Dimensional analysis
 Scaling - apowerful idea
e Similitude

» Buckingham Pi theorem

» Examples of the power of dimensional analysis

Useful dimensionless quantities and their interpretation
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Scaling and similitude
» Scaling isanotion from physics and engineering that should really be
second nature to you as you solve problems:

» How does dependent quantity y scale with variations of independent
quantity x?

» Smilitude ismore of an engineering idea: suppose we scaled
parameter x by afactor C. If we wanted to maintain the same value of
guantity y, how would we need to rescal e the other independent
parameters?

» Put another way: if we measure an invariant quantity, like the speed
of light, we get 3 x 108 m/s. We know that if we want to change our
length and time units so that the speed of light is“1” in our new units,
we have to rescal e both space and time.

» Theinvariance of actual physics and the requirement of a consistent
system of unitsisinformation at our disposal that we usually don’t think
about conscioudy. Often we can use thisinformation to solve some
pretty amazing problems without resorting to gory computations!




Buckingham Pi theorem: statement Buckingham, Phys. Rev. 4, 345 (1914)

If aphysical problem involves n variablesyv; ... v, that depend on r
independent dimensional units, then the solution of the problem can
always be written in the form:

o=fm,n,,.,n.,.)
wherethell, are(n - r) dimensionless variables of the form
— \yHkay g H H
I_I K _Vl k1V2k3 ___Vnkn

and the ; arerational numbers chosen to make the product
dimensionless.

Units

We have to pick m fundamenta units F; - examples of theseare
length L, time T, and mass M.

We can write one of our varisblesv; as: V; = p;[v;]

Thenwrite  [v,]= I_J F> Example: [g] = LT
Note that the fundamenta units have to be independent:
I_J Fixi =1- X% =X,=+-=X%,=0.

Can define a dimension matrix for our problem:

&, o &y, .
A=| @ . Tdlsushow al thevariablesv,

depend on the fundamental units.




Dimensionless quantities
What are the dimens onless combinations of our variables?
[I_I k] - [V{lklvélkfi .. _Vélkn J - 1

Thisisequivalent to writing

m

Z Aty Ay Tt A M, =0
i
- A, =0

That is, the null space of the dimension matrix A is spanned by a

basis of n-mvectors ,, each of which correspondsto an
independent dimensionless product of our original variables.

Buckingham Pi theorem

Suppose we can writeaphysical relationas  d(v,,---,v,) =0

By the restrictions that:

(a) This should be true independent of any units system we use,
provided the fundamental units make sense, and

(b) The units of ® have to be some combination of the units of the v,

we can show that it hasto be possible to write the physical relation
a o=fMm,N,,..MN.)

I'll provide alink to arigorous proof on the course website.
Note that the above meanswe can dsowrite: M, =g(M,,....M )

That is, we can always write one dimensionless product as afunction
of the other dimensionless products.




Example of the Pi theorem in action: a simple pendulum

Consider a pendulum of mass mat the end of arope of length |, and
worry about describing the displacement of the pendulum 6 as a
function of itsinitial position, 6,.

What are our variablesto work with? 6, 8, m, 1, g, t.
That's 6 variables.

How many dimensions do we need to worry about?

[6] dimensionless
[6,] dimensionless
[m] mass

N length

[d] length/time?
[t time

> three dimensions.

Simple pendulum

So, we should be able to find 3 independent dimens onless
parameters.

» Notethat misthe only variable to contain the mass unit.
Therefore it cannot be part of any dimens onless parameters-
there’ sno way to “cancel” out the mass dependence.

Common sense and inspection suggest the following
dimensionless parameters:

n,=e
M, =6,
n, =9

We know we can write 8 = f(@o,?tzj wherefisdimensionless.




Simple pendulum

6= f(eo,?tz)

If we know that the motion is periodic, we can write

£(6,,0)- f(@o,?w]:o

We can solve this equation in principle for P, the period, and find,
in terms of another dimensionless function W(6,):

P = w(eo)\f?

So, knowing only the unitsinvolved and the fact that pendulum
motion is periodic, we ve found:

* The period isindependent of pendulum mass, and scales asthe
sgquare root of g/l.

» The period in general depends on initial position.

Cavedts:

* In exactly the same way that a basis set of vectorsisnot unique
(anew basis may be formed by an appropriate linear combination
of an old basis), our choice of dimens onless parametersis not
unique!

» The dimensionless parameters must be independent.

o Start with your initial variablelist. If you try to use too few of
them, you'll find that you can’t make the right number of
dimensionless parameters.

 Can go through and find dimensi onless quantities by brute force,
but intuition and ingpection are generally used.




Fluid flow in a pipe

Suppose what we want to know is the pressure drop along a
length of pipe with fluid flowing through it.

Relevant variables:

ML-2T-2 oP average pressure gradient
L D pipe diameter
L e average sze of pipe wall roughness
ML-3 P density of flowing fluid
ML-LT-L M viscosity of flowing fluid
LT? \Y vel ocity of flowing fluid

Fluid flow in a pipe

Six variables, three units implies three independent
dimensionless products describe this phenomenon.

Again, an infinite number of ways to choose dimensionless
parameters, but we go with:

D

,0\/7 Reynolds number
_e .

E= 5 relative roughness
DOP
o (no name)

) ) ) ) DOP
Using the Pi theorem, we can write this as e f(Re)

2
or, playing with numerical factors, 0OP = 2,0Dv f(Re, s)




Moody plot 0P =

Heref iscalled Fanning’ s friction factor.

Note that this alows the scaling of numerous experiments onto a
single plot, and gives usimportant similitude information....

Stokes' drag law

How fast does a spherical particlefall in aviscousfluid, asa
function of radius?

Relevant variables:

L R particle radius
ML o particle density

LT2 g gravitational acceleration
ML yor density of fluid

ML-LT-L H viscosity of fluid

LT? v terminal velocity of particle




Stokes drag law

Again, Sx variables, three dimensonsimplies three
dimensionless products.

2 VR
nlzﬁ m,=— r|3:’0fI
pfl f Rg /’I
“Froude number” Reynolds number
Lz =f pﬂVR &
Ry M Py

Being clever, and knowing the physics at work, we can rewrite:

R?
v pflgw &
H P

Stokes drag law

R?
,Fp9 2
H P

Better even than that, we know that if the two densities are equal
the particle should remain motionless!

So, knowing that what we' rereally doing is buoyancy, we know
that ly sh .
GOy SNWSUP &S g(p, - py)

The only way for thisto betrueisif we can write:

V:CRzpﬂg[pp_l]

H P
where Cisjust some number. For aspherica particle, it turns out
from detailed calculationsthat Cis 2/9.

Again, with abit of intuition and dimensonal analysis, we got
quitefar!




Atomic bomb blast

A very famous example: when the atomic bomb was tested at
Alamagordo, NM in 1945, anumber of high speed photographs were
taken.

After thewar, these pictures appeared in a 1947 issue of Life
Magazine. At thistime, theyield of the bomb was still classified.

However, based on these pictures, British (and Soviet) scientists
were able to come up with a very good estimate for the bomb yield!

Let'sgivethisatry....

Atomic bomb blast

Assume atotal amount of energy E dumped into an infinitesmal
volume very rapidly.

Assume aresulting spherical shockwave of radiusr(t) expanding
into the surrounding undisturbed air of dendty p.

We have four parameters:

ML?Z/T? E bomb yield
L r shock radius
T t time

M/L3 p air density

and three units, which meansthere should just be one
dimensionless parameter(!) that remains constant during this
process!




Atomic bomb blast
Plugging in, we can quickly find that:

Et>  should be constant during
the expansion of the
shockwave.

Atomic bomb blast

Assuming the constant of proportionality isjust 1, and using the scale
bar so thoughtfully provided by the Army, one can calculate that the
yield of the Trinity test was around 25 KkT.

Because of the beauty of scaling, one can actually do tests with, say,
dynamite to determine the actual value of that numerical coefficient.
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Dimensionless numbers and their interpretation

WEe ve shown that dimensional anaylsis can be very useful for
getting information out of complicated systems without
necessarily performing a huge calculation.

An added ingredient, however, to avoid picking areally awkward
set of dimensionless products, isintuition.

Wheét follows are some common dimensionless numbers and their
interpretations....

Reynolds number:
od (ov?d?) inertia forces
U (vld)(d?) viscous forces

Dimensionless numbers and their interpretation

Froude number
i _ o7 kinetic energy
Rg pooR gravitational potential energy
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Summary

» Dimensional consigency places significant (if subtle) constraints
on therelationships between quantities described by dimensioned
variables.

» Dimensiona anaysis can give us an impressive amount of
information when supplemented with alittle physical intuition and
insight.

» Understanding dimensionless quantities and their relationshipsis
essentia for similitudetests....
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Fluid mechanics: an overview

Several different regimes of fluid mechanics and dynamics:

Viscous flow vs. inviscid flow
Steady vs. unsteady flow

Laminar vs. turbulent flow
Incompressible vs. compressible flow

Open vs. confined flow

Most relevant to microfluidics:

Viscous, steady, laminar,
incompressible flow.

In open flow, must worry about
surface tension, surface
chemigry effects.

Two main ways of approaching fluids problems:

» Control volume analysis

* Eulerian approach (following fluid e ements)

Viscosity

Defined by considering the stresses involved in shearing a

volume of fluid:
fo]

oy ot ay

oy

For Newtonian viscosity, shear stressislinearly proportional

to the strain rate: ou
7. = _




Viscosity

Thinking in terms of velocity fields,
u(x, y, 2) = x-velocity component
y SN

X — " sheardress 1,
Newtonian viscosity definedas. 7., = ,ug—u
y

iy
The kinematic viscosity is another useful quantity: V = ;

Viscosity is sometimes referred to as a diffusion coefficient for
momentum.

Because aforce isactudly arate of change of momentum, astressisa
momentum flux. Inthat sense the shear sressisaflux of x momentum
in the -y direction, driven by a gradient in the concentration of x
momentum.

Newtonian vs. nonNewtonian

Newtonian fluids are those for which the viscosity is independent
of gtrain rate.

NonNewtonian fluids are certainly possible, for which
U= 'u(aa tj =u aiu t
ot '’ ay’

* Pseudoplastic - viscosity drops with increasing shear rate (shear-
thinning; e.g. mayonnaise, toothpaste)

Several types.

* Dilatant - viscosity increases with increasing shear rate (shear-
thickening; e.g. corn starch in water, silly putty)

* Thixotropic - viscosity drops with time under constant shear

» Rheopoxic - viscosity increases with time under constant shear (rare)

NonNewtonian fluids can be important for microfluidics! Colloids and
other suspensions (e.g. blood) are often pseudoplastic / thixotropic.




Incompressible vs. compressible

Much of what we care about is flow of liquids.

Under our conditions of interest, most liquids are practically
incompressible; p isconstant in space and time.

* Note that for gas-based microfluidic devices (microscal e turbines,
refrigerators, etc.) this may not be a reasonabl e approximation.

» Also notethat if we assume incompressibility, we areignoring

potential physicsin longitudina sound waves.

Turbulence

Y ou know from experience that the detail s of
fluid flow can be incredibly complicated -
just look at the evolution of a puff of smoke
in air, or adrop of cream in coffee.

The cascade of detailed fluid motion over a
broad range of length scales superposed on
top of background average motion is called
turbulence.

We are fortunate in two respects.

» Control volume analysis lets us treat
average behavior of steady turbulent flow
readily.

* Inmicro- and nanofluidic systems, we
almost never need to worry about turbulence!

u

u

\
FA S e A~ —
u

steady turbulent ﬂowt

laminar flow t




Laminar flow

Most micro- and nano-fluidic devices are in the laminar regime.

Thisregime istypified by low Reynolds number.

Reynolds number:
ovd (ov2d?) inertial forces
U (wvld)(d?) viscous forces

* Viscous forces dominate, resulting
in a smooth velocity field that can
sometimes even be solved
andytically, given correct boundary
conditions.

* No mixing of adjacent fluid layers
(except by particle diffusion, which
still happens).

Kenis et al., Science 285, 83 (1999)

Control volume analysis - steady flow

Draw afixed box around a volume of interest and consider the
conservation laws that must be obeyed:

e Total mass of fluid must be conserved.

» Total momentum must be conserved: rate of change of momentum
of the fluid flowing through the volume must be made up by the
forces acting on the fluid.

» Total energy must be conserved (we' Il get to this one later).

Start off with 1d case:




Continuity

z p P
u u+ du
> —
y A A+ dA
X

For an incompressible fluid,

PAU = p(A+ dA)(u + du)
. 0
Inintegral form, ozaj‘wpdv +Icspu (A

This should be old-hat for you to convert to differentia form:
Di(ou) =0

0
For acompressiblefluid, [ [{,ou) = —a—’to
Momentum equation
z p 0

_.u u+du

—

y A A+ dA
X

Now consider the momentum flux in and out of the control volume.
x-momentum in |eft side: A(pu)u
x-momentum out right side: (A + dA)(,o(u + du))(u + du)

Difference hasto be equal to total forces (body + surface) acting
on thefluid in the volume.

Inintegral form, |F_+F, = %J'w (ou)dv + J'CS(,ou)u [dlA




Momentum equation along stream lines, no viscosity

In laminar flow, can think about stream lines - trajectories traced
out by, e.g., tag particlesin flow.

Stream lines do not cross each other, so one may define a control
volume that follows stream lines and only have to worry about
fluxes of matter out the ends.

Say sis coordinate along direction
of stream line.

pAU, = p(A+dA)(u, +du,)

An example of aforce acting on the fluid: hydrostatic pressure.

Assume for now that the pressure is uniform across each end.

_ d
Pressure force term: F. = pA-(p+dp)(A+ dA)+(p+7p)(dA)

Momentum equation along stream lines, no viscosity

Simplifying the pressure term,

F, =—-Adp- % dpdA

Body force? How about gravity:
F, =-pgsn&V = —pgsinH(A+d—;)ds: -0g(A+ d;‘)dz
Momentum flux will be just out the ends:
F, +F, =u (-ou A) + (U +dug)(o(ug +dug)(A+dA))
Recal, pAu, = p(A+dA)(u, +du)

So, we're | eft with:

- Adp —%dpdA— pgAdz—Wz = pu Adu,




Bernoulli equation

Regrouping terms, weget - a4 _ gdz = u,du,
o

dp 1.,)_ ) .
or — +gdz+d SUs )= 0  wherethese differentials are taken
P along astream line.

Dropping the subscript and integrating, we see that for steady,
inviscid, incompressible flow along a streamline,

L gdz+(1u§] = const
0 2

Thisisthe Bernoulli equation that you’ ve probably seen somewhere
before.

Remember, this comes from solving simultaneously the continuity
and momentum equationsfor a differential control volume along a
streamline, under quiterestrictive conditions.

Control volume summary

» Define some volume of interest.

* Add up mass fluxesin and out of volume. Continuity will
provide a condition on the vel ocities (for incompressible flow)
and flow areasto assure conservation of mass.

* Add up momentum fluxesin and out of volume. The net rate of
change of momentum of the fluid going through the volume must
equal thetotal force on the fluid from surfaces and “body” forces.

» For more complicated situations, must keep track of all different
components of momentum!

* For specific case of steady, incompressible, inviscid flow along
streamlines, can use Bernoulli equation.




Eulerian analysis

Ingtead of a fixed volume, consider following an individual fluid
particle asit passes through the vel ocity field assumed to exist
everywhere.

That particle hasto obey Newton’slaws, and it can be deformed
(rotated, sheared, stretched).

S0, at timet have particle at position x,y,z, with a veocity u(x,y,zt).

An ingant later, it’s velocity should be given by
U(x+X,y+dy,z+dzt+ad)

Usethechainrule
dup :@@(+a£@+a£&+a£
ox oy 0z ot

Accderation of the particleisthen
= dUp _67U§+@Q+67Ué+au

a =
P dt oxdt oydt oJzdt ot

Eulerian analysis

If we call the components of the velocity fidld u, v, w, then

Du du, 9u Oou_ Adu_ . du
m a = = +—V+—w+

- 7u PR PR PR
P dt ox dy 9z ot

Thiskind of derivativeiscalled atotal or convective or advective
derivative.

In differentia form, Du =u[0u) + ﬂ
Dt

u
/ local acceleration

“Convective’ or “advective’” accderation of particle




Eulerian analysis:. momentum equation

Now that we know what the actual acceleration of a particular blob
of fluid is, we can figure out what the forces on that particular blob
are, and set them equal. This should give us amicroscopic form of
the momentum equation.

Consider alittle volume of fluid dxdydz. The forces acting on the
little blob can include a body force (gravity, in our example), as
well asforces from stresses acting at the surfaces of the blob.

Look at the x direction for example, and allow the stresses to vary

in spacel

Fo =| O +1%dx dydz-| o, 100, dx |dydz
2 0x 2 0x

or or
+ (ryx + %T; dy}dxdz —(ryx - % Wyx dy}dxdz

7, +£&dz dxdy—| 7,, —Eaﬁdz dxdy
2 0z 2 0z

Eulerian analysis:. momentum equation

Simplifying, and writing for all 3 components of the surface forces,

0
Fo = 00w 4 9T, Ol dxdydz
0X ay 0z

= 99, +ﬂ + ﬂ dxdydz
oy o0x 0z

0
F, = [aaﬂ +9%e +Ty2jdxdydz

Y

N 9z ax oy

To go further, we need to write the sresses in terms of the
pressure and the viscosity (which you know shows up because
of velocity gradients).




Eulerian analysis. momentum equation

7. = _/J@ @ _ 2 au
v ox ay Ox="P~ 3/JD|]J+2/J(T
ow | ov ov
ryz:rzy::u[ay"'azj w:_p_*ﬂmm"'zﬂa
T,=T,= 07u+aiw o'ZZ:—p—g,qu+2,ualV
0z 0x 3 0z

Recall, aso, that for incompressible flow,

DE{pu)——g—p_.Dlll:O

Navier-Stokes equations - incompressible case

Substituting, and adding in gravity, we get:

6p 0“u 6 6
Fo=pg - P4y ou,0u,0u
L [6x a2 oF J

op, 0v 0% 6
F = I B
Y [6x oy 0z J

ap 0 w, d*w 6
F=pg,-P+
2= A ”[ax ay’ = j

Rewriting the whole momentum equation in a coordinate-free way,
assuming constant density and viscosity:

Du 5
— = pg-0p+ u2
th Py —0p+ 0]

Thisisthe Navier-Stokes equation for viscous, incompressible flow.
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Laminar, viscous flow in a circular pipe

We want to find the vel ocity distribution for “fully-devel oped”
viscous flow down a circular cross-section pipe:

Can solve this either with a
control volume analysis, or usng
Navier-Stokes. Firg, the former.

Annular control volume, centered on
point x. Flow velocity u(r).

190
Force on | eft end: [ p- 23 %» dijnrdr

. 10p
oo~ prZ——dx 2mdr
Force on right end: [p > ax j

Laminar, viscous flow in a circular pipe

Shear force on inner surface;

- r,x—lar” dr |2 r—ldr dx
2 or 2

Shear force on outer surface:

(r,x +E%drj2n(r +Edr]dx
2 or 2
For fully devel oped flow, total force on fluid must be zero:
ap r>< arrx _}a(r Z-r><)
ox r o r or
Integrating w.r.t. r: ou

-1,%,6
rrrxzirzapﬂ;l/'ar 2u 0x r,u\
X
‘,u@ / u= P ClInr+c
T or 4,U 6x H
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Laminar, viscous flow in a circular pipe

Apply boundary conditionthat u=0atr=R: (“nodip”)

52

Parabolic velocity profile.

Can compute volume flow rate for this case:

R 4
Q= [u(r) 27dr :—”R(apj
° 8 u \0x
Thiskind of fully devel oped laminar flow is also called Poiseuille flow.

Thisisthe flow regime most commonly encountered in long, closed
microfluidic channels.

Note: Could have written Navier-Stokes egn. in cylindrical coords.,
and solved with appropriate boundary condition, getting same answer.

What about an open flow?
No stress

d o u(y)

Again, ignore gravity and assume a driving pressure gradient.

Also assumethat the flow is much wider than it is deep.

Do same kind of control volume analysis for arectangular

control volume, and find:
o1, _ap ou_op

dy  ox Hay? " ox
What are correct boundary conditions for this case?

u(y=0)=0, 9u =0
6yy:d

Again, could integrate and use b.c. to find u(y).

12



Boundary layer

—_— [—

0] > — :__,:
—_— —
g —>
—_—

With no pressure gradient, steady viscous incompressible flow
over aplate develops a boundary layer of fluid moving at reduced
vel ocity compared to the bulk.

The plate also experiences a shear force.

Exact solution requires solving a boundary value problem:
2
@+@=0 uau Vau_,uau
ox ady ox dy poy?
uly=0=0, u(y=c)=U

Boundary layer

—_ _
— —_——3 X

—_—
—
—>

Requires numerical solution. Still, casting problem in correct
nondimensional variables leadsto the expressions

800= % Wwhereu(y=d = 0.99 U.
N AUXT

- 0.3320U 2
PUXI
These expressionshold in the laminar regime. Far enough downstream,

the effective Rein the denominator becomes large (> ~ 2300), implying
atrangtion to turbulence.

For water, 1 ~ 0.001 Pa-s, for abulk flow speed of 10 um/s, this occurs
at apoint ~ 230 m downstream = never, in microfluidic case.

13



Stokes' drag law

What isthe drag force on a
spherein a medium moving
with uniform flow speed U far
from the sphere?

Again, boundary value
problem for Navier-Stokes.

Stokes introduced a stream function |, defined so that
1 oy wL=__1 0y

ur:rzsineﬁ °  rsin@ or

Can then rewrite NS equation as:

0> sné@ 0 1 0
E?(E%) =0, whereE?’=—+~—— | — —
(E¥) oz r? ae(sneae]

Stokes drag law

E*(E*%w) =0, whereE* =

oo o1 o)
or?  r? 00\sn@dag

Thisisa 4" order PDE, requiring four boundary conditions:

u(r=a)=0 No flow normal to sphere surface at surface.

Shear stress prop. to velocity gradient a sphere surface.
u (r - ) =U cosé
Uy(r - 0)=-Usnd

Find endresult:  |F, =6/7Ua

* Very useful for describing forces on small particles (colloid,
cdlls, etc.) in microfluidic systems.

* Quite easy to have drag forces be substantial at low Re!

14



Surface interactions

» Details of the interactions between fluids and surfaces can be of
crucia importance in micro- and nanofluidic environments.

» Obvioudy, for small volumes of material, the surface to volume
ratio can become large, leading to surface forces swamping out
body forces.

* Surface interactions often determined by surface chemigry —
energetic competition between liquid cohering to itself and wetting
the surface.

e B

Contact angle clearly varies depending on affinity of liquid for
solid surface.

What is surface tension?

* Surface tension has units of energy per area, or force per length.

» Accounts for the energetic differences per molecule between
moleculesin the bulk of aliquid and those at the interface between
the liquid and another material.

» Can think of it asthe energy cost for creating a unit area of that
interface.

» Analogous, thermodynamically, to pressure (though defined
with aminussign).

That is, in 3d: W =-pdV

For a2dinterface, W =adA

15



Basic surface tension intuition

Surface energy per unit volume for a spherical drop:
4m’c _30
(4/13)m® r
Clearly surfaces become very expensive at small size scales.
All other things being equal, two small drops will mergeto
minimize the surface area.

Similarly, small bubbles are energetically very expensive, and
will tendto collapse if pressure forces from the vapor ingde
can’t balance the surface tension force.

This bubble collapse can be very intense in terms of energy
density - cavitation, sonoluminescence.

Water: o, =0.072 Im? Hg: o, = 0.436 Jm?
Octane: g, = 0.022 Ym?

Surface interactions
Contact angle determined by energetics. Consider moving the
interface dightly.

Defining solid-liquid, liquid-air, and solid-air surface tensions as
Oy, G, and g, respectively,

o, —04 =0, C0S6,

sV

Surface interactions (surface tensons) can be tailored chemically.

Under certain circumstances, they can also be tuned on the fly!

16



Wetability

o, —04 =0, C0S6,

sV
Spreading coefficientisdefinedas  S=o0, -0y — 0,

Large positive Simplies that the liquid likes to spread.

“High energy” surfaces have large values of o, and are energetically
expensive.

Surface energies between the liquid and solid come about because of
microscopic interactions at the interface.

The extreme version of thiswould be covalent bonding, but for most
liquid/solid interactions, it will be some variant of Van der Waals.

Wetability
So, if theinteraction potential iswhat determines surface
affinities, we can write:
oy =0, +t0, Vg

where we' ve defined an attractive interaction to give a positive Vg .

Similarly, two identical liquid regions that then touch have no
surface energy associated with that interface:

O0=0,+0,-Vy
So, combining these we can see that the wetting coefficient isthen
S=Vq -V,
Thisisaso pretty much why teflon is effectively water-proof: the
hydrogen bonding interaction between water moleculesis much

more grong than the VdW interaction between the water and the
fluoropolymer.

17



Wetability
If we' rereally talking about Van der Waals, the potential between
two different materialsisrelated to their polarizabilities:
VLL~aE Vg ~asa,
Since the polarizability of most hard solidsislarger than those
of liquids, wetting ends up being favored.
Complications:

 Polarizahilities are frequency-dependent, so there are corrections
for thisto the above.

» Aswe said, other stronger interactions can be relevant (hydrogen
bonding, chemidtry)

* Liquid microstructure near the surface can be quite different than
in the bulk (extremely important for nanoconfined fluids).

Capillary action

The interaction between the liquid and the solid surface can be
powerful enough to draw liquid up againg gravity: thisis
capillary action.

—:-| |-:— 2r
09(7r°h) = 27T 0y cos b, j/
lg
h= 204 cos6, &; \
Jos ) v

Note that for nonwetting interactions, the contact angle is greater
than 90 degrees, so his actually negativel

Thiskind of capillarity is one way to measure surface tensions.

Strength of capillary action: assuming zero contact angle, water
in a1l micron tube would get drawn up 15m (!).

18



Can surface interactions be tuned?

Yes, in several ways, some irreversible, some not:
» Chemica modification of liquid surface - surfactants.
» Chemical modification of surface termination
* Self-assembled monolayer
» Temperature-dependent monolayer
 Optically active monolayer
* Electrochemically modified interactions
o Electrokinetic effects
* Electrostatics and solutions

Self-assembled monolayers

Us . botwy

sing soft lithography / Photomask

microcontact printing with Y T e e
PDMS stamps, can pattern ; i i ; i E i —
surfaces into hydrophilic 7 of

and hydrophobic regions. iyt iy

Also, optical patterning can
be done to modify the SAM
onceit’sin place.

At right, dye in aqueous
solution only goes where
hydrophobic surface
termination has been
removed.

Zhao et al., Science 291, 1023 (2001).
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Temperature-dependent layer

Coat the surface with aliquid crystal
polymer film. Below transition
temperature, film is ordered and
presents a hydrophobic sidegroup.

Above transition, film is disordered:
more hydrophilic interaction.

Crevoisier et al., Science 285, 1246 (1999).

Optically active monolayer

Inthiscase, SAM has
two isomeric forms
between which it may be
reversibly switched
optically.

UV light conformation
favors wetting of the
surface by ail, while
blue light conformation
favors dewetting.

UV light Blue light

JlHH 111

—a—

D— ———— _ﬂ_
100 = UV light ——s—— Blue light — [ 2%
S
~ 2.6
S s 3
ﬁ 60 ___---""... 2.4
g 404 oo
8

20 2.0
0 | T T T T T T T T
0 40 80 120 160 200

Irradiation time (s)

Ichimuraet al., Science 288, 1624 (2000).

Diameter (mm)
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Optically active monolayer

A UV light
Because these surface
modifications are ﬂ ﬂ ﬂ ﬁ‘uodm::l
reversible, itis possible t=0s e —— e
to move droplets of
liquid around the surface ﬂ ]! - ﬁ;ﬁ
purely by optical ——
modification of the tc-ss‘ — e
surface energies.
gt 111l
t=80s e -
D
Same procedure with a reverse
direction shown above
- T0imm | ei—

Ichimuraet al., Science 288, 1624 (2000).

Electrochemically modified interactions

A -
Can also use dectronic
modification of interfaces.

At right, a surfactant molecule {
that can be switched between a {g.?‘ S
relatively low and high surface
tenson state depending on its

ionization sate. el e MSansesaasanssans s

Using thison an electrolyte/ .
electrode interface, it ispossible / -
to modify the surface energy on-
the-fly by electrochemigtry.

Current (uA)

v} 0.05 Q.1 0.15 0.2 0.25
Potential (V) vs. SCE
Gallardo et al., Science 283, 57 (1998).
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Electrogtatically modified interactions

Dense alkanethiol SAMs are hydrophobic.

Furthermore, because of their close packing, applying an dectric
field to the SAM isineffective at moving the SAM around if the
monolayer is dense and well ordered.

Other SAMSs can be designed, however:

Precursor MHA

Hydrophabic
Alkyl Chain

Fy Hydrophilic
Caroxylate
group
é\\\\ Sislfur
@ Gold Electrode

Precursor e Hydrophilic Hydrophabic
Monalayer Hydralysis Manolayer Monolayer

Lahann et al., Science 299, 371 (2003).

Electrogtatically modified interactions

Under theright circumstances, similar to those discussed on your
problem set, it is possible to use basic e ectrostatics to manipul ate
wetting. Assume a conductive drop.

Theideaisto use €lectrostatic forces to alter the balance between
body and surface effects:

2
cosO(V) = cosA(V = 0) +;K€O\;

v

Thisiscalled eectrowetting.




Solution electrostatics

Now that we' ve introduced electrically conductive liquids asa
possibility, we have to contend with the actual eectrostatic
interactions between the liquid and the surrounding materials.
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