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Dimensional analysis as the other language of physics
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We review the use of dimensional analysis as a tool for the systematic study and analysis of
physical concepts and phenomena at multiple levels in the physics curriculum. After reviewing the
methodology of its use and citing examples from classical physics, we illustrate how it can be
applied to problems in quantum mechanics, including research-level problems, noting both its
power and its limitations. © 2015 American Association of Physics Teachers.
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I. INTRODUCTION

Physics majors are expected to have a diverse skill set or
“tool box” after completing an undergraduate degree pro-
gram. Their experiences generally include gaining a broad
physical intuition, being able to perform “back-of-the-enve-
lope” numerical calculations, having experimental skills
across different technical areas (optics, electronics, etc.),
being adept at the use of graphical and statistical data analy-
sis and visualization tools, and possessing substantial pro-
gramming abilities. But above all, students majoring in
physics must typically meet the most formal requirements in
terms of mathematics coursework of any program, aside
from mathematics itself.

The central role played by advanced mathematics in
physics is perha{ps most famously described in a quote by
Eugene Wigner:

“The miracle of the appropriateness of the
language of mathematics for the formulation of the
laws of physics is a wonderful gift which we
neither understand nor deserve. We should be
grateful for it and hope that it will remain valid in
future research and that it will extend, for better or
for worse, to our pleasure, even though perhaps
also to our bafflement, to wide branches of
learning.”

On the other hand, abstract, advanced, or very specialized
mathematical techniques can just as often confuse, confound,
and even discourage students at many stages of their physics
careers. Furthermore, such methods are often well beyond
the level of students early in their physics education, and
may never be amenable for use in a “concepts”-type course
or in service classes for non-physics majors.

It can be useful, then, to have other unifying descriptions
or themes that cut across all subfields of physics, ones that
still allow students to explore, in a serious and nontrivial
way, both classical and more contemporary physics topics,
but with a minimal amount of abstract mathematical machin-
ery. We will argue here that dimensional analysis can be
such a powerful tool.

Dimensional analysis should be familiar, in one sense, to
all students in physics, even if only from the admonition to
“make sure that the units work in your final answer” or simi-
lar a posteriori checks. We have in mind here, however, a
more proactive and a priori methodology to confront (if not
solve completely) many problems, by asking “up front” if
one can extract the necessary functional dependence of some
intermediate or final answer on the physical parameters
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relevant to the problem. Having identified such variables, it
can be the case that the physical dimensions of the desired
final result can, in fact, completely determine (or at least
heavily constrain) the dependence on those values, either as
being rational powers of combinations of the parameters
and/or as functions of dimensionless ratios. This type of
approach can be useful to physics students at every stage of
their careers, but seems to be increasingly unfamiliar to
many.

Dimensional analysis in this form is familiar in engineer-
ing, and many of the standard textbooks on the subject® have
such an audience in mind. Even when this topic is discussed
in Physics Today, the emphasis can still be on more applied
areas.> One intent of this review is to encourage the use of
such methods in the undergraduate physics curriculum, at all
levels of instruction, and especially beyond standard prob-
lems in classical physics, in part by providing a number of
useful examples.

More fundamentally (and perhaps more metaphorically),
we want to stress the fact that dimensional analysis can be
used, almost literally, as another language to describe physi-
cal phenomena. The fact that almost all physical quantities
have dimensions that can be written in terms of rational
powers of a handful (quite literally, five) of basic dimensions
is a powerful unifying theme in physics. We will explore
how a basic “alphabet” of dimensions, including length (L),
time (7), mass (M), charge (Q), and temperature (®), can
be used to “encode” the description of the vast majority of
physical quantities that students will encounter. These
dimensional quantities mesh well with five of the seven
MKSA-Kelvin units used in the current International System
of Units (SI); the other two SI units, a measure of quantity
(Avogadro’s number) and a unit of luminous intensity
(candela), are used far less frequently in yroblems arising in
physics and so will not be discussed here.

In Sec. II, we provide a lightning review of introductory
physics and the “alphabet” of dimensional constructs neces-
sary for describing most physical quantities. Along the way,
we will also collect some fundamental constants of nature,
which we will think of as “basic words” that appear to be
essential constructs. We focus especially on the constants c,
e, h, and kg, as the SI will begin to make use of them as base
quantities in “A more fundamental International System of
Units” starting in 2018.°

In Sec. III, we then review the standard methods of dimen-
sional analysis as used to predict the dependences (or con-
straints) on physical systems in an a priori way. Then, in
Sec. IV, we provide a number of more modern examples of
the use of dimensional analysis as applied to problems in
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quantum physics, even approaching recent research prob-
lems. We conclude in Sec. V with some general comments.

II. REVIEW OF DIMENSIONAL ANALYSIS:
ESTABLISHING THE “ALPHABET” AND SOME
UNIFYING “WORDS”

In a typical introductory physics text (calculus-based or
not), one usually encounters classical mechanics first, begin-
ning with the study of one-dimensional kinematics. In this
context, we need only two dimensional quantities, length and
time, which we will denote by L and 7. We will use the
(seemingly) standard notation that [] is to be interpreted (or
read) as “the dimensions of y,” so that we have

L

) =7, and fal)] = 75

, a(0)] (M)

for position, velocity, and acceleration, respectively. While
we might advocate the use of specific units such as meters
and seconds in most problem-based applications, one could,
in principle, just as logically use furlongs and fortnights.

Extending classical mechanics to include Newton’s laws,
we need the concept of inertial mass, with a new dimension
(M), where some familiar dimensionful quantities are given
by

R R I
Pl=pm. and =15, @

for force, energy (kinetic, potential, etc., including work),
pressure, and density, respectively. Much of classical
mechanics, fluid mechanics, many engineering applications,
and even the formalism of quantum mechanics require only
these three dimensions, L, T, and M.

It is often in the context of classical mechanics that stu-
dents encounter one of the first true “unifications” in physics,
namely, the law of universal gravitation

Gmm
Fg==""35—. 3)

with the same force applying to apples and planets, and with
Newton’s constant G as a truly fundamental constant of na-
ture. For future reference, we note that

[G] = “

MT?"
We also note in passing that the principle of equivalence
states that inertial and gravitational masses are one and the
same, so the same basic M dimensionality is used for both.

Later in an introductory course, when one treats electricity
and magnetism (EM), a useful “bumper sticker” or “fortune
cookie” description might be

“Electric fields are caused by static charges and
magnetic fields are caused by moving charges”

and one can choose the required new dimensional quantity to
be charge, denoted here by [¢q] = Q. The situation regarding
units for EM problems has a much more storied history than
that for mechanical dimensions, with extensive discussions®’
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in the very early pages of this journal. We note that in a
recent edition of the most widely used graduate textbook on
electrodynamics,® the author not only includes an exhaustive
discussion of the relative merits of MKS versus CGS units,
but even chooses to “switch gears” between the two, halfway
through the book. We also recall that for metrological rea-
sons the basic SI dimensionful quantity currently related to
charge is actually the Ampere, hence the MKSA label.

Imagining, as we do, that our discussion will be mostly used
for undergraduates (majors and non-majors alike, at all levels),
we choose to focus on charge (Q) as the new basic dimension
underlying EM, and are happy to admit that we will always
have in the back of our mind an MKSA-like system, but with
the Coulomb as the explicit realization of that new dimension,
not the Ampere. In that context, some of the basic quantities
encountered in EM problems have dimensions

- Q _ _ MLZ _ Q2T2
ML? M
[ ]=ﬁ7 and [B}_a7 (%)

for current, voltage/EMF, capacitance, resistance, and mag-
netic field, respectively.

If we continue to imagine an MKSA-type description of
electric and magnetic fields, we can use the forms of Gauss’
law and Ampere’s law in this language (in differential form,
for static fields), namely,

v-E=L

and V x B =y, (6)
€0

or similarly the electric and magnetic force laws of Coulomb
and Biot—Savart

qf' Ho Ixr U
= B=-
4megr? and 47 J r2 ar, 7

to describe two new fundamental constants governing the laws
of electricity (¢p) and magnetism (ug). The extension of these
results by Maxwell also led to another of the great early unifi-
cations of physics, bringing together electricity, magnetism,
and optics, with their fundamental constants being related by
¢ = 1//€l,. Finally, in contrast to the situation for mechan-
ics, there is a fundamental quantum of charge, namely, e,
which will be important for many physical processes.

Thermal physics, covering both thermodynamics and sta-
tistical mechanics, introduces a new physical dimensionality,
and a new fundamental constant. The concept of absolute
temperature (hereafter denoted as Tk, to avoid confusion
with the T used here to represent the time dimension) as
described by the ideal gas law, PV « Tk, requires a new
dimension, which is conventionally written as [Tx] = ®. The
fundamental constant associated with this field of study is
Boltzmann’s constant kg, appearing in the ideal gas law as
well as in the definition of entropy, S = kg log(Q); we note
for future reference that

MIL?

[kg] = o (8)

The “unification” sometimes cited here is the connection
between the microstates of a physical system and its macro-
scopic properties.
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The final topic considered in most introductory textbooks
is “modern physics,” which includes both special relativity
and quantum mechanics, along with their applications or
realizations in nature. While these approaches are indeed
radically new ways of thinking of the way nature works
(especially in the realm of the very fast and/or very small)
they do not require any new dimensional “letters” in the
alphabet: the set L, T, M, Q, and ® suffices. A discussion of
modern physics does, however, introduce two fundamental
constants of nature, namely, Planck’s constant 7 and the
speed of light ¢, which have dimensions

ML? L
(] = 7 and, of course, [c] = . )

Of the five most foundational fundamental constants
included here, G, e, ¢, h, and kg, we note again that the SI
system of units will begin using the last four as base quanti-
ties within the next decade. In a review describing that
change, Newell® notes that “...the gravitational constant,
G—which might seem a reasonable choice for a fundamental
constant more directly linked to the traditional base mechani-
cal units—is inherently difficult to measure,” citing a recent
review article.” The important (and dynamic) connection
between dimensional analysis and metrology'® is one that is
useful to recall in this context, as are popular treatments fo-
cusing on describing these fundamental constants.'’

ITI. REVIEWING CLASSICAL METHODS AND
APPROACHES

We begin our review of some of the standard results of
dimensional analysis with a classic example. Imagine a mass
(m) oscillating in one dimension on the end of a spring
(spring constant k), and subject to no other forces. Besides m
and k, the only other dimensional parameter is the initial dis-
placement x, of the spring from equilibrium. What can
dimensional analysis tell us about the period (7), amplitude
of motion (A), and total energy (E) of this system, in terms
of these parameters? The dimensions of the various quanti-
ties in question are

F

=, W=t =

=72 and [xo] =L,

X

so if we assume a power-law dependence, we can write
T= Cfm‘“kﬁxz), where o, f8, and y are arbitrary powers to be
determined, and C, is a dimensionless constant. Taking the
dimensions of both sides, we have

B
(1] = [C ] W [xo] — T:Aﬂ(%)L% (10)

since [C.] is dimensionless. Then, matching basic dimen-
sions, we require that

M:  0=a+p+0, (11)
L: 0=0+0+7, (12)
T: 1=0-28+0, (13)

which is satisfied by a=1/2, f=—1/2, and y=0, so that
T x \/m/k. Recall that the exact answer one obtains from
solving the differential equation is 1 = 27\/m/k.
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This is the type of result that is the most straightforward,
where dimensional analysis alone determines how the result
depends on the physical parameters, along with an undeter-
mined dimensionless constant of O(1), hopefully within an
order of magnitude of unity, say 10", If instead we ask how
the amplitude A of the motion could depend on m, k, and x,
we naturally find that A oc m° k% x}, oc xo. If we try the same
approach for the total energy, we write E = C m* k” xp, and
matching dimensions, we find that o =0, f=1, and y =2, so
that £ kx(z) which is also correct, with Cr = 1/2.

If instead of an initial x,, we give the mass an initial veloc-
ity vo, the analysis proceeds as above, also giving
T o \/k/m, but now A o vg/m/k, and E o< mv}, again with
the number of dimensionful parameters matching exactly the
number of dimensional constraints.

However, considering the more general problem with both
an initial displacement and an initial speed, we find that the
system is under-constrained, since assuming

2 B 0
E xcm® kﬁx;’; vg — A/;—I; = (M)" (M> (L) <E) (14)

12 T
gives
M: +l =0+ p+0+0, (15)
L: +2=0+0+7y+94, (16)
T: —-2=0-2+0-0. a7

We can solve for three of the exponents in terms of the
fourth, so that we might write a=1 — f, 6=2 — 25, and
y =2p. Thus, the energy can be written in the form

i
18 8 28 228 2 [ kg
E=Cypm 7"k xyg vy & =Cpmg| —5
mv}

:Cﬁmvéﬂﬂ, (18)

where the analysis itself has suggested a new dimensionless
ratio, defined by

2
In= £02. (19)

muvg
This result does, of course, reproduce the two earlier special
cases, since for § =1 we have the pure-displacement case of
E o kx3, while for =0 we have E o mv3.

Since the dependence in Eq. (18) is possible for any value
of f3, and any integral value of /3 is allowed, along with an ar-
bitrary dimensionless constant Cp, we can write even more
generally that

E = (m2)(CoTl® + C TI' + G, I + - )

= (mrg)

Z Cpll? | = mud F(IT), (20)
f=0
so that in fact any function of the dimensionless ratio IT is

allowed. In this case, of course, the appropriate function is a
very simple one, since

mvz  kx: mu? kx? 1
E=—"0470_"7"70 270 F(II) ==(1411).
St = povcl (I1) 2( +10)
2D
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This example is a model for the more general results made
famous by Buckingham,'? who was one of the first to system-
atically describe methods of dlmenswnal analy51s leading to
the so-called Buckmgham Pi theorem.'? If the system of
dimensional equations is under-constrained, having M dimen-
sionful variables but only N constraints, there can be
I =M — N different dimensionless ratios, so the general result
might depend on F(I1;, I1,,....I1;). Even in cases where one
obtains such a general result, depending on an unknown func-
tion, considering limiting cases can still provide information
on the functional form of F(IT). We will see explicit cases of
nontrivial forms for F(IT) in examples below.

Dimensional analysis methods have been apphed to other
classical mechanics systems' 4 and to dlsperswn in waves,'
but is é)erhaps more familiarly used in fluid dynamics.
Jensen'® notes that the drag force (Fp) on a spherical object
(radius R), moving at constant speed v through a medium of
density p and viscosity n (where [] =M/LT), can be written
in terms of these parameters as

v Rv\”*
FD O(par]ﬁR/U() :p“n]7“R1+1Ul+“ O(;’IRU (M) ) (22)
n

As expected, this form correctly reproduces both the Stokes’
law limit for small, slow particles in a highly viscous material
(F =6mnRv) for «=0, and the limit agpropriate for large,
fast-moving objects, where F oc pR*v”, for o= 1. Noting
Buckingham’s theorem, we expect more generally that the
force law would be given by F = nRvG(II), where in this case
the dimensionless ratio is

R
H:%:Re (23)

where Re is the famous Reynolds number and G(IT) is the
undetermined function. In contrast to the straightforward case
of the harmonic oscillator, where the general form of the
energy is known, the complex nonlinear problem of fluid flow
admits no such simple, closed-form solution for G(IT). But
this approach does single-out the correct combination of vari-
ables as an important dimensionless ratio of direct relevance
to categorizing different kinds of fluid flow. There are literally
dozens of dimensionless numbers (ratios of physical quanti-
ties) used in fluid dynamics alone,!” so this situation is exem-
plary of many other physical and/or engineering systems.

Perhaps even more importantly, such dimensionless ratios
can be used in scaling arguments, so that systems with differ-
ent parameters, but identical dimensionless ratios, can exhibit
similar behavior—an idea used in applications such as wind
tunnels. The outcome of identifying scaling behavior can be
one of the most important aspects of determining the dimen-
sional “content” of a physical result through such methods.

Going beyond mechanics, consider next the problem of
finding the time-dependent current in a capacitor (C) being
charged through a resistance (R) by an external battery (&).
We can proceed by identifying I(f) oc E‘RPC7#°, and match-
ing dimensions (using Eq. (5)) to find that

e\ €
I +1R7175 7(3(5:_ v Z R 24
(1) x & ' =2lze) —% (I, (24
where IT=¢#RC, implicitly identifying the time constant for
the problem. The standard analysis of the time-dependent

differential equation of course gives F(I1) = e ", so we see
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that non-power-law functional dependences of dimensionless
ratios are consistent with Buckingham’s Pi theorem. An
interesting, and far more open-ended, application of dimen-
sional anallysm to a Lenz’s law problem has been presented
elsewhere.

As a more advanced example in electrodynamics, consider
the power (P) radiated by an accelerating point charge. The
charge (¢) and acceleration (a) have obvious places (and
dimensions), and since this problem involves both electric
and magnetic phenomena, we might expect both ¢, and y to
play a role. Thus, we write

P:Cpeg,ugqyaaaﬁ

2r2\* /N L\
EE el e

This is easily solved to find o =1/2, f=3/2, y=2, and
0 =2, giving

P=Cpel/2u3/2q2a2

2.2
@%7 (26)

if we make use of the connection that ¢ = 1/ \/m, this
expression is consistent with the standard result,’® where
Cp=1/67. The derivation of the power radiated by an accel-
erating charge is a challenging one in advanced electrody-
namics, but can be studied in this way using much simpler
techniques.

If we ask instead whether a particle moving at constant
speed vy can radiate, replacing @ — vy in this analysis, we
find that no solution of the resulting system of equations is
possible. This is a very useful result, reinforcing the fact that
charges in uniform motion do not radiate, simply on dimen-
sional grounds. Dimensional analysis has also been applied
to the problem of the gravitational power radiated by a body
in a circular orbit,”® but because there are fewer constraint
equations (just three since only M, L, and T are involved in
mechanics problems, and not Q as in EM) and more dimen-
sional variables, more assumptions are required to connect
with the answer as derived in general relativity.

As an example where dimensional analysis can highly
constrain, but not necessarily pinpoint, the dependence on
physical quantities, consider the problem of the time depend-
ence of the thickness x(#) of an ice sheet floating on water,
maintained at a constant (externally imposed) temperature
difference AT, during the winter. One presumes that the
physics of the problem must depend on the thermal proper-
ties of the ice, especially the thermal conductivity (x) and
latent heat of fusion (L, via the heat released through freez-
ing one layer of ice as it flows through the existing ice sheet),
and the density p relates the volume of ice frozen to its mass.
Thus, the simplest likely power- law dependence on these
quantities would be x(f) K“ATextt*L}p or, in terms of
their dimensions

Since the system is under-constrained, we can solve for four
powers in terms of the fifth, and we choose to write € = —o,
0=1(1/2) =20, y=1 — 0, and f =, so that
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x(t) o< K'ATE L2 p " = ( > tVLr. (28)

In this case, the fact that there is a dimensionless quantity
IT = kATex/ tL%p, is not as important as the specific power-
law dependences of the individual physical parameters.

For example, since the ice presumably grows thicker with
time, we expect that 1 — o>0 (hence « < 1) on physical
grounds. We would also expect, all other things being equal,
that the ice thickness will be smaller if either AT, or K is
smaller (less heat flow) or if L is larger (harder to freeze the
ice), which suggest that « >0 and 1/2 — 20 <0 (or oo > 1/4),
respectively. Combining these conditions gives 1/4 <o <1,
so that the choices o =0, 1 are immediately disallowed on
physical grounds; the dependence L}/ 22 tself might then
suggest (but certainly not prove) that o« =1/2 is a natural
choice, giving

ATo \ 12
x(r)c<KpLF‘z> : (29)

where C is a dimensionless constant. A classic “first
principles” calculation®' (from the late 19th century) equat-
ing the heat flow through a slab of ice (already of thickness
X), namely,

ATexl

dQ
X KA 30
oA (30)

with the heat given off in freezing the next infinitesimal layer
of ice, via

dQ = Lpdm = L¢[dV p] = Lp[(Adx)p], €3]

gives the relation

xdx = <KATM) dt, (32)
Lrp

which can be integrated to obtain Eq. (29), with C = V2.

IV. EXPLORING THE QUANTUM FRONTIER

If we associate the birth of quantum mechanics with the
extraction of Planck’s constant (h or /) from studies of the
nature of blackbody radiation, then the quantum era is well
over a century old. Some of the earliest (now historical)
results are well known, but can still provide an illustration of
the use of dimensional analysis in a more “modern physics”
setting.

For example, in discussions of blackbody radiation one of-
ten starts with the notion of the frequency-dependent inten-
sity, namely, the power (energy per unit time) per unit area
per unit frequency interval, sometimes denoted as dR(f)/df.
The total intensity, integrated over all frequencies, is

_ [*dRr(f)
RT:L =l (33)

and both quantities can be directly related to experimental
measurements. Theoretical derivations related to blackbody
radiation are most easily done, however, using the notion of
the frequency-dependent energy density (energy per unit
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volume, per unit frequency interval), often written as p(f),
and we will apply the methods described above to see how
p(f) and Ry depend on the fundamental physical constants of
the problem. We first note that the dimensions of these two
quantities are

M
[Rr] = _cnerey 7 and
area - time 773
energy M
[o(f)] (34)

~ Volume - frequency TTL

Since the problem clearly involves quantum mechanics, pho-
tons (hence relativity), and thermal physics, we can expect 7,
¢, Tk, and kg all to appear, and for frequency-dependent
results, also f. In the spirit of the original derivation, we will
actually use /h = 2nh, which of course has the same
dimensions.

Starting with p(f), for example, we try p(f) oc h*fPc'T kg,
or in terms of dimensions

M (M2 (N LN s (ML
e e
TL T T T oT
This can be solved (say in terms of o) to give e=1 — o,
o0=1—oa,y=-3,and f=2+0a, or

o) = ClksTe)fe ) (%)

=¢ E_z (f )] (k:];K)a_l

7 N
~Lonr(n=2) (36)

where the analysis has correctly identified the appropriate
dimensionless ratio Il, and F(IT) is an arbitrary function
thereof. This result does, of course, agree with the standard
form

2 8
p(f) :];—3 (hf) [m} : (37

For the total intensity, since we’ve integrated over fre-
quency, we have only four dimensional parameters and
might therefore expect a more determined result (four equa-
tions in four unknowns). If we write Ry oc h*cPTi kS, we find
by matching dimensions that

k4
Ry = Ch3c kT = (C h3—i2) Ty, (38)

which is indeed consistent with the Stefan—Boltzmann equa-
tion Ry = oTy, where o = (27 /15) (k3 /h3c?).

One of the benchmark quantum mechanical systems is the
hydrogen atom, for which one can easily obtain order-of-
magnitude estimates of most relevant quantities, including
energies and spatial extension, using dimensional analysis.
With the understanding that this is a problem involving the
electrostatic attraction of two fundamental charges (e), that
the electron sets the relevant mass scale (m,, just as the
lighter mass sets the scale in two-body classical orbit prob-
lems), and that it involves quantum mechanics, we can pro-
pose for the energy scale that
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’ Q2T2> ' <ML )
— (0)* M) .
(©) (W ) (%5
Matching dimensions, one finds that a=4, f=-2, y=1,
and 6 = —2, so that

e4m

n=Cn gz (39)

In this case, comparing to the standard expression for the H
atom energy levels, one finds that Cyy = —1/327% for the
ground state; if one assumes that the appropriate fundamen-
tal constant for electrostatics that should be used for dimen-
sional analysis problems is actually 4me, then the estimate
above would be much closer to the ground-state energy
scale, with Cpy; = —1/2. Using the same dimensional argu-
ments, one can find that the associated length scale has
dimensions (7 /m,)(eo/e*), which is indeed proportional to
the Bohr radius. In any dimensional-analysis approach to the
physical parameters for a given quantum state ,,, we can of-
ten find the dimensionful dependences correctly, but we
should keep in mind that each one may depend on an unde-
termined function of the quantum number(s) and in the case
of the H-atom energies this is F(n, [, m)=F(n)= 1/n?, pro-
viding a different example of an undetermined dimensionless
pre-factor.

Students can certainly hone their dimensional analysis
skills against such problems with historical and well-known
answers, but one of the reasons for pursuing this method is
to be able to approach new physics in new contexts. As a
more recent example, consider the study of the interactions
of neutrons with Earth’s gravitational field. It was shown
long ago®? that one could measure the local value of g by
watching neutrons “drop” in the Earth’s gravitational field, a
purely classical effect. The effect of terrestrial gravity on the
phase of the wave function of an otherwise free neutron—a
much more foundanonal topic—was also measured more
than 35 years ago.””> Far more recently, however, evidence
for quantized states of a neutron®* in the gravitational poten-
tial of the earth has been published.

We can think of this last system as a textbook problem of
a particle in a potential described by

Wﬂ:{+m

mugz

z <0,
250 (40)
which can be treated in position space,” in momentum
space,”® or by WKB methods.”” One can repeat our now-
standard dimensional analysis for the energy scales associ-
ated with the quantum states of the neutron in this }i)otentlal
starting with E oc m*gPi’, to find that E o (mngzh2 CIfwe
substltute numbers, we find that these energies are of order
1073 J~ 10 "?eV; the wavelength of radiation associated
with transmons between such quantum states would be of
order A, = 2nhc/E ~ 10° m, which is not remotely experi-
mentally accessible. But if we instead ask for the typical spa-
tial extension / of the quantum states, which gives an
estimate of how high above the flat surface the neutron will
hover, we find that / ~ (7% /m2g) 13 ~ 10 pm, which is small
but still measurable. The experimental evidence for the
quantum structure of the neutron’s bound states was made by
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actually probing the spatial extent of the neutron wave func-
tion on such table-top length scales.?*

In approaching the “full-blown” versions of many quantum
problems (such as the H atom or the neutron in a gravitational
field) by actually solving the Schrodinger equation, one of
the first steps is often to rewrite the differential equation in
dimensionless form, which often automatically identifies the
appropriate length, time, and energy scales. But for students
who never get that far in the physics curriculum, dimensional
analysis can provide a way to extract some of the truly inter-
esting science in the problem, in a quantitative manner, with-
out focusing on the details of the mathematical derivations.

At an even more fundamental level, the problem of how to
combine quantum mechanics (%) and special relativity (c)
with gravitation (G) is still an open question, with
approaches such as string theory and loop quantum gravity
being widely debated and studied. But presumably in any
such theory, these three fundamental constants of nature will
be combined to set the time, length, and ene ey scales for
which such a description would be necessary.” Thus, if we
take combinations of the form 7#*cfG? and match dimen-
sions, we find

h 7
Lp = —G~10*35m, Tp = —G~3><10*44s,
3 S
hS
and Ep = L
VG

for the Planck length time, and energy, respectively. The
possibility of usmg such quantities as the ba51s for a system
of “absolute units” has often been discussed.*’

A problem related to the quantum Hall effect (discussed
further below) is that of the discrete energy levels of a
charged particle in a uniform magnetic field, giving rise to
so-called Landau levels. The quantized energies E; could
depend on 7, e, m,, and the value of the applied magnetic
field By. Imposing the dimensional matching conditions, we
find that

10" GeV 41)

B
Epoch'e'Bim™" = h<em°) — ho, (42)

where o is the classical cyclotron frequency. Even if stu-
dents are not expecting to see the classical quantity ¢, it
automatically comes out of the analysis.

One of the first experiments that gave information on the
mechanism of electrical conduction was the (classical) Hall
effect, which can probe the sign and density of the actual
charge carriers. In the standard rectangular-bar geometry
(long bar of width d and thickness 7), there is a current /
along the long direction, with a magnetic field B in the ¢ or
thickness direction, perpendicular to the current. The ratio of
the voltage induced across the bar to the current along the
bar is often called the Hall resistance and can be shown via
an elementary analysis to be Ry = B/(etn,), so that measure-
ments of Ry plotted versus applied field (B) give a straight
line with a slope determined by the material (electronic den-
sity n,) and geometric () properties of the sample.

For some samples (MOSFETs, for example), at suffi-
ciently low temperature and high magnetic fields, it was
shown by von Klitzing er al.*® that there were well-defined
plateaus in the R;; versus B plots, corresponding to quantized
values of resistance, given by Ry = Rg/i (i an integer), where
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the value of Rx was found to be independent of the material
properties (n,) and the geometry (¢, d, etc.). Because this
seems to be a quantum phenomenon, we might guess that
this new fundamental unit of resistance Rx (now known as
the Klitzing constant) might depend on 7, e, perhaps the car-
rier mass m1,, and let’s even imagine a possible dependence
on €. If we then write Rg ox i*e’m’e’ and match dimen-
sions, we find that «=1, f=-2, and y=0=0, so that
Ry o< li/e*. The conventional definition is actually that
Ry = hle*~25.8kQ, and this value is now used extensively
in the field of metrology.®' To students, at any level, who
have only been introduced to quantization in the context of
discrete energy levels or angular momenta, the fact that there
are other important manifestations of quantum mechanics
that give rise to quantized physical properties, such as resist-
ance, can be enlightening.

As two more such examples, we recall that in supercon-
ducting materials, both the circulation®? of the superfluid ve-
locity v, and the magnetic flux* are quantized. If we write
these quantities in terms of their definitions, namely,

C= TFVS -dl and ®p = J B - dA, 43)
A

then dimensional analysis alone can be used to derive their
dependence on fundamental parameters, using as input the
dimensions of the factors in the integrands. For circulation,
we might imagine the relevant parameters being 7 and m
(only mechanics seems to be involved, classical or quantum),
while for @z we might guess %, m, e, and perhaps (i, since it
is a magnetic effect. Assuming power-law dependences in
both cases, we find that

(44)

where the last expression in each case is the actual
“textbook” result.

As our final example, we consider a neutron star—a quan-
tum system that shows just how important dimensionless pa-
rameters can be. The stability of a neutron star arises from
the interplay between the gravitational self-energy V(1) of
the star’s mass M- and the quantum mechanical zero-point
energy Eq(r) of the confined neutrons, both of which depend
on the star’s radius r. If we write each of these energies as a
function of its expected physical parameters, we have

V(r) oc GMPy and  Eo(r) oc i2mlPr2, 45)

Matching dimensions in each, we then find that

GM2 2
Va(r) oc — . = and Ep(r)

el (46)
The first result is consistent with standard gravitational
theory (though we have inserted the physically relevant
minus sign by hand!), while the second is consistent with
“particle in a box” quantum mechanics. Of course there are
many neutrons (N, ~ M:/m,, ~ 10°7 > 1) so Ey(r) will no
doubt also depend on a yet-to-be-determined function F(N,,)
of that dimensionless parameter.

If we combine the expressions in Eq. (46) and then mini-
mize the total energy as a function of r, we find for the neu-
tron star radius
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* —9
Ins = GTgmnF(N,,) ~ (1072 m) F(N,). 47

Note that if we had attempted to use dimensional analysis
to predict rys oc i*GPMIm? directly, we would not have
found this unambiguous prediction—only a dependence of
the form (7% /G)M?m;;>~"—so focusing first on the two sepa-
rate energy expressions in this case was a more powerful
approach.

If F(N,)) were only linear in the number of neutrons (each
neutron having the same zero-point energy), then the predic-
tion for the physical size of this system would be roughly
107> m, which is (accidentally!) of the same magnitude as
the Planck length in Eq. (41) and would be physically irrele-
vant. However, this approach based only on dimensional
quantities misses an extremely important aspect of quantum
mechanics, namely, the Pauli exclusion principle. Because
neutrons are spin-1/2 fermions, only two of them can be in
the same spatial wave function, and therefore the average
energy of each increases with N,. (The estimate based on
F(N,) o« N, would be appropriate for bosons.) A simplified
calculation™® based on filling energy levels of a three-
dimensional well shows that F(N,) ~ N>/3, leading to a
more realistic estimate of ryg~ 10km, much closer to the
actual answer.

It is hard to think of any other example where dimen-
sional analysis does, in fact, find the correct dependences
on the appropriate physical constants, but then proceeds to
get the actual numerical answer more wrong! One should
never forget that there are important physical constraints
(such as the spin-statistics theorem) that can be completely
missed by dimensional analysis; quantum physics is far
more than just 7!

V. COMMENTS AND CONCLUSIONS

In this note, we have reviewed the basic assumptions and
notation underlying dimensional analysis, provided examples
of its use (and limitations) in the realm of classical physics,
and illustrated how it can be successfully applied to more
modern scenarios in the quantum regime, including some
that come close to current research problems. This discussion
has been in the spirit of a remark made by Lord Rayleigh®
exactly one century ago, regarding this method (which he
describes as the principle of similitude):

“I have often been impressed by the scanty
attention paid even by original workers in physics
to the great principle of similitude.. I have thought
that a few examples, chosen almost at random
from various fields, may help to direct the
attention of workers and teachers to the great
importance of the principle.”

The examples considered here have been taken from a va-
riety of resources, from elementary discussions in
introductory-level texts, to more advanced texts for physics
majors, and from recent (and not-so-recent) research papers.
Large numbers of further examples are readily obtainable
with a minimum of effort. The author maintains a collection
of examples on a public web site,*® and encourages readers
to submit additional examples.

The examples in this article have been chosen to be as rep-
resentative as possible of the different types of “outcomes”
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that can be obtained using dimensional analysis, including
cases where:

* The dependence on all relevant parameters is completely
determined;

* No solution using the relevant parameters is found to be
possible;

¢ New dimensionless combinations are found, which can be
useful for scaling arguments, either phenomenological or
fundamental in nature;

e Constraints are placed on the power-law dependences,
which can be used to find “likely” solutions; and

* Dimensional analysis predicts the dimensional dependen-
ces correctly, but the dimensionless factors are numeri-
cally important, sometimes indicating that a significant
physical effect has been ignored.

Dimensional analysis is not the only way to approach a
new problem, but it can often be used to gain significant
ground along the path towards understanding the physics
behind the mathematics. There are many powerful analytic
techniques in physics, such as the use of symmetry, which
can be brought to bear on some, but not all, problems. One
measure of a professional is not only the ability to use a vari-
ety of tools, but also the knack for knowing which tool(s) to
use, and when.

In deciding whether to make use of this particular tool in
one’s courses or curricula, we might turn to discussions aris-
ing from physics education research related to the question
of the nature of effective instruction. For example, Wieman
and Perkins®’ ask (and answer) an important question:

“But what specifically do we mean by effective
physics instruction? It is instruction that changes
the way students think about physics and physics
problem solving and causes them to think more
like experts—practicing physicists. Experts see the
content of physics as a coherent structure of
general concepts that describe nature and are
established by experiments, and they use
systematic concept-based problem-solving
approaches that are applicable to a wide variety of
situations.”

Whether or not one considers the fact that the dimensions
of almost all important physical quantities can be “spelled”
with a minimal five-letter alphabet to be miraculous (in the
Wigner sense'), dimensional analysis provides a methodol-
ogy that allows students to work towards mastery of all of
the skills mentioned above. We advocate here that dimen-
sional analysis be considered as another important pedagogi-
cal component, at many levels, complementing higher-level
mathematics, and that it be used in the study of physics as
another language.
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Fort Wayne Electric Company Ammeter

The Fort Wayne Jenney Electric Light Company was organized in 1884 to manufacture and sell apparatus for the
nascent electric power industry. Jenney arc lamps were used illuminate the Statue of Liberty for the first time in 1885.
By 1899 the name had changed to the Fort Wayne Electric Company when the company was purchased by the General
Electric Company of Schenectady, New York. This heavy duty ammeter was used in industrial applications. It is in the
Greenslade Collection. (Notes and photograph by Thomas B. Greenslade, Jr., Kenyon College)
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