interface. This is an OS specific index, and does not mena anything to dr-provision
directly.

• Addresses: A list of CIDR addresses that are bound to the interface.

• ActiveAddress: The CIDR address that you should use as the Subnet address if you want to create a Subnet
specifically for this interface.

DHCP Option

The DHCP Option object holds templated values for DHCP options that should be returned to clients in response to
requests. It has the following fields:

• Code: A byte that holds the numeric DHCP option code. See RFC 2132 and friends for what these codes can
be.

• Value: A string that will be template-expanded to form a valid value to return as the DHCP option. Template
expansion happens in the context of the source options.

Subnet

The Subnet Object defines the configuration of a single subnet for the DHCP server to process. Multiple subnets are
allowed. The Subnet can represent a local subnet attached to a local interface (Broadcast Subnet) to the Digital Rebar
Provision server or a subnet that is being forwarded or relayed (Relayed Subnet) to the Digital Rebar Provision server.
Subnet objects have the following fields:

• Name: The unique name of this Subnet.

• Enabled: A boolean value that indicates whether this subnet is available to hand out new Leases, and whether to
allow renewals of any Leases in its range. Setting this to true allows the subnet to operate normally, and setting
it to false will cause dr-provision to refuse to hand out new Leases for addresses in its range and will cause lease
renewals for already existing Leases in its address range to fail.

• Strategy: A string that determines how the subnet will uniquely identify part of the DHCP request for address
assignment.

• Proxy: A boolean value that indicates that dr-provision should respond to requests for addresses in this address
range as if it was a proxy DHCP server (as defined in section 2 of the PXE specification).

3.25. Architecture Reference 261

https://tools.ietf.org/html/rfc2132
http://www.pix.net/software/pxeboot/archive/pxespec.pdf

DigitalRebar Provision Documentation, Release v3.9

• Unmanaged: A boolean value that indicates whether dr-provision will send any DHCP options required for a
system to boot over the network. If this bit is set, dr-provision will never send any DHCP options that may be
needed to network boot a system.

• Subnet: The network address in CIDR form of this Subnet. Subnets may not have overlapping address ranges.

• ActiveStart: This is the start of the IP address range that this subnet will hand out. It must be within the address
range the Subnet is responsible for, and it must be less than ActiveEnd.

• ActiveEnd: This is the end of the IP address range that this subnet will hand out. It must be within the address
range the Subnet is responsible for, and it must be greater than ActiveStart.

• ActiveLeaseTime: This is the time (in seconds) that a lease created in this subnet will be valid for.

• ReservedLeaseTime: This is the time (in seconds) that a lease created by a Reservation in this subnet will be
valid for. It overrides ActiveLeaseTime.

• OnlyReservations: If set to true, then Leases in this subnet range can only be created if there is a reservation
created for the requested address.

• Options: A list of DhcpOption objects that should be returned in any replies to dhcp requests.

Reservation

Reservations are what the dr-provision DHCP service uses to ensure that an IP address is always issued to the same
device. Reservations have the following fields:

• Strategy: The strategy that the DHCP service should use to determine whether this reservations should be used.

• Token: The string that the Strategy uniquely identifies a network interface with.

• Address: The IP address that is being reserved.

• Options: The DHCP options that should be returned when creating or renewing a Lease based on this Reserva-
tion.

Lease

Leases track what IP addresses the system has handed out to what Strategy/Token pairs. Leases contain the following
fields:

• Strategy: The strategy that the DHCP service used to allocate the IP address this lease handed out.

• Token: The string that the Strategy uniquely identifies a network interface with.

• Address: The IP address that was handed out.

• State: The state the lease is in. State can be one of the follosing values:

– PROBE: The IP address is being probed via ICMP Echo Requests to make sure it is not in use by another
system.

– OFFER: The IP address was offered to a system in response to a DHCP discover.

– ACK: The IP address was offered in response to a DHCP Request.

• ExpireTime: The time at which the Lease expires.

262 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.25.7 Sledgehammer Overview

Sledgehammer is our system discovery/inventory/configuration in-memory OS image. It is based on the latest CentOS
7.x live CD, with any unneeded content stripped out, tools we usually use preinstalled, and rebacled to me more space
and network bandwidth efficient. https://github.com/digitalrebar/sledgehammer is the Git repo that contains the code
needed to build Sledgehammer.

Sledgehammer Build

RackN provides pre-built Sledgehammer images that should function properly on the vast majority of x86_64 based
servers. However, if you need to include support for custom network hardware, you can rebuild Sledgehammer to
have it include the extra drivers that are needed.

This process should mostly consist of modifying sledgehammer.ks to have it pull in any extra drivers or utilities that
should be present, and then rebuilding Sledgehammer using build_sledgehammer.sh.

Sledgehammer Design

Sledgehammer is delivered in three parts:

• vmlinuz0: This is the initial kernel that the system PXE boots to when booting to Sledgehammer. This file is
usually around 5 - 6 megs in size.

• stage1.img: This is the first-stage initramfs image. It is responsible for loading any required network drivers and
then loading the second-stage initramfs over HTTP. This is a standard Linux initramfs, and is usually around 15
megs in size, mainly due to including drivers and firmware for large amounts of network hardware.

• stage2.img: This is the second-stage initramfs. It contains the final running Sledgehammer image as a highly
compressed squashfs image. This image is usually between 400 and 500 megs in size.

The two separate stages allows us to minimize the amount of data that gets loaded over TFTP and over the relatively
inefficient network stack that the PXE layer in the BIOS and NIC firmware uses.

How Sledgehammer Boots

1. The system PXE boots from a dr-provision server, either into the discovery bootenv, the sledgehammer bootenv,
or some other boot environment that boots into Slegehammer. This causes the system to load vmlinuz0 and
stage1.img and boot to vmlinuz0.

2. stage1.img loads network drivers for all available network adaptors present in the system, finds the one that the
system PXE booted from, uses DHCP to get the IP address to use, then fetches the second-stage image from the
location specified by the provisioner.web kernel parameter.

3. stage1.img then mounts the squashfs that stage2.img contains, mounts an in-memory overlayfs on top of that
image to allow normal read-write operations, mounts a few other required filesystems, and then pivots over to
systemd on the stage2 image to allow for a normal Centos 7 bootup.

4. Once the network has been configured, The Sledgehammer service starts up. It verifies that the system has an IP
address on the expected network interface, then fetches the machine-agnostic startup script from the dr-provision
static file server, verifies that it is sane, and executes that script.

5. The machine-agnostic startup script (which must be provided by the discovery bootenv and any other bootenv
that boots unknown machines into Sledgehammer) examines the options that the kernel was booted with, sets
the system hostname, fetches a copy of drpcli from the provisioner, and determines whether it needs to create a
machine in dr-provision for this system based on whether a machine UUID was passed as a kernel parameter.

3.25. Architecture Reference 263

https://github.com/digitalrebar/sledgehammer

DigitalRebar Provision Documentation, Release v3.9

If it was not, a new machine is created, and has its initial Stage and BootEnv set to the default Stage and the
default BootEnv. The machine-specific startup script is then downloaded, validated, and executed.

6. The machine-specific startup script (which must be provided the sledgehammer bootenv and any bootenv that
boots known machines to Sledgehammer) then starts the machine agent, which starts executing tasks on the
machine.

3.25.8 Workflow

dr-provision implements a basic Workflow system to help automate the various tasks needed to provision and decom-
mission systems. The workflow system is the results of several other components in dr-provision interacting. The rest
of this section goes over those parts in more detail.

The Bits and Bobs

Tasks

The basic unit of work that dr-provision sequences to drive Machines through a workflow is a Task. Individual Tasks
are executed against Machines by creating a Job for them.

Tasks contain individual Templates that are expanded for a Machine whenever a Job is created. Each of these individual
Templates can expand to either a script to be executed (if the Path parameter is empty or not present), or a file to be
placed on the filesystem at the location indicated by template-expanding the Path parameter.(if the Path parameter is
not empty).

Jobs

A Job is used to track the execution history of Tasks against a specific Machine. A Job is created every time a Task
is executed against a machine – Jobs keep track of their state of execution. The history of what has been executed
(including all log output from scripts) is stored as a chain of Jobs, and the exit status of the Job determines what a
machine agent will do next.

Stages

A Stage is used to provide a list of Tasks that should be run on a Machine along with the BootEnv the tasks should be
run in.

Machine Agent

The Machine Agent is responsible for creating Jobs, writing out or executing any JobActions, streaming job Logs back
to dr-provision for archival purposes, and updating the Job state based on the exit state of any Actions. The Machine
Agent is also responsible for rebooting, powering off, and changing to a different Stage as indicated by the Job exit
status or the change stage map. Unless directed to exit, the Machine Agent watches the event stream for the Machine
it is running on and will execute new tasks as they come to be available.

264 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Change Stage Map (OLD AND BUSTED)

The change-stage/map parameter defines what stage to change to when you finish all the tasks in the current stage. The
change stage map is a map whose keys correspond to the stage the machine is currently in and whose values indicate
the next stage to transition to and what to have the runner do on the stage transition.

The change-stage/map mechanism has been replaced by the Workflow mechanism, but will be maintained for the
forseeable future. You are encouraged to migrate to using Workflows.

Workflows (NEW HOTNESS)

A Workflow is used to provide a list of Stages that a Machine should run through to get to a desired end state. When a
Workflow is added to a Machine, it renders the BootEnv and Stage for the Machine read-only, replaces the task list on
the Machine with one that will step through all the Stages, BootEnvs, and Tasks needed to drive the machine through
the Workflow.

How They Work Together

Machine Agent (client side)

The Machine Agent runs on the Client and is responsible for executing tasks and rebooting the Machine as needed. It
is structured as a finite state machine for increased reliability and auditability. The Machine Agent always starts in the
AGENT_INIT state.

AGENT_INIT Initializes the Agent with a fresh copy of the Machine data, marks the current Job for the machine
as failed if it is created or running,and creates an event stream that recieves events for that Machine from
dr-provision. If an error was recorded, the Agent prints it to stderr and then clears it out.

If an error occurrs during this, the agent will sleep for a bit and transition back to AGENT_INIT, otherwise it
will transition to AGENT_WAIT_FOR_RUNNABLE.

AGENT_WAIT_FOR_RUNNABLE Waits for the Machine to be both Available and Runnable. Once it is, the
Agent transitions to AGENT_REBOOT if the machine changed BootEnv, AGENT_EXIT if the Agent recieved
a termination signal, AGENT_INIT if there was an error waiting for the state change, and AGENT_RUN_TASK
otherwise.

AGENT_RUN_TASK Tries to create a new Job to run on the machine.

If there was an error creating the Job, transitions back to AGENT_INIT.

If there was no job created, the Agent transitions to AGENT_CHANGE_STATE if the Machine does not have a
Workflow, and AGENT_WAIT_FOR_CHANGE_STAGE if it does.

If a Job was created, the Agent attempts to execute all the steps in the Task for which the Job was created, and
updates the Job depending on the exit status of the steps.

If there was an error executing the Job, the agent will transition back to AGENT_INIT.

If the Job signalled that a reboot is needed, the Agent transitions to AGENT_REBOOT.

If the Job signalled that the system should be powered off, the Agent transitions to AGENT_POWEROFF.

If the Job signalled that the Agent should stop processing Jobs, the Agent transitions to AGENT_EXIT.

Otherwise, the Agent transitions to AGENT_WAIT_FOR_RUNNABLE.

AGENT_WAIT_FOR_STAGE_CHANGE Waits for the Machine to be Available, and for any of the following fields
on the Machine to change:

3.25. Architecture Reference 265

DigitalRebar Provision Documentation, Release v3.9

• CurrentTask

• Tasks

• Runnable

• BootEnv

• Stage

Once those conditions are met, follows the same rules as AGENT_WAIT_FOR_RUNNABLE.

AGENT_CHANGE_STAGE Checks the change-stage/map to determine what (and how) to transition to the next
Stage when AGENT_RUN_TASK does not get a Job to run from dr-provision.

The Agent first tries to retrieve the change-stage/map Param for the Machine from dr-provision. If it fails due to
connection issues, the Agent will transition to AGENT_INIT. If there is no change-stage map, the Agent uses
an empty one.

If there is a key in the change-stage/map for the current Stage, the Agent saves the corresponding value as val
for further processing.

If there is no next entry for the current Stage in the change-stage/map and the Machine is in a
BootEnv that ends in -install, the Agent assumes that val is “local”, otherwise the Agent transitions to
AGENT_WAIT_FOR_STAGE_CHANGE.

The Agent splits val into nextStage and targetState on the first ‘:’ character in val.

If targetState is empty, it is set according to the following rules:

• If the BootEnv for nextStage is not empty or different from the current BootEnv, targetState is set to
“Reboot”

• Otherwise targetState is set to “Success”

The Agent changes the machine Stage to the value indicated by nextStage. If an error occurs during that process,
the Agent transitions to AGENT_INIT.

If targetState is “Reboot”, the agent transitions to AGENT_REBOOT. if targetState is “Stop”, the agent transi-
tions to AGENT_EXIT. If targetState is “Shutdown”, the agent transitions to AGENT_POWEROFF. If target-
State is anything else, the agent transitions to AGENT_WAIT_FOR_RUNNABLE.

AGENT_EXIT Exits the Agent.

AGENT_REBOOT Reboots the system.

AGENT_POWEROFF Cleanly shuts the system down.

dr-provision (server side)

In dr-provision, the machine Agent relies on these API endpoints to perform its work:

• GET from /api/v3/machines/<machine-uuid> to get a fresh copy of the Machine during AGENT_INIT.

• PATCH to /api/v3/machines/<machine-uuid> to update the machine Stage and BootEnv during the
AGENT_CHANGE_STAGE.

• GET from /api/v3/machines/<machine-uuid>/params/change-stage/map to fetch the change-stage/map for the
system during AGENT_CHANGE_STAGE.

• POST to /api/v3/jobs to retrieve the next Job to run during AGENT_RUN_TASK.

• PATCH to /api/v3/jobs/<job-uuid> to update Job status during AGENT_RUN_TASK and during AGENT_INIT.

• PUT to /api/v3/jobs/<job-uuid>/log to update the job log during AGENT_RUN_TASK.

266 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• UPGRADE to /api/v3/ws to create the EventStream websocket that recieves Events for the Machine from dr-
provision. Each Event contains a copy of the Machine state at the point in time that the event was created.

Retrieving the next Job

Out of all those endpoints, the one that does the most work is the POST /api/v3/jobs endpoint, which is responsible for
figuring out what (if any) is the next Job that should be provided to the Machine Agent. It encapsulates the following
logic:

1. dr-provision recieves an incoming POST on /api/v3/jobs that contains a Job with just the Machine filled out.

If the Machine does not exist, the endpoint returns an Unprocessable Entity HTTP status code.

If the Machine is not Runnable and Available, the endpoint returns a Conflict status code.

If the Machine has no more runnable Tasks (as indicated by CurrentTask being greater than or equal to the length
of the Machine Tasks list), the endpoint returns a No Content status code, indicating to the Machine Agent that
there are no more tasks to run.

2. dr-provision retrieves the CurrentJob for the Machine. If the Machine does not have a CurrentJob, we create a
fake one in the Failed state and use that as CurrentJob for the rest of this process.

3. dr-provision tentatively sets nextTask to CurrentTask + 1.

4. If the CurrentTask is set to -1 or points to a stage: or bootenv: entry in the machine Task list, we mark the
CurrentTask as failed if it is not already failed or created.

5. If CurrentTask is set to -1, we update it to 0 and set nextTask to 0.

6. If CurrentTask points to a stage: or a bootenv: entry in the Tasks list, and the Machine is not already in the
appropriate Stage or BootEnv, we skip the next step. Otherwise we skip past these entries in the Tasks list until
we get to an entry that refers to a Task and update CurrentTask and nextTask to point to that entry.

7. Depending on the State of the CurrentJob, we take one of the following actions:

• “incomplete”: This indicates that CurrentJob did not fail, but it also did not finish. dr-provision returns
CurrentJob unchanged, along with the Accepted status code.

• “finished”: This indicates that the CurrentJob finished without error, and dr-provision should create a new
Job for the next Task in the Tasks list. dr-provision sets CurrentTask to nextTask.

• “failed”: This indicates that the CurrentJob failed. Since updating a Job to the failed state automatically
makes the Machine not Runnable, something else has intervened to make the machine Runnable again.
dr-provision will create a new Job for the current Task in the Tasks list.

8. dr-provision creates a new Job for the Task in the Tasks list pointed to by CurrentTask. If CurrentTask points
to a stage: or a bootenv: task entry, the new Job is created in the finished state, otherwise it is created in the
created state. The Machine CurrentJob is updated with the UUID of the new Job. The new Job and the Machine
are saved.

9. If the new Job is in the created state, it is returned along with Created HTTP status code, otherwise nothing is
returned along with the NoContent status code.

Changing the Workflow on a Machine

Changing a Workflow on the Machine has the following effects:

• The Stages in the Workflow are expanded to create a new Tasks list. Each Stage gets expanded into a List as
follows:

3.25. Architecture Reference 267

DigitalRebar Provision Documentation, Release v3.9

– stage:<stageName>

– bootenv:<bootEnvName> if the Stage specifies a non-empty BootEnv.

– The Tasks list in the Stage

The Tasks list on the Machine are replaced with the results of the above expansion.

• The CurrentTask index is set directly to -1.

• The Stage and BootEnv fields become read-only from the API. Instead, they will change in accordance with any
stage: and bootenv: elements in the Task list resulting from expanding the Stages in the Workflow. Any Stage
changes that happen during processing a Workflow do not affect the Tasks list or the CurrentTask index.

Removing a Workflow from a Machine

To remove a workflow from a Machine, set the Workflow field to the empty string. The Stage field on the Machine is
set to none, the Tasks list is emptied, and the CurrentTask index is set back to -1.

Changing the Stage on a Machine

Changing a Stage on a Machine has the folowing effects when done via the API and the Machine does not have a
Workflow:

• The Tasks list on the Machine is replaced by the Tasks list on the Stage.

• If the BootEnv field on the Stage is not empty, it replaces the BootEnv on the Machine.

• The CurrentTask index is set to -1

• If the Machine has a different BootEnv now, it is marked as not Runnable.

Resetting the CurrentTask index to -1

If the Machine does not have a Workflow, the CurrentTask index is simply set to -1. Otherwise. it is set to the most
recent entry that would not occur in a different BootEnv from the machine’s current BootEnv.

3.25.9 Multi-Machine Cluster Pattern

A clear pattern has emerged for Digital Rebar Provision to build application clusters. This pattern allows machines to
coordinate activities using atomic storage operations against the Digital Rebar Provision API. Having a safe, atomic
shared storage area allows scripts on machines working in parallel to share data and synchronize activities.

The critcal elements of this pattern are using 1) a shared cluster profile on all the machines in the cluster and 2) using
JSON PATCH with a reference model to ensure atomic updates.

RackN Task Library content has a set of Cluster Stages that implement this behavior in a generic way.

Cluster Profile

The pattern using a shared Profile that has been assigned to all Machines in the cluster. The profile is self-referential:
it must contain the name of the profile in a parameter so that machine action will be aware of the shared profile.

For example, if we are using the Profile example to create a cluster, then we need to include the Param
cluster-profile: example in the Profile. While this may appear redundant, it is essential for the machines

268 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

to find the profile when they are operating against it. Typically, all cluster scripts start with a “does my cluster profile
exist” stanza:

{{if .ParamExists "cluster-profile" -}}
CLUSTER_PROFILE={{.Param "cluster-profile"}}
PROFILE_TOKEN={{.GenerateProfileToken (.Param "cluster-profile") 7200}}
{{else -}}
echo "Missing cluster-profile on the machine!"
exit 1
{{end -}}

The Digital Rebar API has special behaviors allow machines to modify these templates including an extention for
Golang template rendering (see Rendering Templates) to include .GenerateProfileToken. This special token
must be used when updating the shared template.

Atomic Updates with JSON PATCH

The Digital Rebar CLI and UX use JSON PATCH (https://tools.ietf.org/html/rfc6902) instead of PUT extensively.
PATCH allows atomic field-level updates by including tests in the update. This means that simulataneous upates do
not create “last in” race conditions. Instead, the update will fail in a predictable way that can be used in scripts.

The DRPCLI facilitates use of PATCH for atomic operations by allowing scripts to pass in a reference (aka pre-
modified) object. If the -r reference object does not match then the update will be rejected.

This allows machines take actions that require synchronization among the cluster such as electing leaders or waiting
on operations to finish on other machines. For example, it is typical for clustered machines to poll a param waiting for
it to be set by a cluster leader.

The following example shows code that runs on all maachines but only succeeds for the cluster leader. It assumes the
Param my/leader is set to default to “none”.

{{template "setup.tmpl" .}}
cl=$(get_param "my/leader")
while [[$cl = "none"]]; do
drpcli -r "$cl" -T "$PROFILE_TOKEN" profiles set "cluster-name" param "my/

→˓leader" to "$RS_UUID" 2>/dev/null >/dev/null && break
sleep is is a hack but it allows for backoffs
sleep 1
get the cluster info
cl=$(get_param "my/leader")

done

Collecting Data in Profile

As automation is run on the cluster profile, it is common to update Params in the cluster profile. This is a good place
to make information available for operators or other machines in the script instead of storing on the specific machine
elected leader.

Showing Progress and Leaders

To show cluster install progress, common practice is to set the Machine.Meta icon and color. This provides a fast
reference back to operators about the state of the cluster without having to open the profile.

:: drpcli machines update $RS_UUID “{“Meta”:{“color”:”purple”, “icon”: “anchor”}}” | jq .Meta

Scripts are often updated so that the elected leader(s) have a distinct icon or color from the rest of the cluster.

3.25. Architecture Reference 269

https://tools.ietf.org/html/rfc6902

DigitalRebar Provision Documentation, Release v3.9

3.26 Integrations

Digital Rebar Provision provides many growing integration points.

3.27 Terraform Provider for Digital Rebar Provision

NOTICE: Moved to Terraform Provider for Digital Rebar Provision. Please update references.

3.28 Moved: KRIB (Kubernetes Rebar Integrated Bootstrapping)

NOTICE: Moved to KRIB (Kubernetes Rebar Integrated Bootstrapping). Please update references.

3.29 Content Packages

Digital Rebar Provision provides many content packages.

3.29.1 ansible

The following documentation is for ansible content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

params

The content package provides the following params.

ansible/groups

Creates Ansible Host Groups when using the dynamic inventory generator for Ansible.

ansible/groups-members

Inventory of Rebar Machines into Ansible Host Groups when using the dynamic inventory generator for Ansible.
Often generated by automation or the UX.

ansible/groupvars

Maps Rebar Profiles to Ansible Host Groups when using the dynamic inventory generator for Ansible.

ansible/hostvars

Sets additional variables in the Ansible dynamic inventory generator for Ansible.

270 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

ansible/parent-groups

Creates Ansible Nested Host Groups when using the dynamic inventory generator for Ansible. There is no matching
concept in Digital Rebar.

3.29.2 bios

The following documentation is for bios content package at version Unspecified.

Unspecified

3.29.3 burnin

The following documentation is for burnin content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

3.29.4 certs

The following documentation is for certs content package at version Unspecified.

Unspecified

params

The content package provides the following params.

certs/root-pw

This is used to restrict access to the signing ability of the root cert. Stores values for certificates in certs-data profile

certs/csr

This certificate signing request with the authkey of the root can be used to generate signed certificate.

NOTE: Stores values for certificates in certs-data profile

certs/data

This is the data store for the certs plugin. Stores values for certificates in certs-data profile

certs/profile

This allows for defining the internal profile to use for signing the cert. Values are currently: default, client, server,
peer.

Stores values for certificates in certs-data profile

3.29. Content Packages 271

DigitalRebar Provision Documentation, Release v3.9

certs/root

This is used to set or define the root certificate to manipulate or create. Stores values for certificates in certs-data
profile

plugins

The content package provides the following plugins.

certs

Extends machines with CA management verbs including: makeroot, deleteroot, signcert, getca, list & show.

For production deployments, should be combined with encrypted parameters feature.

Stores values for certificates in certs-data profile

3.29.5 classify

The following documentation is for classify content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

params

The content package provides the following params.

classify/disable-classifier

In some use cases, you may need to disable the classifier system from running when machines are being provisioned.
This parameter enables a fast disable, without having to remove the classifier itself.

Apply this Param with the value “true” to disable the classifier, on any machines or profiles applied to machines, to
effect disabling.

For example, you could apply this Param to “global” profile to disable it globally. NOTE that normal precedence with
Paramaters applies, so if a Machine has the Param applied also, the Machines Param value overrides the global value.

classify/classification-data

This object defines a series of tests to determine the classification of a Machine followed by a list of actions to apply
to that Machine if the test is successful.

The order of precedence is important! A Machine will be evaluated in the order you specify in the tests below.
Generally speaking, you should order the MOST SPECIFIC tests first, followed by general tests next. The very last
test in the example below would be a default in the event no previous tests matched.

If none of the tests match, then the Machine will not be modified.

The object should look like this.

272 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• test: “has_mac 00:11:22:33:44:55” actions: - “add_profile profile_name_1” - “change_workflow work-
flow_name_1”

• test: “in_subnet 192.168.0.0/24” actions: - “set_parameter param_name value” - “add_profile profile_name_2”
- “change_workflow workflow_name_2”

• test: “always” actions: - “change_workflow wait-for-input”

stages

The content package provides the following stages.

classify

-| Moves machines into new workflows based upon classification.

tasks

The content package provides the following tasks.

classify

-| This will change the machines workflow and add profiles.

3.29.6 dell-support

The following documentation is for dell-support content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

params

The content package provides the following params.

dell-dsu-base-url

The Dell System Update repositories contain BIOS and firmware updates for all supported Dell servers (in the
os_independent repo) as well as OpenManage Server Administrator (in the os_dependent repo).

You can find more information on DSU and the update process we take advantage of at https://linux.dell.com/repo/
hardware/dsu/

dell-dsu-block-release

Dell releases updates to its firmware on a block schedule (usually once a month) and the tooling assumes that all
firmware in a block should be installed together. You can use this param to pin firmware and tools at a specific release,
or you can leave it unspecified to allow tools and updates to be installed from the latest block release.

Block releases are named according to the following format:

3.29. Content Packages 273

https://linux.dell.com/repo/hardware/dsu/
https://linux.dell.com/repo/hardware/dsu/

DigitalRebar Provision Documentation, Release v3.9

YY.MM.NN

YY is the last two digits of the year MM is the month NN is the nth release in a month, starting at 00

3.29.7 dev-library

The following documentation is for dev-library content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

params

The content package provides the following params.

dev/wait-time

Used by the wait-time stage for development use. This can be very helpful to troubleshoot timing issues in provision-
ing. It should NOT be used in production!

stages

The content package provides the following stages.

wait-time

Uses the dev/wait-time param to determine delay (default=5). This can be very helpful to troubleshoot timing issues
in provisioning. It should NOT be used in production!

tasks

The content package provides the following tasks.

workflow-reset

Handy for debugging, this task will clear the current Workflow value form a machine. This allows machines to reset
their workflow so THE SAME workflow can be reapplied. Typically, this is a Workflow builder use case only.

always-fails

Handy for debugging, this task will always fail to allow for testing of fault conditions

wait-time

Handy for dev/test, this task will sleep for a programmable amount of time

274 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.29.8 drp-community-content

The following documentation is for drp-community-content content package at version v1.10.1-tip-53-
4f6b983b0f46fd5ae72c030eae353c14397b78b7.

Unspecified

bootenvs

The content package provides the following bootenvs.

ubuntu-16.04-install

NOTE: Default Ubuntu ISOs will attempt to check internet repositories, this can cause problems during provisioning
if your environment does not have outbound access. Workaround this by defining Options 3 (Gateway) and 6 (DNS)
for your machines’ Subnet.

ubuntu-18.04-install

NOTE: Default Ubuntu ISOs will attempt to check internet repositories, this can cause problems during provisioning
if your environment does not have outbound access. Workaround this by defining Options 3 (Gateway) and 6 (DNS)
for your machines’ Subnet.

params

The content package provides the following params.

provisioner-default-password-hash

This specifies the password hash to use for the install process. This is the root password on CentOS-based installs and
the default user on the Debian-based installs.

To generate a hash, use the following command:

echo ‘import crypt,getpass; print crypt.crypt(getpass.getpass(), “$6$16_CHARACTER_SALT_HERE”)’
| python -

Set your 16 character salt in the correct place. This generate sha512 hash which should work on both operating system
types.

select-kickseed

The name of a custom kickstart or preseed template to use. If not defined, the default for each platform will be used,
as follows

‘net-seed.tmpl’ for Debian/Ubuntu platforms ‘centos-7.ks.tmpl’ for CentOS 7 platforms

3.29. Content Packages 275

DigitalRebar Provision Documentation, Release v3.9

erase-hard-disk-set

This string defines the set of disks to erase. Space separated dev names.

e.g. “/dev/sda /dev/sdb”

local-security-repo

The string value is either a URL for Ubuntu systems or a host/path string for Debian systems. This will override the
default security repos if specified.

kexec-ok

Allows the machine agent to call kexec to switch boot environments as long as the machine is currently running Linux,
and the new environment has a template named ‘kexec’ that contains the kernel, initrds, and command line to use.

proxy-servers

This is an array of URLs where each string is an HTTP proxy server to references.

The URLs can be names or IPs with ports and schemas.

provisioner-default-uid

Used in the Debian/Ubuntu installers to specify the uid of the default user.

The value is a string for of the integer value.

provisioner-default-user

Used in the Debian/Ubuntu installers to specify the username of the default user.

rs-debug-enable

Boolean value that enables Bash Script debugging - essentially by turning on ‘set -x’ globally. Scripts can (and
probably do) enable/disable this flags in various sections. In those cases we are not overriding those values.

Additionally, the shell variable ‘RS_DEBUG_ENABLE’ is set to 1 (on) for Script authors to use. This allows a
construct like

(($RS_DEBUG_ENABLE)) && run_debug_function

package-repositories

This provides a list of repositories to install packages from. It includes dedicated OS installation repositories and more
general ones.

An example:

276 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• tag: “centos-7-install” # Every repository needs a unique tag. # A repository can be used by multiple
operating systems. # The usual example of this is the EPEL repository, which # can be used by all of the
RHEL variants of a given generation. os:

– “centos-7”

If installSource is true, then the URL points directly # to the location we should use for all OS install
purposes # save for fetching kernel/initrd pairs from (for now, we will # still assume that they will live on
the DRP server). # When installSounrce is true, the os field must contain a single # entry that is an exact
match for the bootenv’s OS.Name field. installSource: true # For redhat-ish distros when installSource is
true, # this URL must contain distro, component, and arch components, # and as such they do not need to
be further specified. url: “http://mirrors.kernel.org/centos/7/os/x86_64”

• tag: “centos-7-everything” # Since installSource is not true here, # we can define several package sources
at once by # providing a distribution and a components section, # and having the URL point at the top-level
directory # where everything is housed. # DRP knows how to expand repo definitions for CentOS and #
ScientificLinux provided that they follow the standard # mirror directory layout for each distro. os:

– centos-7

url: “http://mirrors.kernel.org/centos” distribution: “7” components:

– atomic

– centosplus

– cloud

– configmanagement

– cr

– dotnet

– extras

– fasttrack

– opstools

– os

– paas

– rt

– sclo

– storage

– updates

• tag: “debian-9-install” os:

– “debian-9”

installSource: true # Debian URLs always follow the same rules, no matter # whether the OS install
flag is set. As such, # you must always also specify the distribution and # at least the main component,
although you can also # specify other components. url: “http://mirrors.kernel.org/debian” distribution:
stretch components:

– main

– contrib

– non-free

3.29. Content Packages 277

http://mirrors.kernel.org/centos/7/os/x86_64
http://mirrors.kernel.org/centos
http://mirrors.kernel.org/debian

DigitalRebar Provision Documentation, Release v3.9

• tag: “debian-9-backports” os:

– “debian-9”

url: “http://mirrors.kernel.org/debian” distribution: stretch-updates components:

– main

– contrib

– non-free

• tag: “debian-9-security” os:

– “debian-9”

url: “http://security.debian.org/debian-security/” securitySource: true distribution: stretch/updates compo-
nents:

– contrib

– main

– non-free

kernel-console

This string defines the console tty string for the kernel boot string.

e.g. console=ttyS1,115200

local-repo

DEPRECATED: Do not use.

Boolean value that tells the install steps to only use the local exploded iso on the DRP server as the only installation
repo.

ntp-servers

This is an array of strings where each string an IP address or Name of an NTP server.

provisioner-default-fullname

Used in the Debian/Ubuntu installers to specify the full name of the default user.

zero-hard-disks-for-os-install

By default, the erase disks for os install task tries to only erase any metadata on the disks that may confuse a next OS
install, along with (optionally) attempting to discard all sectors on devices that support discard. If this is set to true,
the task will also zero all sectors on any non-SSD drives.

278 Chapter 3. Table of Contents

http://mirrors.kernel.org/debian
http://security.debian.org/debian-security/

DigitalRebar Provision Documentation, Release v3.9

custom-ipxe

You can use this whenever you need a custom iPXE boot action, such as booting from a remote URL, booting to an
iPXE prompt for troubleshooting, or simply playing around with different ipxe tools. This param defaults to launching
an iPXE shell.

gohai-inventory

This provides an untyped dictionary of values from Gohai.

This is fairly raw data. Other parameters are distilled from this.

part-scheme

This string contains the name of a template that holds the Debian installer partitioning commands for use during
installation.

The string will be expanded into this template name:

part-seed-<string>.tmpl

e.g. softraid

extra-packages

This is an array of strings where each string is an additional package to install during the initial OS install.

last-boot-macaddr

Keeps track of the MAC address (in PXELINUX format) that the system most recently PXE booted from.

machine-plugin

The plugin that should manage this machine.

operating-system-disk

Defines the disk the installer should use for OS installation. The usage of this parameter inside a template should add
a /dev/ if required. The value should just be the disk simple name.

e.g. sda

access-keys

This map is used to put ssh public keys in place for the root user.

The key of the map is a arbritary name and the value is the ssh public key for that name.

3.29. Content Packages 279

DigitalRebar Provision Documentation, Release v3.9

gohai/skip

Allows machines to stop using the discover-nogohai stage. When true, the gohai part of the discovery stage will be
skipped

dns-domain

This is used currently in the Ubuntu/Debian preseed file to specify the DNS Domain Name of the host.

This may be in flux.

access-ssh-root-mode

This string defines the login policy for the root user.

Possible values are: without-password - default yes no forced-commands-only

change-stage/map

This map is used to select the next stage based upon the current stage.

The form is current stage as the key with the value being a string with a colon seperated next stage and return action
(success or reboot).

stages

The content package provides the following stages.

discover-no-gohai

DEPRECATED! Use the discover Stage with gohai/skip Param instead.

Pre gohai/skip Parameter, used to run discovery without gohai action.

complete-nowait

This is deprectated and leaves the runner running, but will exit install bootenvs correctly. The use of this was to exit
install workflows. This will continue to work for that, but should be replaced by finish-install.

finish-install

Originally, this stage was used with the STOP runner action in the change-stage/map and this will continue to work.

Going forward, the STOP action is not required. The changing of bootenv from something-install to local will cause
the runner to exit.

The runner will also continue to run regardless of the RunnerWait flag.

280 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

tasks

The content package provides the following tasks.

always-pxe-in-uefi-first

Certian Linux distributions reorder the UEFI boot options to always locally boot from their install first, which is not
generally what dr-provision wants, as it makes regaining control of the machine by PXE booting it to Sledgehammer
harder. This task rewrites the UEFI boot order to have whatever device we booted from be the first.

gohai

Sets Param: gohai-inventory

Collect inventory from machines using drpcli gohai command and store the result in the gohai-inventory Param on the
machine.

If you want to disable this behavior, set the gohai/skip Param to true.

Hint: this can be A LOT of data added to the machine param! You may want to use ?slim in the API to skip returning
it on list requests.

3.29.9 drp-community-contrib

The following documentation is for drp-community-contrib content package at version v1.10.1-tip-53-
4f6b983b0f46fd5ae72c030eae353c14397b78b7.

Unspecified

3.29.10 drp-prom-mon

The following documentation is for drp-prom-mon content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

tasks

The content package provides the following tasks.

add-node-exporter-param

The ‘drp-prom-mon/node-exporter’ Param defines the IP Address of the Node Exporter that will be scraped by the
Prometheus instance. This value will subsequently be used by the Prometheus configuration steps to add a scrape rule
to config files for collecting metrics.

cfg-grafana

This task configures the drp-prom-mon Grafana component. The Prometheus Datasource will be setup, the default
admin credentials will be changed, and the grafana shared dashboard (ID 405) will be installed.

3.29. Content Packages 281

DigitalRebar Provision Documentation, Release v3.9

install-node-exporter

This task installs the Node Exporter package on a given machine. It also will record the Node Exporter systems IP
address in the param ‘drp-prom-mon/node-exporter’. This value will subsequently be used by the Prometheus Stage
to collect (scrape) metrics from this machine.

The Param ‘drp-prom-mon/cluster-profile’ MUST BE SET on the machine so that the Stage can record the Pram
information correctly.

If the Param ‘drp-prom-mon/cluster-profile’ is set to the value

prom-mon-single-node

Then the Stage will assume this is an all-in-one DRP/Prometheus/ Node Exporter/Grafana platform - and you DO
NOT have to set the cluster profile.

cfg-drp-prefs

Set the Global Preferences for a DRP instance. If the associated OptionalParams are set, then the default set-
tings will be overridden with the value specified. The defaults for the BootEnv and Stages will assume Dis-
cover/Sledgehamer/Discovery.

params

The content package provides the following params.

drp-prom-mon/cluster-profile

This param will be set to the users cloned profile name for the cluster. It is used to identify the Profile to write Param
data to for subsequent use during install and configuration stages.

This Params should be used in a cloned Profile which contains the name of the Clone in this Param.

drp-prom-mon/drp-version

This param will set the version of Digital Rebar Provision to install on the Machine.

Set this to any value supported by the DRP installer script. Typically these values would be like the following

stable = current production ‘stable’ release tip = current ‘tip’ release (usually tracks a few

commits behind ‘master’

v3.7.3 = an explicit version to install - the leading ‘v’ is required in the version string

drp-prom-mon/installer-version

This param will set the version of the ‘install.sh’ script to install this DRP instance with.

The only options supported are

stable tip

282 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

drp-prom-mon/node-exporter

This param will be set to the Machine IP address that the Node Exporter will be running on. Node Exporter will feed
metrics to the Prometheus/Grafana instance

Prometheus pulls stats, so no need to configure the Node Exporter to know about it. However, Prometheus DOES need
to be configured to know about Node Exporter to scrape stats.

This Param is used in the Prometheus install task.

3.29.11 filebeat

The following documentation is for filebeat content package at version Unspecified.

3.29.12 Filebeat Forwarder

This plugin is used to send events to Filebeat so that it can forward the event to logstash or elasticsearch.

Installation / Configuration Filebeat

Install filebeat:

curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-6.
→˓3.2-x86_64.rpm
rpm -vi filebeat-6.3.2-x86_64.rpm

Configure filebeat:

Inside the /etc/filebeat/filebeat.yml file. You will need to add a filebeat.inputs stanza.

- type: tcp
enabled: true
max_message_size: 10MiB
host: "localhost:9008"
fields_under_root: true

You will also need to configure your output section. See the logstash or elasticsearch as needed.

Configuration DRP Filebeat Plugin

A plugin will need to be created for the filebeat.

The filebeat/url parameter can be used to specify the IP:Port pair that filebeat is listening on. This defaults to
127.0.0.1:9008.

params

The content package provides the following params.

filebeat/path

Filebeat log file path. The plugin writes the events to this log file. This file should be under log rotate.

3.29. Content Packages 283

DigitalRebar Provision Documentation, Release v3.9

3.29.13 flash

The following documentation is for flash content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

3.29.14 honeycomb

The following documentation is for honeycomb content package at version Unspecified.

Unspecified

3.29.15 image-builder

The following documentation is for image-builder content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

tasks

The content package provides the following tasks.

image-update-packages

Should be run after fixing repo packages, but before installing cloud-init.

3.29.16 image-deploy

The following documentation is for image-deploy content package at version Unspecified.

Unspecified

params

The content package provides the following params.

curtin/partitions

The curtin partition as an object. It would look like this:

storage: version: 1 config:

• id: disk0 type: disk ptable: msdos path: /dev/sda name: main_disk wipe: superblock

• id: disk0-part1 type: partition number: 1 device: disk0 size: 139G flag: boot

• id: disk0-part1-format-root type: format fstype: ntfs quiet: True volume: disk0-part1

• id: disk0-part1-mount-root type: mount path: / device: disk0-part1-format-root

284 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

This example is for a wim-like root fs for windows, but other custom partitions could be used.

If unspecified, the default action to setup a simple partition table suitable for linux rootfs installs.

image-deploy/additional-tarballs

A list of additional tarballs to install into the image.

image-deploy/image-file

The file image for image-deploy to install. This will have the Provisioner’s URL prepended to the filename.

You may use the drpcli isos upload command to place an image into the system. If this method is used, please prepend
‘isos/’ to your filename. You should not have any other directories in the filename.

You may use the drpcli files upload command to place an image into the system. If this method is used, prepend ‘files/’
to your filename. You may use additional directories in the filename.

You may also just place the image file under the DRP tftpboot directory. If this method is used, use the path relative to
the tftpboot directory.

cloud-init/user-data

This is the data to return to the node on cloud init calls.

image-deploy/image-os

The file image contains the install contents for an operating system. This variable defines the image OS at a high level.

Valid values are:

• linux

• windows

image-deploy/image-url

The url for the image for image-deploy to install.

image-deploy/install-disk

The disk curtin should install upon

image-deploy/windows-license-key

The license key for the windows operating system as a string.

cloud-init/x509-certs

This contains all the x509 certs for the system as a single string

3.29. Content Packages 285

DigitalRebar Provision Documentation, Release v3.9

image-deploy/windows-unattend-template

The template to use for unattend.xml file.

image-deploy/image-type

The file image may be in many formats. This tells image-deploy what method to use to install.

Validated methods are:

• tgz = root file system in compressed tar file.

• dd-tgz = Compressed tar file with a single raw disk image.

image-deploy/windows-unattend-path

The path to the unattend.xml file.

3.29.17 ipmi

The following documentation is for ipmi content package at version Unspecified.

Unspecified

params

The content package provides the following params.

ipmi/configure/ip-mode

This parameter defines which method the BMC should use to get its IP address. Valid values are: dhcp or static

ipmi/configure/reserve-ip

Set to true to enable the DRP to create a Reservation for the BMC’s MAC address and IP.

ipmi/enabled

This parameter indicates if the ipmi-configure task enabled IPMI.

ipmi/password

This parameter is used by the IPMI Plugin to access the BMC

ipmi/configure/address

This is required for static ip-mode.

286 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

ipmi/configure/no-bmc-fatal

Set to true to cause a failure if the BMC doesn’t exist.

ipmi/configure/user

Set this value to true to have the system setup a user on the BMC

ipmi/configure/username

Username to create on the BMC

ipmi/configure/gateway

This is recommended for static ip-mode.

ipmi/configure/port

For Dell servers, this optional parameter will set the iDrac port mode. Many values are supported. Validated values
are shared or dedicated.

ipmi/configure/userid

The user id (numeric) to use for the configured user

ipmi/configure/password

Password to create on the BMC for the configured user

ipmi/configure/netmask

This is required for static ip-mode.

ipmi/configure/network

Set to true to enable the IPMI configuring of network address.

ipmi/identify-duration

Duration in seconds to leave the identify light on

ipmi/username

This parameter is used by the IPMI Plugin to access the BMC

3.29. Content Packages 287

DigitalRebar Provision Documentation, Release v3.9

ipmi/address

This parameter is used by the IPMI Plugin to access the BMC

tasks

The content package provides the following tasks.

ipmi-configure

This task uses the ipmi.configure parameters to configure the system BMC.

The administrator may choose to configure a user, the network pieces, or both.

Defaults: impi/configure/address = unset impi/configure/gateway = unset impi/configure/ip-mode = dhcp
impi/configure/netmask = unset impi/configure/network = true impi/configure/no-bmc-fatal = false
impi/configure/reserve-ip = true impi/configure/port = unset impi/configure/user = true impi/configure/username
= root impi/configure/password = cr0wBar! impi/configure/userid = unset

3.29.18 krib

The following documentation is for krib content package at version v1.10.1-tip-53-
4f6b983b0f46fd5ae72c030eae353c14397b78b7.

3.29.19 KRIB (Kubernetes Rebar Integrated Bootstrapping)

License: KRIB is APLv2

This document provides information on how to use the Digital Rebar KRIB content add-on. Use of this content will
enable the operator to install Kubernetes in either a Live Boot (immutable infrastructure pattern) mode, or via installed
to local hard disk OS mode.

KRIB uses the kubeadm cluster deployment methodology coupled with Digital Rebar enhancements to help proctor
the cluster Master election and secrets management. With this content pack, you can install Kubernetes in a zero-touch
manner.

KRIB does also support production, highly available (HA) deployments, with multiple masters. To enable this con-
figuration, we’ve chosen to manage the TLS certificates and etcd installation in the Workflow instead of using the
kubeadm process.

This document assumes you have your Digital Rebar Provisioning endpoint fully configured, tested, and working. We
assume that you are able to properly provision Machines in your environment as a base level requirement for use of
the KRIB content add-on use. See _rs_krib for step by step instructions.

Note: documentation source: https://github.com/digitalrebar/provision-content/blob/master/krib/._Documentation.
meta

KRIB Video References

The following videos have been produced or presented by RackN related to the Digital Rebar KRIB solution.

288 Chapter 3. Table of Contents

https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://github.com/digitalrebar/provision-content/blob/master/krib/._Documentation.meta
https://github.com/digitalrebar/provision-content/blob/master/krib/._Documentation.meta

DigitalRebar Provision Documentation, Release v3.9

• KRIB Zero Config Kubernetes Cluster channel on YouTube.

• KubeCon: Zero Configuration Pattern on Bare Metal on YouTube - RackN presentation at 2017 KubeCon/Cloud
NativeCon in Austin TX

Online Requirements

KRIB uses community kubeadm for installation. That process relies on internet connectivity to download containers
and other components.

Immutable -vs- Local Install Mode

The two primary deployment patterns that the Digital Rebar KRIB content pack supports are:

1. Live Boot (immutable infrastructure pattern - references12)

2. Local Install (standard install-to-disk pattern)

The Live Boot mode uses an in-memory Linux image based on the Digital Rebar Sledgehammer (CentOS based)
image. After each reboot of the Machine, the node is reloaded with the in-memory live boot image. This enforces
the concept of immutable infrastructure - every time a node is booted, deployed, or needs updating, simply reload the
latest Live Boot image with appropriate fixes, patches, enhancements, etc.

The Local Install mode mimics the traditional “install-to-my-disk” method that most people are familiar with.

KRIB Basics

KRIB is a Content Pack addition to Digital Rebar Provision. It uses the Multi-Machine Cluster Pattern which provides
atomic guarantees. This allows for Kubernetes master(s) to be dynamically elected, forcing all other nodes to wait
until the kubeadm on the elected master to generate an installation token for the rest of the nodes. Once the Kubernetes
master is bootstrapped, the Digital Rebar system facilitates the security token hand-off to rest of the cluster so they
can join without any operator intervention.

Elected -vs- Specified Master

By default, the KRIB process will dynamically elect a Master for the Kubernetes cluster. This masters simply win the
race-to-master election process and the rest of the cluster will coalesce around the elected master.

If you wish to specify a specific machines to be the designated masters, you can do so by setting a Param in the cluster
Profile to the specific Machine that will be come the master. To do so, set the krib/cluster-masters Param to
a JSON structure with the Name, UUID and IP of the machines to become masters. You may add this Param to the
Profile in the below specifications, as follows:

JSON reference to add to the Profile Params section
"krib/cluster-masters": [{"Name":"<NAME>", "Uuid":"<UUID>", "Address": "
→˓<ADDRESS>"}]

or drpcli command line option
drpcli profiles set my-k8s-cluster param krib/cluster-master to <JSON>

1 Immutable Infrastructure Reference: Making Server Deployment 10x Faster – the ROI on Immutable Infrastructure
2 Immutable Infrastructure Reference: Go CI/CD and Immutable Infrastructure for Edge Computing Management

3.29. Content Packages 289

https://www.youtube.com/watch?v=SYOHI8DfRMo&list=PLXPBeIrpXjfhKqmTvxI5-0CmgUh82dztr&index=1
https://youtu.be/Psm9aOWzfWk
https://www.rackn.com/2017/10/11/making-server-deployment-10x-faster-roi-immutable-infrastructure/
https://www.rackn.com/2017/09/15/go-cicd-immutable-infrastructure-edge-computing-management/

DigitalRebar Provision Documentation, Release v3.9

The Kubernetes Master will be built on this Machine specified by the <UUID> value.

Note: This MUST be in the cluster profile because all machines in the cluster must be able to see this parameter.

Install KRIB

KRIB is a Content Pack and is installed in the standard method as any other Contents. We need the krib.json
content pack to fully support KRIB and install the helper utility contents for stage changes.

Please review _rs_krib for step by step instructions.

CLI Install

KRIB uses the Certs plugin to build TLS, you can install that from the RackN library

download cert plugin provider (installs the plugin autmatically)
curl -o certs https://s3-us-west-2.amazonaws.com/rebar-catalog/certs/v2.4.0-
→˓0-02301d35f9f664d6c81d904c92a9c81d3fd41d2c/amd64/linux/certs
install plugin provider
drpcli plugin_providers upload certs from certs
verify it worked - should return true
drpcli plugins show certs | jq .Available

Using the Command Line (drpcli) utility configured to your endpoint, use this process:

Get code
git clone https://github.com/digitalrebar/provision-content
cd krib

KRIB content install
drpcli contents bundle krib.yaml
drpcli contents upload krib.yaml

If KRIB is already installed, you should replace the upload with drpcli contents update krib krib.yaml

UX Install

In the UX, follow this process:

1. Open your DRP Endpoint: (eg. https://127.0.0.1:8092/)

2. Authenticate to your Endpoint

3. Login with your `RackN Portal Login` account (upper right)

4. Go to the left panel “Content Packages” menu

5. Select Kubernetes (KRIB: Kubernetes Rebar Immutable Bootstrapping) from the right
side panel (you may need to select Browser for more Content or use the Catalog button)

6. Select the Transfer button for both content packs to add the content to your local Digital Rebar endpoint

290 Chapter 3. Table of Contents

https://127.0.0.1:8092/

DigitalRebar Provision Documentation, Release v3.9

Configuring KRIB

The basic outline for configuring KRIB follows the below steps:

1. create a Profile to hold the Params for the KRIB configuration (you can also clone the krib-example profile)

2. add a Param of name krib/cluster-profile to the Profile you created

3. add a Param of name etcd/cluster-profile to the Profile you created

4. apply the Profile to the Machines you are going to add to the KRIB cluster

5. change the Workflow on the Machines to krib-live-cluster for memory booting or
krib-install-cluster to install to Centos. You may clone these reference workflows to build
custom actions.

6. installation will start as soon as the Workflow has been set.

There are many configuration options available, review the krib/* and etcd/* parameters to learn more.

Configure with Terraform

Please review the intergrations/krib for example Terraform plans.

Configure with the CLI

The configuration of the Cluster includes several reference Workflow that can be used for installation. Depending on
which Workflow you use, will determine if the cluster is built via install-to-local-disk or via an immutable pattern
(live boot in-memory boot process). Outside of the Workflow differences, all remaining configuration elements are the
same.

You must writeable create a Profile from YAML (or JSON if you prefer) with the Params stagemap and param required
information. Modify the Name or other fields as appropriate - be sure you rename all subsequent fields appropriately.

echo '

Name: "my-k8s-cluster"
Description: "Kubernetes install-to-local-disk"
Params:
krib/cluster-profile: "my-k8s-cluster"
etcd/cluster-profile: "my-k8s-cluster"

Meta:
color: "purple"
icon: "ship"
title: "My Installed Kubernetes Cluster"

' > /tmp/krib-config.yaml

drpcli profiles create - < /tmp/krib-config.yaml

Note: The following commands should be applied to all of the Machines you wish to enroll in your KRIB cluster.
Each Machine needs to be referenced by the Digital Rebar Machine UUID. This example shows how to collect the
UUIDs, then you will need to assign them to the UUIDS variable. We re-use this variable throughout the below
documentation within the shell function named my_machines. We also show the correct drpcli command that
should be run for you by the helper function, for your reference.

Create our helper shell function my_machines

3.29. Content Packages 291

DigitalRebar Provision Documentation, Release v3.9

function my_machines() { for U in $UUIDS; do set -x; drpcli machines $1 $U $2;
→˓set +x; done; }

List your Machines to determine which to apply the Profile to

drpcli machines list | jq -r '.[] | "\(.Name) : \(.Uuid)"'

IF YOU WANT to make ALL Machines in your endpoint use KRIB, do:

export UUIDS=`drpcli machines list | jq -r '.[].Uuid'`

Otherwise - individually add them to the UUIDS variable, like:

export UUIDS="UUID_1 UUID_2 ... UUID_n"

Add the Profile to your machines that will be enrolled in the cluster

my_machines addprofile my-k8s-cluster

runs example command:
drpcli machines addprofile <UUID> my-k8s-cluster

Change stage on the Machines to initiate the Workflow transition. YOU MUST select the correct stage, dependent
on your install type (Immutable/Live Boot mode or install-to-local-disk mode). For Live Boot mode, select the stage
ssh-access and for the install-to-local-disk mode select the stage centos-7-install.

for Live Boot/Immutable Kubernetes mode
my_machines workflow krib-live-cluster

for intall-to-local-disk mode:
my_machines workflow krib-install-cluster

runs example command:
drpcli machines workflow <UUID> krib-live-cluster
or
drpcli machines workflow <UUID> krib-install-cluster

Configure with the UX

The below example outlines the process for the UX.

RackN assumes the use of CentOS 7 BootEnv during this process. However, it should theoretically work on most of
the BootEnvs. We have not tested it, and your mileage will absolutely vary. . .

1. create a Profile for the Kubernetes Cluster (e.g. my-k8s-cluster) or clone the krib-example profile.

2. add a Param to that Profile: krib/cluster-profile = my-k8s-cluster 2. add a Param to that Profile:
etcd/cluster-profile = my-k8s-cluster 3. Add the Profile (eg my-k8s-cluster) to all the machines
you want in the cluster. 4. Change workflow on all the machines to krib-install-cluster for install-to-local-
disk, or to krib-live-cluster for the Live Boot/Immutable Kubernetes mode

Then wait for them to complete. You can watch the Stage transitions via the Bulk Actions panel (which requires
RackN Portal authentication to view).

Note: The reason the Immutable Kubernetes/Live Boot mode does not need a reboot is because they are already

292 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

running Sledgehammer and will start installing upon the stage change.

Operating KRIB

Who is my Master?

If you have not specified who the Kubernetes Master should be; and the master was chosen by election - you will need to determine which Machine is the cluster Master.

returns the Kubernetes cluster Machine UUID
drpcli profiles show my-k8s-cluster | jq -r '.Params."krib/cluster-masters"'

Use kubectl - on Master

You can log in to the Master node as identified above, and execute kubectl commands as follows:

export KUBECONFIG=/etc/kubernetes/admin.conf
kubectl get nodes

Use kubectl - from anywhere

Once the Kubernetes cluster build has been completed, you may use the kubectl command to both verify and manage the cluster. You will need to download the conf file with the appropriate tokens and information to connect to and authenticate your kubectl connections. Below is an example of doing this:

get the Admin configuration and tokens
drpcli profiles get my-k8s-cluster param krib/cluster-admin-conf > admin.conf

set our KUBECONFIG variable and get nodes information
export KUBECONFIG=`pwd`/admin.conf
kubectl get nodes

Advanced Stages - Helm and Sonobuoy

KRIB includes stages for advanced Kubernetes operating support.

The reference workflows already install Helm using the krib-helm stage. To leverage this utility simply define the
required JSON syntax for your charts as shown in krib_helm.

Sonobuoy can be used to validate that the cluster conforms to community specification. Adding the krib-sonobuoy
stage will start a test run. It can be rerun to collect the results or configured to wait for them. Storing test results in the
files path requires setting the unsafe/password parameter and is undesirable for production clusters.

Ingress/Egress Traffic, Dashboard Access, Istio

The Kubernetes dashboard is enabled within a default KRIB built cluster. However no Ingress traffic rules are set up.
As such, you must access services from external connections by making changes to Kubernetes, or via the Kubernetes
Dashboard via Proxy.

3.29. Content Packages 293

DigitalRebar Provision Documentation, Release v3.9

These are all issues relating to managing, operating, and running a Kubernetes cluster, and not restrictions that are
imposed by Digital Rebar Provision. Please see the appropriate Kubernetes documentation on questions regarding
operating, running, and administering Kubernetes (https://kubernetes.io/docs/home/).

For Istio via Helm, please consult krib_helm for a reference install

Kubernetes Dashboard via Proxy

Once you have obtained the admin.conf configuration file and security tokens, you may use kubectl in Proxy mode to the Master. Simply open a separate terminal/console session to dedicate to the Proxy connection, and do:

kubectl proxy

Now, in a local web browser (on the same machine you executed the Proxy command) open the following URL:

https://127.0.0.1:8001/ui

Multiple Clusters

It is absolutely possible to build multiple Kubernetes KRIB clusters with this process. The only difference is each
cluster should have a unique name and profile assigned to it. A given Machine may only participate in a single
Kubernetes cluster type at any one time. You can install and operate both Live Boot/Immutable with install-to-disk
cluster types in the same DRP Endpoint.

Footnotes

params

The content package provides the following params.

etcd/servers

Param is set (output) by the etcd cluster building process

krib/cluster-profile

Part of the Digital Rebar Cluster pattern, this parameter is used to identify the machines used in the Kubernetes cluster
This parameter is REQUIRED for KRIB and etcd cluster contruction

krib/operate-options

This Param can be used to pass additional flag options to the ‘kubectl’ operation that is specified by the ‘krib/operate-
action’ Param. By default, the ‘drain’ operation will be called if no action is defined on the Machine.

This Param provides some customization to how the operate operation functions.

For ‘kubectl drain’ documentation, see the following URL: https://kubernetes.io/docs/reference/generated/
kubectl/kubectl-commands#drain

For ‘kubectl uncordin’ doc, see the URL: https://kubernetes.io/docs/reference/generated/kubectl/
kubectl-commands#uncordon

294 Chapter 3. Table of Contents

https://kubernetes.io/docs/home/
https://127.0.0.1:8001/ui
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#drain
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#drain
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#uncordon
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#uncordon

DigitalRebar Provision Documentation, Release v3.9

NOTE NOTE the following flags are set as default options in the Template for drain operations:

–ignore-daemonsets –delete-local-data

For ‘drain’ operations, if you override these defaults, you MOST LIKELY need to specify them for the drain operation
to be successful. You have been warned.

No defaults provdided for ‘uncordon’ operations (you shouldn’t need any).

krib/cluster-api-vip-port

The VIP API port to use for multi-master clusters. Each master will bind to ‘krib/cluster-api-port’ (6443 by default),
but HA services for the API will be services by this port number.

Defaults to ‘8443’.

krib/cluster-admin-conf

Param is set (output) by the cluster building process

etcd/server-count

Allows operators to set the number of machines required for the etcd cluster. Machines will be automatically added
until the number is met. NOTE: should be an odd number

etcd/servers-done

Param is set (output) by the etcd cluster building process

krib/cluster-domain

Defines the cluster domain for kublets to operate in by default. Default is ‘cluster.local’.

krib/label-env

Used for node specification, labels should be set.

sonobuoy/wait-mins

Default is -1 so that stages do not wait for complete.

Typical runs may take 60 minutes.

If <0 then code does wait and assumes you will run it again to retrieve the results. Task is idempotent so you can
re-start a run after you have started to check on results.

etcd/client-port

Allows operators to set the port used by etcd clients

3.29. Content Packages 295

DigitalRebar Provision Documentation, Release v3.9

krib/operate-action

This Param can be used to:

‘drain’, ‘delete’, ‘cordon’, or ‘uncordon’

a node in a KRIB built Kubernetes cluster. If this parameter is not defined on the Machine, the default action will be
to ‘drain’ the node.

Each action can be passed custom arguments via use of the ‘krib/operate-options’ Param.

provider/calico-config

Set this string to an HTTP or HTTPS reference for a YAML configuration to use for the Calico network provider. If
Calico is not installed, this Param will have no effect on the cluster.

provider/flannel-config

Set this string to an HTTP or HTTPS reference for a YAML configuration to use for the Flannel network provider. If
Flannel is not installed, this Param will have no effect on the cluster.

krib/cluster-service-dns-domain

Allows operators to specify the Service DNS Domain that will be used by CoreDNS during the ‘kubeadm init’ process
of the cluster creation.

By default we do not override the setting from kubeadm default behavior.

krib/cluster-cri-socket

This Param defines which Socket to use for the Container Runtime Interface. By default KRIB content uses Docker
as the CRI, however our goal is to support multiple container CRI formats.

krib/kubeadm-cfg

Set this string to an HTTP or HTTPS reference for a YAML configuration to use for the ‘kubeadm.cfg’ used during
the ‘kubeadm init’ process.

The default behavior is to use the Parameterized ‘kubeadm.cfg’ from the template named ‘krib-kubeadm.cfg.tmpl’.
This config file is used in the ‘krib-config.sh.tmpl’ which is the main template script that drives the ‘kubeadm’ cluster
init and configuration.

etcd/version

Allows operators to determine the version of etcd to install Note: Changes should be coordinate with KRIB Kubernetes
version

296 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

krib/cluster-masters

List of the machine(s) assigned as cluster master(s). If not set, the automation will elect leaders and populate the list
automatically.

rook/data-dir-host-path

This should be set to match the desired location for Ceph storage.

Default: /docker

In future versions, this should be calculated or inferred based on the system inventory

etcd/server-ca-name

Allows operators to set the CA name for the server certificate Requires Cert Plugin

etcd/server-ca-pw

Allows operators to set the CA password for the server certificate Requires Cert Plugin

krib/cluster-bootstrap-token

Defines the bootstrap token to use. Default is ‘fedcba.fedcba9876543210’.

krib/cluster-kubeadm-cfg

Once the cluster initial master has completed startup, then the KRIB config task will record the bootstrap configuration
used by ‘kubeadm init’. This provides a reference going forward on the cluster configurations when it was created.

krib/cluster-master-vip

For High Availability (HA) configurations, a floating IP is required by the load balancer.

krib/operate-on-node

This Param specifies a Node in a Kubernetes cluster that should be operated on. Currently supported operations are
‘drain’ and ‘uncordon’.

The drain operation will by default maintain the contracts specified by PodDisruptionBudgets.

Options can be specified to override the default actions by use of the ‘krib/operate-options’ Param. This Param will be
passed directly to the ‘kubectl’ command that has been specified by the ‘krib/operate-action’ Param setting (defaults
to ‘drain’ operation if nothing specified).

The Node name must be a valid cluster member name, which by default in a KRIB built cluster; the fully qualified
value of the Machine object ‘Name’ value.

3.29. Content Packages 297

DigitalRebar Provision Documentation, Release v3.9

krib/cluster-api-port

The API bindPort number for the cluster masters. Defaults to ‘6443’.

krib/networking-provider

This Param can be used to specify either ‘flannel’ or ‘calico’ network providers for the Kubernetes cluster. This is
completed using the provider specific YAML definition file.

The only supported providers are:

flannel calico

The default is ‘flannel’.

helm/version

Allows operators to determine the version of etcd to install Note: Changes should be coordinate with KRIB Kubernetes
version

krib/cluster-masters-on-etcds

For development clusters, allows running etcd on the same machines as the Kubernetes masters RECOMMENDED:
set to false for production clusters

krib/cluster-name

Allows operators to set the Kubernetes cluster name

etcd/client-ca-name

Allows operators to set the CA name for the client certificate Requires Cert Plugin

etcd/peer-port

Allows operators to set the port for the cluster peers

krib/cluster-image-repository

Allows operators to specify the location to pull images from for Kubernetes. Defaults to ‘k8s.gcr.io’.

krib/cluster-master-count

Allows operators to set the number of machines required for the Kubernetes cluster. Machines will be automatically
added until the number is met. NOTE: should be an odd number

298 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

sonobuoy/binary

Downloads tgz with compiled sonobuoy executable. The full path is included so that operators can choose the correct
version and archtiecture

etcd/name

Allows operators to set a name for the etcd cluster

etcd/peer-ca-name

Allows operators to set the CA name for the peer certificate Requires Cert Plugin

krib/cluster-service-subnet

Allows operators to specify the service subnet CIDR that will be used during the ‘kubeadm init’ process of the cluster
creation.

Defaults to “10.96.0.0/12”.

krib/dashboard-config

Set this string to an HTTP or HTTPS reference for a YAML configuration to use for the Kubernetes Dashboard.

docker/working-dir

Allows operators to change the Docker working directory

krib/cluster-pod-subnet

Allows operators to specify the podSubnet that will be used by CoreDNS during the ‘kubeadm init’ process of the
cluster creation.

krib/cluster-dns

Allows operators to specify the DNS address for the cluster name resolution services.

Set by default to “10.96.0.10”.

WARNING: This IP Address must be in the same range as the “krib/cluster-service-cidr” specified addresses.

krib/cluster-is-production

By default the KRIB cluster mode will be set to dev/test/lab (whatever you wanna call it). If you set this Param to true
then the cluster will be tagged as in Production use.

If the cluster is in Production mode, then the state of the various Params for new clusters will be preserved, preventing
the cluster from being overwritten.

3.29. Content Packages 299

DigitalRebar Provision Documentation, Release v3.9

If NOT in Production mode, the following Params will be wiped clean before building the cluster. This is essentially
a destructive pattern.

krib/cluster-admin-conf - the admin.conf file Param will be wiped krib/cluster-join - the Join token will
be destroyed

This allows for “fast reuse” patterns with building KRIB clusters, while also allowing a cluster to be marked Production
and require manual intervention to wipe the Params to rebuild the cluster.

krib/packages-to-prep

List of packages to install for preparation of KRIB install process. Designed to be used in some processes where
pre-prep of the packages will accelerate the KRIB install process. More specifically, in Sledgehammer Discover for
Live Boot cluster install, the ‘docker’ install requires several minutes to run through selinux context changes.

Simple space separated String list.

etcd/cluster-profile

Part of the Digital Rebar Cluster pattern, this parameter is used to identify the machines used in the etcd cluster This
parameter is REQUIRED for KRIB and etcd cluster contruction

krib/cluster-join-command

Param is set (output) by the cluster building process

helm/charts

Install Helm Charts

Array of charts to install via Helm. The list will be followed in order.

Work is idempotent: No action is taken if charts are already installed.

Fields: chart and name are required.

Options exist to inject additional control flags into helm install instructions:

• name: name of the chart (required)

• chart: reference of the chart (required) - may rely on repo, path or other helm install [chart] standard

• namespace: kubernetes namespace to use for chart (defaults to none)

• params: map of parameters to include in the helm install (optional). Keys and values are converted to –[key]
[value] in the install instruction.

• sleep: time to wait after install (defaults to 10)

• wait: wait for name (and namespace if provided) to be running before next action

• prekubectl (optional) array of kubectl [request] commands to run before the helm install

• postkubectl (optional) array of kubectl [request] commands to run after the helm install

• targz (optional) provides a location for a tar.gz file containing charts to install. Path is relative.

300 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

• templates (optional) map of DRP templates keyed to the desired names (must be uploaded!) to render before
doing other work.

• repo (optional) adds the requested repo to the helm using helm repo add before installing helm. syntax is [repo
name] [repo path].

example:

[
{

"chart": "stable/mysql",
"name": "mysql"

}, {
"chart": "istio-1.0.1/install/kubernetes/helm/istio",
"name": "istio",
"targz": "https://github.com/istio/istio/releases/download/1.0.1/istio-1.

→˓0.1-linux.tar.gz",
"namespace": "istio-system",
"params": {

"set": "sidecarInjectorWebhook.enabled=true"
},
"sleep": 10,
"wait": true,
"kubectlbefore": ["get nodes"],
"kubectlafter": ["get nodes"]

}
]

krib/cluster-master-certs

Requires Cert Plugin

etcd/peer-ca-pw

Allows operators to set the CA password for the peer certificate If missing, will be generated Requires Cert Plugin

krib/cluster-bootstrap-ttl

How long BootStrap tokens for the cluster should live. Default is ‘24h0m0s’.

Must use a format similar to the default.

krib/cluster-kubernetes-version

Allows operators to specify the version of Kubernetes containers to pull from the ‘krib/cluster-image-repository’.

krib/labels

Used for adhoc node specification, labels should be set.

NOTES: * Use krib/label-env to set the env label! * Use inventory/data to set physical characteristics

3.29. Content Packages 301

DigitalRebar Provision Documentation, Release v3.9

etcd/client-ca-pw

Allows operators to set the CA password for the client certificate Requires Cert Plugin

stages

The content package provides the following stages.

krib-helm

Installs and runs Helm Charts after a cluster has been constructed. This stage is idempotent and can be run multiple
times. This allows operators to create workflows with multiple instances of this stage. The charts to run are determined
by the helm/charts parameter.

Due to helm downloads, this stage requires internet access.

This stage also creats a tiller service account. For advanced security, this configuration may not be desirable.

krib-pkg-prep

Simple helper stage to install prereq packages prior to doing the kubernetes package installation. This just helps us get
a Live Boot set of hosts (eg Sledgehammer Discovered) prepped a little faster with packages in some use cases.

krib-set-time

Helper stage to set time on the machine - DEV

krib-sonobuoy

Installs and runs Sonobuoy after a cluster has been constructed. This stage is idempotent and can be run multiple
times. The purpose is to ensure that the KRIB cluster is conformant with standards

If credentials are required so that the results of the run are pushed back to DRP files.

Roadmap items: * eliminate need for DRPCLI credentials * make “am I running” detection smarter

krib-operate-drain

This stage runs an Drain operation on a given KRIB built Kubernetes node. It uses the ‘krib-operate-drain’ Profile

In addition - you may set the following Params on a Machine object to override the default behaviors of this stage:

krib/operate-action - action to take (drain or uncordon) krib/operate-on-node - a Kubernetes node name
to operate on krib/operate-options - command line arguments to pass to the

‘kubectl’ command for the action

If the ‘krib/operate-on-node’ Param is empty, the node that is currently running the Stage will be operated on. Other-
wise, specifying an alternate Node allows remote draining a node.

DRAIN NOTES: this Stage does a few things that MAY BE VERY BAD !!

1. service pods are ignored for the drain operation

302 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

2. –delete-local-data is used to evict pods using local storage

Default options are ‘–ignore-daemonsets –delete-local-data’ to the drain operation. If you override these values (by
setting ‘krib/operate-options’) you MAY NEED to re-specify these values, otherwise, the Node will NOT be drained
properly.

These options may mean your data might be nuked.

krib-operate

This stage runs an Operation (drain|uncordon) on a given KRIB built Kubernetes node. You must specify action you
want taken via the ‘krib/operate-action’ Param. If nothing specified, the default action will be to ‘drain’ the node.

In addition - you may set the following Params to alter the behavior of this stage:

krib/operate-action - action to take (drain or uncordon) krib/operate-on-node - a Kubernetes node name
to operate on krib/operate-options - command line arguments to pass to the

‘kubectl’ command for the action

DRAIN NOTES: this Stage does a few things that MAY BE VERY BAD !!

1. service pods are ignored for the drain operation

2. –delete-local-data is used to evict pods using local storage

Default options are ‘–ignore-daemonsets –delete-local-data’ to the drain operation. If you override these values (by
setting ‘krib/operate-options’) you MAY NEED to re-specify these values, otherwise, the Node will NOT be drained
properly.

These options may mean your data might be nuked.

UNCORDON NODES: typically does not require additional options

krib-operate-cordon

This stage runs a Cordon operation on a given KRIB built Kubernetes node. It uses the ‘krib-operate-cordon’ Profile.

In addition - you may set the following Params on a Machine object to override the default behaviors of this stage:

krib/operate-action - action to take (cordon or uncordon) krib/operate-on-node - a Kubernetes node name
to operate on krib/operate-options - command line arguments to pass to the

‘kubectl’ command for the action

If the ‘krib/operate-on-node’ Param is empty, the node that is currently running the Stage will be operated on. Other-
wise, specifying an alternate Node allows remote cordon a node.

krib-operate-delete

This stage runs an Delete node operation on a given KRIB built Kubernetes node. It uses the ‘krib-operate-delete’
Profile

In addition - you may set the following Params on a Machine object to override the default behaviors of this stage:

krib/operate-action - action to take krib/operate-on-node - a Kubernetes node name to operate on
krib/operate-options - command line arguments to pass to the

‘kubectl’ command for the action

3.29. Content Packages 303

DigitalRebar Provision Documentation, Release v3.9

If the ‘krib/operate-on-node’ Param is empty, the node that is currently running the Stage will be operated on. Other-
wise, specifying an alternate Node allows remote delete a node.

WARNING: THIS OPERATE DESTROYS A KUBERNETES NODE!

Presumably, you want to ‘krib-operate-drain’ the node first to remove it from the cluster and drain it’s workload to
other cluster workers prior to deleting the node.

krib-operate-uncordon

This stage runs an Uncordon operation on a given KRIB built Kubernetes node. This returns a Node back to service
in a Kubernetes cluster that has previously been drained. It uses the ‘krib-operate-uncordon’ Profile

In addition - you may set the following Params on a Machine object to override the default behaviors of this stage:

krib/operate-action - action to take (drain or uncordon) krib/operate-on-node - a Kubernetes node name
to operate on krib/operate-options - command line arguments to pass to the

‘kubectl’ command for the action

If the ‘krib/operate-on-node’ Param is empty, the node that is currently running the Stage will be operated on. Other-
wise, specifying an alternate Node allows remote uncordon on a node.

Default options are ‘’ (empty) to the uncordon operation.

tasks

The content package provides the following tasks.

docker-install

Installs Docker using O/S packages

krib-config

Sets Param: krib/cluster-join, krib/cluster-admin-conf Configure Kubernetes using Kubeadm This uses the Digital
Rebar Cluster pattern so krib/cluster-profile must be set

krib-sonobuoy

Installs Sonobuoy and runs it against the cluster on the leader. This uses the Digital Rebar Cluster pattern so
krib/cluster-profile must be set.

NOTE: Sonobuoy may take over an HOUR to complete. The task will be in process during this time.

The tasks only run on the leader so it must be included in the workflow. All other machines will be skipped so it is
acceptable to run the task on all machines in the cluster.

kubernetes-install

Downloads Kubernetes installation components from repos This task relies on the O/S packages being updated and
accessible. NOTE: Access to update repos is required!

304 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

krib-pkg-prep

Installs prerequisite OS packages prior to starting KRIB install process. In some use cases this may be a faster pattern
than performing the steps in the standard templates.

For example - Sledgehammer Discover nodes, add ‘krib-prep-pkgs’ stage. As machine is finishing prep - you can
move to setting up other things, before kicking off the KRIB workflow.

Uses packages listed in the ‘default’ Schema section of the Param ‘krib/packages-to-prep’. You can override this list
by setting the Param in a Profile or directly on the Machines to apply this to.

Packages MUST exist in the repositories on the Machines already.

etcd-config

Sets Param: etcd/servers If installing Kubernetes via Kubeadm, make sure you install a supported version! This uses
the Digital Rebar Cluster pattern so etcd/cluster-profile must be set

krib-helm

Installs Helm and runs helm init (which installs Tiller) on the leader. This uses the Digital Rebar Cluster pattern so
krib/cluster-profile must be set.

The install checks to see if tiller is running and may skip initialization.

The tasks only run on the leader so it must be included in the workflow. All other machines will be skipped so it is
acceptable to run the task on all machines in the cluster.

krib-dev-reset

Clears Created Params: krib/, etcd/

3.29.20 kubespray

The following documentation is for kubespray content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

params

The content package provides the following params.

ansible/groups-members

Inventory of Rebar Machines into Ansible Host Groups when using the dynamic inventory generator for Ansible.
Often generated by automation or the UX.

3.29. Content Packages 305

DigitalRebar Provision Documentation, Release v3.9

ansible/groupvars

Maps Rebar Profiles to Ansible Host Groups when using the dynamic inventory generator for Ansible.

ansible/hostvars

Sets additional variables in the Ansible dynamic inventory generator for Ansible.

ansible/parent-groups

Creates Ansible Nested Host Groups when using the dynamic inventory generator for Ansible. There is no matching
concept in Digital Rebar.

kube_api_version

Overrides default password for user kube

kube_version

Overrides default for admin user

ansible/groups

Creates Ansible Host Groups when using the dynamic inventory generator for Ansible.

3.29.21 kvm-test

The following documentation is for kvm-test content package at version Unspecified.

Unspecified

3.29.22 license

The following documentation is for license content package at version Unspecified.

Unspecified

params

The content package provides the following params.

rackn/license

The Base64 encoded signed license json blob

306 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

rackn/license-object

The user viewable form of the license object

3.29.23 os-other

The following documentation is for os-other content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

3.29.24 packet-ipmi

The following documentation is for packet-ipmi content package at version Unspecified.

Unspecified

params

The content package provides the following params.

packet/always-pxe

This parameter indicates if the node should always pxe.

packet/api-key

The API implies the user and the Project that the plugin will act as.

packet/ipxe-script-url

This parameter is the URL of the default ipxe file. If unspecified, the option will default to the current DRP endpoint
default.ipxe file.

packet/name

This parameter is the name to use for the packet machine.

packet/facility

This parameter describes the Packet facility for this node.

packet/import-existing

This parameter tells the plugin to import existing VMs or not.

3.29. Content Packages 307

DigitalRebar Provision Documentation, Release v3.9

packet/plan

This parameter is the Packet plan for this machine.

packet/project-id

This parameter describes the Packet Project ID for this node.

packet/sos

This parameter is the ssh hostname to use to access the serial console of this machine.

packet/uuid

This parameter is used by the Packet IPMI Plugin to access the API

3.29.25 raid

The following documentation is for raid content package at version Unspecified.

Unspecified

3.29.26 slack

The following documentation is for slack content package at version Unspecified.

Unspecified

params

The content package provides the following params.

slack/bot-key

The Key implies the user and the channel that the bot will act as.

3.29.27 sledgehammer-builder

The following documentation is for sledgehammer-builder content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

Unspecified

3.29.28 task-library

The following documentation is for task-library content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

308 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.29.29 RackN Task Library

This content package is used to collect useful stages and operations for Digital Rebar.

Cluster Stages

These stages implement the Multi-Machine Cluster Pattern.

Allows operators to orchestrate machines into sequential or parallel operation.

Inventory Stage

Convert gohai and other JSON data into a map that can be used for analysis, classification or filtering.

params

The content package provides the following params.

inventory/check

Using BASH REGEX, define a list of inventory data fields to test using Regular Expressions. Fields are tested in
sequence, the first to fail will halt the script

inventory/collect

Map of commands to run to collect Inventory Input Each group includes the fields with jq maps to store For example:
adding “drpcli gohai” will use gohai JSON as input Then jq will be run with provided values to collect inventory into
a inventory/data as a simple map.

To work correctly, Commands should emit JSON

Gohai example:

::

{

gohai: { Command: “drpcli gohai”, Fields: {

RAM: “.System.Memory.Total / 1048576 | floor”, NICs: “.Networking.Interfaces | length”

}

}

}

inventory/CPUs

From inventory/data, used for indexable data

3.29. Content Packages 309

DigitalRebar Provision Documentation, Release v3.9

inventory/CPUCores

From inventory/data, used for indexable data

inventory/CPUType

From inventory/data, used for indexable data

inventory/Manufacturer

From inventory/data, used for indexable data

inventory/SerialNumber

From inventory/data, used for indexable data

inventory/integrity

Allows operators to compare new inventory/data to stored inventory/data on the machine. If true and values not match
(after first run) then Stage will fail

inventory/ProductName

From inventory/data, used for indexable data

inventory/data

Stores the data collected by the fieds set in inventory/collect If inventory/integrity true, then used for comparision data

inventory/flatten

Creates each inventory value as a top level Params This is needed if you want to filter machines in the API by inventory
data. For example, using Terraform filters. WARNING: This will create LOTS of Params on machines!

inventory/NICs

From inventory/data, used for indexable data

inventory/RAM

From inventory/data, used for indexable data

310 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

inventory/CPUSpeed

From inventory/data, used for indexable data

inventory/Family

From inventory/data, used for indexable data

stages

The content package provides the following stages.

inventory

Collects selected fields from Gohai into a simpler, flat list. The process uses JQ filters, defined in inventory/fields, to
build inventory/data on each machine. Also, applies the inventory/check map to the data and will fail if the checks do
not pass.

tasks

The content package provides the following tasks.

cluster-step

Waits until machine is in Nth (or earlier) position Replies on cluster-remove to advance queue Typical cluster workflow
is add->step->remove->sync Where step or sync are optional. See cluster-add task for more details

stage-chooser

This task uses the stage-chooser/next-stage and stage-chooser/reboot parameters to change the stage of the current
machine and possibly reboot.

This is not intended for use in a stage chain or workflow. But a transient stage, that can be used on a machine that is
idle with a runner executing.

cluster-add

Injects the Machine Uuid into the cluster/machines param. This is the first step in a the cluster workflow Typical
cluster workflow is add->step->remove->sync Where step or sync are optional.

The cluster-* stages provide basic queue management for machines with a shared profile. That profile must have a
cluster/profile field that names the profile. Once the queue is running, machines are tracked in the cluster/machines
parameter.

cluster-add enqueues the machine cluster-step services the queue (takes the next cluster/step in line) cluster-remove
dequeues the machine (should be done AFTER servicing) cluster-sync forces all machines to wait until the queue is
empty

3.29. Content Packages 311

DigitalRebar Provision Documentation, Release v3.9

If you are doing a rolling upgrade, use the following sequence: cluster-add -> cluster-step -> [do work] -> cluster-
remove

If you are coalescing work over multiple machines, use the following sequence: cluster-add -> [do work] -> cluster-
remove -> cluster-sync

The cluster-add process will automatically elect cluster/leader-count leaders during the enqueue step. These clus-
ter/leaders will be be maintained after the run is over and require manual editing to remove. It is possible to pre-create
the leasder list.

It is possible to do multiple add/remove steps in a single workflow

If your cluster is NOT behaving, you can rescue or escape from the cluster stages by setting cluster/escape on the
profile. This will interrupt a cluster in process. Using escape=0 will allow the cluster stages to exit normally and noop
while using escape=1 will exit with an error and the stages will stop progressing. Escape=1 is safter since downstream
actions are blocked.

cluster-remove

Removes the Machine Uuid into the cluster profile Typical cluster workflow is add->step->remove->sync Where step
or sync are optional. See cluster-add task for more details

cluster-sync

Waits until no machines remain. Use with cluster-remove Typical cluster workflow is add->step->remove->sync
Where step or sync are optional. See cluster-add task for more details

inventory-check

Using the inventory/collect parameter, filters the JSON command output into inventory/data hashmap for rendering
and validation. Will apply inventory/check for field valation

network-lldp

Assumes Sledgehammer has LLDP daemon installed so that we can collect data. Also requires the system to have
LLDP enabled on neighbors including switches to send the correct broadcast packets.

3.29.30 terraform

The following documentation is for terraform content package at version v1.11.0-0-
48c1838f5b6343685226ff09045d49cd285e628e.

3.29.31 Terraform Provider for Digital Rebar Provision

The following instructions to install the needed Digital Rebar Provision integrations to support Terraform. Terraform
integrations require that machines can reboot.

The Terraform system is not synchronized with Digital Rebar, this documentation is only intended to cover the
provider.

312 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Note: As of DRP v3.8 (workflows enabled), changes to bootenvs will automatically cause reboots if the DRP run-
ner/agent is allowed to keep running. Otherwise, an IPMI plugin is required. We recommend using both Workflow
and IPMI based reboots to ensure that the systems return to a consistent state.

Source Code: https://github.com/rackn/terraform-provider-drp

Video Demos:

• v3.8 DRP https://youtu.be/RtuZQHKmd9U

• v3.2 DRP https://www.youtube.com/watch?v=6MLyUVgnVo4

License

The Terraform Provider for Digital Rebar Provision is APLv2 licensed. Advanced features or workflow may require
capabilities that use different licenses.

Prereqs

Before starting this process, a Digital Rebar Provision (DRP) server is required, along with the ability to provision
machines. These machines could be VMs, Packet servers or physical servers in a data center.

You must also have installed Terraform and secured the Digital Rebar Provision Terraform Provider. You can build
the provider from source or retrieve a compiled version from the Github releases area, https://github.com/rackn/
terraform-provider-drp/releases.

Basic Operation

The DRP Terraform Provider uses a pair of Machine Parameters to create an inventory pool. Only machines with these
parameters will be available to the provider.

The terraform/managed parameter determines the basic inventory availability. This flag must be set to true for Ter-
raform to find machines.

The terraform/allocated parameter determines when machines have been assigned to a Terraform plan. When true,
the machine is now being managed by Terraform. When false, the machine is available for allocation.

Using the RackN terraform-ready stage will automatically set these two parameters.

The Terraform Provider can read additional fields when requesting inventory. In this way, users can request machines
with specific characteristics.

DRP Machine Configuration

Note: these instructions assume that you are using the RackN extension; however, it is not required for Terraform
operation.

Install the Terraform content package from RackN. This content provides the parameters (described above) and a stage
(terraform-ready) to configure Terraform properties on machines.

Create a workflow that includes the terraform-ready stage to set the two parameters. Once these values are set they do
not have to be run again, but there is no harm in leaving the stage in place.

Before testing Terraform, it is good practice to make sure you can manually cycle machines by changing their workflow
(or change stage and reboot). These changes should result in a machine provisioning cycle.

Make sure that you know your endpoint URI, user and password.

3.29. Content Packages 313

https://github.com/rackn/terraform-provider-drp
https://youtu.be/RtuZQHKmd9U
https://www.youtube.com/watch?v=6MLyUVgnVo4
https://github.com/rackn/terraform-provider-drp/releases
https://github.com/rackn/terraform-provider-drp/releases

DigitalRebar Provision Documentation, Release v3.9

Installing The Terraform Digital Rebar Provision Provider

Please install Terraform on your system: https://www.terraform.io/intro/getting-started/install.html

Download (or build) the DRP Provider from https://github.com/rackn/terraform-provider-drp/releases.

Initialize the plugin using terraform init

Create a Plan using the DRP Provider Resources

The DRP Provider exposes all the objects in Digital Rebar Project so you can script against any operation.

The critical block is the provider block which identifies the provider and login information (shown here with default
values):

variable "api_url" {
default = "https://127.0.0.1:8092"

}
variable "api_user" {
default = "rocketskates"

}
variable "api_password" {
default = "r0cketsk8ts"

}
provider "drp" {
api_user = "${var.api_user}"
api_password = "${var.api_password}"
api_url = "${var.api_url}"

}

Once you have the provider block, you can name resource blocks using the normal object key values. For example, a
machine resource looks like this:

resource "drp_machine" "one_random_node" {
count = 1
Workflow = "centos-7"
Description = "updated description"
Name = "greg2"
userdata = "yaml cloudinit file"

}

You can set any Machine property by naming the property with correct capitalization. You can use the Terraform
syntax to create more complex models like Meta, Profiles.

Note: If you set Profiles, Params or Meta you will override other existing information in the machine! The following
helpers have been defined to avoid this:

• add_profiles: allows you to add profiles to the machine without override other profiles.

There are many options to set including filters, parameters and profiles. For a full example, please look at https:
//github.com/rackn/terraform-provider-drp/blob/master/test.tf.example

Picking Machines with a Pool

You can add a pool block into the plan that will select machines based on the pool name. This is helpful if you want
to partiation your machines. Pools use the terraform/pool Param on the machines and will be assumed to be default if

314 Chapter 3. Table of Contents

https://www.terraform.io/intro/getting-started/install.html
https://github.com/rackn/terraform-provider-drp/releases
https://github.com/rackn/terraform-provider-drp/blob/master/test.tf.example
https://github.com/rackn/terraform-provider-drp/blob/master/test.tf.example

DigitalRebar Provision Documentation, Release v3.9

omitted.

For example:

pool = "deep_eddy"

Picking Machines with Filter

You can add a filters block into the plan that will select machines based on criteria. This is helpful if you want to select
specific types of machines based on Param data. Filters use the API filters definition and are JSON formatted (types
are guessed so numbers and bools are coerced). See API Filters.

For example:

filters = [{
name = "Name"
jsonvalue = "greg2"

}]

You can only filter on indexed fields and defined Params. Further, you cannot search deeply into Params, only the first
level value is matched.

Special Complete and Decommissioning Fields

The provider watches until the machine reaches the complete or complete-no-wait stages; however, you can customize
this behavior by setting the completion_stage to the plan.

You can override the default the decommissioning flow (set workflow or stage back to discover) by adding decommis-
sion_workflow = “my_decom_workflow” to the plan.

You can also override the return icon (map outline) and color (‘black’) by adding decommission_icon and decommis-
sion_color to the plan. Machine icons are handy ways to quickly show status of a provisioning cycle.

Users can set icons using

Meta {
icon = "leaf"
color = "green"

}

Creating RAW Machines using Cloud IPMI plugins

The drp_machine resource relies on having a pool of machines already configured; however, you can use the
drp_raw_machine resource to create machines in Digital Rebar Provision. If you are using an IPMI plugin that
supports creating machines, such as Packet or Virtualbox, and set the machine-plugin value then the plugin will create
(and destroy) the associated machine in the target platform. This can be a very powerful way to build and manage
clusters.

It is possible to use raw and pooled machines together by also setting the terraform/managed and terraform/allocated
parameters when creating machines. This will allow Terraform to treat newly created machines as a pool. It’s important
to include chained depends_on in the resource blocks when using this approach in a single plan.

You may also set terraform/pool to something. The default behavior assumes default but you can use this Param to
manage multiple pools of resources. Select pools using pool in the drp_machine resources.

3.29. Content Packages 315

DigitalRebar Provision Documentation, Release v3.9

Note: Unlike the drp_machine resource, this resource does not wait until the workflow has completed. It will return
when the machine has been create API returns.

An example of the drp_raw_machine resource with correct parameter values is

resource "drp_raw_machine" "packet-machines" {
Description = "Terraform Added RAW"
Workflow = "discover"
Name = "packet_machine"
Params {

"machine-plugin" = "packet-ipmi"
"packet/plan" ="baremetal_0"
"terraform/managed" = "true"
"terraform/allocated" = "false"
"terraform/pool" = "default"

}

Running Terraform

Just use terraform apply and terraform destroy and as normal!

Note: the examples above use variables for endpoint login. The syntax for overriding these variables to set envi-
ronment variables starting with export TF_VAR_my_var= and the variable name or pass -var ‘api_url=https://[ip
address]:8092’. User names and passwords should never be hard coded into plan files!

Extending the Features

Using the terraform/owner parameter helps administrators track who is using which machines. You may also choose
to create multiple DRP users to help track activity.

It is highly recommended that you include decommissioning steps (disk scrub, bios reset, etc) and additional burn-in
to validate systems during the recovery cycle.

Using IPMI to reset machines is a safer bet than relying on the DRP runner to soft reboot systems. If you want to
make sure that you have a consistent recovery process, IPMI is highly recommended.

To improve delivery time:

1. Keep the machines running

2. Use image based provisioning instead of netboot.

Note: If you are relying on the DRP Running workflow to start allocation and recovery, make sure that you have your
tokens set to never expire!

Summary

Now that these steps are completed, the Digital Rebar Provision Terraform Provider will integrate like any cloud
provider.

3.29.32 virtualbox-ipmi

The following documentation is for virtualbox-ipmi content package at version Unspecified.

316 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Unspecified

params

The content package provides the following params.

virtualbox/name

This is the name used by virtualbox for the machine.

virtualbox/user

This is the user that the virtualbox machine is running as

virtualbox/vm-path

This is the path to store vms.

virtualbox/vram-size-mb

The size of the virtual Video Ram in MB.

virtualbox/cpus

Number of cpus to create for this virtualbox machine

virtualbox/disk-size-mb

The size of the virtual disk in MB.

virtualbox/id

This parameter is used by the IPMI Plugin to access the BMC

virtualbox/mem-size-mb

The size of the memory disk in MB.

3.30 Contributing to Digital Rebar Provision

Before submitting pull requests, please make sure to read and understood the Apache license. Submitting a pull is
considered to be accepting the project’s license terms.

3.30. Contributing to Digital Rebar Provision 317

https://help.github.com/articles/using-pull-requests

DigitalRebar Provision Documentation, Release v3.9

3.30.1 Guidelines for Pull Requests

We follow typical Github fork/pull request processes.

• Must be Apache 2 license

• For bugs & minor items (20ish lines), we can accept the request at our discretion

• Does not inject vendor information (Name or Product) into Digital Rebar except where relevant to explain utility
of push (e.g.: help documentation & descriptions).

• Passes code review by Digital Rebar team reviewer

• Does not degrade the security model of the product

• Does not reduce code coverage

• Items requiring more scrutiny

– Major changes

– CLI/API changes, especially breaking compatability

– New technology

• Pull requests should be against a defined feature branch in the Digital Rebar repo

3.30.2 Timing

• Accept no non-bug fix push requests within 2 weeks of a release fork

• No SLA - code accepted at PTLs discretion. No commitment to accept changes.

3.30.3 Coding Expectations

• Copyright & License header will be included in files that can tolerate headers

• At least 1 line comments as header for all methods

• Documentation for API calls concurrent with pull request

3.30.4 Testing/ Validation

• For core functions, the push will be validated to ensure it does NOT break build, deploy, or our commercial
products

• For operating systems that are non-core, we will not validate on the target OS for the push.

• We expect that a pull request will be built and tested in our CI system before the push can be accepted.

3.31 Trademark

The Digital Rebar name and mark are maintained by RackN until the project goverance moves to an independent body.
Users of the project are welcome to use the name and mark. For future project management purposes, RackN requests
vendors obtain permission for commercial uses.

318 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

3.31.1 Name

Digital Rebar usage options are as follows:

• The project name is “Digital Rebar” as two words, both capitalized

• Acceptable alternatives:

– DigitalRebar (avoid in written text in favor of Digital Rebar)

– rebar.digital (the “.” is required in this format)

– dR or DR (do not use Dr)

– Internally within the project, it is acceptable to just say “Rebar”

3.31.2 Logos

It is acceptable to use the Digital Rebar logos when referencing the project or workloads that leverage the project.

Large Icon:

3.31. Trademark 319

DigitalRebar Provision Documentation, Release v3.9

Small Icon

3.31.3 Mascot

Cloud Native Metal Bear

3.32 License

320 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the

(continues on next page)

3.32. License 321

DigitalRebar Provision Documentation, Release v3.9

(continued from previous page)

Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and

(continues on next page)

322 Chapter 3. Table of Contents

DigitalRebar Provision Documentation, Release v3.9

(continued from previous page)

wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,

(continues on next page)

3.32. License 323

DigitalRebar Provision Documentation, Release v3.9

(continued from previous page)

defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright RackN Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

324 Chapter 3. Table of Contents

CHAPTER 4

License

DigitalRebar Provision code is available is available from multiple authors under the Apache 2 license.

Digital Rebar Provision Documentation is available from multiple authors under the Creative Commons license with
Attribution.

Work licensed under a Creative Commons license is governed by applicable copyright
→˓law.
This allows Creative Commons licenses to be applied to all work falling under
→˓copyright,
including: books, plays, movies, music, articles, photographs, blogs, and websites.
Creative Commons does not recommend the use of Creative Commons licenses for software.

However, application of a Creative Commons license may not modify the rights allowed
→˓by
fair use or fair dealing or exert restrictions which violate copyright exceptions.
Furthermore, Creative Commons licenses are non-exclusive and non-revocable.
Any work or copies of the work obtained under a Creative Commons license may continue
to be used under that license.

In the case of works protected by multiple Creative Common licenses,
the user may choose either.

325

https://raw.githubusercontent.com/digitalrebar/provision/master/LICENSE
https://en.wikipedia.org/wiki/Creative_Commons_license

DigitalRebar Provision Documentation, Release v3.9

326 Chapter 4. License

Index

A
ansible

Content Packages, 270
API

Digital Rebar Provision, 70
Architecture Design

Digital Rebar Provision, 244
Architecture Reference

Digital Rebar Provision, 243
Auth Models

Digital Rebar Provision, 248

B
bios

Content Packages, 271
burnin

Content Packages, 271

C
certs

Content Packages, 271
classify

Content Packages, 272
Cluster

Digital Rebar Provision, 268
Command Line Interface (CLI)

Digital Rebar Provision, 69
configuring

Digital Rebar Provision, 23
Content Packages

ansible, 270
bios, 271
burnin, 271
certs, 271
classify, 272
dell-support, 273
dev-library, 274
Digital Rebar Provision, 270
drp-community-content, 274

drp-community-contrib, 281
drp-prom-mon, 281
filebeat, 283
flash, 283
honeycomb, 284
image-builder, 284
image-deploy, 284
ipmi, 286
krib, 288
kubespray, 305
kvm-test, 306
license, 306
os-other, 307
packet-ipmi, 307
raid, 308
slack, 308
sledgehammer-builder, 308
task-library, 308
terraform, 312
virtualbox-ipmi, 316

D
Data Models

Digital Rebar Provision, 247
dell-support

Content Packages, 273
Deployments

Digital Rebar Provision, 34
dev-library

Content Packages, 274
Developer Environment

Digital Rebar Provision, 54, 227
Developing the Command Line Interface

Digital Rebar Provision, 229
DHCP Models

Digital Rebar Provision, 261
Digital Rebar Provision

API, 70
Architecture Design, 244
Architecture Reference, 243

327

DigitalRebar Provision Documentation, Release v3.9

Auth Models, 248
Cluster, 268
Command Line Interface (CLI), 69
configuring, 23
Content Packages, 270
Data Models, 247
Deployments, 34
Developer Environment, 54, 227
Developing the Command Line Interface, 229
DHCP Models, 261
Documentation, 230
drpcli, 69
FAQ, 232
Features, 20
Install, 15
Integrations, 269
Operations, 38
OS Support, 50
Portal, 56
Provision Models, 251
Quickstart, 7
Release Process, 24
REST, 70
Server Architecture, 21
Setup, 19
Sledgehammer, 262
Troubleshooting, 232
Upgrade, 25
UX, 56, 58, 61, 62, 64, 66, 68
Workflow, 264
Workflows, 34

Documentation
Digital Rebar Provision, 230

drp-community-content
Content Packages, 274

drp-community-contrib
Content Packages, 281

drp-prom-mon
Content Packages, 281

drpcli
Digital Rebar Provision, 69

F
FAQ

Digital Rebar Provision, 232
Features

Digital Rebar Provision, 20
filebeat

Content Packages, 283
flash

Content Packages, 283

H
honeycomb

Content Packages, 284

I
image-builder

Content Packages, 284
image-deploy

Content Packages, 284
Install

Digital Rebar Provision, 15
Integrations

Digital Rebar Provision, 269
ipmi

Content Packages, 286

K
krib

Content Packages, 288
kubespray

Content Packages, 305
kvm-test

Content Packages, 306

L
license

Content Packages, 306
LinuxKit

Operating Support, 50

O
Operating Support

LinuxKit, 50
Operations

Digital Rebar Provision, 38
OS Support

Digital Rebar Provision, 50
os-other

Content Packages, 307

P
packet-ipmi

Content Packages, 307
Portal

Digital Rebar Provision, 56
Provision Models

Digital Rebar Provision, 251

Q
Quickstart

Digital Rebar Provision, 7

R
raid

Content Packages, 308

328 Index

DigitalRebar Provision Documentation, Release v3.9

Release Process
Digital Rebar Provision, 24

REST
Digital Rebar Provision, 70

rs_arch_api, 244
rs_arch_backend, 244
rs_arch_cli, 244
rs_arch_frontend, 244
rs_arch_midlayer, 244
rs_arch_models, 244
rs_arch_plugin, 244

S
Server Architecture

Digital Rebar Provision, 21
Setup

Digital Rebar Provision, 19
slack

Content Packages, 308
Sledgehammer

Digital Rebar Provision, 262
sledgehammer-builder

Content Packages, 308

T
task-library

Content Packages, 308
terraform

Content Packages, 312
Troubleshooting

Digital Rebar Provision, 232

U
Upgrade

Digital Rebar Provision, 25
UX

Digital Rebar Provision, 56, 58, 61, 62, 64, 66, 68

V
virtualbox-ipmi

Content Packages, 316

W
Workflow

Digital Rebar Provision, 264
Workflows

Digital Rebar Provision, 34

Index 329

	Community Resources from https://rebar.digital
	Install & Quick Start
	Table of Contents
	License

