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Dimensions and units

So far as we know, nature can be described using the four “dimensions” or “primary 
quantities” of length, time, mass, and electric charge. Here the word “dimension” is used to refer 
to aspects of nature that are independent in the sense that they are not inter-convertible. Length 
cannot be re-scaled as a mass. Time cannot be re-scaled as an electric charge. 

All physical quantities can be measured as combinations of these four dimensions. For 
example, velocity is length divided by time, and energy  can be expressed as mass times length 
squared divided by time squared. 

Temperature is an anomaly; there has been a debate about whether or not it should be 
included as a primary  quantity  independent of mass, length, and time (Huntley, 1967). It is a 
statistic of the molecular motions, which can be defined in terms of of energy per unit mass. In 
atmospheric science, temperature is usually treated as a fifth primary quantity. 

Units are different from dimensions. The various primary quantities are measured using 
units, which can be defined in very  arbitrary ways. For example, length can be measured using 
meters, feet, furlongs, or the size of Henry VIII’s foot. Today, scientists almost always use the 
metric or “International” system of units. 

Dimensions are physical; units are not. It  is possible to define natural or fundamental units 
(e.g., Barrow, 2002; Wilczek, 2005, 2006 a, b), but these are not convenient for use in 
atmospheric science. 

The starting point for the discussion below is that physical principles must be independent 
of the choice of units. For example, Newton’s law F = ma , i.e., force equals mass times 
acceleration, must predict  the same physical phenomena whether we use English units or SI 
units. 

We need some definitions:

1. Physical quantity: A quantitative conceptual property of a physical system, which 
can be expressed numerically in terms of one or more standards. Example: The 
radius of the Earth.
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2. Primary quantities: A set of quantities (hereafter called q s) chosen arbitrarily  for 

the description of a problem, subject to the constraint that the units of measurement 
chosen for the quantities can be assigned independently. Primary quantities are 
sometimes called “fundamental quantities.” Examples: Length, time, mass.

3. Dimension: The relationship of a derived physical quantity to whatever primary 
quantities have been selected. Example: Velocity = Length / Time.

4. Standard: An arbitrary reference measure adopted for purposes of communication. 
Example: meter.

5. Unit: An arbitrary fraction or multiple of a standard, used to avoid inconveniently 
large (or small) numbers. Example: Kilometer. All standards are units, but not all 
units are standards.

6. Extraneous standard: A standard that is irrelevant for a particular problem. 
Example: The length of Henry VIII’s foot, which is irrelevant except when Henry 
VIII visits a shoe store.

7. Extraneous unit: a unit based on an extraneous standard. Example: 1 mile = 5280 ft.

8. Dimensionless quantity: A quantity that is expressed in units derivable from the 
problem (that is, not in extraneous units). There are no intrinsically or universally 
dimensionless quantities. A quantity is dimensionless or not only with respect to a 
particular problem. Example: Rossby number.

9. Dimensional analysis: The process of removing extraneous information from a 
problem by forming dimensionless groups.

10. Nondimensionalization: Conversion of a system of dimensional equations to a 
system that contains only nondimensional quantities.

11. Scale analysis, sometimes called “scaling:” Using chosen numerical values for the 
dimensional parameters to compare the orders of magnitude of various terms of a 
system of non-dimensional equations. A scale analysis can only  be performed when 
the governing equations are known.

12. Similar systems: Those for which the dimensionless quantities have identical values, 
even though the dimensional quantities may  be very different. Example: A model 
airplane in a wind tunnel can be “similar” to a full-size airplane in the atmosphere.

13. Similarity theory: A theory  based on the hypothesis that functional relationships 
exist among the nondimensional parameters describing a physical system. The 
functions themselves must  be determined empirically. Similarity theories can be 
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useful when the desired functions cannot be derived from the governing equations, 
or even when the governing equations are not known.

Consistent use of dimensional and nondimensional quantities in equations

It makes no sense to add or subtract quantities that have different dimensions. You cannot 
add a length to a mass. One consequence of this is that all terms of an equation must have the 
same dimensions. This is called the requirement of dimensional homogeneity.

An exponent must be nondimensional, because it is the number (pure number) of times that 
something is multiplied by itself. 

Similarly, the arguments of (inputs to) mathematical functions must be nondimensional. 
Examples of such functions include exponentials, logarithms and trigonometric functions. You 
can take the sine of 2 but you cannot take the sine of 2 meters. 

We often see dimensional quantities as the arguments of logarithms, even though it makes 
no sense. For example, you might see something like this:

1
θ
Dθ
Dt

=
D
Dt

lnθ( ) ,

where θ  is the potential temperature. A more correct (but slightly  longer and slightly more 
complicated) statement is this:

1
θ
Dθ
Dt
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D
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ln θ
θref
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where θref  is a constant reference value. It seems that some people just don’t want to be bothered 

with including θref  and then saying “where θref  is a constant reference value.” Too much trouble.

The Buckingham Pi Theorem

The fundamental theorem of dimensional analysis is due to Buckingham, and is stated here 
without proof:
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Another way of writing (2) is

 
′φ π1,π 2 ,…,πm;1,…,1( ) = 0

(4)

where the number of “1s” appearing in the argument list is k . Clearly the 1s carry no 
information about the functional relationship among the π s, so that we can just omit them, as 
was done in (2). In (4), the 1s clearly  represent “extraneous” information, which entered the 
problem through the extraneous units used to measure the q s. By dropping the extraneous 

information, we simplify the problem. We don’t actually change the problem. We just  boil it 
down to its essentials.

The Buckingham Pi Theorem

If the equation

 
φ q1,q2…,qn( ) = 0

(1)

is the only relationship  among the qi , and if it holds for any arbitrary choice of the units in 

which 
 
q1,q2 ,…,qn  are measured, then (1) can be written in the form

 
φ π1,π 2…,πm( ) = 0 ,

(2)

where 
 
π1,π 2 ,…,πm  are independent dimensionless products of the q’s.

Further, if k  is the minimum number of primary quantities necessary to express the 
dimensions of the q s, then

m = n − k .

(3)

Since  k≥ 0 , (3) implies that  m≤ n . According to (3), the number of dimensionless products 
is the number of dimensional parameters minus the number of primary quantities.
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The choice of the q s can be made by inspection of the governing equations (if known), or 

by thinking about the physical system of interest.

The dimensions of the q s can be determined in terms of chosen primary quantities. The 

primary quantities can be chosen arbitrarily, provided that their units can be assigned 
independently. It is necessary  to choose enough primary quantities to ensure that nondimensional 
combinations can be formed in all cases. 

Here is an example of a dimensional analysis, based on the theory of Rayleigh-Bénard 
convection. Consider thermal convection of a shallow fluid that fills a laboratory tank, with no 
mean flow or rotation. The depth of the tank is h . The linearized governing equations are:

∂
∂t
−υ∇2⎛

⎝⎜
⎞
⎠⎟
′u = −

∂
∂x

′p
ρ0

⎛
⎝⎜

⎞
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∂
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∂
∂t
−κ∇2⎛

⎝⎜
⎞
⎠⎟

′T = − ′w Γ .

Here x , y , and z  are the spatial coordinates, u , v , and w  are the corresponding components of 

the velocity  vector, T  is temperature, p  is pressure, ρ0  is a constant reference-state density, g  

is the acceleration of gravity, α  is a thermal expansion coefficient, υ  is the molecular viscosity, 

κ  is the molecular conductivity, and Γ ≡ ∂T / ∂z  is the rate at which temperature increases 
upward in the mean state. An overbar denotes the mean state, and a prime denotes the departure 
from the mean state. 

By inspection of the equations, we see that the six dimensional parameters of the problem 
are

g,Γ ,h,υ,κ ,α .
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Here g  is gravity, Γ  is the lapse rate, h  is the depth of the fluid (which enters through the 

boundary conditions), υ  is the molecular viscosity, κ  is the molecular thermal conductivity, and 
α  is a parameter that measures the amount of thermal expansion per unit temperature change. 
These six parameters are determined by the design of the laboratory experiment, e.g., the depth 
of the tank and the choice of convecting fluid (water, air, oil, etc.). 

We don’t include the dependent variables u , v , w , p , or T  in the list of parameters, 

because they are part of the solution, and so depend on the parameters listed above. We don’t 
include ρ0  in the list because it appears only  in the combination ′p / ρ0 , and so we just think of 

′p / ρ0  as one of the dependent variables.

As primary  quantities, we choose length ( L ), time (T ), and temperature (Θ ). There are 
three primary quantities, and six dimensional parameters, so the π -theorem tells us that we 
should be able to eliminate 6 − 3 = 3  pieces of extraneous information. 

We can tabulate the dimensions of the q s as follows:

Quantity DimensionsDimensionsDimensions

primary quantities L T Θ

g 1 -2 0
α 0 0 -1

Γ -1 0 1

h 1 0 0
υ 2 -1 0
κ 2 -1 0

As our pertinent (non-extraneous) unit of length, we choose h . Forming products, we 
systematically eliminate the “lengths” from our set of quantities:
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Quantity DimensionsDimensionsDimensions

primary quantities L T Θ

gh−1 0 -2 0
α 0 0 -1
Γh 0 0 1
1 0 0 0

υh−2 0 -1 0

κh−2 0 -1 0

As our unit of time, we use h2υ−1 . (We could just  as well take h2κ −1 .) Again forming products, 
we obtain 

Quantity DimensionsDimensionsDimensions

primary quantities L T Θ

gh3υ−2 0 0 0
α 0 0 -1
Γh 0 0 1
1 0 0 0
1 0 0 0

κυ−1 0 0 0

Obviously, to complete the procedure, we simply form the product Γαh , and the final version of 
the table is shown below. 
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Quantity DimensionsDimensionsDimensions

primary quantities L T Θ

gh3υ−2 0 0 0

αΓ h 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

κυ−1 0 0 0

All together, we then have three 1s in the header column of the final version of the table. This 
means that three pieces of extraneous information have been eliminated, as promised by the π -
theorem. But we have the three nondimensional combinations

gh3υ−2 ≡ x1 ,

(5)

κυ−1 ≡ Pr ,

(6)

and

Γαh ≡ x2 .

(7)

The Rayleigh number is defined by

Ra ≡ Pr x1x2

(8)

so that we can, alternatively, regard Pr , Ra , and x1  (say) as our three combinations. 

Chandrasekhar (1961) shows that only  two dimensionless combinations matter for the 
convection problem, namely Pr  and Ra . Why then have we found three? The reason is that, in 
the governing equations, g and α  appear only in the combination gα , so they don’t  have to be 

separately included in our list of q s. Because this reduces the number of q s by one, without 

reducing the number primary  quantities, the π -theorem tells us that the number of dimensionless 
combinations will also be reduced by one. The lesson is that we should not enter dimensional 
quantities separately if they enter the equations only in some unique combination.
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Scale analysis

In atmospheric science and oceanography, scale analysis is sometimes used to justify 
various approximations that can aid in the solution of the governing equations. Scale analysis 
involves the use of nondimensional parameters, but it is quite different from 
nondimensionalization itself. Scale analysis always starts from a set of governing equations, and 
it always involves the choice of the numerical values of dimensional scales, based on the 
intended application of the equations. A given set of equations may be applicable to a wide 
variety of physical problems, in which case it is possible to scale-analyze them in more than one 
way. 

Consider an important example: The quasi-geostrophic theory of large-scale motions was 
derived by Charney (1948) using scale analysis. We now perform a simple scale analysis of the 
equation of horizontal motion, in the spirit of Charney’s work. The equation of motion can be 
written in simplified form as

DV
Dt

+ fk ×V = −∇ pφ .

(9)

Here V  is the horizontal wind vector. We have omitted friction, for simplicity. The three terms 
included in (9) suffice to describe the evolution of the large-scale horizontal wind throughout 
most of the atmosphere. Note that (9) involves a single dimensional parameter, namely the 
Coriolis parameter, f , which we will treat as a constant here. Also note that the dimensions of 

mass and temperature do not enter into (9).

We now introduce U  as a (dimensional) velocity scale, and write

 V =UV! ,

where the “carat” notation denotes a nondimensional variable. Similarly, let  L  be a 
(dimensional) length scale. Although U  and L  do not appear in (9), we introduce here them as a 
way of specifying what type of motion we want to analyze. We now have a total of three 
dimensional parameters, namely U , L , and the Coriolis parameter. 

We can combine U  and L  to construct a time scale, T = L /U , and write 

 
t = T t! = L /U( )t! , and

 

D
Dt

=
1
T
D
Dt!

=
U
L
D
Dt!

.
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Making the various substitutions into (9), we can rewrite it as

 

U 2

L
DV!

Dt"
+ fk ×UV! = −∇ pφ .

Dividing through by fU , we find that

   
Ro DV

!

Dt"
+k×V! =−

∇pφ
f0U

,

(10)

where Ro ≡ U
Lf

 is the (nondimensional) Rossby number. Equation (10) is the nondimensional 

form of (9).

In converting the dimensional equation (9) to the nondimensional form (10), we have not 
really changed anything. The problem to be solved remains the same. We have reduced the 
number of parameters from three to one. This is consistent with the Buckingham Pi Theorem. 
Our nondimensionalization has revealed a single nondimensional parameter of physical 
importance, namely the Rossby number. 

As mentioned earlier, two systems are said to be “similar” if their nondimensional 
parameters have the same values, even though their dimensional parameters are quite different. 
The most familiar example is a wind-tunnel, in which small models are used to investigate the 
aerodynamic properties of much larger, full-scale aircraft. We can also construct  laboratory 
analogues of the atmosphere. The simplified and incomplete scale analysis presented above 
suggests that, in order to be a useful analogue of the atmosphere, the laboratory system must be 
designed to have the same Rossby number as the atmosphere. A more complete scale analysis 
would show the importance of several additional nondimensional parameters. Similarity  theories 
are discussed in the next section.

Nondimensionalization is the first step  of a scale analysis. The second step is to choose the 
numerical values of the scales. They are chosen so that the nondimensional dependent variables 
are of order one, for the problem of interest. For example, suppose that we want to investigate 
large-scale midlatitude motions in the Earth’s atmosphere. We choose U  to be 10 m s-1, L  to be 
106 m, and f  to be 10-4 s-1, because these are about the right size for midlatitude large-scale 

motions. 

Using these scales, we find that Ro = 0.1 . This means that the (leading) acceleration term 
of (10) is an order of magnitude smaller than the Coriolis term. In order for the equation to be 
satisfied, the Coriolis term has to be balanced by  the only remaining term, which represents the 
pressure-gradient force. Then (10) reduces to
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f!k ×V! ≅ −
∇ pφ
f0U

,

which is an expression of geostrophic balance. Since 
 
∇ p ∼1 / L , we can conclude that the 

horizontal variations of φ  on pressure surfaces, denoted by δφ , satisfy

 
δφ ∼ fUL .

The scale analysis has thus allowed us to deduce the order of magnitude of δφ , and to conclude 

that for large-scale motions in middle latitudes the acceleration term of (10) is smaller (in 
absolute value) than the other two terms.

The conclusions drawn above depend on our choices for the numerical values of the 
dimensional parameters U , L , and f . If we were interested in a different meteorological 

phenomenon, such as turbulent eddies in the boundary layer, we would make different  choices 
for the numerical values of U  and L , and arrive at different conclusions. 

Similarity theories

Scale analysis makes use of the equations that describe relationships among variables of 
interest in a physical system. In principle, such relationships are determined by the solutions of 
the governing differential equations, but unfortunately there are many cases in which we don’t 
know how to solve the differential equations in order to derive the desired relationships. 

For example: The wind experiences a drag force as it moves near the Earth’s surface. We 
can hypothesize that there exists (i.e., it is possible to find) a “formula” that tells us how to 
compute the drag given the wind speed, the lapse rate of temperature, the roughness of the 
ground (or ocean), and perhaps several other dimensional quantities. Unfortunately, we don’t 
know how to derive the formula from the equation of motion and the other basic physical 
principles of our science, but we believe that the formula exists. 

Similarity theories aim to find such formulas by  means of hypotheses, which could be 
described as inspired guesses. The first step is to write down the list of dimensional parameters 
that appear in the governing equations, including the boundary conditions. In general, this would 
include such things as the spatial coordinates and time, as well as parameters like the Earth’s 
rotation rate and the acceleration of gravity. The list of dimensional parameters can be very long, 
especially when you consider that it  could in principle include detailed information about such 
things as the Earth’s topography. 

We want to make the list shorter. As a first step, we can hypothesize, often with good 
reason, that some of the dimensional quantities are irrelevant to the problem at hand. For 
example, I’m pretty sure that  the height of Mt. Everest is irrelevant to the drag that the air 
experiences as it flows over Kansas City. As a less ludicrous example, we might omit the density 
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of water vapor from the list of dimensional parameters to be used in our search for the drag 
formula.

Having settled on a reasonably short  list of dimensional parameters, we then 
nondimensionalize. The Buckingham Pi Theorem tells us that nondimensionalization will yield 
an even shorter list of nondimensional parameters. 

We then assert that there are functional relationships among the nondimensional 
combinations of interest. If the number of parameters is small enough, we have a reasonable 
hope of finding the functional relationships empirically. This is exactly what has been done in 
developing the famous Monin-Obukhov similarity theory, which provides very  useful empirical 
formulas for determining the surface fluxes of momentum and sensible heat in terms of the mean 
wind and temperature profiles near the Earth’s surface.

As a second example, which connects with the discussion of the preceding section, we can 
imagine two laboratory convection experiments with different numerical values for h  υ , κ , 
gα , and Γ . We would like to find a formula that relates the upward heat flux in the convection 

tank to the nondimensional parameters of the problem, namely Pr  and Ra . We don’t know how 
to derive such a formula from first  principles. A similarity  hypothesis might be that if the 
nondimensional parameters Pr  and Ra  are the same in the two experiments, then the 
(nondimensional) heat flux will also be the same. 

This turns out to be true. If the suitable nondimensionalized heat fluxes from many 
“similar” experiments are plotted in nondimensional form, all of the data fall neatly onto families 
of curves. For example, for a given value of Pr , we can plot the experimentally determined 
nondimensional heat flux against Ra . For each value of Pr , the data fall onto an orderly curve. 
The similarity theory does not tell us the shapes of the curves, which have to be determined 
empirically, but at least it tells us what to look for. If the same data were plotted in dimensional 
form, a “scattered” set of points would result, and no order would be apparent. 

A famous example of similarity analysis was provided by G. I. Taylor (1950 a, b), who 
analyzed nuclear explosions. Using his (formidable) intuition, he chose the following q s for the 

problem:
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Symbol Definition Representative value or first guess

R radius of wavefront 102 m

t time 10-2 s

p0 ambient pressure 105 Pa

ρ0 ambient density 1 kg m-3

E energy released 1014 J

Starting from the five dimensional parameters in the table, which can be described using the 
three primary  quantities length, time, and mass, Taylor used dimensional analysis to identify  the 
following two nondimensional parameters:

ρ0R
5

Et 2
, and p0R

3

E
.

(11)

He could then assert that

ρ0R
5

Et 2
= f p0R

3

E
⎛
⎝⎜

⎞
⎠⎟

,

(12)

where f  is a function to be determined empirically. But actually, he did better than that.

With the numerical values given in the third column of the table above, including a “first 
guess” at the value of E , Taylor estimated that

ρ0R
5

Et 2
= 1 ,

p0R
3

E
= 10−3 .

Because the second parameter is much less than one, Taylor concluded that it was physically 
irrelevant. The second parameter involves the ambient pressure, so this amounts to the 
(plausible) assumption that the nuclear fireball, with its huge internal pressure, does not give a 
damn about the relatively puny  ambient pressure. This similarity  hypothesis led Taylor to 
conclude that (12) can be replaced by
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ρ0R
5

Et 2
= A = constant ,

where A  is expected to be close to one. It follows that

R5 = AE
ρ0

⎛
⎝⎜

⎞
⎠⎟
t 2 .

(13)

The factor AE / ρ0 is expected to be independent of time, because A  is a constant  and both ρ0  

and E  are independent of time. Taylor was able to confirm that R5 increased in proportion to t 2

using published (unclassified) magazine photos of the explosion. He then estimated E  by 
assuming that A = 1 . His accurate estimate embarrassed the government, which had not 
declassified the amount of energy released in the explosion. 

Summary

Dimensional reasoning is very common in atmospheric science and engineering. It is used 
in several different ways.

Mass, length, time, and temperature suffice to describe the physical quantities used in most 
atmospheric science work. The Buckingham Pi Theorem tells us that a physical problem can be 
described most concisely if it is expressed using only  nondimensional combinations. 
Dimensional analysis can be used to identify such combinations. 

Scale analysis goes further, by using chosen dimensional scales, i.e., numerical values 
expressed in units, to determine the dominant terms of the nondimensionalized equations that 
describe a physical system. The scales are chosen so that the nondimensional unknowns are of 
order one for the problem of interest. Scale analysis always starts from the known governing 
equations.

Finally, similarity theories are used to find empirical relationships among the 
nondimensional parameters that characterize a physical system. Similarity  theories are used 
when the formulas that are sought cannot be derived from first principles.

Similar systems are those for which the relevant nondimensional parameters take the same 
values. The concept of similar systems is relevant to both scale analysis and similarity theories. 
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Figure 1 summarizes the logical relationships between dimensional analysis, scale analysis, 
and similarity theories.

Dimensional 
Analysis

Governing 
Equations

Dimensional 
Scales

Scale Analysis

Similarity TheorySimilarity 
Hypothesis

Primary 
Quantities

Nondimensional 
Ratios

Physical 
Problem

Physical 
Quantities

Fig. 1: An attempt to summarize the logical connections among the various topics discussed in this 
essay. Everything flows from the physical problem (the blue box), and the end-points are similarity theory 
and scale analysis (the yellow boxes).
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